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Declaration:
I confirm that I have prepared this master thesis independently by myself. All informa-
tion taken from other sources and being reproduced in this thesis are clearly referenced.

Prohlášeńı:
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Abstrakt: V předložené práci studujeme modelováńı stacionárńıho magnetického pole
v nelineárńıch, anizotropńıch prostřed́ıch metodou konečných prvk̊u. Zkoumáme mag-
netické vlastnosti takovýchto materiál̊u a źıskané znalostni poté aplikujeme u kon-
strukce úplného 2D modelu anizotropńıho plechu, kde bylo dosaženo některých vylepšeńı
s ohledem na již dř́ıve publikované práce. Uvád́ıme také rozš́ı̌reńı 3D modelu plechových
laminaćı pro př́ıpad anizotropńıch plech̊u. Poukazujeme na nedostatky standardńıch
vět o existenci a jednoznačnosti okrajových úloh s t́ım, že tyto věty předpokládaj́ı ma-
teriálové vlastnosti jež neodpov́ıdaj́ı fyzikálńı situaci. Mı́sto nich uvád́ıme formulace
nové, jež odrážej́ı skutečné fyzikálńı vlastnosti látek. Dokážeme obecné věty o existenci
a jednoznačnosti pro źıskané okrajové úlohy, jakož i věty o konvergenci diskrétńıch
řešeńı. Na závěr porovnáme konvenčńı a úplný 2D model anizotropńıho plechu ve
dvou modelech jádra transformátoru. Diskrétńı řešeńı hledáme adaptivńı Newtonovou
metodou. Źıskaná řešeńı pak předkládáme včetně komentáře.
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Supervisor: RNDr. Tomáš Vejchodský, Ph.D., Mathematical Institute

of the Academy of Sciences of the Czech Republic
Supervisor’s e-mail address: vejchod@math.cas.cz

Abstract: In the present work we study the modelling of stationary magnetic fields in
nonlinear anisotropic media by FEM. The magnetic characteristics of such materials
are thouroughly examined and eventually applied to the construction of a full 2D model
of an anisotropic steel sheet. Some improvements in the construction in comparision
with the ones previously published were achieved. We point out that the standard
formulations and the subsequent theorems for the boundary value problems do not in
fact correspond with the physical situation. Instead, we propose new formulations that
reflect real physical properties of matter. General existence and uniqueness theorems
for the obtained boundary value problems are proved as well as the convergence theo-
rems for the discrete solutions. The conventional and full 2D model of an anisotropic
steel sheet are compared in two transformer core models using the adaptive Newton-
Raphson iterative scheme. The obtained results are then presented with commentary.
This work also points out the steps needed for the construction of an accurate 3D
model of steel-dielectric laminations that was not yet elaborated.
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Chapter 1

Introduction

1.1 The importance of the Subject

The primary aim of an electrical equipment designer is to improve the properties of a
device, such as material cost reduction or overall power efficiency. As a tool, a reliable
numerical analysis software must be used, which provides accurate results of modelled
electromagnetic quantities. The designers are highly regarded by industrial companies
since their work can contribute to vast economic and energetic savings. In large-scale
power transformers or generators, for instance, the energy rate flown through the device
is enormously high and each efficiency improvement can considerably reduce power and
cost expenses.

The high demand on effective machines is naturally accompanied by the deep study
and dynamic improvements in material properties [16]. The most suitable materials
for cores of high energy transfer devices are ferromagnets (Fe, Ni and their alloys, etc.),
disposing of high relative permeability. To reduce the power losses, many improvements
have been made for the materials such as subjecting the material to a process called
grain orienting [18]. This yields a special process of cold-rolling and annealing the
material, producing a 0.27–0.35mm thin steel sheet with special orientation of crystal
grains in a polycrystalline Fe-Si alloy (the so called “Goss” orientation) [36]. The cubic
crystal itself has anisotropic properties and by aligning the crystals one produces a
material anisotropic as a whole, i.e., macroscopically, with one direction of superior
magnetic properties. This attribute is utilized in many devices where the direction
of magnetic flow follows the material orientation such as high-efficiency transformers,
generators or reactors.

However, anisotropy of magnetic properties probably appears even in the so called
isotropic sheets when also considering other directions than that in the sheet plane, as
is discussed in Section 3.3. Isotropic sheets find their applications in devices where the
direction of magnetic flux is changing, in rotating machines such as electric motors or
generators.

Finally, the material itself is not the only source of magnetic anisotropy. For the
purpose of an enhanced prevention of eddy currents, the core parts of electrical ma-
chinery are made of sheet laminations with a dielectrical layer inserted between the
sheets. The whole iron-dielectric block is then usually modelled as a single piece of
anisotropic, homogeneous medium [20]. Moreover, besides the anisotropy all ferromag-
nets embody highly nonlinear behaviour and hysteresis, making numerical modelling
of such materials even more difficult.

To sum up, anisotropic nonlinear ferromagnets are now standard in modern in-
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dustry production such as motors, generators, power transformers, relays etc. [22].
A proper numerical modelling of these materials is demanded and utilized not only
for the construction of more efficient devices, but also for better understanding of the
processes that occur inside electromagnetic devices.

1.2 Present state of anisotropic material modelling

The nonlinear and anisotropic behaviour of magnetic media has been investigated by
several groups of researchers [26, 32, 33] and more recently by [12, 31, 34].

During the finite element (FEM) computations, the performing program needs to
access the magnetic characteristics of the materials involved. Those characteristics are
obtained from the results of the measurements of material specimens. In fact, the con-
tinual development of new numerical models was strongly influenced by improvements
in measurement techniques. Therefore, it is suitable to mention them along with the
particular models. Until recently, for example, it was not possible to give exact ”2D
properties“ of materials (i.e. taking into account different directions of the magnetic
field and flux density). All measurements were limited to give just projections of the
relevant quantities into particular directions, which lead to inaccurate representations
[30]. Improvements in the testing unit (called a single sheet tester, SST ), being able to
give precise values for 2D characteristics up to high flux densities, were not introduced
until 1999 [28]. Let us remark that even these measurements are not sufficient enough
to reach the saturation region, where the material magnetic response is known to be
linear and where we are able to give an exact expression of the material equations [21].
A detailed discussion and particular representations of different models together with
some improvements and new thoughts will be covered in Chapter 3.

Although today’s models and computing results are satisfactory, they lack a solid
theoretical background. In fact, proper mathematical analysis only covers nonlinear
and perfectly isotropic media [19] and nonlinear anisotropic media with assumptions
on the material characteristics that are not met in real materials [7]. Traditionally,
magnetic material properties are expressed in terms of magnetic permeability or mag-
netic reluctivity. As shown in this work, this representation is not convenient from the
mathematical point of view when considering anisotropic media because of the non-
monotonous nature of these nonlinear tensor quantities. Instead, a general mapping
between magnetic fields and induction will be examined, restricted only by reasonable
physical assumptions and the requirement to satisfy the Maxwell’s equations.

1.3 Thesis overview

The proper understanding of the properties and limitations of various models of non-
linear anisotropic materials requires the knowledge of some results of the theory of
magnetism. These results are briefly summarized in Chapter 2.

We will then apply these results in Chapter 3 in deducing the general mathemat-
ical properties of magnetic characteristics of a (generally anisotropic) material. The
only restriction made upon the material is the assumption that the material is an-
hysteretic. Further, this chapter discusses the historical development of anisotropic
material modelling up to the present state. Some improvements are suggested to the
currently most accurate model of an anisotropic steel sheet as well as an extension of
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the Bastos-Quichaud model for the steel and dielectric laminations to the case of a
generally anisotropic steel [2] .

The equations for the FEM modelling are introduced in Chapter 4 including the
exact steps for derivation of the 2D equations that are most commonly used for the
magnetic modelling.

In Chapter 5 we introduce the weak formulations of the resulting 2D boundary
value problems and we prove the existence and uniqueness of the solutions.

These boundary value problems are then discretized by FEM in Chapter 6. We
present the convergence theorems for the discrete solutions and we suggest a scheme for
obtaining the discrete solution. The scheme was then applied to a benchmark problem
introduced in [31] and to a model of a three phase, three limb transformer core under
full load. The results of the computations are then summarized in Appendix B.
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Chapter 2

Brief overview of magnetic
properties of matter

2.1 Basic relations for magnetic fields

2.1.1 Maxwell’s equations, stationary magnetic field

Maxwell’s equations represent a primary set of relations for electromagnetic field de-
scription. Let us introduce them in their differential form, i.e. as a system of partial
differential equations (PDE):

rot E = −∂B
∂t
, divD = ρ, (2.1)

rotH = J +
∂D
∂t
, divB = 0. (2.2)

We recall that H is the magnetic field strength or intensity, E is the electric field
strength, B denotes the magnetic flux density, also called the magnetic induction, D is
the electric flux density, J the electric current density while ρ represents the electric
charge density.

Calligraphic letters are used to emphasize that all above quantities have to be
understood as functions of four variables, three spatial and one time variable, i.e.
H = H(x1, x2, x3, t) with values in R3. The divergence and rotation operators are
defined as usual

div v =
3∑

i=1

∂ivi,

rotv = (∂2v3 − ∂3v2, ∂3v1 − ∂1v3, ∂1v2 − ∂2v1)
T,

where v = (v1, v2, v3)
T and ∂ivj = ∂vj/∂xi.

In time independent, stationary case, Maxwell’s equations decouple into two inde-
pendent pairs, one pair for the stationary electric field, the other one for the stationary
magnetic field. The latter one only is of interest in this work and will be examined in
detail. Neglecting the time-derivative term in (2.2), we obtain

rotH = j, (2.3)

divB = 0. (2.4)
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Bold letters will be used for time independent vector variables. Here, for instance,
H(x1, x2, x3) = H(x1, x2, x3, t).

The integral form of equations (2.3)–(2.4) will be useful in deducing some general
magnetic properties. They can be written as∮

l

H · ds = I, (2.5)∮
Σ

B · ds = 0, (2.6)

for any closed path l and any closed surface Σ. Here I denotes the total free current
flowing through a surface P enclosed by the path l.1

As for now, equations (2.3)–(2.6) are just symbolic representations of generally
accepted physical laws. The next subsection discusses in what mathematical sense are
they fulfilled, i.e. what are their fields of validity.

There is still one more notable remark on how to comprehend the word station-
ary. Many engineering applications of magnetic materials make use of the principle
of electromagnetic induction, that is, a time varying electric field creates an induced
magnetic field and vice versa. A transformer, for example, could not in principle work
at all without time-varying fields. From that reason it is essential to understand the
word stationary properly; instead of field not varying in time rather one snapshot of
a generally time-variable field in a given instant of time. A natural question arises
- up to what point does that snapshot represent the correct physical solution of the
non-stationary problem? Experiments show that, in case of low frequency applications
(i.e. the quasi-stationary problems), this approximation is perfectly acceptable. This
low-frequency condition is, however, very well fulfilled at the industry frequencies of
50–60Hz, thus making our modelling meaningful [35].

2.1.2 The engineering problem, regularity of fields on material
interfaces

This work studies the mathematical model of a common engineering problem that con-
sists of finding the magnetic field distribution in a certain medium. The mathematical
model of such an engineering problem will be denoted by P and will be simply called
an engineering problem P . Its exact definition will be given in Chapter 4. By that
time, let us admit a vague definition of an engineering problem P :

The aim of an engineering problem P is to find the distribution of H (or B) in a
domain of interest Ω ⊂ R3 that satisfies certain interface and boundary conditions.

Let us have a domain Ω ⊂ R3, i.e. an open connected subset of R3. The medium,
represented by the domain Ω, can be inhomogeneous, i.e. it can represent e.g. an
electrical device and the surrounding air. Nevertheless, the medium will always be
supposed to be piecewise homogeneous, that is, just one homogeneous material occupies
each domain Vi, i = 1, . . . , N . The whole domain of interest Ω is then divisible into
sub-domains V1, . . . ,VN :

⋃N
i=1 V i = Ω, where Vi represent the individual homogeneous

material sub-domains.

1One might ask whether such a definition is correct. Let P ′ be another surface enclosed by the
same path l. Since the law of continuity of electric charge ensures the total flux of electric current
through any closed surface being zero, the current I ′ flowing through P ′ must be equal to I.
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The physical quantities, such as charge density or magnetic field strength, are known
to be smooth and bounded on these sub-domains. Hence, we may suppose B ∈ C1(Vi),
H ∈ C1(Vi), i = 1, . . . , N , cf. also [35]. The equations (2.3) and (2.4) have then good
meaning on Vi, i = 1, . . . , N , i.e. they are expected to be fulfilled in the classical sense.

Let us designate Ωmat =
⋃N

i=1 Vi. The set Ωmat represents the material part of the
domain Ω. The subset Ωint = Ω\Ωmat contains the material interfaces Sj, j = 1, . . .M .
Obviously, it holds

meas3 Ω
int = 0, (2.7)

where measn means the n-dimensional Lebesgue measure. If Sj ⊂ Ωint is an interface
between two different materials, e.g. iron and air, then B and H are known to be
discontinuous on S, fulfilling the following relations [35]:

(B1 −B2) · n = 0, (2.8)

n× (H1 −H2) = 0, (2.9)

ensuring the continuity of the normal component of B and the tangential component
of H only. 2 The vector n is a unit normal to the interface and the subscripts refer to
the medium on the one and on the other side of S. The relations (2.8)–(2.9) are known
as the interface conditions.

We see that the values of B(x) and H(x) are not defined for x ∈ Ωint. Hence, the
equations (2.3) and (2.4) are not valid in the classical sense on Ωint. Similarly, the
integral equations (2.5) and (2.6) are also valid only for Σ and l such that meas2(Σ ∩
Ωint) = 0 and meas1(l ∩ Ωint) = 0 respectively.

2.2 Constitutive relations, material classification

2.2.1 Constitutive material relations

The equations (2.3)–(2.4) do not give a full description for stationary magnetic fields
and they have to be supplied by appropriate constitutive (material) relations which
describe the various media involved. These relations are traditionally expressed as

B = µ(H)H, (2.10)

or, conversely, when the inverse variable dependence is demanded,

H = ν(B)B. (2.11)

Here µ is called the magnetic permeability while ν denotes the magnetic reluctivity. In
the sequel, we discuss the forms these quantities can acquire for various materials.

To understand the fundamentals of magnetic anisotropy, we must present the con-
cept of magnetizing the material. An important property of a material is its magnetiza-
tion M defined as a volume density of elementary (atomic) magnetic moments. Using
this quantity, equation (2.10) can be expressed as

B = µ0(H+M), (2.12)

2These equations say that the surface divergence and surface rotation vanish on S, i.e. DivB = 0
and RotH = 0. Comparing these relations to (2.3) and (2.4) we notice the missing surface current
density jS . In fact, the surface and linear currents and charge densities, widely used in theoretical
electromagnetism, are inconvenient for numerical simulations and will be omitted from our consider-
ations.
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where µ0 = 4π · 10−7H.m−1 is the permeability of vacuum [35]. This relation is totally
general, applicable to all materials at all conditions.

From (2.12) we also obtain the relation

H = ν0B−M, (2.13)

where ν0 = 1/µ0 = 7.96 · 105A2.N−1 is the reluctivity of vacuum.
All materials can hereby be divided into two main groups, reflecting their response

to applied magnetic fields: 3

• magnetically weak materials, showing a weak response to the magnetic field,

• magnetically strong materials with strong response to the magnetic field.

2.2.2 Magnetically weak materials

For magnetically weak materials, the magnetizing process is usually described by a
linear relationship between H and M which is very well fulfilled up to very high field
intensities and wide range of temperatures [35]. It is commonly expressed as

M = χmH,

defining thus the magnetic susceptibility χm.
The relation (2.12) can then be reformulated as

B = µ0(1 + χm)H = µ0µr H. (2.14)

Here µr = 1 + χm is the relative permeability of a specific material. When comparing
(2.14) to (2.10) we see that in case of the weak magnetic media the permeability
µ = µ0µr is a constant for the specific material.

When the net atomic magnetic moment of a material is zero, the only reaction to
the applied field is the diamagnetic response, which is a general property of matter. It
results in an induced magnetic moment opposed to the applied magnetic field, hence
in a decrease of magnetization. Such materials are called diamagnets. The magnetic
susceptibility of diamagnets is negative and very small, normally of the order of 10−8

to 10−5 [41]. Several metals widely used in engineering are diamagnetic – copper,
zinc, lead, gold, silver, etc. Further, most non-metallic solids, fluids, and gases are
diamagnetic [35, 41].

When the atoms of a material have permanent magnetic moment, the diamagnetic
effect only plays a minor role, being out-weighted by an alignment of the originally
randomly pointing magnetic moments in order to minimize their magnetic energy.
This describes the effect of paramagnetism and the corresponding materials are called
paramagnets. The magnetic susceptibility of paramagnets is positive and, in general,
much less than 1, usually of the order 10−6 to 10−3 [35]. Many metals are paramag-
netic (aluminum, platinum, etc.), along with some crystalline salts and gases, such as
oxygen [35].

Summarizing the properties of magnetically weak media, in most common engineer-
ing problems the linear dependence of B onH (the so called linear B-H characteristics)
holds, with the respective relative permeability being a constant very close to 1, hence
we may approximate the equation (2.14) by

B = µ0H. (2.15)

3The phenomenon of superconductivity brings new sights on this classification and will not be
discussed here.
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Figure 2.1: Hysteresis loops for (a) magnetically hard ferromagnets, (b) magnetically
soft ferromagnets. The area of the loop gives a qualitative estimate of the material’s
hysteresis losses due to cyclic magnetization of the material

2.2.3 Magnetically strong materials

In certain materials, the application of a magnetic field may induce a very strong
magnetization, commonly of the order of 10 6A.m−1, characterizing thus magnetically
strong materials [41]. Although not numerous, counting e.g. iron, cobalt, nickel, or
their alloys, ferromagnets are the most important materials among these for engineering
applications. Typical property of ferromagnets, besides their very high permeability,
is a complicated nonlinear dependency of magnetization values on the field strength,
on the history of a specimen, and on many more factors [35]. The dependency of
magnetization on the field strength during the cyclic magnetization process is given by
the so called hysteresis loop. The hysteresis loops for two different types of ferromagnets
are shown in Fig. 2.1.

The ferromagnets of type (a) are called magnetically hard ferromagnets. They find
wide use in magnetic recording media or as permanent magnets (in electrical motors
and generators, loudspeakers, etc.). Because of their nearly square-like hysteresis loop,
they are inconvenient for alternating current (AC) applications; the hysteresis losses,
qualitatively determined by the area of the loop, would then be too high. The material
characteristics of hard ferromagnets differ from the other materials and they will not
be studied in this work.

The ferromagnets of type (b) are used primarily for AC applications. These are
called magnetically soft ferromagnets. In order to eliminate eddy current losses during
their cyclic magnetization, they are usually distributed as thin electrical steel sheets,
arranged into a laminated structure for use as magnetic cores of electric machines. In
this case, magnetization is performed in parallel with the sheet surface.

During the manufacturing process of the sheets, there is a remarkable effect of
crystal grain growth with a cubic structure. A single crystal exhibits excellent magnetic
characteristics when magnetization is effected in the direction perpendicular to a face
of the cube (the crystallographic 〈100〉 directions), while the worst being the directions
of cube diagonal (the 〈111〉 directions) [16].

The properties of a non-oriented electrical steel sheet, with a more or less random
orientation of grains, result in good magnetic characteristics in every direction in the
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Figure 2.2: Detailed view of a Goss texture, with [100], [010] and [001] being the main
crystallographic axes of a cubic grain

sheet plane. The major advantage of these sheets is their low manufacturing cost, mak-
ing them attractive for use in small sized rotary machines, motors, etc. Nevertheless,
even these so called isotropic sheets probably exhibit an anisotropy in the direction
perpendicular to the sheet plane, as is discussed in Section 3.3.1. This leads to the
definition of a perfectly isotropic material, whose magnetic properties are the same in
all directions.

