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konfiguračnı́ interakce (FCI) s pouze polynomiálnı́m škálovánı́m. To je v kontrastu s kla-

sickými počı́tači, kde metoda FCI škáluje exponenciálně. Představujeme detailnı́ popis kvan-

tové verze metody FCI a výsledky numerických simulacı́ výpočtů energiı́ základnı́ho a exci-

tovaných stavů methylénu. Dále jsme tuto metodu zobecnili pro relativistické čtyřsložkové

výpočty a ukázali, jak efektivně řešit vlastnı́ problém Diracova-Coulombova(-Breitova) Hamil-

toniánu na kvantovém počı́tači. Funkčnost navrženého algoritmu byla ověřena numerickými

simulacemi výpočtů hodnot spin-orbitálnı́ho štěpenı́ molekuly SbH. Nakonec jsme navrhli 3-

qubitové kvantové obvody s 9-ti a 10-ti CNOT hradly, které by mohly být vhodné pro experi-

mentalnı́ realizaci.
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Abstract: Quantum computers are appealing for their ability to solve some tasks much faster

than their classical counterparts. In fact, they have a potential to perform the full configuration

interaction (FCI) energy calculations with a polynomial scaling only. This is in contrast to con-

ventional computers where FCI scales exponentially. We provide a detailed description of the

quantum version of the FCI method and the results of numerical simulations of the ground and

excited state energy calculations of the methylene molecule. We further generalize this method

to the relativistic four component regime and show how to efficiently solve the eigenproblem

of the Dirac-Coulomb(-Breit) Hamiltonian on a quantum computer. We demonstrate the func-

tionality of the proposed procedure by numerical simulations of computations of the spin-orbit

splitting in the SbH molecule. Finally, we propose quantum circuits with 3 qubits and 9 or

10 CNOTs, which implement a proof-of-principle relativistic quantum chemical calculation for

this molecule and might be suitable for an experimental realization.
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Introduction

An exact simulation of quantum systems on a classical computer is computationally hard. The

problem lies in the dimensionality of the Hilbert space needed for the description of a studied

system that in fact grows exponentially with the size of this system. No matter if we simulate

the dynamics or calculate some static property e.g. the energy, this limitation is always present.

Richard Feynman came up with an alternative to the classical simulation [1]. His idea was

to convert the aforementioned drawback of quantum systems into their benefit. He suggested

to map the Hilbert space of a studied quantum system on another one (both of them being

exponentially large) and thus to efficiently simulate a quantum system on another one (i.e. on a

quantum computer).

This was the original idea of quantum computers. There is no doubt that quantum com-

puting is nowadays a well-established discipline of computer science. Apart from the efficient

simulation of quantum systems [2, 3, 4, 5, 6], other interesting problems where quantum com-

puters could beat their classical counterparts have been discovered. The most famous examples

are integer factorization for which quantum computers supply an exponential speedup with re-

spect to the best contemporary classical algorithm [7, 8] or database search with a quadratic

speedup [9]. However, for the purposes of quantum chemistry and consequently for this the-

sis, the efficient (polynomially scaling) quantum algorithm of Abrams and Lloyd for obtaining

eigenvalues of local Hamiltonians [10] is particularly important.

The first paper connecting quantum computation and chemistry was published by Lidar and

Wang [11] and concerned the efficient calculations of thermal rate constants of chemical reac-

tions. This work in fact founded the new field of computational chemistry, namely the “com-

putational chemistry on quantum computers”. Aspuru-Guzik et al. in their seminal article [12]

reduced the number of quantum bits (qubits) needed by the Abrams and Lloyd’s algorithm [10]

and applied it to molecular ground state energy calculations. Since these two pioneering works,

other papers involving energy calculations of excited states [13], quantum chemical dynamics

[14], calculations of molecular properties and geometry optimizations [15], state preparations

[16, 17] or global minima search [18] were published. The list of all chemical applications for

quantum computers is quite rich and is very well reviewed in [19].
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Aspuru-Guzik et al. [12] also proposed that quantum computers with tens of (noise free)

qubits would already exceed the limits of classical full configuration interaction (FCI) calcu-

lations. This is in contrast to other quantum algorithms, e.g. the Shor’s algorithm [7, 8] for

integer factorization would for practical tasks in cryptography require thousands of qubits. For

this reason, calculations and simulations of quantum systems will belong to the first practical

applications of quantum computers. Recent proof-of-principle few-qubit experiments covering

energy calculations of the hydrogen molecule [20, 21] or Heisenberg spin model [22] and the

simulation of a chemical reaction dynamics [23] confirm that interesting applications might be

just behind the door.

The aim of this thesis is to summarize our work on a quantum1 version of the FCI method

(qFCI) and its simulations [24, 25, 26]. On a classical computer, a computational cost of the FCI

method scales exponentially with the size of the system. This fact stems from the dimension

of the Hilbert space in which we diagonalize the Hamiltonian matrix and it is the reason why

this method is limited only to the smallest systems (diatomics, triatomics). For example, in the

non-relativistic case, the number of Slater determinants that build up the FCI wave function for

a closed-shell system with n electrons in m orbitals2 is equal to

Nnon−rel. =

(
m

n/2

)2

. (1)

It is more than evident that this number grows into huge values with increasing m and n very

quickly. On a quantum computer on the other hand, it has been shown [20, 27] and will be

discussed in Chapter 3 that the qFCI cost has a polynomial scaling [O(m5)], therefore it is

exponentially faster.

The thesis is organized as follows. It starts with an introduction to the quantum compu-

tation in Chapter 1. Most importantly, the quantum cirucit model, which is used throughout

the thesis, is presented here. This chapter is closed with the section devoted to a physical real-

ization of quantum computers. Chapter 2 deals with quantum algorithms that are important in

the context of the quantum full configuration interaction method, namely the quantum Fourier

transform (Section 2.1), the phase estimation algorithm (Section 2.3) and its iterative version

(Section 2.4). The quantum full configuration interaction (qFCI) method is presented in detail

in Chapter 3. Chapter 4 discusses classical simulations of non-relativistic qFCI calculations of

methylene molecule whose lowest lying singlet electronic states exhibit multireference char-

acter. In Chapter 5, we generalize the qFCI method to the relativistic (4-component, no-pair)

1Here ”quantum“ denotes quantum computing.
2We simply take into account all determinants with the same number of alpha and beta electrons equal to n/2

(MS = 0).
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regime and test its performance on the spin-orbit splitting of the SbH molecule.

Several chapters of this thesis are based on results published in the following papers/book

chapters:

• L. Veis and J. Pittner, Quantum computing applied to calculations of molecular energies:

CH2 benchmark, J. Chem. Phys., 133, 194106, (2010) also selected for the December

2010 issue of Virtual Journal of Quantum Information (Chapter 4).

• L. Veis, J. Višňák, T. Fleig, S. Knecht, T. Saue, L. Visscher, and J. Pittner, Relativistic

quantum chemistry on quantum computers, Phys. Rev. A, 85, 030304(R), (2012) (Chapter

5).

• L. Veis and J. Pittner, Quantum computing approach to non-relativistic and relativistic

molecular energy calculations, Advances in Chemical Physics (2012), in press, preprint

available: arXiv:1203.6204 (Chapters 2 and 3).
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1 Basics of quantum computing

In this chapter, we give a brief introduction to the field of quantum computation [28] that may

be useful especially for readers coming from the quantum chemistry community.

1.1 Quantum bits

Similarly as the fundamental entity of classical computation and classical information is one

bit, the fundamental entity of quantum computation and quantum information is one quantum

bit, shortly qubit. It is a quantum two-state system in a normalized state

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex-valued amplitudes. The examples of physical realization can be

a polarization of a photon with two distinct polarization states or an electron in an external

magnetic field with two different spin directions. A bit more details about some of the examples

of physical realization of quantum computing are mentioned in Section 1.5.

The orthonormal basis B = {|0〉, |1〉}, which is usually denoted as a computational basis,

is defined as

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
, (1.2)

therefore

|ψ〉 =

(
α

β

)
. (1.3)

Because |α|2 + |β|2 = 1, we may rewrite (1.1) as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiϕsin

θ

2
|1〉
)
, (1.4)

where θ, ϕ and γ are real numbers. As the global phase eiγ is not observable [28], we can

effectively write

9



1.1. QUANTUM BITS

|ψ〉 = cos
θ

2
|0〉+ eiϕsin

θ

2
|1〉. (1.5)

Figure 1.1: Bloch sphere representation of a qubit.

Geometrically, the numbers θ and ϕ define a point on the unit three-dimensional sphere, of-

ten called the Bloch sphere (see Figure 1.1), and a general single qubit’s state can be viewed

as a point on this sphere. This graphical representation is a very elegant and useful concept.

However, it must be noted that there is no simple generalization of the Bloch sphere known for

multiple qubits.

The Bloch sphere representation of a single qubit can be generalized to mixed states. An

arbitrary density matrix of a single qubit may be written as

ρ =
I + ~r · ~σ

2
(1.6)

where ~σ is a vector of Pauli matrices (see Eq. 1.14) and ~r is a real three-dimensional Bloch

vector such that ‖~r‖ ≤ 1.

1.1.1 Multiple qubits

When going to multiple qubits, the computational basis increases exponentially. For example,

a two qubit system has four computational basis states

10



CHAPTER 1. BASICS OF QUANTUM COMPUTING

|00〉 =

(
1

0

)
⊗

(
1

0

)
=


1

0

0

0

 , |01〉 =

(
1

0

)
⊗

(
0

1

)
=


0

1

0

0

 ,

|10〉 =

(
0

1

)
⊗

(
1

0

)
=


0

0

1

0

 , |11〉 =

(
0

1

)
⊗

(
0

1

)
=


0

0

0

1

 (1.7)

and a general two qubit’s state has the form

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉. (1.8)

Obviously, the Hilbert space spanned by all possible states of a quantum register consisting

of n qubits will be 2n-dimensional.

1.1.2 Entanglement

An interesting property that follows from the postulates of quantum mechanics is the entangle-

ment. In fact, there exist such states of composite systems that cannot be written as a tensor

product of states of its component systems. They are called entangled. One of many examples

is the Bell state

β00 =
|00〉+ |11〉√

2
. (1.9)

To show that it is entangled, let’s firstly suppose the opposite. If it was not entangled, it

should be possible to write it as a product state

β00 = |ϕ〉 ⊗ |ψ〉, (1.10)

where

|ϕ〉 = α|0〉+ β|1〉,

|ψ〉 = γ|0〉+ δ|1〉. (1.11)

However, this is clearly not possible, as the following conditions for β00 (1.9) amplitudes cannot

be fulfilled simultaneously

11



1.2. QUANTUM CIRCUIT MODEL

αγ =
1√
2
, αδ = 0,

βγ = 0, βδ =
1√
2
. (1.12)

In entangled states, unitary operators and measurements performed on one system affect the

state of the second system. Entangled states can mediate correlations of space-like separated

measurements, however they cannot be used to transmit information faster then light. This

remains a very intriguing and still not completely understood feature of quantum mechanics.

Entangled states play a crucial role in quantum computation and quantum information. For

example the aforementioned β00 state is a key ingredient for quantum teleportation or super-

dense coding [28].

1.2 Quantum circuit model

There exist several models of quantum computation that are mutually equivalent. One of them

used in this thesis is the quantum circuit model [29]. Analogously to a classical computation

which is implemented with electrical circuits containing logical gates connected by wires, quan-

tum computation can be implemented with a quantum circuit containing “wires” and quantum

gates, which manipulate the quantum information.

|q〉 U1 U2 |q′〉

Figure 1.2: Simple single qubit quantum circuit. The time flows from left to right.

An example of a simple single qubit quantum circuit is shown in Figure 1.2. By convention,

in quantum circuits the time flows from left to right, i.e. the qubit is originally in the state |q〉
and after action of quantum gates U1 and U2, it is transformed onto |q′〉. Algebraically, it can be

written as

|q′〉 = U2U1|q〉. (1.13)

According to the postulates of quantum mechanics [30], the time evolution of a quantum

system must be unitary, i.e. quantum gates (operations on qubits) must be unitary operators.

An important consequence of quantum mechanics is so called no-cloning theorem [28] which

states that it is not possible to make a copy of an unknown quantum state.
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CHAPTER 1. BASICS OF QUANTUM COMPUTING

1.2.1 Single qubit gates

Operations on a single qubit are represented by 2 × 2 unitary matrices. Between the most

important ones belong the Pauli matrices

σx ≡ X =

(
0 1

1 0

)
, σy ≡ Y =

(
0 −i
i 0

)
, σz ≡ Z =

(
1 0

0 −1

)
. (1.14)

The Pauli matrices when exponentiated give rise to rotation operators about x, y and z axes,

defined by the equations

Rx(θ) = e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
(1.15)

Ry(θ) = e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ

2
−sin θ

2

sin θ
2

cos θ
2

)
(1.16)

Rz(θ) = e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

(
e−i

θ
2 0

0 ei
θ
2

)
, (1.17)

where I is the identity matrix

I =

(
1 0

0 1

)
. (1.18)

The fact that they behave like rotations can be viewed in the Bloch sphere picture. We demon-

strate it in Figure 1.3 on the example of Ry(π/2) rotation which transforms |0〉 onto |0〉+|1〉√
2

.

Figure 1.3: The action of the Ry(π/2) rotation on the |0〉 state.

Other important single qubit gates that appear very often in quantum circuits are the Hadamard

gate
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1.2. QUANTUM CIRCUIT MODEL

H =
1√
2

(
1 1

1 −1

)
, (1.19)

with the following action on a computational basis

H|0〉 −→ 1√
2

(
|0〉+ |1〉

)
H|1〉 −→ 1√

2

(
|0〉 − |1〉

)
, (1.20)

the π/8 gate (denoted T), and the phase gate (denoted S):

T =

(
1 0

0 eiπ/4

)
, S =

(
1 0

0 i

)
. (1.21)

An arbitrary unitary single qubit operation can be implemented with two rotations of the

Bloch sphere about z axis and one about y axis [28]:

U = eiαRz(β)Ry(γ)Rz(δ) (Z-Y decomposition) (1.22)

and therefore parametrized by four real numbers α, β, γ and δ. In fact, the choice of y and z

axes is not unique and for an arbitrary single qubit gate holds

U = eiαRn̂(β)Rm̂(γ)Rn̂(δ), (1.23)

where m̂ and n̂ are non-parallel unit vectors in the three-dimensional Euclidian space.

