
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Martin Koutecký

Solving hard problems on
Neighborhood Diversity

Department of Applied Mathematics

Supervisor of the master thesis: doc. Mgr. Petr Kolman Ph.D.

Study programme: Computer science

Specialization: Discrete models and algorithms

Prague 2013

First I would like to thank my supervisor doc. Mgr. Petr Kolman Ph.D. for
his valuable help and for always being supportive throughout more than the four
years that I have known him.

Next I would like to thank my friend and colleague Mgr. Dušan Knop for
providing me with much needed feedback and inspiration.

I am also glad for all new ideas and suggestions made by Michael Lampis in
our email conversations. I would also like to thank Daniel Dadush who helped
clarify some of his research over email. Finally I want to thank Mgr. Jakub
Gajarský for the help he provided over email.

Last but not least I am immensely grateful to my parents for their help and
support. The example they set for me is the reason I got this far.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague on April 12, 2013 Martin Koutecký

Název práce: Obtížné problémy vzhledem k parametru různorodost sousedství

Autor: Martin Koutecký

Katedra: Katedra aplikované matematiky

Vedoucí bakalářské práce: doc. Mgr. Petr Kolman Ph.D.

Abstrakt: Parametrizovaná složitost je oblast teoretické informatiky zabývající se
výpočetní složitostí problémů měřenou nikoliv pouze délkou vstupu, ale i nějakým
jeho parametrem. „Různorodost sousedství“ je nový strukturální parametr grafu,
který je atraktivní především proto, že pro grafy s pevnou různorodostí soused-
ství se stávají efektivně řešitelnými i některé problémy, jež zůstávají těžké pro
jiné parametry s různorodostí sousedství neporovnatelnými. V této práci nově
ukazujeme efektivní řešitelnost vzhledem k různorodosti sousedství pro tři prob-
lémy těžké vzhledem ke stromové šířce. To tvoří hlavní část této práce a jedná
se o náš vlastní výzkum. Dále pak práce obsahuje přehled dalších zajímavých
problémů a také shrnutí současného stavu v oblasti parametrů pro řídké a husté
grafy.

Klíčová slova: Parametrizovaná složitost, husté grafy, různorodost sousedství

Title: Hard problems on Neighborhood Diversity

Author: Martin Koutecký

Department: Department of Applied Mathematics

Supervisor: doc. Mgr. Petr Kolman, Ph.D.

Abstract: Parameterized complexity is a part of computer science dealing with the
computational complexity of problems measured not only by the length of their
input but also some parameter of the input. Neighborhood diversity is a recently
introduced parameter describing a certain structure of a graph. This parameter
is attractive for research especially because some problems which are hard with
respect to other parameters that are incomparable with neighborhood diversity
become fixed-parameter tractable with respect to neighborhood diversity. In this
thesis we show fixed-parameter tractability for three problems that are hard with
respect to treewidth. This constitutes the main part of this thesis and it is our
original work. Next it contains an overview of other interesting problems and
also a survey of the state of the art in the area of parameters for sparse and dense
graphs.

Keywords: Parameterized complexity, dense graphs, neighborhood diversity

Contents

1 Introduction 6

2 Foundations 8
2.1 Parameterized complexity . 8

2.1.1 Examples . 9
2.2 Parameters of interest . 9

2.2.1 Treewidth . 10
2.2.2 Cliquewidth . 10
2.2.3 Neighborhood diversity 11
2.2.4 Finite type . 12
2.2.5 Vertex cover . 13
2.2.6 Relationships between the parameters 14

2.3 Integer programming . 14

3 Problems 17
3.1 Warm-up . 17

3.1.1 Simple problems . 17
3.1.2 Chromatic number . 19

3.2 Coloring problems . 20
3.2.1 L(0,1)- and L(1,1)-coloring 21
3.2.2 Achromatic number 23

3.3 Capacitated dominating set 27
3.4 Finite type coloring . 32

3.4.1 Chromatic number and finite type 33
3.4.2 L(0,1)- and L(1,1)-coloring and finite type 34

3.5 Possible future research directions 34
3.5.1 Edge OCT . 35
3.5.2 Equitable Coloring 37
3.5.3 Miscellaneous . 38

4 Parameters 39
4.1 Sparse graphs . 39
4.2 Dense graphs . 41

5 Conclusion 45

Appendix A Appendix 46
A.1 Problem definitions . 46
A.2 Parameter definitions . 46

5

1 Introduction

The main focus of computational complexity theory has been for at least 40 years
on the study of the relationship between the running time of an algorithm solving
some problem and the problem size, like the number of vertices and edges of a
graph. This approach led us to the definitions of complexity classes such as P
(polynomial time), NP (nondeterministic polynomial time) and EXP (exponential
time), and especially the notion of an NP-complete problem, which are all truly
foundational for the field of computer science as we know it now. Here we of
course have in mind primarily the seminal work done by Cook [16], Karp [51] and
Levin [62].

But over time it started to be more and more apparent that a finer approach
needs to be taken when dealing with hard problems. In practice the inputs we are
feeding to our algorithms are often times nowhere close to random; there might
be some underlying structure in our instances that actually allows us to create
algorithms that work efficiently for these instances, even though the problem still
stays hard in general. In other words, we find that by looking at just the problem
size when analyzing the worst-case time complexity we are missing a significant
part of the picture, and that it is beneficial to split the input into two parts which
are examined separately.

The ideas above are formalized by the quickly growing field of Parameterized
Complexity [25, 32]. In parameterized complexity we get a parameter as a special
part of the input; quite often it is just an integer representing the solution size, but
generally it can an arbitrary piece of information that gives us more information
about the input (its structure etc.). To be clear we are not saying that the problem
becomes easier to solve, rather that we measure its complexity in two dimension
instead of one, and we contain the hardness to just one of the dimension. In
this sense parameterized complexity can be viewed as a tool to rigorously capture
where exactly lies the complexity of a given problem. Fellows [27] mentions specific
cases where parameterized complexity was used to explain the success of some
heuristics – these heuristics were implicitly relying on a certain structure of the
input graph, which parameterized complexity explicitly captures and analyzes as
the parameter.

A classical example of the first case (i.e., a parameter that is simply the
solution size) is a parameterized approach to the (NP-complete) Vertex Cover
problem – if along with the input graph we are given the size of the solution k,
there is an algorithm which solves the problem in time O(1.271k + kn) [15]. This
is still exponential in the solution size, but if that is fixed and we can treat it as
a constant, the algorithm runs in time linear with the graph size. We should add
that this approach is not attractive just in theory, but the algorithm mentioned
above “has been implemented and is quite practical for n of unlimited size and k

6

up to around 400” (quote from an overview by Fellows [27]).
A classical example of a more complicated parameter is treewidth, which can

be roughly said to be a measure of how close a graph is to a tree. This param-
eter arose as a part of the Graph Minor Project undertaken by Robertson and
Seymour [72, 73]. Just like many hard problems are efficiently solvable on trees
by dynamic programming, it was found that the same technique can be used on
graphs whose treewidth is bounded by a constant. Moreover, treewidth provides
a characterization of some naturally occuring graph classes, such as series-parallel
graphs.

Treewidth is also characteristic for describing the development of metaalgo-
rithmic theorems, most famously Courcelle’s theorem [17]. The idea of metaalgo-
rithmic theorems is that instead of describing many similar algorithms for similar
problems, there is a way to capture a common essence of these, which is done by
proving that some logical language is efficiently decidable when the parameter is
fixed. This provides great intuition when studying said parameter.

The progress done on treewidth led to the exploration of many other structural
parameters, which are usually studied from two perspectives. The first is trying
to answer questions such as “How restrictive is this parameter? How many graphs
display this structure? What graph classes are captured well by this parameter?”
The second perspective is concerned with questions like “Which problems become
tractable when we use this parameter? What logical languages become efficiently
decidable when this parameter is fixed?”

Instead of asking the first few questions mentioned above (like “What graph
classes are captured well by this parameter?”) we can take a somewhat “dual”
approach and ask “What are good parameters for this class of graphs?” A very
vague way to distinguish between graphs is to look at how “dense” or “sparse” a
graph is. It can be argued that treewidth is a successful parameter for handling
sparse graphs (although we are by no means at the end of the road yet). On
the other hand, with dense graphs the situation is still very much open. It is
this question, “What is a good parameter for dense graphs?”, where this thesis
is trying to make some contribution.

The structure of the thesis is following: in Chapter 2 we give a brief overview
of parameterized complexity and provide some basic definitions. We also
define the parameters we will be working with or referencing, namely treewidth,
cliquewidth, neighborhood diversity and finite type. Lastly we will describe some
techniques from the field of integer programming which we will be using later.

In Chapter 3 we give an overview of problems we were interested in, explain
the motivation in choosing specifically these problems, and show how to solve
some of them efficiently when neighborhood diversity is fixed. This constitutes
the main body of this work and also contains our original solutions to three
interesting problems.

Finally in Chapter 4 we discuss the current situation in the field of parame-
ters, first for sparse and then for dense graphs.

7

2 Foundations

Before we can describe our results and go into a deeper discussion of the vari-
ous parameters, we need to define some of the basic terms from the theory of
parameterized complexity, and four parameters that are most important for the
following chapter: treewidth, cliquewidth, neighborhood diversity and finite type.
We assume the reader is familiar with the basics of graph theory, algorithms and
computational complexity. For these we refer to the excellent books by Diestel
[23] and Dasgupta, Papadimitriou and Vazirani [22].

2.1 Parameterized complexity
The first systematic work on parameterized complexity was done by Downey and
Fellows [25], a quick high-level overview can be found in a paper by Fellows [27]
and the probably most up-to-date thorough treatment of the topic is given by
Flum and Grohe in their book [32].

As we said earlier the goal of parameterized complexity is to provide a classi-
fication of NP-hard problems on a finer scale than in the classical setting, where
the complexity of a problem is only measured by the length of the input. The two
extremes in how successful we can be when analyzing a problem from a parame-
terized perspective are characterized by the classes FPT and XP. Roughly said,
a problem falls into the class FPT if an algorithm running in time O(f(k)nO(1))
exists; note that the degree of the polynomial does not depend on the parameter.
On the other hand, if the degree of the polynomial does depend on the parameter
and the algorithm runs in time O(f(k)ng(k)), the problem is in the class XP. Let
us now define those classes formally.

Definition 1. A problem is said to be fixed-parameter tractable (or FPT) if an
algorithm solving the problem in time f(k)p(n) exists, where f is any computable
function depending solely on the parameter k, and p(n) is a polynomial in the
total input length n. This is the same as saying that the problem belongs to the
class FPT.

Definition 2. A problem is said to belong to the class XP if an algorithm solving
the problem in time f(k)ng(k) exists, where both f and g are computable functions
depending solely on the parameter k.

Curiously enough, a hierarchy of complexity classes appears between FPT
and XP, called the W-hierarchy. The definition of the class W[i] is not difficult,
but for our purposes it is unnecessary to deal with it in detail. For us it suffices
to say that the class FPT is the analogue of the class P in classical complexity,
W[1]-hardness is the analogue of NP-hardness and XP is the analogue of EXP.

8

Also just like P ̸= NP is usually accepted as a reasonable assumption, so is FPT
̸= W[1], and it is known that FPT = W[1] would imply that n variable 3-SAT
can be solved in 2o(n) time [13].

A simple way to describe the parameterized complexity world as we know it
now are the following two inclusion sequences:

FPT ⊂ XP

FPT ⊆ W [1] ⊆ XP

2.1.1 Examples
We have already mentioned in the introduction that the Vertex Cover problem
is FPT when parameterized by the solution size [13]. What is probably more
interesting are some negative results. It is known that deciding both the k-
Clique and the k-Independent Set problems is W[1]-hard when the solution
size k is the parameter [25].

2.2 Parameters of interest
Now we would like to formally define four parameters that are interesting for
us, two of them well known and established (treewidth and cliquewidth), the
other two fairly new whose relevance is yet to be determined (neighborhood di-
versity and finite type). For completeness we also define the vertex cover number
parameter.

We will postpone the discussion of how hard various computational problems
are with respect to these parameters to Chapter 3 with the exception of metaal-
gorithmical results. With these we take interest in two aspects, first, what logic
is efficiently decidable, and second, how does the function f(k) (in the running
time O(f(k)nO(1))) look.

To answer the first question we need to know a bit about Monadic Second
Order logic, or just MSO. We use this logical language to express properties
of graphs which we then want to decide on those graphs, or in the words of
finite model theory, we want to solve the model checking problem. As for how
a MSO formula looks: it allows us to quantify over vertices and edges (just like
First Order logic, or FO), but additionally (unlike FO) we can also quantify over
sets of vertices and sometimes even sets of edges. The last distinction (if we
can quantify over sets of edges or not) is precisely how MSO1 and MSO2 differ,
and this difference is significant because generally MSO2 is strictly stronger than
MSO1.

Observe that MSO1 allows us to check for the existence of a k-coloring –
we construct a formula with k existential vertex set quantifiers in the beginning
and then with a FO formula check that first, these sets are a partition, and
second, they are independent sets. In a similar way MSO2 allows us to check
for Hamiltonicity of a graph – we check for the existence of an edge set that is
both a 2-factor of the graph, and is connected. Moreover, it can be proved that
there is no MSO1 formula checking the Hamiltonicity of a graph. This is done
using techniques from Finite Model Theory, mainly Ehrenfeucht-Fräisé games.
For more see Libkin’s book [63].

9

As for the second question, “how does the function f(k) look”, we only look at
two cases – either it is an exponential tower whose height depends in some way on
the formula (its quantifier depth or its alternation depth, which is the number of
general-existential quantifier alternations), or the height of the exponential tower
is constant. Obviously the first scenario is catastrophic in the worst case for
practical use and even though there are indicators suggesting the situation might
not be so dire (see Chapter 4.1) the motivation to look for the second scenario is
strong.

2.2.1 Treewidth
The first parameter we will define is treewidth. It can be considered a measure
of how much a graph is “tree-like”.

Definition 3 ([72, 73]). A tree decomposition of a graph G = (V,E) is a pair
(T,X), where T is a tree, X is a collection of subsets X ⊆ V called bags and
every bag X ∈ X is associated with one node t ∈ T , such that two conditions are
satisfied. First, every edge is contained within some bag (i.e., ∀e = {u, v} ∈ E :
∃X ∈ X with {u, v} ⊆ X) and second, every vertex v ∈ V induces a connected
subtree in T (i.e., ∀v ∈ V the subgraph induced in T by bags for with v ∈ X is
connected).

The width of a tree decomposition is the size of the largest bag minus one.
(This is so that the treewidth of trees is one.)

The treewidth of a graph G (or just td(G)) is the width of its thinnest decom-
position.

The treewidth of a clique is its size plus one, because the whole clique has to
be contained in one bag. A more interesting observation is that the treewidth of
a n × n grid is at least n + 1. This implies that the treewidth of planar graphs
is not bounded by a constant; on the other hand the famous planar separator
theorem [64] implies that the treewidth of a planar graph will always be bounded
by O(

√
n). For a more thorough treatment of treewidth see Diestel’s book [23].

As for the metaalgorithmical properties of treewidth, it was shown already in
1990 by Courcelle that both MSO1 and MSO2 are FPT with respect to treewidth
[17] and this result was quickly extended by Arnborg et al. [2] to optimization
variants (i.e., not only decide the existence of vertex or edge sets but also find
ones of optimal size). On the other hand, Frick and Grohe [35] showed in 2004
that unless P=NP, the MSO1 model checking problem on graphs of bounded
treewidth is not solvable for any elementary function f. A special consequence of
this is that there also can not be an algorithm with f(k) being an exponential
tower of fixed height.

