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Abstract

Last twenty years have seen a tremendous growth of the financial markets both

in trading volumes and in sophistication of instruments. This ever-increasing

complexity of the market structure necessitates use of mathematically advanced

models from the side of market participants. So far, the prevalent paradigm for

these models has been the stochastic analysis as a branch of applied mathemat-

ics. In the last few years however, there has been an influx of purely physical

concepts and methodology, constituting nascent field of econophysics. To what

extent this new approach is useful remains, however, an open question. In my

bachelor thesis I will focus on one subfield of econophysics, namely quantum

finance. First, I will give an overview of both stochastic analysis and the new

quantum finance paradigm. Then using the framework of quantum theory and

quantum field theory I will construct a model of European stock options.
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Abstrakt

V posledńıch dvaceti letech došlo k převratnému vývoji finančńıch trh̊u jak z

hlediska objemu obchodu, tak i sofistikovanosti použ́ıvaných nástroj̊u. Tato

stále nar̊ustaj́ıćı složitost tržńı struktury s sebou nese potřebu pokročilých

model̊u ze strany účastńık̊u trhu. Doposud převládaj́ıćım paradigmatem těchto

model̊u byla stochastická analýza, jakožto odvětv́ı aplikované matematiky. V

posledńıch několika letech se ovšem objevily snahy o využit́ı čistě fyzikálńıch

koncept̊u a metodologie, vytvařej́ıce tak nový obor ekonofyziky. Do jaké mı́ry

je tento novy př́ıstup efektivńı z̊ustává přesto otevřenou otázkou. Ve své

bakalářské práci se zaměř́ım na jeden podobor ekonofyziky, tzv. kvantové

finance. Nejdř́ıve nab́ıdnu přehled jak stochastické analýzy, tak kvantových

finanćı. Poté s pomoćı aparátu kvantové teorie a kvantové teorie pole odvod́ım

model evropských akciových općı.
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Chapter 1

Introduction

The main focus of this thesis is so-called quantum finance approach to mod-

elling options price evolution. The very term “quantum finance” needs a bit of

elaboration, since, being a rather new concept, it is not entirely clear at this

point what it means. According to Baaquie (2007), the term quantum finance

denotes “a synthesis of concepts, methods and mathematics of quantum theory

with the field of theoretical and applied finance”. As such, it does not refer to

efforts to reformulate the first principles of theoretical finance in the framework

of quantum physics, rather, it stands for a compendium of quantum mechan-

ical toolkit applied to problems in finance. The beginnings of this approach

can be traced back to seminal papers Baaquie (1998), Belal E. Baaquie (2002)

where the interest rates and option prices are treated as quantum field and

quantized degree of freedom respectively. As it is clear not only from intuition,

trying to marry these two fields is quite a formidable task, whose characteris-

tics fall under the auspices of a research area that gradually came to be called

econophysics. Despite its sparse beginnings in the last decade of the twentieth

century and a questionable status within the mainstream physical research the

field has continued to attract attention both from the physics and economics

community. Today, there is a journal specially devoted this research program

and a conference is held anually to gather participants from various parts of the

globe. Deep conceptual issues however remain unresolved. Relevance of both

econophysics and quantum finance in particular in the contemporary economic,

econometric and physical research and their potential to enrich the method-

ological toolbox of either of the “parental” science disciplines, remain by and

large an open question. The economists particularly have stood unimpressed

over what seemed to be just another attempt at overly mathematicizing their
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subject of inquiry - a grave reminder of this fact is that to this day most of the

research papers dealing with econophysics are being published in exclusively

physical and not economical reviews.

Options as a particular example of derivative securities have been used

ever since antiquity as an instrument of speculation on olive harvest (Abraham

2010). It was not until the 1970’s however, that their widespread use for the

purpose of hedging and speculation has created considerable demand for their

pricing models. For the bird’s eye view of the plethora of pricing models, reader

is referred to (Haug 2006).

The goal of this work is to give a derivation of a model of European option

prices that would correct the deficiencies of one of the most popular option

pricing models - the model of Black and Scholes using the new econophysical

paradigm. In order to do so, it is organized as follows. The second chapter

gives an exposition of the prevailing methodological paradigm of the option

pricing models - stochastic analysis. We introduce the basic terminology of the

options markets and then we give a self-contained pedagogical review of all its

basic notions. Stochastic processes, Markov chains, martingales, the Beownian

motion, Ito lemma, stochastic integration and stochastic differential equations

are given due treatment. With this knowledge in mind, the Black-Scholes model

is then derived using the original argument of its creators. The last part of the

second chapter gives a list of assumptions that were made in the derivation.

The third chapter begins with an enumeration of the shortcomings that the

Black-Scholes model despite its popularity and ubiquity posesses and which

are to be corrected. To this end a quantum mechanical paradigm is proposed

- after covering a necessary minimum of the quantum theory, a comparison

between physical and financial systems within the context of option pricing is

given. The construction of a new model is then made in two steps - in the

first step, the Black-Scholes model is reformulated in the language of quantum

theory and in the second step, using an empirical insight, a correction to the

original model is derived.



Chapter 2

Basic notions of options market

and stochastic analysis

In this chapter, we give a thorough review of the work’s two underlying themes

- options and econophysics. We try to make the exposure as pedagogical as

possible, not only in order the ease reader’s digestion of new ideas, but also for

the sake of future reference. Much of what is written in subsequent chapter

makes heavy use of mathematical framework exposed in this chapter. As a

logical consequence, we make no attempt at originality of the content of this

chapter and much of what follows is based on accounts given in (Hull 2009),

(Jeffrey O. Katz 2005), (Wolfgang Paul 2010) and (Baaquie 2007). Every now

and then, however, we extend the discussion a bit and make use of both fields’

inherent richness to expound on the parallels one can identify when economics

and physics are put side by side.

2.1 Options market

As mentioned in the introduction, options have been used ever since antiq-

uity. Along with futures and forwards, they constitute the content of the term

derivative security. Unlike both futures contract and a forward, what an option

carries with itself is a right, not an obligation. Particular form of this right

depends on a specific type of the option, but in general we can distinguish two

types of an option contract depending on general characteristic of an under-

lying right. A call option entitles its holder to buy the underlying asset by

a certain date for a certain price. A put option, to the contrary, entitles its

holder to sell the underlying asset by a certain date for a certain price. In case
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the holder chooses to do so, the option is said to be exercised. The price in the

contract is consequently known as the exercise price or the strike price and the

date in the contract is known as the expiration date or maturity. Depending on

whether one can exercise the option anytime until maturity or only at maturity,

one can further classify the option respectively as either being American or

European.

As it is quite clear, strike price is not the only parameter that determines

holder’s gain in case of exercising the option. This complete information is

encoded in the payoff function. One basic thing that can be told stright away

from the form of a payoff function is whether the option is path dependent or

path independent. In the latter case, holder’s gain only depends on a value

of the underlying security at the time of maturity. That is, payoff function is

independent on how the security arrived at its final price. European option is

an example of this kind of option. In the former case, holder’s gain depends on

the entire path the security takes before the option expires. This dependence

can take various forms. In case of an American option, path that the price of

the security takes clearly influences whether or not the option at a particular

instant is exercised. In case of an Asian option, payoff function depends on

average value of underlying security during the whole period of its duration,

from the time it is written until the time it expires.

In order to illustrate aforementioned concepts on a practical example, a

graphical representation of a payoff function of call option is given in Figure 2.1,

where g(S) denotes gain of the holder in case they decide to exercise the option

and S denotes price of underlying security. K stands for strike price. Complete

discussion of various types option contracts can take can be found in (Jeffrey

O. Katz 2005).

2.2 Stochastic calculus

In this section we give brief and succinct treatment of the prevalent financial

mathematics paradigm - Ito stochastic calculus. The reason for doing so is

twofold. First, it will allow us to derive the Black-Scholes pricing formula that

will form the bedrock of a model to be developed in the next chapter and

second, perhaps more important, it will allow us to compare the structure of

both paradigms (“mathematical” and “econophysical”) hence hopefully draw

at the end some conclusions about the usefulness of the latter. Nevertheless,

any treatment of a deep mathematical theory within several pages is bound to
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Figure 2.1: Payoff function for call option. The dashed line represents possible
values of the option at a given time before maturity

Source: Baaquie (2007)

be incomplete and superficial. Thus, reader interested in rigorous treatment is

referred to any of the books (Oksendal 2003) or (Steele 2001).