There exist plenty of single qubit circuit identities [28]. We picked up only few of them that

are frequently used when working with quantum circuits:

HXH = Z (1.24)

HYH = −Y (1.25)

HZH = X (1.26)

HTH = eiπ/8Rx(π/4) (1.27)

XYX = −Y (1.28)

XRy(θ)X = Ry(−θ) (1.29)

XZX = −Z (1.30)

XRz(θ)X = Rz(−θ) (1.31)

14



CHAPTER 1. BASICS OF QUANTUM COMPUTING

1.2.2 Two-qubit gates

Two-qubit gates are represented by 4 × 4 unitary matrices. By two-qubit gates we mean only

operations over two qubits that cannot be decomposed to single qubit gates. A special class

of two-qubit gates are controlled single qubit operations. These are gates with two input (and

also output) qubits, known as the control qubit and target qubit, respectively. The action of a

general two-qubit controlled-U operation in terms of the computational basis is the following:

if the control qubit is in the |0〉 state then U is applied to the target qubit, otherwise the target

qubit is left alone; that is, |c〉|t〉 −→ |c〉U c|t〉.
In this thesis, we adopt the usual convention that the top-most qubit in a circuit corresponds

to the left-most qubit in a ket:

|1〉
= |1〉 ⊗ |0〉 = |10〉.

|0〉
(1.32)

Using this convention, the controlled-U gate has the following block-diagonal structure1.

|q2q1〉

|q2〉 •

|q1〉 U
=


1 0 0 0

0 1 0 0

0 0 U11 U12

0 0 U21 U22




α . . . |00〉
β . . . |01〉
γ . . . |10〉
δ . . . |11〉


The prototypical two-qubit gate is the controlled-NOT (CNOT) with the matrix representa-

tion

• =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


and action in the computational basis

|00〉 −→ |00〉; |01〉 −→ |01〉; |10〉 −→ |11〉; |11〉 −→ |10〉. (1.33)

Another way of describing the CNOT is a generalization of the classical XOR gate, since the

action of the gate may be summarized as |A,B〉 −→ |A,B ⊕ A〉, where ⊕ is addition modulo

two, which is exactly what the XOR gate does [28].
1For convenience, a general two-qubit state vector (α β γ δ)T on which the matrix acts and also corresponding

computational basis states are shown.
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1.2. QUANTUM CIRCUIT MODEL

The division of qubits into control and target can sometimes be misleading as is shown in

Figure 1.4 on the example of the CNOT gate. One can easily verify that Hadamard gates lead

to the exchange of control.

H • H

H H

=
•

Figure 1.4: Hadamard gates change the sense of control and target qubits in case of the CNOT

gate.

1.2.3 Universal sets of quantum gates

The CNOT gate is prototypical for several reasons. Firstly, its action is relatively easy to un-

derstand 2, and moreover, there is a simple proof (see bellow) that an arbitrary controlled single

qubit gate can be constructed using at most two CNOTs and three single qubit gates.

Let U be a single qubit gate. Then there exist single qubit gatesA,B, C such thatABC = I

and U = AXBXC. Controlled-U is then implemented by the following circuit.

•

U
=

• •

C B A

The proof is constructive. Up to the global phase, U = Rz(α)Ry(β)Rz(γ) for some α,

β, γ ∈ R (see Eq. 1.22). Set A = Rz(α)Ry(β/2), B = Ry(−β/2)Rz(−(α + γ)/2) and

C = Rz((−α + γ)/2). Then

ABC = Rz(α)Ry(β/2)Ry(−β/2)︸ ︷︷ ︸
I

Rz(−α)︷ ︸︸ ︷
Rz(−(α + γ)/2)Rz((−α + γ)/2) = I.

Using the identity I = XX and Eqs. 1.29 and 1.31,

AXBXC = Rz(α)Ry(β/2)XRy(−β/2)Rz(−(α + γ)/2)XRz((−α + γ)/2)

AXBXC = Rz(α)Ry(β/2)XRy(−β/2)(X︸ ︷︷ ︸
Ry(β/2)

Rz((α+γ)/2)︷ ︸︸ ︷
X)Rz(−(α + γ)/2)X Rz((−α + γ)/2)

AXBXC = Rz(α)Ry(β)Rz(γ).

2However, as Figure 1.4 indicates, it has also some surprising properties.
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CHAPTER 1. BASICS OF QUANTUM COMPUTING

It is not only the controlled-U that can be build from CNOTs and single qubit gates indeed.

Barenco et al. [31] showed that an arbitrary n-qubit gate can be constructed solely from single

qubit gates and CNOTs. Single qubit gates then can be build e.g. from y and z rotations

according to Eq. (1.22).

The number of CNOTs basically describes the length of a circuit (only one single qubit gate

makes sense between two successive CNOTs) and also complexity of its physical realization

(their implementations are orders of magnitude more difficult than implementations of single

qubit gates). Obviously, it is desirable to minimize the number of CNOTs (or other two-qubit

gates) when designing quantum circuits.

Finite universal sets of quantum gates

In what follows, we will show that the set {CNOT, H, T} is universal in the sense that any n-

qubit gate can be arbitrarily accurately approximated using only gates from this set. Because we

have already mentioned that CNOTs together with single qubit gates are universal, it remains to

show that any single qubit gate can be arbitrarily accurately approximated using only Hadamard

and π/8 (T) gates.

Using (1.27), up to an unimportant global phase, it holds

HTHT = Rx(π/4)Rz(π/4) = e−i(π/8)Xe−i(π/8)Z =

=
(

cos
π

8
I − i sin

π

8
X
)(

cos
π

8
I − i sin

π

8
Z
)

=

= cos2
π

8
I − i

(
cos

π

8
(X + Z) + sin

π

8
Y
)

sin
π

8
= Rn̂(θC). (1.34)

Rn̂(θC) represents a rotation of the Bloch sphere about an axis along ~n = (cosπ
8
, sinπ

8
, cosπ

8
)

through an angle θC defined by

cos
θC
2

= cos2
π

8
. (1.35)

It can be shown that θC is an irrational multiple of 2π [32] and due to this fact repeated iteration

of Rn̂(θC) can be used to approximate to arbitrary accuracy any rotation Rn̂(α) [28].

Similarly,

HRn̂(α)H = THTH = Rm̂(α), (1.36)

where m̂ is a unit vector along ~m = (cosπ
8
,−sinπ

8
, cosπ

8
). When looking at (1.23), we can

conclude that any single qubit gate can be constructed only from Hadamard and π/8 gates.

The aforementioned finite universal set of quantum gates is in fact not unique. Several other

equivalent ones have been discovered, e.g. {Controlled-S,H}. An important criterion of these
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1.2. QUANTUM CIRCUIT MODEL

sets is whether their gates can operate fault-tolerantly. The fault-tolerance is a concept arising

in the context of quantum error correction (QEC) [33]. In QEC, one works with logical qubits

encoded on more physical qubits. This approach is resistant to some sort of errors that can be

corrected during the computation. The QEC requires gates to operate fault-tolerantly, i.e. an er-

ror on a single physical qubit cannot propagate to other physical qubits in the same logical unit.

We close this part with the statement that both of the sets {CNOT,H,T} and {Controlled-S,H}
are fault-tolerant.

1.2.4 Measurement

A final element of quantum circuits is always a measurement that reveals some information.

According to the postulates of quantum mechanics [30], measurement is destructive, because it

destroys superpositions. In particular, let H be a Hilbert space spanned by the basis B, then a

projective measurement associated with some observable

M =
∑
m

rmPm, (1.37)

where Pm are orthogonal projectors

Pm = |m〉〈m|, |m〉 ∈ B, (1.38)

projects the state |ψ〉 =
∑

i αi|i〉, where |i〉 ∈ B onto the state

|ψfinal〉 =
Pm|ψ〉√
p(rm)

=
1

|αm|
∑
i

αi|m〉〈m|i〉 =
1

|αm|
∑
i

αi|m〉δmi =
αm
|αm|
|m〉, (1.39)

with probability

p(rm) = 〈ψ|Pm|ψ〉 = |αm|2. (1.40)

Outcome of the measurement is rm and αm
|αm| corresponds to a global phase which is not mea-

surable. In principle, it is possible to measure only part of the register, e.g. only one qubit. In

such a case, when working with entangled states, the whole register is affected.

We close this section with Table 1.1 which summarizes the quantum circuit model notation

that is used throughout this thesis.
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CHAPTER 1. BASICS OF QUANTUM COMPUTING

wire carrying a qubit |q〉

measurement: projection onto |0〉 and |1〉 |q〉 

unitary operation U |q〉 U

controlled-U operation |q2〉 •

|q1〉 U

controlled-NOT operation |q2〉 •
|q1〉

Table 1.1: The quantum circuit model notation.

1.3 Quantum parallelism

Quantum parallelism is a fundamental feature of many quantum algorithms [28] and is often

mentioned as a source of power of quantum computers. It follows from the dimensionality of

the Hilbert space of a quantum register and from the fact that unitary operators are linear.

We show its performance on the example of a function evaluation. Quantum computers

can actually evaluate a function f(x) for many different values of x simultaneously. Let for

simplicity f(x) be a function with n-bit input and only one-bit output:

f(x) : {0, 1}⊗n −→ {0, 1} (1.41)

and Uf unitary operator with a mapping

Uf : |x, y〉 −→ |x, y ⊕ f(x)〉, (1.42)

where ⊕ denotes addition modulo 2, |x〉 is an n-qubit register and |y〉 one qubit. By setting

|y〉 = |0〉, we have

Uf |x, 0〉 −→ |x, f(x)〉. (1.43)

Between the most useful and frequent quantum computing techniques belongs the Walsh-

Hadamard transform (WHT) shown in Figure 1.5. It consist of Hadamard gates performed on

n qubits initialized in |0〉 states. It is in fact an efficient transform that uses n quantum gates to

create a homogenous superposition of all 2n computational basis states.

Performing the WHT on the first n qubits followed by the action of Uf , we have
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|0〉 H
1√
2
(|0〉+ |1〉)

|0〉 H
1√
2
(|0〉+ |1〉)

... =
1√
2n

2n−1∑
x=0

|x〉
|0〉 H

1√
2
(|0〉+ |1〉)

|0〉 H
1√
2
(|0〉+ |1〉)

Figure 1.5: The Walsh-Hadamard transform. |x〉 denotes an n-qubit basis state that corresponds

to the binary representation of x: |x〉 = |xn . . . x1〉, xi ∈ {0, 1}, x =
∑n

i=1 xi · 2i−1.

|0〉 ⊗ . . .⊗ |0〉︸ ︷︷ ︸
n qubits

⊗|0〉 WHT−→ 1√
2n

∑
x

|x, 0〉
Uf−→ 1√

2n

∑
x

|x, f(x)〉. (1.44)

As can be seen in (1.44), one action of Uf evaluates f(x) for all x simultaneously. However,

this parallelism itself is not very useful, because one measurement can reveal only one f(x).

Efficient quantum algorithms in addition require some methods of extracting the information

from such superposition states, for example by the quantum Fourier transform (see Section

2.1).

1.4 Quantum computational complexity

Quantum computers which differ substantially from classical computing devices also bring new

complexity classes. Before we start with their brief discussion, we will review few of the most

important classical ones, namely P, NP, and BPP.

Suppose a problem is specified by giving n bits as input. We adopt the usual chief distinction

between problems that can be solved using resources which are bounded by a polynomial in n

and problems that require resources that grow faster than any polynomial. Such problems are

usually denoted as exponentially3 scaling.

Decision problems which can be solved in polynomial time on a classical computer4 belong

to the P (polynomial) complexity class. These problems are considered as tractable. On the

contrary, without stating anything about time needed for solving a problem, decision problems

whose ”yes” instances can be easily (in polynomial time) verified when given an appropriate

solution (“witness”) belong to the NP (nondeterministic polynomial) class. Problems which

are in NP and not known to be in P are considered as hard. The ”hardest“ problems in NP
3Despite a function describing the growth of required resources need not to be a true exponential.
4More precisely on a deterministic Turing machine [28].
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in the sense that solving them in time t allows any other problem in NP to be solved in time

O(poly(t)) are so-called NP-complete. The most famous open problem in computer science is

whether or not there are problems in NP which are not in P, abbreviated as P ?
= NP. In other

(simpler) words, it asks whether every problem whose solution can be quickly verified by a

classical computer can also be quickly solved on it.

The BPP (bounded-error probabilistic polynomial) class contains decision problems solv-

able by a classical computer5 in polynomial time, with an error probability of at most 1/3 for all

instances. This error probability can be easily suppressed by a few repetitions of an algorithm,

because it decreases exponentially with a number of repetitions. For this reason, BPP even

more than P is usually considered as a class of decision problems that are efficiently solvable on

a classical computer.

Because the nature of quantum mechanics is probabilistic (we always measure different

states with certain probabilities), its evident that quantum computational complexity classes

will be analogues of classical probabilistic ones. The BQP (bounded-error quantum polyno-

mial) class is a quantum analogue of BPP. It contains all decision problems that can be solved

with bounded probability of error using a polynomial size quantum circuit. Because quantum

computers are essentially at least as powerful as classical ones (they can efficiently simulate

classical computers [28]), BQP contains P and BPP (P ⊆ BPP ⊆ BQP). On the other hand,

despite being able to perform tasks like integer factorization efficiently [7, 8], it is believed that

quantum computers are not capable of solving all NP problems efficiently, i.e. to solve any

NP-complete problem efficiently.

The quantum analogue of NP is called QMA (Quantum Merlin Arthur). It contains decision

problems that can be verified by a quantum computer in a polynomial time. QMA (like NP)

covers many problems that are important to physics and chemistry. For example the ground state

problem of a general two-body local Hamiltonian was recently proved to be QMA-complete

[34], therefore hard even for a quantum computer. However, Hamiltonians typically occurring

in chemical physics possess special symmetry and structure, which allows us to find a good

enough approximate solution in a polynomial time by methods of quantum chemistry on a

classical computer or by so called adiabatic state preparation [12] on a quantum computer. This

approximate solution can then be employed as an initial guess and the problem becomes exactly

solvable in a polynomial time on a quantum computer. The way how this is done is discussed

in detail in Chapter 3.

5More precisely by a probabilistic Turing machine [28].
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1.5 Physical realization of quantum computers

Quantum computing as a purely mathematical computational model is fascinating and it indeed

brought new insights into math and theoretical physics, but its physical realization is of course

the ultimate goal. However, experimental realization of quantum circuits and algorithms has

proven extremely challenging. On one hand, a quantum computing device must be very well

isolated from the rest of the Universe not to undergo an environmental quantum information

leakage through the process known as decoherence [35]. On the other hand, the operation of a

quantum computer must be under programmer’s control, i.e. affected from the outside in a well

defined manner. Although these demands are somewhat contradictory, they can be fulfilled, as

has been demonstrated by many proof-of-principle experiments with different types of quantum

technologies [28, 36, 37]. Many research groups around the world are working towards the

highly ambitious technological goal of building a quantum computer being able to dramatically

improve computational power for particular tasks.

The general requirements for the implementation of quantum computation [38, 37] can be

summarized as follows:

1. Scalability: the computer must operate in a Hilbert space whose dimension can grow

exponentially without an exponential cost in resources (such as time, space or energy).

We may achieve this by adding “well-characterized” qubits to our system.

2. Ability to initialize the state of the qubits to a simple fiducial state, such as |000 . . .〉, from

which the computation begins.

3. Fault tolerance: as was already broached, quantum information is very fragile. In contrast

to conventional computers, quantum computers will be very susceptible to noise. The

main sources of noise are the decoherence [35], which is due to incomplete isolation of the

quantum system from its environment and control errors, which are caused by calibration

errors and random fluctuations in control parameters. No system is completely free of

noise, but small amounts may be removed through various techniques gathered under the

name of “quantum error correction” (QEC) [33]. The truly remarkable result that arises

from the fault-tolerant circuit design and ability to perform dynamical error correction is

the threshold theorem [33]. It in fact says that if the noise is below some threshold, an

arbitrarily long quantum computation can be realized. The critical value of a threshold

depends on the computer hardware, the sources of error, and the protocols used for QEC.