2.2.2 Cliquewidth
The second parameter we will define is cliquewidth.

Definition 4 ([20]). The cliquewidth of a graph G (or just cw(G)) is the mini-
mum number of labels L needed to construct G by means of the following four
operations. (Labels come from the set {1, . . . , L}.)

1. Creation of a new vertex v with label i,

10

2. Disjoint union of two labeled graphs H1 and H2,

3. Joining by an edge every vertex labeled i to every vertex labeled j,

4. Renaming label i to label j.

It is not difficult to show that cliques of arbitrary size can be constructed
using just two labels and so their cliquewidth is bounded, unlike their treewidth.
On the other hand it is known [43] that bounded treewidth implies bounded
cliquewidth.

The metaalgorithmical situation for cliquewidth evolved thusly. Shortly after
the introduction of cliquewidth Courcelle, Makowski and Rotics [19] proved that
MSO1 is FPT for cliquewidth. On the other hand, MSO2 is not because it is hard
already on cliques (this is shown in the same paper). Also, the non-elementary
lower bounds on the complexity of model checking from Frick and Grohe [35] we
mentioned regarding treewidth apply here, too.

2.2.3 Neighborhood diversity
A third parameter we introduce is a generalization of vertex cover and comes from
a recent paper by Lampis [58] but the terminology we decided to use is inspired
by a master thesis by Gajarský [36] which also introduces the fourth parameter
we want to deal with, namely finite type.

Definition 5 ([58]). The neighborhood diversity of a graph G (or just nd(G))
is the number of equivalency classes of the following equivalence: two vertices
u, v ∈ V are equivalent if they have the same neighborhoods except for possibly
themselves, i.e. if N(v) \ {u} = N(u) \ {v}.

It might not obvious that the relation we used to define neighborhood diversity
is an equivalence and we refer the reader to Lampis’ original paper [58] for proof.

The definition given above is concise, but does not give much intuition about
the structure of graphs of neighborhood diversity k. Observe that we can view
such a graph like this: the vertices belonging to the same equivalence class form
bags which are either a clique or an independent set, and every two bags either
have a complete bipartite graph between them, or no edges at all.

A way of looking at the observation above is to say that all graphs G of neigh-
borhood diversity k were constructed according to some template graph GM on
k vertices. This template graph determines which bags are joined by a complete
bipartite graph and the only information missing for a complete description of G
are the sizes of bags. It is easy to find the template graph GM from the original
G by simply contracting every bag into a single vertex. This leads us to the
following definitions:

Definition 6 ([36]). For a graphG with nd(G) = k we define its metagraph GM =
(VM, EM) to be a (possibly annotated) graph on k vertices which correspond to
the equivalence classes of neighborhood diversity. There is an edge between two
vertices from VM if there is a complete bipartite graph between the corresponding
equivalence classes. Also there is a loop on precisely those vertices from VM whose
vertices correspond to equivalence classes which form a clique.

11

We call the vertices of GM metavertices and the edges metaedges. We call a
metavertex which forms a clique a complete metavertex, and a metavertex which
forms an independent set an independent metavertex.

We will use two ways to refer to the metavertices. If we mean just the vertices
of the metagraph, we will use lowercase letters, such as i, j ∈ VM. If we need
to work with the original vertices of G associated with said metavertex, we treat
the metavertex as a set and use an uppercase V indexed by the metavertex, e.g.
|Vi| = number of vertices in the equivalence class i.

The annotation that is possibly attached to the metagraph will depend on the
problem we are trying to solve. If only the graph and no additional information
is on the input, there is only one piece of information on every metavertex, which
is its size |Vi|.

G

Vc Vd

Va Vb

a b

c d

GM

Figure 2.1: An example of a graph with neighborhood diversity 4, and its
metagraph. On the left side a graph G = (V,E) with nd(G) = k and with neigh-
borhood diversity equivalency classes Va, Vb, Vc, Vd, the first three forming cliques
and the last one forming an independent set. On the right side its metagraph
GM = (VM, EM) with VM = {a, b, c, d} and EM = {ab, ad, bd, cd, aa, bb, cc}. The
loops represent that the corresponding equivalency class forms a clique.

The metaalgorithmical situation of neighborhood diversity is much better
when compared with cliquewidth, because it allows for MSO1 model checking
with f being only a double exponential [58]. In fact, this was the main con-
tribution of Lampis’ original paper. On the other hand the MSO2 hardness re-
sult for cliquewidth carries over to neighborhood diversity too (because like with
cliquewidth, cliques have bounded neighborhood diversity).

2.2.4 Finite type
In his thesis Gajarský [36] introduced a generalization of neighborhood diversity
which is intuitively easy to grasp when we adopt the view that a graph is con-
structed according to some template, as we did in the previous section. The actual

12

definition of finite type in his thesis is somewhat technical (for understandable
reasons) so we use a hopefully more approachable rephrasing of it.

The basic idea is to inductively iterate the process that is used to construct
a graph of bounded neighborhood diversity. However, instead of having just two
types of bags, cliques and independent sets, we allow them to be disjoint unions
of arbitrarily many graphs of bounded neighborhood diversity. This is the “first
level” of finite type, and the same process leads to higher “levels”.

Definition 7. We define Mk to be the collection of all graphs (allowing loops)
on k vertices; an element from this collection Mk ∈ Mk is a metagraph.

Definition 8 ([36]). We define graphs of type (l, k) and denote this class by C(l,k).
In this notation k is similar to the k from the definition of neighborhood diversity,
and l is the “induction” level.

The lowest level is the class C(0,k) which are precisely graphs of neighborhood
diversity at most k. A graph from C(l,k) is obtained by the following procedure:

1. Choose any metagraph Mk ∈ Mk as a template,

2. Replace every vertex of Mk by a disjoint union of arbitrarily many
graphs from C(l−1,k) (the class on the previous level),

3. Put complete bipartite graphs between bags (the disjoint unions
created in the previous step) that are joined by an edge in the template
metagraph Mk, and turn a bag into a clique if there is a loop on the
corresponding metavertex in Mk.

A nice property of this parameter is that if there is an edge between any two
vertices u, v ∈ V of the original graph G, it is determined at just one level and
from then on it never changes. The level where this is determined is the level
where u and v belong to different metavertices of the same metagraph – if these
metavertices are joined by a metaedge, u and v are adjacent in G. They could
not have been joined earlier because then they belonged to different metagraphs
and we only take disjoint unions of these. Moreover, they can not be joined later
because they belong to the same metavertex and we do not add new edges inside
these (except for the case where the metavertex has a loop, which is handled
easily).

Gajarský does not mention much about the relationships between finite type
and other parameters in his thesis, but in an email conversation he explained
that it is not hard to find a clique decomposition of bounded width for graphs of
bounded finite type. On the other hand finite type of paths is not bounded, but
their cliquewidth is. This implies that finite type is a more restrictive parameter
than cliquewidth.

The metaalgorithmical situation of finite type is similar to the one of neigh-
borhood diversity: MSO1 is FPT for finite type and the height of the exponential
tower does not depend on the formula. This was the main contribution of Ga-
jarský’s thesis [36]. Obviously MSO2 is hard on finite type since it is already hard
on neighborhood diversity, which is a special case of finite type.

13

2.2.5 Vertex cover
For completeness we briefly introduce vertex cover as a parameter.

Definition 9. The vertex cover number of a graph G (or just vc(G)) is the size
of the smallest set C ⊆ V such that for every edge uv ∈ E, u ∈ C or v ∈ C.

Lampis [58] proved that both MSO1 and MSO2 model checking is FPT on
graphs with bounded vertex cover number and the function f(k) in the complexity
bounds of mentioned theorems are double exponential functions.

2.2.6 Relationships between the parameters
As we stated in the introduction there is typically a balance to be struck when we
look at structural parameters – either the parameter permits a large portion of
inputs and does not allow as many problems to become tractable, or vice versa.
Some parameters are generalizations of others in the sense that one is bounded
when the other one is but not the other way round. In that case we say that
those more restrictive are stronger.

As for the relationship between treewidth and cliquewidth we already men-
tioned that bounded treewidth implies bounded cliquewidth [43]. With regards
to neighborhood diversity and its relationship to vertex cover, treewidth and
cliquewidth, Lampis [58] showed that for every graph G we have nd(G) ≤ 2vc(G) +
vc(G) and cw(G) ≤ nd(G) + 1. Furthermore, there exists a graph with constant
treewidth and unbounded neighbourhood diversity (consider a path) and vice
versa (consider a clique). This leads us to the following picture, which sums up
all those relationships:

Figure 2.2: Hierarchy of relevant parameters. Included are vertex cover,
treewidth, neighborhood diversity, finite type and cliquewidth. An arrow implies
generalization, for example finite type is a generalization of neighborhood diver-
sity. A dashed arrow indicates that the generalization may increase the parameter
exponentialy, for example treewidth k implies cliquewidth at most 2k.

2.3 Integer programming
The palette of techniques available when approaching problems from a param-
eterized perspective is fairly wide; for that we point the reader to an already
mentioned neat overview by Fellows [27]. In this section we would like to discuss
a result that we use extensively in our proofs, and also some of its extensions that
might prove useful in the future.

14

Linear programming is a tool which found wide use in the industry soon after
it was formulated at the end of 1940s. After that the important question arose
if LP is solvable in polynomial time, which was finally answered positively first
by Khachiyan [53] with the ellipsoid method and later by Karmarkar [50] by the
practically more useful interior point method. The ellipsoid method is still of
great importance theoretically though, and is the key inspiration for most of the
results we will mention next.

Now we turn our attention to integer linear programming, that is, optimization
with the same constraints as before and the requirement that the solution is
integer; another equivalent formulation is the problem of deciding whether an
intersection of a polytope and a lattice is nonempty. Note that many NP-hard
problems can be naturally formulated as an integer linear program (ILP), so the
ILP problem itself is NP-hard.

A natural parameter of the ILP problem is the dimension. As we explained
in the introduction we can view the parameter as a special part of the input to
which we contain the complexity. In ILP the complexity does not seem to lie
in the number of rows of the linear program, as these determine in some sense
how “fine” the structure of the polyhedron is. Neither does the complexity lie in
the constant factors which determine the absolute dimensions of the polyhedron.
This is because, roughly said, the polyhedron still remains “just” something like
a ball (or a cone). The real complexity seems to lie in the number of ways we
can branch into when exploring this ball which is precisely the dimension of the
ILP. So the question we ask is this: Is the ILP problem FPT with respect to the
dimension?

Fortunately for us the answer is positive again, as was proved first by Lenstra
in 1983 [61] and later improved (in terms of space complexity) by Kannan [49]
and Frank and Tardos [34]. Surprisingly, this result came at a time when the
theory of parameterized complexity has not started yet, and later when it did,
Lenstra’s ILP result went unnoticed for a long time. We quote Niedermeier [68]
on this topic:

[…] It remains to investigate further examples besides Closest String
where the described ILP approach turns out to be applicable. More gen-
erally, it would be interesting to discover more connections between
fixed-parameter algorithms and (integer) linear programming.

This challenge was answered for example by Fellows et al. [29], who use
Lenstra’s algorithm to show some positive FPT results for graphs of bounded
vertex cover. More currently it was also used by Lampis [58] and especially
Ganian [39]; those examples and a specific suggestion made by Lampis were our
main motivation to look more deeply into those techniques. Let us now state the
results we use:
Definition 10 ([29]). p-Variable Integer Linear Programming Feasi-
bility (p-ILP): Given matrices A ∈ Zm×p and b ∈ Zm×1, the question is whether
there exists a vector x ∈ Zp×1 satisfying the m inequalities, or exactly A · x ≤ b.
Here Z stands for the set of all integers.
Theorem 11 ([61, 49, 34]). p-Variable Integer Linear Programming
Feasibility can be solved using O(p2.5p+o(p) ·L) arithmetic operations and space
polynomial in L, where L is the number of bits needed to describe A and b.

15

Note that we will in fact need an optimization version of the p-ILP problem.
Observe that the result in Theorem 11 can be extended to optimization through
binary search and this is rigorously proved in the aformentioned paper by Fellows
et al. [29]. Also, below we discuss other more general results with possibly better
running times that also solve this problem. The point here is that we can optimize
ILPs in FPT time, but we do not need to know the precise complexity bounds.

Definition 12 ([29]). p-Variable Integer Linear Programming Opti-
mization (p-Opt-ILP): Let matrices A ∈ Zm×p, b ∈ Zm×1 and c ∈ Z1×p be
given. We want to find a vector x ∈ Zp×1 that minimizes (or maximizes) the
objective function c · x and satisfies the m inequalities, that is, A · x ≥ b.

Theorem 13 ([29]). p-Opt-ILP can be solved using O(f(p)poly(L)) arithmetic
operations and space polynomial in L, where L is the number of bits in the input.

The results above were later extended by Khachiyan and Porkolab [52] to
semidefinite integer programming. Also, instead of just deciding feasibility this
result allows to optimize a convex function. Their algorithm was further improved
by Heinz [45] in the specific case of minimizing a polynomial F on the set of
integer points described by an inequality system Fi ≤ 0, 1 ≤ i ≤ s where the
Fi are quasiconvex polynomials in p variables with integer coefficients. The time
complexity of this algorithm was recently improved by Hildebrand and Köppe
[46].

A more general approach is taken by Oertel, Wagner and Weismantel [70]
who prove similar results for general convex sets and minimization of convex
functions, where the functions defining the convex set are not required to be
(quasi)polynomials; instead they are given by three oracles. This might or might
not be useful, depending on the situation. A similar path where only a hyperplane
separation oracle is needed to define the convex set is taken by Dadush, Peikert
and Vempala [21].

The research in the last paragraph might seem superfluous with the results
of Khachiyan, Porkolab, Heinz, etc. at hand. But the motivation of the second
group of authors is different from the first (those we just mentioned) because
they are not focusing on generalizing the original Lenstra’s result. Instead they
want to get a better time complexity. There is a conjectured Ω(p)p lower bound
for the general Convex Integer Programming problem in p variables and
the current state of the art (represented by the paper from Dadush et al.) al-
most attains this bound – they present a randomized algorithm which runs in
O(p)p expected time. Moreover Dadush stated in an email conversation that it
is possible to derandomize this algorithm.

In this thesis we will only make use of the result in Theorem 13 but we would
like to draw more attention to the recent results mentioned above, as they seem
to be powerful generalizations of the celebrated Lenstra’s result, just waiting for
the right problem to come.

16

3 Problems

In the previous chapter we have seen that neighborhood diversity and treewidth
are incomparable. As such it is interesting to look at problems that are hard with
respect to treewidth and see if they become FPT with respect to neighborhood
diversity. That is what we do in this chapter.

The focus of this section is on several problems which are either W[1]-hard
with respect to treewidth or even NP-complete for graphs with low treewidth
(e.g. trees or series-parallel graphs). We tried to solve some of these problems
with respect to neighborhood diversity, coming up with several positive results,
and some partial ideas and pointers for future research. These results provide a
finer understanding of the differences between treewidth, neighborhood diversity
and related parameters. This chapter is our main contribution and contains three
original results in Theorems 26, 33 and 43.