First question any system of ideas needs to address is why it should be used

in the first place. In case of stochastic calculus with respect to its financial

applications, the question translates into why should there be any need of

stochastic calculus given that we have such otherwise successful tool - real

analysis - at our disposal. The answer to this question seems to be that the

functions we encounter in finance surpass the scope of applicability of real

analysis. The latter paradigm deals with continuous functions (at least C1)

of one or more real variables and that have finite variation as these unction

suit most problems encountered in natural sciences. Functions encountered

in economic sciences such as the interest rates curve or price development of

a security are however nowhere C1 continuous functions and moreover have

unbounded variation (this means for a function of one variable that the distance

along the direction of y-axis traveled by point moving along the graph does

not have a finite value with analogous defnition applying to functions of more

variables).

To see that this is indeed the case, let’s consider a scenario where time

development of security where random, but with continuous first derivative and
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bounded variation. Then, from the first property, one would be able to make a

sure bet on a future development examining infinitesimal neighborhood of the

asset price and thus violating the principle of no arbitrage. From the second

property, it would be possible to generate huge profits by generating path-

dependent options, which would be traded in the market at high premiums

and almost zero costs. Both these possibilities are contradiction to reality.

For an interesting discussion of these issues, reader is referred to the book

(Sondermann 2006).

Knowing we need stochastic calculus in finance, the next pragraphs give

an outline of the theory as it stands. There are basically two approaches to

the field, a rigorous one, predominantly espoused by the mathematical com-

munity and an intuitive one, upheld mainly by natural sciences and economics

researchers. Because of the elementary character of our exposition, we cling

more to the second approach. Whenever possible, we underscore the parallel

between physical systems and finance.

2.2.1 Stochastic process

The first important concept standing at the basis of the stochastic calculus is

that of a stochastic process. Any variable whose values change over time

in an uncertain way is said to follow a stochastic process. Mathematically

speaking, it is a parametrized collection of random variables

Xt, t ∈ T (2.1)

defined on a probability space (Ω, F, P ), where Ω is the sample space (space

of al elementary outcomes), F is a σ-algebra on Ω and P is a probability

measure on F . Depending on the nature of th index set T , process is called

discrete time, in case T has countable number of elements, or continuous time,

in case T is uncountable. By a similar criterion on Ω, the process is said to be

either discrete variable or continuous variable.

Most processes in both finance and physics are continuous time, continuous

variable. As an example from economics, we might consider the time depen-

dence of the rate of return R(T ) from holding certain security for a period T

which is given by

R(t) =
S(t+ T )− S(t)

S(t)
, (2.2)
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where we assumed for the sake of simplicity that there were no dividends

being paid out over the holding period T . One well known example of the

stochastic process in physics is position of a particle in a fluid subjected to

random collision with the molecules of the environment. One then solves a

stochastic differential equation (to which we will come in more detail later) of

the form

X ′′(t) = −λX ′(t) + η(t), (2.3)

where η(t) denotes stochastic forces per unit mass and λ is viscous damping

coefficient per unit mass.

2.2.2 Markov and martingale properties

Out of the class of all stochastic processes, two subgroups are of particular

interest in terms of their applicability in mathematical finance. As we shall

see, both are closely interrelated. The first one of them is so-called Markov

process - or equivalently a stochastic process having Markov property. We say

that a stochastic process has a Markov property, if the conditional distribution

of future states of the process (conditional on both past and present values) de-

pends only upon the present state, not on the sequence of events that preceded

it. In mathematical notation,

P (Xn = xn|Xn−1 = xn−1...X0 = x0) = P (Xn = xn|Xn−1 = xn−1), (2.4)

where for simplicity we assumed sample space S to be a discrete set. From

this it follows that the expectation value of the future states depends only on

the present state as well. Thus, it can be said that Markov processes repre-

sent systems with the important quality of having no memory. Most models

in matematical finance are constructed with this assumption. Using a bit of

thought one can easily see that yet another example of process with no memory

beyond the present is random walk, where in each turn one step is taken in ei-

ther positive or negative direction. The second important example of a Markov

process, albeit of somewhat peculiar nature, is the deterministic evolution of a

physical system in a phase space as given by the Hamilton equations, the pe-

culiarity here being that all the conditional distributions are singular. Markov
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property is then equivalent to the trajectories of the system not bifurcating

along the path anywhere.

The second important group of processes is so-called martingales - or

equivalently stochastic processes having martingale property. From a historical

point of view, the incentive to study this kind of process came from the area

of gambling. Let’s use this historical example to elucidate its importance.

Let’s imagine a gambler tossing a coin and betting one dollar (or another fixed

amount) at each toss on either heads or tails. Let Si denote his or her winnings

after i-th toss. Then, if the coin is fair, we have

E[Si|Sj, j < i] = Sj. (2.5)

This is the martingale property. Thus, for a martingale, the best estimator

for the next value, taking into account all the information all the past values of

the process, is the present value. The expected value of the increments is then

zero

E[dS] = 0 (2.6)

and the process has, in financial parlance, no drift.

Both these properties happen to be important characteristics of one process

that lies at the core of most financial models. Its name is Brownian motion as

it was studied for the first time by a Scottish botanist Robert Brown on pollen

grains suspended in a liquid. The next paragraph gives its full treatment.

2.2.3 Brownian motion

Brownian motion, also called Wiener process in honor of Norbert Wiener, who

contributed significantly to studying its properties, has many different mani-

festations, the movement of pollen grains in a liquid and the process drivivng

stock price evolution being only two of them. The precise understanding of the

second example and its ramifications for the pricing of securities is the goal of

this paragraph.

One way to derive Brownian motion is via limiting procedure of random

walk as the timesteps go to zero. In order to do this, let’s recall the the gambler

flipping the coin and betting on its outcomes from the previous section. Let’s

suppose now that the time t allowed for a certain number of tosses, e.g. n, is

restricted. Also, the bet the gambler makes each round is no longer 1 dollar,
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or some arbitrary amount, but
√
t/n. As one can easily see, the Markov and

martingale propeties are retained and moreover, we have an important result

n∑
j=1

(Sj − Sj−1)2 = n× (

√
t

n
)2 = t, (2.7)

where, as in the previous section, Sj denotes the winnings of the gambler

after the j-th toss. First part of the equation (2.7) defines so-called quadratic

variation, so that the equation equation can be interpreted as saying, that

the quadratic variation of a random walk under the condition defined in this

paragraph equals time t. The only thing that needs to be done in order to get

a Wiener process is to let n go to infinity and all the properties of the random

walk are retained in this limit case. Graphical depiction of this limit process is

given in Figure 2.2.

Figure 2.2: A series of random walks, the limit of which is Brownian motion

Source: Wilmott (2000)

Wiener process can be given axiomatic definition as well. In this, the prop-

erties that need to be satified in order for a given process to classify as a Wiener

are:

• S0 = 0

• The function t → St (i.e. the trajectory of the process) is almost surely

everywhere continuous.
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• The change ∆S during a period of time ∆t is

∆S = ε
√

∆t, (2.8)

where ε has a standard normal distribution N(0, 1).

• The values of ∆S for different disjunct time intervals ∆t1, ∆t2 are inde-

pendent.

From this definition and a derivation given at the beginning, one can easily

see these properties that are given for the sake of future reference:

• Continuity : Individual trajectories of the Wiener process are continuous.

Brownian motion is thus continuous-time limit of the discrete random

walk process.

• Finiteness : Values of S(t) are smaller than infinity for all finite times t.

This is because of the special choice of scaling
√
t/n of the bet made at

each round.

• Markov property : Limiting procedure preserves Markov property of the

random walk. The conditional distribution of S(t) given information up

until τ < t depends only on S(τ).

• Martingale property : Given information up until τ < t the conditional

expectation of S(t) is S(τ).

• Normality : Over finite time intervals ∆t, the increments of the process

are normally distributed with mean zero and variance ∆t. Hence,

p(∆S) =
1√

2π∆t
e−

∆S2

2∆t , (2.9)

where p denotes unconditional probability density function.