4. Universal logic: the large Hilbert space must be accessible using a finite set of control

operations. In Section 1.2.3, we have already dealt with the universal sets of quantum
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gates for the quantum circuit model.

5. Ability to measure the output result.

We will very briefly discuss three quantum technologies that belong to the current lead-

ing ones and have been used recently for the first proof-of-principle experiments relevant to

quantum chemistry [20, 21, 23, 22, 39], namely optical quantum computing, nuclear magnetic

resonance (NMR) quantum computing, and quantum computing employing trapped ions.

Optical quantum computers

When photons carry the quantum information, we speak about optical quantum computers [40].

In this case, qubit can be realized e.g. as the polarization state of a photon, but alternative en-

codings on the basis of location (“dual-rail” representation) or timing are also possible. Single

qubit gates (polarization rotations) can in the former case be easily realized using waveplates

made of birefringent material. The biggest difficulty of this approach is to achieve the interac-

tions between photons which are needed for two-qubit gates. In fact, the necessary interactions

appear to require optical nonlinearities stronger than those available in conventional nonlinear

media.

In 2001, Knill, Laflamme and Milburn (KLM) showed that scalable quantum computing is

possible using only single-photon sources and detectors, and linear optical circuits [41]. This

original scheme, however, is non-deterministic and to realize a near-deterministic CNOT gate,

really huge resource overhead is required. Employing the ideas of the cluster state quantum

computing [42] allowed to reduce this resources by 3-4 orders of magnitude, making an all-

optical approach far more attractive [40]. Another promising step towards a large scale optical

quantum computing are chip-scale waveguide quantum circuits [43, 44].

Recently, Lanyon et al. presented the first proof-of-principle experimental realization of

the quantum FCI (see Chapter 3) computation of the hydrogen molecule in a minimal basis

employing the optical quantum computer [20].

NMR quantum computers

Another quantum computing technology that has been studied extensively since its proposal in

1997 [45, 46] is a liquid-state NMR, a technique very well known to chemists. In this case, nu-

clear spins serve as the carriers of the quantum information. Different nuclear spins in a strong

magnetic field can be identified through their Larmour frequency [47]. The NMR spectroscopy

relies on the fact that Larmour frequencies corresponding to chemically inequivalent atoms in a

molecule varies due to the shielding effect of surrounding electrons.
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Single qubit gates can be realized as selective resonant radio-frequency pulses and two-qubit

interactions arise from the indirect coupling mediated through electrons in chemical bonds (di-

rect dipole-dipole interactions are averaged away due to a rapid molecular motion in a solution).

These interactions as well as interactions of individual spins with a static magnetic field are al-

ways present in a system Hamiltonian. Nevertheless, they can be effectively turned off by

refocusing techniques [28] (so called no-operation gate). Measurement is achieved by observ-

ing the induced current in a coil surrounding the sample of an ensemble of such qubits. It is not

a projective measurement, but rather a weak ensemble measurement which monitors the state

of the spin system without changing it [48].

An important challenge for NMR quantum computers is the initialization step. Due to a

very small energy gap between α and β spin states (~ω � kBT ), the system is in a high entropy

mixed state at room temperature. The first proposals employed pseudo-pure-state techniques

(temporal, spacial, and logical labeling methods) [28], which isolate the signal of an initialized

pure states against a high-entropy background, but are not scalable. A promising alternative is

the algorithmic cooling [48], especially in connection with the solid-state NMR which has the

potential for much higher initial nuclear polarizations [49].

NMR is at the moment probably the simplest technology for building few-qubit demon-

stration devices. Experiments with up to impressive twelve qubits have been realized [50].

Among others, Du et al. [21] recently implemented the similar quantum FCI computation of

the hydrogen molecule as in [20], but with adiabatically prepared initial states. Also the first

proof-of-principle experiment simulating the chemical reaction dynamics, namely the izomer-

ization of substituted malonaldehydes, has been performed on the three-qubit NMR quantum

computer [23]. Very recently, Li et al. [22] presented the three-qubit NMR experiment solving

the ground state problem of the Heisenberg spin model.

Trapped ions quantum computers

Atomic ions that can be confined in free space with nanometer precision by electromagnetic

fields represent another promising approach to quantum computing devices. Their certain en-

ergy levels form very reliable qubits with long coherence times (typically in the range of seconds

and longer).

Initial state preparation is realized by cooling the system of trapped ions down into their

collective motional ground state (as well as hyperfine ground states of individual ions). Single

qubit gates are carried out by means of Rabi flopping, i.e. coherent transitions between the

internal states of ions, which are performed by applying a resonant laser pulse for a fixed time.

Two qubits can be entangled through a laser-induced coupling of internal states of ions mediated
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by the lowest collective vibrational mode, the centre-of-mass motion [51]. Measurements with

almost 100 % efficiency are carried out by the state-dependent optical fluorescence detection.

One of the promising steps towards a large scale trapped-ion quantum computer which

avoids problems with large number of ions participating in the collective motion were pre-

sented by Home et al. [52]. In this case, individual ions are shuttled between various zones of

a complex trap structure by controlled electrical forces and entangling gates need only operate

with a small number of ions. Very recently, Lanyon et al. [39] presented a trapped-ion realiza-

tion of a digital quantum simulation of six interacting spins with sequences of up to 100 gates.

There exist a large number of other approaches to quantum computing devices that haven’t

been mentioned here, e.g. trapped neutral atoms, optical cavity quantum electrodynamics, su-

perconducting qubits, and many others. As is usual, each of them possesses some advantages,

but also some drawbacks. Indeed, the time will show whether one of the presently known quan-

tum technologies will be able to achieve the ambitious goal of a large-scale quantum computer

or some presently unknown one will be discovered.
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2 Quantum algorithms

In this chapter, we deal with efficient quantum algorithms that are important for the quantum full

configuration interaction method presented in Chapter 3, most importantly the quantum Fourier

transform and the phase estimation algorithm.

2.1 Quantum Fourier transform

The classical discrete Fourier transform takes as an input a vector of complex numbers (x0, . . . , xN−1)

and outputs the elements of another vector (y0, . . . , yN−1) according to the equation

yk =
1√
N

N−1∑
j=0

xje
2πijk/N . (2.1)

Similarly, the quantum Fourier transform (QFT) operates on an orthonormal basis of n qubits:

|0〉 . . . |2n − 1〉 and is defined as an operator ÛQFT

ÛQFT|k〉 =
1√
N

N−1∑
j=0

e2πijk/N |j〉, N = 2n, (2.2)

where the kets are numbered by a binary representation of integers (like in Figure 1.5). Equiv-

alently, the action on an arbitrary state can be written

ÛQFT

(
N−1∑
j=0

xj|j〉

)
=

N−1∑
k=0

yk|k〉, (2.3)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj . It can be shown

[28] that ÛQFT is a unitary operator.

As will be shown bellow, the QFT can be performed with just O(n2) operations (quantum

gates). This is in sharp contrast to the classical fast Fourier transform (FFT) with the scal-

ing O(N log2N = n2n). The quantum version thus achieves an exponential speedup over its

classical counterpart.

We may rewrite the action of the QFT on |j〉 in the following way [28]
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|j〉 → 1√
2n

2n−1∑
k=0

e2πijk/2
n|k〉 (2.4)

=
1√
2n

1∑
k1=0

. . .

1∑
kn=0

e2πij(
∑n
l=1 kl2

l−1−n)|kn . . . k1〉 (2.5)

=
1√
2n

1∑
k1=0

. . .
1∑

kn=0

1⊗
l=n

e2πijkl2
l−1−n|kl〉 (2.6)

=
1√
2n

1⊗
l=n

[
1∑

kl=0

e2πijkl2
l−1−n|kl〉

]
(2.7)

=
1√
2n

1⊗
l=n

[
|0〉+ e2πij2

l−1−n|1〉

]
(2.8)

=

(
|0〉+ e2πi0.j1|1〉

)(
|0〉+ e2πi0.j2j1|1〉

)
. . .
(
|0〉+ e2πi0.jn...j1|1〉

)
√

2n
, (2.9)

where 0.jn . . . j1 denotes the binary fraction

jn
2

+
jn−1

4
+ . . .+

j1
2n
.

The efficient quantum circuit for the QFT, which is shown in Figure 2.1, can be easily

derived from the product state representation (2.9). Rj gates1 are represented by the following

matrices

Rj =

(
1 0

0 e2πi/2
j

)
. (2.10)

Let’s now examine the QFT circuit in detail. Since e2πi0.jn = −1 when jn = 1, and is +1

when jn = 0, the first Hadamard gate in fact produces

1√
2

(
|0〉+ e2πi0.jn|1〉

)
|jn−1 . . . j1〉, (2.11)

Subsequent controlled-R2 rotation creates

1√
2

(
|0〉+ e2πi0.jnjn−1|1〉

)
|jn−1 . . . j1〉. (2.12)

Analogously, each of the controlled rotations R3 . . . Rn adds an extra bit to the phase of the

coefficient of the first |1〉, leading to the state

1Up to a global phase, they correspond to Rz(2π/2
j) rotations (1.17).
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|jn〉 H R2 R3 · · · Rn−1 Rn

∣∣j̃1〉
|jn−1〉 • · · · H R2 · · · Rn−2 Rn−1

∣∣j̃2〉
|jn−2〉 • · · · • · · · H · · · Rn−3 Rn−2

∣∣j̃3〉
...

...
...

...
|j2〉 • • • · · · H R2

∣∣j̃n−1〉
|j1〉 • • • · · · • H

∣∣j̃n〉
Figure 2.1: The quantum Fourier transform circuit, where by

∣∣j̃1〉 we denote the state |0〉 +

e2πi0.jn...j1|1〉, . . . up to
∣∣j̃n〉 = |0〉 + e2πi0.j1 |1〉. Note that qubits of the result are in a reversed

order.

1√
2

(
|0〉+ e2πi0.jnjn−1...j1|1〉

)
|jn−1 . . . j1〉. (2.13)

Similar procedure on the remaining qubits gives a final state

1√
2n

(
|0〉+ e2πi0.jn...j1|1〉

)(
|0〉+ e2πi0.jn−1...j1|1〉

)
. . .
(
|0〉+ e2πi0.j1|1〉

)
. (2.14)

When comparing Eq. 2.14 with Eq. 2.9, we can see that the circuit from Figure 2.1 performs the

QFT, the only difference is that qubits are in a reversed order after its application. This is usually

not a problem in a real physical implementation, but one must count with it or, alternatively, if

necessary, the qubits can be swapped with SWAP gates 2. One SWAP gate can be realized with

three CNOTs, as is shown in Figure 2.2.

×
× =

• •
•

Figure 2.2: The SWAP gate by means of three CNOT gates.

It should be noted that even though the QFT can be done exponentially faster than the FFT,

it cannot be used as an efficient straightforward replacement of the Fourier transform itself.

It would indeed require to prepare an arbitrary state of n qubits and also measure all of the

complex amplitudes at the end, which cannot be done efficiently. Nevertheless the QFT is a key

part of the phase estimation algorithm [28] (contained also in the Shor’s factoring algorithm

[7, 8]) as will be shown in Section 2.3.
2At most n/2 SWAP gates are necessary.
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controlled-Rj =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e2πi/2
j


. . . |11〉

⇒
•

Rj

=
Rj

•

Figure 2.3: Matrix representation of the controlled-Rj gate.

2.2 Semiclassical approach to quantum Fourier transform

The QFT circuit can in fact be greatly simplified using the semiclassical (measurement based)

approach [53], since the controlled-Rj gates (cf. Figure 2.3) are diagonal matrices with the only

non-unit element on a diagonal that corresponds to the |11〉 basis state. The roles of control and

target qubits thus can be interchanged, leading to an alternative QFT circuit shown in Figure

2.4.

|jn〉 H • • · · · • •
∣∣j̃1〉

|jn−1〉 R2 · · · H • · · · • •
∣∣j̃2〉

|jn−2〉 R3 · · · R2 · · · H · · · • •
∣∣j̃3〉

...
...

...
...

|j2〉 Rn−1 Rn−2 Rn−3 · · · H •
∣∣j̃n−1〉

|j1〉 Rn Rn−1 Rn−2 · · · R2 H
∣∣j̃n〉

Figure 2.4: An alternative QFT circuit suitable for semiclassical simplifications.

Notice that in this circuit gates acting on each qubit [except the first (top most) and the

last ones where the corresponding parts are missing] obey the general structure: first, Rj gates

controlled by previous qubits are applied, then the Hadamard gate is applied, and finally they

serve as control qubits for the subsequent ones. Since the state of each qubit does not change

after the application of the Hadamard gate, when the measurement follows after the QFT, it

can be performed immediately after this gate. Rather than employing controlled Rj gates,

one can apply only the corresponding one qubit gates depending on the results of individual

measurements. Moreover, allRj gates acting on a kth qubit can be merged into a single rotation

gate3

3We adopt the usual notation and denote this rotation gate as Rz , however it must be noted that it differs from

the conventional Rz gate defined in Eq. 1.17 by a global phase factor.
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Rz(ωk) =

(
1 0

0 e2πiωk

)
, (2.15)

whose angle ωk depends on the results of previously measured qubits (qi) according to the

formula

ωk =
n−k+1∑
i=2

qk+i−1
2i

, k : n −→ 1. (2.16)

Figure 2.5 shows the semiclassical QFT circuit pattern which is the same for all qubits. The

big advantage of the aforementioned approach is that we have actually replaced two-qubit gates

by single qubit ones (controlled by a classical signal). This technique is especially useful in

connection with the phase estimation algorithm where it leads to the formulation of its iterative

version (IPEA, Section 2.4).

|qk〉 Rz(ωk) H  qk

Figure 2.5: Simplified, measurement based circuit for the kth qubit of the QFT.

2.3 Phase estimation algorithm

The phase estimation algorithm (PEA) [28] is a quantum algorithm for obtaining an eigenvalue

of a unitary operator Û , based on a given initial guess of the corresponding eigenvector. Since a

unitary Û can be written as Û = eiĤ , with Ĥ Hermitian, the PEA can be viewed as a quantum

substitute of the classical diagonalization.

Suppose that |u〉 is an eigenvector of Û and that it holds

Û |u〉 = e2πiφ|u〉, φ ∈ 〈0, 1), (2.17)

where φ is the phase which is estimated by the algorithm. Quantum register is divided into

two parts. The first one, called the read-out part, is composed of m qubits on which the binary

representation of φ is measured at the end and which is initialized to the state |0〉⊗m. The second

part contains the corresponding eigenvector |u〉.
The PEA quantum circuit is shown in Figure 2.6. The application of Hadamard gates on all

qubits (the Walsh-Hadamard transform, see Figure 1.5) in the first part of the register gives

|reg〉 =
1√
2m

(
|0〉+ |1〉

)
. . .
(
|0〉+ |1〉

)
|u〉 =

1√
2m

2m−1∑
j=0

|j〉|u〉. (2.18)
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QFT†

|0〉 H · · · • H · · · • • • · · · |φm〉
...

...
...