3.1 Warm-up
3.1.1 Simple problems
To get an idea of what working with graphs of bounded neighborhood diversity
feels like, we will show two simple algorithms for the optimization variants of the
Vertex Cover and Dominating Set problems. Both of them are FPT with
respect to treewidth by the EMSOL result of Arnborg et al. [2].

Let us define them now:

Definition 14 ([27]). Vertex Cover
Input: A graph G = (V,E)
Output: A smallest set of vertices C ⊆ V such that for every edge uv ∈ E either
u ∈ C or v ∈ C.

Definition 15 ([27]). Dominating Set
Input: A graph G = (V,E)
Output: A smallest set of vertices D ⊆ V such that ∀u ∈ (V \D) : u ∈ N(v) for
some v ∈ D. (By N(v) we denote the neighborhood set of a vertex v.)

The following two theorems have not appeared in print. We attribute that
to the fact that they are fairly easy to see (which is why we include them in the
warm-up section). Still it is worth pointing out that we are the first to give these
proofs explicitly.

Let us now turn to the first mentioned problem, Vertex Cover.

Theorem 16. The Vertex Cover problem can be solved on graphs of neigh-
borhood diversity at most k in time O(2k + n+m).

17

Proof. Let G = (V,E) be a graph with nd(G) = k and let GM = (VM, EM) be its
metagraph. We claim that for every vertex cover C ⊆ V there is another vertex
cover C ′ ⊆ V with |C ′| ≤ |C| that has the following properties:

1. For every complete metavertex Vi ∈ VM either all of its vertices are
in C ′, or all but one.

2. For every independent metavertex Vi ∈ VM either all of its vertices
are in C ′, or none of them.

We will construct C ′ using C. In the beginning let C ′ := C.
To see the first point, we will show that C already has the first property. For

every metavertex Vi take the restriction of C to Vi, C ∩ Vi. To cover all edges in
Vi (which is a clique) at least |Vi| − 1 vertices need to be in C; otherwise there
would be an edge uv with u /∈ C and v /∈ C.

Now to the second point. Iterate over all independent metavertices Vi. If
C ′ ∩ Vi ∈ {Vi, ∅} we can move on because Vi already has the second property.
Thus (C ′ ∩ Vi) ⊊ Vi. In that case set C ′ := C \ Vi. To see that C ′ is still a vertex
cover take any u ∈ (Vi \ C ′). Because C ′ was a vertex cover all edges going to u
were covered. The only way that could happen is that all neighbors of u were in
C ′. But u has the same neighbors as all other vertices in Vi, so all their edges are
covered by neighbors of u as well and it was safe to remove them. Observe that
after we iterated over all independent Vi ∈ VM they all have the second property.

The algorithm then is to simply check all 2k solutions of the form above (at
independent metavertices: select all / no vertices; at complete metavertices: select
all / all but one vertices) and return the one which is a vertex cover and uses the
least number of vertices. The n+m factors are for reading the input.

The algorithm for the Dominating Set problem is similar.

Theorem 17. The Dominating Set problem can be solved on graphs of neigh-
borhood diversity at most k in time O(3k + n).

Proof. Let G = (V,E) be a graph with nd(G) = k and let GM = (VM, EM) be
its metagraph. This time we claim that for every dominating set D ⊆ V there is
another dominating set D′ ⊆ V with |D′| ≤ |D| that has the following properties.
For every metavertex Vi ∈ VM one of the following holds:

1. No vertices from Vi are selected to be in D.

2. Just one vertex v ∈ Vi is selected to be in D.

3. All vertices from Vi are selected to be in D.

First, set D′ := D. Next, iterate over all Vi ∈ VM. There are three options of
what to do depending on how D′ ∩ Vi looks like.

1. If D′ ∩ Vi = ∅ then Vi represents the first case and we continue.

2. If (D′ ∩Vi) ⊊ Vi pick arbitrary v ∈ (D′ ∩Vi) and set D′ := (D′ \Vi)∪
{v}. D′ is still a dominating set because the vertex which dominates
v also dominates all other vertices u ∈ Vi since u and v have the same
neighborhood. Now Vi represents the second case and we continue.

18

3. If (D′ ∩ Vi) = Vi then Vi represents the third case and we continue.
Note that the only reason why we would not be able to make D′

smaller in this case is that Vi would be an independent metavertex
because its vertices can not dominate each other.

The algorithm then is to try all 3k solutions of the form above (for every
complete metavertex: pick zero / one vertices, for every independent metavertex:
pick zero / one / all vertices), discard those that are not dominating sets, and
return the smallest of the rest.

Note that we already see a general pattern which is common to all our proofs
and also the proofs from Lampis [58] and Ganian [39]. The space of all solutions
of a hard problem is big (otherwise it would be possible to do a brute force check
of all solutions). The way to overcome this is to show that it suffices to only
look at a much smaller space of solutions of some special form because it either
already contains an optimal solution, or the solutions in it can be extended to
some optimal solution quickly.

3.1.2 Chromatic number
A successful technique for handling problems on graphs of bounded neighborhood
diversity is Lenstra’s ILP algorithm that we described in Section 2.3. In the
context of neighborhood diversity it was first used already in the paper from
Lampis where he introduces neighborhood diversity [58]. The problem Lampis
successfully solved using this technique is the classical Chromatic Number
problem (note that it is W[1]-hard for clique-width [33] but FPT for treewidth
[3]). Later Ganian [39] used the ILP technique to solve two more interesting
problems: p-Vertex-Disjoint Paths, which is NP-hard for clique-width [44]
but FPT for treewidth [74], and Precoloring Extension, which is W[1]-hard
already for treewidth [28]. We review Lampis’ approach and show three more
applications for coloring problems and one for the Capacitated dominating
set problem.

Definition 18 ([23]). Chromatic Number (Proper coloring)
Input: A graph G = (V,E)
Output: A function c : V → {1, . . . , l} with l as small as possible which assigns
colors to vertices such that no adjacent vertices have the same color, i.e., ∀uv ∈
E : c(u) ̸= c(v).

In the rest of the thesis we will be dealing with various coloring problems and
their respective colorings. To emphasize the distinction between them and the
problem (and its assigned coloring) above we sometimes refer to it as the classical
or proper coloring problem.

Theorem 19 ([58]). The Chromatic Number problem can be solved in time
O(f(k) ·poly(n)) on graphs of neighborhood diversity at most k, where f(k) is the
f from Lenstra’s algorithm for p = 2k.

Proof. This proof is originally from Lampis’ paper [58].
First observe that if Vi is an independent metavertex we can delete all of its

vertices except for one because there always exists an optimal coloring where all

19

vertices of Vi take the same color. Thus from now on we can assume that all
metavertices are complete, some of order 1.

The key observation now is that in any coloring ofG every color class intersects
each metavertex in at most one vertex (since all metavertices are cliques). In other
words, every color class coincides with an independent set of the metagraph GM.
Let I be the set of all independent sets of GM. (Note here that we do not consider
the loops in this construction or in any of the following coloring problems.) Now
consider the following ILP with a variable xI for each I ∈ I (there are at most
2k of these):

minimize
∑
I∈I

xI

subject to ∀i ∈ VM
∑

I:i∈I

xI = |Vi|

The intuition is that the variable xI encode how many different color classes
coincide with the independent set I of GM in a coloring of G. The dimension of
this ILP is at most 2k, i.e. bounded by the neighborhood diversity of the graph
so we can use Theorem 13 to solve it.

The rest of the proof is fairly simple: we need to argue that every solution
found by the ILP can be transformed into a proper coloring of G and that at
least one optimal coloring of G corresponds to a solution of the ILP. For details
we refer the reader to Lampis’ paper [58]; the main idea we wanted to get across
was the observation that first, color classes of G coincide with independent sets
of GM, and second, it is possible to encode this structure into an ILP.

We will get back to this result in the following section and expand on the
ideas contained in its proof to solve another problem. In Subsection 3.4.1 we will
also show how to extend this proof to graphs of bounded finite type.

3.2 Coloring problems
Now we turn our attention to some coloring problems. We have already mentioned
that Chromatic Number is FPT both on graphs of bounded treewidth [3] and
on graphs of bounded neighborhood diversity [58] as stated in Theorem 19. All
other problems we discuss in this section are hard with respect to treewidth. For
the convenience of the reader we provide the exact definitions of those problems
we do not deal with closely in Appendix A.1.

First, we mention those that become easy on graphs of bounded neighborhood
diversity. Ganian shows this for Precoloring Extension [39]; the treewidth
hardness result was given by Fellows et al. [28].

L(0,1)- and L(1,1)-coloring are W[1]-hard with respect to treewidth as
shown by Fiala, Golovach and Kratochvíl [31]; we show they are FPT with respect
to neighborhood diversity in Subsection 3.2.1.

The Achromatic Number problem is NP-complete already on trees [26];
we show it is FPT with respect to neighborhood diversity in Subsection 3.2.2.

Second we mention those problems whose complexity on graphs of bounded
neighborhood diversity is still open. They are Equitable Coloring (W[1]-
hard with respect to treewidth [28]), L(2,1)-coloring (NP-complete for graphs

20

with treewidth ≥ 2 [30]) and Weighted Coloring (NP-complete for graphs
with treewidth ≥ 3 [65]).

A special place is taken by List Coloring – this problem is W[1]-hard not
only with respect to treewidth [28] but already on graphs of bounded vertex cover
[29] which also implies hardness on graphs of bounded neighborhood diversity.

Let us now finally move to the first two original positive results.

3.2.1 L(0,1)- and L(1,1)-coloring
The L(p,q)-coloring problem (or distance constrained coloring) is a general-
ization of the classical coloring problem motivated by the Frequency Assignment
Problem. “In it the colors are nonnegative integers and requirements are posed
on the difference of labels assigned to vertices that are close to each other.” (quote
from paper by Fiala et al. [31], for more see surveys by Calamoneri [14] and Yeh
[77]).

The connection to the Frequency Assignment Problem can be seen when we
use WiFi networks as an example. There each network operates on one of 13
channels (for Europe) and for multiple networks to operate in the same area
it is desirable that networks close to each other operate on channels that are
as much apart as possible. The L(p,q)-coloring problem then is to find the
best assignment of channels to networks with constraints specifying the channel
distance of networks which are in “physical” distances one and two.

Definition 20 ([31]). L(p,q)-coloring
Input: Graph G = (V,E)
Output: A function c : V → {1, . . . , l} with l as small as possible which assigns
labels to vertices such that ∀u, v ∈ V at distance one (or two), it holds that
|c(v) − c(u)| ≥ p (or q).

It holds for graphs in general that for p and q of values 0 and 1 the L(p,q)-
coloring problem instance can be transformed into a Chromatic Number
instance by adding and deleting edges based on the distance of vertices. The
intuition (formalized in Lemma 23) is that color difference 0 means that vertices
can share colors and color difference 1 means that vertices must have a different
color. This in turn translates into a “are not adjacent” and “are adjacent” relation
for the classical Chromatic Number problem for some new graph on the same
vertex set. The reason this idea can not be used for all parameters in general is
that the transformation might change the parameter.

We show how to solve the L(0,1)-coloring and L(1,1)-coloring variants,
which are known to be W[1]-hard with respect to treewidth [31], in FPT time
with respect to neighborhood diversity. The surprising observation is that the
transformation described above preserves neighborhood diversity; for treewidth
this is not true, so even though Chromatic Number is FPT with respect to
treewidth it does not immediately follow that the two variants we solve would be
too, and in fact they are not.

As for the other two options of p = 1, q = 0 and p = 0, q = 0 note that L(1,0)-
coloring is the classical Chromatic Number problem and L(0,0)-coloring
is trivial, because it gives no constraints on colors at all (it is equivalent to coloring
an independent set). Later we will also talk about the related L(2,1)-coloring
problem, which is NP-complete for graphs of treewidth two [30].

21

Let us now formalize and prove the ideas just described.

Definition 21. The L(0,1)-transformation of a graph G = (V,E) is a graph
G′ = (V,E ′) where E ′ = {uv|u, v ∈ V are at distance 2}.

Definition 22. The L(1,1)-transformation of a graph G = (V,E) is a graph
G′ = (V,E ∪ E ′) with E ′ from the L(1,0)-transformation of G.

Note that even if G was connected, G′ might not be; this does not really
bother us as we can consider every component separately anyway. The following
lemma is folklore and is for instance implicitly found in the paper by Fiala et al.
[31].

Lemma 23 ([31]). A proper coloring of the L(0,1)-transformation (or L(1,1)-
transformation) of G is an L(0,1)-coloring (or L(1,1)-coloring) of G.

Proof. Classical coloring states that no two adjacent vertices have the same color.
An L(0,1)-coloring states that no two vertices at distance 2 have the same color.
The L(0,1)-transformation has an edge between every two such vertices and
nowhere else, so proper colorings of the L(0,1)-transformation of G correspond
precisely to L(0,1)-colorings of G.

Similarly L(1,1)-coloring states that no two adjacent vertices and no two ver-
tices at distance 2 have the same color. The L(1,1)-transformation has an edge
between every two vertices satisfying either of the previous two conditions and
nowhere else, so again proper colorings of the L(1,1)-transformation of G corre-
spond precisely to L(1,1)-colorings of G.

Lemma 24. For any graph G of neighborhood diversity at most k, the L(0,1)-
transformation of G has neighborhood diversity also at most k.

Proof. The process which leads to the L(0,1)-transformation of G can be reformu-
lated as removing all original edges and adding edges between every two vertices
that were originally at distance 2 of each other. We will show that this translates
nicely into a similar transformation of the metagraph GM.

First, every complete metavertex becomes an independent metavertex – all
its vertices were adjacent to each other, so we had to delete these edges. Anal-
ogously, all independent metavertices except for isolated ones become complete
– all vertices in an independent metavertex that is not isolated have a common
neighbor in some neighboring metavertex, so they are all at distance 2 from each
other. The case where an independent metavertex has no neighbor is not inter-
esting because we can use any color for this metavertex (it is just a bunch of
isolated vertices). Simply said, complete metavertices become independent and
vice versa.

Second, we argue that all original metaedges are deleted and all distance-
2 metaedges are added. Take any two metavertices that are adjacent in the
metagraph: ViVj ∈ EM. We see that every vertex u ∈ Vi and every vertex v ∈ Vj

are adjacent. Thus the L(0,1)-transformation deletes all of these edges and now
all these u and v are non-adjacent – hence there is a meta-nonedge between Vi

and Vj. Similarly for any two metavertices Vi, Vj that are at distance 2 in the
metagraph, all of their u ∈ Vi, v ∈ Vj are at distance 2 from each other, so they

22

become adjacent – which is the same as saying that a metaedge between Vi and
Vj was added, or ViVj ∈ E ′

M.
Note that some neighborhood classes can coalesce in the process, but that

only lowers neighborhood diversity.

Lemma 25. For any graph G of neighborhood diversity at most k, the L(1,1)-
transformation of G also has neighborhood diversity at most k.

Proof. The proof is analogous to the proof of the previous lemma. The only dif-
ference is that the L(1,1)-transformation process keeps the complete metavertices
as they are, and also keeps the original metaedges.

Theorem 26. There is an algorithm solving the L(0,1)-coloring and L(1,1)-
coloring problems in time O(f(k) ·poly(n)) on graphs of neighborhood diversity
at most k.

Proof. Solve the Chromatic Number problem for the L(0,1)- or L(1,1)-trans-
formation of G. This can be done in the stated time by Theorem 19. It gives the
correct answer according to Lemma 23 and the bound on neighborhood diversity
is preserved as stated in Lemmas 24 and 25.