It is important to note, that the independence of the increments universally

implies their having normal distribution. Here lies the conceptual importance

of the Wiener process and it is also a response to the question whether there

could not be some different processes without Gaussian distribution. Of course

there could be, but only if the increments would be no longer independent.
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There is another way of thinking about the Brownian motion - one that

is heuristical but deserves mentioning nevertheless because it involves another

useful notion. One can think about the differential dB as a product

dB = R · dt, (2.10)

where dt is time differential and R is so-called white noise. White noise

is a stochastic process with mean zero, constant variance and which is serially

uncorrelated. As such, it finds many applications in engineering, particularly

signal processing, but also in econometrics, where one often assumes that the

data have “deterministic” and white noise part. Because of the expression

(2.10), it makes sense to call white noise a generalized derivative of the Wiener

process, however we shall not delve into these somewhat technical issues and

refer reader to the discussion in (Oksendal 2003).

2.2.4 Ito lemma and stochastic integration

Having defined the properties of the Wiener process in the last subsection, we

are one step closer to deriving the Black-Scholes model within the stochastic

framework. However, in order to that, one crucial ingredient is still needed.

As was mentioned in previous section, functions encountered on the financial

markets seem to have peculiar properties, infinite variation over finite length

interval being one of them. Thus, as was argued at the very beginning of section

2.2, an extension of the normal real variable calculus is needed.

One straightforward way to achieve this extension is to allow functions to be

integrated not to depend only on real or complex variables, but on stochastic

variables as well. Since we will want to integrate these new functions with

respect to the stochastic variables, a new notion of integral is needed. The new

integral is called stochastic integral and is defined as

W (t) =

∫ t

0

f(τ)dX(τ) = lim
n→∞

n∑
j=1

f(tj−1)(X(tj)−X(tt−1)), tj =
jt

n
, (2.11)

where the function f can of course depend on the stochastic process X and

the argument τ is given for the sake of clarity. Unlike Riemann integral, the

limit at the right-hand side of the expression (2.12) is to be understood as a

mean square limit. This technically means that we do not require pointwise
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convergence as in the Riemannian case but instead require that the expected

value of the squared differences go to zero:

lim
n→∞

Wn = W ⇔ lim
n→∞

E
[
(Wn −W )2

]
= 0. (2.12)

It is also very important to note that the function f which is integrated

is evaluated at the summation at the left-hand point. This ensures that the

process W (t) is a martingale and the integration is called non-anticipatory

which means that that W (t) is statistically independent of X(s)−X(t) for all

s > t. If all these conditions are met, we particularly speak about the Ito inte-

gral. Choice f(
tj−1+tj

2
) is also possible and popular and the resulting integral is

called Stratonovich. However, intuitively speaking, because the function f is

evaluated at time occuring later than time at which the stochastic differential is

taken at, the process W (t) is no longer martingale and therefore does not cor-

respond to the situation, where no information about the future development

is known. This choice can still be of use in theoretical physics, particularly

statistical mechanics, but is no longer relevant in financial applications. For a

detailed discussion of these issues, see (Oksendal 2003).

Having seen the expression for the Ito integral (2.11) one is led to pon-

der what implications do the assumptions of the previous paragraph have for

the theory of differential equations. To see this in full detail, let us consider

an ordinary differential equation describing exponential decay of radioactive

isotope

N ′ = −λN, (2.13)

where N denotes number of yet undecaid atoms in the sample and λ is the

decay constant. This equation can be put into equivalent form by multiplying

both sides by time differential dt

dN = −λNdt. (2.14)

The whole trick of the stochastic differential equation then is to allow the

differential dN to depend on differential of some stochastic process, ie in our

example (2.14) to add terms proportional to dX. It what follows and for the

reasons listed in the paragraph 2.2.3, we will always consider dX to be the

differential of Brownian motion dB. Hence, in our example taking into account

random influences from the environment, we might get an equation
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dN = −λNdt+ µNdB. (2.15)

Speaking in terms of solutions, graph of the function N from the equation

(2.15) is a “randomized” version of the graph of the function N from the

equation (2.14).

Figure 2.3: Fifty solutions of the stochastic differential equation dX = (−3X +
1)dt + σdB with X(0) = 1 and σ = 0.2 and an equation without
the random term, vertical axis denotes X, horizontal t. Qualitative
features of both solutions are visible.

Source: http://lis.epfl.ch

In physics, stochastic differential equations come in three, albeit somewhat

vaguely differentiated, types. The first one of them by virtue of its historical

precedence is so-called Langevin equation of which one example was given at

the beginning of this chapter. There, the underlying stochastic process is a

position of a particle subjected to random fluctuations of the environment and

the equation took the form (2.3) but the term applies equally well to random

evolution of any subset of degrees of freedom over time. Generalizing from

this example, one finds second type of stochastic differential equation. It is

characterized by the fact that it can be written in the form

dXt = F (Xt, t)dt+G(Xt, t)dB, (2.16)

where F (Xt, t), G(Xt, t) are sufficiently bounded functions in order for a

unique solution to exist (for details and a proof see Oksendal (2003). The
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example (2.16) is in fact general enough to cover all equation we will deal with.

Third type of equation is not strictly speaking stochastic differential equation

but rather it forms a bridge between an equation of type (2.16) and partial

differential equations. It is called Fokker-Planck equation and to see how it

works, let us consider an equation (2.16) in slightly disguised form

dXt = µ(Xt, t)dt+
√

2D(Xt, t)dBt. (2.17)

Here the terminology follows from the fact, that this type of equation is used

to describe diffusion type of processes. Hence, D is called diffusion coefficient

and µ is called drift, random variable Xt can then be thought of as a trajectory

of a particle of diffusing medium. Fokker-Planck equation for a process (2.17)

then gives a time evolution of the probability density function of the random

variable Xt for a fixed t. In this concrete example it has a form

∂

∂t
f(x, t) = − ∂

∂x
[µ(x, t)f(x, t)] +

∂2

∂x2
[D(x, t)f(x, t)] . (2.18)

For a detailed derivation of this result, reader is referred to Allison Kol-

pas (2006). The similarity with the Schrodinger equation is evident, with one

important difference being that equation (2.18) gives a time evolution of the

probability distribution itself, whereas Schrodinger equation only for the prob-

ability amplitude.

In economics, stochastic differential equations are almost exclusively real-

ized as the second type of equations from the previous paragraph, that is,

equation of type (2.16). Out of these, one particular example stands out in

terms of its ubiquity. It a stochastic differential equation describing evolution

of an asset price over time and as an pricing model is used is widely used in

equities, currencies, commodities and indices. It reads

dS = µSdt+ σSdB, (2.19)

where S is the asset price, µ is the drift term which is in this case equal to

the expected return on the asset and σ is its volatility, both these parameters

are considered to be constant. One useful way of thinking about this equation

is that in an infinitesimally small time interval δt, the asset price S changes

its value by an amount that is normally distributed with expectation µδt and

variance σ2δt and is independent of the past behavior of the price. We assume

the equation (2.20) to be valid in this work as well. Its solution will be given
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in the next section as an illustration of the power of stochastic framework.

Having discussed the stochastic integration and stochastic differential equa-

tions, one needs a computational tool to evaluate them. When integrating a

function of real or complex variables, we seldom make use of the definition of

Riemann or Lebesgue integral, similarly, this definition is of no use when find-

ing a solution of an ordinary differential equation. What is almost invariably

revoked at these situations is the fundamental theorem of calculus∫ b

a

f(x)dx = F (b)− F (a) (2.20)

given that F ′(x) = f(x). By a slight abuse of notation and in accordance

with how we have expressed the equations (2.14) - (2.19), this is equivalent to

dF = fdx. (2.21)

Let us now derive analogous formula for functions of stochastic variables.

The derivation given here will be more heuristic than rigorous, we will for

example completely omit a proof of convergence.

Let us assume we have a function g(x, t) twice continuously differentiable

and so-called Ito process St given by

dXt = µdt+ σdBt. (2.22)

Let us consider a new process Ft = g(Xt, t). What we are interested in is

an increment dFt over infinitesimally small time dt. To obtain it, since g(x, t)

is twice continuously differentiable, we can expand it into Taylor series

dF =
∂g

∂t
(Xt, t)dt+

∂g

∂x
(Xt, t)dXt +

1

2

∂2g

∂x2
(Xt, t) · (dXt)

2 + . . . (2.23)

Now we substitute for dXt from equation (2.22) and get:

dF =
∂g

∂t
(Xt, t)dt+

∂g

∂x
(µdt+σdBt) +

1

2

∂2g

∂x2
· (µ2dt2 + 2µσdtdBt +σ2dB2

t ) + . . .

