Charles University in Prague
Faculty of Mathematics and Physics

DOCTORAL THESIS

Václav Mácha

Existence and Qualitative Properties of Solutions to Certain Systems of Fluid Mechanics

Department of Mathematical Analysis

Supervisor of the doctoral thesis: Doc. RNDr. Jana Stará, CSc.

Study program: Mathematical Analysis
Specialization: Differential Equations

I would like to thank to my supervisor, Doc. RNDr. Jana Stará, Csc., for her patience, valuable guidance and advice. I also wish to express my sincere gratitude to my family and friends; for their understanding and support through the duration of my studies.

I declare that I carried out this doctoral thesis independently, and only with the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University in Prague has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, $18^{\text {th }}$ October, 2012
Václav Mácha

Název práce: Existence a kvalitativní vlastnosti řešení některých systémů mechaniky tekutin.

Autor: Mgr. Václav Mácha
Katedra: Katedra matematické analýzy
Vedoucí doktorské práce: Doc. RNDr. Jana Stará, CSc., KMA MFF

Abstrakt: V předložené práci studujeme existenci a jednoznačnost řešení zobecněné Stokesovy úlohy, dále se pak věnujeme vyšší diferencovatelnosti a hölderovské spojitosti řešení jak zobecněného Stokesova systému tak zobecněného NavierStokesova systému. V případě řešení lineární rovnice jsme dosáhli plné regularity v libovolné dimenzi, v případě nelineárního problému pracujeme pouze v dimenzi dvě nebo tři. V dimenzi 2 jsme schopní dokázat plnou regularitu řesení, v dimenzi 3 obdržíme pouze částečnou regularitu řešení. Pro přehlednost jsou všechny hlavní výsledky uvedeny v první kapitole.

Klíčová slova: Stokesův problém, Navier-Stokesův problém, částečná regularita.

Title: Existence and qualitative properties of solutions to certain systems of fluid mechanics.

Author: Mgr. Václav Mácha
Department: Department of Mathematical Analysis
Supervisor: Doc. RNDr. Jana Stará, CSc., KMA MFF

Abstract: In the presented work, we study the existence and uniqueness of solutions to the generalized Stokes problem. We, further, focus on the higher differentiability and the Hölder continuity of solutions to the generalized Stokes and generalized Navier-Stokes system. We reach the full regularity in an arbitrary dimension for a linear case, while in a nonlinear case we work only in dimensions $d=2,3$. In dimension $d=2$ we are able to proof the full regularity of solution, in dimension $d=3$ we obtain only a partial regularity. All main results are introduced in the first section.

Keywords: Stokes problem, Navier-Stokes problem, Partial regularity

Contents

List of Notation 1
1 Introduction 2
1.1 Motivation 2
1.2 Main results 4
2 Preliminaries 6
2.1 Definitions 6
2.2 Observations 7
3 Generalized Stokes System 18
3.1 Existence and Uniqueness 18
3.2 Higher differentiability 21
3.3 Hölder regularity 25
3.4 Few additional lemmas 27
4 Navier-Stokes System with Pressure-dependent Viscosity 32
4.1 Existence of Solution 32
4.2 Higher differentiability 36
4.3 Higher integrability 43
4.4 Key lemma and its consequences 45
4.5 Proof of the main theorem 57
Bibliography 59

Notation	Meaning	Condition				
\mathbb{R}^{d}	d-dimensional Euclidean space					
$B_{R}(x)$	$\left\{y \in \mathbb{R}^{d},\|y-x\|<R\right\}$	$x \in \mathbb{R}^{d}, R>0$				
$B_{R}^{+}(x)$	$\left\{y \in \mathbb{R}^{d},\|y-x\|<R, y_{d}>0\right\}$	$x \in \mathbb{R}^{d}, R>0$				
B_{R}^{d-1}	$\left\{x \in \mathbb{R}^{d},\|x\|<R, x_{d}=0\right\}$	$R>0$				
$B_{R}^{\Omega}(x)$	$B_{R}(x) \cap \Omega$	$x \in \mathbb{R}^{d}, \Omega \subset \mathbb{R}^{d}, R>0$				
$\mathbb{R}_{\text {sym }}^{d^{2}}$	Space of symmetric $d \times d$ matrices					
I	An identity matrix					
$L^{\pi}\left(\Omega, \mathbb{R}^{d}\right)$	Lebesgue spaces of functions $f: \Omega \mapsto \mathbb{R}^{d}$	$\Omega \subset \mathbb{R}^{n}, 1 \leq \pi \leq \infty$				
$\\|\cdot\\|_{\pi},\\|\cdot\\|_{\pi, \Omega}$	Norm on $L^{\pi}\left(\Omega, \mathbb{R}^{d}\right)$					
$W^{k, \pi}\left(\Omega, \mathbb{R}^{d}\right)$	Sobolev spaces of functions $f: \Omega \mapsto \mathbb{R}^{d}$	$\begin{array}{r} \Omega \subset \mathbb{R}^{n}, 1 \leq \pi \leq \infty \\ k \in \mathbb{N} \end{array}$				
$\\|\cdot\\|_{k, \pi},\\|\cdot\\|_{k, \pi, \Omega}$	Norm on $W^{k, \pi}\left(\Omega, \mathbb{R}^{d}\right)$					
$W_{0}^{1, \pi}$	${\overline{C_{0}^{\infty}\left(\Omega, \mathbb{R}^{d}\right)}}^{\\|\cdot\\|_{1, \pi}}$	$1 \leq \pi<\infty$				
π^{\prime}	$\frac{\pi}{\pi-1}$	$1<\pi<\infty$				
$W^{-1, \pi}$	$\left(W_{0}^{1, \pi^{\prime}}\right)^{\prime}$	$\pi \in(1, \infty)$				
$L_{0}^{2}(\Omega)$	$\left\{g \in L^{2}(\Omega, \mathbb{R}), \int_{\Omega} g=0\right\}$	$\Omega \subset \mathbb{R}^{d}$				
$W_{0, \text { div }}^{1,2}$	$\left\{u \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right), \operatorname{div} u=0\right\}$	$\Omega \subset \mathbb{R}^{d}$				
$[., .]_{X}$	Duality between X^{\prime} and X					
$\langle., .\rangle_{H}$	Scalar product on H	H is a Hilbert space				
μ	Lebesgue measure					
$(f)_{E, \sigma}$	$\sigma(E)^{-1} \int_{E} f d \sigma$	σ is a measure on \mathbb{R}^{d}, $E \subset \mathbb{R}^{d}, \sigma(E)>0$ f is σ-measurable				
$(f)_{x, R}$	$(f)_{B_{R}(x), \mu}$	$x \in \mathbb{R}^{d}, R>0$				
\mathcal{H}^{n}	n-dimensional Hausdorff measure as stated in [11]					
$(f)_{\Gamma}$	$(f)_{\Gamma, \mathcal{H}^{d-1}}$	$\Gamma \subset \mathbb{R}^{d}$ is a (d-1)-dimensional manifold				
$\operatorname{Ran}(F)$	Range of an operator F					
$\operatorname{Ker}(F)$	Kernel of an operator F					
VMO	Space of functions with vanishing mean oscillations					
$V M O_{B}$	$V M O \cap L^{\infty}$					

Chapter 1

Introduction

1.1 Motivation

Non-Newtonian fluid is a type of fluid whose flow properties differ from those of Newtonian fluids which are described by the Navier-Stokes system. However, there are many physical phenomena which can not be expressed by the typical Navier-Stokes model, such as shear thinning, shear thickening, die swell, etc. The viscosity of non-Newtonian fluids is not generally constant but depends on shear rate and, as many experimental works show, there are several liquids whose viscosity depends on pressure. On the other hand, changes in the density of these liquids are negligible as the pressure grows (see for example [3, 7]). Thus we can model these liquids as being incompressible and, in this case, the governing equation has a form

$$
\begin{align*}
u_{t}-\operatorname{div} T(\mathcal{D} u, p)+\operatorname{div}(u \otimes u)+\nabla p & =f \text { in }(0, \tau) \times \Omega \\
\operatorname{div} u & =0 \text { in }(0, \tau) \times \Omega \tag{1.1.1}
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{d}$ is a body, p stands for pressure, u is a velocity field, $\mathcal{D} u$ denotes a symmetrical gradient of u, i.e. $\mathcal{D} u=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right)$, and f represents body forces. Further, T stands for the deviatoric stress tensor and $\operatorname{div}(u \otimes u)$ is a convective term.
A plenty of works studying this system under various boundary and growth conditions have been published, see for example $[4,5,9,17,18,26]$ and references given there. However, there are still many open questions, mostly regarding regularity of solutions.