We return to the L(0,1)- and L(1,1)-coloring problems in Subsection 3.4.2
and show that the second is FPT on graphs of bounded finite type.

3.2.2 Achromatic number
A complete coloring is a special kind of coloring which is minimal in the sense that
it cannot be transformed into a proper coloring with fewer colors by merging some
color classes. The achromatic number ψ(G) of a graph is the maximum number
of color classes of such a complete coloring.

Definition 27. Complete coloring (Achromatic number)
Input: A graph G = (V,E)
Output: A partition of V into l disjoint sets V1, V2, . . . , Vl for l as large as possible,
such that each Vi is an independent set for G and for each pair of distinct sets
Vi, Vj they touch, meaning that Vi ∪ Vj is not an independent set. The highest
possible l is the achromatic number of G.

Note that a complete coloring is defined as a partition of the vertex set. The
typical way of defining a coloring as a mapping from vertices to colors would not
be as comfortable to work with here, so we do not use it.

A useful way to look at the achromatic number is that it gives an upper bound
on how badly can the greedy algorithm for coloring do on a graph – if it found
a coloring with more than ψ(G) colors there would always be a pair of colors
whose union is an independent set and so they can be safely merged into just one
color, which is something the greedy algorithm would have done, which in turn
is a contradiction.

This problem is hard on some special graph classes, for us most importantly
trees [26] and hence graphs of bounded treewidth. We will show that it is FPT
on graphs of bounded neighborhood diversity.

The proof goes roughly like this. We see that the solution is again some col-
lection of independent sets of the metagraph, that it has to give a different color

23

to every vertex in complete metavertices, but unlike in a classical coloring, it
makes sense to color independent metavertices with many colors. The key insight
is that even though there might be many options how to color an independent
metavertex, what really only matters are the colors used, not how many vertices
are colored by which color. In other words, all complete colorings of graphs with
neighborhood diversity k fall into few (i.e., only depending on k) equivalence
classes for a suitable equivalence. Moreover it is possible to express these equiv-
alence classes as the solution space of an ILP. The other key idea is that since
the number of all independent sets of the metagraph is bounded, we can safely
go over all such subsets of them where every two independent sets touch and for
these solve an ILP. We will now state this formally.

Definition 28. Let G = (V,E) be a graph with neighborhood diversity k and
let GM = (VM, EM) be its metagraph. Disjoint subsets W1,W2, . . . ,Wl of V
are a semifinished coloring if they are all independent sets in G, every two of
them touch, and all complete metavertices are covered by them (i.e., for every
complete Vi ∈ VM it holds that Vi ⊆ W = ∪

Wi). Specifically, we do not require
that W = V and that independent metavertices are fully covered.

Definition 29. We call a semifinished coloring W1, . . . ,Wl of a graph G with
metagraph GM fundamental if the following two conditions are satisfied:

1. Every color intersects every independent metavertex in at most one
of its vertices, i.e., for every independent metavertex Vi ∈ VM and
every color Wj, |Vi ∩Wj| ≤ 1

2. Every independent metavertex contains at least one colored vertex,
i.e., for every independent metavertex Vi ∈ VM there is at least one
Wj with |Vi ∩Wj| = 1.

Definition 30. LetW1, . . . ,Wl be a complete coloring of a graph G with nd(G) =
k and let GM = (VM, EM) be its metagraph. The reduction of a color class Wj

is a set W ′
j ⊆ Wj such that for every metavertex Vi ∈ VM where |Vi ∩Wj| ≥ 1 it

has |Vi ∩W ′
j | = 1.

A reduction of a complete coloring W1, . . . ,Wl are sets W ′
1, . . . ,W

′
l where for

every j = 1, . . . , l, W ′
j is a reduction of Wj.

Two complete colorings W1, . . . ,Wl and U1, . . . , Ul that use the same number
of colors are equivalent if there is a permutation π on the vertex set V and a
permutation σ on the color classes such that for every j = 1, . . . , l, W ′

j = π(U ′
σ(j))

where W ′
j and U ′

j are the reductions of these color classes.

Observe that all equivalent complete colorings reduce to the same fundamental
coloring (up to isomorphism). We will show that even though we do not consider
every complete coloring, for every complete coloring we consider the fundamental
coloring associated to it and thus in a certain way all complete colorings that are
equivalent to it.

Lemma 31. Let G be a graph with nd(G) = k and let GM = (VM, EM) be its
metagraph. For every complete coloring W1, . . . ,Wl of a graph G its reduction
is a fundamental coloring. Moreover, every fundamental coloring U1, . . . , Ul of G
can be extended into a complete coloring which uses the same number of colors.

24

Proof. The first part is a trivial observation.
For the second part we basically reverse the reduction. Given a fundamental

coloring U1, U2, . . . , Ul which is not complete, look at all independent metavertices
Vi ∈ VM with |Vi \ U | ≥ 1, where U = ∪

Uj. Pick an arbitrary color Uj for
which |Vi ∩ Uj| = 1 and add all remaining vertices from Vi to this color, i.e.,
Uj := Uj ∪ (Vi \ U). There has to be such a color because every fundamental
coloring intersects every independent set in at least one vertex.

The modified sets Uj still form a semifinished coloring since all of the added
vertices were independent. They also form a complete coloring since there are no
uncolored vertices and every two color classes still touch.

The algorithm we give now works by first trying to guess which independent
sets of the metagraph will be used in the optimal complete coloring (remember
that only those collections of independent sets where every two touch are allowed)
and then optimizing over all fundamental colorings that use these independent
sets; we have just seen that if we find a fundamental coloring with the largest
number of colors, we can extend it to an optimal complete coloring.

The algorithm then works in the following four steps.

1. Compute I, the collection of all independent sets of the metagraph
GM.

2. Iterate over all maximal subsets I ′ ⊆ I where every two I1, I2 ∈ I ′

touch. Denote Iind those sets I that are only made of independent
metavertices.

3. For every such I ′ construct and solve the following ILP:

maximize
∑
I∈I′

xI

subject to ∀I ∈ I ′ ∀i ∈ comp(I)
∑

I:i∈I

xI = |Vi|

∀I ∈ I ′ ∀i ∈ ind(I)
∑

I:i∈I

xI ≤ |Vi|

∀I ∈ I ′ ∀i ∈ ind(I)
∑

I:i∈I

xI ≥ 1

∀ Iind ∈ I ′ xIind ≤ 1

In the ILP ind(I) stands for the set I1 ⊆ I containing all indepen-
dent metavertices of I. Similarly, comp(I) stands for the set I2 ⊆ I
containing all complete metavertices of I.
Keep the solution of that ILP that attained the maximum over all
sets I ′.

4. Interpret said solution as a fundamental coloring. Extend it to a
complete coloring as described in Lemma 31. Return this coloring.

The time complexity of this algorithm is in FPT: the first step computes I
for which we know that |I| ≤ 2k and we have to check at most 2k options to

25

get it. The second step iterates over all maximal subsets of I satisfying an easy
to check condition; there are at most 2|I| = 22k of these sets I ′. The third step
solves the p-Opt-ILP problem with p = 2k for each I ′. The fourth step takes
at most O(n) time. The resulting time complexity is O(22k · f(2k)poly(n)) for f
from Lenstra’s algorithm which is obviously FPT.

Now we turn to the correctness of the algorithm. To show that we only need
two insights. First, every complete coloring reduces to some fundamental coloring
(see Lemma 31). Thus, it is sufficient to search in the space of fundamental
colorings since we also know how to extend it, which is what we do as the fourth
step of the algorithm. We formulate the second insight as a lemma.

Lemma 32. Every fundamental coloring corresponds to at least one feasible
solution of an ILP for at least one I ′ ⊆ I in the algorithm above. Moreover,
every feasible solution corresponds to a fundamental coloring.

Proof. To see the first direction, let W1, . . . ,Wl be any fundamental coloring. Its
color classes are independent sets that have the property that every two of them
touch. Thus, they have to be all included in some I ′ ⊆ I. Construct a solution
to the ILP x ∈ NI′ in the following way. For every I ∈ I ′ set xI to be the number
of color classes Wj for which |Wj ∩ Vi| = 1 ⇔ i ∈ I, i.e., Wj and I represent the
same independent set of the metagraph.

Now we look at the constraints of the ILP and check that the ILP solution x is
feasible. The first constraint says that no two vertices in a complete metavertex
share a color, which is a condition every fundamental coloring satisfies. The
second constraint says that in any independent metavertex we cannot color
more vertices than there actually are; every fundamental coloring satisfies this
as well, obviously. The third constraint says that there has to be at least
one colored vertex in every independent metavertex; fundamental colorings are
defined such that this is satisfied as well. The fourth constraint says that we
cannot use an independent set composed of only independent metavertices twice
as a color because then those two colors would not touch, which is a condition all
fundamental colorings satisfy.

As for the second part, we prove that every feasible solution corresponds to
a fundamental coloring. First we construct the fundamental coloring according
to a feasible solution x. Create colors classes W I

j , 1 ≤ j ≤ xI , where every W I
j

takes precisely one vertex from every metavertex in I in a greedy way. It follows
from the constraints of the ILP that there is sufficiently many vertices to do so.
We also see that all complete metavertices are fully covered, every independent
metavertex contains at least one colored vertex and from the construction of I ′

and the last constraint it follows that every two sets I1, I2 ∈ I ′ touch. Finally
observe that no color has two vertices in any metavertex. Thus the coloring we
constructed is fundamental.

The last step of the algorithm is to interpret the solution of the ILP as a
fundamental coloring. We do that as described in the proof of the lemma above
and we know by Lemma 31 that it is possible to extend that fundamental coloring
to a complete coloring with the same number of colors which we in turn know to
be optimal thanks to the ILPs.

The exposition above concludes the proof of the following theorem.

26

Theorem 33. There is an algorithm solving the Complete Coloring problem
in FPT time on graphs of neighborhood diversity at most k.

3.3 Capacitated dominating set
In this section we turn our attention to the Capacitated Dominating Set
(CDS) problem. This problem is different from the previous three in the sense
that we get more information than just the graph on the input. We will talk
about why this is significant in Section 3.5.

As the problems we have dealt with, CDS is known to be W[1]-hard with
respect to treewidth, as was shown by Dom et al. [24]. To be able to define it we
first need to define the notion of a capacitated graph:

Definition 34 ([24]). A capacitated graph is a graph G = (V,E) together with a
capacity function c : V → N such that 1 ≤ c(v) ≤ d(v), where d(v) is the degree
of the vertex v.

Definition 35 ([24]). Capacitated Dominating Set
Input: A capacitated graph G = (V,E)
Output: The smallest dominating set (see Definition 15) D ⊆ V for which there
is a mapping f : (V \ D) → D which maps every vertex in (V \D) to one of its
neighbors in D in such a way that the total number of vertices mapped by f to
any vertex v ∈ D does not exceed c(v).

First we make a simple yet important observation.

Proposition 36. Let G = (V,E) be a capacitated graph with nd(G) = k and let
GM = (VM, EM) be its metavertex. Let u, v ∈ Vi be two vertices from the same
metavertex with c(u) ≥ c(v). For every CDS solution D with v ∈ D, either also
u ∈ D, or D′ = (D ∪ {u}) \ {v} is solution too.

Proof. We only need to argue the second case. If v ∈ D and u /∈ D, we take the
mapping f testifying that D is indeed a CDS and show how to create f ′ for D′

based on the original f .
In f ′ we leave all as it was in f except that we take vertices assigned to v and

assign them to u, i.e., ∀w ∈ {w|f(w) = v} : f ′(w) := u. We can do that because
u has the same neighbors as v, and it has sufficient capacity because c(u) ≥ c(v).
Now we are only left with v possibly not being dominated (if u was not dominated
by v), and there we let it be dominated by the vertex which originally dominated
u, since u does not need to be dominated anymore, so we set f ′(v) := f(u).
Again, this is possible because u and v have the same neighbors.

This tells us that when solving the CDS problem, we can consider vertices
from a metavertex ordered by their capacities. In other words, a solution can be
characterized merely by how many vertices it selects for D from every metavertex,
and not at all which specific vertices – a solution of the same size can be immedi-
ately inferred using the ordering. This is a crucial observation for the main proof
of this section. We further formalize it by the following two definitions and a
lemma:

27

Definition 37. A capacity ordering of a set of vertices S ⊆ V is an ordering of
the vertices of S by their capacities in a descending order.

Definition 38. A fundamental solution to the CDS problem on a graph G =
(V,E) with nd(G) = k and a metagraph GM = (VM, EM) is such a solution D,
where for every metavertex Vi the sets Di = D ∩ Vi are composed of precisely
the first si = |Di| vertices from Vi in some capacity ordering of Vi. (We say
some capacity ordering because we do not specify the order of vertices with equal
capacities.)

Lemma 39. Let D be an optimal CDS solution on a graph G with nd(G) = k,
and let GM be the metagraph of G. Define Di for every i ∈ Vi as Di = D ∩ Vi

and si = |Di|. Construct D′ = ∪
D′

i where for every i ∈ VM we define D′
i as a

set of first si vertices of Vi in its capacity ordering.
Then D′ is an optimal fundamental CDS solution.

Proof. By induction on the symmetric difference |D△D′| using Proposition 36.

What the previous lemma tells us is that it is sufficient to search for an optimal
solution only among fundamental solutions, which select the “best” (with respect
to capacity) vertices in every metavertex. At this point it might help to try to
look at the metavertices as opaque “blobs” (we can’t see inside of them). For
each of them we know its size and we have a function that computes how much
“domination capacity” these blobs can deliver for a given cost. Eventually, we
will construct an ILP where we force these blobs to dominate each other, and
such a “domination capacity” function will be useful as an upper bound. Let us
define it formally.

We use the following notation. For every natural number n ∈ N, by [n] we
denote the set {1, . . . , n}. For any set of vertices U ∈ V , by d(U) we denote the
sum of degrees of vertices of that set, that is, d(U) = ∑

v∈U d(v) where d(v) is the
degree of a vertex v.

Definition 40. For each metavertex Vi ∈ VM we define the domination capacity
function fi : [|Vi|] → [d(Vi)] for m = 1, . . . , |Vi| as follows:

fi(m) =
m∑

j=1
c(vj)

where v1, . . . , vm are vertices from the metavertex Vi taken in its capacity ordering.

We interpret its value as an answer to the question “how many vertices at
most can the metavertex i dominate in its neighbors if we select m vertices from
it to be in D?”

Now that we know that we can represent a solution simply as the number of
vertices selected from each metavertex (Lemma 39), and we have the notion of a
domination capacity function, we use them to construct an ILP. LetG = (V,E) be
a capacitated graph with nd(G) = k and let GM = (VM, EM) be its metagraph.
For the purposes of this section we consider the metagraph as an oriented graph
with symmetrical edges, that is, for each original ij ∈ EM we now have both
ij ∈ EM and ji ∈ EM. Also remember that complete metavertices have a

28

loop on them. The loops represent the fact that the complete metavertices can
dominate their own vertices, unlike independent metavertices.. We will get to the
reason why we need oriented edges soon.