(2.24)

If we now let dt go to zero, the terms µ2dt2 and 2µσdtdBt are both of order

dt2 and disappear but the last term does not because from the equation (2.9)

we have
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E[dB2
t ] = dt (2.25)

and for dt→ 0 dB2
t converges to its expected value. Hence we get

dF =

(
∂g

∂t
(Xt, t) +

1

2
σ2 ∂

2g

∂x2
(Xt, t)

)
dt+

∂g

∂x
(Xt, t)dXt (2.26)

which is a shorthand general form of Ito lemma. The corresponding full

form is obtained by integrating both sides of (2.26)

F (X(t)) = F (X(0)) +

∫ t

0

(
∂g

∂t
(Xt, t) +

1

2
σ2 ∂

2g

∂x2
(Xt, t)

)
dτ +

∫ t

0

∂g

∂x
(Xt, t)dXt

(2.27)

so that the value Ft at time t contains a sum of two integrals - Lebesgue

with the differential dτ and Ito with the differential dXt.

It is important to note that what Ito lemma establishes is an integration

theory on subclass of all stochastic processes. One has no differentiation theory,

thus the relation invoked in equation (2.10) must be understood only in a

symbolic sense. However, as we shall see, that is sufficient to solve a large class

of problems in stochastic analysis.

It is also important to note that by making a rather special choice of the

underlying Ito process (2.22) we do not restrict the validity of the result (2.26)

and (2.27). This choice in the derivation was made for the sake of clarity.

For more involved dependence on the Brownian differential, one just needs to

replace σ2 in Ito lemma by the square of a relevant factor. It is also worthy

of pointing out that one can always work with functions of Brownian motion

only by putting µ = 0.

As a proof of utility of Ito lemma let us determine the value of integral

I =

∫ t

0

BsdBs. (2.28)

One would suggest, based on real variables calculus, that the value is 1
2
B2
t

which is however not, as we shall see, the case. Let us put µ = 0, σ = 1 in

equation (2.22) and let us choose g(x, t) = 1
2
x2. Then

Ft = g(Bt, t) =
1

2
B2
t . (2.29)

Then by Ito formula (2.26)



2. Basic notions of options market and stochastic analysis 17

dFt =

(
∂g

∂t
+

1

2

∂2g

∂x2

)
dt+

∂g

∂x
dBt =

1

2
dt+BtdBt. (2.30)

Hence

d

(
1

2
B2
t

)
= BtdBt +

1

2
dt (2.31)

and ∫ t

0

BsdBs =
1

2
B2
t −

1

2
t. (2.32)

Thus, contrary to the estimate given above, deterministic nature of the

second moment of Brownian motion causes the integral (2.28) to aquire a time-

dependent second term.

Let’s now solve the equation (2.19) governing the evolution of asset price

over time. Let’s consider change of variable x(t) = log(S(t)), then by straight-

forward application of Ito lemma for the function log x we get

d logS =

(
µ− 1

2
σ2

)
dt+ σdB. (2.33)

Integrating both sides of (2.33) yields

S(T ) = S(0)e(µ−
1
2
σ2)T+σ(B(T )−B(0)). (2.34)

Now, according to section 2.2.3 on Brownian motion, the random variable

B(T )− B(0) has a normal distribution with mean zero and variance
√
T . We

can thus finally rewrite (2.34) as

S(T ) = S(0)e(µ−
1
2
σ2)T+σ

√
TN , (2.35)

where N has normal distribution with zero mean and unit variance. One

realization of the solution (2.35) is given in Figure 2.4.

2.2.5 Derivation of the Black-Scholes model

Previous paragraphs provide us with sufficient amount of methods and tools

to finally derive the Black-Scholes model. However, prior to its derivation

within the framework of stochastic calculus, general remarks and a historical

digression are in order. Black-Scholes model, also called Black-Scholes-Merton

model, is the most important derivative pricing model in terms of its histori-



2. Basic notions of options market and stochastic analysis 18

Figure 2.4: A realization of a solution of dS = µSdt+ σSdB.

Source: cite Wilmott

cal precedence, analytical solubility and ubiquity. It was published in by two

American economists, Fischer Black and Myron Scholes, in 1973 in paper “The

pricing of options and corporate liabilities” published in the Journal of Polit-

ical Economy where the general idea behind its derivation was laid out. Few

years later, another American economist, Robert Merton, published a paper

expanding the mathematical treatment of the model and coining the name of

the model. Scholes’ and Merton’s work was awarded by 1997 Nobel prize in

Economics as only these two men were alive at the time.

From a mathematical point of view, the solution of the differential equation

that constitutes the heart of the model gives the price of the contract (i.e. its

premium) V as a function of the price of the underlying stock S, time to

maturity T − t,volatility of the stock returns σ, drift rate of the stock price µ,

strike price K and annualized risk-free interest rate r. Thus, we can write the

option value as

V (S, t;σ, µ;K,T ; r),

where semicolons separate different types of variables and parameters:

• S and t are variables,

• σ and µ are parameters associated with the underlying stock price,

• K and T are parameters associated with the particular contract,
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• r is a parameter associated with the currency in which the underlying

stock is quoted.

We shall derive both the explicit form of the equation and its solution in the

subsequent paragraphs and we shall proceed in two steps: first, we make use

special method of eliminating risk to construct a portfolio whose price evolution

over time is fully deterministic and second we use a fundamental principle of

finance - principle of no arbitrage to get the Black-Scholes differential equation.

It is clear that what we are trying to do is to get a deterministic differential

equation for the price of an option given that we are given securities whose

price evolution is described by a stochastic differential equation and therefore is

inherently indeterministic (as can be seen e.g. in Figure 2.1). One possible way

out of this predicament is to construct a portfolio consisting of several securities

where somehow the stochastic indeterministic terms get cancelled out. Indeed,

given assumptions to be listed later, we are free to construct arbitrary portfolio

and we choose the securities so that their values are correlated giving a clearer

meaning to the use of word “somehow” in the previous sentence.

So let’s consider a portfolio Π of one long position in an option and short

position in some quantity ∆ of the underlying stock S

Π = V (S, t)−∆S (2.36)

where the minus sign is accounted for by the fact that quantity ∆ of stock

is being sold. Now let us consider that the price of the stock obeys equation

dS = µSdt+ σSdB, (2.37)

i.e. it follows a lognormal random walk. Then we can finally use the

celebrated result of previous subsections, Ito lemma, to write the expression

for the infinitesimal change of the value of the portfolio Π over time increment

dt:

dΠ = dV −∆dS, (2.38)

where

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2S2∂

2V

∂S2
dt (2.39)

which put together yields
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dΠ =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2S2∂

2V

∂S2
dt−∆dS. (2.40)

Here, the change of the value of the portfolio is given by terms of two types,

deterministic dt and stochastic dS. If we pretend for a moment that we know

the value V and its derivatives, we have a complete information about the

future price development of the value of the portfolio Π except for the value of

dS. Now we make use of the correlation between price increment of the option

and underlying stock price dV and dS, in other word the fact that both the

dSes in the equation (2.40) are the same and pertain to the same quantity, and

set

∆ =
∂V

∂S
. (2.41)

The randomness is then reduced to zero and the evolution of the portfolio Π

is fully deterministic. Any procedure of this kind is called hedging and this

special case, where the correlation beween two instrument was exploited, is

particularly called delta hedging. Because of the continous nature of this

strategy, the amount of stock S needs to be continually rebalanced as the value

of ∂V
∂S

changes over time, delta hedging is said to be example of a dynamic

hedging strategy. We have thus concluded the first step of deriving the Black-

Scholes equation, we have constructed, using rules of Ito calculus, a portfolio

whose price development is free of any stochastic disturbances. In the next

paragraph, we make use of this result and introduce yet another notion - the

notion of principle of no arbitrage - to complete the argument and arrive at a

solvable differential equation.

It is often argued, and empirical evidence seems to support the statement

that there no such thing as free lunch. In the financial setting this statement is

equivalent to the impossibility of riskless profit above the risk-free rate of inter-

est. This statement, the principle of no arbitrage, has important ramifications

one of which we are now going to explore.