In this work, we deal with a steady case, i.e. we study an equation

$$
\begin{align*}
-\operatorname{div} T(\mathcal{D} u, p)+\operatorname{div}(u \otimes u)+\nabla p & =f \text { in } \Omega \\
\operatorname{div} u & =0 \text { in } \Omega \\
\left.u\right|_{\partial \Omega} & =0 \tag{1.1.2}
\end{align*}
$$

We assume that there exist positive constants c_{1}, c_{2}, c_{3} such that ${ }^{1}$ the deviatoric stress tensor T obeys the following growth condition for all $\xi \in \mathbb{R}_{\text {sym }}^{d^{2}}$, all $D \in \mathbb{R}_{\text {sym }}^{d^{2}}$ and $\pi \in \mathbb{R}$:

$$
\begin{align*}
c_{1}|\xi|^{2}<\frac{\partial T(D, \pi)}{\partial D}(\xi \otimes \xi) & <c_{2}|\xi|^{2} \\
\left|\frac{\partial T(D, \pi)}{\partial \pi}\right| & <c_{3} \tag{1.1.3}
\end{align*}
$$

Partial regularity of solution to (1.1.2) in interior domains has been studied in [24, 25]. N. D. Huy studied partial regularity up to a straight boundary in his dissertation thesis ([15]). Chapter 4 of this work is devoted to the partial Hölder regularity for system (1.1.2) in a bounded C^{2} domain Ω. In the remainder of this work, we assume that the tensor T fulfills

$$
\begin{align*}
T(0, \pi) & =0, \quad \forall \pi \in \mathbb{R} \\
\exists S: \mathbb{R}^{d^{2}} \times \mathbb{R} \rightarrow \mathbb{R} ; \quad T(D, \pi) & =\frac{\partial S(D, \pi)}{\partial D}, \quad \forall(D, \pi) \in \mathbb{R}^{d^{2}} \times \mathbb{R} \tag{1.1.4}
\end{align*}
$$

In order to obtain partial regularity, we use so called indirect approach to regularity. To learn more about this approach we refer reader to [11] where this procedure is used to obtain partial regularity of solution to certain elliptic systems. The blow-up system of (1.1.2) has a form of the generalized Stokes system which can be read as follows

$$
\begin{align*}
-\operatorname{div}(A \mathcal{D} u)+B \nabla p & =f \text { on } \Omega \\
\operatorname{div} u & =g \text { on } \Omega \\
u & =0 \text { on } \partial \Omega \tag{1.1.5}
\end{align*}
$$

The coefficients A and B come from identities

$$
\begin{aligned}
A_{i j}^{k l} & =\frac{1}{2}\left(\frac{\partial T_{i j}}{\partial \xi_{k l}}+\frac{\partial T_{i l}}{\partial \xi_{k j}}\right)(a, e), \\
B_{k j} & =\delta_{k j}-\frac{\partial T_{i j}}{\partial \tau}(a, e)
\end{aligned}
$$

[^0]where $a \in \mathbb{R}^{d^{2}}$ and $e \in \mathbb{R}$ are defined later.
The existence and uniqueness of solution to (1.1.5) is well known for $B=I$ - in this case it is sufficient to test the equation by selenoidal functions and to use Lax-Milgram lemma and de Rham theorem [30]. Also the Hilbert regularity and the Hölder regularity is known and its proof can be found in [14] and [8]. The case of a constant matrix B, generally not equal to identity, was studied in [14] where existence, uniqueness and higher differentiability of solution was proven. One may ask whether this kind of results can be obtained even for a non-constant matrix B. The existence and uniqueness of solution to such problem was provided in my diploma thesis. However, these results are mentioned here for completeness of this work. Moreover, we provide two regularity results. The first part of this thesis was published in two articles, namely [22] and [23].

All main results are formulated in the next section.

1.2 Main results

In case of a linear system, we present two existence results and two regularity results. In nonlinear case, we full regularity for dimension $d=2$ and partial regularity for dimension $d=3$. As a byproduct we obtain higher differentiability in a bounded domain.

1 Theorem. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain and let a matrix $A \in$ $L^{\infty}\left(\Omega, \mathbb{R}^{d^{4}}\right)$ be elliptic and symmetric. Then there exists a neighborhood $U \subset$ $W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ of an identity matrix such that for a matrix $B \in U$ and for every $f \in W^{-1,2}\left(\Omega, \mathbb{R}^{d}\right)$ and $g \in L_{0}^{2}(\Omega)$ there exists a unique weak solution (u,p) of equation (1.1.5). In addition, following inequality holds

$$
\|u\|_{1,2}+\|p\|_{2} \leq c\left(\|f\|_{-1,2}+\|g\|_{2}\right)
$$

with c independent of u, p, f and g.
2 Theorem. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain and let a matrix $A \in$ $L^{\infty}\left(\Omega, \mathbb{R}^{d^{4}}\right)$ be elliptic and symmetric. Then there exists a neighborhood $V \subset$ $W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ of an identity matrix, which is generally bigger then U from the previous theorem, such that for a matrix $B \in V, g=0$ and $f \in W^{-1,2}$ the following is true.

- If $\left[f,\left(B^{-1}\right)^{T} \psi\right]_{W_{0}^{1,2}}=0$ for all weak solutions ψ to dual equation (3.1.6) then there exists a weak solution to (1.1.5). The space of functions f, for which solution does not exist, has a finite dimension.
- For every couple of weak solutions $\left(u_{1}, p_{1}\right)$ and $\left(u_{2}, p_{2}\right)$ to (1.1.5) it holds that

$$
\left[\operatorname{div}\left(\left(B^{-1} A\right)^{T} \nabla \psi+\left(\nabla B^{-1} A\right)^{T} \psi\right),\left(u_{1}-u_{2}\right)\right]_{W_{0, d i v}^{1,2}}=0
$$

for every $\psi \in W_{0, \text { div }}^{1,2}$. Moreover, the space of weak solutions to (1.1.5) has a finite dimension.

We also show higher differentiability of solutions for the linear system and for the smooth data.

3 Theorem. Let $k \in \mathbb{N} \cup\{0\}$. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded C^{k+2} domain. Suppose that $f \in W^{k, 2}\left(\Omega, \mathbb{R}^{d}\right), g \in W^{k+1,2}(\Omega, \mathbb{R}), A \in W^{k+1, \infty}\left(\Omega, \mathbb{R}^{d^{4}}\right), B \in$ $W^{k+1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right), B \in V$ and let $(u, p) \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega, \mathbb{R})$ be a weak solution to (1.1.5). Then $(u, p) \in W^{k+2,2}\left(\Omega, \mathbb{R}^{d}\right) \times W^{k+1,2}(\Omega, \mathbb{R})$ and

$$
\|u\|_{k+2,2}+\|p\|_{k+1,2} \leq c\left(\|f\|_{k, 2}+\|g\|_{k+1,2}+\|u\|_{1,2}\right)
$$

In case $B \in U$, we get

$$
\|u\|_{k+2,2}+\|p\|_{k+1,2} \leq c\left(\|f\|_{k, 2}+\|g\|_{k+1,2}\right)
$$

And the following result deals with Hölder regularity of solutions to the linear system.

4 Theorem. Let $\Omega \subset \mathbb{R}^{d}$ be a C^{1} domain and $\Omega_{1} \subset \Omega$ be a nonempty open subset and let $A \in V M O_{B}$ be elliptic and symmetric. Then there exists a neighborhood $U^{\prime} \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ of an identity matrix such that following holds. Let $B \in U^{\prime}$, $f=\operatorname{div} F, F \in L^{2, \mu}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ and $g=0$. Moreover, let solution $(u, p) \in W^{1,2}(\Omega) \times$ $L^{2}(\Omega)$ to (1.1.5) fulfills $\int_{\Omega_{1}} p=0$. Then there exists a constant c such that

$$
\|\mathcal{D} u\|_{L^{2}, \mu}+\|p\|_{L^{2, \mu}} \leq c\|F\|_{L^{2, \mu}}
$$

for all $\mu<d$.
The main result for the nonlinear system can be read as follows.
5 Theorem. Let $d \leq 3$ and let $\Omega \subset \mathbb{R}^{d}$ be a C^{2} domain and $f \in L^{2+\delta}\left(\Omega, \mathbb{R}^{d}\right) \cap$ $L^{2, d-1+\alpha}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ for some $\delta>0$ and $\alpha \in(0,1)$. Then there is a positive constant γ such that if $c_{3}<\gamma$ then for any weak solution (u, p) to (1.1.2) there exists a closed set $\Omega^{\prime} \subset \bar{\Omega}$ such that $\mathcal{H}^{d-2}\left(\Omega^{\prime}\right)=0$ and ∇u and p are Hölder continuous in $\bar{\Omega} \backslash \Omega^{\prime}$.