...

|0〉 H • · · · · · · R†m−2 · · · |φ3〉

|0〉 H • · · · · · · R†m−1 · · · |φ2〉

|0〉 H • · · · · · · R†m · · · |φ1〉

U20 U21 U22 U2m−1|u〉 · · · |u〉

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 2.6: The PEA circuit with the highlighted part corresponding to the inverse QFT.

Next, after the application of a sequence of controlled powers of Û , the register is transformed

into

|reg〉 =
1√
2m

(
|0〉+ e2πi2

m−1φ|1〉
)(
|0〉+ e2πi2

m−2φ|1〉
)
. . .
(
|0〉+ e2πi2

0φ|1〉
)
|u〉 =

=
1√
2m

2m−1∑
j=0

e2πijφ|j〉|u〉. (2.19)

The crucial part of the PEA is the efficient inverse quantum Fourier transform (QFT†, high-

lighted in Figure 2.6) performed on the read-out part of the register. If the phase can be ex-

pressed exactly with m bits

φ = 0.φ1φ2 . . . φm =
φ1

2
+
φ2

22
+ . . .+

φm
2m

, φi ∈ {0, 1}, (2.20)

it (and consequently the eigenvalue) is recovered with unity probability by a measurement on

the first part of the quantum register, which is by the QFT† transformed into |2mφ〉.
The situation is more complicated when φ cannot be expressed exactly with m bits. Then

we can write

φ = φ̃+ δ2−m, (2.21)

where φ̃ = φ1φ2 . . . φm denotes the first m bits of the binary expansion and δ : 0 ≤ δ < 1

is a remainder. The closest m-bit estimators of φ correspond to either φ̃ (rounding down) or

φ̃ + 2−m (rounding up). When we label the probabilities of measuring these two estimators by

Pdown and Pup, it can be shown (e.g. [54]) that the sum Pdown + Pup decreases monotonically
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Figure 2.7: The dependence of success probabilities of the PEA on δ for m = 20. Pdown and

Pup denote the success probabilities corresponding to rounding the exact phase up/down to m

binary digits.

with increasing m. The explicit forms of Pdown and Pup can be found in Appendix A. The

dependence of Pdown and Pup on δ for m = 20 is presented in Figure 2.7. In the limit m→∞,

the lower bound reads [54]

Pdown(δ = 1/2) + Pup(δ = 1/2) =
4

π2
+

4

π2
> 0.81. (2.22)

For further details on probability analysis of the PEA, we refer the reader to Appendix A.

If the desired eigenvector is not known explicitly (as is typically the case in quantum chem-

istry), we can start the algorithm with an arbitrary initial guess vector |ψ〉, which can be ex-

panded in terms of eigenvectors of Û

|ψ〉 =
∑
i

ci|ui〉. (2.23)

The probability of obtaining the exact m-bit φi is due to linearity of the algorithm |ci|2. It

is important to note that the initial guess does not influence the accuracy of the phase, only

the probability with which the phase of a particular eigenstate is measured. When φi cannot

be expressed with m bits, the lower bound for Pdown + Pup corresponding to φi is equal to

0.81 · |ci|2.
For concreteness, we give a simple demonstrative example of the phase estimation proce-

dure. Let Û have the following matrix form
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U =

(
−1 0

0 i

)
, (2.24)

with eigenvalues and eigenvectors presented in Table 2.1. Two qubits in the read-out part of

the register are sufficient for both phases. The PEA circuit with the second part of the register

initialized to the |u2〉 state, which recovers the phase corresponding to the second eigenvalue, is

shown in Figure 2.8.

# eigenvalue eigenvector phase (φ) binary representation of φ

1 −1 = eiπ |u1〉 = (1, 0)T = |0〉 0.5 0.φ1φ2 = 0.10

2 i = eiπ/2 |u2〉 = (0, 1)T = |1〉 0.25 0.φ1φ2 = 0.01

Table 2.1: Eigenvalues, eigenvectors and corresponding phases of U (2.24).

|0〉 H • H •  φ2 = 1

|0〉 H • R†2 H  φ1 = 0

|u2〉 = |1〉 U =

(
−1 0

0 i

)
U2 =

(
1 0

0 −1

)
|1〉

Figure 2.8: Example of the PEA circuit which recovers the second phase (see Table 2.1) of U

(2.24) with unity probability.

The PEA, as an efficient quantum diagonalization method, is a key part of the quantum full

configuration interaction method (Chapter 3 ). As was already mentioned, it is also contained in

probably the most famous known quantum algorithm, namely the Shor’s algorithm for integer

factorization [7, 8].

2.4 Iterative phase estimation algorithm

Using the semiclassical QFT [53] (Section 2.2), the PEA circuit can be simplified, having only

one ancillary qubit in the read-out part of the quantum register. The algorithm then proceeds

in an iterative manner [iterative phase estimation algorithm (IPEA)]. The k-th iteration of this

scheme is presented in Figure 2.9. Note that as the PEA uses the inverse QFT, the angle ωk
(2.16) must be negative now. The algorithm is iterated backward from the least significant bits
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of φ to the most significant ones, i.e. for k going from m to 1. For our purposes, the presented

IPEA, which is the unitary matrix eigenvalue algorithm, is completely adequate, but we would

like to note that Wang et al. recently presented a modified version of the IPEA capable of

finding eigenvalues of non-unitary matrices [55].

|0〉 H • Rz(ωk) H  φk

|u〉 / U2k−1 /

Figure 2.9: The k-th iteration of the IPEA. The feedback angle depends on the previously

measured bits, k is iterated backwards from m to 1.

The IPEA is in fact completely equivalent to the original (multi-qubit) PEA [54]. It exhibits

the same behaviour - decreasing of the success probability when the phase cannot be expressed

exactly in a particular number of bits. One possibility of a success probability amplification

is performing more iteration steps (more than is the desired accuracy of φ): when extracting

m′ = m + log(2 + 1/2ε) bits, the phase is accurate to m binary digits with probability at least

1− ε [28]. This method is however not very useful, since implementing Û2k−1 for large k is the

algorithm’s bottleneck in a realistic noisy environment [56].

Another alternative [56] is to repeat the measurement for the least important bits of the phase

binary expansion. Using the majority voting (for bit value 0 or 1), the effective error probability

decreases exponentially with the number of repetitions according to the binomial distribution.

This measurement repetition only for the few least important bits of φ is unfortunately possible

only if the exact eigenstates of Û are available.

|0〉 H • Rz(ωm) H  xm |0〉 H • Rz(ωm−1) H  xm−1

ISP / U2m−1 / U2m−2 /

a) Maintaining the second part of the quantum register during all iterations (version A).

|0〉 H • Rz(ωm) H  xm |0〉 H • Rz(ωm−1) H  xm−1

ISP / U2m−1 / ISP / U2m−2 /

b) Repeated initial state preparation in each iteration (version B).

Figure 2.10: Comparison of the two versions of IPEA, ISP denotes the initial state preparation.
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When working with general initial states (as in a practical application to quantum chem-

istry), two scenarios are possible [24], as shown in Figure 2.10. Maintaining the second part

of the quantum register during all iterations and amplification of the success probabilities by

repeating the whole process number of times is the first possibility. This version was denoted

as A version of IPEA. The biggest advantage of this approach is that one always ends up with

one of the eigenstates of Û in the second part of the quantum register as was also the case of

the PEA. It happens through successive collapses of the system state into the corresponding

eigensubspace and is demonstrated on the hydrogen molecule with random initial states in Fig-

ure 2.11. The biggest disadvantage that complicates the potential physical realization of this

scheme is the requirement for a long coherence time of the quantum register. We would like to

note here that when amplifying the success probability by repeating the whole process, it must

be higher than 0.5 to be sure that we get the energy of the right state. This, however, is not

necessary for the ground state energy which can always be identified by the lowest eigenvalue

[24, 22].

Figure 2.11: Energies of the four electronic states of H2 in STO-3G basis which were obtained

by the qFCI method (IPEA version A) with randomly generated initial guess states. Small

figure inside presents the increasing overlap between the actual state of the second part of the

quantum register and the exact wave function for one of random runs of the algorithm leading

to the ground state.

Another possibility is to initialize the second part of the quantum register at every iteration

step (B version of IPEA). Every iteration step (not only the least important bits of φ as in [56])

must be repeated and measurement statistics performed. One could otherwise possibly mix

bits belonging to different eigenvalues in different iterations and obtain an unphysical result.
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The biggest advantage of this approach is avoidance of the long coherence times and therefore

potentially easier physical implementation. On the other hand, the biggest disadvantage is that

no improving of the overlap between the actual state of the quantum register and the exact wave

function occurs during the iterations and one must “fight” the overlap problem at every iteration

step. But as will be shown in Chapter 4 on the example of the methylene molecule [24], small

number of repetitions of each iteration is sufficient for amplification of the success probability

almost to unity, when a suitable initial state of the quantum register is used.

At the end of this section, we would like to mention a different way of reducing the number

of read-out qubits required by the PEA, which was suggested in the seminal work by Aspuru-

Guzik et al. [12]. Their recursive variant of the PEA uses four qubits in the read-out part of the

quantum register on which the phase (and therefore also the energy) is successively improved.

It starts with measuring the first four bits of the phase φ. The Hamiltonian is then shifted by

this reference value and a four-bit estimate of the deviation of the phase from the reference one

on the half of the interval computed. The procedure is iteratively repeated and the overall effect

is a gain of one additional bit of φ at each iteration step (thus the same as in the IPEA). In

spite of the fact that this method uses four read-out qubits instead of one which is used by the

IPEA, it is worth mentioning. First of all, it was the first iterative version of the PEA applied

to the Hamiltonian eigenvalue problem [12]. Secondly, it recovers the energy starting from the

most important bits towards the least important ones (in contrast to the IPEA), which can be

advantageous in certain situations.
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3 Quantum full configuration interaction
method

The PEA/IPEA can be used for efficient computations of eigenvalues of local Hamiltonians

[10]. If we take Û in the form

Û = eiτĤ , (3.1)

where Ĥ is a local Hamiltonian and τ a suitable parameter assuring φ being in the interval

〈0, 1), then the algorithm reveals the energy spectrum of Ĥ . The whole procedure can be simply

viewed as a time propagation of a trial wave function followed by the QFT switching from the

time to energy domain and a measurement projecting out a certain eigenstate.

In this chapter, we discuss the application to non-relativistic molecular Born-Oppenheimer

electronic Hamiltonians. We will start with a mapping of quantum chemical wave functions

onto a quantum register (Section 3.1). Section 3.2 briefly mentions the question of initial state

preparation and Section 3.3 deals with the crucial part of the algorithm, namely the imple-

mentation of controlled powers of the exponential of molecular Hamiltonians (controlled “time

propagation”).

3.1 Mapping of quantum chemical wave functions onto quan-

tum register

Several possible mappings of a quantum chemical wave function onto a register of qubits have

been proposed. The simplest, but the least economical one in terms of the number of employed

qubits, is so called direct mapping [12]. In this approach, individual spin orbitals are directly

assigned to qubits, since each spin orbital can be either occupied or unoccupied, corresponding

to |1〉 or |0〉 states. The inefficiency lies in the fact that it actually maps the whole Fock space

of the system (states with different number of electrons) on the Hilbert space of the quantum

register. For example, when working with wave functions built from Slater determinants con-

taining two electrons in four spin orbitals with an additional restriction MS = 0, only four
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determinants can contribute, but the computational basis consists of 16 states. The first one

|0000〉 corresponds to the state with no electrons and the final one |1111〉 to the state with four

of them. Relativistic generalization of this approach [25] assigns one qubit to one Kramers pair

bispinor (A or B, analogy to α and β spin in non-relativistic treatment). The advantage of the

direct mapping stems from the fact, that a general factorization scheme, i.e. an algorithm to

systematically generate a quantum circuit implementing the exponential of the Hamiltonian is

known (see Section 3.3.1).

Compact mappings from a subspace of fixed-electron-number wave functions, spin-adapted

[12], or even symmetry-adapted wave functions employing the point group [13] or double group

symmetry [25] to the register of qubits have also been proposed. However, efficient general

factorization schemes are unfortunately not known for these mappings. The factorization to el-

ementary quantum gates can be for small circuits performed either with numerical optimization

techniques (e.g. with genetic algorithms [57]) or analytically [58, 59], but neither is efficient.

Its use is motivated by the need to employ as few qubits as possible in today’s experimental

realizations [20, 21, 22] as well as simulations on classical computers.

3.2 Initial states for the algorithm

As the PEA/IPEA requires an initial state for the system part of the quantum register, the quan-

tum full configuration interaction (qFCI) algorithm must be started with some initial guess of

the corresponding eigenvector. For most Hamiltonians relevant in chemistry, obtaining such an

initial guess is easy, but in general it can be a difficult problem, since the QMA complexity of

the two-local Hamiltonian eigenvalue problem is hidden here. Generally, it holds that the closer

is the initial guess to the exact wave function, the higher is the success probability of measuring

the energy. As was shown in Refs. [17, 24] and will be discussed in Chapter 4, the simplest

one-determinantal Hartree-Fock guess may not be successful in situations, where correlation

(particularly the static one) plays an important role. In these situations, initial guess states from

more sophisticated polynomially scaling methods can be used [e.g. complete active space self

consistent field (CASSCF) method in a limited orbital CAS].

Besides determination of a suitable initial state, preparation can be a hard task as well,

since such a vector can contain up to 2n non-zero components in general and it cannot be per-

formed efficiently. Fortunately, as will be shown in Chapter 4 on the example of methylene

molecule, initial guesses including only few determinants in a superposition are sufficient for

most purposes of quantum chemistry [24]. These states can be prepared e.g. with the proce-

dure described by Ortiz et al. [4] which scales as O(N2) in the number of determinants N .
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Preparation of general molecular-like states from the combinatorial space of dimension
( n

m

)
corresponding to distributing m electrons among n spin orbitals was presented in [17]. Prepa-

ration of many-particle states in a superposition on a lattice which can be then propagated by

quantum chemical dynamics algorithm [14] was studied in [16].

3.2.1 Adiabatic state preparation

A completely different approach to obtain the initial state is the adiabatic state preparation

(ASP) method of Aspuru-Guzik et al. [12]. In the ASP method, one slowly varies the Hamil-

tonian of the quantum register, starting with a trivial one and the register in its (exactly known)

ground state and ending with the final exact one in the following simple way

Ĥ = (1− s)Ĥinit + sĤexact s : 0 −→ 1. (3.2)

If the change is slow enough (depending on the gap between the ground and the first excited

state), the register remains in its ground state according to the adiabatic theorem [60]. Again,

the QMA complexity manifests itself in the fact, that in the worst case the gap can become

exponentially small with size of the problem. Fortunately for quantum chemistry, this seems

not to be the case for a typical molecule.

In the compact mapping, Ĥinit can be defined to have all matrix elements equal to zero,

except H11, which is equal to the (Dirac-)Hartree-Fock energy [12, 25].

Figure 3.1a demonstrates on the example of the SbH molecule the improvement of the IPEA

(version A) ground state success probability during the ASP procedure. The dependence of the

energy gap (∆E) between the ground and the first excited state on the adiabatic transition

parameter s is shown in Figure 3.1b. Although ∆E is getting close to 0 for r = 8.0 a0 and s

going to 1, the ground state is becoming degenerate at this internuclear distance and this fact

thus does not influence the IPEA success probability. We will discuss the relativistic qFCI

method and its application to the SbH spin-orbit splitting in more detail in Chapter 5.