In the high-efficiency, large-scale electrical machinery, such as large-scale transform-
ers or generators, there is a higher demand on oriented electrical steel sheets. These
sheets have particularly excellent magnetic characteristics in one direction but when
magnetized in other directions, they have magnetic characteristics inferior to those
of non-oriented steel sheets. Accordingly, oriented electrical steel sheets are used in
the form of combined laminated cores or wound cores, so that the rolling direction
always corresponds to the direction of magnetization, thus enabling manufacture of
transformers having smaller losses [40].

The grain-oriented (anisotropic) steel sheet was invented in 1934 by N.P. Goss,
resulting in a cube-on-edge, also called Goss orientation of crystal grains. The con-
figuration is shown in Fig. 2.2, having the crystallographic (110) plane parallel to the
sheet plane [36]. The direction of material rolling (the rolling direction, i.e. RD, the
crystallographic [100] direction) is the magnetically easiest one while the direction of
worst magnetization being the “cube diagonal“ at an angle about 54.7 ◦ to the RD
[37] . The direction perpendicular to RD in the sheet plane, i.e. the crystallographic
[110] direction, is usually referred to as the transverse direction (TD) and shows an
intermediate level of magnetic material response to the applied field.

The properties of grain-oriented steels were continuously improved and today’s
finest quality sheets show a very small grain misorientation and almost ideal grain size,
resulting in a substantial power loss reduction [16].

To understand the requirements on a numerical model of an oriented steel sheet, it
is desirable to present the magnetization process in such a sheet in detail [22].

All ferromagnetic materials are characterized by the presence of magnetic domains,
inside which the elementary (atomic) magnetic moments are aligned alike. The whole
domain then exhibits a macroscopic magnetic moment, pointing to a direction of the
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elementary moments. In the absence of an external magnetic field, these domains are
randomly distributed with the magnetization vector along one of the preferred axes
[100], [010] or [001] of the crystal grain. Since we are inspecting a thin sheet, the
projections of magnetization vectors on the sheet plane will be considered only.

Figure 2.3: The projections of the principal directions of a Goss-oriented cubic crystal
onto the sheet plane coincide with RD and TD.

Figure 2.4: Domain processes occur if a material is subjected to an external field; (a)
the demagnetized state, (b) the partial magnetization, (c) the irreversible rotation of
domains and (d) the reversible rotation.

As seen in Fig. 2.3, the projections of the above mentioned principal crystallographic
directions correspond to RD and TD. Thus, the magnetic moments are aligned with
these directions in the initial, non-magnetized state, see Fig. 2.4 (a).

Let us suppose an external field applied in the sheet plane at a general angle α
from the RD. When the field H increases slightly, the domains that are aligned in a
direction close to that of H start growing (b). This process is known as the domain
wall movement. At moderate levels, the domains suddenly and irreversibly rotate
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Figure 2.5: Detailed view of a cube-on-face texture, with [100], [010], and [001] being
the main crystallographic axes of a cubic grain.

towards the easy axis that is closest to the applied field (c), showing domain rotation
or switching. Once they are all parallel, forming one self-contained domain, they rotate
reversibly towards the applied field up to the point of magnetic saturation (d), where
the magnetization vector M is parallel to H.

For iron, this happens at the macroscopic value of M sat = 1.71 · 106A/m, which
corresponds to the induction of Bsat = µ0(H

sat +M sat) ≈ µ0M
sat .= 2.15T [22]. Any

further increase of field strength creates negligible fluctuations in macroscopic mag-
netization. This allows us to suppose the linear B-H relationship, cf. (2.12). Another
important observation shows that the magnetization vector M, the induction vector
B, and the magnetic field strength vector H, cf. (2.12), point the same direction only
when the field applies to RD or TD, or |H| ≥ Hsat.

The release of H causes the imperfect release of magnetic domains to an ener-
getically favourable state, given by the shape of the material’s hysteresis loop. The
narrower the loop the more perfect is the release and the smaller are the hysteresis
losses.

In the future, an intense work on improvements of doubly oriented electrical steel
sheets with a cube-on-face structure is expected [40]. Such a sheet is supposed to
have excellent magnetic characteristics in two directions, the RD and TD, cf. Fig. 2.5.
Although there are known methods for manufacturing such sheets, their magnetic
characteristics are still poor for practical applications.

The permeability and reluctivity of ferromagnets, as defined by relations (2.10)
and (2.11), are generally complicated nonlinear tensor functions µ = µ(H1, H2, H3, t),
ν = ν(B1, B2, B3, t). In a stationary model, the time dependence has to be removed.
However, as measurements show, these functions have poor properties such as non-
monotonicity, as is seen in Fig. 3.3. These properties complicate the analysis of the
resulting equations if the permeability or the reluctivity function is considered; from
this point of view, it is more suitable to represent the material characteristics by direct
mappings between B and H. These mappings exhibit much better properties, as is
shown in the following chapter.
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Chapter 3

Modelling of B-H characteristics of
anisotropic ferromagnets

During FEM computations of magnetic fields, the performing program needs to access
the B-H characteristics of materials involved. Mathematically, the term B-H charac-
teristics denotes a mapping that relates the vectors B and H for a given material. In
this work, we will limit ourselves to study the properties of an idealized, anhysteretic
material. Such a material is supposed to be energy loss-free when performing its cyclic
magnetization. The general form of the mapping representing B-H characteristics of
an anhysteretic material will be formally introduced and analysed in Section 3.1 . It
covers isotropic as well as anisotropic materials.

Depending on the particular engineering problem, a model of an anisotropic mate-
rial or structure may be required. These models can be classified as follows:

• full 3D model of an anisotropic steel sheet

• model of the laminated structure made up of steel sheets and dielectric layers;
the sheets can be either isotropic or anisotropic

• simplified 2D model of an anisotropic steel sheet

Estimating a full 3D relation between B and H is difficult for anisotropic sheets,
because all measurements are performed in the sheet plane. The values of B and H in
other directions and the underlying relationship between them must then be guessed.
Therefore, simplified 2D models are most commonly used and are examined in detail
in Section 3.2.

Last years, when computing resources are becoming more powerful and available,
new 3D models of laminated cores are appearing [2, 25]. A model for anisotropic sheets
with laminations is proposed in Section 3.3, that is shown to be an extension of Bastos-
Quichaud model which only covers perfectly isotropic sheets [2].

3.1 Analysis of general properties of a homogeneous,

anhysteretic magnetic material

A model of a homogeneous magnetic medium should follow some restrictions made
upon it as a consequence of physical and geometrical considerations. This section
examines general mathematical properties of B-H characteristics of an anhysteretic
material, both 3D and 2D.
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3.1.1 Irrotational and solenoidal vector fields

This and the following chapters will make use of the properties of irrotational and
solenoidal fields. For the two-dimensional case, we introduce the operators

rotu = ∂1u2 − ∂2u1,

curl v = (∂2v,−∂1v) ,

where u = (u1, u2).

Theorem 3.1 (Poincaré’s lemma). Let Ω be a simply connected domain in Rn,
n = 2, 3.

(i) If v ∈ [C1(Ω)]n is such that rotv = 0 on Ω, then there exists a function p ∈ C2(Ω)
such that v = grad p on Ω. Moreover, the function p is unique to within a
constant.

(ii) If w ∈ [C1(Ω)]n is such that divw = 0 on Ω, then for n = 3 there exists a vector
function q ∈ [C1(Ω)]3 such that w = rotq on Ω and for n = 2 there exists a
scalar function q ∈ C1(Ω) such that w = curl q on Ω.

Proof. See [10].

In case (i), the function v is called irrotational, while in case (ii) the function w is
called solenoidal.

The problem of decomposition of an arbitrary vector field u on its irrotational and
solenoidal parts is rather complex and depends on the regularity of u as well as the
properties of ∂Ω. We will limit ourselves to formulate the following theorem.

Theorem 3.2 (Helmholtz decomposition). Let n = 2, 3 and let us denote

Bn
r = {x ∈ Rn : |x| ≤ r}.

Then every vector field u ∈ [H1(Bn
r )]

n has the unique decomposition

u = grad p+ rotq if n = 3,

u = grad p+ curl q if n = 2,

where p ∈ H2(Bn
r ), q ∈ [H2(B3

r )]
3 (resp. q ∈ H2(B2

r ) if n = 2), the function p is unique
to within a constant and rotq · n|Γ= 0 (resp. curl q · n|Γ= 0 if n = 2).

Proof. See [10].

3.1.2 3D magnetic properties of a homogeneous, anhysteretic
material

In the following, |v| denotes the standard Euclidean norm of a vector v ∈ Rn. The B-H
characteristics of a homogeneous, anhysteretic magnetic material can be represented
by mappings F ,G : R3 → R3 such that

F(H) = B, (3.1)

G(B) = H, (3.2)
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where F = (F1,F2,F3) and G = (G1, G2, G3). Measurements show that altering H
causes a (macroscopically) smooth change of B with respect to H and vice versa ,1

so we can suppose F ,G ∈ [C1(R3)]3. We assume that every value of flux density
corresponds to a unique value of field strength, so that F and G are bijective mappings
from R3 onto R3 and G = F−1.

The magnetically hard ferromagnets are excluded from our considerations. Hence,
initially at zero fields, there is no induced magnetization. From (2.12) we have F(0) =
G(0) = 0.

Let H1,H2 ∈ R3, H1 6= H2. Equations (2.12) and (3.1) give

(F(H2)−F(H1))
T (H2 −H1) = [µ0(H2 +M2)− µ0(H1 +M1)]

T (H2 −H1) =

= µ0(H2 −H1)
T (H2 −H1) + µ0(M2 −M1)

T (H2 −H1) =

= µ0|∆H|2 + µ0∆MT∆H, (3.3)

where ∆H = H2 −H1 and ∆M = M2 −M1.
When the field changes from H1 to H2, the induced magnetization increment ∆M

naturally can not go ”against“ ∆H, i.e.

∆MT∆H ≥ 0. (3.4)

Hence we obtain

(F(H2)−F(H1))
T (H2 −H1) = µ0|∆H|2 + µ0∆MT∆H ≥ µ0|∆H|2.

Thus, F is uniformly monotone 2 on R3.
Let B1,B2 ∈ R3, B1 6= B2 and Hi = G(Bi), i = 1, 2. Similarly, from (2.13), (3.2)

and (3.4) we have

(G(B2)− G(B1))
T (B2 −B1) =

= [(ν0B2 −M2)− (ν0B1 −M1)]
T (B2 −B1) = ν0|∆B|2 + ν0∆MT∆B =

= ν0|∆B|2 + ν0∆MT (µ0∆H+∆M) ≥ ν0|∆B|2,

so G is also uniformly monotone on R3.
For being able to deduce further properties of F and G, we need to introduce the

term magnetic energy density . This physical quantity represents the volume density
of the energy stored in the magnetic field. If the value of B at a given point x ∈ R3 is
B(x) ≡ B̃, then the magnetic energy density w is only a function of B̃ defined as

w(x) = w(B̃) =

∫ B̃

0

G(s) · ds. (3.5)

The integral symbol denotes the line integral over a curve in R3 with the end points
B = 0 and B = B̃. We have to show first that the definition is correct, i.e. path-
independent. As it is described in [35] , the quantity wm =

∮
l
G(s) · ds represents the

hysteretic energy loss when cyclically magnetizing the material so that B follows a
closed curve l. Because the material is anhysteretic, wm = 0 and we have

1The domain switching phenomenon mentioned in Chapter 2 causes the presence of measurable
discontinuities in material’s B-H characteristics [22]. Nevertheless, our approximation level allows us
to neglect these discontinuities.

2We recall that a mapping F : R3 → R3 is uniformly monotone on R3 if there exists a constant
K > 0 so that it holds (F(x2)−F(x1))(x2 − x1) ≥ K|x2 − x1|2 for every x1,x2 ∈ R3.

22



∮
l

G(s) · ds = 0 (3.6)

for any closed path l. In the following, the symbol used in (3.5) for a line integral will
induce implicitly the path-independence of the integral.

Let m be another closed path. Let G ′(B) denote the Jacobian matrix of G in
B ∈ R3. By using the substitution F(t) = s, dt = dG(s) = G ′(s)ds and integration by
parts, we obtain∮

m

F(t) · dt =
∮
F(m)

sTG ′(s) · ds = −
∮
F(m)

G(s) · ds = 0. (3.7)

With regard to the Green’s theorem, we see from (3.6) and (3.7) that the functions F
and G are irrotational on R3, i.e.

∂jFi = ∂iFj, i, j = 1, 2, 3, (3.8)

∂jGi = ∂iGj, i, j = 1, 2, 3. (3.9)

Hence, cf. Theorem 3.1, there exist functions w, w̃ : R3 → R such that

gradw(B) = G(B) ∀B ∈ R3, (3.10)

grad w̃(H) = F(H) ∀H ∈ R3. (3.11)

These functions are then given by relations

w(B) =

∫ B

0

G(s) · ds, (3.12)

w̃(H) =

∫ H

0

F(t) · dt. (3.13)

When we compare (3.12) to (3.5), we see that w is indeed the magnetic energy density,
while w̃ is the so called magnetic coenergy density. 3

Let us examine the Jacobian matrices F ′ and G ′. Let H be fixed and δHd be an
arbitrary field increment of a fixed direction d. Since F ∈ [C1(R3)]3, we can write

F(H+ δHd)−F(H) = F ′(H) δHd + o(δHd), (3.14)

where δHd = |δHd| and o(δHd) is a vector whose components are o(δHd).
By multiplying (3.14) by δHd and comparing to (3.3), we get

δHT
d F ′(H) δHd = µ0|δHd|2 + µ0(δM

T
dδHd) + δHT

do(δHd),

where δMd is the magnetization increment when the field changes from H to H+δHd.
Because, again, δMT

dδHd ≥ 0, we have

δHT
d F ′(H) δHd ≥ µ0|δHd|2 + δHT

do(δHd).

3There were attempts for a compact storage of B-H characteristics for numerical computations in
terms of w or w̃, since only one scalar function was needed to store in this case. The value of G or
F was then obtained by means of numerical differentiation from equations (3.10) or (3.11). Since the
memory becomes cheaper and the capacity increases, there is no need for using these models anymore.
The reference on these so called energy and coenergy models can be found in [33, 39].
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If the field increment δHd is small enough, we get

δHT
d F ′(H) δHd ≥ µ0

2
|δHd|2, |δHd| ∈ (0, εd).

Let us fix vd = δHd to be such a small enough field increment. For α ∈ R we have

(αvd)
TF ′(H)(αvd) = α2vT

dF ′(H)vd ≥ α2µ0

2
|vd|2 =

µ0

2
|αvd|2

def
= Cmat

1 |αvd|2.

Noting that Cmat
1 is independent on d and H, we obtain

uTF ′(H)u ≥ Cmat
1 |u|2 ∀H , ∀u ∈ R3, (3.15)

or
|F ′(H)| ≥ Cmat

1 ∀H ∈ R3,

where |F ′(H)| denotes the spectral norm of the matrix F ′(H).
When a material reaches its magnetic saturation, the magnetization does not in-

crease anymore. Thus we obtain from (2.12) the analytical expressions

B = F(H) = µ0(H+M sateH), |H| ≥ Hsat, (3.16)

H = G(B) = ν0B−M sateB, |B| ≥ Bsat, (3.17)

where eH = H/|H|, eB = B/|B|, ν0 = 1/µ0 and Bsat, Hsat,M sat are constants charac-
teristic for a given material satisfying the relation Bsat = µ0(H

sat +M sat).
Differentiating (3.16) yields

F ′(H) = µ0I+ µ0M
sat

[
1

H
I− H

H3
HT

]
, |H| ≥ Hsat,

where I denotes the identity matrix. For u ∈ R3 and |H| ≥ Hsat we thus obtain

|F ′(H)u| =
∣∣∣∣µ0u+ µ0M

sat u

H
− µ0

H

H3
HTu

∣∣∣∣ ≤
≤ µ0|u|+ µ0

M sat

Hsat
|u|+ µ0

1

Hsat
|u| def

= K1|u|.
(3.18)

Because F ∈ [C1(R3)]3, we can set

K2 = max
H≤Hsat

|F ′(H)|, (3.19)

and

Cmat
2 = max{K1, K2}.

Then it follows from (3.18) and (3.19) that

|F ′(H)| ≤ Cmat
2 ∀H ∈ R3. (3.20)

From (3.8), (3.15), and (3.20) we see that the Jacobian matrix F ′(H) is symmetric,
uniformly positive definite, and uniformly bounded over R3. As a symmetric, positive
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definite matrix, F ′(H) is nonsingular. Using the inverse mapping theorem, we have for
B ∈ R3:

G ′(B) =
[
F ′(G(B)

)]−1

,

from where it follows that G ′(B) is also symmetric, uniformly positive definite, and
uniformly bounded over R3.

Further, the functions F ,G should reflect texture symmetries of the material. For
example, when considering the Goss texture and the reference axes x as the RD, y as
the TD and z the direction perpendicular to the sheet plane, then x-y , x-z and y-z
planes are the planes of texture symmetry. For H = (H1, H2, H3) and B = (B1, B2, B3)
this implies

F(−H1, H2, H3) = (−B1, B2, B3) = (−F1(H),F2(H),F3(H)), (3.21)

F(H1,−H2, H3) = (B1,−B2, B3) = (F1(H),−F2(H),F3(H)), (3.22)

F(H1, H2,−H3) = (B1, B2,−B3) = (F1(H),F2(H),−F3(H)). (3.23)

From here it follows that it is enough to define F for Hi ≥ 0 , i = 1, 2, 3. An analogue
set of equation can be written for G.

We can now summarize the above deductions into a theorem.

Theorem 3.3. Let F ,G : R3 → R3 be vector functions that represent 3D magnetic
characteristics of a homogeneous, anhysteretic material such that B = F(H), H =
G(B).

Then F ,G ∈ [C1(R3)]3 are bijective mappings from R3 onto R3, G = F−1, that
fulfill:

1. F(0) = 0, G(0) = 0.

2. F ,G are uniformly monotone on R3.

3. F ,G are irrotational vector fields, i.e.

∂jFi = ∂iFj, i, j = 1, 2, 3,

∂jGi = ∂iGj, i, j = 1, 2, 3,

and there exist functions w, w̃ : R3 → R such that gradw(B) = G(B) and
grad w̃(H) = F(H), ∀B,H ∈ R3.

4. The Jacobian matrices F ′ and G ′ are symmetric, uniformly positive definite, and
uniformly bounded over R3. There exist material constants Cmat

1 , Cmat
2 such that

Cmat
1 ≤ |F ′(H)| ≤ Cmat

2 ∀H ∈ R3,

1/Cmat
2 ≤ |G ′(B)| ≤ 1/Cmat

1 ∀B ∈ R3.

5. There exist material constants Hsat, Bsat, and M sat, satisfying the relation

Bsat = µ0(H
sat +M sat),

such that

F(H) = µ0(H+M sateH), |H| ≥ Hsat,

G(B) = ν0B−M sateB, |B| ≥ Bsat,

where eH = H/|H|, eB = B/|B| and ν0 = 1/µ0.
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6. The functions F ,G reflect texture symmetries of the material, see (3.21)–(3.23).

3.1.3 2D magnetic properties of a homogeneous, anhysteretic
material

Very often, only two-dimensional problems are studied. In this case, the magnetic
field flow occurs only in the x-y plane. The 2D magnetic characteristics can thus be
modelled by vector functions F ,G : R2 → R2. By repeating the thoughts from Section
3.1.2, we would achieve the following theorem.