Chapter 2

Preliminaries

2.1 Definitions

Unless stated otherwise, we assume that the domain $\Omega \subset \mathbb{R}^{d}$ is bounded and Lipschitz. The space $L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ is considered with a norm $\|u\|_{\infty}=\sqrt{\sum_{i=1}^{d}\left\|u_{i}\right\|_{\infty}^{2}}$. We consider one additional norm on the space $W_{0}^{1,2}$ except the standard one $\left(\|\nabla u\|_{2}\right)$, namely $\|u\|_{D}:=\|\mathcal{D} u\|_{2}$. We use the same notation for norms in a dual space, thus for $u^{\prime} \in W^{-1,2}$ the notation $\left\|u^{\prime}\right\|_{D}$ means $\sup \left\{\left|\left(u^{\prime}, u\right)_{W_{0}^{1,2}}\right| ; u \in\right.$ $\left.W_{0}^{1,2} ;\|u\|_{D} \leq 1\right\}$. Spaces $W_{0}^{1,2}$ and $W_{0, \text { div }}^{1,2}$ are Hilbert spaces with scalar product $\langle u, v\rangle_{D}=\int_{\Omega} \mathcal{D} u \mathcal{D} v$. For operator T on a Hilbert space, we denote its Hilbert adjoint operator by T^{\prime}.
We also provide a definition of Morrey and VMO spaces and their basic properties which are used later. For more informations about this spaces we refer to [19] and [6].

6 Definition - Morrey Spaces. Let $0 \leq \mu<d$. We define a space $L^{2, \mu}\left(\Omega, \mathbb{R}^{n}\right)$ as a space of the functions $u \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ for which $\|u\|_{L^{2, \mu}}<\infty$ where

$$
\|u\|_{L^{2, \mu}} \stackrel{\text { def }}{=} \sup _{x \in \Omega, 0<\rho<\operatorname{diam}(\Omega)}\left(\frac{1}{\rho^{\mu}} \int_{B_{\rho}^{\Omega}(x)}|u(y)|^{2} d y\right)^{1 / 2}
$$

Additionally, we define a space $W_{0, \text { div }}^{1,2, \mu}(\Omega)$ as a space of functions belonging to $W_{0, \operatorname{div}}^{1,2}(\Omega)$ with $\nabla u \in L^{2, \mu}\left(\Omega, \mathbb{R}^{d^{2}}\right)$.

7 Definition. For a real valued function $f \in L^{1}(\Omega, \mathbb{R})$ and $r>0, x \in \Omega$ we define:

$$
n(x, r)(f) \stackrel{\text { def }}{=} \sup _{0<\rho \leq r} \frac{1}{\left|B_{\rho}^{\Omega}(x)\right|} \int_{B_{\rho}^{\Omega}(x)}\left|f(y)-(f)_{B_{\rho}^{\Omega}(x)}\right| d y
$$

and $n(r)(f) \stackrel{\text { def }}{=} \sup _{x \in \Omega} n(x, r)(f)$. We define the space $\operatorname{VMO}\left(\Omega, \mathbb{R}^{d}\right)$ by the fol-
lowing relation:

$$
\begin{aligned}
& \operatorname{VMO}\left(\Omega, \mathbb{R}^{d}\right)= \\
& \quad\left\{f \in L^{1}\left(\Omega, \mathbb{R}^{d}\right), n(r)(f)<+\infty \text { for all } r \in(0, \operatorname{diam}(\Omega)\rangle \text { and } \lim _{r \rightarrow 0+} n(r)=0\right\}
\end{aligned}
$$

Moreover, we work with a space $\operatorname{VMO}_{B}\left(\Omega, \mathbb{R}^{d}\right)=\operatorname{VMO}\left(\Omega, \mathbb{R}^{d}\right) \cap L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$.
8 Definition. A matrix $A \in L^{\infty}\left(\Omega, \mathbb{R}^{d^{2} \times d^{2}}\right)$ is said to be symmetric if $A_{i j}^{k l}=$ $A_{i l}^{k j}=A_{k j}^{i l}$ for all $i, j, k, l \in\{1, \ldots, d\}$ and for almost all $x \in \Omega$.
We call a matrix $A \in L^{\infty}\left(\Omega, \mathbb{R}^{d^{2} \times d^{2}}\right)$ elliptic if there exists a constant $\alpha>0$ such that $A(x)(\xi \otimes \xi) \geq \alpha\|\xi\|^{2}$ for all $\xi \in \mathbb{R}_{\text {sym }}^{d^{2}}$ and for almost all $x \in \Omega$.

9 Definition. For $A \in L^{\infty}\left(\Omega, \mathbb{R}^{d^{2} \times d^{2}}\right)$ symmetric, $B \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$, $f \in$ $W^{-1,2}\left(\Omega, \mathbb{R}^{d}\right)$ and $g \in L_{0}^{2}(\Omega)$, a weak solution to (1.1.5) is defined as a couple $(u, p) \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega, \mathbb{R})$ fulfilling ${ }^{1}:$

$$
\begin{align*}
\int_{\Omega} A_{i j}^{k l}(\mathcal{D} u)_{j l}(\mathcal{D} \varphi)_{i k}+\int_{\Omega} p \frac{\partial\left(B_{k j} \varphi_{k}\right)}{\partial x_{j}} & =[f, \varphi]_{W_{0}^{1,2}} \quad \forall \varphi \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right), \\
\operatorname{div} u & =\text { g a.e on } \Omega \tag{2.1.1}
\end{align*}
$$

We call the weak solution unique if for any $\Omega_{1} \subset \Omega$ there exists only one weak solution (u, p) such that $\int_{\Omega_{1}} p=0$.

10 Definition. Let $f \in W^{-1,2}\left(\Omega, \mathbb{R}^{d}\right)$. We say, that $(u, p) \in W_{0, \operatorname{div}}^{1,2}(\Omega) \times L^{2}(\Omega, \mathbb{R})$ is a weak solution to (1.1.2), if, for $\forall \varphi \in W_{0, \text { div }}^{1,2}$, it holds that

$$
\int_{\Omega} T_{i j}(\mathcal{D} u, p) \frac{\partial \varphi_{j}}{\partial x_{i}}+\int_{\Omega} u_{j} u_{i} \frac{\partial \varphi_{j}}{\partial x_{i}}=[f, \varphi]_{W_{0}^{1,2}}
$$

and, for all $\forall \varphi \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right)$

$$
\int_{\Omega} p \operatorname{div} \varphi=-\int_{\Omega} T(\mathcal{D} u, p) \nabla \varphi-\int_{\Omega}(u \otimes u) \nabla \varphi+[f, \varphi]_{W_{0}^{1,2}} .
$$

2.2 Observations

11 Lemma. There exist constants c_{4} and c_{5} such that for every $u \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right)$ following inequalities hold:

$$
\begin{gather*}
\frac{1}{c_{4}}\|u\|_{2} \leq\|u\|_{D} \tag{2.2.1}\\
\|u\|_{D} \leq\|\nabla u\|_{2} \leq c_{5}\|u\|_{D} \tag{2.2.2}
\end{gather*}
$$

[^1]Proof. The proof of the first inequality in (2.2.2) is obvious. The rest comes from Korn's inequality (see cf. [13]). Inequality (2.2.1) immediatelly follows from (2.2.2) and from Poincaré inequality (see c.f. [1], Theorem 6.30).

12 Assumptions. Let a matrix $A \in L^{\infty}$ be symmetric and elliptic with a constant $\alpha>0$, a matrix $B=I-K, K \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right),\|K\|_{\infty}<1$.

- We say that an assumption A_{1} is fulfilled if the inequality

$$
\begin{equation*}
\frac{c_{5} \sqrt{d}\|K\|_{\infty}}{\left(1-\|K\|_{\infty}\right)}+\frac{c_{4} \sqrt{d}\|\nabla K\|_{\infty}}{\left(1-\|K\|_{\infty}\right)^{2}}<\frac{\alpha}{\|A\|_{\infty}} \tag{2.2.3}
\end{equation*}
$$

holds.