By prudent choice of hedge (2.41) we have obtained a portfolio whose value

changes over time as

dΠ =

(
∂V

∂t
dt+

1

2
σ2S2∂

2V

∂S2

)
dt. (2.42)

Since this return is completely riskless, it must equal by the no arbitrage

principle to the growth we would get if we deposited an equaivalent amount of
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money into risk-free interest-bearing account

dΠ = rΠdt. (2.43)

Putting (2.36), (2.42) and (2.43) together, we get(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt = r

(
V − S∂V

∂S

)
dt. (2.44)

Dividing by dt and rearranging the terms leads to the celebrated Black-

Scholes equation of the price of an option

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (2.45)

As with all differential equations, one needs to add relevant boundary and

initial conditions in order to completely specify a problem. Boundary condi-

tions tell us how the solution behaves at all times at certain values of the asset.

In our case, we specify the behavior of the solution for S = 0 and S →∞

V (0, t) = 0 ∀t, V (S, t)→ S as S →∞. (2.46)

As for the initial conditions, the nature of the problem in this case is that

we know the value of the option at the time of its expiry (see e.g. Figure 2.1),

that is, its payoff function g(S) ≡ V (S, t = T ). Under these circumstances it

is more appropriate to talk about final conditions and these then completely

specify particular type of the option we are dealing with. To be concrete, let’s

give some examples that we shall most closely deal with in the subsequent

chapters. If we have a call option, the final condition is

V (S, T ) = max(S −K, 0) (2.47)

and for a put option, we have

V (S, T ) = max(K − S, 0). (2.48)

Solution of the Black-Scholes equation

How can we use information in equations (2.46) - (2.48) to find a solution of the

Black-Scholes model? Fully satisfactory answer to this question is beyond the

scope of this work and an interested reader can find it in Wilmott (2000). For

our purposes, let’s state without further discussion that among the plenty of
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methods that can be used the most computationally efficient is a transformation

to constant coefficient diffusion equation and that other popular options are the

method of Green’s functions or a “Fourier-like” method supposing a solution

in the form of a series expansion. All these methods give the same solutions

that we will write down without explicit calculation.

For a call option one finds that the solution has the form

V (S, t) = SN(d1)− Ee−r(T−t)N(d2) (2.49)

where

d1 =
log
(
S
K

)
+
(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

(2.50)

and

d2 =
log
(
S
K

)
+
(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

. (2.51)

For the put option we get

V (S, t) = −SN(−d1) + Ee−r(T−t)N(−d2) (2.52)

where d1 and d2 have the same meaning as above and N is a cumulative

distribution function for the standardized normal distribution

N(x) =
1√
2π

∫ x

−∞
e−

1
2
x′2dx′. (2.53)

Plots of the value of a call and put options as functions of underlying asset

price and time are given in Figures 2.5, 2.6, 2.7 and 2.8.

Assumptions of the Black-Scholes model

In the previous sections, we have given a derivation and a solution of the most

widely used model of mathematical finance. Our treatment of it was terse yet

as rigorous as possible. For the sake of completeness, and preparing ground

for the discussion of model’s shortcomings in the next chapter, we list all the

assumptions that we have made along the way. These are:

• The portfolio satisfies no arbitrage condition. This translates into

the impossibility of making a riskless profit on the markets where the

asset and the option are traded. Of course, on real markets arbitrage
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Figure 2.5: Value of a call option as a function of the underlying price S at a
fixed time to expiry.

Source: Wilmott (2000)

Figure 2.6: Value of a call option as a function of time, S = K.

Source: Wilmott (2000)
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Figure 2.7: Value of a put option as a function of the underlying price S at a
fixed time to expiry.

Source: Wilmott (2000)

Figure 2.8: Value of a put option as a function time, S = K.

Source: Wilmott (2000)
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opportunities exist so the no-arbitrage condition pertains only to the

model-dependent arbitrage. From the point of view of economical theory,

no arbitrage is a precondition for a market to be in general equilibrium

and thus all arbitrage opportunities should be only short-term.

• The asset price S has a continuous-time evolution. If the as-

set price followed a more general stochastic process that would include

discontinuous jumps, it can be shown that the portfolio could not be

perfectly hedged and the Black-Scholes analysis would be no longer ap-

plicable.

• Delta hedging is done continuously. Continuous rehedging is only

a theoretical construct, in real markets only hedging is possible. The

frequency of rehedging depends on level of transaction costs in the un-

derlying asset, the higher the costs, the more frequent delta hedging is

possible.

• There are no transaction costs on the underlying.

• There are no dividends on the underlying. This assumption sim-

plifies the solution of the model. It can be dropped and the resulting

equation will still be analytically solvable. For exact solution see Wilmott

(2000).

• The risk-free interest rate is a known function of time. This

assumption is a prerequisity so that we could find a explicit solution. In

reality, the rate r is not known in advance and is itself stochastic.

• In the hedged portfolio, the asset S is infinitely divisible and

short-selling is possible. This technical assumption is a precondition

for a continuous delta hedging to be possible. Of course, the first of the

conditions is never realized in real markets as the assets are traded in

discrete quantities.

This then completes our treatment of the Black-Scholes model. As cele-

brated a model as it can be, it is not without serious critics. For a thoroughly

negative review of the Black-Scholes model approach to the option pricing,

reader is invited to consult (Espen G. Haug 2010). From our point of view, we

will use it as a backbone for the model to be developed in the next chapter.



Chapter 3

The new econophysical framework

The main goal of this chapter is to give a derivation of a model of European

options that will be based on econophysical framework and will in some sense

correct the deficiencies of the Black-Scholes model which was introduced in the

previous chapter. For the sake of greater clarity, this task will be done in three

steps. First, we give an overview of the tests of empirical validity of the Black-

Scholes model, giving a firmer ground to the criticisms that were mentioned

in the previous chapter. Particular details of these test shall reveal a precise

nature of the shortcomings of this model. Then, in the second step we will cover

a sufficient amount of the quantum mechanics as a possible new framework for

the particular problem of option pricing. Hilbert spaces, wavefunctions and the

Schrodinger equation are given a due treatment. In the third step, we apply

the knowledge of quantum mechanical framework and derive a simple model

for the price of an European option.

3.1 Empirical shortcomings of the Black-Scholes

model

On a more philosophical note, the question of whether a certain model is right

or wrong in a certain sense lacks meaning because by constructing a simplified

version of reality we always make some phenomenological reduction. Further-

more, it is almost always the case, that we impose conditions which are to be

met for a relation between the model and reality to be representative. By virtue

of this, the link beween reality as it is and a model is broken. Thus, much more

appropriate question to ask is to what extent a given model is able to explain

empirical observations and to what degree it is in the popperian sense falsifi-
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able by them. In the particular case of the Black-Scholes model thanks to the

ubiquity of the financial data the former question can be given a thoroughly

definite answer that we shall try to convey in the subsequent paragraph.

In an econometrical setting which is in our case relevant, the question of

judgment of empirical validity of a model at the end reduces to a judgement

whether certain R2-type statistics has a sufficiently high value. We shall not

reproduce empirical studies aimed at resolving this question as this type of

studies has been frequently done in the past and the results can be found

in relevant papers. Suffice to say and to cite Wilmott (2000): “it must be

emphasised how well the model has done in practice, how widespread is its use

and how much impact it had on financial markets.” Let us now find the limits

to the aforementioned citation. As it turns out, the exposition of shortcomings

of the Black-Scholes model to a large extent follows the list of assumption that

was given at the end of the previous chapter:

• Only discrete hedging is possible. This is a clear contradiction of an as-

sumption of continuous delta hedging. In presence of discrete steps at

which hedging can be done, the Black-Scholes formula holds only on av-

erage. However, as we shall shortly see, breaking this assumption does not

constitute a serious fundamental problem to the formula because of course

in the limit of infinitesimal discrete hedging steps the hedging errors con-

verge to zero. For the description of the precise nature of hedging error

due to non-continuous trading and its implications see Takaki Hayashi

(2005) and Toft (1994).