Recently, the ASP of the hydrogen molecule ground state has been realized experimentally

on a NMR quantum simulator [21].

3.3 Controlled “time propagation”

To study the overall scaling of the qFCI algorithm, one must decompose the only multi qubit

gate from Figure 2.9, i.e. controlled powers of Û = eiτĤ to elementary single and two-qubit

gates.
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(a) (b)

Figure 3.1: Adiabatic state preparation (ASP) of the SbH ground state for different internuclear

distances. (a) Dependence of the IPEA success probability on time during the ASP (1000 ~E−1h
≈ 10−14 s). Solid lines correspond to the success probabilities, |〈ψASP|ψexact〉|2 · (0.81, 1〉
interval is colored. (b) Dependence of the energy gap between the ground and the first excited

state on the adiabatic transition parameter s.

For this purpose, it is convenient to express the electronic Hamiltonian in the second quan-

tized form [61]

Ĥ =
∑
pq

hpqâ
†
pâq +

1

2

∑
pqrs

gpqrsâ
†
pâ
†
qâsâr =

L∑
X=1

ĥX , (3.3)

where â†p and âp are fermionic creation and annihilation operators. We suppose that the under-

lying one-electron basis corresponds to an orthonormal set of e.g. Hartree-Fock spin orbitals

{χi} and the one and two-electron integrals are defined as

hpq ≡
∫
χ∗p(x)

(
− 1

2
∇2 −

∑
A

ZA
rA,x

)
χq(x)dx, (3.4)

gpqrs ≡
∫
χ∗p(x1)χ∗q(x2)

1

r1,2
χr(x1)χs(x2)dx1dx2. (3.5)

Here x denotes electron spatial and spin coordinates together, ∇2 is the Laplacian with respect

to electron spatial coordinates, r is the distance (between electron and nucleus: rA,x and two

electrons: r1,2), and ZA represents a nucleus charge.

The whole summation in (3.3) is formally expressed as a sum of individual terms ĥX . The

molecular integrals hpq and gpqrs can be efficiently precalculated on a conventional computer

42



CHAPTER 3. QUANTUM FULL CONFIGURATION INTERACTION METHOD

[62] and represent a classical input to the quantum algorithm. In the non-relativistic case they

are real-valued, while in the relativistic case they are in general complex.

Since the creation and annihilation operators generally do not commute, the exponential

of a Hamiltonian cannot be written as a product of the exponentials of individual ĥX , but a

numerical approximation must be used [2]. The first-order Trotter approximation [63] can be

expressed as

eiτĤ = eiτ
∑L
X=1 ĥX =

( L∏
X=1

eiĥXτ/N
)N

+O(τ 2/N). (3.6)

By choosing N ≥ (τ 2/ε), we can implement Û within an error tolerance of O(ε) using

O(L(τ 2/ε)) particular terms eiĥXτ/N .

Before discussing the factorization of these terms to elementary quantum gates in Section

3.3.1, we would like to mention the implementation modification we use [24]. Two more exter-

nal inputs are necessary in our case. These are maximum (Emax) and minimum (Emin) energies

expected in the studied system and we use Û in the form

Û = eiτ(Emax−Ĥ). (3.7)

For τ , it holds

τ =
2π

Emax − Emin

(3.8)

and the final energy is obtained according to the formula

E = Emax −
2πφ

τ
. (3.9)

The modification mentioned above assures φ to be in the interval 〈0, 1).

Emin and Emax can in fact be chosen arbitrarily, but one must be sure that the calculated

energy is within this interval, otherwise one would end up with a nonphysical energy, due to

the periodicity of e2πiφ. The maximum energy can be e.g. the upper bound provided by any

classical variational (polynomially scaling) method, techniques for calculation of lower bounds

[64, 65, 66] can on the other hand give the minimum energy. The smaller the interval between

them is, the less iterations of IPEA are necessary for the desired precision of E.

Taking Û in the form (3.7) does not pose any difficulties indeed and as the following circuit

equality shows, just one more single qubit rotation is needed.
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• •
(

1 0

0 eiτEmax

)
=

eiτ(Emax−Ĥ) e−iτĤ

3.3.1 Decomposition of unitary propagator to elementary quantum gates

The decomposition of the unitary propagator eiτĤ to elementary quantum gates [4, 67, 27]

proceeds in the following manner. First, the Jordan-Wigner transform [68] is used to express

the fermionic second quantized operators in terms of Pauli σ matrices. The Jordan-Wigner

transform has the form

â†n =

(
n−1⊗
j=1

σjz

)
⊗ σn−, ân =

(
n−1⊗
j=1

σjz

)
⊗ σn+, (3.10)

where σ± = 1/2(σx ± iσy) and the superscript denotes the qubit on which the matrix operates.

The Hamiltonian (3.3) can then be rewritten using strings of σ matrices. Finally, the exponen-

tials of these strings are build up from single qubit gates and CNOTs [28].

We will demonstrate this approach on the one-electron part of the Hamiltonian

Ĥ1 =
∑
pq

hpqâ
†
pâq =

∑
pp

hppâ
†
pâp +

∑
p>q

(
hpqâ

†
pâq + hqpâ

†
qâp
)
. (3.11)

In view of the relativistic generalization (Chapter 5), we suppose that molecular integrals are

complex-valued. Employing the Jordan-Wigner transform, the diagonal terms can be written as

hppa
†
pap =

hRpp
2

(1− σpz), (3.12)

where hRpp is the real part of hpp [hIpp (the imaginary part) is equal to zero due to the Hermiticity

of Ĥ]. For the exponentials it holds

eiĥXτ/N = eihppa
†
papτ/N =

(
1 0

0 eihppτ/N

)(p)

. (3.13)

The superscript (p) at the matrix denotes the qubit on which the one qubit gate operates.

Similarly, the off-diagonal terms read

hpqa
†
paq + hqpa

†
qap =

=
hRpq
2

[
σpx ⊗

(
σp→qz

)
⊗ σqx + σpy ⊗

(
σp→qz

)
⊗ σqy

]
+

+
hIpq
2

[
σpy ⊗

(
σp→qz

)
⊗ σqx − σpx ⊗

(
σp→qz

)
⊗ σqy

]
, (3.14)
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where σp→qz represents the direct product

σp→qz ≡ σp+1
z ⊗ σp+2

z ⊗ . . .⊗ σq−2z ⊗ σq−1z . (3.15)

Note that (3.14) contains the four aforementioned strings of σ matrices.

The exponential of the string of σz matrices exp[iτ(σz ⊗ . . . ⊗ σz)] is in fact diagonal in

the computational basis with the phase shift e±iτ on the diagonal. The sign of this phase shift

depends on the parity of the corresponding basis state (“+” if the number of ones in the binary

representation is even, “-” otherwise). The exponential can be implemented with the following

circuit [28]

• •
• •

...
...

• •
Rz(−2τ)

(3.16)

where CNOTs assure the correct sign of the phase shift according to the parity of the state and

z-rotations were defined in (1.17).

Due to the following change-of-basis identities [28]

σx = HσzH
† (3.17)

σy = Y ′σzY
′†, (3.18)

where

Y ′ = Rx(−π/2) =
1√
2

(
1 i

i 1

)
, (3.19)

the exponentials

exp
[ihRpqτ

2N
σpx ⊗

(
σp→qz

)
⊗ σqx

]
exp
[ihRpqτ

2N
σpy ⊗

(
σp→qz

)
⊗ σqy

]
exp
[ihIpqτ

2N
σpy ⊗

(
σp→qz

)
⊗ σqx

]
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exp
[−ihIpqτ

2N
σpx ⊗

(
σp→qz

)
⊗ σqy

]
(3.20)

can be implemented with the following circuit pattern

p A† • • A

p− 1

...
...

q + 1 • •
q B† Rz(θ) B

(3.21)

where A and B are for the individual exponentials (3.20) equal to {H,H}, {Y ′, Y ′}, {Y ′, H},
and {H,Y ′}, respectively, and θ to −hRpqτ/N , −hRpqτ/N , −hIpqτ/N , and hIpqτ/N , respectively.

Note that although the two strings of σ matrices in the first parenthesis in (3.14) commute as do

the two strings in the second parenthesis, they do not commute mutually. This, however, is not

a complication since the Trotter approximation (3.6) must be employed anyway.

We have demonstrated the decomposition technique for the direct mapping approach on the

one-electron part of the Hamiltonian. The procedure for the two-electron part is more elaborate,

but completely analogous and can be found e.g. in [27].

The overall scaling of the algorithm is given by the scaling of a single controlled action of

the unitary propagator without repetitions enforced by the Trotter approximation (3.6). These

repetitions increase only the prefactor to the polynomial scaling, not the scaling itself. Also the

required precision is limited, about 20 binary digits of φ are sufficient to achieve the chemical

accuracy [24].

The single controlled action of the exponential of a one-body Hamiltonian (3.11) results in

O(n3) scaling: there are O(n2) different hpq terms and each of them requires O(n) elementary

quantum gates [see the circuit (3.21)]. Since the same decomposition technique applied to

the two-electron part of the Hamiltonian gives rise to similar circuit patterns [27], each term

gpqrs requires O(n) elementary quantum gates as well (this in fact holds for general m-body

Hamiltonians [67]). The total scaling is thusO(n5) [20, 27], where n is the number of molecular

spin orbitals and the qFCI achieves an exponential speedup over the conventional FCI. This

speedup is demonstrated in Figure 3.2.

At this point, we would like to make few remarks. Firstly, we assumed that the initial state

preparation is an efficient step, as was already mentioned. Secondly, when a quantum chemical

method with a scaling worse than O(n5) is used for calculation of the initial guess state on a

conventional computer, then this classical step becomes a rate determining one. Besides this, the
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Figure 3.2: The exponential speedup of the qFCI over the FCI. In case of the FCI (blue), depen-

dence of the number of Slater determinants in the FCI expansion on the number of basis func-

tions is shown. In case of the qFCI (red), dependence of the number of one and two qubit gates

needed for a single controlled action of the unitary operator on the number of basis functions

is presented. Points in the graph correspond to the depicted molecules (hydrogen, methylene,

methane, ethane, and benzene) in the cc-pVDZ basis set.

classical computation of the integrals in the molecular orbital basis scales as O(n5) (due to the

integral transformation) as well. We also assumed noise-free qubits and thus did not take into

account any quantum error correction [33]. Clark et al. studied the resource requirements for a

similar, but fault-tolerant computation of the ground state of a one dimensional transverse Ising

model [69] on a proposed scalable quantum computing architecture [70]. They showed that

due to the exponential scaling of the resource requirements with the desired energy precision

as well as due to the Trotter approximation employed, an elaborate error correction is required,

which leads to a huge increase of the computational time. They also gave the values of the

experimental parameters (e.g. the physical gate time) needed for acceptable computational

times. However, the question of reducing the resource requirements needed for fault tolerant

qFCI computations is still open and undergoes an active research.
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4 Non-relativistic example: methylene
molecule

The following chapter deals with numerical simulations of the qFCI energy calculations of

methylene molecule whose goal was to demonstrate the functionality and limitations of the

proposed qFCI method. The simulations were carried out on a conventional computer using

our own C++ quantum computer simulator code. This chapter is largely based on our article

published in the Journal of Chemical Physics [24].

4.1 Introduction

Methylene molecule (CH2) in a minimal basis set (STO-3G) is a simple, yet computationally

interesting system suitable for simulations and testing of the qFCI algorithm. CH2 molecule is

well known for the multireference character of its lowest-lying singlet electronic state (ã 1A1)

and is often used as a benchmark system for testing of newly developed computational methods

(see e.g. [71, 72, 73, 74]). When using the STO-3G basis set, the total number of molecu-

lar (spin)orbitals is 7(14). We therefore work with 15 qubits in the direct mapping approach

(one qubit is needed in the read-out part of the register). The complexity of simulations of the

qFCI on conventional computers scales exponentially, as the complexity of the classical FCI,

but with an order of magnitude larger prefactor [12]. Nevertheless, this system is still computa-

tionally feasible and due to its properties an excellent candidate for one of the first benchmark

simulations.

Our aim was to verify the applicability of the qFCI to the ground as well as excited states

exhibiting multireference character. We accordingly simulated the qFCI energy calculations of

the four lowest-lying electronic states of CH2: X̃ 3B1, ã 1A1, b̃ 1B1, and c̃ 1A1. For CH2 at the

equilibrium geometry, the ground electronic state is not a closed-shell singlet, but a triplet state

(X̃ 3B1) with the electronic configuration

(1a1)
2(2a1)

2(1b2)
2(3a1)(1b1). (4.1)

The closed-shell singlet state (ã 1A1), which can be qualitatively described by the electronic
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configuration

(1a1)
2(2a1)

2(1b2)
2(3a1)

2, (4.2)

is the first excited state. This state exhibits a multireference character with the second important

configuration

(1a1)
2(2a1)

2(1b2)
2(1b1)

2. (4.3)

The contribution of both closed-shell configurations becomes equal at linear geometries. The

third electronic state (b̃ 1B1) has the same spatial orbital configuration (4.1) as the ground state,

but with singlet-coupled open shell electrons. The fourth electronic state (c̃ 1A1) is represented

by the same two configurations as the ã 1A1 state but the amplitudes have the same sign and the

amplitude of (4.3) is greater than that of (4.1) [this state can be qualitatively described by the

configuration (4.3)].

(a) (b)

Figure 4.1: (a) Energies of the four simulated states of CH2 for the C-H bond stretching, r0
denotes the equilibrium bond distance. (b) Energy of ã 1A1 state of CH2 for the H-C-H angle

bending, α denotes the H-C-H angle.

We simulated the qFCI energy calculations for C-H bond stretching (both C-H bonds were

stretched, Figure 4.1a), and H-C-H angle bending for ã 1A1 state (Figure 4.1b). These processes

were chosen designedly, since the description of bond breaking is a hard task for many com-

putational methods, and since the H-C-H angle bending leads to a very strong multireference

character of the ã 1A1 state at linear geometries. The equilibrium geometry of CH2 molecule

was taken from [75] and corresponds to re = 1.1089 Å and αe = 101.89◦). Our work follows

up the work by Wang et al. [13], where the authors studied the influence of initial guesses on
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the performance of the quantum FCI method on two singlet states of water molecule across the

bond-dissociation regime. They found out that the Hartree-Fock initial guess is not sufficient for

bond dissociation and suggested the use of multi-configurational self consistent field (MCSCF)

method (CASSCF in particular). Few configuration state functions added to the initial guess

improved the success probability dramatically.