Theorem 3.4. Let F ,G : R2 → R2 be vector functions that represent 2D magnetic
characteristics of a homogeneous, anhysteretic material such that B = F(H), H =
G(B).

Then F ,G ∈ [C1(R2)]2 are bijective mappings from R2 onto R2, G = F−1, that
fulfill:

1. F(0) = 0, G(0) = 0.

2. F ,G are uniformly monotone on R2.

3. F ,G are irrotational vector fields, i.e.

∂1F2 = ∂2F1, (3.24)

∂1G2 = ∂2G1, (3.25)

and there exist functions w, w̃ : R2 → R such that gradw(B) = G(B) and
grad w̃(H) = F(H), ∀B,H ∈ R2.

4. The Jacobian matrices F ′ and G ′ are symmetric, uniformly positive definite, and
uniformly bounded over R2. There exist material constants Cmat

1 , Cmat
2 such that

Cmat
1 ≤ |F ′(H)| ≤ Cmat

2 ∀H ∈ R2, (3.26)

1/Cmat
2 ≤ |G ′(B)| ≤ 1/Cmat

1 ∀B ∈ R2. (3.27)

5. There exist material constants Hsat, Bsat, and M sat, satisfying the relation

Bsat = µ0(H
sat +M sat), (3.28)

such that

F(H) = µ0(H+M sateH), |H| ≥ Hsat, (3.29)

G(B) = ν0B−M sateB, |B| ≥ Bsat, (3.30)

where eH = H/|H|, eB = B/|B| and ν0 = 1/µ0.

6. The functions F ,G reflect texture symmetries of the material, see (3.31)–(3.32)
below.
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When considering e.g. a horizontal 2D section of the Goss texture and the reference
axes ox as RD and oy as TD, then ox and oy are the axes of the texture symmetry. For
H = (H1, H2) and B = (B1, B2) this implies

F(−H1, H2) = (−B1, B2) = (−F1(H),F2(H)), (3.31)

F(H1,−H2) = (B1,−B2) = (F1(H),−F2(H)), (3.32)

from where we see that it is enough to define F on the first quadrant. We can obtain
similar results for G as well.

3.2 2D models of an anisotropic steel sheet

In this section, an overview and historical development of 2D models of anisotropic,
grain oriented steel sheet models is summarized. The values of B and H have only two
components in this case. We will point out the conceptual differences between various
models and indicate their numerical implementation. The construction of the models
and the underlying accuracy was always influenced by the limitations of the measuring
apparatus. From this reason, the measurement methods are briefly presented as well.
Since many anisotropic model constructions are basically derived from the models for
isotropic sheets, we will examine these isotropic models first.

3.2.1 Traditional measurement methods

The measurements for a sheet material are traditionally performed by means of an
Epstein frame or a Single sheet tester (SST) [29]. A measured sheet sample is first
cut in a direction deviated from the RD at an angle α and inserted into the tester.
The symmetry of the sheet texture allows us to limit the range of α ∈ [0 , 90]. For
convenience, α is expressed in degrees.

The exciting apparatus is used to generate an alternating magnetic field inside the
sample. The instant values of the magnetic field intensity and magnetic induction h(t)
and b(t) form two vector periodic functions of time. The direction of one of these
quantities can be controlled to be parallel to the cutting direction. Let, for instance,
magnetic induction be the controlled quantity.

The measuring apparatus, consisting of B-coils or probes and H-coils, are used to
capture the values of hα(t) and bα(t), which are the orthogonal projections of h(t) and
b(t) onto the cutting direction. Their amplitudes Hα and Bα are then taken as the
measured values. We note that the real value of H, i.e. the amplitude of h(t), is equal
to Hα only when the sheet is isotropic or α = 0 or α = 90, i.e. the sample is cut in RD
or TD. Generally, one can say that traditional measurement methods do not respect
the direction difference between filed strength and flux density.

When repeating the measurements with different excitation strengths, one obtains
a collection of measured values Sα = {Bα

i , H
α
i }Nα

i=1 for a particular direction α. For
an isotropic sheet, one can obviously perform the measurements in just one, arbi-
trary direction and work with one collection of measured values S independent on α.
Anisotropic sheets require more collections of measured values.

Although the measurement apparatus is being constantly improved, the measured
values did not reach the saturation region so far, where the relation between B and H
is known. Current methods can give reliable results up to Bmax

α ≡ Bα
Nα

≈ 1.8–2.0T.
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We define the measured region as Km
α = {B : 0 ≤ B ≤ Bmax

α }. At very high fields the
measurements are affected by substantial flux leakage, thus giving inaccurate values.
The saturation region is Ksat = {B : B ≥ Bsat}, where Bsat ≈ 2.15T, as stated in
Section 2.2.3. The so called transition region Kt

α = {B : Bmax
α < B < Bsat} is the one

not covered by the measurements.
In real devices, the values of flux density seldom get over the measured region.

However, in numerical computations, during first steps of an iterative scheme, the flux
density may take extreme values. A good model is required to cover all regions to
improve convergence results.

3.2.2 Isotropic steel sheet modelling

There are two different representations of an isotropic sheet model in use, both differ
slightly in the model construction and are presented here.

The reluctivity (or permeability) function is the first representation. When the
hysteresis effects are not taken into account, due to the symmetry of the material, B
and H are parallel for all B,H ∈ R2, and the B-H characteristics must be direction-
independent. Thus, µ and ν are then reduced to scalar functions of magnitude of H
or B respectively. Equations (2.10) and (2.11) can hence be rewritten as

B = µ(H2)H, (3.33)

H = ν(B2)B. (3.34)

The problem is reduced to finding a scalar function of one real variable. Having a collec-
tion of measured values S = {Bi, Hi}Ni=1, the objective now is to define the reluctivity
function ν(τ), τ ≥ 0.

The values of ν at τi = B2
i can be calculated from (3.34) as νi ≡ ν(τi) = Bi/Hi, i =

1, . . . , N . On the saturation region, we have from (3.30) (omitting the vector direc-
tions):

H = ν0B −M sat, B ∈ Ksat. (3.35)

Let us calculate the limit

lim
τ→∞

ν(τ) = lim
τ→∞

H

B
= lim

τ→∞

ν0B −M sat

B
= ν0. (3.36)

An analytical expression of the reluctivity function ν is then usually found such
that it approximates the values νi at τi and fulfills (3.36). Examples of such functions
may be found in [4] or [24], see also Figure 3.1(a).

The other representation is accomplished by defining a function g (or f) that di-
rectly relates B to H. Again, because B is parallel to H and the vector relations are
the same for all directions, it suffices to consider the magnitudes of B and H in an
arbitrary direction,

B = f(H),

H = g(B).

We will now analyze the properties and construction of the function g, starting with
the same collection of measured values S = {Bi, Hi}Ni=1.
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Figure 3.1: The model of an isotropic sheet represented by (a) the reluctivity function,
(b) the function g.

Here, the values of g at σi = Bi are directly gi ≡ g(σi) = Hi. Because at zero
fields there is no induced magnetization, g0 ≡ g(0) = 0. We will deal with finding
the function on each region separately; let us designate g |Km= gm, g |Kt= gt, and
g|Ksat= gsat.

First, any (e.g. polynomial) approximation can be used to obtain gm from the
values gi at σi. However, as stated in [39], the best convergence results are achieved
when the material properties are modelled by a function at least C1 continuous. Hence,
cubic spline interpolations are more suitable for this purpose than a simple linear
interpolation.

From (3.35) we see that gsat is a linear function with derivative g′sat = ν0, though
we do not know the value of Hsat = g (Bsat).

The transition region Kt is not covered by the measured values. Nevertheless, if we
assume g to be a quadratic function on Kt, cf. Figure 3.1(b), then the function gt can
be expressed as

gt = aσ2 + bσ + c, σ ∈ Kt.

The unknown coefficients a, b, and c are then computed based on the following data:

gt(B
max) = gm(B

max),

g′t(B
max) = g′m(B

max),

g′t(B
sat) = ν0.

gsat is then defined as

gsat(σ) = gt(B
sat) + ν0(σ −Bsat), σ ∈ Ksat.

It can be easily seen that g ∈ C1[0,∞).
The reluctivity representation is preferred for the model of an isotropic sheet be-

cause the resulting FEM equations are then solved faster than when the other rep-
resentation is chosen. However, as we will see later in this chapter, the reluctivity
representation is inconvenient when an accurate model of an anisotropic sheet is de-
manded. From this reason, the equations in terms of the reluctivity function are not
introduced in this work.
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3.2.3 Conventional model for anisotropic steel sheets

The conventional model for an anisotropic steel sheet consists of two B-H curves. A
B-H curve is a representation of magnetic characteristics in a particular direction. The
model uses two collections of measured values Sα, for α = 0 and α = 90. Two B-H
curves for the rolling and transverse directions are first constructed analogously as in
the isotropic case. The final model is then represented by a vector function F = (fr, ft)
given by

Br = fr(Hr), (3.37)

Bt = ft(Ht), (3.38)

where the subscripts r and t denote the coordinate systems designated by the rolling
and transverse directions. Considering the sheet’s texture symmetry, we can limit
ourselves to define F for Hr ≥ 0, Ht ≥ 0.

Conversely, the H-B relation can be represented by a vector function G = (gr, gt)
given by

Hr = gr(Br), (3.39)

Ht = gt(Bt). (3.40)

Again, the texture symmetry allows us to define G only for Br ≥ 0, Bt ≥ 0.
In terms of the permeability function, we obtain(

Br

Bt

)
=

(
µr(H

2
r ) 0

0 µt(H
2
t )

)(
Hr

Ht

)
,

and similarly for the reluctivity function(
Hr

Ht

)
=

(
νr(B

2
r ) 0

0 νt(B
2
t )

)(
Br

Bt

)
.

This conventional model is commonly used in practical computations. However,
measurements exhibit strong inaccuracies in this model. Fig. 3.2 (a) shows loci in the
B-plane (the space of magnetic induction vectors) at constant field strength magnitudes
in different cutting directions α. The values given by the conventional model are drawn
by solid lines. As seen from the figure, the conventional model suggests the magnetically
easiest direction at an angle β ≈ 30◦ from RD, which is incorrect.

Let us remark that the vector functions F and G defined by the conventional model
are irrotational on R2, as is seen from (3.37)–(3.38) and (3.39)–(3.40), i.e.

rotF = 0, on R2,

rotG = 0, on R2.

3.2.4 Elliptic model for anisotropic steel sheets

At first glance, the measured B-loci in Fig. 3.2 (a) resemble by its shape an ellipse. This
lead researchers to define an elliptic model [32]. It is commonly expressed in terms of
the permeability function as(

Br

Bt

)
=

(
µr(H

2) 0
0 µt(H

2)

)(
Hr

Ht

)
, (3.41)
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Figure 3.2: B-loci at constant field strength magnitudes; H1 = 200A.m−1, H2 =
1000A.m−1. Solid lines represent the values provided by (a) conventional model, (b)
elliptic model. Dashed lines follow the measured values which are taken from [31] and
[32].

where H2 = H2
r +H2

t . From (3.41) one gets easily

B2
r

µ2
r(H

2)
+

B2
t

µ2
t (H

2)
= H2. (3.42)

Keeping the field strength magnitude constant, the values of magnetic flux density
follow an ellipse in the B-plane, as seen from (3.42). Fig. 3.2(b) compares the values
given by the elliptic model to the measured ones. It is worthwhile to note that, in the
rolling and transverse directions, (3.41) will reduce to

Br = µr(H
2
r )Hr

Bt = µt(H
2
t )Ht ,

being thus consistent with the conventional model and measured values.

3.2.5 Multicurve models for anisotropic steel sheets

In order to address the inaccuracies of the conventional and elliptic models depicted in
Fig. 3.2, the so called multicurve models were invented. The main idea consists of using
more B-H curves in different directions than just in RD and TD. Typically, 3 up to 10
curves are used. Shirkoohi and Liu [37], for instance, performed the measurements in 10
directions and constructed the reluctivity functions νr ≡ ν0 , ν10 , . . . , ν90 ≡ νt from the
measured collections Sα , α = 0, 10, . . . , 90, see Fig.3.3. They defined the reluctivity for
the other intermediate angles by linear interpolation between the two nearest curves.

Even the multicurve models are not accurate though, since they do not respect the
direction difference between B and H. A model that respects this phenomenon must
follow 2D measurements of the material.

3.2.6 2D measurements of anisotropic steel sheets

The Nakata group first performed the measurements of magnetic properties of a sheet
by means of an enhanced version of a single sheet tester (SST 2) [31] . The tester
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Figure 3.3: Ten-step reluctivities based on the measurements of CGO steel.

contains additional coils that measure 2D B-H relations. The tester’s construction was
even improved to give good results for high flux densities up to 2T [28]. The values
provided by SST 2 measurements are given in two representations, cartesian and polar.

The cartesian representation consists of 2m collections of measured values. We
will associate the cartesian x-axis to RD and y-axis to TD. Each collection Scar

x,j , j =

1, . . . ,m contains N j
x measured values of B and H in the x-direction, while Bj

y,i ≡ Bj
y

being a constant for i = 1, . . . , N j
x . Similarly, each collection Scar

y,j containsN j
y measured

values of B and H in the y-direction at constant Bj
x,i ≡ Bj

x , i = 1, . . . , N j
y . For

instance, in [30] there are published measurements for Bj
x, B

j
y = 0, 0.2, . . . , 1.6, 1.8.

The individual collections contain the measured values

Scar
x,j = {Bj

x,i, H
j
x,i}

Nj
x

i=1, Scar
y,j = {Bj

y,i, H
j
y,i}

Nj
y

i=1, j = 1 . . .m.

The supercollection of all Scar
x,j , j = 1, . . . ,m will be denoted by Mcar

x and, analogously,
the supercollection of all Scar

y,j , j = 1, . . . ,m will be denoted by Mcar
y .

The polar representation contains n collections of measured values. Let θH and
θB be the angles between RD and H or B respectively. In this case, each collection
Spol
j , j = 1, . . . , n consists of Nj measured data of |B|, |H| and θH at constant θjB,i ≡
θjB, i = 1, . . . , Nj:

Spol
j = {Bj

i ,H
j
i , θ

j
H,i}

Nj

i=1 , j = 1 . . . n.

3.2.7 Full 2D model of an anisotropic steel sheet

In a general 2D magnetic modelling, we need to find a mapping

G : R2 → R2, G : B 7→ H.

We describe in detail how the model was constructed with the aid of the mathemat-
ical software Scilab. The data that were measured for the material AISI:M-0H by
Nakata [30] were obtained in the cartesian form from [21].
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Figure 3.4: (a) The regular grid of induction vectors for which the value of Gx is stored,
(b) a sketch that shows the necessity of storing the values of Gx in grid points near
Γsat, (c) the calculation of the value of Gx at an arbitrary point B ∈ Kreg.

Let G = (Gx,Gy). The goal is to construct a function Gx(Bx, By) from the collection
Mcar

x . Analogously, the function Gy(Bx, By) would be constructed from the collection
Mcar

y . The texture symmetry of the sheet allows us to define these functions for
Bx, By ≥ 0.

In consistency with Section 3.2.1 we define the sets

Q =
{
B ∈ R2 : Bx, By ≥ 0

}
,

Kreg =
{
B ∈ R2 : B < Bsat

}
∩Q,

Ksat =
{
B ∈ R2 : B ≥ Bsat

}
∩Q,

Γsat = ∂Kreg ∩ ∂Ksat.

For the subsequent application in the FEM computations, fast access to the function
value Gx(Bx, By) for given Bx, By ∈ Q is demanded. Our strategy is to define the
function Gx on a coarse, regular grid with a very small step δB in both directions. The
grid can end up at the values of Bx = By = Bsat, because the function will be defined
analytically for B ∈ Ksat. The grid points will be denoted by Bi,j = (Bx

i,j, B
y
i,j), i, j =

0, . . . , p, where p = Bsat/δB. In our calculations, we used the values for Bsat = 2.15
and δB = 0.01. For convenience, the units are omitted.

The values of Gx at the grid points are saved in a square matrix Gx. We notice
from Fig. 3.4(a) that some of the grid points fall into Ksat. These values will also be
stored in the matrix Gx. The values of Gx(Bi,j) for Bi,j ∈ Ksat are necessary for the
correct evaluation of Gx in B ∈ Kreg near Γsat, see Fig. 3.4(b) and the next paragraph,
and these values can be evaluated directly from the matrix Gx.

During the FEM computation, the value of Gx at any point B = (Bx, By) ∈ Kreg is
then calculated as follows: we first find the indices i, j so that B ∈

[
Bx

i,j, B
x
i+1,j+1

)
×[

By
i,j, B

y
i+1,j+1

)
. A simple linear interpolation scheme is then used to compute Gx(Bx, By).

The algorithm is then, cf. also Fig. 3.4(c):

33



i = bBx /δBc;
j = bBy /δBc;
δBx = Bx −Bx

i,j;
δBy = By −By

i,j;
FALL1 = (Gx

i+1,j −Gx
i,j)/δB;

GE1 = Gx
i,j + FALL1 · δBx;

FALL2 = (Gx
i+1,j+1 −Gx

i,j+1)/δB;
GE2 = Gx

i,j+1 + FALL2 · δBx;
FALL3 = (GE2−GE1)/δB;
Gx(Bx, By) = GE1 + FALL3 · δBy.

The operator b·c denotes the integer part of the division.
We find the analytical expression of Gx(Bx, By) for B = (Bx, By) ∈ Ksat. Let us

chose a fixed value of Hsat. We used the value of Hsat = 98000. From (3.30) we obtain

Gx(Bx, By) = ν0Bx −M satBx/B =

= ν0Bx + (Hsat − ν0B
sat)

Bx√
B2

x +B2
y

, B ∈ Ksat.
(3.43)

We will also need the derivatives

∂Gx

∂Bx

(Bx, By) = ν0 + (Hsat − ν0B
sat)

B2
y

(B2
x +B2

y)
3/2
, (3.44)

∂Gx

∂By

(Bx, By) = (ν0B
sat −Hsat)

BxBy

(B2
x +B2

y)
3/2
. (3.45)

We now approach the problem of obtaining the values of Gx at grid points from the
measured collection Mcar

x . Let j ∈ {j = 1, . . . ,m} be fixed. Each sub-collection Scar
x,j

is first used to construct a function

gj : [0,∞) → R, gj : Bx 7→ Hx

at constant Bj
y ∈ {0, 0.2, . . . , 1.6, 1.8}. The construction is similar as in the isotropic

case, cf. Section 3.2.2. Nevertheless, the construction of the function g did not work
with a fixed value of Hsat as the input data that is necessary in the full 2D model for
defining Gx by the analytical expression (3.43) on Ksat.

The construction itself is performed as follows. We define

Bsat
x,j =

√
(Bsat)2 −

(
Bj

y

)2
, Hsat

x,j = Hsat
Bsat

x,j

Bsat
,

see Fig. 3.5(a). Let Bmax
x,j denote the maximum induction value in the collection Scar

x,j .

Again, we define the regionsKm
j =

{
B : 0 ≤ B ≤ Bmax

x,j

}
, Kt

j =
{
B : Bmax

x,j ≤ B ≤ Bsat
x,j

}
,

Ksat
j =

{
B : B ≥ Bsat

x,j

}
and the functions g|Km

j
= gmj , g|Kt

j
= gtj, and g|Ksat

j
= gsatj .

We first used Scilab’s splin(. . . ),"monotone" primitive to construct the function
gmj on Km

j from the measured values Scar
x,j . To preserve C1 continuity of gj over [0,∞),

there are now four conditions on the function gtj:

gtj(B
max
x,j ) = gmj (B

max
x,j ),

(
gtj
)′
(Bmax

x,j ) =
(
gmj

)′
(Bmax

x,j ), (3.46)

gtj(B
sat
x,j ) = Hsat

x,j ,
(
gtj
)′
(Bsat

x,j ) =
∂Gx

∂Bx

(Bsat
x,j , B

j
y). (3.47)

34



Figure 3.5: (a) Figures accompanying the explanation of how (a) the function gj, (b)
the function hk is constructed.