• There are transaction costs. The precise magnitude of the transaction

costs depends on the particular market and can range from negligible to

significant. One implication of the existence of the transaction costs is

that for arbitrarily low positive transaction costs there exists a rehedging

time step such that under these costs the perpetual hedging is no longer

the optimal strategy. In the continuum limit, the total cost of hedging

approaches infinity. Transaction costs as a result of bid-ask spread are

especially significant in emerging markets stocks and equity derivatives.

• Volatility is not constant neither deterministic known function. The

treatment of volatility in the Black-Scholes model is severely oversim-

plified as it supposes that the parameter σ in the equation is a constant.

Empirical studies show that it is not constant or even predictable, so the
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best way to treat it is as a stochastic variable itself. Moreover, it is not

even directly observable: from the equation (2.19) it can be seen that

Var

[
dS

S

]
= σ2dt, (3.1)

where we have used the properties of the Wiener process. Thus, σ is a

standard deviation of a stock’s logarithmic returns. But standard devi-

ation can never be directly measured and it depends on which way we

normalize it in equation (3.1), i.e. which period do we take into account

for the calculation of returns. A standard choice is a one year period

which is far from unique - different choices give different values for the σ.

When we compute volatility in this manner we speak about historical

volatility. An alternative approach is to consider market price of some

instrument whose pricing formula depends on the volatility parameter σ.

In case of the Black-Scholes model formulae (2.49) - (2.52) the option

price V is monotonous in σ and thus these relations can be inverted to

give a unique value of volatility σ for a given price V . The resulting value

is called implied volatility because it is implicitly implied by the mar-

ket price of a derivative contract. The values of historical and implied

volatilities generally do not coincide.

• The asset price do not follow geometrical Brownian motion. This

is perhaps the gravest defect of the Black-Scholes model. Numerous em-

pirical investigations have shown that the distribution of the logarithmic

returns is not normal as the model assumes but exhibits dependence on

the time interval over which we compute the asset returns. Let us give a

overview of the exact forms of the underlying non-Gaussian distributions

for different time periods. Highest-frequency data where the log returns

are recorded by one minute, exhibit purely exponential heavy tails that

are best described by the Boltzmann distribution

B(z) =
1

2T
e−|z|/T , (3.2)

where we have taken z ≡ logS and T denotes temperature. Introduction

of a new parameter T with intuitive interpretation and positive correla-

tion with volatility σ poses a major convenience whose description can be

found in Masud Chaichian (2001). Higher recording periods ∆T = 2min,
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∆T = 3min lead to a data that are best fitted by a Student-Tsallis dis-

tribution

Dδ(z) = Nδ
1√

2πσ2
δ

e
−z2/2σ2

δ
δ (3.3)

where

Nδ =

√
δΓ(1/δ)

Γ(1/δ − 1/2)
, σδ = σ

√
1− 3δ/2 (3.4)

and

ezδ = (1− δz)−1/δ (3.5)

is an approximation to the exponential function called δ-exponential.

Another probability distribution whose applications range from high-

frequency data to ∆T in the range of several days is the Levy distribu-

tion and truncated Levy distribution. These are defined by their Fourier

transform

Lλσ2 ≡
∫ ∞
−∞

dp

2π
eipze

−(σ2p2)λ/2

2 (3.6)

in the former case and by slightly more involved Fourier transform formula

L
(λ,α)

σ2 (z) =

∫ ∞
−∞

dp

2π
eipz−H(p) (3.7)

in the later case with

H(p) =
σ2

2

α2−λ

λ(1− λ)

[
(α + ip)λ + (α− ip)λ − 2αλ

]
(3.8)

where σ2 denotes the second moment of respective distribution and λ,

α are parameters. In the limit ∆T → ∞, i.e. for the period T ranging

from several weeks to years the underlying distribution approaches normal

Gaussian. This corresponds to the limit λ → 2 in equation (3.6). In

simple terms, what the Black-Scholes model seriously underestimates is

the probability of extreme events given by the “lean tails” of the Gauss
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distribution. For a somewhat popular critique of this fact, the reader is

referred to Taleb (2010).

This list of reasons and particularly the last one reveal serious flaws at the

conceptual foundations of the Black-Scholes model. While it is the case that

wrong assumptions sometimes lead to correct predictions, it should serve only

as a weak comfort. In the following, we take the approach akin to physical

methodology. Particularly, we propose a new model using heuristic principles

and insight from the experimantal data. But before giving an full account of

the derivation of the econophysical model, we need to give an overview of the

quantum mechanics with respect to its applications in economy.

3.2 Quantum mechanics

This section ought to give a succint treatment of one of the pillars of modern

theoretical physics - quantum mechanics. Ever since its incarnation in the

seminal papers in 1920’s, the subject has not ceased to receive a relentless

attention, mainly because of the philosophical interpretation of reality that it

foists on us. We will try to convey the meaning of this new outlook on reality in

the subsequent paragraphs because it is tangential to the subject of this work.

It should be said right at the outset however that any exposition of quantum

mechanics that fits into less than considerable amount of pages is necesarily an

oversimplification and is doomed to be in some sense incomplete. The serious

reader interested in more rigorous exposition is therefore referred to books

(Ballentine 2003), (Claude Cohen-Tannoudji 1977). The outline of this section

is as follows: first, we introduce two types of theories that the world around us

is desribed with and the stepping bridge from one type to the other. This will

lead us to the second point - the mathematical structure of the quantum theory.

Third, the attention is focused on the analogies between physical and economic

systems.It should be noted that because of the our language is somewhat more

relaxed than what is the case in most of physical literature.

As was mentioned in the previous paragraphs, the physical world around

us seems to be described by two types of theories. These theories are classical

and quantum. The definition of the classical theories seems to be negative and

not very descriptive - they are a type of theories where one does not take into

account the Heisenberg uncertainty principle, one of the hallmarks of the second

type of theories. Newton’s laws of motion, Maxwell’s equations, special and



3. The new econophysical framework 31

general relativity all lead to theories whose description is classical. On the other

hand and not surprisingly, the theories that do take the Heisenberg uncertainty

principle into account are called quantum. These theories include quantum

mechanics, quantum electrodynamics and the theory of nuclear forces.Theories

of both types are not unrelated in the ideal case. The procedure of finding a

quantum theory corresponding to a given classical one is called quantization,

whereas from a given quantum theory to be consistent, one requires that in

the classical limit, one recovers the corresponding classical theory. The criteria

that determines which type of theory is suitable is the magnitude of the action

of the system - for S � ~ classical theory is applied, for S ≈ ~ quantum theory

is relevant. The constant ~ that we have just introduced is called the reduced

Planck constant. Its physical dimension is that of action or equivalently E · t
and the above mentioned classical limit then logically corresponds to ~ → 0.

For an explicit account of the limiting procedure on case of ordinary quantum

mechanics, reader is invited to consult Ballentine (2003). Suffice to say that

the classical theory generated in this way is always unique.

In case one has a classical theory and wants to obtain its quantum analogue,

the situation is not that clear - there are numerous quantization procedures that

lead to non-equivalent quantum theories. Historically the oldest approach is so-

called canonical quantization which makes use of the Hamiltonian formulation

of mechanics and a phase space parametrized by generalized coordinates qi and

their conjugate momenta pi. The set of functions f(qi, pi) can then by given

a structure of an algebra by introducing special binary operation - Poisson

bracket defined as

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(3.9)

The canonical quantization then consists in finding a map from the Poisson

algebra (that is the set of functions on the phase space together with the binary

operation of Poisson bracket) into the set of Hermitian operators on the Hilbert

space such that

{f, g} → 1

i~
[Â, B̂], (3.10)

where A, B are operators corresponding to the functions f , g respectively.

The precise meaning of terms will be elucidated on the next paragraphs. Other

quantization options include the path integral quantization, geometric quanti-
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zation, deformation quantization and others. Their full treatment goes beyond

the scope of this work and can be found in for example in (Michael E. Peskin

1995).

What has been explained in the previous paragraph is how a certain special

procedure called canonical quantization turns a classical theory into its quan-

tum counterpart as it is the clearest example of the relation between classical

and quantum theories. This on its own however does not answer the question

of what quantum theory really is and what mathematical structures it makes

use of. These issues are dealt with in the next subsection. Our exposition to

a large extent follows (Masud Chaichian 2001) which can also be consulted for

further details.