First, for each i ∈ VM there is an integer variable xi. These variables encode
how many vertices to select from each metavertex. We also need |EM| auxiliary
integer variables xij, for every oriented metaedge ij ∈ EM one. Those variables
encode the distribution of domination capacity from i to its neighbors: xij is the
number of vertices in metavertex j dominated by vertices from metavertex i.

minimize
∑

i∈VM

xi

subject to ∀i ∈ VM
∑

ij∈EM

xij ≤ fi(xi) (∗)

∀j ∈ VM
∑

ij∈EM

xij ≥ |Vj| − xj

∀i ∈ VM xi ≤ |Vi|

The reader has probably noticed that the constraint containing the function fi is
not linear. We will show how it can be translated into a set of linear constraints,
but in the rest of this exposition we will use the integer program above, for the
sake of clarity.

How to deal with the constraint containing the function fi? One way would be
to verify that the constraint is convex and refer to the general convex minimization
results that we mentioned. But we do not even need to go that far – instead we
expand that constraint into O(n) new ones that together define the region under
the function fi. Remember that the complexity of Lenstra’s algorithm is “bad”
only in the dimension, not in the number of constraints. Thus, as long as there
are polynomially many of them, the running time is FPT.

∀i ∈ VM ∀m ∈ [|Vi|]
∑

ij∈EM

xij ≤ fi(m− 1) + c(vm)(xi −m+ 1) (∗∗)

The right hand side of this new constraint is constructed as follows. First, c(vm)xi

would be the domination capacity function if all vertices in metavertex i ∈ VM
had capacity c(vm). But we know that in the beginning we can do better (or at
least as well), so for the first m − 1 vertices instead of factoring in that many
times c(vm), we subtract (m−1)c(vm) and add fi(m−1). That is c(vm)xi − (m−
1)c(vm) + fi(m− 1) = fi(m− 1) + c(vm)(xi −m+ 1) which is the right hand side
as we claimed.

Let us get back to the correspondence between the ILP and fundamental CDS
solutions. We will prove both directions of this correspondence, i.e., that every
solution to our ILP translates to a fundamental CDS solution, and that every
fundamental CDS solution translates to some feasible ILP solution. These two
directions are proven in the following two lemmas.

Let us first go quickly over the ideas contained in the formulation of the CDS
ILP that we use to prove these lemmas. In the ILP the CDS constraints translate
naturally. First, for fixed i all xij have to sum to at most fi(xi) because the sum
of variables xij is how many vertices we expect i to dominate in its neighbors,
which cannot be more than i can dominate, which in turn is precisely what the
function fi tells us. Second, for fixed j all xij have to sum to at least |Vj| − xj

29

g2

xi

g1

g2(xi) = c(v2)(xi − 1) + 12

g1(xi) = c(v1)xi

g3(xi) = c(v3)(xi − 2) + 28

g3

16

28

0 1 2 3

fi(xi)

32

Figure 3.1: Dealing with the constraint containing the domination ca-
pacity function. This plot shows that the region defined by the constraint (∗)
is indeed the same as the region defined by the set of constraints (∗∗). We use an
example with three vertices v1, v2 and v3 with capacities 16, 12 and 4. The region
under (∗) is a region defined by an extension of fi(xi) to a piece-wise linear func-
tion, drawn in bold. Using the technique described in the previous paragraphs
we decompose (∗) into three constrains represented by the functions g1, g2 and
g3, drawn as dashed, dash-dotted and dotted lines.

because to dominate all of Vj at least that amount of domination capacity is
needed, but those vertices in Vj that have been selected for D do not need to be
dominated and there is xj of these. Third, every xi is upper bounded by |Vi| – it
is not possible to select more vertices from Vi than there actually are.
Lemma 41. Let G = (V,E) be a graph with nd(G) = k and GM = (VM, EM) be
its metagraph. Every solution x to the CDS ILP determines a fundamental CDS
solution D of size ∑

i∈VM xi.
Proof. The fundamental CDS solution D is constructed easily: D = ∪

Di, where
for every i ∈ VM set Di to be the first xi vertices from Vi in its capacity ordering.
This is possible because xi ≤ |Vi| for all metavertices. What is left now is to
construct the function f testifying that D is indeed a CDS. There we make use
of the helper variables xij.

Now we need to set f(v) for every v ∈ (V \ D) and show that it respects
capacities (Definition 35). The idea here is simple and we already described it,
but in this stage we want to be precise; for that we introduce some new notation.

To represent the capacities of vertices in D we construct for every metavertex
j ∈ VM a set Dc

j = {vl
α |vα ∈ Dj, 1 ≤ l ≤ c(vα)}. Let Dc = ∪

j∈VM Dc
j . Observe

30

that Dc is basically D with c(vα) copies of every vα. We will define a function
ψ : (V \D) → Dc, show that it is defined for all v ∈ V and is injective. Then for
every u ∈ (V \ D) we define f(u) to be that vα ∈ D for which ψ(u) = vj

α (i.e.,
in the image of ψ, for every vertex vα we identify its copies vj

α to just one, the
original vα). Because ψ was injective, we know that f respects capacities.

To define ψ we define a mapping ψij : (Vi \ D) → Dc
j for every metaedge

ij ∈ EM. Then set ψ(v) as the only ψij(v) that is defined (i.e., ψ is a union of
mappings ψij over all metaedges). Next we show that the domains of mappings
ψij are disjoint, and their union is (V \D).

For every metavertex i ∈ VM partition Vi \D into sets Vij such that the size of
every Vij is at most xji. (To explain the index reversal: Vij is the set of vertices in
i dominated by j; xji is the number of vertices j dominates in i.) This is possible,
since all xji sum to to at least |Vi| − xi = |(Vi \D)|. The sets Vij are the domains
of mappings ψij.

Now for the other part, the sets Dc
j . We will partition them into sets Dc

ji

denoting which vertices from Dj dominate which vertices in Vi. First observe
that |Dc

j | = fj(xj). Next, as in the previous paragraph, we want every Dc
ji to be

of size at least xji. This is possible, since all xji sum to at most fi(xi) = |Dc
j |.

Finally we see that for all ij ∈ EM : |Vij| ≤ |Dc
ji|. Because all vertices from Vij

see all vertices from Dc
ji, they can be dominated by them. Thus any u ∈ Vij can

be dominated by any vl
α ∈ Dc

ji. Also, since |Vij| ≤ |Dc
ji| there exists an injective

mapping from Vij to Dc
ji. Let ψij be this mapping.

Because for all mappings ψij both their domains and their images are disjoint,
ψ is defined well (for every u ∈ (V \D) precisely one ψij is defined) and is injective
(every vl

α is in the image of at most one ψij, and those are injective). We have
already shown how to construct f respecting capacities if ψ is well defined and
injective, so this concludes the proof.

Lemma 42. Let G = (V,E) be a graph with nd(G) = k and let GM = (VM, EM)
be its metagraph. Every fundamental CDS solution D determines a feasible solu-
tion x to the CDS ILP.

Proof. Use Lemma 39 to get a fundamental solution D′ of the same size as D.
Now translate it to the ILP solution in the following manner. Set xi = |D′

i| for
D′

i = D′ ∩ Vi. Next set xij = |{u|u ∈ Vj, v ∈ Vi, f(u) = v}|. We will verify this x
satisfies all of the constraints.

The first constraint states that for every metavertex i ∈ VM
∑

ij∈EM xij ≤
fi(xi). This constraint represents that to vertices from D′

i no more than fi(xi)
vertices are assigned by f . This holds, because f respects capacities, and vertices
from D′

i can not dominate more vertices than what is the sum of their capacities,
fi(xi).

The second constraint states that for every metavertex j ∈ VM
∑

ij∈EM xij ≥
|Vj| − xj. The left hand side of this constraint represents the amount of vertices
in metavertex j for which f is defined, that is how many of them are dominated.
The right hand side is precisely |Vj \ D|, that is how many vertices have to be
dominated. Since f is defined for all Vj \D, this constraint is also satisfied.

The third constraint is satisfied trivially – D contains from every Vi at most
all of its vertices, that is |Vi| of them.

31

From this we see that every feasible solution to our ILP translates to some
fundamental CDS solution, and from Lemma 39 we know that an optimal fun-
damental solution exists too, so our ILP has to find it. As for the running time,
observe that we are solving the p-Opt-ILP problem for p ≤ k+k2, because there
are k variables xi (for every metavertex one) and at most k2 variables xij (for
every oriented metaedge one). The n+m factor is needed just to read the input.

This concludes the proof of Theorem 43 and also this section.
Theorem 43. The Capacitated Dominating Set problem can be solved in
time O(f(k + k2) + n+m) on graphs of neighborhood diversity at most k for the
function f from Lenstra’s algorithm (Theorem 13).

3.4 Finite type coloring
In Subsections 3.1.2 and 3.2.1 dealing with the Chromatic Number and L(1,1)-
and L(0,1)-coloring problems we promised to return to them in the context
of graphs of bounded finite type. Here we sketch how to prove that the first two
problems are FPT on graphs of bounded finite type. We believe the ideas below
are solid, but extending them into full rigorous proofs is beyond the scope of this
thesis.

Before we turn to the aformentioned problems we define a useful notion of
finite type decomposition tree. Note that this is a simplification of what Ga-
jarský [36] describes when he says that graphs of finite type can be alternatively
characterized in terms of modules as defined by Courcelle and Delhommé [18].

Remember that Mk is the collection of all graphs on k vertices with loops,
the metagraph template set.
Definition 44. A finite type decomposition tree of a graph G = (V,E) ∈ C(l,k)

is a pair (X , T) where T is a rooted tree and X ⊆ 2V , along with two mappings
µ : T → Mk ∪ {nil} and τ : T → X satisfying the following conditions:

1. All leaves of T are at distance l + 2 from the root; we say they are
at level 0,

2. The mapping τ is modular, that is, for every child t′ of t, τ(t′) ⊆ τ(t),

3. For every level i ∈ {0, . . . , l + 2} the sets τ(t) for t ∈ T on level i
form a partition of V (i.e., they are disjoint and their union is V),

4. Every node on an odd level has k children,

5. To every node on an odd level µ assigns a metagraph,

6. µ is defined as nil on nodes on even levels.
The interpretation of the above is this. On an odd level 2i + 1, the mapping

τ gives the subgraph of G which is a graph from C(i,k), and µ gives its metagraph
Mk ∈ Mk. On an even level 2i, τ gives the subgraph of G which is a graph
from C(i−1,k) and µ is not defined. On odd levels nodes can only have k children
as every child represents a metavertex from the Mk assigned to that node by
µ. On even levels nodes can have arbitrarily many children as these represent
the disjoint union of arbitrarily many graphs from the previous level which are
assigned to a metavertex on the next level.

32

3.4.1 Chromatic number and finite type
The idea used to prove that the Chromatic Number problem is FPT with
respect to neighborhood diversity (Theorem 19) can be extended to graphs of
bounded finite type. The key observation is that we can solve it first for all
graphs on level 1 of the finite type decomposition tree (we know how – they are
graphs of neighborhood diversity k) and then do some processing on level 2 which
collapses the first two levels, and we repeat the same procedure.

We will demonstrate this procedure and explain why it works on an example.
Let G be any graph from C(1,k). Its finite tree decomposition has 4 levels. Level
0 contains k children for every node from level 1, and these are either cliques or
independent sets. Those stand for the metavertices of graphs from C(0,k). Level 1
are these graphs from C(0,k), arbitrarily many of them under every node from level
2. Every level 2 node stands for one metavertex of a graph from C(1,k) (remember
that metavertices are disjoint unions of graphs from the previous level) and there
is precisely k of these nodes. At level 3 there is only the root r. Its children are
joined to each other by complete bipartite graphs wherever the metagraph µ(r)
has an edge.

Now look at the metagraph at the top level. Observe that no two neighboring
metavertices can share any colors since they are joined by a complete bipartite
graph. This reminds us of the situation in graphs with bounded neighborhood
diversity, except there we knew precisely how many colors every metavertex needs
(its size in cliques, and one in independent sets).

But there is a way to find out how many colors every metavertex needs. Since
every metavertex i ∈ Mk is a disjoint union of graphsHj of bounded neighborhood
diversity and for those we can solve the Chromatic Number problem, we solve
it for all Hj and see that χ(τ(i)) = max{χ(Hj)|Hj ∈ i}. This way we find out
precisely how many colors are needed to color each metavertex.

Now we claim that we can safely replace every metavertex i with a clique of
order χ(τ(i)), resulting in a graph G′ with χ(G′) = χ(G). Moreover, G′ ∈ C(0,k)

since it is just k cliques joined by metaedges according to the metagraph µ(r).
And since G′ has bounded neighborhood diversity, we can find a coloring by the
original Lampis’ algorithm [58] (Theorem 19).

The biggest leap in the argument above is the claim that we can replace a
metavertex by a clique of the same chromatic number and that this does not
increase the chromatic number of the whole graph. To that end observe the
following.

Take any independent set I of G ∈ C(1,k) and partition it into disjoint sets
Ii = I ∩ Vi. Let I ′ be a set of these metavertices i for which Ii is nonempty.
Notice that I ′ is an independent set of the metagraph GM. On the other hand
every Ii is an independent set of the subgraph induced by the metavertex and as
such is a union of independent sets on the graphs from lower levels. The coloring
of these graphs is independent of each other and also independent of the rest
of GM for a fixed I ′ (independent set of the metagraph); by “independent” we
mean that two colorings of a metavertex using the same number of colors are
interchangeable. Remember that the ILP used to solve Chromatic Number
on graphs of bounded neighborhood diversity considers as color classes all such
I ′ independent sets of the metagraph.

To state the sketch above rigorously we would need to prove that every coloring

33

can be transformed into some special form while preserving the number of colors
used, and that the proposed algorithm considers all of these colorings. For the
purposes of this thesis though we consider the exposition above as sufficient. We
close with a sketch of the algorithm above for graphs of general finite type.

1. On the input we have G ∈ C(l,k) along with its finite type decomposi-
tion tree.

2. For i = 1, 2, . . . , 2l + 2 do the following. If i is odd, solve the Chro-
matic Number problem on all graphs induced by nodes on level i. If
i is even, for all nodes replace the metavertex a induced by this node
with a clique of order c = max{χ(Hj)|Hj ∈ a}.

3. Return the result of solving Chromatic Number on τ(r) for r the
root of the finite type decomposition tree.

This algorithm runs in FPT time since it solves the Chromatic Number
problem at most n times on graphs of neighborhood diversity at most k.

3.4.2 L(0,1)- and L(1,1)-coloring and finite type
Now we turn our attention to the two variants of L(p,q)-coloring for which we
have described algorithms running in FPT time on graphs of bounded neighbor-
hood diversity in Subsection 3.2.1. A crucial observation helped us there – the
L(0,1)- and L(1,1)-transformation of a graph preserves neighborhood diversity.
Does the same hold for graphs of bounded finite type?

In the first case the answer is positive. Let us look at the L(1,1)-transformation.
There the situation is almost trivial, since every metavertex turns into a clique.
This is because the L(1,1)-transformation adds edges between all vertices at dis-
tance 2, and since any two vertices from the same metavertex share a neighbor
in a neighboring metavertex, they are at distance 2. Thus any G ∈ C(l,k) turns
into a graph of neighborhood diversity at most k.

With the L(0,1)-transformation the question is open, because we have to add
edges between the arbitrarily many disjoint graphs on even levels and we have to
delete edges inside of them. It is not obvious that the resulting graph would be
of bounded finite type.

3.5 Possible future research directions
In the introduction to this chapter we gave a brief overview of problems hard
with respect to treewidth. Afterwards we have shown how to solve some of them
efficiently on graphs of bounded neighborhood diversity. Now, after taking a short
detour to graphs of bounded finite type, we will discuss the (limited) progress we
have made in solving these problems.