The value of
(
gmj

)′
(Bmax

x,j ) was acquired by(
gmj

)′
(Bmax

x,j ) =
(
gmj (B

max
x,j + δx)− gmj (B

max
x,j )

)
/δx,

where we put δx = −10−10, while ∂Gx/∂Bx(B
sat
x,j , B

j
y) is calculated from (3.44). Ob-

viously, the quadratic interpolation is not anymore usable. At first glance, the cubic
interpolation seems to be suitable. Unfortunately, as can be seen from FigA.1 in Ap-
pendix A, the behaviour of the cubic function is unpredictable. However, much better
results can be achieved when gtj is searched in the form

gtj(σ) = eAσ+B + Cσ +D, A,B,C,D ∈ R.

The application of the boundary conditions (3.46) and (3.47) leads to a system of four
nonlinear equations for four unknowns A,B,C,D. This system is then solved by an
iterative scheme. We utilized Scilab’s fsolve(. . . ) solver for that purpose. Finally,
the function gsatj is defined as, cf. (3.43),

gsatj (σ) = Gx(σ,B
j
y) = ν0σ + (Hsat − ν0B

sat)
σ√

σ2 + (Bj
y)2

, σ ≥ Bsat
x,j .

Further, we construct the functions hk, k = 0, . . . , p, in the crosswise direction. We
recall that p = Bsat/δB. For a fixed k ∈ {0, . . . , p}, the function hk is

hk : [0,∞) → R, hk : By 7→ Hx

at constant value of Bx ≡ Bk
x. Analogously, we define the values

Bsat
y,k =

√
(Bsat)2 − (Bk

x)
2, Hsat

x,k = Hsat B
k
x

Bsat
,

cf. Fig. 3.5(b). Let Mk denote the last index j such that Bj
y < Bsat

y,k . The function hk
is then defined in τj = Bj

y as hk(τj) = gj(B
k
x), j = 1, . . . ,Mk. Further, we have for

τMk+1 = Bsat
y,k the value hk(τMk+1) = Hsat

x,k .
Because the symmetry considerations imply that the function hk is even, cf. also

(3.32), we get (hk)
′(0) = 0. We calculate from (3.45) the value of (hk)

′(Bsat
y,k) =
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∂Gx/∂By(B
k
x, B

sat
y,k). These relations may be taken into account by adding two more

interpolation nodes τ0 = −δy, τMk+2 = Bsat
y,k + δy and by setting

hk(τ0) = hk(0),

hk(τMk+2) = Hsat
x,k + (hk)

′(Bsat
y,k) · δy.

In our calculation, we chose δy = 0.1.
The values of hk(τj), j = 0, . . . ,Mk+2, are then interpolated similarly as the func-

tions gmj . Again, we used Scilab’s splin(. . . ),"monotone" primitive. Finally, from
(3.43) we obtain the expression of the function hk on the saturation region as

hk(σ) = Gx(B
k
x, σ) = ν0B

k
x + (Hsat − ν0B

sat)
Bk

x√
(Bk

x)
2 + σ2

, σ ≥ Bsat
y,k .

The figures of the functions hk for different k may be seen in Appendix A.
The values of the functions hk, k = 0, . . . , p, at grid points Bi,j, i, j = 0, . . . , p,

are then stored in a matrix G̃x. To optimize the properties of the function Gx and to
improve the convergence of the iterative scheme that will be introduced in Chapter 6,
some post-processing is suitable rather than working directly with these raw values.

First, the values G̃x
i,j are not necessarily monotone. 4 In fact, in our calculations

about 8% of elements G̃x
i,j of the matrix G̃x did not satisfy the relation

(G̃x
i,j ≤ G̃x

i+1,j) and (G̃x
i,j ≤ G̃x

i,j+1).

Therefore, we perform the monotonization process on the values of the matrix G̃x. The
process is as follows: we order the elements of the matrix in the way demonstrated in
Fig. 3.6 (a). Then we do for m1, . . . ,m(p+1)2 :

(G̃x
i,j > G̃x

i+1,j) or (G̃x
i,j > G̃x

i,j+1) ⇒ G̃x
i,j

def
= min

{
G̃x

i+1,j, G̃x
i,j+1

}
,

where G̃x
i,j ≡ G̃x

mk
, k = 1, . . . , (p + 1)2. Certainly, the values with indices that are out

of range are not tested. It is easily seen that the values G̃x
i,j are monotone after the

monotonization process is performed. The greatest relative change in the values of the
matrix was not more than 2% in our case.

The monotonized values are then smoothed by the smoothing process that involves
(discrete) convolution with a 7×7 Gaussian convolution kernelGσ given by the relations

Gσ(xi, yj) = N e−
x2i+y2j

2σ2 , xi, yj = −3,−2, . . . , 2, 3,

where N is the normalizing constant. The kernel is shown in Fig. 3.6 (b) with the
value of σ = 0.5 that was used in our calculations. Performing twice the smoothing
process caused the greatest relative change in the matrix values of 7%. Then the
monotonization process was reapplied to repair the minor monotonicity disruptions
caused by the smoothing. After that, the values were stored in the final matrix Gx.

However, the vector function G thus constructed is not, in general, irrotational, i.e.
rotG 6= 0. We will see in Chapter 6 that the iteration scheme for solving the upcoming
PDEs is also applicable for such a function, although this property leads to solving
linear systems with non-symmetric matrices in every iteration step that considerably
degrade the convergence rate of the iteration process.

4The monotonicity is naturally defined as (i1 ≤ i2 and j1 ≤ j2) ⇒ G̃x
i1,j1

≤ G̃x
i2,j2

.
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Figure 3.6: (a) The ordering of matrix elements for monotonization, (b) Gaussian
convolution kernel Gσ with σ = 0.5.

We propose a possible way of working out this problem. From (3.45) we see that
in the saturation region it holds

rotG = 0, B ≥ Bsat.

Let us define the set Breg = {B ∈ R2 : B ≤ Bsat}. Since the function G̃ = G|Breg fulfills
G̃ ∈ [H1(Breg)]

2
, there exists its unique decomposition

G̃ = grad p+ curl q on Breg (3.48)

from Theorem 3.2. We are seeking the irrotational part of G̃, i.e. the function grad p.
Performing the divergence operation on both sides of (3.48) yields

∆p = div G̃. (3.49)

Let p = p |∂Breg denote the trace (in the classical sense) of the function p on ∂Breg.
From (3.30) we see that G̃(x) is perpendicular to ∂Breg for every x ∈ ∂Breg. Since
curl q · n|∂Breg= 0, cf. Theorem 3.2, we deduce from (3.48) that G̃ = grad p on ∂Breg.
This implies that the trace p is constant on ∂Breg, i.e. there exists K ∈ R such that

p|∂Breg= K. (3.50)

The relations (3.49)–(3.50) define a Dirichlet boundary value problem for the Poisson
equation. By solving this problem we obtain the function p whose gradient is the
irrotational part of G̃. Since it is the gradient of p we are seeking, the constant K can
be chosen arbitrarily. However, we did not implement the thoughts of this paragraph
so their usefulness is not verified.

3.3 3D modelling of magnetically anisotropic lami-

nated structures

The cores of electrical devices are usually made up of steel and dielectric laminations.
A 3D model of such a laminated structure is proposed in Section 3.3.2. Any 3D model,
however, needs to access the full 3D B-H characteristics of the steel. This bears some
difficulties which are to be discussed first.
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Figure 3.7: All possible directions of domain moments in the initial, non-magnetized
state (a), illustration of supposed and measured directions of induction vectors when
the field is applied in the magnetically hard direction in the sheet plane (b).

3.3.1 The problem of obtaining 3D B-H characteristics of a
steel sheet from 2D measurements

We have discussed in Section 3.2 how to construct 2D B-H characteristics of a material
represented by vector functions F ,G : R2 → R2. In order to get full 3D characteristics
of the material, we need to extend F ,G on R3, i.e. to find mappings

F∗,G∗ : R3 → R3,

F∗(x, y, 0)T =
(
F(x, y), 0

)T
, G∗(x, y, 0)T =

(
G(x, y), 0

)T
.

However, this bears some difficulties.
Let us consider a Goss-textured steel. Being aware of the cubic structure of the

texture, an idea is to extend F in accordance to the texture symmetry, setting e.g.
F∗(H〈100〉) = RF(HRD), where HRD is a vector in the rolling direction, H〈100〉 denotes
a vector in one of the another magnetically easy directions (crystallographic 〈100〉
directions, cube edges) with |HRD| = |H〈100〉| and R is the rotation matrix that maps
HRD to H〈100〉.

This process would be correct if there were not any preferred directions of magnetic
moments of the individual magnetic domains (we call them domain moments for the
purpose of this section). We will give an argument that the domain moments lie
preferably in the sheet plane.

Fig. 3.7 (a) shows all 6 possible directions of domain moments in the initial, non-
magnetized state. We will recall the magnetization process described in Chapter 2.
The field Hα will be applied in the direction α = [111] (cube body diagonal, see
Fig.2.2) . If all directions of domain moments were equally preferred, the supposed
induction vector Bsup

α should be, due to the symmetry, parallel to Hα, as shown on
Fig. 3.7 (b) . Nevertheless, the real, measured value Breal

α is different. The direction of
Breal

α indicates the superior influence of domain moments parallel to RD and leads us
to a conclusion that they are relatively more numerous than the others.

Because the physical situation is similar for isotropic sheets, the domain moments
may preferably lie in directions with lesser deviations from the sheet plane as well,
although there is no grain orientation which would indicate this kind of anisotropy by
measurements performed in the sheet plane. Hence we conclude that not even isotropic
sheets are ideally isotropic.
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Figure 3.8: The process of homogenization consists in replacing the lamination (a) by
a homogeneous block (b) with similar magnetic properties.

Any eventual accurate 3D model of a homogeneous steel sheet should be aware of
the sheet’s properties pointed out here. Since no one has dealt with the problem yet,
it remains open.

3.3.2 3D model of steel-dielectric lamination

Bastos and Quichaud suggested a 3D model of laminated structures made up of thin
steel and dielectric layers [2] . The steel was supposed to be perfectly isotropic. We
are going to extend the model for an arbitrary anisotropic steel whose 3D magnetic
properties are given by functions F ,G.

Let ε and 1 − ε be the relative amounts of volume occupied by the dielectric and
the steel inside the lamination respectively. Let us consider a small region of the
lamination, small enough so that the flux densities and field strengths are constant
in both materials and large enough to cover several laminations. Such a region is
depicted in Fig. 3.8 (a), where Bf and Hf are the values of the flux density and the
field strength in the steel and Ba and Ha are the analogical values in the dielectric.
As described in Secion 2.1.2 , Ba 6= Bf and Ha 6= Hf . The model comes with an idea
of homogenization , i.e. replacing the lamination by a homogeneous block with proper
B-H characteristics. The final vector H (or B) should be a weighted sum of Hf (or
Bf ) and Ha (or Ba) with weights being the relative quantities of steel and dielectric:

H = εHa + (1− ε)Hf , (3.51)

B = εBa + (1− ε)Bf . (3.52)

The aim is to give a method for computing H from B and vice versa.
We suppose that the material properties of the steel and the dielectric are given by

equations

Hf = G(Bf ), Ha = ν0Ba, (3.53)

Bf = F(Hf ), Ba = µ0Ha. (3.54)

In this section, the subscript t will denote the tangential part of a vector in the plane
of the sheets, similarly n the normal part. We have, for example, Hf = Hft+Hfn etc.

The equations (2.8)–(2.9) guarantee the continuity of tangential part of the field
strength and normal part of flux density through the lamination, so we have
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Hat = Hft
def
= Ht, (3.55)

Ban = Bfn
def
= Bn. (3.56)

From (3.51)–(3.52) we obtain

Hn = εHan + (1− ε)Hfn,

Bt = εBat + (1− ε)Bft,

and by expressing the dielectric quantities we have

Han =
1

ε
[Hn − (1− ε)Hfn], (3.57)

Bat =
1

ε
[Bt − (1− ε)Bft]. (3.58)

From (3.51), (3.53), and (3.56) we obtain

H = εHa + (1− ε)Hf = εν0Ba + (1− ε)G(Bf ) =

= εν0(Bat +Bn) + (1− ε)G(Bft +Bn). (3.59)

Similarly, from (3.52), (3.54), and (3.55) we obtain

B = εBa + (1− ε)Bf = εµ0Ha + (1− ε)F(Hf ) =

= εµ0(Ht +Han) + (1− ε)F(Ht +Hfn). (3.60)

By placing Bat from (3.58) and Han from (3.57), the equations (3.59) and (3.60) can
be rewritten into the form

H = ν0[εBn +Bt−(1− ε)Bft] + (1− ε)G(Bft +Bn), (3.61)

B = µ0[εHt +Hn−(1− ε)Hfn] + (1− ε)F(Ht +Hfn). (3.62)

In the cartesian system of coordinates with z direction being perpendicular to the
laminations, (3.61)–(3.62) lead to a set of equations

H1 = ν0[B1 − (1− ε)X] + (1− ε)G1(X,Y,B3)

H2 = ν0[B2 − (1− ε)Y ] + (1− ε)G2(X,Y,B3)

H3 = ν0 εB3 + (1− ε)G3(X, Y,B3)

B1 = µ0 εH1 + (1− ε)F1(H1, H2, Z)

B2 = µ0 εH2 + (1− ε)F2(H1, H2, Z)

B3 = µ0[H3 − (1− ε)Z] + (1− ε)F3(H1, H2, Z),

(3.63)

where (X,Y, Z) = (Bft,1, Bft,2, Hfn,3) may be regarded as a vector of dummy variables
not needed as the output of the calculations.
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For every fixed H or B ∈ R3, (3.63) represents a system of 6 nonlinear equations
for 6 unknowns. Solving the system gives the desired value of B or H.

The model was previously studied for ideally isotropic steels. In this case, the steel
characteristics are described by its relative permeability

Bf = µ0µr(H
2
f )Hf , (3.64)

Hf =
1

µ0µr(H2
f )
Bf . (3.65)

Let us suppose a fixed value of field strength H and search for the corresponding flux
density B. Let µf,H denote the value of the steel permeability corresponding to H, i.e.

µf,H
def
= µ0µr(H

2
f )|Hf=Hf (H) . (3.66)

Due to the symmetry of the steel properties the vectors Bt and Ht are parallel, and
trivially, Bn and Hn are also parallel. So there exist constants µt, µn such that

Bt = µtHt, (3.67)

Bn = µnHn. (3.68)

In order to calculate B, we have to find µt and µn.
By extracting the tangential part of (3.52) and with regard to (3.54), (3.55), (3.64),

and (3.66) , we obtain

Bt = εBat + (1− ε)Bft = εµ0Ht + (1− ε)µf,HHt. (3.69)

Comparing (3.69) with (3.67) results in

µt = εµ0 + (1− ε)µf,H. (3.70)

Similarly, by extracting the normal part of (3.51) and applying (3.53), (3.56), (3.65),
and (3.66) we obtain

Hn = εHan + (1− ε)Hfn = εν0Bn + (1− ε)
1

µf,H

Bn. (3.71)

Comparing (3.71) to (3.68) gives

1

µn

= εν0 +
1− ε

µf,H

. (3.72)

We see from equations (3.70) and (3.72) that it is enough to compute µf,H = µ0µr(H
2
f )

to obtain µt and µn (the value of H2
f is unknown).

Because Bfn = Bn, we obtain from (3.64), (3.66), and (3.68)

Hfn =
µn

µf,H

Hn.

Thus, we have

µf,H

µ0

= µr(H
2
f ) = µr(H

2
ft +H2

fn) = µr

(
H2

t +

(
µn

µf,H

)2

H2
n

)
. (3.73)

From (3.72) we obtain
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µf,H

µn

=

(
1− ε

µf,H

+ εν0

)
µf,H =

(
1− ε+ εν0µf,H

)
and (

µn

µf,H

)2

=
1

(1− ε+ εν0µf,H)2
. (3.74)

Placing (3.74) into (3.73) results in the final equation

ν0µf,H = µr

(
H2

t +
H2

n

(1− ε+ εν0µf,H)

)
.

We see that in the case of an ideally isotropic sheet, there is just one nonlinear
equation to solve instead of the whole system (3.63) .
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Chapter 4

The equations for scalar and vector
magnetic potentials

The objective of the engineering problem P is to compute the distribution of the
magnetic field strength H and magnetic induction B in a domain of interest Ω. We
can limit ourselves to compute just one of these quantities because the other one can
be calculated from the constitutive relations, cf. Section 2.2. The domain Ω commonly
comprises more subdomains V1, . . . ,VN that represent the domains of various materials.
In this case, it would be difficult to work with equations (2.3)–(2.4) directly, because
H and B exhibit discontinuities on the material interfaces. Hence, it is more suitable
to reformulate these equations in terms of the vector and scalar magnetic potential for
the FEM computations. We introduce the potentials and present their mathematical
properties as deduced from particular problems, where the potentials are known.

Afterwards, the definition of an engineering problem P in terms of both potentials
is given. Further, the physical situation is often idealized in a way that leads to the
2D formulations for the potentials. These 2D formulations then serve as the basis for
defining an idealized engineering problem Q. In this work, we will mostly deal with
such an idealized 2D problem.

4.1 3D equations for magnetic potentials

4.1.1 Vector magnetic potential

Let V be a simply connected domain in R3 that is occupied by a homogeneous material.
Let the material’s constitutive relation is given by a function G such that

H = G(B). (4.1)

For convenience, we rewrite the equations (2.3)–(2.4):

rotH = j, (4.2)

divB = 0. (4.3)

From (4.3) we see that the vector field B is solenoidal on V . As a consequence, cf.
Theorem 3.1, there exists a (vector) function A : V → R3 such that

rotA(x) = B(x) , x ∈ V. (4.4)
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The function A is called the vector magnetic potential.
The above relation does not define the magnetic vector potential uniquely. There is

a degree of freedom left for choosing a gauge condition. The Coulomb gauge is usually
applied in case of a stationary magnetic field, that is,

divA = 0. (4.5)

From (4.1), (4.2), and (4.4) we obtain

rot(G(rotA(x))) = j , x ∈ V . (4.6)

The above equation is the differential equation for the vector magnetic potential in the
classical form when just one piece of homogeneous material is considered.

4.1.2 Scalar magnetic potential

Let V be as in Section 4.1.1. We now assume that the constitutive relation is given by
a function F such that

B = F(H). (4.7)

Let us suppose that there is no macroscopic current flow through the material. 1 Then
j = 0 on V and the equations (4.2)–(4.3) change to

rotH = 0, (4.8)

divB = 0. (4.9)

From (4.8) we see that the vector field H is then irrotational on V . With regards to
Theorem 3.1, there exists a function ϕ : V → R such that

gradϕ(x) = H(x), x ∈ V . (4.10)

The function ϕ is called the scalar magnetic potential.
From (4.7), (4.9), and (4.10) we obtain

− div(F(gradϕ(x))) = 0, x ∈ V .
The above equation is the differential equation for the scalar magnetic potential in the
classical form when just one piece of a homogeneous material is considered and when
no current flow occurs inside that material.

4.1.3 Global potentials and their properties

Let Ω ⊂ R3 be a simply connected domain, Ω = Ωmat∪ Ωint and Ωmat =
⋃N

i=1 Vi

are as in Section 2.1.2. Let the material constitutive relations are given by functions
Fi,Gi, i = 1, . . . , N .