- If

$$
\begin{equation*}
\|K\|_{\infty}<\frac{\alpha \sqrt{d}}{c_{5}\|A\|_{\infty} \sqrt{d}+\alpha} \tag{2.2.4}
\end{equation*}
$$

we say that an assumption A_{2} is fulfilled.
13 Lemma. There exists a bounded linear operator $T: L_{0}^{2}(\Omega) \mapsto W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right)$ fulfilling

$$
\begin{equation*}
\operatorname{div} T g=g \quad \forall g \in L_{0}^{2}(\Omega) \tag{2.2.5}
\end{equation*}
$$

Proof. For proof see [30], Lemma 2.1.1 in Chapter II.
14 Corollary. Let there exist a weak solution to equation (1.1.5) for $g=0$. Then there exists a weak solution to equation (1.1.5) for any $g \in L_{0}^{2}(\Omega)$.
Let a weak solution to equation (1.1.5) with $g=0$ be unique. Then a weak solution to (1.1.5) is unique for any $g \in L_{0}^{2}(\Omega)$.
Let (u, p) be a weak solution to (1.1.5) with $g=0$ which satisfies $\|u\|_{1,2}+\|p\|_{2} \leq$ $c\|f\|_{-1,2}$. Then a weak solution to (1.1.5) with the same data A, B and f but general $g \in L_{0}^{2}(\Omega)$ fulfills

$$
\begin{equation*}
\|u\|_{1,2}+\|p\|_{2} \leq c\left(\|f\|_{-1,2}+\|g\|_{2}\right) \tag{2.2.6}
\end{equation*}
$$

Proof. Let $g \in L_{0}^{2}$. Then, according to Lemma 13, we get the existence of u_{1} such that $\operatorname{div} u_{1}=g$ with $\left\|u_{1}\right\|_{1,2} \leq c\|g\|_{2}$. We define a function $u \stackrel{\text { def }}{=} u_{0}+u_{1}$ where $u_{0} \in W_{0, \text { div }}^{1,2}$ such that u_{0} solve

$$
-\operatorname{div} A \mathcal{D} u_{0}+B \nabla p=f+\operatorname{div} A \mathcal{D} u_{1}
$$

The existence of such a solution is granted by the assumptions of this corollary. The function u solves system (1.1.5) due to its linearity. Since $\left\|u_{0}\right\|_{1,2}+\|p\|_{2} \leq$ $c\|f\|_{-1,2}$ we immediately obtain (2.2.6).

Now suppose that there exists a unique solution to (1.1.5) such that $\operatorname{div} u=0$. For contradiction assume that there exist at least two solutions $\left(u_{1}, p_{1}\right)$ and $\left(u_{2}, p_{2}\right)$ solving (1.1.5) with the same f, A, B and g and with $\operatorname{div} u_{1}=\operatorname{div} u_{2}=g$. Their difference solve

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D}\left(u_{1}-u_{2}\right)+B \nabla\left(p_{1}-p_{2}\right) & =0 \\
-\operatorname{div}\left(u_{1}-u_{2}\right) & =0
\end{aligned}
$$

Naturally, one solution to this problem is zero and according to the assumptions this solution is unique. Thus we get $\left(u_{1}, p_{1}\right)=\left(u_{2}, p_{2}\right)$ and the corollary is proved.

15 Lemma. Let $\Omega_{0} \subset \Omega$. There exists a constant c such that for each $f \in$ $W^{-1,2}\left(\Omega, \mathbb{R}^{d}\right)$ satisfying

$$
[f, \varphi]_{W^{1,2}}=0 \quad \forall \varphi \in W_{0, \operatorname{div}}^{1,2}(\Omega)
$$

there exists a uniquely determined $p \in L^{2}(\Omega, \mathbb{R})$ satisfying

$$
\nabla p=f, \quad \int_{\Omega_{0}} p=0, \quad\|p\|_{2} \leq c\|f\|_{-1,2}
$$

Proof. For proof see [30], Lemma 2.1.1 in chapter II.
16 Lemma. Let $B=I-K$, where $K \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ and $\|K\|_{\infty}<1$. Then there exists an inversion $C \stackrel{\text { def }}{=} B^{-1} \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ of the form $C=I+L$, where $L=\sum_{i=1}^{\infty} K^{i}$. Moreover, following estimates holds

$$
\begin{gathered}
\|\nabla C\|_{\infty}=\|\nabla L\|_{\infty} \leq\left(\frac{\sqrt{d}\|\nabla K\|_{\infty}}{\left(1-\|K\|_{\infty}\right)^{2}}\right) \\
\|L\|_{\infty} \leq \frac{\sqrt{d}\|K\|_{\infty}}{1-\|K\|_{\infty}}
\end{gathered}
$$

Proof. Space $L^{\infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ equipped with a norm

$$
\|X\|_{a} \stackrel{\text { def }}{=} \sup \left\{\sqrt{\sum_{i, k=1}^{d}\left(\sum_{j=1}^{d}\left\|X_{i j} Y_{j k}\right\|_{\infty}\right)^{2}} ; Y \in L^{\infty}\left(\Omega, \mathbb{R}^{d^{2}}\right),\|Y\|_{\infty} \leq 1\right\}
$$

is Banach algebra hence we can use Neumann Lemma (i.e. Theorem 10.7 in [28]). Moreover, $\frac{\|X\|_{\infty}}{\sqrt{d}} \leq\|X\|_{a} \leq\|X\|_{\infty}$. The assumption $\|K\|_{\infty}<1$ implies that $\|K\|_{a}<1$ and thus B is invertible and $\left\|B^{-1}\right\|_{a}<\infty$. Because $B^{-1} \in L^{\infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ we get $\frac{1}{\operatorname{det} B} \in L^{\infty}(\Omega)$ (it follows immediately from $\frac{1}{\operatorname{det} B}=\operatorname{det} B^{-1}$). We
denote the cofactor matrix to B by \bar{B}. Following identities hold true for inverse matrices

$$
\begin{aligned}
B_{i j}^{-1} & =\frac{1}{\operatorname{det} B} \overline{B_{j i}}, \\
\frac{\partial B_{i j}^{-1}}{\partial x_{k}} & =\frac{\frac{\partial \overline{B_{j i}}}{\partial x_{k}} \operatorname{det} B-\overline{B_{j i}} \frac{\partial(\operatorname{det} B)}{\partial x_{k}}}{(\operatorname{det} B)^{2}}
\end{aligned}
$$

and thus we obtain $B^{-1} \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d}\right)$. Moreover, the precise form of matrix $C=B^{-1}$, which comes from Neumann Lemma, can be written as

$$
C=I+L=I+\sum_{i=1}^{\infty} K^{i}
$$

We use triangle inequality together with property of Banach algebra ($\|x . y\| \leq$ $\|x\| \cdot\|y\|)$ to get

$$
\|L\|_{a}=\left\|\sum_{i=1}^{\infty} K^{i}\right\|_{a} \leq \sum_{i=1}^{\infty}\left\|K^{i}\right\|_{a} \leq \sum_{i=1}^{\infty}\|K\|_{a}^{i}=\frac{\|K\|_{a}}{1-\|K\|_{a}}
$$

For $\frac{\partial L}{\partial x_{j}}$ it holds

$$
\frac{\partial L}{\partial x_{j}}=\frac{\partial}{\partial x_{j}} \sum_{i=1}^{\infty} K^{i}=\sum_{i=1}^{\infty} \frac{\partial}{\partial x_{j}}\left(K^{i}\right)=\sum_{i=1}^{\infty} \sum_{l=1}^{i} K^{i-l} \frac{\partial K}{\partial x_{j}} K^{l-1}
$$

and following estimate can be derived for the norm of $\left\|\frac{\partial L}{\partial x_{j}}\right\|_{a}$

$$
\left\|\frac{\partial L}{\partial x_{j}}\right\|_{a} \leq\left\|\frac{\partial K}{\partial x_{j}}\right\|_{a} \sum_{i=1}^{\infty} i\|K\|_{a}^{i-1}=\frac{\left\|\frac{\partial K}{\partial x_{j}}\right\|_{a}}{\left(1-\|K\|_{a}\right)^{2}}
$$

Obviously

$$
\left\|\frac{\partial L}{\partial x_{j}}\right\|_{\infty} \leq \frac{\sqrt{d}\left\|\frac{\partial K}{\partial x_{j}}\right\|_{\infty}}{\left(1-\|K\|_{\infty}\right)^{2}}
$$

After summation we get

$$
\|\nabla L\|_{\infty}^{2}=\sum_{j=1}^{d}\left\|\frac{\partial L}{\partial x_{j}}\right\|_{\infty}^{2} \leq \frac{d}{\left(1-\|K\|_{\infty}\right)^{4}} \sum_{j=1}^{d}\left\|\frac{\partial K}{\partial x_{j}}\right\|_{\infty}^{2}=\left(\frac{\sqrt{d}\|\nabla K\|_{\infty}}{\left(1-\|K\|_{\infty}\right)^{2}}\right)^{2}
$$

17 Lemma - Fredholm's alternative. Let H be a Hilbert space equipped with a norm $\|\cdot\|_{H}$ and let there be three bounded linear operators $F, G, E: H \mapsto H$ such that F is invertible and E is compact. Moreover let $|\lambda|>\|G\|_{H^{*}}\left\|F^{-1}\right\|_{H^{*}}$. Then following holds:

1. $\operatorname{Ran}\left(\lambda F^{\prime}+G^{\prime}+E^{\prime}\right)=\operatorname{Ker}(\lambda F+G+E)^{\perp}$,
2. $\operatorname{Ran}(\lambda F+G+E)=\operatorname{Ker}\left(\lambda F^{\prime}+G^{\prime}+E^{\prime}\right)^{\perp}$,
3. $\operatorname{dim}(\operatorname{Ker}(\lambda F+G+E))<\infty$.