Before we start going into specifics, let us take a view from a higher-level per-
spective. In an email conversation Michael Lampis conjectured that all problems
whose input is only the graph G are FPT with respect to neighborhood diversity.

[…] The reason is that a graph with n vertices and neighborhood di-
versity k can be described with O(k log n) bits. If we could reduce say,

34

k-Clique, to a problem parameterized by neighborhood diversity we
would in effect be compressing Ω(n) bits of input to a much smaller
quantity.

The key here is the compression of information – no problem is known to
be W[1]-hard with respect to neighborhood diversity if only the graph is on the
input. On the other hand we have already mentioned that the List Coloring
problem is W[1]-hard with respect to vertex cover [29] and thus also with respect
to neighborhood diversity.

We will now discuss two problems. The first one is FPT with respect to
treewidth, while the second one is W[1]-hard. For these problems we have made
some partial progress. Afterwards we will sum up the situation for other problems
and with that conclude this chapter.

3.5.1 Edge OCT
We turn to the Edge Odd Circuit Traversal (or Edge OCT) problem
which is known to be FPT with respect to treewidth (for example via the EMSOL
result of Arnborg et al. [2]).

Definition 45 ([56]). Edge OCT
Input: A graph G = (V,E)
Output: An edge set F ⊆ E as small as possible such that G′ = (V,E \ F) is
bipartite.

To prove that this problem is FPT with respect to neighborhood diversity we
tried to show that there is an optimal solution for which the graph G′ = (V,E\F)
has neighborhood diversity bounded by some function g(k). This would mean
that we could limit our search to bipartite subgraphs of G which are composed of
of at most g(k) pieces that form equivalency classes in the sense of neighborhood
diversity. There piece means a subset of the vertices of a metavertex. For example
if we knew that all metavertices fall apart into at most k (or some other function
of k) pieces we would have for each metavertex Vi ∈ VM its partition into pieces
V 1

i , . . . , V
k

i , some possibly empty. There is some experimental indication behind
this conjecture but the reason we talk about it is different.

Assume for now that such a claim holds – for simplicity say that every metaver-
tex Vi falls apart into at most k pieces. We see it is possible in FPT time to try
all possible ways these pieces can be connected to each other and the rest of the
graph such that they form a bipartite graph, since the number of these options
is the number of bipartite graphs on O(k2) vertices which is still some function
of k. This gives us a set of “templates” for a candidate solution.

But there is a catch – we also need to specify the sizes of pieces, that is, if
Vi falls into three pieces, we have to show how many vertices from Vi go to the
first, the second, and the third piece. Even if we guessed the candidate solution
correctly the brute force algorithm would lie in the class XP because it would
need to check O(ng(k)) options. We want to do better.

In a situation like that we usually found that formulating the problem as
an ILP is sufficient to solve it. This problem is interesting in that it can not
be easily expressed as an ILP because the objective function that we maximize
(the number of remaining edges) is a sum of products (the number of edges in a

35

complete bipartite graph between two pieces is the product of their sizes). We
hoped that the function would at least be convex but since already x · y, the
hyperbolic paraboloid, is not a convex function, we are afraid this is a dead end.
Still, let us formulate the integer program we would like to use.

Let G = (V,E) be a graph with nd(G) = k and let GM = (VM, EM) be its
metagraph. Let HM = (WM, FM) be the metagraph of the candidate solution
without sizes of metavertices. We assume that HM has at most k2 metavertices.
We do not know how H (the solution) looks like because we have yet to determine
the sizes of metavertices of HM. We construct a separate integer program for
each candidate solution which is some partition of metavertices into pieces which
means that the bipartiteness condition is already satisfied.

maximize
∑

aibj∈FM

xa
i · xb

j

subject to ∀Vi ∈ VM
∑

Wj⊆Vi

xj
i = |Vi|

The reason we mention the above is that it could still be of some use. As we
already noted, Edge OCT is easily formulated as an MSO2 optimization problem
which is known to be solvable in FPT time on graphs with bounded treewidth.
There is a variant of this problem with a slightly different objective function which
we do not know how to express in MSO2 (though it is still FPT with respect to
treewidth [55]) – the Fair Edge OCT.

Definition 46 ([55]). Fair Edge OCT
Input: A graph G = (V,E)
Output: An edge set F ⊆ E with the smallest maximum degree such that G′ =
(V,E \ F) is bipartite.

On graphs of bounded treewidth this problem was proven to be FPT by
Kolman et al. [55]. The authors mention an intriguing questions: is there a
metaalgorithmical result for these “fair” problems, i.e., problems that do not
optimize simply the size of a set but instead how it behaves with respect to
individual vertices? We have not investigated this question but the following
might give some indication that these problems could be solved on graphs with
bounded neighborhood diversity using the ILP method.

If the conjecture about optimal solutions with few pieces we stated above
was right for Fair Edge OCT is it possible to formulate an ILP for it? The
answer is positive when we introduce an auxiliary variable Y that we use as an
upper-bound on the maximum degree of F .

minimize Y

subject to ∀Vi ∈ VM
∑

Wj⊆Vi

xj
i = |Vi|

∀ai ∈ WM
∑

ij∈EM

|Vj| −
∑

aibj∈FM

xb
j ≤ Y

We hope the ideas above are eventually helpful to someone even though they did
not bear any fruit at the moment.

36

3.5.2 Equitable Coloring
Definition 47 ([28]). Equitable Coloring
Input: A graph G = (V,E)
Output: A proper coloring using as few colors as possible, such that the size of
all color classes is either l or l + 1 for some l.

The idea of reusing the original Chromatic Number algorithm immedi-
ately comes to mind. However, we have to answer the question how to encode
sizes of color classes when we contracted every independent metavertex into just
one vertex. In the classical Chromatic Number problem these independent
metavertices played a rather insignificant role; here their role is significant, be-
cause they provide the means to balance the sizes of color classes.

As in the previous problems we would like to find some “fundamental” form
of a solution which would be narrow enough to be expressed as an ILP, yet wide
enough to also express some optimal solution. In this direction it seems we got
stuck half way.

Remember from Subsection 3.2.2 (about Achromatic Number) that every
color class in a coloring of G corresponds to an independent set in the metagraph
GM. This independent set takes at most one vertex from each complete metaver-
tex and arbitrarily many from each independent metavertex. Our question is:
Given an optimal equitable coloring, can two independent sets I1 and I2 that
correspond to the same independent set of the metagraph behave significantly
differently on the independent metavertices? (By “significantly different behav-
ior” we mean for instance that I1 selects all but one vertices from Vi and just one
from Vj and I2 vice versa.) The answer is yes, they can, but then there is also a
solution using the same number of colors where they behave nicely. (By “behave
nicely” we mean that in every metavertex they select either the same number of
vertices, or they differ by just one.)

To see that, take any equitable solution and let I1, I2, . . . , Il be color classes
that correspond to the independent set I of the metagraph. For every j ∈ [l] and
for every metavertex i ∈ VM let I i

j = Ij ∩ Vi. Let si = ∑
1≤j≤l |I i

j| and define new
sets Ī i

j such that they have either ⌈ si

l
⌉ or ⌊ si

l
⌋ vertices; choose between those two

options in such a way that their sizes sum to precisely si. With a little caution it
is possible to make these choices across the metavertices in such a way that first,
the sets Ī i

j differ in size by at most one from each other and second, they also
differ by at most one from other colors.

In the original Chromatic Number ILP we had a variable xI for every in-
dependent set I of the metagraph. Here it seems appropriate to have additional
variables xi

I for every independent set I of the metagraph and for every inde-
pendent metavertex i; this variable would encode how many vertices from i are
selected for the coloring for every choice xI . The problem is that this leads to a
constraint of the form ∀i ∈ VM

∑
I∈I xI · xi

I = |Vi| which is not convex so we can
not use any of the results we mentioned. (This is not a problem in the results
we tried to use – such an integer program simply is not convex, so there is little
hope if we insist on this form.)

We tried different ways of encoding the described “fundamental” solutions to
no avail.

37

3.5.3 Miscellaneous
The other problems we tried to deal with fall into two categories.

The first one are those where only the graph is on the input and so there
is much hope that they will turn out to be FPT with respect to neighborhood
diversity. Two problems remain in this category that we have not mentioned
yet. The first one is the L(2,1)-coloring, which was proven by Fiala, Golovach
and Kratochvíl [30] to be NP-complete already for series-parallel graphs. The
second one is the p-Edge-disjoint paths problem, which was also proven to
be NP-complete already for series-parallel graphs by Nishizeki, Vygen and Zhou
[69].

The second category are those problems with some additional information
on the input. We have already mentioned that the List Coloring problem is
W[1]-hard with respect to vertex cover and thus also with respect to neighbor-
hood diversity, but we have also shown in Section 3.3 that the Capacitated
dominating set problem is FPT with respect to neighborhood diversity. This
gives us the two ends of the spectrum of what we can hope for. There are two
problems for which this remains open. First, the Weighted coloring problem,
proven to be NP-complete for graphs of treewidth three and more by McDiarmid
and Reed [65]. Second, the Capacitated Vertex Cover problem, proven to
be W[1]-hard with respect to treewidth by Dom et al. [24]

Let us conclude with a table which sums up this chapter. By [*] we denote
results presented in this thesis.

Problem Treewidth Neighborhood di-
versity

Edge OCT FPT [2] Open
Fair Edge OCT FPT [55] Open
Chromatic Number FPT [2] FPT [58]
Precoloring exten-
sion

W[1]-hard [28] FPT [39]

Achromatic number NP-c on trees [26] FPT [*]
L(0/1,1)-coloring W[1]-hard [31] FPT [*]
L(2,1)-coloring NP-c for TW ≥ 2 [30] Open
p-Edge-disjoint
paths

NP-c for TW ≥ 2 [69] Open

Equitable coloring W[1]-hard [28] Open
List coloring W[1]-hard [28] W[1]-hard [29]
Weighted coloring NP-c for TW ≥ 3 [65] Open
CDS W[1]-hard [24] FPT [*]
CVC W[1]-hard [24] Open

38

4 Parameters

In this chapter we make a short survey of the state of the art in the world of
parameters for sparse graphs and dense graphs. We realize that it is limited
and there are parameters that we do not mention. The main message of this
chapter is that the situation of parameters suitable for dense graphs is much
more clouded and with less consensus than the situation of parameters suitable
for sparse graphs, and even that is not at all finished. For the convenience of the
reader, we provide the exact definitions of parameters discussed in this chapter
in Appendix A.2.

We admit that our understanding of the words “sparse” and “dense” in the
following sections is quite limited and specific to the scenario we are focusing on.
A relevant recent paper dealing with the difficulty of the concept of sparsity (and
related concepts) is due to Nešetřil and de Mendez [67]. Typically, graphs with
O(n) edges are defined as sparse and graphs with Ω(n2) edges as dense. With
these definitions there are many graph classes that do not fall into either category.

One of the problems with these definitions in our scenario is that no parameter
subsumes either class completely. Already planar graphs (which have O(n) edges)
do not have bounded treewidth. The situation for cliquewidth is similar [48].
Only the other direction holds: all graph classes of bounded treewidth have O(n)
edges, and some graph classes of bounded cliquewidth have Ω(n2) edges. There
are other problems that we will mention.

Thus, the way we use these words is mostly motivated by practice and how
they are used in literature.

In the following sections we will be using the notion of equivalence of param-
eters. Two parameters A and B are said to be equivalent if for every graph G the
parameter A is bounded by a constant if and only if the parameter B is bounded
by a constant.

4.1 Sparse graphs
In this section we explain why we think that treewidth is a successful parameter
for a significant part of sparse graphs. We use a survey from Bodlaender [8]
extensively in the following paragraphs.

The notion of treewidth was introduced as a part of the Graph Minor Project
of Roberson and Seymour [72, 73] in the 80s. In hindsight we see that there
are other equivalent definitions of treewidth which were studied by other authors
independently, some even before Roberson and Seymour. Graphs with bounded
treewidth gathered interest because many problems that are intractable (e.g.,
NP-hard) become linear time (or polynomial time with polynomials of reasonable

39

degree) solvable when restricted to graphs of bounded treewidth. Bodlaender [8]
says:

Such algorithms have been found for many combinatorial problems
and also have been employed for problems from computational biology,
constraint satisfaction, probabilistic networks and other areas. […] In
other words: many graph problems become fixed-parameter tractable
when parameterized by the treewidth of the input graph.

Also, since the end of the 80s and the beginning of the 90s treewidth gathered
attention from the fields of automata theory, database theory and finite model
theory, resulting in the famous metaalgorithmical theorem of Courcelle [17]. This
theorem states that the model checking problem of MSO2 and CMSO logics is
FPT with respect to treewidth. (CMSO, or counting MSO, is an extension of
the MSO logic to also express the cardinality of sets modulo p.) This was later
extended to optimization variants (EMSO) by Arnborg et al. [2] and recently
to some other more specialized logics, for instance MSO with local cardinality
constraints (Szeider [76]). The interest from database theory is demonstrated
for example by papers from Gottlob et al. [42] who show how to translate MSO
formulas into Datalog queries. As for finite model theory, it is where the methods
Gottlob et al. and many others use come from; for more see Libkin’s book [63].

For a parameter to be useful in practice there has to be a way to efficiently
(in FPT time) determine the parameter and afterwards obtain the relevant de-
composition. This is because we usually do not know the parameter exactly, only
that it is somehow bounded on the input graph.

Both of these are possible for treewidth thanks to the extensive work done
by Bodlaender et al. in the past approximately 15 years. The first important
step was that Bodlaender [7] showed in 1996 that for fixed k it is possible to
decide if a graph G has treewidth at most k in linear time, and if the answer is
positive, to return a tree decomposition of width k. This algorithm was shown to
be impractical by Röhrig [75], but heuristics which work reasonably were found
instead. In the following years much research was done in this area and is summed
up in a series of papers. The first two papers due to Bodlaender and Koster show
polynomial heuristics for computing upper bounds [10] and lower bounds [11]
of the treewidth of a graph. The third paper is yet to come out but it will be
dedicated to exact algorithms for computing treewidth; some progress is described
in a paper by Bodlaender et al. [9] which describes exact exponential algorithms
running in space polynomial in the parameter (unlike the first algorithm from
1996). Those algorithms combined with aformentioned heuristics provide the
needed tools to obtain good (almost optimal) tree decompositions quickly.

A great example demonstrating how far the research done on treewidth got
is the recent paper “Evaluation of a MSO solver” by Langer et al. [59]. In
it the authors evaluate an implementation of a new kind of proof for Courcelle’s
theorem which they introduced the previous year [54]. In spite of the fact that the
parameterized complexity community still considers metaalgorithmical theorems
like Courcelle’s theorem to be merely of theoretical interest (see Niedermeier’s
book [68]), the MSO solver implemented by Langer et al. wildly outperforms the
industry standard ILP solver CPLEX on a real-world instance of the Bus Stop
Location problem.

40

We see the following three reasons as the main reason why treewidth is a
successful parameter:

1. The class of graphs with bounded treewidth is wide enough to capture
well many real-world instances for many practical problems which
become FPT with respect to treewidth.

2. The model checking problem for a variety of logical languages becomes
FPT on graphs of bounded treewidth.

3. It is possible to determine treewidth and find an optimal tree decom-
position in FPT time with respect to treewidth. Moreover, practical
heuristics exist.