The global vector (magnetic) potential A : Ω → R3 is defined as a vector function
that satisfies the equation

rotA = B on Ω

in the sense of distributions. Let us suppose that the global vector potential exists.
Experiences indicate the following properties of A [35]:

1More accurately, we would say no free macroscopic current flow. The so called bound currents
are hidden in the definition of H and are not included in the quantity j.
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(V1) A ∈ [C(Ω)]3 ; Ai ≡ A|Vi
are smooth on Vi, i = 1, . . . , N .

(V2) The derivatives of A are discontinuous in Ωint.

(V3) A ∈ H(rot,Ω) ∩H(div,Ω).

(V4) The functions Ai satisfy the equation

rot(Gi(rotAi(x))) = j , x ∈ Vi.

The spaces H(rot,Ω) and H(div,Ω) are defined as

H(rot,Ω) = {v ∈ [L2(Ω)]3 : rotv ∈ [L2(Ω)]3},
H(div,Ω) = {v ∈ [L2(Ω)]3 : div v ∈ L2(Ω)},

where the operators rot and div are understood in the sense of distributions. Generally,
the derivatives ∂iAj /∈ L2(Ω). As experiments show, the derivatives of the potential can
exhibit singularities at the corners of non-convex domains and material interfaces [9] .

Moreover, if A fulfills the gauge condition

divA = 0 on Ω (4.11)

in the sense of distributions, then we say that the global vector potential fulfills the
gauge condition (4.11) .

Similar properties are observed for the global scalar magnetic potential. When there
is no macroscopic current flow through Ω, we can define the global scalar (magnetic)
potential ϕ : Ω → R as a scalar function that fulfills

gradϕ = H on Ω

in the sense of distributions.
The properties of the global scalar potential are analogous to that of the global

vector potential:

(S1) ϕ ∈ C(Ω) ; ϕi ≡ ϕ|Vi
are smooth on Vi , i = 1, . . . , N .

(S2) The derivatives of ϕ are discontinuous on Ωint.

(S3) ϕ ∈ H1(Ω).

(S4) The functions ϕi satisfy the equation

− div(F i(gradϕi(x))) = 0 , x ∈ Vi.

4.1.4 Definition of the engineering problem P
Let Ω ⊂ R3 be a simply connected domain, Ω = Ωmat∪Ωint and Ωmat =

⋃N
i=1 Vi are as

in Section 2.1.2 and Fi,Gi are the material characteristics of the homogeneous material
that occupies Vi, i = 1, . . . , N .
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The engineering problem PA is defined as the boundary value problem that is given

in its classical form as follows. Find a function A ∈
[
C2(Ω)

]3
such that

rot(G(rotA)) = j in Ω,

where G is defined as
G(x;v) = Gi(v), x ∈ Vi,v ∈ R3.

Moreover, A satisfies prescribed boundary conditions on Γ = ∂Ω. The boundary
conditions for 3D problems are fairly different from that for 2D problems and their
discussion is beyond the scope of this work. The engineering problem PA will be also
called the boundary value problem PA.

The engineering problem Pϕ is defined as the boundary value problem that is given
in its classical form as follows. Find a function ϕ ∈ C2(Ω) such that

− div(F(gradϕ)) = 0 in Ω,

where F is defined as

F(x;v) = Fi(v), x ∈ Vi,v ∈ R3.

Moreover, ϕ satisfies prescribed boundary conditions on Γ = ∂Ω. The engineering
problem Pϕ will be also called the boundary value problem Pϕ.

The engineering problem P then may refer to one of the problems Pϕ or PA.

4.1.5 Comparision of 3D formulations

We have seen so far that there are two possible boundary value problems to solve
that lead to the computation of the respective potentials. The choice of the particular
formulation depends on the physical situation. Both have their advantages that can
be summarized as follows:

• The vector magnetic potential is defined generally without the limitation that
imposes no current flow through the region Ω. Nevertheless, the computation
of the vector potential is much more complicated and resource demanding than
the scalar potential because a multidimensional FEM scheme must be used for
the computation. Moreover, when Ω is a non-convex domain, we have generally
A /∈ [H1(Ω)]

3
. That requires a special choice of finite elements [9]. Further, the

gauge condition must also be reflected in the choice of the FEM space.

• The scalar magnetic potential is generally much easier to compute because it is a
scalar function and there are no further gauge conditions imposed to ensure the
uniqueness of the potential. However, the scalar potential is applicable in regions
with no current flow only.

4.2 2D equations for magnetic potentials

4.2.1 Obtaining 2D equations from 3D equations

In many practical problems, the magnetic flux occurs mainly in two dimensions. Let
us associate a cartesian coordinate system Oxyz with a physical situation where we
can suppose

B3 ≡ 0, H3 ≡ 0, (4.12)
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Figure 4.1: (a) The physical and mathematical domains of interest of an idealised
engineering problem Q. (b) A rectangle from Lemma 4.1.

where B = (B1, B2, B3) and H = (H1, H2, H3).
In this case, the (mathematical) domain of interest Ω may be reduced to a 2D

section of that of the 3D problem. Accordingly, let Ω ⊂ R2 be a simply connected
domain, Ω = Ωmat∪ Ωint and Ωmat =

⋃N
i=1 Vi are defined in analogy with in Section

2.1.2. Now we have, cf. also (2.7),

meas2 Ω
int = 0. (4.13)

With regard to (4.12), we can assume

B,H : Ω → R2,

B = B(x, y), H = H(x, y).
(4.14)

Physically, this corresponds to an idealized situation with a (physical) domain of
interest Ω∗ ⊂ R3 being an infinite cylinder whose base is identical to Ω, i.e. Ω∗ = Ω×R,
cf. Fig. 4.1(a). 2 In this case, all physical quantities, defined on the (physical) domain
Ω∗, are functions of first two variables only, e.g.

A∗, j∗ : Ω∗ → R3,

A∗ = A∗(x, y), j∗ = j∗(x, y).

Throughout this section, all corresponding physical domains and quantities are denoted
by asterisks, i.e. V∗

i = Vi × R, (Ωint)∗ = Ωint × R etc. Obviously, it holds

meas3(Ω
int)∗ = 0. (4.15)

We will now examine the equation for the vector magnetic potential (4.6) for an
idealized problem. We prove the following lemma first.

2This idealization is widely used in computations of the magnetic field in a steel sheet. The question
is to what extent is this physical model that implies an infinite thickness accurate when applied to a
0.30mm thin sheet.
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Lemma 4.1. Let us suppose an idealized physical situation described in this section.
Let the global vector magnetic potential A∗ exist in Ω∗ and let it have the properties
(V1)–(V2) from Section 4.1.3 . Then

(i) The electric current j∗ = (j∗1 , j
∗
2 , j

∗
3) flows in the z-direction only, i.e. j∗ ≡

(0, 0, j∗3) a.e. in Ω∗.

(ii) If V∗ : Ω∗ → R2, V∗ = (A∗
1, A

∗
2) denotes the first two components of the vector

potential A∗, then it holds rot2V
∗ = 0 a.e. in Ω∗, where rot2 V

∗ = ∂1V
∗
2 − ∂2V

∗
1 .

Proof. (i) Let i ∈ {1, . . . , N} be fixed. Let us choose an arbitrary rectangle R ⊂ V∗
i

such that the unit normal nR to its surface (that is determined uniquely from the
orientation of ∂R) is perpendicular to the z-axis. One such rectangle is shown in
Fig.4.1(b). Let ∂R ≡ l =

⋃4
i=1 li be the (oriented) boundary curve of R, where li are

line segments and l2, l4 are parallel to z. From (4.14) we have∫
l1

H∗ · ds = −
∫
l3

H∗ · ds, (4.16)

and from (4.12) we obtain ∫
l2

H∗ · ds =
∫
l4

H∗ · ds = 0. (4.17)

The equations (4.16)–(4.17) lead to ∮
l

H∗ · ds = 0.

With reference to Ampère’s law (2.5) we obtain the net current I = 0 through the
rectangle R.

Now, let us suppose that there exists x ∈ V∗
i such that j0

def
= (j∗1(x), j

∗
2(x), 0) 6= 0.

Because j∗ is continuous on V∗
i , there exists a (small) rectangle R̃ ⊂ V∗

i such that the
unit normal to its surface nR̃ is parallel to j0 and

j∗ · nR̃ > 0 ∀x ∈ R̃. (4.18)

Obviously, nR̃ is perpendicular to the z-axis. From (4.18) we obtain that the net current
IR̃ through R̃ is

IR̃ =

∫
R̃

j · dS =

∫
R̃

j · nR̃ dS > 0.

That is a contradiction with IR̃ = 0. This implies j∗1 = j∗2 ≡ 0 on V∗
i . Since this holds

for every i = 1, . . . , N , from (4.15) we conclude that j∗1 = j∗2 ≡ 0 a.e. in Ω∗

(ii) Let i ∈ {1, . . . , N} be fixed. Let us denote, consistently with the above formu-
lations, V = V∗|Ω, V∗

i = V∗|V∗
i
and Vi = V∗

i |Vi
. The condition (V1) from Section 4.1.3

gives V∗
i ∈ [C1(V∗

i )]
2. This implies

Vi ∈ [C1(Vi)]
2.

Let l ⊂ Vi be an arbitrary closed curve that embraces a surface S ⊂ Vi. The
magnetic flow Φm through S can be expressed as
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Φm
def
=

∫
S

B∗ · dS =

∫
S

rotA∗ · dS =

∮
l

A∗ · ds =
∮
l

V∗
i · ds =

∮
l

Vi · ds, (4.19)

where we used (4.4) and Stokes’ theorem.
Because (4.12) holds, Φm = 0 and we have∮

l

Vi · ds = 0,

for any closed curve l ⊂ Vi. With regard to Green’s theorem we see that rotVi = 0 in
Vi. Because V∗ = V∗(x, y), we obtain rot2 V

∗
i = 0 in V∗

i . Again, since this holds for
every i = 1, . . . N , with regard to (4.15) we conclude that rot2 V

∗ = 0 a.e. in Ω∗.

Because it is the rotation of the vector potential A∗ that has the physical meaning,
we can add any irrotational vector field Z∗ to A∗ and preserve its physical information.
Let us choose

Z∗ = −(V∗, 0) = −(A∗
1, A

∗
2, 0).

It is easy to verify, with regard to Lemma 4.1, that rotZ∗ = 0 a.e. in Ω∗. We then put

Ã∗ = A∗ + Z∗ = (A∗
1, A

∗
2, A

∗
3)− (A∗

1, A
∗
2, 0) = (0, 0, A∗

3).

We emphasize, that the magnetic vector potential Ã∗ describes the same physical
situation as A∗. Therefore, we may always consider the vector potential A∗ to be of
the form

A∗ = (0, 0, A∗).

Moreover, the potential in this form automatically fulfills the Coulomb gauge (4.5),
because A∗ = A∗(x, y).

We see that it is obviously enough to compute A = A∗|Ω , where Ω ⊂ R2. Hence,
in case of this idealized physical situation, the magnetic vector potential is given by a
real function A = A(x, y) of two variables x, y.

If we put j∗ ≡ j∗3 and j = j∗|Ω, the equations (4.2) and (4.4) then take the form

rotH = j, (4.20)

curlA = B. (4.21)

The mathematical properties of the global function A are analogous to that of the
vector potential A, cf. (V1)–(V2) in Section 4.1.3 .

Let the 2D material characteristics Gi : R2 → R2 are given, i = 1, . . . , N . The
equations for Ai = A|Vi

can then be derived from (4.1), (4.20), and (4.21):

rot(Gi(curlAi(x))) = j, x ∈ Vi, i = 1, . . . , N.

Since rotA∗ = (∂2A
∗,−∂1A∗, 0), we see that the property (V3) reduces in 2D case

to

A ∈ H1(Ω).
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The situation is more straightforward for the scalar magnetic potential. Let us
suppose our idealized physical situation with no current flow through Ω∗. Let ϕ∗ =
ϕ∗(x, y) be the global scalar magnetic potential, ϕ = ϕ∗ |Ω. The equations (4.9) and
(4.10) remain the same, i.e.

divB = 0, (4.22)

gradϕ = H, (4.23)

where divu = ∂1u1 + ∂2u2 and grad v = (∂1v, ∂2v).
When the 2D magnetic characteristics Fi : R2 → R2 are given in Vi, i = 1, . . . , N ,

the equations for ϕi = ϕ|Vi
can be derived from (4.7), (4.22), and (4.23):

− div(F i(gradϕi(x))) = 0, x ∈ Vi , i = 1, . . . , N. (4.24)

Again, the mathematical properties of the global scalar potential ϕ are analogue to
that in the 3D case, cf. (S1)–(S3) in Section 4.1.3 .

4.2.2 Definition of an idealized engineering problem Q
Let Ω ⊂ R2 be a simply connected domain, Ω = Ωmat∪ Ωint and Ωmat =

⋃N
i=1 Vi are

defined in analogy with Section 2.1.2 and Fi,Gi are the material characteristics of the
homogeneous material that occupies Vi, i = 1, . . . , N .

The (idealized) engineering problem QA is defined as the boundary value problem
that is given in its classical form as follows. Find a function A ∈ C2(Ω) such that

rot(G(curlA)) = j in Ω, (4.25)

where G is defined as
G(x;v) = Gi(v), x ∈ Vi,v ∈ R2.

Moreover, A satisfies prescribed boundary conditions on Γ = ∂Ω, see Section 4.2.3
below. The engineering problem QA will be also called the boundary value problem
QA.

The (idealized) engineering problem Qϕ is defined as the boundary value problem
that is given in its classical form as follows. Find a function ϕ ∈ C2(Ω) such that

− div(F(gradϕ)) = 0 in Ω, (4.26)

where F is defined as

F(x;v) = Fi(v), x ∈ Vi,v ∈ R2.

Moreover, ϕ satisfies prescribed boundary conditions on Γ = ∂Ω, see Section 4.2.3
below. The engineering problem Qϕ will be also called the boundary value problem Qϕ.

The engineering problem Q then may refer to one of the problems Qϕ or QA.

4.2.3 Boundary conditions for idealized engineering problems

The nature of magnetic fields suggests the field expands to infinity. Hence, the in-
finite boundary conditions are sometimes prescribed on ∂Ω. Practically, these condi-
tions are implemented by surrounding the device of interest by one layer of infinite or
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open-boundary finite elements [5] . However, in many cases we may suppose that the
magnetic flux is confined by a device’s outer boundary and thus the problem can be
restricted to a bounded domain of interest Ω. We will limit ourselves to consider such
a bounded domain exclusively in this work.

By far the most common boundary conditions for both the vector and scalar mag-
netic potentials are the piecewise constant Dirichlet and homogeneous Neumann bound-
ary conditions. We will briefly examine the practical situations where these conditions
apply.

We see from equation (4.21) and from the definition of the curl operator that gradA
is perpendicular to B. Hence we deduce that the magnetic flux line, i.e. an oriented
curve whose tangential vector direction at any point is the direction of the magnetic flux
density vector B, is in fact a line of constant magnetic vector potential A. The constant
Dirichlet boundary condition imposed on A on a continuous curve Γ̃ ⊂ Γ1 ⊂ ∂Ω then
actually corresponds to the fact that Γ̃ is a magnetic flux line. This condition can
be used on the outer boundary of a magnetically closed device or when considering a
symmetry of the problem.

Now we deduce the physical meaning of the homogeneous Neumann condition. We
emphasize that we mean a generalized Neumann condition for nonlinear problems, as
is introduced in [14]. In case of equation (4.25), the condition on Γ2 ⊂ ∂Ω is

G(curlA) · t = 0 on Γ2, (4.27)

where t = (t1, t2) is a unit tangent vector to Γ2. Since from (4.21) and (3.2) we get
G(curlA) = H, we see from (4.27) that

H⊥ t on Γ2,

where t = (t1, t2) is a unit tangent vector to Γ2, i.e. the magnetic field vectors enter
the boundary at right angles on Γ2. This boundary condition can be used at the air
side of the steel-air interface, where it is known that the magnetic field enters the steel
under right angles [3], or, again, as a consequence of some symmetry considerations.

There is a duality in the boundary conditions for A and ϕ. The constant Dirichlet
condition imposed on A corresponds to the same physical situation where we would set
the homogeneous Neumann condition for ϕ and vice versa. Indeed, when considering
the piecewise constant Dirichlet boundary condition for ϕ on Γ1 ⊂ ∂Ω, we obtain

gradϕ⊥ t on Γ1,

and from (4.23) we have H⊥ t on Γ1.
Similarly, the homogeneous Neumann condition for equation (4.26) on Γ2 ⊂ ∂Ω is

F(gradϕ) · n = 0 on Γ2, (4.28)

where n = (n1, n2) is a unit outer normal to Γ2. Since from (4.23) and (3.1) we get
F(gradϕ) = B, we see from (4.28) that B is parallel to t, from where we conclude
that each continuous curve Γ̃ ⊂ Γ2 is a magnetic flux line.

4.2.4 Comparision of 2D formulations

Again, there are two possible boundary value problems to solve in the case of the
idealized physical problem. Being aware of the simplification of the equation for the
magnetic vector potential, we can conclude:
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• Since the solution of both boundary value problems is now equally difficult, the
description of the idealized situation in terms of the magnetic vector potential is
superior to that in terms of the scalar potential because no limits are imposed
on the physical problems, i.e. the electric currents can flow through Ω.

There are two more advantages why to solve the boundary value problem QA rather
than Qϕ. First, as we have seen in the previous section, a contour of the constant
potential A is a magnetic flux line. This facilitates the visualisation of the solution
since, in fact, it is the flow of the flux lines that an engineer is interested in.

Further, let C,D ∈ R2. The magnetic flux Φm through a curve whose end points
are C and D, cf. also (4.19), can in the 2D case be written as

Φm =

∫ (D)

(C)

B · dnt =

∫ (D)

(C)

gradA · dt = A(D)− A(C), (4.29)

where nt = (t2,−t1) is the vector perpendicular to t and B = curlA = (∂2A,−∂1A).
This fact is helpful in analyzing the visualized solution as well as in determining the cor-
rect boundary conditions when a prescribed magnetic flux is supposed to flow through
a modelled device, see also Section 6.3.1.

From these reasons, we will primarily study the engineering problem QA. However,
because of the analogy of the equations for both problems, the proposed theorems
for QA can easily be reformulated for Qϕ. Thus, only the final results and theorems
without detailed steps of the proofs will be proposed for Qϕ in Chapter 5 and finally,
in Chapter 6, the problem Qϕ will be omitted from our considerations.
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Chapter 5

Weak formulations of 2D boundary
value problems

This chapter examines the weak formulation of the boundary value problem Q. We
first introduce the definitions and theorems used in this and next chapters in Section
5.1. The weak formulation of the boundary value problem Q in terms of both the
vector and scalar magnetic potentials is presented in Section 5.2. The existence and
uniqueness theorems for the weak solutions are provided in Section 5.3. We also prove
that the problem of finding the weak solution of the boundary value problem Q is
equivalent to finding the minimum of a certain uniformly convex functional. This
functional will then be used in Chapter 6 in proving the convergence theorems for the
discrete solutions and in building a scheme for the FEM analysis.

5.1 Preliminary definitions and theorems

Theorem 5.1. Let G ∈ [C1(R2)]
2
. For every x, y ∈ R2 the following equality holds

G(y)− G(x) =
∫ 1

0

G ′(x+ s(y − x))(y − x) ds.

Proof. Let G = (G1,G2). The function

αi(s) = G ′
i(x+ s(y − x))(y − x)

is continuous on [0, 1] for i = 1, 2. Then we have∫ 1

0

G ′
i(x+ s(y − x))(y − x)ds =

[
Gi(x+ s(y − x))

]1
0
= Gi(y)− Gi(x).