Proof. Composition of operators $\lambda F+G$ and F^{-1} is $\lambda I+G F^{-1}$. This operator is obviously invertible since $\lambda>\|G\|_{H^{*}}\left\|F^{-1}\right\|_{H^{*}}$. Also operator $\lambda F+G$ is invertible because F is one-to-one. So we can apply the operator $(\lambda F+G)^{-1}$ and work with operators $\left(I+(\lambda F+G)^{-1} E\right)$ and $\left(I+E(\lambda F+G)^{-1}\right)$. The operator E is compact and the same holds true for the operators $(\lambda F+G)^{-1} E$ and $\left.E(\lambda F+G)^{-1}\right)$. Hence Fredholm alternative (cf [20]) together with following identities:

$$
\begin{aligned}
\operatorname{Ran}\left(I+E(\lambda F+G)^{-1}\right) & =\operatorname{Ran}(\lambda F+G+E) \\
\operatorname{Ker}\left(I+(\lambda F+G)^{-1} E\right) & =\operatorname{Ker}(\lambda F+G+E)
\end{aligned}
$$

yield

$$
\begin{array}{r}
\operatorname{Ran}\left(\lambda F^{\prime}+G^{\prime}+E^{\prime}\right)=\operatorname{Ran}\left(I+E^{\prime}\left((\lambda F+G)^{-1}\right)^{\prime}\right)=\operatorname{Ran}\left(I+\left((\lambda F+G)^{-1} E\right)^{\prime}\right)= \\
=\operatorname{Ker}\left(I+(\lambda F+G)^{-1} E\right)^{\perp}=\operatorname{Ker}(\lambda F+G+E)^{\perp}
\end{array}
$$

and

$$
\begin{array}{r}
\operatorname{Ran}(\lambda F+G+E)=\operatorname{Ran}\left(I+E(\lambda F+G)^{-1}\right)=\operatorname{Ker}\left(I+\left(E(\lambda F+G)^{-1}\right)^{\prime}\right)^{\perp}= \\
=\operatorname{Ker}\left(I+\left((\lambda F+G)^{-1}\right)^{\prime} E^{\prime}\right)^{\perp}=\operatorname{Ker}\left(\lambda F^{\prime}+G^{\prime}+E^{\prime}\right)^{\perp}
\end{array}
$$

The finite dimension of the null space is a direct result of the Fredholm alternative.

18 Observations. The space $L^{2, \mu}$ can be identified with L^{2} for $\mu=0$. The space $L^{2, \alpha}$ is embedded into $L^{2, \mu}$ for $\mu<\alpha<d$ (see for instance [19]).
Immediately from the definition we see that for $f \in L^{2, \mu}(\Omega)$ and $g \in L^{\infty}(\Omega)$ we get $g f \in L^{2, \mu}(\Omega)$ and $\|g f\|_{L^{2, \mu}} \leq\|g\|_{\infty}\|f\|_{L^{2, \mu}}$.

19 Lemma. Let Ω be a C^{1} domain and $n \in \mathbb{N}$.

1. Let $d \geq 3$. For any $\mu<d-2$ there exists a constant c such that for all $f \in$ $L^{2, \mu}\left(\Omega, \mathbb{R}^{n}\right)$ there is a function $F \in L^{2, \mu+2}\left(\Omega, \mathbb{R}^{n \times d}\right)$ fulfilling $f=-\operatorname{div} F$ in the weak sense (i.e. $\int_{\Omega} f \varphi=\int_{\Omega} F \nabla \varphi$ for all $\varphi \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{n}\right)$) and $\|F\|_{2, \mu+2} \leq c\|f\|_{2, \mu}$.
2. Let $d \leq 2$. Then there exists a constant c such that for all $f \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ there is a function $F \in L^{2, \mu}\left(\Omega, \mathbb{R}^{n \times d}\right), 0<\mu<d$ fulfilling $f=\operatorname{div} F$ in the weak sense and $\|F\|_{2, \mu} \leq c\|f\|_{2}$.

Proof. Let us consider a weak solution w of the following system

$$
\begin{aligned}
-\Delta w & =f \text { on } \Omega \\
w & =0 \text { on } \partial \Omega
\end{aligned}
$$

In case $d \geq 3$ the Theorem 3.16 in [31] immediately gives the existence of a constant c independent of f such that the estimate $\|\nabla w\|_{2, \mu+2} \leq c\|f\|_{2, \mu}$ is fulfilled. Let $d \leq 2$. Then $\nabla w \in W^{1,2}$ and $W^{1,2}$ is embedded into $L^{2, \mu}$ for $\mu \in(0, d)$ (see Theorems 2.3 and 2.1 in [31]). Now it suffices to set $F=\nabla w$.

If Ω is a C^{2} domain, we can suppose that $\partial \Omega$ can be described in a neighborhood of $x_{0} \in \partial \Omega$ as a function $\Gamma_{x_{0}}: \mathbb{R}^{d-1} \mapsto \mathbb{R}^{d}$ fulfilling $\Gamma_{x_{0}}(0)=x_{0}$ and, since both systems (1.1.2) and (1.1.5) are invariant under rotation and translation, we require that $\frac{\partial \Gamma_{i}}{\partial x_{j}}(0)=\delta_{i j}, i \in\{1, \ldots, d\}, j \in\{1, \ldots, d-1\}$. Furthermore, we can assume that there exist constants $\alpha, \beta>0$ such that ${ }^{2}$

$$
\left\{\left(x^{\prime}, x_{d}\right) \in \mathbb{R}^{d},\left|x^{\prime}\right|<\alpha, \Gamma\left(x^{\prime}\right)<x_{d}<\Gamma\left(x^{\prime}\right)+\beta\right\} \subset \Omega
$$

and

$$
\left\{\left(x^{\prime}, x_{d}\right) \in \mathbb{R}^{d},\left|x^{\prime}\right|<\alpha, \Gamma\left(x^{\prime}\right)-\beta<x_{d}<\Gamma\left(x^{\prime}\right)\right\} \subset \mathbb{R}^{d} \backslash \bar{\Omega}
$$

See Definition A.3.29 in [16] for more. We define a new function $F_{x_{0}}: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}$ by $F_{x_{0}}(x)=\Gamma_{x_{0}}\left(x^{\prime}\right)+\left(0, x_{d}\right)$. We write $F_{x_{0}, R}(x)$ for $F_{x_{0}}(R x)$. The image of $B_{1}^{+}(0)$ under mapping $F_{x_{0}, R}$ is denoted as $\Omega_{x_{0}, R}$. For simplicity of notation, we omit suffix x_{0} if possible.

20 Observations. Let Ω be a C^{2}-domain, $x_{0} \in \partial \Omega$. Then
(i) $\nabla F_{x_{0}, R}(0)=R I$.
(ii) $\nabla F_{x_{0}, R}(x)=R I+R^{2} \omega(x)$, where ω is a function, which is bounded uniformly with respect to x_{0} and R.
(iii) There exist $c>0$ and $R_{0}>0$ such that, for all $R<R_{0}$ and $x \in B_{1}^{+}(0)$,

$$
R^{d}-c R^{d+1} \leq\left|\operatorname{det} \nabla F_{x_{0}, R}(x)\right| \leq R^{d}+c R^{d+1}
$$

(iv) Especially, there exist $R_{1} \in\left(0, R_{0}\right)$ and $c, c^{\prime}>0$ such that, for all $0<R<$ R_{1} and for all $x \in B_{1}^{+}(0)$, there exists $F_{x_{0}, R}^{-1}$ and

$$
\begin{gathered}
c R^{d} \leq\left|\operatorname{det} \nabla F_{x_{0}, R}(y)\right| \leq c^{\prime} R^{d} \\
c R^{-d} \leq\left|\operatorname{det} \nabla F_{x_{0}, R}^{-1}(x)\right| \leq c^{\prime} R^{-d}
\end{gathered}
$$

for all $y \in B_{1}^{+}(0)$ and $x \in \Omega_{x_{0}, R}$.