The biggest theoretical problem of treewidth are the lower bounds on the
complexity of model checking for MSO logics given by Frick and Grohe [35] in
2004. Because of the positive results due to Langer et al. [59, 54] we described
above we do not think those lower bounds play a big role in practice. Still, there
was interest in finding some answer to this obstacle.

To that end attention turned to tree-depth, a parameter introduced in 2006
by Nešetřil and de Mendez [66], which creates a finer hierarchy between graphs
of bounded vertex cover and bounded treewidth. Instead of explaining this re-
lationship between treewidth and tree-depth we refer to a paper by Blumensath
and Courcelle [6] which proves an equivalence between tree-depth and l-depth
treewidth, a parameter that is easier to describe.

A graph G has l-depth treewidth bounded by k if a tree decomposition of
width k exists for G and also it is possible to choose a root in this decomposition
such that all leaves are in depth at most l. The equivalence between those two
parameters is such that tree-depth ≤ k implies k-depth treewidth k, and l-depth
treewidth ≤ k implies tree-depth lk. Treewidth is often described as a measure
of how close a graph is to a tree; in this sense tree-depth is a measure of how
close a graph is to a star.

Why is tree-depth important? Gajarský and Hliněný [37] have recently proven
that MSO2 is FPT with respect to tree-depth and the function f has elementary
dependence on the formula (i.e., the height of the exponential tower does not
depend on the formula). Intuitively, this construction allows us to trade the
nonelementary dependence on the formula for a bound on the depth of the tree
decomposition. This seems like a good answer to the lower bounds of Frick and
Grohe from a theoretical standpoint.

Even when we factor in the limitations of our use of the word “sparse”, judging
by the amount of interest treewidth generated both in theory and practice we
conclude that it successfully answers many important questions.

4.2 Dense graphs
In this section we explain why we think that the search for a good parameter for
“dense” graphs is still very much an ongoing effort.

The notion which is probably the closest to treewidth with regards to “dense”
(again, for a suitable definition thereof) graphs is the parameter cliquewidth (see

41

Definition 4). A good starting point for this parameter is the survey conducted
by Kaminski et al. [48]. Cliquewidth was introduced by Courcelle and Oum [20]
in 2000 as a generalization of treewidth, as bounded treewidth implies bounded
cliquewidth [43]; on the other hand there are graphs with constant cliquewidth
but unbounded treewidth. Many important hard problems are FPT on graphs of
bounded cliquewidth (for more specifics see the introduction chapter of a recent
paper by Ganian, Hliněný and Obdržálek [41]). On the other hand, since more
graphs have bounded cliquewidth than bounded treewidth it is not surprising
that not all problems that are FPT with respect to treewidth are also FPT with
respect to cliquewidth. For example the Chromatic number problem is W[1]-
hard with respect to cliquewidth [33].

As for metaalgorithmical results, already in 2000 Courcelle, Makowski and
Rotics [19] proved the equivalent of Courcelle’s theorem for graphs of bounded
cliquewidth with one significant difference: only MSO1 (not MSO2) model check-
ing is FPT with respect to cliquewidth. Another important result were the
nonelementary lower bounds on the complexity of the function f(k) of MSO1
model checking given by Frick and Grohe [35].

We are already starting to see some significant disadvantages of cliquewidth
when compared to treewidth, although some might be attributed simply to the
fact that cliquewidth is younger by about 15 years. We have not yet discussed the
third “component of success” of treewidth, that is the FPT algorithm determining
the treewidth of a graph and computing its decomposition.

Upon seeing that it is possible to solve some hard problems efficiently on
graphs of bounded cliquewidth, the problem of determining (or at least approxi-
mating) cliquewidth gained importance. In 2006, Oum and Seymour [71] proved
that if a graph G has cliquewidth at most k, it is possible to find a (2k+1 − 1)-
expression (the equivalent of a tree decomposition for cliquewidth) defining G in
FPT time. This discrepancy between orders of k and 2k was the main motivation
for the introduction [47] of a parameter called rank-width.

It holds [71] that for any graph G, rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1, that is,
the parameters are equivalent and cliquewidth is always at most roughly 2rw(G).
It still remains open if there is an FPT algorithm that would, for a graph G
with cw(G) = k, construct its k-expression. For these reasons rank-width is often
more popular for algorithm design. It is worth mentioning that the ideas used in
the alternative proof of Courcelle’s theorem for treewidth given by Kneis et al.
[54] were used in the proof of the metaalgorithmical theorem on rank-width by
Langer et al. [60].

Another parameter equivalent to cliquewidth (and thus rank-width) is boolean-
width. It was introduced by Bui-Xuan et al. [12] in 2009 and further investigated
by Adler et al. [1] and Belmonte and Vatshelle [5]. The reason why boolean-width
is interesting is the combination of two of its properties. First, boolean-width
can be exponentially smaller than rank-width. More interestingly, many graph
classes (see Figure 1 in the paper by Belmonte and Vatshelle [5]) have boolean-
width O(log n). It is not typical in parameterized complexity to look at graph
classes with logarithmic values of the parameter, but here it makes sense. The
reason is that, second, a wide class of problems (see the paper by Adler et al. [1])
can be solved on graphs of boolean-width w in time 2O(w)poly(n) (i.e., with f(w)
singly exponential). When those two properties are combined the result are FPT

42

algorithms for those problems on the classes with boolean-width O(log n). The
authors also show that for the relevant graph classes boolean decompositions can
be obtained in polynomial time.

Observe that in this sense boolean-width is not equivalent to cliquewidth or
rank-width, because graphs with boolean-width O(log n) can have cliquewidth
much bigger (even doubly exponentially), so even if we were able to use the same
algorithms as for boolean-width, we would not get a runtime polynomial in n.
Note that this is the only case known to the aformentioned authors and to us too
where this technique is used; typically only classes of graphs with a parameter
bounded by a constant are studied.

Above we summed the progress motivated by the original question of de-
termining cliquewidth efficiently – the notions of rank-width and boolean-width
both proved to carry significant advantages over clique-width even though they
are all bounded by some constant for the same graph classes. Now we turn to
the research motivated by the lower bounds for model checking due to Frick and
Grohe [35].

The first parameter for which model checking of MSO1 with elementary f was
proved was neighborhood diversity. This recent result is due to Lampis [58]. Ga-
jarský [36] generalized neighborhood diversity to finite type and proved a similar
result in his thesis. The most interesting result in this regard is one analogous to
the one we mentioned in the previous section for tree-depth. Just like tree-depth
fills the gap between vertex cover and treewidth, shrub-depth (introduced by Ga-
nian et al. [40]) fills the gap between vertex cover and cliquewidth. Interestingly,
graphs with shrub-depth 1 are precisely graphs of bounded neighborhood diver-
sity [38]. Gajarský also noted in an email conversation that graphs of finite type
have bounded shrub-depth, but not vice versa. The analogy between tree-depth
and shrub-depth is that tree-depth allows MSO2 model checking with elementary
f in the time complexity and shrub-depth allows MSO1 model checking with
elementary f .

Still, there remain problems with shrub-depth and related parameters. Ganian
et al. [40] state: “Primarily, we do not know yet how to efficiently (in FPT)
construct decompositions related to our depth parameters (in this respect our
situation is similar to that of clique-width).”

In this thesis we did the main part of our work on graphs of bounded neigh-
borhood diversity. Even though this parameter is easy to work with, easy to
determine (in time poly(n), unlike all other parameters we mentioned) and the-
oretically attractive (since it is incomparable with treewidth), we have to realis-
tically admit that it is probably not very useful in practice. Recently, Lambert
[57] investigated the values of vc(G) and nd(G) for some graphs which are en-
countered in practice. Even though we have our reservations towards the choice
of these graphs (there are better samples available online) it is apparent that
unlike with treewidth it is unusual to encounter graphs of bounded neighborhood
diversity in practice.

Thus we conclude that there is no one parameter for “dense” graphs that
would fit all three criteria from the previous section – let many hard problems
become tractable on many graph classes, allow for efficient model checking and
allow for efficient finding of decompositions – so the search is still very much
open. We sum this chapter with a figure from Subsection 2.2.6 which we updated

43

to contain all of the parameters discussed in this chapter.

Figure 4.1: Extended hierarchy of discussed parameters. Included are ver-
tex cover, tree-depth, treewidth, neighborhood diversity, finite type, shrub-depth,
cliquewidth, rankwidth and booleanwidth. An arrow implies generalization, for
example finite type is a generalization of neighborhood diversity. A dashed ar-
row indicates that the generalization may increase the parameter exponentialy,
for example treewidth k implies cliquewidth at most 2k.

44

5 Conclusion

The area of parameterized complexity is still young and as such still has to try
many new trails. Neighborhood diversity is a recently introduced parameter that
might be viewed as such a trail.

In this thesis we have shown that three problems become fixed-parameter
tractable with respect to neighborhood diversity. What makes these results in-
teresting is the fact that these problems are hard with respect to treewidth.
The problems for which we have shown the aformentioned results are L(0,1)-
and L(1,1)-coloring, Complete coloring and Capacitated Dominat-
ing Set. This is the main contribution of this thesis.

While working on this thesis we have also gathered a list of other problems
that are hard with respect to treewidth. We hope this list serves as inspiration for
future research investigating the finer differences between treewidth and neigh-
borhood diversity. Especially interesting are problems that contain additional
information besides the graph as their input because they have big potential to
prove hard with respect to neighborhood diversity, thus enhancing our under-
standing of it. We also gave a brief overview of some other relevant parameters.
In this overview we see signs of which paths lead in good directions and which
had to be adjusted over time.

It remains to be seen where will research of neighborhood diversity and related
parameters lead us. At this point it is too early to judge, but even if this path
only leads to the discovery of a dead end we have learned something valuable not
only for us, but also for the rest of the scientific community.

45

A Appendix

A.1 Problem definitions
Here we provide the definitions of those computational problems that we men-
tioned in Chapter 3 but did not deal with any further.
Definition 48 ([39]). Precoloring extension
Input: A graph G = (V,E) and a partial proper coloring c′ : V → N
Output: A proper coloring c of G which extends c′ (i.e., it agrees with c′ on all
vertices for which c′ was defined) and uses as few colors as possible.
Definition 49 ([29]). List coloring
Input: A graph G = (V,E) and for each vertex v ∈ V a list L(v) of permitted
colors.
Output: A proper coloring c of G with c(v) ∈ L(v) for every v ∈ V .
Definition 50 ([65]). Weighted coloring
Input: A graph G = (V,E) and for each edge uv ∈ E its length l(uv) ∈ N.
Output: A mapping c : V → {1, . . . , l} for l as small as possible such that for
every edge uv ∈ E, |c(u) − c(v)| ≥ l(uv).
Definition 51 ([69]). p-Edge-disjoint paths
Input: A graph G = (V,E) and a set of p pairs of vertices (s1, t1), . . . , (sp, tp) in
G.
Output: If they exist, p edge-disjoint paths P1, . . . , Pp in G such that Pi joins si

and ti for i = 1, . . . , p, or an empty set ∅ if they do not exist.
Definition 52 ([24]). Capacitated Vertex Cover
Input: A capacitated graph G = (V,E) (see Definition 34)
Output: The smallest vertex cover (see Definition 14) C ⊆ V , for which there is
a mapping f : E → C which maps every edge in E to one of its two endpoints
such that the total number of edges mapped by f to any vertex v ∈ C does not
exceed c(v).

A.2 Parameter definitions
Here we have provide the definitions of those parameters that we only mentioned
in Chapter 4. All of them are direct quotes from the cited papers.
Definition 53 ([37, 66]). The closure cl(F) of a rooted forest F is the graph
obtained from F by adding from each node all edges to its descendants. The
tree-depth td(G) of a graph G is the smallest height (distance from the root to all
leaves) of a rooted forest F such that G ⊆ cl(F).

46

Definition 54 ([48, 47]). For a cut C = (A,B) (partition of the vertex set into
two disjoint subsets A,B), the cut-rank of C, denoted cutrkG(C), is the linear
rank of the |A| × |B| submatrix of the adjacency matrix of G corresponding to
the set of pairs (a, b) with a ∈ A and b ∈ B, where the matrix is viewed over
GF (2).

If T is a tree of maximum degree 3 and L is a bijection from the set of leaves
of T to the vertices of G, then (T, L) is a rank-decomposition of G. For each
edge e of T , the two components of T − e define a cut Ce in G. The width of
the edge e is cutrkG(Ce). The width of (T, L) is the maximum width of all the
edges of T . The rank-width of G, denoted rw(G), is the minimum width of all
rank-decompositions of G.

The definition of boolean-width is involved and requires auxiliary definitions.
Definition 55 ([4]). A decomposition tree of a graph G is a pair (T, δ) where T
is a tree having internal nodes of degree three and n = |V (G)| leaves, and δ is a
bijection between the vertices of G and the leaves of T . Every edge of T defines
a cut (A,A) of the graph, i.e., a partition of V (G) in two parts, namely the two
parts given, via δ, by the leaves of the two subtrees of T we get by removing
the edge. Let f : 2V → R be a symmetric function, i.e., f(A) = f(A) for all
A ⊆ V (G), also called a cut function. The f -width of (T, δ) is the maximum
value of f(A), taken over all cuts (A,A) of G given by an edge uv of T . The
f -width of G is the minimum f -width over all decomposition trees of G.
Definition 56 ([4]). Let G be a graph and A ⊆ V (G). Two vertex subsets
X ⊆ A and X ′ ⊆ A are neighborhood equivalent with respect to A, denoted by
X ≡A X ′, if A ∩N(X) = A ∩N(X ′).
Definition 57 ([4]). The cut-bool : 2V (G) → R function of a graph G is

cut-bool(A) = log2 |{S ⊆ A : ∃X ⊆ A ∧ S = A ∩
∪

x∈X

N(x)}|

Using Definition 55 with f = cut-bool we define the boolean-width of a decom-
position tree, denoted boolw(T, δ), and the boolean-width of a graph, denoted
boolw(G).

The definition of shrub-depth requires one auxiliary definition.
Definition 58 ([40]). We say that a graph G has a tree-model of m labels and
depth d if there exists a rooted tree T (of height d) such that

1. the set of leaves of T is exactly V (G),

2. the length of each root-to-leaf path in T is exactly d,

3. each leaf of T is assigned one of m labels (T is m-labelled),

4. and the existence of a G-edge between u, v ∈ V (G) depends solely
on the labels of u, v and the distance between u, v in T .

The class of all graphs having a tree-model of m labels and depth d is denoted
by T Mm(d).
Definition 59 ([40]). A class of graphs G has shrub-depth d if there exists m
such that G ⊆ T Mm(d), while for all natural m it is G ⊈ T Mm(d− 1).

47

Bibliography

[1] Adler, I., Bui-Xuan, B.-M., Rabinovich, Y., Renault, G., Telle,
J. A., and Vatshelle, M. On the Boolean-Width of a Graph: Structure
and Applications. In WG (2010), D. M. Thilikos, Ed., vol. 6410 of Lecture
Notes in Computer Science, p. 159–170.

[2] Arnborg, S., Lagergren, J., and Seese, D. Easy Problems for Tree-
Decomposable Graphs. J. Algorithms 12, 2 (1991), 308–340.

[3] Arnborg, S., and Proskurowski, A. Linear time algorithms for NP-
hard problems restricted to partial k-trees. Discrete Applied Mathematics
23, 1 (1989), 11–24.