In the following, Λn denotes the set of Lebesgue measurable subsets of Rn.

Theorem 5.2. Let Ω ∈ Λn and I ∈ Λk. Let f be a measurable function on Ω× I and
let there exist a constant K > 0 such that∫

Ω×I

|f(x, t)| dxdt ≤ K.

Then the function F (x) defined by
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F (x) =

∫
I

f(x, t) dt , x ∈ Ω,

is measurable on Ω, F ∈ L1(Ω), and

‖F‖L1(Ω) ≤ K.

Proof. The statement of the lemma is an easy consequence of the Fubini theorem,
whose proof can be found in [27] .

The symbol Ln will denote the set of bounded domains in Rn with Lipschitz con-
tinuous boundary.

Definition 5.3. Let Ω ∈ Ln, m ≥ 1 and

h = h(x; ξ)

be a function defined for almost all x ∈ Ω and for all ξ ∈ Rm. The function h is said
to be a Carathéodory function if

(i) for all ξ ∈ Rm the function
hξ(x) = h(x; ξ)

(regarded as a function of the variable x) is measurable on Ω.

(ii) for almost all x ∈ Ω the function

hx(ξ) = h(x; ξ)

(regarded as a function of the variable ξ) is continuous on Rm.

The fact that h is a Carathéodory function will be designated by h ∈ CAR.

Theorem 5.4. Let Ω ∈ Ln, m ≥ 1 and h(x, ξ) ∈ CAR. Let ui(x) , i = 1, . . . ,m are
measurable functions on Ω. Then the compound function

g(x) = h(x;u1(x), . . . , um(x))

is also measurable on Ω.

Proof. See [15].

Definition 5.5. Let Ω ∈ Ln and h ∈ CAR. The operator χ defined for m-tuples of
functions ui, i = 1, . . . ,m, that are measurable on Ω by the formula

χ(u1, . . . , um)(x) = h(x; u1(x), . . . , um(x)) , x ∈ Ω

is called the Nemickǐı operator given by the function h.

In the following, we will deal with a special subclass of the Carathéodory functions.

Definition 5.6. Let Ω ∈ Ln, p > 1 , q = p/(p−1). Then h ∈ CAR(p) if h ∈ CAR and
h fulfills the following condition; there exist c ≥ 0 and g ∈ Lq(Ω) such that for almost
all x ∈ Ω and for all ξ ∈ Rm

|h(x; ξ)| ≤ g(x) + c
m∑
i=1

|ξi|p−1. (5.1)
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Theorem 5.7. Let Ω ∈ Ln, p > 1 , q = p/(p−1). Let h ∈ CAR(p). Then the Nemickǐı
operator χ given by the function h is a continuous operator χ : [Lp(Ω)]m → Lq(Ω).

Proof. See [15].

Let X be a Banach space. Its norm will be designated as ‖·‖X . Particularly, for
Ω ∈ Ln the symbols ‖·‖0 and ‖·‖1 denote the standard norms in L2(Ω) and H1(Ω),
respectively. The seminorm | · |1 on H1(Ω) is defined by

|u|1 =
[ n∑

i=1

∫
Ω

|∂iu|2 dx
] 1

2

.

Theorem 5.8. Let Ω ∈ Ln and Γ1 is a relatively open subset of ∂Ω, Γ1 6= ∅. Let

V = {v ∈ H1(Ω) | v = 0 on Γ1}.

in the sense of traces. Then the form

g(u, v) =
n∑

i=1

∫
Ω

∂iu ∂iv dx

is a scalar product on V , the couple (V, g) is a Hilbert space and the induced norm | · |1
is equivalent to ‖·‖1.

Proof. The statement of the theorem is a consequence of the Friedrichs’ inequality
whose proof can be found in [42] .

Definition 5.9. Let X be a Banach space and F : X → R. The functional F is said
to be

• coercive, if

lim
‖u‖X→∞

F (u) = ∞.

• strictly convex, if for all u, v ∈ X, u 6= v and t ∈ (0, 1) it holds

F (tu+ (1− t)v) < tF (u) + (1− t)F (v).

Definition 5.10. Let X be a Banach space, F : X → R and u, v ∈ X. If there exists
a finite limit

dF (u; v) = lim
t→0

F (u+ tv)− F (u)

t
,

then dF (u; v) is called the differential of F in u ∈ X in the direction v. Moreover, if
for u ∈ X the differential dF (u; v) exists for all v ∈ X, and if the mapping

dF (u)(v) = dF (u; v)

is linear and continuous, i.e. dF (u) ∈ X∗, then F is said to have the Gâteaux derivative
F ′(u) = dF (u) in u ∈ X. If the derivative exists for all u ∈ X, then F is said to be
differentiable in the Gâteaux sense on X.

Let F ′(u) exist for all u ∈ X. Let u, v1, v2 ∈ X. If there exists a finite limit

55



d2F (u; v1, v2) = lim
t→0

dF (u+ tv2; v1)− dF (u; v1)

t
,

then d2F (u; v1, v2) is called the second differential of F in u ∈ X in the directions v1, v2.
Moreover, if for u ∈ X the second differential d2F (u; v1, v2) exists for all v1, v2 ∈ X
and, if the mapping

d2F (u) : X → X∗,[
d2F (u)(v2)

]
(v1) = d2F (u; v1, v2)

is linear and continuous, then F is said to have the second Gâteaux derivative F ′′(u) =
d2F (u) in u ∈ X. If the second derivative exists for all u ∈ X, then F is said to be
twice differentiable in the Gâteaux sense on X.

Definition 5.11. Let X be a Banach space, F : X → R and u ∈ X. If there exists a
functional dF (u) ∈ X∗ such that

lim
‖v‖X→0

|F (u+ v)− F (u)− dF (u)(v)|
‖v‖X

= 0, (5.2)

then the functional dF (u) is called the Fréchet differential of F in u ∈ X. If the
differential exists for all u ∈ X, then F is said to be differentiable in the Fréchet sense
on X.

Theorem 5.12. Let X be a Banach space. Let the functional F : X → R be twice
differentiable in Gâteaux sense on X. Then for every u, v ∈ X exists θ ∈ (0, 1) such
that

F (v) = F (u) + F ′(u; v − u) +
1

2
F ′′(u+ θ(v − u); v − u, v − u).

Proof. See [6].

Theorem 5.13. Let X be a Banach space, F : X → R be a functional that is differen-
tiable on X in the Gâteaux sense. Moreover, if d2F (u; v1, v2) exists for all u, v1, v2 ∈ X
and if

d2F (u; v, v) > 0 , ∀u, v ∈ X , v 6= 0,

then F is strictly convex on X.

Proof. See [14].

Definition 5.14. Let X be a Banach space. Let the function F fulfill the assumptions
from Theorem 5.13. Additionally, if there exists a constant C > 0 such that it holds

d2F (u; v, v) ≥ C‖v‖2X ∀u, v ∈ X,

then F is said to be uniformly convex on X.

Definition 5.15. Let X be a Banach space and X∗ its dual. Then the operator
T : X → X∗ is said to be

• bounded, if the image of every bounded subset of X is a bounded subset in X∗.
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• strictly monotone, if for all u, v ∈ X, u 6= v is

〈Tu− Tv, u− v〉 > 0.

• strongly monotone, if there exists a constant K such that

〈Tu− Tv, u− v〉 ≥ K‖u− v‖2X ∀u, v ∈ X.

• coercive, if

lim
‖u‖X→∞

〈Tu, u〉
‖u‖X

= ∞.

• potential, if there exists a functional Π differentiable in the Gâteaux sense on X
such that

〈Π′(u), v〉 = 〈T (u), v〉

for all u, v ∈ X, i.e. Π′(u) = T (u) on X.

Theorem 5.16. Let X be a reflexive Banach space. Let the operator T : X → X∗ be
bounded, strictly monotone, coercive, and potential.

Then the problem of finding u ∈ X such that

〈Tu, v〉 = 0 ∀v ∈ X

has a unique solution. Moreover, the solution u ∈ X is the only one that minimizes
the potential Π of the operator T , i.e.

u = argmin
v∈X

Π(v),

and

Π(v) > Π(u), u 6= v.

Proof. See [14].

5.2 Weak formulations for scalar and vector mag-

netic potentials

Let us consider an engineering problem Q. We recall that Ω ⊂ R2 is a simply connected
domain, Ω = Ωmat ∪ Ωint, Ωmat =

⋃N
i=1 Vi, where meas2Ω

int = 0. In the following we
will suppose just one kind of the ferromagnetic material involved inQ. This assumption
is for the sake of making the upcoming definitions and theorem proofs more simple and
clearer and the generalization to an arbitrary number of ferromagnets is easy. If Vi , i =
1, . . . ,m are the domains of the ferromagnetic material, then Ω1 =

⋃m
i=1 Vi denotes

the subset of Ω that corresponds to that ferromagnet. Similarly, Ω0 =
⋃N

i=m+1 Vi is
the subset of Ω that includes the domains of paramagnets and diamagnets. Their
constitutive relations can be modelled accurately by a single linear function, cf. (2.15).
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5.2.1 Weak formulation of the boundary value problem QA

Let Ω ∈ L2 be a simply connected domain, Γ1 and Γ2 are disjoint relatively open
subsets of ∂Ω such that Γ1∪Γ2 = ∂Ω, Γ1 6= ∅ and both Γ1 and Γ2 have a finite number
of components. If we set û ≡ A, we can rewrite the boundary value problem QA in the
classical form:

Find a function û ∈ C2(Ω) such that

rot(G(curl û)) = j in Ω, (5.3)

û = u on Γ1, (5.4)

G(curl û) · t = 0 on Γ2, (5.5)

where t is a unit tangent vector to Γ2, j, u ∈ C(Ω), and G is defined as follows:

G(x,v) =

{
ν0v for x ∈ Ω0,v ∈ R2,

Gf (v) for x ∈ Ω1,v ∈ R2,
(5.6)

where Ω0 and Ω1 are disjoint measurable subsets of Ω, Ω = Ω0 ∪Ω1, and Gf is a model
of the material characteristics of the ferromagnet involved. Let the function Gf has the
properties outlined by Theorem 3.4.

The weak formulation of the boundary value problem QA consists of finding a
function û ∈ H1(Ω) such that

û− u ∈ V, (5.7)∫
Ω

G(curl û) · curl v dx =

∫
Ω

j v dx ∀v ∈ V, (5.8)

where

V = {v ∈ H1(Ω) | v = 0 on Γ1} (5.9)

is the space of the test functions, u ∈ H1(Ω) and j ∈ L2(Ω).
So far, we do not know whether the integral in (5.8) exists at all for û, v ∈ V . This

and other issues are addressed in Section 5.3.

5.2.2 Weak formulation of the boundary value problem Qϕ

Let Ω, Γ1, and Γ2 are as in Section 5.2.1. If we set ϕ̂ ≡ ϕ, we can rewrite the boundary
value problem Qϕ in the classical form:

Find the function ϕ̂ ∈ C2(Ω) such that

− div(F(grad ϕ̂)) = 0 in Ω,

ϕ̂ = ϕ on Γ1,

F(grad ϕ̂) · n = 0 on Γ2,

where n is the unit outer normal to Γ2, ϕ ∈ C(Ω), and F is defined as follows:

F(x,v) =

{
µ0v for x ∈ Ω0,v ∈ R2,

Ff (v) for x ∈ Ω1,v ∈ R2,
(5.10)
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where Ω0 and Ω1 are as in Section 5.2.1 and Ff = G−1
f .

The weak formulation of the boundary value problem Qϕ consists of finding a
function ϕ̂ ∈ H1(Ω) such that

ϕ̂− ϕ ∈ V, (5.11)∫
Ω

F(grad ϕ̂) · grad v dx = 0 ∀v ∈ V, (5.12)

where V is given by (5.9) and ϕ ∈ H1(Ω).

5.3 The existence and uniqueness theorems for 2D

boundary value problems

We slightly revise the standard weak formulation of the boundary value problem QA.
We will find the function u ∈ V such that∫

Ω

G(curl(u+ u)) · curl v dx−
∫
Ω

j v dx = 0 ∀v ∈ V. (5.13)

For v ∈ V we define the operator T as follows:

〈Tv, w〉 =
∫
Ω

G(curl(v + u)) · curlw dx−
∫
Ω

j w dx ∀w ∈ V. (5.14)

Then the solution u ∈ V fulfills

〈Tu, v〉 = 0 ∀v ∈ V.

The aim is to verify the assumptions of Theorem 5.16, where X ≡ V . Therefore,
we need to analyze the properties of the operator T .

First, it follows from Theorem 5.8 that ‖·‖1 and | · |1 are equivalent norms on V .
This fact will be utilized in the following without further explanations.

Lemma 5.17. Let
hi(x; ξ1, ξ2) = Gi(ξ2,−ξ1) , i = 1, 2,

where G = (G1,G2) is a function defined by (5.6). Then hi ∈ CAR(2) , i = 1, 2.

Proof. Let ξ = (ξ1, ξ2) and let us perform the proof for i = 1.
Let ξ̃ ∈ R2 be fixed. We see that h1(x, ξ̃) is a constant function on Ω0 and Ω1.

Because Ω0 and Ω1 are measurable subsets of Ω and Ω = Ω0 ∪ Ω1, we conclude that
h1(x; ξ̃) as a function of x is measurable on Ω.

In the following, we will refer to the properties of the function Gf from Theorem 3.4.
From (5.6) we see that h1(x̃, ξ) is continuous on R2 for x̃ ∈ Ω0. Because Gf is continuous
on R2, we have that h1(x̃, ξ) is continuous on R2 for x̃ ∈ Ω1. Since Ω0∪Ω1 = Ωmat and
meas2(Ω \ Ωmat) = 0 we conclude that h1 ∈ CAR.

To show that h1 ∈ CAR(2) we need to find the constant c ≥ 0 and the function
g ∈ L2(Ω) from Theorem 5.8. From (5.6) and (3.30) we obtain the analytical expression
of h1 for |ξ| ≥ Bsat,

h1(x, ξ) =

{
ν0ξ2 , x ∈ Ω0,

ν0ξ2 −M sate(ξ2) , x ∈ Ω1,
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where ξ = (ξ1, ξ2) and |e(ξ2)| ≤ 1.
Because the magnitude of magnetization satisfies |Mξ| ≤ M sat for |ξ| ≤ Bsat, cf.

Section 3.1, we can choose c = ν0 and g ≡ M sat on Ω, and then the relation (5.1) will
be fulfilled for p = 2, ξ ∈ R2 and x ∈ Ωmat, hence h1 ∈ CAR(2).

Theorem 5.18. The operator T defined by (5.14) is a bounded operator T : V → V ∗.

Proof. Let u ∈ V be fixed, |u|1 ≤ K1. Let |u|1 = K2. We have

|〈Tu, v〉| ≤
∫
Ω

[∣∣∣G2(curl(u+ u))
∣∣∣∣∣∂1v∣∣+ ∣∣∣G1(curl(u+ u))

∣∣∣∣∣∂2v∣∣] dx+ ∫
Ω

|jv|dx.

Because curl(u+ u) ∈
[
L2(Ω)

]2
, it follows from Lemma 5.17 and Theorem 5.7 that

hi = Gi(curl(u+ u)) ∈ L2(Ω), i = 1, 2.

By using the Hölder inequality and Theorem 5.8 we obtain

|〈Tu, v〉| ≤
( 2∑

i=1

‖Gi(curl(u+ u))‖0
)
|v|1 +K3|v|1,

for a positive constant K3. Since the Nemickǐı operator given by the function hi is
continuous and because

‖curl(u+ u)‖[L2(Ω)]2 = |u+ u|1,

we finally obtain

|〈Tu, v〉| ≤ K4|u+ u|1|v|1 +K3|v|1 ≤ [K4(K1 +K2) +K3]|v|1 = K5|v1|,

where K4 and K5 are positive constants.
Since Tu is obviously linear, we observe that Tu ∈ V ∗. Moreover,

‖Tu‖V ∗ ≤ K5,

when |u|1 ≤ K1. We conclude that T is a bounded operator on V .

Theorem 5.19. The operator T defined by (5.14) is strongly monotone.

Proof. We have

〈Tu− Tv, u− v〉 =
∫
Ω

[
G(curl(u+ u))− G(curl(v + u))

]
curl(u− v) dx.

Let us define

Ii(u, v) =

∫
Ωi

[
G(curl(u+ u))− G(curl(v + u))

]
curl(u− v) dx , i = 0, 1.

From (5.6) we obtain
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I0(u, v) =

∫
Ω0

ν0
[
∂1(u+ u)− ∂1(v + u)

]
∂1(u− v)+

+ ν0
[
∂2(u+ u)− ∂2(v + u)

]
∂2(u− v) dx =

∫
Ω0

ν0[grad(u− v)]2 dx,

and

I1(u, v) =

∫
Ω1

[
− Gf,2(U1, U2) + Gf,2(V1, V2)

]
(−U2 + V2)+

+
[
Gf,1(U1, U2)− Gf,1(V1, V2)

]
(U1 − V1) dx =

∫
Ω1

[
Gf (U)− Gf (V )

]
(U − V ) dx,

where U = (U1, U2) = curl(u+ u) and V = (V1, V2) = curl(v + u).
Let K be the constant of uniform monotonicity of Gf . Then

I1(u, v) ≥
∫
Ω1

K|U − V |2 dx =

= K

∫
Ω1

[curl(u− v)]2 dx = K

∫
Ω1

[grad(u− v)]2 dx.

If we set K = min {ν0, K}, we then get

〈Tu− Tv, u− v〉 ≥ K

∫
Ω1

[grad(u− v)]2 dx = K|u− v|2.

Theorem 5.20. Let the function u have bounded derivatives, i.e. there exists a con-
stant K > 0 such that ∂iu(x) ≤ K a.e. in Ω, i = 1, 2. Then the operator T defined by
(5.14) is coercive.

Proof. Without the loss of generality, we may assume ∂iu(x) ≤ K for all x ∈ Ω .
In the following we will use the notation

I1(u) = −G2(curl(u+ u)) ∂1u,

I2(u) = G1(curl(u+ u)) ∂2u,

Let us set K̃ = 2(Bsat +K) and define for u ∈ V

Ωx = Ωx(u) = {x ∈ Ω : |∂1u(x)| ≥ K̃}, (5.15)

Ωy = Ωy(u) = {x ∈ Ω : |∂2u(x)| ≥ K̃}, (5.16)

Ω2 = Ω2(u) = Ωx(u) ∪ Ωy(u), (5.17)

Ω3 = Ω3(u) = Ω \ Ω2(u). (5.18)

Our aim is to find the estimates of I1(u) and I2(u) on Ω . Fig.5.1 shows a sketch of
how the domain Ω will be divided in order to find the estimates in different parts of Ω
that are denoted by (i)–(v). All cases will be treated separately.

(i) Let x ∈ Ω1 ∩ Ωx. Let us examine the argument of the function G. We have
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Figure 5.1: The divisions of the domain Ω for estimates (a) of I1(u) and (b) of I2(u).

(curl(u+ u))2 =
(
∂1u(x) + ∂1u(x)

)2
+
(
∂2u(x) + ∂2u(x)

)2 ≥ (
Bsat

)2
,

because x ∈ Ωx. We see that the argument reached the saturation region. Hence

I1(u) = −Gf,2

(
∂2u+ ∂2u,−∂1u− ∂1u

)
∂1u =

=
[
ν0(∂1u+ ∂1u)−M sate1(u)

]
∂1u,

where |e1(u)| ≤ 1. Since

|ν0∂1u| − |ν0∂2u| − |M sate2(u)| ≥
≥ ν0

[
|∂1u| − (K + µ0M

sat)
]
≥ ν0

[
|∂1u| − (K +Bsat)

]
,

we see that I1(u) ≥ 0. Then we obtain

I1(u) = |I1(u)| = ν0
∣∣∂1u+ ∂1u− µ0M

sate1(u)
∣∣|∂1u| ≥

≥ ν0

(
|∂1u| − |∂1u| − |µ0M

sate1(u)|
)
|∂1u| ≥

≥ ν0

(
|∂1u| − (K +Bsat)

)
|∂1u| ≥

ν0
2

∣∣∂1u∣∣2,
where the last inequality follows from (5.15), because for x ∈ Ωx it holds

|∂1u| ≥ 2(K +Bsat),

hence

(K +Bsat) ≤ 1

2
|∂1u|.