The axioms of quantum mechanics

In trying to derive the laws quantum mechanics one has several possibilities

how to proceed. We take the axiomatic path, that is, we list the set of axioms

that are sufficient and necessary to recover a quantum theory.

Proposition 3.1. Quantum mechnical states are described by non-zero vectors of

a complex separable Hilbert space H, two vectors describing the same state if

they differ from each other only by a non-zero complex factor. To any observ-

able, there corresponds a linear Hermitian operator on H.

Hilbert space means that we work with a linear vector space that is complete

with respect to the norm induced by the scalar product. Hermitian operator

is an operator such that

〈Âφ|ψ〉 = 〈φ|Âψ〉 (3.11)

i.e. it is symmetric and the domains of the operator acting to the left and

acting to the right coincide. We have used the Dirac bra-ket notation for the

scalar product. The space H that we have just postulated is called the state

space and its elements are called state vectors or equivalently the wavefunctions.

It is customary to suppose that all the vectors that we work with have unit

norm because any multiples of the given state vector represent the same state.

The observables A1, . . . , An are called simultaneously measurable if their

values can be determined with arbitrary precision simultaneously, so that in

any state ψ ∈ H, the random variables A1, . . . , An have a joint probability

density. Heisenberg uncertainty principle that was mentioned in the previous
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paragraph as an example of criteria between quantum and classical theories is

then a special form of a statement that two observables are not simultaneously

measurable

σxσp ≥
~
2

(3.12)

where σ is a standard deviation of a probability distribution of position or

momentum when measured simultaneously. This fact can be given equivalent

characterization in terms of the operators that represent the observables:

Proposition 3.2. Observables are simultaneously measurable if the corresponding

self-adjoint operators commute with each other. The joint probability density

probability distribution of simultaneously measurable observables in a state ψ ∈
H has the form

w(λ1, . . . , λn) = 〈ψλ1,...,λn|ψ〉
∗ 〈ψλ1,...,λn|ψ〉 (3.13)

where ∗ denotes complex conjugation and ψλ1,...,λn are common eigenfunc-

tions of the operators Â1, . . . , Ân, i.e.

Âiψλ1,...,λn = λiψλ1,...,λn , i = 1, . . . , n (3.14)

Elementary theorem then states that for Â Hermitian, the eigenvalues λi are

real and the eigenfunctions ψi are orthogonal. Moreover, in case of Hermitian

operators the set of eigenfunctions {ψa} is complete in H so that its linear span

is H. This means that any vector ψ ∈ H can be represented by the series

ψ =
∑
a

caψa, ca ∈ C (3.15)

where the index a runs over the eigenvalues of Â. The coefficients of this

expansion can then be expressed as

ca = 〈ψa|ψ〉 . (3.16)

But this according to the proposition 2.2 gives a probability amplitude that

a measurement of the observable A gives the value λa if the system is in the

state represented ψ, the corresponding probability is then

waψ = |ca|2 = | 〈ψa|ψ〉 |2 (3.17)
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and the mean value of quantity A in the state ψ is

〈Â〉ψ ≡ 〈ψ| Â |ψ〉 =
∑
a

λaw
a
ψ =

∑
a

λa|ca|2. (3.18)

The variance reads

VarψA = 〈(Â− 〈Â〉ψ)2〉ψ. (3.19)

Having exposed the static description of state in quantum mechanics we

now turn to the question of dynamics i.e. how the state evolves over time.

Proposition 3.3. Let a state of a system, at some tome t0, be described by a

vector ψ(t0). Then at any moment t, the state of a system is described by the

vector

ψ(t) = Û(t, t0)ψ(t0) (3.20)

where

Û(t, t0) = e−
i
~ Ĥ(t−t0) (3.21)

is so-called evolution operator. The wavefunction ψ(t) is differentiable with

respect to time if it lies in the domain of the operator Ĥ, called the Hamiltonian

operator, and in this case one has the relation

i~
∂ψ(t)

∂t
= Ĥψ(t). (3.22)

As one can see from the purely imaginary exponent in equation (3.21), the

evolution operator is unitary. The quantum evolution is thus equivalent to the

a rotation of the hypersphere of all possible states in a Hilbert space of infinite

dimension - vectors of unit norm are mapped to vectors with unit norm. The

Hamiltonian operator H represents the total energy of the system, the wealth

of possibilities of how the rotation can actually take place is then equivalent

to the wealth of possibilities of how the energy of a system can depend on the

generalized coordinates and their conjugate momenta. The particular case of

equation (3.14) for the case of a Hamiltonian operator is

Ĥψi = Eiψi. (3.23)

In this case, the operator Ĥ in the equation (3.21) can be replaced with



3. The new econophysical framework 35

Ei so that the time evolution given by equation (3.20) is reduced to multi-

plication by a complex amplitude which by virtue of postualte 3.1 represents

the same state. This is why the equation (3.23) is called the time-independent

Schrodinger equation. It fully characterizes the stationary state of the system

under consideration.

Analogies between quantum and financial systems

The discussion of relation between classical and quantum theories and exposi-

tion of the basic structure of quantum mechanics definitely deserves a justifica-

tion in a work supposed to deal mainly economic problems. This justification

comes in two parts. We explicitly state the analogy between the quantities of

interest in both fields. Then give a reformulation of the Black-Scholes equation

in the language of quantum mechanics which will turn out to be just as natural

as the one within the stochastic analysis.

First fact one notices when comparing the two theories with respect to the

determinicity of their description of the time evolution is the parallel with the

character of the equation (2.19) giving the description of geometric Brownian

motion depending on the parameter σ. For σ = 0 one gets a deterministic

ordinary differential equation

dS = µSdt (3.24)

with a solution S(t) = S(0)eµSt. For σ > 0 on the other hand the resulting

equation is stochastic differential, the value of a solution at a given time t is

indeterministic and given by the equation (2.34) and (2.35). Thus the first case

corresponds to a classical theory with fully deterministic equations of motion.

In the case σ 6= 0 the price of a asset price is a random variable in the same

sense that the position of a system (e.g. a scalar particle) in a certain state ψ is

a random variable. The classical limit ~→ 0 used to obtain a classical theory

from a quantum one is equivalent to a limit σ → 0 of vanishing volatility.

Another parallel concerns the way the state of the system |ψ〉 is treated in

the quantum mechanics. It is an object of central importance in the theory. By

the same token and by taking a look at the equation (2.45), one can see that the

natural candidate for an object of central importance and an analogue of the

state vector |ψ〉 in option pricing is the price of the option V as a function of the

price of underlying security S. There are also important conceptual differences

however, in quantum mechanics, the wavefunction ψ is unobservable and can
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be learned about only through the act of measurement. Option price V on the

other hand is always directly observable and the quantity given by the equation

(3.13) is no longer of importance.

Third common feature is the formal analogy of equations (2.45) and (3.22).

It can be shown that the Black-Scholes differential equation can be reformulated

as a special type of the Schrodinger equation for a particular choice of the

Hamiltonian operator Ĥ. Because of its importance in the construction of

alternative model that would remedy some of the shortcomings of the Black-

Scholes model, the whole next subsection is devoted to putting the equation

(2.45) into form similar to (3.22) and exploring its ramifications.

The Black-Scholes model reformulated in the language of QM

The outline of this subsection is straightforward. One substitution in the Black-

Scholes differential equation shall allow us to find an explicit form for an oper-

ator that can be interpreted as representing total energy of the system. Along

the way some divergences from the case of quantum mechanics emerge.

The equation (2.45) can be written in more convenient form

∂V

∂t
= −1

2
σ2S2∂

2V

∂S2
− rS ∂V

∂S
+ rV. (3.25)

Now let’s consider the substitution V = ex for x ∈ (−∞,∞). A computa-

tion then yields

∂

∂S
=
∂x

∂S

∂

∂x
=

1

S

∂

∂x
= e−x

∂

∂x
,

∂2

∂S2
=

∂

∂S

(
∂

∂S

)
= e−x

∂

∂x

(
e−x

∂

∂x

)
= −e−2x ∂

∂x
+ e−2x

∂2

∂x2
.