[4] Belmonte, R., and Vatshelle, M. On graph classes with logarithmic
boolean-width. CoRR abs/1009.0216 (2010).

[5] Belmonte, R., and Vatshelle, M. Graph Classes with Structured
Neighborhoods and Algorithmic Applications. In WG (2011), P. Kolman
and J. Kratochvíl, Eds., vol. 6986 of Lecture Notes in Computer Science,
Springer, p. 47–58.

[6] Blumensath, A., and Courcelle, B. On the Monadic Second-Order
Transduction Hierarchy. Logical Methods in Computer Science 6, 2 (2010).

[7] Bodlaender, H. L. A Linear-Time Algorithm for Finding Tree-
Decompositions of Small Treewidth. SIAM J. Comput. 25, 6 (1996), 1305–
1317.

[8] Bodlaender, H. L. Fixed-Parameter Tractability of Treewidth and Path-
width. In The Multivariate Algorithmic Revolution and Beyond (2012), H. L.
Bodlaender, R. Downey, F. V. Fomin, and D. Marx, Eds., vol. 7370 of Lecture
Notes in Computer Science, Springer, p. 196–227.

[9] Bodlaender, H. L., Fomin, F. V., Koster, A. M. C. A., Kratsch,
D., and Thilikos, D. M. On Exact Algorithms for Treewidth. In ESA
(2006), Y. Azar and T. Erlebach, Eds., vol. 4168 of Lecture Notes in Com-
puter Science, Springer, p. 672–683.

[10] Bodlaender, H. L., and Koster, A. M. C. A. Treewidth computations
I. Upper bounds. Inf. Comput. 208, 3 (2010), 259–275.

[11] Bodlaender, H. L., and Koster, A. M. C. A. Treewidth computations
II. Lower bounds. Inf. Comput. 209, 7 (2011), 1103–1119.

48

[12] Bui-Xuan, B.-M., Telle, J. A., and Vatshelle, M. Boolean-Width
of Graphs. In IWPEC (2009), J. Chen and F. V. Fomin, Eds., vol. 5917 of
Lecture Notes in Computer Science, Springer, p. 61–74.

[13] Cai, L., and Juedes, D. W. Subexponential Parameterized Algorithms
Collapse the W-Hierarchy. In ICALP (2001), F. Orejas, P. G. Spirakis,
and J. van Leeuwen, Eds., vol. 2076 of Lecture Notes in Computer Science,
Springer, p. 273–284.

[14] Calamoneri, T. The L(h, k)-Labelling Problem: A Survey and Annotated
Bibliography. Comput. J. 49, 5 (2006), 585–608.

[15] Chen, J., Kanj, I. A., and Jia, W. Vertex Cover: Further Observations
and Further Improvements. In WG (1999), P. Widmayer, G. Neyer, and
S. Eidenbenz, Eds., vol. 1665 of Lecture Notes in Computer Science, Springer,
p. 313–324.

[16] Cook, S. A. The complexity of theorem proving procedures. In Proceedings
of the Third Annual ACM Symposium on the Theory of Computing (New
York, 1971), ACM, p. 151–158.

[17] Courcelle, B. The Monadic Second-Order Logic of Graphs. I. Recogniz-
able Sets of Finite Graphs. Inf. Comput. 85, 1 (1990), 12–75.

[18] Courcelle, B., and Delhommé, C. The modular decomposition of
countable graphs. Definition and construction in monadic second-order logic.
Theor. Comput. Sci. 394, 1-2 (2008), 1–38.

[19] Courcelle, B., Makowsky, J. A., and Rotics, U. Linear Time Solv-
able Optimization Problems on Graphs of Bounded Clique-Width. Theory
Comput. Syst. 33, 2 (2000), 125–150.

[20] Courcelle, B., and Olariu, S. Upper bounds to the clique width of
graphs. Discrete Applied Mathematics 101, 1-3 (2000), 77–114.

[21] Dadush, D., Peikert, C., and Vempala, S. Enumerative Lattice Al-
gorithms in any Norm Via M-ellipsoid Coverings. In FOCS (2011), R. Os-
trovsky, Ed., IEEE, p. 580–589.

[22] Dasgupta, S., Papadimitriou, C. H., and Vazirani, U. V. Algorithms.
McGraw-Hill, 2008.

[23] Diestel, R. Graph Theory, 4th ed. Graduate Texts in Mathematics, Volume
173. Springer-Verlag, Heidelberg, July 2010.

[24] Dom, M., Lokshtanov, D., Saurabh, S., and Villanger, Y. Capac-
itated Domination and Covering: A Parameterized Perspective. In IWPEC
(2008), M. Grohe and R. Niedermeier, Eds., vol. 5018 of Lecture Notes in
Computer Science, Springer, p. 78–90.

[25] Downey, R., and Fellows, M. Parameterized complexity, vol. 19.
Springer New York, 1999.

49

[26] Edwards, K., and McDiarmid, C. The Complexity of Harmonious
Colouring for Trees. Discrete Applied Mathematics 57, 2-3 (1995), 133–144.

[27] Fellows, M. R. Parameterized Complexity: The Main Ideas and Some Re-
search Frontiers. In ISAAC (2001), P. Eades and T. Takaoka, Eds., vol. 2223
of Lecture Notes in Computer Science, Springer, p. 291–307.

[28] Fellows, M. R., Fomin, F. V., Lokshtanov, D., Rosamond, F. A.,
Saurabh, S., Szeider, S., and Thomassen, C. On the complexity of
some colorful problems parameterized by treewidth. Inf. Comput. 209, 2
(2011), 143–153.

[29] Fellows, M. R., Lokshtanov, D., Misra, N., Rosamond, F. A., and
Saurabh, S. Graph Layout Problems Parameterized by Vertex Cover. In
ISAAC (2008), S.-H. Hong, H. Nagamochi, and T. Fukunaga, Eds., vol. 5369
of Lecture Notes in Computer Science, Springer, p. 294–305.

[30] Fiala, J., Golovach, P. A., and Kratochvíl, J. Distance Constrained
Labelings of Graphs of Bounded Treewidth. In ICALP (2005), L. Caires,
G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, Eds., vol. 3580 of
Lecture Notes in Computer Science, Springer, p. 360–372.

[31] Fiala, J., Golovach, P. A., and Kratochvíl, J. Parameterized com-
plexity of coloring problems: Treewidth versus vertex cover. Theor. Comput.
Sci. 412, 23 (2011), 2513–2523.

[32] Flum, J., and Grohe, M. Parameterized Complexity Theory (Texts in
Theoretical Computer Science. An EATCS Series). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[33] Fomin, F. V., Golovach, P. A., Lokshtanov, D., and Saurabh, S.
Intractability of Clique-Width Parameterizations. SIAM J. Comput. 39, 5
(2010), 1941–1956.

[34] Frank, A., and Tardos, �. An application of simultaneous Diophantine
approximation in combinatorial optimization. Combinatorica 7, 1 (1987),
49–65.

[35] Frick, M., and Grohe, M. The complexity of first-order and monadic
second-order logic revisited. Ann. Pure Appl. Logic 130, 1-3 (2004), 3–31.

[36] GAJARSKÝ, J. Efficient solvability of graph MSO properties [online].
Master’s thesis, Masarykova univerzita, Fakulta informatiky, 2012 [cit. 2013-
03-22].

[37] Gajarský, J., and Hliněný, P. Deciding Graph MSO Properties: Has
it all been told already? CoRR abs/1204.5194 (2012).

[38] Gajarský, J., and Hliněný, P. Faster Deciding MSO Properties of Trees
of Fixed Height, and Some Consequences. In FSTTCS (2012), D. D’Souza,
T. Kavitha, and J. Radhakrishnan, Eds., vol. 18 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, p. 112–123.

50

[39] Ganian, R. Using Neighborhood Diversity to Solve Hard Problems. CoRR
abs/1201.3091 (2012).

[40] Ganian, R., Hliněný, P., Nešetřil, J., Obdržálek, J., de Mendez,
P. O., and Ramadurai, R. When Trees Grow Low: Shrubs and Fast
MSO1. In MFCS (2012), B. Rovan, V. Sassone, and P. Widmayer, Eds.,
vol. 7464 of Lecture Notes in Computer Science, Springer, p. 419–430.

[41] Ganian, R., Hliněný, P., and Obdržálek, J. A unified approach to
polynomial algorithms on graphs of bounded (bi-)rank-width. Eur. J. Comb.
34, 3 (2013), 680–701.

[42] Gottlob, G., Pichler, R., and Wei, F. Monadic datalog over finite
structures of bounded treewidth. ACM Trans. Comput. Logic 12 (November
2010), 3:1–3:48.

[43] Gurski, F., and Wanke, E. The Tree-Width of Clique-Width Bounded
Graphs Without Kn, n. In WG (2000), U. Brandes and D. Wagner, Eds.,
vol. 1928 of Lecture Notes in Computer Science, Springer, p. 196–205.

[44] Gurski, F., and Wanke, E. Vertex Disjoint Paths on Clique-Width
Bounded Graphs. In LATIN (2004), M. Farach-Colton, Ed., vol. 2976 of
Lecture Notes in Computer Science, Springer, p. 119–128.

[45] Heinz, S. Complexity of integer quasiconvex polynomial optimization. J.
Complexity 21, 4 (2005), 543–556.

[46] Hildebrand, R., and Köppe, M. A new Lenstra-type algorithm for
quasiconvex polynomial integer minimization with complexity 2O(nlogn).
Discrete Optimization 10, 1 (2013), 69–84.

[47] il Oum, S. Approximating Rank-Width and Clique-Width Quickly. In WG
(2005), D. Kratsch, Ed., vol. 3787 of Lecture Notes in Computer Science,
Springer, p. 49–58.

[48] Kaminski, M., Lozin, V. V., and Milanic, M. Recent developments
on graphs of bounded clique-width. Discrete Applied Mathematics 157, 12
(2009), 2747–2761.

[49] Kannan, R. Minkowski’s convex body theorem and integer programming.
Math. Oper. Res. 12, 3 (Aug. 1987), 415–440.

[50] Karmarkar, N. A New Polynomial-Time Algorithm for Linear Program-
ming. In STOC (1984), R. A. DeMillo, Ed., ACM, p. 302–311.

[51] Karp, R. M. Reducibility Among Combinatorial Problems. In Complexity
of Computer Computations (1972), R. E. Miller and J. W. Thatcher, Eds.,
The IBM Research Symposia Series, Plenum Press, New York, p. 85–103.

[52] Khachiyan, L., and Porkolab, L. Integer Optimization on Convex
Semialgebraic Sets. Discrete & Computational Geometry 23, 2 (2000), 207–
224.

51

[53] Khachiyan, L. G. A polynomial algorithm in linear programming. Doklady
Akademii Nauk SSSR 244 (1979), 1093–1096.

[54] Kneis, J., Langer, A., and Rossmanith, P. Courcelle’s Theorem - A
Game-Theoretic Approach. CoRR abs/1104.3905 (2011).

[55] Kolman, P., Lidický, B., and Sereni, J.-S. On Fair Edge Deletion
Problems, 2009.

[56] Komlós, J. Covering Odd Cycles. Combinatorica 17, 3 (1997), 393–400.

[57] LAMBERT, V. Srovnání Vertex cover, Twin-cover a Neighborhood diver-
sity na grafech [online], 2012 [cit. 2013-04-02].

[58] Lampis, M. Algorithmic Meta-theorems for Restrictions of Treewidth. Al-
gorithmica 64, 1 (2012), 19–37.

[59] Langer, A., Reidl, F., Rossmanith, P., and Sikdar, S. Evaluation
of an MSO-Solver. In ALENEX (2012), D. A. Bader and P. Mutzel, Eds.,
SIAM / Omnipress, p. 55–63.

[60] Langer, A., Rossmanith, P., and Sikdar, S. Linear-Time Algorithms
for Graphs of Bounded Rankwidth: A Fresh Look Using Game Theory.
CoRR abs/1102.0908 (2011).

[61] Lenstra, H. Integer programming with a fixed number of variables. Math-
matics of Operation Research 8 (1983), 538–548.

[62] Levin, L. A. Universal sequential search problems. Problems of Information
Transmission 9, 3 (1973), 265–266.

[63] Libkin, L. Elements of finite model theory. Springer Verlag, 2004.

[64] Lipton, R. J., and Tarjan, R. E. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics 36, 2 (1979), 177–189.

[65] McDiarmid, C., and Reed, B. A. Channel assignment on graphs of
bounded treewidth. Discrete Mathematics 273, 1-3 (2003), 183–192.

[66] Nešetřil, J., and de Mendez, P. O. Tree-depth, subgraph coloring and
homomorphism bounds. Eur. J. Comb. 27, 6 (2006), 1022–1041.

[67] Nešetřil, J., and de Mendez, P. O. Sparsity - Graphs, Structures, and
Algorithms., vol. 28 of Algorithms and combinatorics. Springer, 2012.

[68] Niedermeier, R. Ubiquitous Parameterization - Invitation to Fixed-
Parameter Algorithms. In MFCS (2004), J. Fiala, V. Koubek, and J. Kra-
tochvíl, Eds., vol. 3153 of Lecture Notes in Computer Science, Springer,
p. 84–103.

[69] Nishizeki, T., Vygen, J., and Zhou, X. The edge-disjoint paths problem
is NP-complete for series-parallel graphs. Discrete Applied Mathematics 115,
1-3 (2001), 177–186.

52

[70] Oertel, T., Wagner, C., and Weismantel, R. Convex integer mini-
mization in fixed dimension, Mar. 2012.

[71] Oum, S.-i., and Seymour, P. D. Approximating clique-width and branch-
width. J. Comb. Theory, Ser. B 96, 4 (2006), 514–528.

[72] Robertson, N., and Seymour, P. D. Graph minors. III. Planar tree-
width. J. Comb. Theory, Ser. B 36, 1 (1984), 49–64.

[73] Robertson, N., and Seymour, P. D. Graph Minors. II. Algorithmic
Aspects of Tree-Width. J. Algorithms 7, 3 (1986), 309–322.

[74] Robertson, N., and Seymour, P. D. Graph Minors .XIII. The Disjoint
Paths Problem. J. Comb. Theory, Ser. B 63, 1 (1995), 65–110.

[75] Röhrig, H. Tree Decomposition: A Feasibility Study. Master’s thesis,
Universität des Saarlandes, 1998.

[76] Szeider, S. Monadic second order logic on graphs with local cardinality
constraints. ACM Trans. Comput. Log. 12, 2 (2011), 12.

[77] Yeh, R. K. A survey on labeling graphs with a condition at distance two.
Discrete Mathematics 306, 12 (2006), 1217–1231.

53

	Contents
	Introduction
	Foundations
	Parameterized complexity
	Examples

	Parameters of interest
	Treewidth
	Cliquewidth
	Neighborhood diversity
	Finite type
	Vertex cover
	Relationships between the parameters

	Integer programming

	Problems
	Warm-up
	Simple problems
	Chromatic number

	Coloring problems
	L(0,1)- and L(1,1)-coloring
	Achromatic number

	Capacitated dominating set
	Finite type coloring
	Chromatic number and finite type
	L(0,1)- and L(1,1)-coloring and finite type

	Possible future research directions
	Edge OCT
	Equitable Coloring
	Miscellaneous

	Parameters
	Sparse graphs
	Dense graphs

	Conclusion
	Appendix Appendix
	Problem definitions
	Parameter definitions