Analogously, for x ∈ Ω1 ∩ Ωy we obtain

I2(u) ≥
ν0
2

∣∣∂2u∣∣2.
(ii) Let x ∈ Ω0 ∩ Ωx. Then

I1(u) = ν0
(
∂1u+ ∂1u

)
∂1u.

Since x ∈ Ωx, we see that I1(u) ≥ 0. We can write

I1(u) = ν0
∣∣∂1u+ ∂1u

∣∣|∂1u| ≥ ν0
2

∣∣∂1u∣∣2,
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where the last inequality is obtained similarly as for x ∈ Ω1 ∩ Ωx.
Analogously, we have for x ∈ Ω0 ∩ Ωy

I2(u) ≥
ν0
2

∣∣∂2u∣∣2.
(iii) If x ∈ Ω1 ∩ (Ω2 \ Ωx), then

|I1(u)| =
∣∣ν0(∂1u+ ∂1u)−M sate1(u)

∣∣|∂1u| ≤
≤

[
ν0(K̃ +K) +M sat

]
K̃ =M1.

Analogously, for x ∈ Ω1 ∩ (Ω2 \ Ωy) we obtain

|I2(u)| ≤M1.

(iv) For x ∈ Ω1 ∩ Ω3 we have∣∣I1(u)∣∣ = ∣∣− Gf,2(∂2u+ ∂2u,−∂1u− ∂1u)
∣∣|∂1u| ≤M3,

where
M3 = K̃ · sup

|αi|≤K̃+K,
i=1,2

∣∣Gf,2(α1, α2)
∣∣.

Notice that M3 <∞ because Gf,2 is continuous on R2 .
Analogously, for x from the same set x ∈ Ω1 ∩ Ω3 we obtain

|I2(u)| ≤M3.

(v) Finally, for x ∈ Ω0 ∩ (Ω \ Ωx) we have

|I1(u)| =
∣∣ν0(∂1u+ ∂1u)

∣∣|∂1u| ≤ ν0(K̃ +K)K̃ =M2,

and similarly for x ∈ Ω0 ∩ (Ω \ Ωy)

|I2(u)| ≤M2.

Now, we obtain from Theorem 5.8 that there exists C > 0 such that∣∣∣∣ ∫
Ω

ju dx

∣∣∣∣ ≤ C|u|1.

Let us examine the norm |u|1. We have

|u|21 =
∫
Ω

(∂1u)
2 + (∂2u)

2dx =

=

∫
Ωx

(∂1u)
2dx+

∫
Ω\Ωx

(∂1u)
2dx+

∫
Ωy

(∂2u)
2dx+

∫
Ω\Ωy

(∂2u)
2dx ≤

≤
∫
Ωx

(∂1u)
2dx+

∫
Ωy

(∂2u)
2dx+ 2K̃meas2 Ω

def
= R(u) + 2K̃meas2Ω,

(5.19)

where we set

R(u) =

∫
Ωx

(∂1u)
2dx+

∫
Ωy

(∂2u)
2dx.
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From (5.19) we see that

|u|1 → ∞ ⇔ R(u) → ∞.

From the above results we obtain

∫
Ω

2∑
i=1

Ii(u) dx =

∫
Ωx

I1(u) dx+

+

∫
Ωy

I2(u) dx+

∫
Ω\Ωx

I1(u) dx+

∫
Ω\Ωy

I2(u) dx ≥

≥ ν0
2

[ ∫
Ωx

(∂1u)
2 dx+

∫
Ωy

(∂2u)
2 dx

]
−M meas2 Ω =

ν0
2
R(u)−M meas2Ω,

(5.20)

where

M = max
i=1,2,3

Mi.

Since we need (5.20) to be non-negative, we will consider only such u ∈ V that
fulfill

R(u) ≥ 2

ν0
M meas2Ω.

From (5.19) and (5.20) we finally obtain

〈Tu, u〉
|u|1

=
1

|u|1

[ ∫
Ω

2∑
i=1

Ii(u) dx+

∫
Ω

ju dx

]
≥

≥
ν0
2
R(u)−M meas2Ω√
R(u) + 2K̃meas2Ω

− C
R(u)→∞−−−−−→ ∞ .

Lemma 5.21. Let G be defined by (5.6) and h = (h1, h2) ∈ [L2(Ω)]2. Then the function

F (x) =

∫ h(x)

0

G(s) ds

is measurable on Ω and F (x) ∈ L1(Ω).

Proof. By selecting a line segment as the integration curve, whose parametrization is

γ(x; t) = th(x) , t ∈ (0, 1), x ∈ Ω,

we obtain

F (x) =

∫ h(x)

0

G(s) ds =
∫ 1

0

G(th(x))h(x) dt.

The aim is to verify the assumptions of Theorem 5.2 for the function

f(x, t) = G(th(x))h(x) , (x, t) ∈ Ω× [0, 1].
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The function f is measurable on Ω× [0, 1], cf. Lemma 5.17 and Theorem 5.4.
We shall find the upper bound of the functions

gi(x, t) = Gi(th(x)) , i = 1, 2.

that is independent of t. For x ∈ Ω0 we have

|gi(x, t)| = |ν0thi(x)| ≤ ν0|hi(x)|.

Let x ∈ Ω1. If |th(x)| ≤ Bsat, then the field magnitude

|Gf (th(x))| ≤ Hsat,

cf. Section 3.1. We obtain

|gi(x, t)| = |Gf,i(th(x))| ≤ Hsat = ν0B
sat −M sat ≤ ν0B

sat.

If |th(x)| ≥ Bsat, then we have from (3.30)

|gi(x, t)| = |ν0thi(x)−M satei| ≤ ν0(|hi(x)|+ µ0M
sat) ≤ ν0(|hi(x)|+Bsat).

From the above relations we see that

|gi(x, t)| ≤ ν0(|hi(x)|+Bsat) , x ∈ Ωmat, t ∈ [0, 1].

Finally, by using the Fubini theorem and the Hölder inequality, we obtain

∫
Ω×[0,1]

|f(x, t)| dxdt ≤
2∑

i=1

∫
Ω×[0,1]

ν0(|hi(x)|+Bsat)|hi(x)| dxdt =

=
2∑

i=1

∫
Ω

ν0(|hi(x)|+Bsat)|hi(x)| dx ≤
2∑

i=1

ν0‖hi +Bsat‖0‖hi‖0 = K,

where K > 0 is a constant.

Theorem 5.22. The operator T defined by (5.14) is potential. The potential Π of the
operator T is differentiable in the Fréchet sense and twice differentiable in the Gâteaux
sense on V . The potential is given by the formula

Π(v) =

∫
Ω

(∫ curl(v+u)

0

G(s) ds
)
dx−

∫
Ω

j(v + u) dx , v ∈ V.

Moreover, Π is coercive and uniformly convex on V .

Proof. With regard to Lemma 5.21 we see that the functional is defined correctly for
v ∈ V , since curl(v + u) ∈ [L2(Ω)]2.

In order to prove the potentiality of T , we need to show, cf. (5.14), that the
functional dΠ(u), defined for every u ∈ V by the equation

〈dΠ(u), v〉 =
∫
Ω

G(curl(u+ u)) · curl v dx−
∫
Ω

j v dx, ∀v ∈ V, (5.21)

is the differential of Π in u ∈ V .
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Let u ∈ V be fixed. First, dΠ(u) ∈ V ∗. The linearity is obvious and continuity
follows from Theorem 5.7. For v ∈ V we have

∣∣Π(u+ v)−Π(u)− 〈dΠ(u), v〉
∣∣ = ∣∣∣∣ ∫

Ω

(∫ curl(u+v+u)

0

G(s) ds
)
dx−

−
∫
Ω

(∫ curl(u+u)

0

G(s) ds
)
dx−

∫
Ω

G(curl(u+ u)) · curl v dx
∣∣∣∣.

Because
∮
l
G(s) ds = 0 for every closed curve l, we obtain

∣∣Π(u+ v)− Π(u)− 〈dΠ(u), v〉
∣∣ =∣∣∣∣ ∫

Ω

(∫ curl(u+v+u)

curl(u+u)

G(s) ds
)
dx−

∫
Ω

G(curl(u+ u)) · curl v dx
∣∣∣∣.

The linear parametrization

γ(x; t) = curl(u(x) + u(x)) + t curl(v(x))

yields ∫ curl(u+v+u)

curl(u+u)

G(s) ds =
∫ 1

0

G(curl(u+ u) + t curl v) curl v dt.

Since G (x, ·) ∈ [C1(R2)]
2
a.e. in Ω, we then get, with regard to Theorem 5.1,∣∣Π(u+ v)− Π(u)− 〈dΠ(u), v〉

∣∣ =∣∣∣∣ ∫
Ω

∫ 1

0

[
G(curl(u+ u) + t curl v)− G(curl(u+ u))

]
dt curl v dx

∣∣∣∣ =∣∣∣∣ ∫
Ω

[ ∫ 1

0

∫ 1

0

(t curl v)TG ′(curl(u+ u) + st curl v) curl v dsdt

]
dx

∣∣∣∣.
Let us estimate the norm |G ′ (x, ·)|. It follows from (5.6) and (3.27) that

|G ′ (x, s)| ≤

{
ν0, ∀s ∈ R2, x ∈ Ω0,

1/Cmat
1 , ∀s ∈ R2, x ∈ Ω1.

(5.22)

If we then put
M = max{ν0, 1/Cmat

1 }, (5.23)

we obtain

∣∣Π(u+ v)− Π(u)− 〈dΠ(u), v〉
∣∣ ≤M

∫
Ω

[ ∫ 1

0

∫ 1

0

|t|(curl v)2dsdt
]
dx ≤

≤M

∫
Ω

(curl v)2 dx =M

∫
Ω

(grad v)2 dx =M |v|21 ≤M‖v‖21.
(5.24)

The division of the last equation by ‖v‖1 affirms, cf. relation (5.2), that dΠ(u) is indeed
the Fréchet differential of Π in u. Then, trivially, dΠ(u) is also the Gâteaux derivative
of Π in u.
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The coercivity of Π follows from the coercivity of T and it is proved in [14]. Let us
calculate the second Gâteaux differential of Π. Let u, v1, v2 ∈ V be fixed. The formal
differentiation of (5.21) yields

d2Π(u; v1, v2) =
d

dt

[
dΠ(u+tv2; v1)

]∣∣∣
t=0

=

=

∫
Ω

(curl v1)
TG ′(curl(u+ u+ tv2)) curl v2 dx

∣∣∣
t=0

=

=

∫
Ω

(curl v1)
TG ′(curl(u+ u)) curl v2 dx .

(5.25)

We still need to justify the change of the order of integration and differentiation. The
assumptions of the standard theorem from the theory of Lebesgue integral need to be
verified. Particularly, we must find the integrable majorant g̃ of the function

F̃ (x, t) = (curl v1)
TG ′(curl(u+ u+ tv2)) curl v2.

If we define
g̃(x) =M | curl v1|| curl v2|,

then, with regard to (5.22) and (5.23), we see that

|F̃ (x, t)| ≤ g̃(x) ∀t ∈ R, a.e. in Ω.

Moreover, it is seen easily that g̃ ∈ L1(Ω). The other assumptions needed to justify
the interchange of the integration and differentiation can be verified easily as well.

Now we show that the operator d2F (u) is linear and continuous. The linearity is
obvious from (5.25). Let ṽ2 ∈ V be fixed, |ṽ2| ≤ K. Then

[
d2Π(u)(ṽ2)

]
(v1) = d2Π(u; v1, ṽ2) ≤

≤M

∫
Ω

| curl v1|| curl ṽ2| dx ≤M |v1|1|ṽ2|1 ≤ KM |v1|1,

hence ∥∥d2Π(u)(ṽ2)
∥∥
V ∗ ≤ KM

and d2Π(u) is continuous.
For v1 = v2 = v we obtain

d2Π(u; v, v) =

∫
Ω

(curl v)TG ′(curl(u+ u)) curl v dx =:

∫
Ω

β(x) dx. (5.26)

From (3.27) we have

β(x) ≥

{
ν0(curl v)

2, x ∈ Ω0,

1/Cmat
2 (curl v)2. x ∈ Ω1.

If we put M = min {ν0, 1/Cmat
2 }, we get

d2Π(u; v, v) ≥M

∫
Ω

(curl v)2dx =M

∫
Ω

(grad v)2dx =M |v|21, (5.27)

hence Π is uniformly convex on V .
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Theorem 5.23. Let Ω ∈ L2 be a simply connected domain. Let Γ1 and Γ2 be disjoint
relatively open subsets of ∂Ω such that Γ1 ∪ Γ2 = ∂Ω, Γ1 6= ∅ and both Γ1 and Γ2 have
a finite number of components. Let the function G be defined by (5.6), where Gf has
the properties outlined by Theorem 3.4. Let the function u have bounded derivatives.

Then the boundary value problem QA defined by relations (5.7)–(5.8) has a unique
weak solution û ∈ H1(Ω). Moreover, the function u ∈ V , u = û − u minimizes the
functional Π, defined as

Π(v) =

∫
Ω

(∫ curl(v+u)

0

G(s) ds
)
dx−

∫
Ω

j(v + u) dx

on V . The functional Π is differentiable in the Fréchet sense, twice differentiable in
the Gâteaux sense and uniformly convex on V .

Proof. The assumptions of Theorem 5.16 are fulfilled by the operator T , as it is shown
in Theorems 5.18, 5.19, 5.20 and 5.22. Because T is strongly monotone, it is also
strictly monotone. The reflexivity of V follows from the reflexivity of H1(Ω) and the
fact that V is a closed subspace of H1(Ω). Hence there exists a unique solution u ∈ V
of the problem defined in (5.13) that implies the existence of the unique weak solution
û ∈ H1(Ω) of the boundary vlaue problem QA. The minimization property of Π and
its mathematical properties are shown in Theorem 5.22.

Remark 5.24. The assumption of bounded derivatives of the function u is not limiting
at all. As we have seen in Section 4.2.3, the constant values of the potential u are
usually prescribed on different parts of ∂Ω that make such a choice of u possible.

In an analogous manner, we could prove the following theorem for the scalar mag-
netic potential.

Theorem 5.25. Let Ω ∈ L2 be a simply connected domain, Γ1 and Γ2 are disjoint
relatively open subsets of ∂Ω such that Γ1 ∪ Γ2 = ∂Ω, Γ1 6= ∅ and both Γ1 and Γ2 have
a finite number of components. Let the function F be defined by (5.10), where Ff has
the properties outlined by Theorem 3.4. Let the function ϕ have bounded derivatives.

Then the boundary value problem Qϕ defined by relations (5.11)–(5.12) has a unique
weak solution ϕ̂ ∈ H1(Ω). Moreover, the function ϕ ∈ V , ϕ = ϕ̂ − ϕ minimizes the
functional Φ, defined as

Φ(v) =

∫
Ω

(∫ grad(v+ϕ)

0

F(s) ds

)
dx

on V . The functional Π is differentiable in the Fréchet sense, twice differentiable in
the Gâteaux sense and uniformly convex on V .

Remark 5.26. Realizing that curl(u+ u) = curl û = B and grad(ϕ+ ϕ) = grad ϕ̂ = H,
we can write the potentials Π and Φ in the forms that are well known in the engineering
community,

Π(v) =

∫
Ω

(∫ B

0

G(b) db
)
dx−

∫
Ω

jv dx =

∫
Ω

w(x) dx−
∫
Ω

jv dx,

Φ(v) =

∫
Ω

(∫ H

0

F(h) dh

)
dx =

∫
Ω

w′(x) dx,

where w(x) and w′(x) are the magnetic energy and coenergy densities, cf. relations
(3.12) and (3.13).
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Chapter 6

The FEM modelling of the
boundary value problem

6.1 Discretization of the boundary value problem

Throughout this chapter, Ω will be a polygonal domain. We will study the most
common piecewise linear approximation of the weak solution of the boundary value
problem QA. We first formulate the discrete problem and show the existence and
uniqueness of the discrete solution in Section 6.1.1. Two convergence theorems are
then proved in Section 6.1.2.

6.1.1 Formulation of the discrete problem

Let us suppose an engineering problem QA. Let Th be a triangulation of Ω that consists
of standard first order triangular finite elements. Let the triangulation is consistent
with boundary conditions, i.e. the interior of each edge of a triangle K ∈ Th is disjoint
with Γ1 ∩ Γ2. We define the function spaces

Xh =
{
vh ∈ C(Ω)| vh|K∈ P1(K) ∀K ∈ T (K)

}
, (6.1)

Vh = {vh ∈ Xh| vh = 0 on Γ1} , (6.2)

where P1(K) denotes the space of linear functions on K.
The discrete formulation QA

h of the boundary value problem QA can be formulated
as finding the function ûh ∈ Xh such that

ûh − uh ∈ Vh, (6.3)∫
Ω

G(curl ûh) · curl vh dx =

∫
Ω

j vh dx , ∀vh ∈ Vh, (6.4)

where uh ∈ Xh is an approximation of the Dirichlet boundary data u.
The same procedure as when proving the existence and uniqueness of the weak

solution of the boundary value problem QA results in the existence and uniqueness
theorem for the discrete problem QA

h .

Theorem 6.1. Let Ω be a polygonal domain, Γ1 and Γ2 be disjoint relatively open
subsets of ∂Ω such that Γ1 ∪ Γ2 = ∂Ω, Γ1 6= ∅. Let the function G be defined by (5.6),
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where Gf has the properties outlined by Theorem 3.4. Let Th be a triangulation of Ω
introduced above.

Then the discrete boundary value problem QA
h defined by relations (6.3)–(6.4) has

a unique solution ûh ∈ Xh. Moreover, the function uh ∈ V , uh = ûh − uh minimizes
the functional Π, defined as

Π(vh) =

∫
Ω

(∫ curl(vh+uh)

0

G(s) ds
)
dx−

∫
Ω

j(vh + uh) dx

on Vh. The functional Π is differentiable in the Fréchet sense, twice differentiable in
the Gâteaux sense and uniformly convex on Vh.

Proof. Vh and Xh are finite dimensional subspaces of V and H1(Ω) respectively, hence
these are reflexive Banach spaces. The function uh has bounded derivatives since
uh ∈ Xh. For the rest of the proof, see the proof of Theorem 5.23.

6.1.2 Convergence of the approximate solutions

Let χ = {Th}h>0 be a regular system of triangulations of Ω, where each Th ∈ χ is
consistent with boundary conditions. We recall that a system of triangulations is
regular, if there exists a constant κ > 0 such that for every Th ∈ χ and every K ∈ Th

the inequality

κh2K ≤ meas2K,

holds, where hK = diam(K).
In the following we will assume that the function u ∈ H1(Ω), cf. (5.4), fulfills

u ∈ Xh ∀h > 0.

As we have seen in Section 4.2.3, we usually prescribe a piecewise constant value of u
on Γ1, hence this assumption is reasonable. Then, obviously, we have

u ≡ uh ∀h > 0. (6.5)

We are going to study the convergence of the discrete solution ûh to the exact
solution û in the ‖·‖1 norm when h approaches zero and prove an estimate of the error
when the solution û is regular. Because (6.5) holds, we have

‖ûh − û‖1 = ‖(uh + uh)− (u+ u)‖1 = ‖uh − u‖1, (6.6)

thus we can study the convergence of uh to u instead. We first formulate the standard
interpolation theorem. We recall that the interpolation operator πh is defined for every
function v ∈ C(Ω) as

πh : C(Ω) → Xh,

(πhv) (B) = v (B) , B node of Th.