Substituting into (3.25) gives

∂V

∂t
=

(
−σ

2

2

∂2

∂x2
+

(
1

2
σ2 − r

)
∂

∂x
+ r

)
V, (3.26)

i.e. ∂V
∂t

= ĤBSV with

ĤBS = −σ
2

2

∂2

∂x2
+

(
1

2
σ2 − r

)
∂

∂x
+ r. (3.27)

This is the Black-Scholes Hamiltonian. Its eigenvalues represent the values

of a “generalized Black-Scholes energy”. The point of vast divergence from the
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quantum mechanical case is however, that these values are not generally real.

The reason for this is that the operator (3.27) is not Hermitian, nor can it

be made Hermitian by a coordinate transformation. As unusual as it seems,

this fact does not hinder it however from providing a fresh new method for

solving the Black-Scholes model by means of a momentum eigenfunctions. The

detailed description of this method is beyond the scope of this work and can

be found in (Baaquie 2007).

One remark is in order. The Black-Scholes equation and the Schrodinger

equation in the form still differ in the factor i~, a fact that has been skimmed

over in the previous derivation. The reason for this is that the reduced Planck

constant can be made equal to zero by a suitable coordinate transformation

without changing the qualitative features of the solutions of the relevant equa-

tion and that both equations are of different types when it comes to the reality

or complexity of its solutions - while the Schrodinger equation gives complex

solutions, the Black-Scholes equation is real and admits only real-valued so-

lutions. A purely formal way how to resolve this discrepancy would be by

considering the equation (3.26) as a Schrodinger equation in “imaginary time”.

3.3 Construction of a new model of option price

premia

The word construction in the title of this section can be slightly misleading

because it hints at a possible usage of deductive reasoning when searching for

a model explaining the behavior of real world data. In economic sciences as

a part of the world of social science it is the case that universal principles a

bit like universal constants are quite scarce. Concretely in the field of finance

besides the principle of no arbitrage and the martingale condition, one has no

universally agreed upon laws to base one’s deductive reasoning on. It would be

therefore more suitable to call one’s efforts an educated proposal but we adhere

to the widely held academic modus operandi and denote these endeavors as

“construction”.

As section 3.1 on the empirical shortcomings of the Black-Scholes model

should attest, the behavior of the real world market data diverge in some

points significantly from what the model supposes. Not only are there transac-

tion costs that show a strong variation across the markets, not only are there

dividends and non-constant risk-free rates, but perhaps most significantly the
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very assumptions of Markov and martingale properties are not entirely correct,

leading the distributions of the logarithmic returns to have substantial devia-

tions from the Gaussian distributions. Vast corpus of literature exists on the

application of memory processes in economic time series which by its definition

breach both these assumptions. So let us take its existence as yet another hint

for finding a another more fitting model.

In the following we shall make a case for a particular form of discrepancy and

give its analytical treatment from quantum finance perspective. This form of

discrepancy was not particularly pointed out in the discussion of the empirical

shortcomings of the Black-Scholes model in the beginning of this chapter but

it is consisent with it the distributions of the logarithmic returns. Numerous

empirical investigations show (see for example Jeffrey O. Katz (2005)) that the

distribution of the logarithmic returns of financial samples display small but

consistent negative third central moment

γ1 = E

[(
logS − µ

σ

)3
]

(3.28)

where µ denotes the mean and σ standard deviation of the distribution,

which is a clear contradiction of a Gaussian normal distribution where the

skewness γ1 is zero. This fact has a simple intuitive implications - negative

skewness indicates distribution whose peak is tilted to the right, this means

that in the stock prices movements should tend to display occasional sharp

declines that are set against a background of frequent, but relatively frequent

price gains.

Let us now finally derive a pricing model that takes all these considerations

into account. A glance at the derivation of the Ito formula (2.26) immediately

reveals that one cannot derive such a model by considering the Taylor expan-

sion of the function Ft = g(Xt, t) in equation (2.23) to the “second order”, i.e.

considering term proportional to dt2, dtdBt and dB2
t a proceeding in a manner

analogous to the original derivation of Black of Scholes. By virtue of a quan-

tity dB2
t one would this way or the other get an equation that includes fourth

derivatives with respect to the price S of the underlying asset. In other words,

instead of addressing the issue of skewness of the underlying distribution, one

would deal with its kurtosis. But the analysis of the Black-Scholes model re-

casted in the language of the quantum mechanics showed us a description that

is in all aspects equivalent to the original formulation. In quantum mechan-

ics, it is fortunately the case that depending on the specific parameters of the
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system under consideration, one is not constrained in any way in choosing the

concrete form of the constituent terms in the Hamiltonian. One can there-

fore add a term corresponding to the third central moment of the underlying

distribution without the need to invoke the argument containing Ito formula

derivations and thus effectively avoiding the line of reasoning that in this par-

ticular case does not lead to an end. So let us add a term to the Black-Scholes

Hamiltonian (3.27) proportional to the third derivative with respect to x and

let us choose it in such a way that the corresponding term in the equation 2.45

is kS3 ∂3V
∂S3 .Then continuing the computations of the section on reformulation of

the Black-Scholes model in the language of quantum mechanics gives

∂

∂S
=
∂x

∂S

∂

∂x
=

1

S

∂

∂x
= e−x

∂

∂x
,

∂2

∂S2
=

∂

∂S

(
∂

∂S

)
= e−x

∂

∂x

(
e−x

∂

∂x

)
= −e−2x ∂

∂x
+ e−2x

∂2

∂x2
.

∂3

∂S3
=

∂

∂S

(
∂2

∂S2

)
= e−x

∂

∂x

(
e−2x

(
∂2

∂x2
− ∂

∂x

))
= e−3x

(
−2

∂2

∂x2
+ 2

∂

∂x
+

∂3

∂x3
− ∂2

∂x2

)
= e−3x

(
∂3

∂x3
− 3

∂2

∂x2
+ 2

∂

∂x

)
.

Putting this into equation we wish to obtain

∂V

∂t
= kS3∂

3V

∂S3
− 1

2
σ2S2∂

2V

∂S2
− rS ∂V

∂S
+ rV (3.29)

where k ≈ 0 is a convenient non-zero constant account for the non-zero

skewness, gives

∂V

∂t
= ke3x

(
e−3x

(
∂3V

∂x3
− 3

∂2V

∂x2
+ 2

∂V

∂x

)
− σ2

2

∂2V

∂x2
+

(
1

2
σ2 − r

)
∂V

∂x
+ rV

)
= k

∂3V

∂x3
−
(

3k +
σ2

2

)
∂2V

∂x2
+

(
2k +

σ2

2
− r
)
∂V

∂x
+ rV.

(3.30)

We can see that for k = 0 the equation (3.30) yields (3.25) as expected. We

can now read off the form of a Hamiltonian of a constructed model
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H = k
∂3

∂x3
−
(

3k +
σ2

2

)
∂2

∂x2
+

(
2k +

σ2

2
− r
)

∂

∂x
+ r. (3.31)



Chapter 4

Conclusion

This thesis was meant to be a contribution to the ongoing discussion about

the relevance of the econophysical approach to problems in economic sciences.

To this end, we have investigated the area option pricing through the prism of

quantum finance with the particular goal of deriving a model that would make

up for the deficiencies of the model of Black an Scholes.

The first chapter dealt with the prevailing paradigm - stochastic analysis

and its application in mathematical finance. It introduced the basic terminol-

ogy of the option market and it gave a self-contained pedagogical review of the

stochastic analysis. All the indispensable notions of mathematical finance were

successively covered - stochastic processes, Markov chains and martingales, the

Brownian motion, Ito lemma and stochastic integration and stochastic differ-

ential equations. This knowledge was then used to give an account of the

derivation of the Black-Scholes model following its authors’ original argument.

In the final part, the set of assumption being made along the way was listed.

The second chapter dealt with the deficiencies of the Black-Scholes model

and with what the quantum finance can offer to remedy them. It opened with

a list of the points where the Black-Scholes model goes wrong. After providing

a necessary background in quantum mechanics, a comparison of quantum and

financial systems was given. This knowledge justified the reformulation of the

Black-Scholes model in the quantum mechanical framework. It was shown

that this approach is natural and fully equivalent to the original one. In the

next section the heuristic principle for the construction of a new model for

formulated and it was shown that the stochastic paradigm, unlike the quantum

one, cannot easily accomodate it. Finally, the explicit form of the Hamiltonian

driving the time evolution of the model was deduced.
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In our future research we would like to address the problem of solving the

derived model using econophysical methods as well as its econometrical testing

on the European call options data.
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