We also used and tested different initial guesses for qFCI calculations. Those denoted as

HF guess were composed only from spin-adapted configurations which qualitatively describe

certain state: in case of ã 1A1 configuration (4.2), in case of c̃ 1A1 configuration (4.3), in case of

X̃ 3B1 two triplet-coupled configurations (4.1) (with weights 1/2) and for b̃ 1B1 the same two

configurations but singlet-coupled. Initial guesses denoted as CAS(x,y) guess were based on

complete active space configuration interaction (CASCI) calculations with small complete ac-

tive spaces (more details about the definition of the active spaces will be given further), which

contained x electrons in y orbitals. Initial guesses based on CASSCF calculations as in [13]

could be used in the same way. To be consistent, we employed the FCI wave functions in a

limited active space composed of RHF orbitals, which were also used for the exponential of

a Hamiltonian in the qFCI algorithm. Initial guesses were constructed only from the config-

urations whose absolute values of amplitudes were higher than 0.1. Those constructed from

the configurations whose absolute values of amplitudes were higher than 0.2 are denoted as

CAS(x,y), tresh. 0.2 guess. All the initial guesses were normalized before simulations.

4.2 Computational details

Similarly as in [12], the exponential of the Hamiltonian operator was implemented as a n-qubit

gate. Factorization to elementary single and two-qubit gates was performed only to examine

the gate count, but not in the numerical simulations. We also did not take into account any

decoherence and thus assumed that the exponential of the Hamiltonian can be obtained with an

arbitrary precision by a proper number of repetitions in (3.6). One and two-electron integrals in

the MO basis, parametrizing the Hamiltonian (3.3), were obtained using the restricted Hartree-

Fock (RHF) orbitals. All ab initio calculations (FCI, RHF) were employed with our suite of

quantum chemical programs [76].

The phase in IPEA was always computed up to m = 20 binary digits. Maximum and

minimum expected energies needed for the algorithm were set to Emax = −37.5 a.u. and

Emin = −39.0 a.u. All presented success probabilities correspond to sum of the probabilities of

rounding the phase up and down (Ptot = Pup + Pdown), therefore to probabilities of obtaining

the final energy with precision ≈ 1.43 · 10−6 a.u.

Finally, both of the aforementioned variants of IPEA (A and B) were tested.
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4.3 Results

4.3.1 C-H bond stretching

Results for the C-H bond stretching are summarized in Figures 4.2 - 4.4.

a) ã 1A1 state b) c̃ 1A1 state

c) X̃ 3B1 state d) b̃ 1B1 state

Figure 4.2: Success probabilities of the A version of IPEA for the four electronic states of CH2

and different initial guesses, tresh 0.2 means that only configurations with absolute values of

amplitudes higher than 0.2 were involved in the initial guess, r0 denotes the equilibrium bond

distance.

Figure 4.2 presents the performance of the A version of IPEA with maintaining the second

part of the quantum register during all iterations. Subfigures a - d represent the simulations

of the energy calculations of the four electronic states: a: ã 1A1, b: c̃ 1A1, c: X̃ 3B1, and d:

b̃ 1B1. Overlap between the initial HF guess wave function and the exact FCI wave function as

well as this overlap scaled by the factor 0.81 [according to (2.22)] are shown. Figure 4.2 also

presents the success probabilities of IPEA for the HF initial guess and initial guesses based on
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state CAS(2,2) CAS(4,4) CAS(4,5)

ã 1A1

highest occupied MO, two highest occupied MOs,

lowest unoccupied MO two lowest unoccupied MOs

c̃ 1A1

highest occupied MO, two highest occupied MOs,

unoccupied 1b1 MO unoccupied 1b1 MO,

lowest unoccupied MO

(other than 1b1)

X̃ 3B1

two highest occupied MOs, two highest occupied MOs,

unoccupied 1b1 MO, three lowest unoccupied MOs

lowest unoccupied MO (including 1b1)

(other than 1b1)

b̃ 1B1

two highest occupied MOs, two highest occupied MOs,

unoccupied 1b1 MO, three lowest unoccupied MOs

lowest unoccupied MO (including 1b1)

(other than 1b1)

Table 4.1: Summary of the complete active spaces (CAS) used for the calculations of initial

guesses for IPEA (Figures 4.2 and 4.4), occupation/unoccupation refers to the lowest closed-

shell configuration (4.2).

the CASCI calculations with certain small complete active spaces. Definition of these active

spaces is complicated by the fact that swapping of molecular orbitals occurs when the C-H

bonds are elongated. To maximize the overlap between the initial and the exact wave functions,

we constructed the active spaces from the actual highest occupied and the lowest unoccupied

molecular orbitals at a given geometry. For X̃ 3B1, b̃ 1B1 and c̃ 1A1, where the 1b1 orbital is

involved in the qualitative description of the state (at the equilibrium geometry), this orbital was

always included in the active space [1b1 orbital which is the LUMO (5th molecular orbital) at

the equilibrium geometry becomes the 7th when going to three times elongated C-H bonds].

Definition of the complete active spaces is summarized in Table 4.1. Dotted line in Figure 4.2

corresponding to the probability 0.5 bounds the region where the algorithm can be safely used

and the total probability amplified by repeating the whole process.

Figures 4.3 and 4.4 present the performance of the B version of IPEA. In this version, the

second part of the quantum register is reinitialized at every iteration step. Figures 4.3 and 4.4

demonstrate the success probabilities for different number of such repetitions (11-101). Figure

4.3 shows the results and limits of the HF guess for ã 1A1 state. Figure 4.4 presents the results

of the “best” initial guesses in terms of price/performance ratio for all four states.
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Figure 4.3: Success probabilities of the B version of IPEA with HF guess for ã 1A1 state and

different number of repetitions of individual bit measurements, r0 denotes the equilibrium bond

distance.

4.3.2 H-C-H angle bending

Results for the H-C-H angle bending are summarized in Figures 4.5 and 4.6. Simulations con-

cerning this process involve only the ã 1A1 state as this state exhibits a strong multireference

character when going to linear geometries. In this case, no swapping of molecular orbitals oc-

curs during the process and the complete active space CAS(2,2) was always constructed from

3a1 (HOMO) and 1b1 (LUMO) molecular orbitals. Moreover, due to the different symmetry of

these orbitals, only two configurations contribute to CAS(2,2) wave function: doubly occupied

HOMO [configuration (4.2)] and doubly occupied LUMO [configuration (4.3)]. Both of these

configurations have for all values of α (H-C-H angle) absolute values of amplitudes higher than

0.2.

Figure 4.5 presents the results of the A version of IPEA. Overlap and scaled overlap of the

initial HF guess wave function and the exact FCI wave function is again shown as well as the

success probabilities for HF and CAS(2,2), tresh. 0.2 guesses and dotted line bounding the safe

region. Performance of the B version of IPEA with HF and CAS(2,2), tresh. 0.2 initial guesses

is illustrated in Figure 4.6.
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a) ã 1A1 state, CAS(4,4), tresh 0.2 guess b) c̃ 1A1 state, CAS(4,4), tresh 0.2 guess

c) X̃ 3B1 state, CAS(4,5), tresh 0.2 guess d) b̃ 1B1 state, CAS(4,5), tresh 0.2 guess

Figure 4.4: Success probabilities of the B version of IPEA with “best” initial guesses and

different number of repetitions of individual bit measurements for all four states, r0 denotes

the equilibrium bond distance.

4.4 Discussion

IPEA - A version

Results of the simulations with A version of IPEA numerically confirm that success probabili-

ties always lie in the interval
∣∣〈ψinit|ψexact〉

∣∣2 ·(0.81, 1
〉
, depending on the value of the remainder

δ (2.21). This algorithm can be safely used when the resulting success probability is higher than

0.5 (as it can then be amplified by repeating the whole process). We would like to note that when

studying the applicability of this algorithm, one must monitor the scaled overlap between the

initial guess and the exact wave function.

Success probability higher than 0.5 is securely fulfilled with the HF initial guess at the

equilibrium geometry for all four simulated states. When going to more stretched C-H bonds
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Figure 4.5: Success probabilities of the A version of IPEA for the ã 1A1 state with HF and

CAS(2,2) initial guesses, tresh 0.2 means that only configurations with absolute values of am-

plitudes higher than 0.2 were involved in the initial guess, α denotes the H-C-H angle.

a) HF guess b) CAS(2,2), tresh. 0.2 guess

Figure 4.6: Success probabilities of the B version of IPEA with HF and CAS(2,2), tresh. 0.2

initial guesses and different number of repetitions of individual bit measurements for the ã 1A1

state, α denotes the H-C-H angle.

or linear geometry, the RHF initial guess fails. The CAS(2,2) initial guess improves the success

probability in case of ã 1A1 and c̃ 1A1 states near the equilibrium geometry but in the region of

more stretched C-H bonds it also fails. In this region, CAS(4,4) initial guesses must be used.

For ã 1A1 state, CAS(4,4), tresh. 0.2 guess is sufficient but for c̃ 1A1, even the CAS(4,4) guess
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fails for few lengths of C-H bonds: r/r0 = 2.2, 2.8 − 3.0. For these points of the potential

energy surface, where the overlap between the initial guess and the exact wave functions is not

high enough, bigger active space should probably be used.

The situation is more difficult for the states of B1 symmetry (X̃ 3B1, b̃ 1B1) when the C-H

bonds are stretched. Here even CAS(4,4) initial guess fails and bigger active space - CAS(4,5) -

must be used for initial guess state calculations. In STO-3G basis set, this bigger complete active

space contains five from the total number of seven molecular orbitals and represents therefore

nearly the whole space. For this reason, we performed the classical FCI calculations with the

cc-pVDZ basis set (1s orbital on the carbon atom was kept frozen to reduce computational

demands), where the total number of molecular orbitals is 24 (much more than the number

of molecular orbitals in the complete active space), and verified that the overlap between the

CAS(4,5) and the exact wave function is sufficiently high, essentially the same as in STO-3G

basis set. Apart from the active space size, initial guess states always contained at most 12

configurations, but usually 8 or even less for nearly dissociated molecule. This observation is in

agreement with the results of [13], where few configuration state functions added to the initial

guess improved the success probability dramatically.

High success probabilities (over 0.8) can on the other hand be obtained with CAS(2,2),

tresh. 0.2 initial guess for ã 1A1 state during H-C-H angle bending. Initial guess states for this

process correspond to only two configurations and are thus very easy to prepare (e.g. according

to [4]).

IPEA - B version

This version of IPEA is characteristic by repeated initial state preparation in each iteration

and has the disadvantage that no collapsing of the system and improving the overlap between

the actual state of the quantum register and the exact wave function occurs. The situation is

however not so bad because one does not “fight” against the overlap between the initial guess

and unwanted eigenfunctions at every iteration. This would happen only if all binary digits of

the phase were opposite to binary digits of the phases of all other eigenstates, which is clearly

not possible. Our simulations proved that a relatively small number of repetitions (≈ 51) at

each iteration step give nearly unity success probability when modest-size initial guesses are

used.

The results with the RHF guesses (Figures 4.3 and 4.6a) nicely show their limits (for ã 1A1

state). These are: r/r0 = 2.3 for C-H bond stretching and 170◦ for H-C-H angle bending. We

have chosen the “best” initial guess states in terms of price performance ratio for each of the

four electronic states: ã 1A1 (C-H bond stretching), c̃ 1A1: CAS(4,4), tresh. 0.2; X̃ 3B1, b̃ 1B1:
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CAS(4,5), tresh 0.2; ã 1A1 (H-C-H angle bending): CAS(2,2), tresh. 0.2. They were chosen

to contain the minimum number of configurations, yet give high enough success probabilities.

These initial guesses performed very well with exception of few points for c̃ 1A1 state, where a

bigger active space is desirable.

We have not simulated the decoherence phenomena and when taking it into account the

situation will surely change. Quantum error correction [33] would probably be needed for the

A version, which would increase the number of required qubits as well as the complexity of the

quantum circuit, while B version should be more robust.
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5 Generalization to the relativistic four
component regime

In this chapter, we generalize the proposed qFCI method to the relativistic four component

(no-pair) regime. We were indeed motivated by two factors. Firstly, it is well understood that

relativistic effects can be very important in chemistry. Secondly, so far only the non-relativistic

regime (i.e. Schrödinger equation) has been explored and our algorithm thus represents the

first quantum algorithm for relativistic computations of molecular energies. We will show how

to efficiently solve the eigenproblem of the Dirac-Coulomb Hamiltonian on a quantum com-

puter and demonstrate the functionality of the proposed procedure by numerical simulations of

computations of the spin-orbit splitting in the SbH molecule. We have also proposed quantum

circuits with 3 qubits and 9 or 10 CNOTs, which implement the first proof-of-principle relativis-

tic quantum chemical calculation for this molecule, and might be suitable for an experimental

realization1. The chapter is largely based on our rapid communication published in the Physical

Review A journal [25].

5.1 Relativistic electronic Hamiltonian

It is a well known fact that an accurate description of molecules with heavy elements requires

an adequate treatment of relativistic effects [77]. The most rigorous approach [besides the quan-

tum electrodynamics (QED) which is presently not feasible for quantum chemical purposes] is

the four component (4c) formalism. Our work is based on the 4c electronic Dirac-Coulomb

Hamiltonian (DCH) in the form

Ĥ =
N∑
i=1

[
c(αi · pi) + β′imc

2 − φnuc
]

+
∑
i<j

1

rij
+ VNN . (5.1)

We work within the Born-Oppenheimer clamped nuclei approximation which allows to fac-

torize out time-dependence of the one-electron problem in the inertial frame fixed by the nu-
1Presently we are collaborating with an experimental group of Professor Jiangfeng Du from University of

Science and Technology of China (Hefei, China) on an NMR experimental realization of the proposed quantum

circuits.
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clei. The one-electron operator of the electronic Hamiltonian is accordingly given by the Dirac

Hamiltonian in the electrostatic potential φnuc of clamped nuclei. Dirac matrices are defined as

α =

(
0 σ

σ 0

)
and β =

(
I2 0

0 −I2

)
, (5.2)

the former in terms of the Pauli spin matrices σ (1.14). The relativistic energy scale has been

aligned with the non-relativistic one by subtraction of the electron rest mass

β′ = β − I4. (5.3)

The full Lorentz-invariant two-electron interaction cannot be written in a simple closed

form, so approximation and thus loss of strict Lorentz invariance is in practice unavoidable

[78]. In Coulomb gauge the zeroth-order O(c0) operator is given by the Coulomb term em-

ployed here. The resulting Dirac-Coulomb Hamiltonian covers the major part of the spin-orbit

interaction, including two-electron spin-same orbit, as well as scalar relativistic effects. Expe-

rience shows that the Coulomb term is enough for most chemical purposes [79], but for highly

accurate molecular spectra the Breit (Gaunt) term, carrying the spin-other orbit interaction, is

recommended.

We restricted ourselves to Dirac-Coulomb Hamiltonian, but it is without loss of generality

sufficient for our purposes, since going to Dirac-Coulomb-Breit Hamiltonian is conceptually

straightforward as the inclusion of the corresponding integrals requires a classically polynomial

effort.

A fundamental conceptual problem is that the Dirac-Coulomb(-Breit) Hamiltonian has no

bound solutions due to the one-electron negative-energy continuum solutions generated by the

Dirac Hamiltonian [80]. We adopt the no-pair approximation (NPA), widely used in relativistic

quantum chemistry [78], in which the N -particle basis of Slater determinants is constructed

from positive-energy bispinors only. This procedure in fact neglects all QED effects, but it

is justifiable at the energy scale relevant to chemistry. In particular, the Born-Oppenheimer

approximation is expected to have a larger impact than the neglect of QED effects.