[^2](v) There exist R_{2} and constants $c, c^{\prime}>0$ such that, for all $R \in\left(0, R_{2}\right)$,
$$
\Omega_{x_{0}, c R} \subset\left(B_{R}\left(x_{0}\right) \cap \Omega\right) \subset \Omega_{x_{0}, c^{\prime} R}
$$

Proof. (i) It follows immediately from the definition of $F_{x_{0}, R}$.
(ii) According to the mean value theorem, we have

$$
\frac{\partial F_{x_{0}, R}}{\partial x_{i}}(x)-\frac{\partial F_{x_{0}, R}}{\partial x_{i}}(0)=\frac{\partial^{2} F_{x_{0}, R}}{\partial x_{i} \partial x_{j}}(\xi) x_{i}
$$

for some $\xi \in B_{1}^{+}(0)$. The definition of $F_{x_{0}, R}$ implies $\left\|\nabla^{2} F_{x_{0}, R}(\xi)\right\|_{\infty}=$ $c R^{2}\left\|\nabla^{2} \Gamma\left(F_{x_{0}, R}(\xi)\right)\right\|_{\infty}$. Since Ω is a C^{2} domain, $\nabla^{2} \Gamma$ is bounded and the rest follows immediately.
(iii) It follows immediately from the definition of determinant and (ii).
(iv) According to (iii), for R sufficiently small, we have $\left|\operatorname{det} \nabla F_{x_{0}, R}\right|>0$ and, due to the inverse function theorem, $F_{x_{0}, R}$ is invertible. We can also assume that $c R \leq \frac{1}{2}$ and thus

$$
\frac{R^{d}}{2}=R^{d}-\frac{1}{2} R^{d} \leq R^{d}-c R R^{d} \leq\left|\operatorname{det} \nabla F_{x_{0}, R}\right| \leq R^{d}+c R R^{d} \leq R^{d}\left(1+\frac{1}{2}\right) .
$$

The identity

$$
1=|\operatorname{det} I|=\left|\operatorname{det}\left(\nabla F_{x_{0}, R} \nabla F_{x_{0}, R}^{-1}\right)\right|=\left|\operatorname{det} \nabla F_{x_{0}, R}\right|\left|\operatorname{det} \nabla F_{x_{0}, R}^{-1}\right|
$$

implies the rest.
(v) Let $x \in \Omega_{x_{0}, R}$. Then there exists $y \in B_{1}^{+}(0)$ such that $x=F_{x_{0}, R}(y)$. Further, since $\nabla F_{x_{0}, R}$ is bounded according to (ii), $F_{x_{0}, R}$ is Lipschitz with a constant $R+c R^{2}$. Thus, $\left|x-x_{0}\right| \leq\left(R+c R^{2}\right)|y-0|$ and $x \in B_{R(1+c R)}\left(x_{0}\right)$. Thus, for R sufficiently small, the first inclusion is proven.
Let $x \in B_{x_{0}, R} \cap \Omega$ for R sufficiently small. Then $\left|x-x_{0}\right|<R$ and since $F_{x_{0}, R^{\prime}}^{-1}$ is Lipschitz with constant $c R^{\prime-1}$ we get $\left|F_{x_{0}, R^{\prime}}^{-1}(x)-0\right|<c \frac{R}{R^{\prime}}$. It is enough to choose $R^{\prime}=R c$ and, consequently $x \in F_{x_{0}, R^{\prime}}\left(B_{1}^{+}(0)\right)$.

21 Lemma. Let T satisfy (1.1.3) and (1.1.4) and let $D, D_{1}, D_{2} \in \mathbb{R}^{d^{2}}$ and $p, p_{1}, p_{2} \in \mathbb{R}$. Then
(i) $\frac{c_{1}}{2}\left|D_{1}-D_{2}\right|^{2} \leq\left(T\left(D_{1}, p_{1}\right)-T\left(D_{2}, p_{2}\right)\right)\left(D_{1}-D_{2}\right)+\frac{c_{3}^{2}}{2 c_{1}}\left|p_{1}-p_{2}\right|^{2}$,
(ii) $T(D, p) D \geq \frac{c_{1}}{4}\left(|D|^{2}-1\right)$,
(iii) $|T(D, p)| \leq c_{2}(1+|D|)$.

Proof. The proof of inequality (i) follows the proof of Lemma 3.3 in [9]. Set

$$
D_{1,2}(s)=D_{2}+s\left(D_{1}-D_{2}\right) \quad \text { and } \quad p_{1,2}(s)=p_{2}+s\left(p_{1}-p_{2}\right)
$$

We have

$$
\begin{aligned}
T\left(D_{1}, p_{1}\right)-T\left(D_{2}, p_{2}\right)= & \int_{0}^{1} \frac{\partial}{\partial s} T\left(D_{1,2}(s), p_{1,2}(s)\right) d s \\
= & \int_{0}^{1} \frac{\partial T\left(D_{1,2}(s), p_{1,2}(s)\right)}{\partial D}\left(D_{1}-D_{2}\right) d s \\
& +\int_{0}^{1} \frac{\partial T\left(D_{1,2}(s), p_{1,2}(s)\right)}{\partial p}\left(p_{1}-p_{2}\right) d s
\end{aligned}
$$

We denote $\left(T\left(D_{1}, p_{1}\right)-T\left(D_{2}, p_{2}\right)\right)\left(D_{1}-D_{2}\right)$ by $M_{1,2}$. Young and Hölder inequality together with assumption (1.1.3) imply

$$
\begin{aligned}
c_{1}\left|D_{1}-D_{2}\right|^{2} & \leq \int_{0}^{1} \frac{\partial T\left(D_{1,2}(s), p_{1,2}(s)\right)}{\partial D}\left(D_{1}-D_{2}\right)\left(D_{1}-D_{2}\right) d s \\
& \leq M_{1,2}+\left|\int_{0}^{1} \frac{\partial T\left(D_{1,2}(s), p_{1,2}(s)\right)}{\partial p}\left(p_{1}-p_{2}\right)\left(D_{1}-D_{2}\right) d s\right| \\
& \leq M_{1,2}+c_{3}\left|p_{1}-p_{2}\right|\left|D_{1}-D_{2}\right| \\
& \leq M_{1,2}+\frac{c_{3}^{2}}{2 c_{1}}\left|p_{1}-p_{2}\right|^{2}+\frac{c_{1}}{2}\left|D_{1}-D_{2}\right|^{2}
\end{aligned}
$$

and the desired inequality follows immediately. The inequalities (ii) and (iii) comes from Lemma 1.19, Chapter 5 in [27].

22 Lemma - Poincaré inequalities. Let Ω be a C^{2} domain and let $f \in$ $W^{1, p}(\Omega)$, let $\Omega_{R} \subset \Omega$ be a neighborhood of a point $x_{0} \in \partial \Omega$ described as $\Omega_{R}=$ $F_{x_{0}, R}\left(B_{1}^{+}(0)\right)$ and let $\Gamma_{R}=\overline{\Omega_{R}} \cap \partial \Omega$. Then $\|f\|_{\text {avg }}:=\left|(f)_{\Gamma_{R}}\right|+\|\nabla f\|_{p, \Omega_{R}}$ is equivalent to $\|\cdot\|_{1, p, \Omega_{R}}$.
Especially, there exists a constant c independent on f such that

$$
c\|f\|_{p, \Omega_{R}} \leq R^{\frac{d}{p}}\left|(f)_{\Gamma_{R}}\right|+R\|\nabla f\|_{p, \Omega_{R}}
$$

and

$$
\left\|f-(f)_{\Gamma_{R}}\right\|_{p, \Omega_{R}} \leq c R\|\nabla f\|_{p, \Omega_{R}}
$$

hold for all $R<R_{0}$, where R_{0} is sufficiently small.
Proof. The equivalence of norms can be found in [16] as Lemma A.3.80.
For the proof of the inequalities we suppose that R_{0} is small such that F_{R} is
invertible for all $R<R_{0}$ and $\left\|\operatorname{det} F_{R}\right\|_{\infty} \leq c R$. We use a rescaling argument. A function f fulfills

$$
\begin{aligned}
\|f\|_{p, \Omega_{R}}^{p} & =\int_{\Omega_{R}}|f|^{p}=\int_{\Omega_{R_{0}}}\left|f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right)\right|^{p} \cdot\left|\operatorname{det} \nabla F_{R}(y)\right| \cdot\left|\operatorname{det} \nabla F_{R_{0}}^{-1}(y)\right| d y \\
& \leq c\left\|\operatorname{det} \nabla F_{R}\right\|_{\infty}\left\|\operatorname{det} \nabla F_{R_{0}}^{-1}\right\|_{\infty} \int_{\Omega_{R_{0}}}\left|f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right)\right|^{p} d y \\
& \leq c\left(\frac{R}{R_{0}}\right)^{d} \int_{\Omega_{R_{0}}}\left|f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right)\right|^{p} d y
\end{aligned}
$$