Theorem 6.2. Let χ = {Th} be a regular system of triangulations of a polygonal
domain Ω, where each Th ∈ χ has the properties from Section 6.1.1. Let v ∈ Hk+1(Ω),
where k ∈ N. Then there exist constants h0, C > 0 such that for every triangulation
Th ∈ χ with h ∈ (0, h0) the inequality
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‖v − πhv‖1 ≤ Chk|v|k+1.

holds.

Proof. It follows from the Sobolev embedding theorem that πhv ∈ C(Ω), hence the
interpolation is well defined. The proof can be found in [8].

Lemma 6.3. Let Ω be a polygonal domain. Let V and Vh are the function spaces
defined by (5.9) and (6.2). Then for every u ∈ V and δ > 0 exists hδ > 0 such that

h ∈ (0, hδ) ⇒ ∃wh ∈ Vh : ‖u− wh‖1 < δ. (6.7)

Proof. Let u ∈ V and δ > 0. Since C∞(Ω)∩V is dense in V , there exists uδ ∈ C∞(Ω)∩V
such that

‖uδ − u‖1 <
δ

2
.

We obtain from Theorem 6.2 (for k = 1), that

‖uδ − πhu
δ‖1 ≤ Ch|uδ|2.

If we then choose

hδ = min
{
h0,

δ

2C|uδ|2

}
,

we have

‖u− πhu
δ‖1 ≤ ‖u− uδ‖1 + ‖uδ − πhu

δ‖1 <
δ

2
+
δ

2
= δ

for h ∈ (0, hδ). Because each triangulation Th ∈ χ fulfills the consistency condition, it
holds πhu

δ ∈ Vh ∀h ∈ (0, hδ). Then we can take wh = introπhu
δ.

Theorem 6.4. Let Ω be a polygonal domain. Let Γ1, Γ2 and the function G fulfill the
conditions from Theorem 6.1. Let χ = {Th}h>0 be a regular system of triangulations of
Ω that satisfies the conditions from Theorem 6.2. Let u ∈ Xh for all h > 0.

If û is the (unique) solution of the boundary value problem QA and ûh are the
(unique) solutions of the discretized problems QA

h , h > 0, then

lim
h→0

‖û− ûh‖1 = 0.

Proof. We have seen in this section, cf. (6.6), that we can find the estimate for the
norm ‖u− uh‖1 instead. As was stated in Theorems 5.23 and 6.1, the functions u and
uh minimize the functional Π on V and Vh respectively.

Let ε > 0. Because Π has the Fréchet differential in u, it is continuous in u. Then
there exists δ > 0 such that for every v ∈ V it holds

‖u− v‖1 < δ ⇒ |Π(u)− Π(v)| < ε. (6.8)

Lemma 6.3 ensures the existence of hδ > 0 such that (6.7) holds. We get from (6.7)
and (6.8) that

|Π(u)− Π(wh)| < ε ∀h ∈ (0, hδ) .

From here and from the fact that

Π(u) ≤ Π(uh) ≤ Π(wh),
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we obtain
lim
h→0

Π(uh) = Π(u). (6.9)

The Euler extremal condition Π′(u) = 0 implies

Π′(u; v − u) = 0 ∀v ∈ V. (6.10)

Because Π is uniformly convex on V , there exists a constant M > 0 such that

M‖w‖21 ≤
1

2
Π′′(v;w,w) ∀w, v ∈ V. (6.11)

From (6.10), (6.11), and from Theorem 5.12 we get

M‖u− uh‖21 =M‖u− uh‖21 +Π′(u; uh − u) ≤

≤ 1

2
Π′′(u+ θh(uh − u);uh − u, uh − u) + Π′(u; uh − u) =

= Π(uh)− Π(u).

(6.12)

We see from (6.9) and (6.12) that ‖u− uh‖21 → 0 when h→ 0.

Theorem 6.5. Let the assumptions of Theorem 6.4 are fulfilled. Additionally, if the
function u ∈ H2(Ω), then there exist constants h0, K > 0 such that

‖û− ûh‖1 ≤ Kh ∀h ∈ (0, h0) .

Proof. Theorem 6.2 ensures the existence of constants h0, C > 0 so that

‖u− πhu‖1 ≤ Ch|u|2 ∀h ∈ (0, h0) . (6.13)

Again, because each triangulation Th ∈ χ fulfills the consistency condition, we have

πhu ∈ Vh for all h ∈ (0, h0). If we put in (5.24) v
def
= πhu − u, then we obtain from

(5.24), (6.10), (6.12), and (6.13)

M‖u− uh‖21 ≤ Π(uh)− Π(u) ≤ Π(πhu)− Π(u) =

= Π(πhu)− Π(u)− Π′(u;πhu− u) ≤
≤M‖u− πhu‖21 ≤MC2h2|u|22.

Finally, the choice of

K =

√
M

M
C|u|2

completes the proof.

6.2 Finding the discrete solution

Let h > 0 be fixed. We now approach the problem of finding the discrete solution ûh
of the discrete problem QA

h , resp. the shifted function uh = ûh − uh.
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6.2.1 Introducing the discrete functional

Let

uh(x, y) =
N∑
k=1

ukψk(x, y),

where ψk(x, y), k = 1, . . . , N are the (global) basis functions of Vh.
We define the functional Πh as

Πh : RN → R,

Πh(v1, . . . , vN) ≡ Π
( N∑

k=1

vkψk(x, y)
)

for (v1, . . . , vN)
T ∈ RN . The functional Πh retains the properties from Theorem 6.1,

while the vector (u1, . . . , uN)
T minimizes the functional on RN . A nonlinear iterative

scheme for finding the minimum of a functional thus may be used to find the vector
(u1, . . . , uN)

T .

6.2.2 Adaptive Newton-Raphson method

Let J be a twice differentiable functional with nonsingular Hessian matrix on RN . Let
there exist a vector uex ∈ Rn that minimizes the functional J on Rn, i.e.

uex = argmin
v∈Rn

J(v), v ∈ Rn.

and let the vector uex be unique. The adaptive Newton-Raphson iterative scheme for
finding the vector uex is defined as follows. If u(n) ∈ RN is the vector obtained by the
scheme at the n-th iteration step, then u(n+1) is obtained by

u(n+1) = u(n) − α(n)
[
J ′′(u(n))

]−1
J ′(u(n)),

where α(n) is the relaxation factor at the n-th step of the iteration. The vector u(0)

can be chosen arbitrarily, in our computations we used u(0) = 0. We set

w(n) =
[
J ′′(u(n))

]−1
J ′(u(n)). (6.14)

The vector w(n) can be calculated by solving the linear system[
J ′′(u(n))

]
w(n) = J ′(u(n)).

The distance of a vector v ∈ RN from uex is measured by the residual function R(v).
The Euler extremal condition implies

J ′(uex) = 0.

We define the residual function as

R(v) = |J ′(v)|2, v ∈ RN .

The iteration process is stopped when for some n ≥ 0 and ε > 0 is

R(u(n)) < ε.
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Figure 6.1: Flowchart for the nonlinear Newton-Raphson iterative scheme with adap-
tive determination of the relaxation factor α(n).

The vector u(n) is then the final approximation of uex. In our computations, we used
the value ε = 10−15.

We now discuss how the relaxation factor α(n) is determined. We start every itera-
tion step with α(n) = 1. Because of the strong nonlinearity of the problem, an iteration
may slip out occasionally so that the whole process gets out of control. To prevent
this, every time the residual increases such that

R(u(n+1)) > KresR(u
(n))

for a constant Kres, the iteration step is repeated with a new relaxation factor α(n) =
α(n)/2. Our experience shows that a reasonable value of Kres ranges from 2 to 10. The
flowchart for the iterative scheme is illustrated in Fig. 6.1.

However, sometimes it is harmful to apply this adaptivity from the first iteration
step because the iteration process may need to settle down. Hence, the adaptivity is
omitted in first Nf steps and in these steps we use a fixed value of α(n) = αf . Again,
our experience suggests the value of αf = 0.1− 0.5.

6.2.3 Application of the iterative scheme

At the n-th step of the Newton-Raphson iterative scheme, Π′
h(u

(n)) and Π′′
h(u

(n)) have
to be calculated. We have the following formulas, cf. also (5.21) and (5.26):
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[
Π′

h(u
(n))

]
k
= Π′(ũ(n);ψk) =

∫
Ω

G(curl(ũ(n) + uh)) curlψkdx−
∫
Ω

jψkdx, (6.15)[
Π′′

h(u
(n))

]
k,l

= Π′′(ũ(n);ψk, ψl) =

∫
Ω

(curlψk)
TG ′(curl(ũ(n) + uh)) curlψl, (6.16)

where ũ(n) =
∑N

k=1 u
(n)
k ψk. The elements of the Jacobian matrix G ′ can be calculated

for x ∈ Ω1 as

∂1G ′
f,1(x; s, t) =

[
Gf,1(s+ δs, t)− Gf,1(s, t)

]
/δs, s, t ∈ R2, x ∈ Ω1 (6.17)

with δs = 10−10 etc.
Because (3.25) holds, the matrix G ′ is symmetric. We have[

Π′′
h(u

(n))
]
l,k

=

∫
Ω

(curlψl)
TG ′(curl(ũ(n) + uh)) curlψkdx =

=

∫
Ω

(curlψk)
T
[
G ′(curl(ũ(n) + uh))

]T
curlψldx =

[
Π′′

h(u
(n))

]
k,l
.

(6.18)

We see that the matrix
[
Π′′

h(u
(n))

]
is also symmetric. Because Πh is uniformly convex

on RN , the matrix is (uniformly) positive definite. Hence, it is nonsingular and the
expression (6.14) makes sense.

The calculation of the Hessian matrix
[
Π′′

h(u
(n))

]
is the most time-consuming proce-

dure in every iteration step and it is desirable to optimize its effectiveness. First, from
(6.16) and (6.17) we see that it highly depends on the effectiveness of calculating the
value of G(s, t) for given (s, t) ∈ R2. The second important factor is the actual choice
of the finite element space for the computation. For instance, the piecewise linear
approximation leads to just one calculation of the derivative G ′ per element, because

curl(u(n) + uh) = const. on K ∀K ∈ Th,

thus our choice of Xh is very suitable for the computation.
As we have seen in Section 3.2.7, the function G for a full 2D model is not necessarily

irrotational. Hence, its Jacobian matrix G ′ is not symmetric. In this case, the potential
Π of the boundary value problem QA does not even exist. However, we can apply the
Newton-Raphson iterative scheme even in this case regardless the nonexistence of the
potential Πh, since the right sides of the equations (6.15)–(6.16) are well defined even
when G ′ is non-symmetric. Nevertheless, from (6.18) we see that the matrix for the
linear system to solve in every iteration step is also non-symmetric in this case. This
has a significant impact on the convergence rate of the iteration process.

6.3 Application of the nonlinear scheme in practical

computations

The nonlinear iterative scheme was applied to a benchmark problem and to the com-
putation of the magnetic field distribution in a three phase transformer core model.
As a programming tool, we used the high level programming language FreeFEM++.
All computations were performed twice – the solution of the first computation on the
initial, non-adapted mesh served for the generation of the final, adapted mesh. For
that purpose, we used FreeFEM++’s adaptmesh(. . . ) primitive. The results of the
computations are included in Appendix B.
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Figure 6.2: The benchmark problem for models of anisotropic steels. All dimensions
are in mm.

6.3.1 A benchmark problem for anisotropic models

The following benchmark problem was proposed in [31] and serves as a demonstration
problem that emphasizes the differences among various models of anisotropic steels.
The problem models a one phase transformer core under load. When taking into
account the symmetries of the problem, we can consider only one quarter of the core,
cf. Fig. 6.2.

The input for the benchmark problem is the average flux density Bleg flowing
through the upper yoke of the core. With regard to (4.29) we have

Bleg =
Φm

|CD|
=
u(D)− u(C)

|CD|
.

Hence we obtain
u(D)− u(C) = |CD|Bleg = 0.07 ·Bleg.

If we assume no flux leakage through the boundary of the core, we may prescribe the
Dirichlet boundary conditions on the inner and outer boundaries as

û|inner = 0.07 ·Bleg,

û|outer = 0.

The symmetry considerations suggest us to define the homogeneous Neumann condi-
tions on the cuts through the core.

Appendix B shows the results of the computations for the conventional and full 2D
model of the AISI-M0H grain oriented silicon steel. For comparision, we included also
the model of an isotropic steel defined in [24]. The suggested values of Bleg are 0.5T
and 1.7T.

Fig. 6.3 shows the convergence rates of the iterative scheme at Bleg = 1.7T for both
models of the anisotropic steel. While a stable convergence was observed in case of
the conventional model, when the full 2D model was used the convergence was more
problematic. This was probably due to solving the linear systems with non-symmetric
matrices.

6.3.2 The model of a three phase transformer core

Next to the benchmark problem, we have applied the iterative scheme to the model of
a three phase, three limb transformer core under full load. The model was proposed
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Figure 6.3: Convergence rate of the iterative scheme for the benchmark problem at
Bleg = 1.7T. Conventional (left) and full 2D model (right).

Figure 6.4: The model of a three phase, three limb transformer core. All dimensions
are in mm.

in [13]. Again, the symmetry considerations allow us to limit the domain of interest to
one half of the core, see. Fig. 6.4.

Phase-shifted alternating currents flow through the coils embracing the limbs with
the amplitude Imax = 1kA. The individual currents in the branches of the core are
then

i1(t) = Imax cos(ωt),

i2(t) = Imax cos(ωt− 2/3π),

i3(t) = Imax cos(ωt+ 2/3 π).

We applied the homogeneous Dirichlet boundary condition on the outer boundary and
homogeneous Neumann condition on the horizontal cut through the core.

We performed the calculations at four different time phases, ωt = 0◦, 30◦, 60◦ and
90◦. Again, we used the material AISI-M0H as the reference material for both the
conventional and full 2D models. The behaviour of the convergence was similar to that
of the benchmark problem; while a stable convergence was achieved for the conventional
model, the convergence was more problematic in case the full 2D model was used.
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Chapter 7

Conclusion

We have covered in a comprehensive manner the current state of the stationary mag-
netic modelling including anisotropic ferromagnets. We made an advance in theoretical
description of the problem, where we suggested a different mathematical representation
of the material characteristics than it is usual. This representation allowed us to prove
the existence and uniqueness theorems for the weak solutions of the boundary value
problems under the unique assumption on the material to be anhysteretic. Further, we
made some improvements to the current 2D models and we suggested an extension of
the Bastos-Quichaud model for the laminated cores [2]. We also proved the convergence
theorems for the discrete solutions.

Two models of the reference material AISI:M-0H were chosen for our computation,
the conventional model that is widely used in practical computations and the full 2D
model that is the most accurate one. Significant differencies were observed in the
results of the benchmark problem mainly for the value of Bleg = 1.7T. The model of a
three phase transformer also showed some differencies in the obtained solutions, most
notably at the time phase ωt = 90◦.

Our theory can probably be further developped to cover anhysteretic materials and
it can be possibly extended to a full 3D case. These extensions of the current theory
may be subjected to further research.
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Appendix A

Figures of 2D model construction

These figures complement the text from Section 3.2.7.

Figure A.1: The behavior of the function gj when defined on Kt
j by a cubic interpolation

(left) or a function from the class eAσ+B+Cσ+D (right). For Gy at constant B
j
x = 1.4T.

Figure A.2: The function gj for Gx at constant Bj
y = 0.2T. Big (left) and small (right)

scale.
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Figure A.3: The function gj for Gy at constant Bj
x = 0.2T. Big (left) and small (right)

scale.

Figure A.4: All functions gj for Gx (left) and Gy (right), logarithmic scale.

Figure A.5: The function hk for Gx at constant Bk
x = 0.2T (left) and for Gy at constant

Bk
y = 1.8T (right). The marks denote the interpolation nodes. The first and last nodes

are defined from the derivatives of hk at τ1 = 0 and τMk+1 = Bsat
y,k .
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Figure A.6: The resulting full 2D model function Gx(Bx, By) for material AISI:M-0H

Figure A.7: The resulting full 2D model function Gy(Bx, By) for material AISI:M-0H
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Vec Value
0
4900
9800
14700
19600
24500
29400
34300
39200
44100
49000
53900
58800
63700
68600
73500
78400
83300
88200
93100

Figure A.8: Conventional model function G(Bx, By) for material AISI:M-0H

Vec Value
0
4941.01
9882.03
14823
19764.1
24705.1
29646.1
34587.1
39528.1
44469.1
49410.1
54351.2
59292.2
64233.2
69174.2
74115.2
79056.2
83997.3
88938.3
93879.3

Figure A.9: Full 2D model function G(Bx, By) for the material AISI:M-0H
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Appendix B

Results of the computations

The benchmark problem discovered the differences between the conventional and full
2D model, mainly at the value of Bleg = 1.7T. The bending of flux lines in the corner of
the core is unnatural and obviously erroneous when the conventional model is chosen,
compare Fig. B.7 with Fig. B.8. The differences are also noticeable at Bleg = 0.5T,
compare Fig. B.4 with Fig. B.5.

Our results obtained for the model of a three phase transformer core under full load
showed that, in case of the electric current amplitude of Imax = 1kA, the average flux
density through the magnetic circuit exceeds 1.9T. The differences between the models
were observed mainly at the time phase ωt = 90◦, where, in case of the convential
model, the magnetic flux penetrates the center limb of the core much more than when
the full 2D model is chosen, compare Fig. B.17 and Fig. B.18. Some minor differences
are also observed for ωt = 30◦ and 60◦.

The results obtained by our computations are in good agreement with the ones
previously published, see [13, 31].
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Figure B.1: Adapted mesh for the benchmark problem at Bleg = 0.5T.

Figure B.2: Adapted mesh for the benchmark problem at Bleg = 1.7T.

Figure B.3: Benchmark problem, isotropic material, Bleg = 0.5T, AISI:M-0H.
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Figure B.4: Benchmark problem, conventional model, Bleg = 0.5T, AISI:M-0H.

Figure B.5: Benchmark problem, full 2D model, Bleg = 0.5T, AISI:M-0H.

Figure B.6: Benchmark problem, isotropic material, Bleg = 1.7T, AISI:M-0H.
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Figure B.7: Benchmark problem, conventional model, Bleg = 1.7T, AISI:M-0H.

Figure B.8: Benchmark problem, full 2D model, Bleg = 1.7T, AISI:M-0H.

Figure B.9: Benchmark problem with deviated RD by 30◦ from the horizontal axis,
conventional model, AISI:M-0H.
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Figure B.10: Adapted mesh for the the transformer core problem at ωt = 30◦.

Figure B.11: Transformer core problem at ωt = 0◦, conventional model, AISI:M-0H.

Figure B.12: Transformer core problem at ωt = 0◦, full 2D model, AISI:M-0H.
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Figure B.13: Transformer core problem at ωt = 30◦, conventional model, AISI:M-0H.

Figure B.14: Transformer core problem at ωt = 30◦, full 2D model, AISI:M-0H.

Figure B.15: Transformer core problem at ωt = 60◦, conventional model, AISI:M-0H.
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Figure B.16: Transformer core problem at ωt = 60◦, full 2D model, AISI:M-0H.

Figure B.17: Transformer core problem at ωt = 90◦, convential model, AISI:M-0H.

Figure B.18: Transformer core problem at ωt = 90◦, full 2D model, AISI:M-0H.
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