We finally note that the Fock space approach to include positronic states within the Dirac-

Coulomb(-Breit) Hamiltonian approximation [81, 82] should be tractable on a quantum com-

puter as well, since the direct mapping (including qubits for positrons) covers the whole Fock

space generated by a finite basis set.
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5.2 Relativistic qFCI algorithm

The use of a 4c relativistic formalism brings in three major computational difficulties compared

to the non-relativistic case: (1) working with 4c orbitals (bispinors), (2) complex algebra when

molecular symmetry is low, and (3) rather large Hamiltonian matrix eigenvalue problems [due

to larger mixing of states than in the non-relativistic (NR) case]. The central objective of this

section is to address these problems in regard of an application of a quantum computer and the

extension of the qFCI method to the relativistic regime.

We will start the description of the algorithm with a mapping of the relativistic quantum

chemical wave function onto a quantum register. The simplest (scalable) NR approach, the

direct mapping [12], assigns each spin orbital one qubit (|0〉 = unoccupied, |1〉 = occupied,

see Section 3.1). The relativistic case is similar due to the NPA. Moreover, because of the

time-reversal symmetry of the Dirac equation, bispinors occur in degenerate Kramers pairs

[78] denoted A and B (analogy to α and β spin in NR treatment) and the relativistic direct

mapping thus dedicates one qubit for bispinor A and one for B. The 4c character of molecular

bispinors therefore does not complicate the approach substantially [note that as in the NR case,

the Hartree-Fock calculation is done on a classical computer and only the exponentially scaling

FCI on a quantum one].

As was already mentioned in Section 3.1, the direct mapping is not optimal in the sense

that it maps the whole Fock space of the system on the Hilbert space of qubits. For this reason,

different compact mappings have been proposed [12, 13]. In the relativistic case, the most

convenient compact mapping is based on a subspace of symmetry-adapted functions employing

the double group symmetry.

Assuming the NPA and the empty Dirac picture [78], the relativistic Hamiltonian has the

same second quantized structure as the NR one (3.3). One and two-electron integrals can be in

contrast to NR ones in general complex. This is in fact no difficulty for a quantum computer,

since our working environment is a complex vector space of qubits anyway and we do the

exponential of a complex matrix even if the Hamiltonian is real. Moreover, when looking at a

decomposition of the exponential of a Hamiltonian, which was sketched for a general complex

case in Section 3.3.1, one can see that complex molecular integrals require twice as many gates

compared to real ones. Note that complex arithmetic on a classical computer requires four times

more operations.

The last of the aforementioned difficulties of the 4c formalism is the size of a Hamiltonian

matrix eigenvalue problem. This can be inferred from the observation that a significantly larger

number of integrals in the Hamiltonian (3.3) will be non-zero due to the lowering of symmetry

induced by the spin-orbit interaction. The loss of spin symmetry can to some extent be allevi-
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5.2. RELATIVISTIC QFCI ALGORITHM

ated by consideration of the time reversal symmetry. In the Kramers-restricted (KR) approach

employed in this work the second-quantized Hamiltonian (3.3) is expressed in terms of a basis

of Kramers pairs, that is, orbital pairs φA and φB connected by time reversal. Determinants may

be characterized by a pseudo-quantum number MK = 1/2(NA − NB), reflecting the different

number of A and B bispinors. In the non-relativistic limit the Kramers pairs can be aligned

with spin partners such that MK becomes identical to MS . However, contrary to the NR limit,

determinants with different MK can mix due to the presence of spin-orbit interaction.

Let’s now compare the dimensions of relativistic and non-relativistic Hamiltonian matrices.

In the NR case, the Hamiltonian matrix is block diagonal according to MS . Thus for a closed

shell system with n electrons in m orbitals, the number of determinants is

NNR =

(
m

n/2

)2

. (5.4)

As was already mentioned, the relativistic Hamiltonian mixes determinants with different MK

values and therefore

NR =
n∑
x=0

(
m

x

)(
m

n− x

)
=

(
2m

n

)
. (5.5)

Using Stirling’s approximation in the form

ln m! ≈ 1

2
ln (2πm) +mln m−m for m→∞, (5.6)

and setting m = k · n, the ratio between the relativistic and non-relativistic number of determi-

nants is given by the expression

kR/NR =
NR

NNR

=

(√
π(2k − 1)

2k

)
·m1/2 (5.7)

and thus scales as O(m1/2) in the number of molecular orbitals (bispinors).

When employing the direct mapping on a quantum computer, this problem does not occur,

since the Hamiltonian (3.3) then implicitly works with all possible values of MK . The scaling

of the relativistic qFCI method is therefore the same as the NR one, namely O(m5) [20, 27] ,

where m is the number of molecular orbitals (bispinors).

Finally, we would like to note that our algorithm can be used stand-alone or as a subroutine

of a property algorithm of Kassal et. al. [15] e.g. for calculations of NMR properties.
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5.3 Relativistic example: the SbH molecule

For numerical tests of the algorithm, we have chosen the SbH molecule whose non-relativistic

ground state 3Σ− splits due to spin-orbit effects into X 0+ and A 1. In the approximate

λω-projection, these states are dominated by σ2
1/2π

2
1/2π

0
3/2 and σ2

1/2π
1
1/2π

1
3/2 configurations. The

splitting is truly of “molecular nature” as it disappears for dissociated atoms. Its experimental

value is ∆ESO = 654.97 cm−1 [83].

5.3.1 Computational details

In all our simulations, we used the Dyall triple-zeta + valence correlating functions, total 28s

21p 15d 1f for Sb and cc-pVTZ (from the EMSL basis set library) for H. We, of course, could

not manage to simulate the FCI calculations with all electrons in such a large basis. We instead

simulated general active space (GAS) KRCI computations [84] with the occupation constraints

shown in Table 5.1 giving rise to CI spaces of approximately 29500 determinants. For a bal-

anced description of both states, we optimized the spinors taking an average energy expression

(2 electrons in 2 Kramers pairs π1/2, π3/2). We worked solely with a compact mapping employ-

ing the double-group symmetry (C∗2v) and exponential of the Hamiltonian was again simulated

as an n-qubit gate (similarly as in [12, 13, 24]). We used the DIRAC program [85] for calcula-

tions of Hamiltonian matrices. The nuclear potential φnuc was generated by finite nuclei using

Gaussian charge distributions with exponents chosen according to Ref. [86]. As for methylene

molecule, simulations of qFCI computations were performed with our own C++ code. We ran

17 iterations of the IPEA with the difference between maximum and minimum expected ener-

gies equal to 0.5 Eh. The success probabilities again correspond to sum of the probabilities of

rounding the phase up and down (Ptot = Pup + Pdown) therefore to the final energy precision

≈3.81× 10−6 Eh.

GAS Min. el. Max. el. Shell types

I 0 4 σ1/2, π1/2
II 2 4 π3/2

III 4 4 σ∗1/2, 43 virtual Kramers pairs

Table 5.1: GAS and occupation constraints for SbH X 0+ and A 1 states CI calculations. The

minimum and maximum number of electrons are accumulated values - apply to this and all

preceding GA spaces.

63



5.3. RELATIVISTIC EXAMPLE: THE SBH MOLECULE

Figure 5.1: Simulated potential energy curves of ground (0+) and excited (1) states of SbH, and

spin-orbit energy splitting. Absolute energies are shifted by 6481 Eh.

5.3.2 Results and discussion

Simulated potential energy curves of both states are shown in Figure 5.1. Based on our KRCI

setup we obtain a vertical ∆ESO of 617 cm−1. Success probabilities (SPs) of the IPEA version

A with HF initial guesses (σ2
1/2π

2
1/2π

0
3/2 for the X 0+ state and σ2

1/2π
1
1/2π

1
3/2 for A 1 one) are

presented in Figure 5.2. We would like to remind that in this case SPs always lie in the interval

|〈ψinit|ψexact〉|2 · (0.81, 1〉. Ground state SPs confirm that relativistic states have, due to near

degeneracies caused by the spin-orbit coupling, often a stronger multireference character than

non-relativistic ones. The upper bound of the SP is less than 0.7 even for the equilibrium

geometry and HF initial guesses can in fact be safely used (SP > 0.5, amplification of SP by

repetitions) only up to 4.8 a0. The SPs of the A 1 state are higher and HF initial guesses can be

in a noise-free environment used up to 6 a0.

The difficulty connected with a low success probability for theX 0+ state at longer distances

can be overcome either by using more sophisticated (but still polynomially scaling) quantum

chemical methods as in our non-relativistic example (see Chapter 4) or by using the ASP method

[12]. We simulated X 0+ qFCI computations with adiabatically prepared states for different

internuclear distances; results are shown in Figures 3.1a and 3.1b in the section devoted to the

theory of the ASP. In this case, for computational reasons, we employed complete active space

(CAS) KRCI method with a CAS composed of 2 electrons in the highest occupied (π1/2) and

45 lowest unoccupied Kramers pairs (corresponds to 2116 determinants). It can be seen that for
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Figure 5.2: SbH ground (0+) and excited (1) state qFCI success probabilities (SPs) correspond-

ing to HF initial guesses.

t = 1000 ~E−1h , the upper bound of the SP goes safely to unity even for r = 8 a0.

5.4 Proof-of-principle experiment proposals

Recently, there appeared two papers presenting the first physical implementations of non-relati-

vistic qFCI computations on optical [20] and NMR [21] quantum computers. Correspondingly,

we have proposed two candidates for the first relativistic computations on real quantum com-

puters. Our proposals represent “digital (circuit-based) quantum simulations” (DQS) as defined

by Bulata and Nori [36]. Conceptually different are “analogue quantum simulations” (AQS),

where the evolution of a studied quantum system is mapped to be simulated onto the controlled

evolution of the quantum simulator. Recently, Gerritsma et al. used this approach for the proof-

of-principle simulation of a one-dimensional Dirac equation with a single trapped ion [87].

Both of our examples represent calculations of SbH 3Σ− ground state spin-orbit splitting.

Since one has to employ rather large basis sets (triple-ζ quality) to get a meaningful result,

they again are not true FCI calculations, but FCI calculations in a limited CAS. The first one

corresponds to a CAS composed of 2 electrons in the highest occupied (π1/2) and the lowest

unoccupied (π3/2) Kramers pairs [CAS(2,2)]. After the factorization of a Hamiltonian according

to the Ω quantum number and taking into account only one of the two degenerate z-projections

of Ω (for Ω = 1), the size of the CI space is 2 for the ground state (0+) and 1 for the excited
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state (1). The excited state is therefore trivial and the calculation of the ground state is in fact

a complete analogue of the already mentioned NR computations [20, 21], because it needs just

one qubit for the wave function (2 in total). The controlled single-qubit gate can be decomposed

using 2 controlled NOTs (CNOTs) [28]. Calculations with this active space yield ∆ESO = 509

cm−1 computed at the experimental equilibrium bond distance of 3.255 a0.

The second example represents a 3-qubit experiment (2 qubits for the wave function) and

employs a CAS composed of 4 electrons in the σ1/2π1/2π3/2 Kramers pairs [CAS(4,3)]. It

gives a better value of ∆ESO(518 cm−1) than CAS(2,3). After Ω factorization, the CI space

of the excited state has a dimension 3 and that of the ground state 5. Fortunately, near the

equilibrium bond distance, the Hamiltonian matrix of the ground state is to a very good ap-

proximation block diagonal (ground state energy difference of the order µEh), coupling only

3 configurations (σ2
1/2π

2
1/2π

0
3/2, σ

2
1/2π

0
1/2π

2
3/2, and σ0

1/2π
2
1/2π

2
3/2). If we take into account only

these configurations, both states can be encoded by two qubits.

Rz Rz Rz Rz

S S† • • Rz • • S S†

S H • • H S† Rz Rz Rz • • S H • • H S†

Figure 5.3: Scheme of a circuit corresponding to CAS(4,3) calculations on SbH. Empty squares

represent generic single-qubit gates. Rz gates are without angle specification. For derivation,

details, and all the parameters, see Appendix B.

We used the Quantum Shannon Decomposition (QSD) technique [58] and decomposed the

controlled action of a two-qubit exp(iτĤ). QSD is known to decompose a generic three-qubit

gate with the least number of CNOTs (20). A minimal number of CNOTs is very important as

their implementations are orders of magnitude more difficult than single-qubit gates. We found

a circuit with 9 CNOTs which is not universal in the sense that the decomposition must be done

for all powers of U individually, or a universal 10-CNOT-circuit. The structure of this circuit is

shown in Figure 5.3. The controlled action of nth power of U is simply done by multiplication

of the angles of Rz rotations by n. Details of the decomposition and also all parameters impor-

tant for a possible experimental realization which correspond to the calculations at internuclear

distance 3.255 a0 can be found in Appendix B. The proposed experiments are undoubtedly a

challenge for different realizations of quantum computation. We regard experimental verifica-

tion of the usage of HF initial guesses in a realistic noisy environment and also the performance

of both versions of IPEA (A and B) as very interesting.
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6 Conclusions

This thesis summarizes our work on the development and simulation of quantum algorithms for

quantum chemical problems. To be more concrete, we dealt with the development of quantum

algorithms for non-relativistic as well as relativistic full configuration interaction molecular

energy calculations that are known to be very computationally demanding on a conventional

computer. Quantum computers, on the other hand, offer an exponential speedup in this case and

promise that exact energy calculations of large molecules may be doable in future.

The thesis starts with an introduction to the field of quantum computation that should make

the topic comprehensible also for readers without the corresponding background. Afterwards,

the details of the quantum FCI algorithm with O(n5) scaling and our modifications are pre-

sented. Between the most important contributions belongs the suggestion of so called B version

of the iterative phase estimation algorithm (IPEA) with repeated initial state preparation, which

does not require a long coherence time and should thus be a better candidate for the first real

larger-scale quantum FCI calculations.

The functionality of the proposed algorithms has been verified by numerical simulations of

ground as well as excited state energy calculations of the methylene molecule that exhibits a

multireference character. We have demonstrated that energies at the equilibrium geometry are

accessible with RHF initial guesses, which are easy to prepare. CASCI initial guess states with

small complete active spaces composed of relatively few configurations (≈ 10) are sufficient

even for a nearly dissociated molecule to achieve the probability amplification regime of the

IPEA algorithm. We should note that all the simulations were performed with our own simulator

of a quantum computer (C++ code).

We have further generalized the quantum FCI method to the relativistic four component (no-

pair) regime and presented so far the first quantum algorithm for relativistic computations. This

algorithm not only achieves an exponential speedup over its classical counterpart, but also has

the same cost (in terms of scaling) as its non-relativistic analogue. We have proved its function-

ality by numerical simulations of calculations of the spin-orbit splitting in the SbH molecule.

Motivated by the first non-relativistic proof-of-principle experimental realizations [20, 21, 22]

that are very promising, we have proposed and designed the first small-scale experimental re-

alizations of relativistic quantum FCI computations. At the moment, we collaborate with an
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experimental group on their realization.

Hopefully, technical problems connected with a physical realization of quantum computing

devices will be solved at some point in the future and exact quantum chemical calculations and

simulations of large molecules that are not feasible on conventional computers will belong to the

first practical applications of larger-scale quantum computers, leading for example to efficient

theoretical design of new drugs or materials.
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A Probability analysis of the phase
estimation algorithm

In this Appendix, we discuss in more detail how the PEA reveals a good estimator of the phase

φ with high probability [54].