According to the above mentioned equivalence of norms, we get

$$
\begin{aligned}
& \int_{\Omega_{R_{0}}}\left|f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right)\right|^{p} d y \\
& \quad \leq c\left(\left|\left(f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right)\right)_{\Gamma_{R_{0}}}\right|+\left(\int_{\Omega_{R_{0}}}\left|\nabla_{y} f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right)\right|^{p} d y\right)^{\frac{1}{p}}\right)^{p} \\
& \quad \leq c\left|(f(x))_{\Gamma_{R}}\right|^{p}+c \int_{\Omega_{R_{0}}}\left|\nabla_{x} f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right) \nabla F_{R}\left(F_{R_{0}}^{-1}(y)\right) \nabla F_{R_{0}}^{-1}(y)\right|^{p} d y \\
& \quad \leq c\left|(f(x))_{\Gamma_{R}}\right|^{p}+\left(\frac{R}{R_{0}}\right)^{p} \int_{\Omega_{R_{0}}}\left|\nabla_{x} f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right)\right|^{p} d y .
\end{aligned}
$$

The last term can be estimated via change of variables as follows

$$
\begin{aligned}
\int_{\Omega_{R_{0}}}\left|\nabla_{x} f\left(F_{R}\left(F_{R_{0}}^{-1}(y)\right)\right)\right|^{p} d y & \leq \int_{\Omega_{R}}\left|\nabla_{x} f(x)\right|^{p}\left|\operatorname{det} F_{R}^{-1} \operatorname{det} F_{R_{0}}\right| d x \\
& \leq c\left(\frac{R_{0}}{R}\right)^{d}\|\nabla f\|_{p, \Omega_{R}}^{p} .
\end{aligned}
$$

We put these three inequalities together and, since R_{0} is fixed, we get

$$
\|f\|_{p, \Omega_{R}}^{p} \leq c R^{d}\left|(f)_{\Gamma_{R}}\right|+c R^{p}\|\nabla f\|_{p, \Omega_{R}}^{p} .
$$

This inequality applied to a function $\left(f-(f)_{\Gamma_{R}}\right)$ implies

$$
\left\|f-(f)_{\Gamma_{R}}\right\|_{p, \Omega_{R}} \leq c\left(R^{\frac{d}{p}}\left|\left(f-(f)_{\Gamma_{R}}\right)_{\Gamma_{R}}\right|+R\left\|\nabla f-\nabla(f)_{\Gamma_{R}}\right\|_{p, \Omega_{R}}\right) \leq c R\|\nabla f\|_{p, \Omega_{R}}
$$ and the lemma is proven.

23 Lemma . Let $G \subset \mathbb{R}^{d}$ be an open set, $v \in L_{\text {loc }}^{1}(G, \mathbb{R}), 0 \leq \alpha<d$ and set

$$
E_{\alpha}(v)=\left\{x \in G, \limsup _{\rho \rightarrow 0+} \rho^{-\alpha} \int_{B_{\rho}(x)}|v|>0\right\}
$$

- Then $\mathcal{H}^{\alpha}\left(E_{\alpha}(v)\right)=0$.

Proof. See Theorem 2.2, Chapter IV in [11].

24 Corollary. Let $G \subset \mathbb{R}^{d}$ be an open set, $s \in(0,1]$ and $d^{3} v \in W_{\mathrm{loc}}^{s, p}(G, \mathbb{R})$. Set

$$
F=\left\{x \in G, \lim _{\rho \rightarrow 0+}(v)_{x, \rho} \text { does not exist }\right\} \cup\left\{x \in G, \lim _{\rho \rightarrow 0+}\left|(v)_{x, \rho}\right|=\infty\right\} .
$$

Then for all $\varepsilon>0$

$$
\mathcal{H}^{d-p s+\varepsilon}(F)=0
$$

Proof. For $s=1$ we refer to [11]. Let $s \in(0,1)$. From definition of $W^{s, p}$, it may be concluded that $w=\frac{|v(x)-v(y)|^{p}}{(x-y)^{d+s p}} \in L^{1}(G \times G, \mathbb{R})$. We consider a set $E \subset G \times G$ defined as $E=E_{d-p s+\varepsilon}(w)$. Set

$$
\operatorname{diag} E:=\{x \in G,(x, x) \in E\}
$$

It suffices to show that $F \subset \operatorname{diag} E$. So let $x \notin \operatorname{diag} E$. For some r_{0} sufficiently small, it holds that $\sup _{0<r<r_{0}}\left(r^{-d+p s-\varepsilon} \int_{B_{r}(x, x)} \frac{|v(z)-v(y)|^{p}}{(z-y)^{d+s p}} d z d y\right) \leq M<\infty$. Let $0<\frac{r}{2} \leq t<r<r_{0}$. Then

$$
\begin{aligned}
\mid(v)_{x, r} & -(v)_{x, t}|=c| r^{-d} \int_{B_{r}(x)} v(y) d y-t^{-d} \int_{B_{t}(x)} v(z) d z \mid \\
& =c\left|(t r)^{-d} \int_{B_{t}(x)}\left(\int_{B_{r}(x)} v(y) d y\right) d z-(r t)^{-d} \int_{B_{r}(x)}\left(\int_{B_{t}(x)} v(z) d z\right) d y\right| \\
& \leq c(t r)^{-d} \int_{B_{t}(x) \times B_{r}(x)}|v(y)-v(z)| d y d z \\
& \leq c(t r)^{-d / p}\left(\int_{B_{t}(x) \times B_{r}(x)}|v(y)-v(z)|^{p} d y d z\right)^{1 / p} \\
& \leq c\left(r^{-d+p s} \int_{B_{t}(x) \times B_{r}(x)} \frac{|v(y)-v(z)|^{p}}{|y-z|^{d+p s}} d y d z\right)^{1 / p} \\
& \leq c r^{\varepsilon / p}\left(r^{-d+p s-\varepsilon} \int_{B_{t}(x) \times B_{r}(x)} \frac{|v(y)-v(z)|^{p}}{|y-z|^{d+p s}} d y d z\right)^{1 / p} \\
& \leq c_{6} M^{1 / p} r^{\varepsilon / p},
\end{aligned}
$$

which gives the continuity of $\sigma(r) \stackrel{\text { def }}{=}(u)_{x, r}$ as a function of $r \in(0, \infty)$ for fixed x. It remains to prove that $\lim _{r \rightarrow 0} \sigma(r)$ exists and is finite. Let $\left\{r_{i}\right\}_{i=1}^{\infty}$ be nonincreasing sequence converging to zero. Then $\sigma\left(r_{i}\right)$ is Cauchy sequence. Indeed, for every $\theta>0$ there exists $i_{0} \in \mathbb{N}$ such that $r_{j}^{\varepsilon / p}<\frac{\theta\left(1-\left(\frac{1}{2}\right)^{\varepsilon / p}\right)}{c_{6} M^{1 / p}}$ whenever $j \geq i_{0}$. We set $s_{0}=r_{j}$ and $s_{k}=\frac{s_{k-1}}{2}=\frac{r_{j}}{2^{k}}$. For every $i>j$ there exists l such that

[^3]$s_{l+1} \leq r_{i}<s_{l}$. Then
\[

$$
\begin{aligned}
\left|\sigma\left(r_{i}\right)-\sigma\left(r_{j}\right)\right| & \leq\left|\sigma\left(r_{i}\right)-\sigma\left(s_{l}\right)\right|+\sum_{k=1}^{l}\left|\sigma\left(s_{k}\right)-\sigma\left(s_{k-1}\right)\right| \\
& \leq c_{6} M^{1 / p} s_{l}^{\varepsilon / p}+\sum_{k=0}^{l-1} c_{6} M^{1 / p} s_{k}^{\varepsilon / p} \leq c_{6} M^{1 / p} \sum_{k=0}^{l}\left(\frac{r_{j}}{2^{k}}\right)^{\varepsilon / p} \\
& \leq c_{6} M^{1 / p} r_{j}^{\varepsilon / p} \frac{1}{1-\left(\frac{1}{2}\right)^{\varepsilon / p}} \leq \theta
\end{aligned}
$$
\]