The state of the read-out part of the quantum register after the application of controlled

powers of Û , which we here denote as |ν〉, can be written as (see Eq. 2.19)

|ν〉 =
1√
2m

2m−1∑
k=0

e2πikφ|k〉. (A.1)

The role of the QFT is to perform the transformation

|ν〉 −→ |ψ〉, (A.2)

where ψ is a non-negative integer and ψ/2m is a good estimator for φ with high probability.

Since the action of the inverse quantum Fourier transform can be expressed as (see Eq. 2.2)

ÛQFT†|k〉 =
1√
2m

2m−1∑
j=0

e−2πijk/2
m|j〉, (A.3)

we can write

ÛQFT†|ν〉 =
1√
2m

2m−1∑
k=0

e2πikφ

(
1√
2m

2m−1∑
j=0

e−2πijk/2
m|j〉

)
, (A.4)

=
1

2m

2m−1∑
k=0

2m−1∑
j=0

e2πik(φ−j/2
m)|j〉, (A.5)

=
2m−1∑
j=0

(
1

2m

2m−1∑
k=0

e2πik(φ−j/2
m)

)
|j〉. (A.6)

The probability of measuring a particular outcome j is

pj =

∣∣∣∣∣ 1

2m

2m−1∑
k=0

e2πik(φ−j/2
m)

∣∣∣∣∣
2

. (A.7)
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When φ can be expressed exactly with m bits, i.e. j = 2mφ

pj(φ = j/2m) =

∣∣∣∣∣ 1

2m

2m−1∑
k=0

e2πik(φ−j/2
m)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2m

2m−1∑
k=0

1

∣∣∣∣∣ = 1 (A.8)

and we reveal the exact phase with unity probability.

When φ cannot be expressed with m bits, the closest estimators correspond to either round-

ing down: j/2m = φ̃, or rounding up: j/2m = φ̃ + 2−m (see Eq. 2.21). Equation (A.7) can be

simplified in the following way [54]

pj =
1

22m

sin2(π(2mφ− j))
sin2(π(φ− j/2m))

, (A.9)

and for probabilities Pdown and Pup thus holds

Pdown = pj(j/2
m = φ̃) =

1

22m

sin2(πδ)

sin2(πδ2−m)
, (A.10)

Pup = pj(j/2
m = φ̃+ 2−m) =

1

22m

sin2(π(1− δ))
sin2(π(1− δ)2−m)

. (A.11)

The function plots for m = 20 are shown in Figure 2.7. The total success probability P de-

creases monotonically for increasing m and in the limit m −→∞, the lower bound reads

P (δ = 1/2) = Pdown(δ = 1/2) + Pup(δ = 1/2) =
4

π2
+

4

π2
> 0.81. (A.12)
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B Design of a quantum circuit for SbH
proof-of-principle computation

In this Appendix, motivated by designing a non-trivial proof-of-principle relativistic experi-

ments (see Section 5.4), we construct a quantum circuit which corresponds to the controlled

action of powers of U = eiτĤ on a CI space of dimension 3. For this case, we need two qubits

to encode the quantum chemical wave function and U has a block diagonal structure with 3× 3

block of an exponential of a Hamiltonian and unity on a diagonal to complete the vector space

of two qubits.

We use the Quantum Shannon Decomposition technique of Shende et. al. [58]. It turns

out to be very useful to generalize the concept of controlled gates to quantum multiplexors. A

quantum multiplexor is a quantum conditional which acts on target qubit(s) in a different way,

according to the state of select qubit(s). If the select qubit is the most significant one, then it has

the following matrix form

U
=

(
U0 0

0 U1

)
. (B.1)

It performs U0 on the target qubit if the select qubit is |0〉 and U1 if the select qubit is |1〉. A

controlled gate is a special case where U0 = I . More generally, if U is a quantum multiplexor

with s select qubits and t target qubits and the select qubits are most significant, the matrix of

U will be block diagonal, with 2s blocks of size 2t × 2t.

A controlled 2-qubit U (c-U2q) is a special case of multiplexed U and can be decomposed

in the following way [58]

•

U
=

Rz

W V

(B.2)

The multiplexed z-rotation in the middle of the circuit on the right-hand side (at this stage

without angle specification) is in fact a diagonal matrix with second half of a diagonal equal to

a Hermitian conjugate of the first one. The circuit (B.2) corresponds to the matrix equation
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(
I

U

)
=

(
V

V

)(
D

D†

)(
W

W

)
. (B.3)

Note that right in the equation means left in the circuit as the time in a circuit flows from the

left to the right.

We then have

I = V DW, (B.4)

U = V D†W, (B.5)

U † = V D2V †. (B.6)

A single-multiplexed Rz gate (with angle φ0 for |0〉 state of a select qubit and φ1 for |1〉)
can be implemented with the following circuit

Rz

=
• •

Rz(
φ0+φ1

2
) Rz(

φ0−φ1
2

)

, (B.7)

since σx gates on both sides ofRz turn over the direction of theRz rotation (see Eq. 1.31). If we

use this approach for demultiplexing the Rz gate in (B.2), we end up (after some simple circuit

manipulations) with the following circuit for c-U2q

Rz(ϕ1) Rz(ϕ2) Rz(ϕ3) Rz(ϕ4)

W
• •

V• •

(B.8)

where

ϕ1 =
1

4
(φ00 + φ01 + φ10 + φ11), (B.9)

ϕ2 =
1

4
(φ00 + φ01 − φ10 − φ11),

ϕ3 =
1

4
(φ00 − φ01 − φ10 + φ11),

ϕ4 =
1

4
(φ00 − φ01 + φ10 − φ11).

Individual φ’s in (B.9) can be extracted from the diagonal of D, which has the form:

diag(e−iφ00 ,e−iφ01 ,e−iφ10 ,e−iφ11).

We would like to emphasize that this is not intended to be a decomposition technique for

general U ’s, as it itself requires a classical diagonalization of U †, see (B.6). A general efficient

decomposition of an exponential of a Hamiltonian to elementary gates is known only for the
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direct mapping [20, 27]. But this mapping is not suitable for small scale experiments due to

the relatively high number of required qubits and operations thereon. Our aim was in fact to

prepare the ground for a first non-trivial (more than one qubit in the quantum chemical part

of the register) experimental realization of (relativistic) quantum chemical computation on a

quantum computer.

Because V belongs to the group O(4) (matrix of eigenvectors of a symmetric matrix), it can

be decomposed using only two CNOT gates [88]:

S × A S†

S H • × B • H S†

__�
�
�

�
�
�__

(B.10)

H and S are standard Hadamard and phase gates and A, B are generic single qubit gates that

can be further decomposed e.g. by Z-Y decomposition (1.22). There is a highlighted swap gate

in (B.10) which should be applied only if the determinant of V is equal to −1 [88].

The matrix W , on the other hand, is not real as it is equal to D†V † (B.4) and can be imple-

mented using three CNOT gates (see e.g. [88, 89]). The total count is thus 9 CNOTs.

The disadvantage of the aforementioned scheme is that W must be decomposed for each

power of U individually. If we separate W to V † and D†, V † is the same for all powers of U

(eigenvectors don’t change) and D† can be up to a non-measurable global phase implemented

with the following circuit

• • Rz(ϕ6)

Rz(−ϕ5

2
) Rz(

ϕ5

2
) Rz(ϕ7)

(B.11)

where

ϕ5 =
1

2
(φ00 − φ01 − φ10 + φ11),

ϕ6 =
1

4
(−φ00 − φ01 + φ10 + φ11), (B.12)

ϕ7 =
1

2
(−φ00 + φ01).

The circuit for V † is the same as for V (B.10), merely A is replaced by B† and B by A†.

The presented 10-CNOT-circuit is universal for all powers of U , the only change one has to

do is to multiply the angles of Rz rotations in (B.8) and (B.11) according to the power of U ,

e.g. by 2 for the second power.

Table B.1 summarizes the circuit parameters for SbH ground as well as excited state cal-

culations described in Section 5.4. Notice that φ11 is zero in both cases by construction. To
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APPENDIX B. DESIGN OF A QUANTUM CIRCUIT FOR SBH
PROOF-OF-PRINCIPLE COMPUTATION

Ground state (0+) Excited state (1)

φ00 -1.01642278 -1.00656763

φ01 -0.68574813 -0.18597924

φ10 0.69657237 -0.39129153

φ11 0 0

β 0.73125768 -0.00680941

γ -0.10311594 2.21832498

δ -0.12107336 -3.13494247

∆Eshift -6477.89247780 -6477.89247780

Table B.1: Circuit parameters: rotation angles φij , i, j ∈ {0, 1} (B.9,B.12), Z-Y decomposition

parameters of A, B (B.10) and energy shifts (core energy + nuclear repulsion) for CAS(4,3)

calculations of 0+ and 1 states of SbH.

complete the vector space of two qubits, we in fact added one eigenvalue of the Hamiltonian

equal to zero. Other simplification, which originates from the block diagonal structure of U ,

is that the A and B matrices in the decomposition of V (B.10) differ only by a global phase.

Because the global phase is not measurable, we present just the angles of rotations. Moreover,

only the parameters corresponding to A and B are shown. Going to their Hermitian conjugates

means swapping β and δ and changing their signs.

For the excited state, the determinant of V is equal to −1 and therefore the swap gate

in (B.10) has to be applied. Since we took Hamiltonian matrices from the DIRAC program

[85], the parameters in Table B.1 refer to the difference between the total energy and core

energy + nuclear repulsion (∆Eshift). The presented method with the parameters from Table

B.1 implements the exponential eiτĤ , as was already mentioned. However, in our version of the

algorithm, we in fact need e−iτĤ (see Section 3.3). The obtained phase therefore corresponds

to the negative of the energy, for which guesses Emax = 3.5 and Emin = 2.0 corresponding to

the maximum and minimum expected energies were used.

We don’t give any explicit proof that the Quantum Shannon decomposition is optimal in the

number of CNOT gates for the specific case of block diagonal c-U2q. However, this conjecture

is supported by the fact that we also implemented the Group Leaders Optimization Algorithm

(GLOA) of Dashkin and Kais [57] and unsuccessfully tried to find a better circuit (in terms of

number of controlled operations) with a fidelity error smaller than 0.01.
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List of shortcuts

FCI . . . full configuration interaction

qFCI . . . quantum full configuration interaction

QFT . . . quantum Fourier transform

FFT . . . fast Fourier transform

QEC . . . quantum error correction

WHT . . . Walsh-Hadamard transform

PEA . . . phase estimation algorithm

IPEA . . . iterative phase estimation algorithm

MCSCF . . . multi-configurational self consistent field

CASSCF . . . complete active space self consistent field

CASCI . . . complete active space configuration interaction

HOMO . . . highest occupied molecular orbital

LUMO . . . lowest unoccupied molecular orbital

QED . . . quantum electrodynamics

DCH . . . Dirac-Coulomb Hamiltonian

NPA . . . no-pair approximation

NR . . . non-relativistic

GAS . . . general active space

KR . . . Kramers restricted

KRCI . . . Kramers restricted configuration interaction

SP . . . success probability

ASP . . . adiabatic state preparation

QSD . . . quantum Shannon decomposition

NMR . . . nuclear magnetic resonance

P . . . polynomial time

NP . . . nondeterministic polynomial time

BPP . . . bounded-error probabilistic polynomial time

BQP . . . bounded-error quantum polynomial time

QMA . . . quantum Merlin Arthur
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multireference Brillouin-Wigner coupled cluster method. Test calculations on CH2, SiH2,

and twisted ethylene,” J. Chem. Phys., vol. 110, pp. 10275–10282, 1999.

[72] F. A. Evangelista, W. D. Allen, and H. F. Schaefer III, “High-order excitations in state-

universal and state-specific multireference coupled-cluster theories: Model systems,” J.

Chem. Phys., vol. 125, p. 154113, 2006.

[73] K. Bhaskaran-Nair, O. Demel, and J. Pittner, “Multireference Mukherjee’s Coupled Clus-

ter method with triexcitations in the linked formulation: efficient implementation and ap-

plications,” J. Chem. Phys., vol. 132, p. 154105, 2010.

84



[74] O. Demel and J. Pittner, “Multireference Brillouin-Wigner Coupled Clusters Method with

Singles, Doubles, and Triples: Efficient Implementation and Comparison with Approxi-

mate Approaches,” J. Chem. Phys., vol. 128, p. 104108, 2008.

[75] C. D. Sherrill, M. L. Leininger, T. J. Van Huis, and H. F. Schaefer III, “Structures and

vibrational frequencies in the full configuration interaction limit: Predictions for four elec-

tronic states of methylene using triple-zeta plus double polarization (tz2p) basis,” J. Chem.

Phys., vol. 108, pp. 1040–1049, 1998.

[76] J. Pittner, “TINY package, suite of quantum chemical programs written in C++ based on

the linear algebra library LA: http://www.pittnerovi.com/la.”

[77] B. A. Hess and C. M. Marian, “Relativistic effects in the calculation of electronic en-

ergies,” in Computational Molecular Spectroscopy (P. Jensen and P. R. Buenker, eds.),

pp. 169–219, Sussex: Wiley, 2000.

[78] K. G. Dyall and K. Faegri, Introduction to Relativistic Quantum Chemistry. Oxford Uni-

versity Press, 2007.

[79] O. Visser, L. Visscher, P. J. C. Aerts, and W. C. Nieuwpoort, “Relativistic all-electron

molecular Hartree-Fock-Dirac- (Breit) calculations on CH4, SiH4, GeH4, SnH4 and PbH4,”

Theor. Chim. Acta, vol. 81, p. 405, 1992.

[80] G. E. Brown and D. G. Ravenhall, “On the interaction of two electrons,”

Proc. Roy. Soc. London A, vol. 208, pp. 552–559, 1951.

[81] T. Saue and L. Visscher, “Four-component electronic structure methods for molecules,”

in Theoretical Chemistry and Physics of Heavy and Superheavy Elements (S. Wilson and

U. Kaldor, eds.), p. 211, Dordrecht: Kluwer, 2003.

[82] W. Kutzelnigg, “Solved and unsolved problems in relativistic quantum chemistry,” Chem.

Phys., vol. 395, pp. 16–34, 2012.

[83] K. Balasubramanian, “Spectroscopic properties and potential energy curves for heavy p-

block diatomic hydrides, halides, and chalconides,” Chem. Rev., vol. 89, pp. 1801–1840,

1989.

[84] T. Fleig, J. Olsen, and L. Visscher, “The generalized active space concept for the relativis-

tic treatment of electron correlation. ii. large-scale configuration interaction implementa-

tion based on relativistic 2- and 4-spinors and its application,” J. Chem. Phys., vol. 119,

p. 2963, 2003.

85



[85] DIRAC, a relativistic ab initio electronic structure program, Release DIRAC08 (2008),

written by L. Visscher, H. J. Aa. Jensen, and T. Saue, with new contributions from R. Bast,

S. Dubillard, K. G. Dyall, U. Ekström, E. Eliav, T. Fleig, A. S. P. Gomes, T. U. Helgaker,
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