Hence $\lim _{r \rightarrow 0+}(u)_{x, r}$ exists and it is finite, thus $x \notin F$.
25 Lemma. Let $(w, q) \in W^{1,2}\left(B_{1}^{+}(0)\right) \times L^{2}\left(B_{1}^{+}(0)\right)$ be a weak solution to a system

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D} w+(I-B) \nabla q & =0 \text { on } B_{1}^{+}(0), \\
\operatorname{div} w & =0 \text { on } B_{1}^{+}(0), \\
w & =0 \text { on } B_{1}^{d-1},
\end{aligned}
$$

where $A \in \mathbb{R}^{d^{4}}, B \in \mathbb{R}^{d^{2}}$ are constant matrices and there exist $\lambda>0, \Lambda>0$ and $\gamma>0$ such that following inequality holds true for all $\xi \in \mathbb{R}^{d^{2}}$

$$
\begin{aligned}
\lambda|\xi|^{2} \leq A(\xi \otimes \xi) & \leq \Lambda|\xi|^{2} \\
B & \leq \gamma
\end{aligned}
$$

If $f^{4} \leq \frac{\lambda}{\left(\lambda+c_{7} \Lambda\right) c_{7}}$, then for all $\tau, \alpha \in(0,1), R \leq 1$ there is a positive constant C^{*} such that

$$
E^{w, q}(0, \tau R) \leq C^{*} \tau^{\alpha} E^{w, q}(0, R)
$$

where C^{*} depends only on λ, Λ, γ and d.
Proof. See Lemma 2.2 in [14].

[^4]
Chapter 3

Generalized Stokes System

3.1 Existence and Uniqueness

In this chapter, we assume that $A \in L^{\infty}\left(\Omega, \mathbb{R}^{d^{4}}\right)$ and $B \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ are nonconstant matrices. Under assumption A_{2}, according to Lemma 16, there exists a matrix $B^{-1} \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$. Set $C=B^{-1}$ and $L=C-I$. For $\varphi \in W_{0}^{1,2}(\Omega)$, a function $C^{T} \varphi$ is in $W_{0}^{1,2}(\Omega)$. Thus, we apply $C^{T} \varphi$ as a test function to (2.1.1) and we get

$$
\int_{\Omega} A \mathcal{D} u \mathcal{D}\left(C^{T} \varphi\right)+\int_{\Omega} p \operatorname{div} B^{T} C^{T} \varphi=\left[f, C^{T} \varphi\right]_{W_{0}^{1,2}}
$$

Let $h \in W^{-1,2}\left(\Omega, \mathbb{R}^{d}\right)$ be given by $[h, \varphi]_{W_{0}^{1,2}}=\left[f, C^{T} \varphi\right]_{W_{0}^{1,2}}$. It follows that

$$
\begin{equation*}
\int_{\Omega} C A \mathcal{D} u \nabla \varphi+\int_{\Omega}(\nabla C) A \mathcal{D} u \varphi+\int_{\Omega} p \operatorname{div} \varphi=[h, \varphi], \tag{3.1.1}
\end{equation*}
$$

where $(C A)_{i j}^{m l}=C_{m k} A_{i j}^{k l}$ and $((\nabla C) A)_{i}^{m l}=\frac{\partial C_{m k}}{\partial x_{i}} A_{i j}^{k l}$. Hence the problem (1.1.5) is equivalent to

$$
\begin{align*}
-\operatorname{div}(C A) \mathcal{D} u+(\nabla C) A \mathcal{D} u+\nabla p & =h \\
\operatorname{div} u & =g \\
\left.u\right|_{\partial \Omega} & =0 \tag{3.1.2}
\end{align*}
$$

Proof of Theorem 1. Let assumption A_{1} hold. By Corollary 14 it is enough to consider the case $g=0$. Testing (2.1.1) by the function $C^{T} \varphi, \operatorname{div} \varphi=0$ we get (according to (3.1.1))

$$
\begin{equation*}
\int_{\Omega} A \mathcal{D} u \mathcal{D} \varphi+\int_{\Omega}(L A) \mathcal{D} u \nabla \varphi+\int_{\Omega}(\nabla L) A \mathcal{D} u \varphi=[h, \varphi]_{W_{0}^{1,2}} . \tag{3.1.3}
\end{equation*}
$$

Consider three linear operators $F, G, E: W_{0, \text { div }}^{1,2}(\Omega) \mapsto W_{0, \text { div }}^{1,2}(\Omega)$ defined as follows

$$
\begin{array}{ll}
F: u \mapsto \mathbb{F} u & \text { such, that }\langle\mathbb{F} u, \varphi\rangle_{D}=\int_{\Omega} A \mathcal{D} u \mathcal{D} \varphi, \\
G: u \mapsto \mathbb{G} u & \text { such, that }\langle\mathbb{G} u, \varphi\rangle_{D}=\int_{\Omega}(L A) \mathcal{D} u \nabla \varphi, \tag{3.1.4}\\
E: u \mapsto \mathbb{E} u & \text { such, that }\langle\mathbb{E} u, \varphi\rangle_{D}=\int_{\Omega}(\nabla L) A \mathcal{D} u \varphi .
\end{array}
$$

Since

$$
\begin{align*}
|\langle\mathbb{F} u, \varphi\rangle| & =\left|\int_{\Omega} \sum_{n, m=1}^{d}\left(\sum_{j, l=1}^{d} A_{n j}^{m l}(x)(\mathcal{D} u)_{l j}(x)\right)(\mathcal{D} \varphi)_{m n}\right| \\
& \leq \int_{\Omega} \sum_{m, n=1}^{d}\left(\sum_{j, l=1}^{d}\left|A_{n j}^{m l}(x) \|(\mathcal{D} u)_{l j}(x)\right|\right)\left|(\mathcal{D} \varphi)_{m n}\right| \\
& \leq\|A\|_{\infty}\left(\int \sum_{\Omega} \sum_{j, l=1}^{d}\left|(\mathcal{D} u)_{l j}(x)\right|^{2}\right)^{\frac{1}{2}}\left(\int_{\Omega} \sum_{m, n=1}^{d}\left|(\mathcal{D} \varphi)_{m n}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\|A\|_{\infty}\|\mathcal{D} u\|_{2}\|\mathcal{D} \varphi\|_{2}=\|A\|_{\infty}\|u\|_{D}\|\varphi\|_{D} \tag{3.1.5}
\end{align*}
$$

we get

$$
\|F\|_{D} \leq\|A\|_{\infty}
$$

The operators G and E can be estimated in the same way as follows

$$
\begin{aligned}
\|G\|_{D} & \leq c_{5}\|L\|_{\infty}\|A\|_{\infty} \\
\|E\|_{D} & \leq c_{4}\|\nabla L\|_{\infty}\|A\|_{\infty} .
\end{aligned}
$$

Thus the operators F, G and E are well defined. The matrix A is elliptic with a constant α, whence $\langle F u, u\rangle \geq \alpha\|u\|_{D}^{2}$ and operator F is bijective according to Lax-Milgram lemma (see cf. [29], Corollary 8.2). This gives

$$
\|F\|_{D}^{-1} \leq\left\|F^{-1}\right\|_{D} \leq \frac{1}{\alpha}
$$

The operator $F+G+E$ is bijective if and only if $I+F^{-1}(G+E)$ is bijective. Let us compute

$$
\left\|F^{-1}(G+E)\right\|_{D} \leq\left\|F^{-1}\right\|_{D}\left(\|G\|_{D}+\|E\|_{D}\right) \leq \frac{1}{\alpha}\|A\|\left(c_{5}\|L\|_{\infty}+c_{4}\|\nabla L\|_{\infty}\right)
$$

We conclude, using the estimates from Lemma 16, that

$$
\left\|F^{-1}(G+E)\right\|_{D} \leq \frac{\|A\|_{\infty}}{\alpha}\left(\frac{c_{5} \sqrt{d}\|K\|_{\infty}}{\left(1-\|K\|_{\infty}\right)}+\frac{c_{4} \sqrt{d}\|\nabla K\|_{\infty}}{\left(1-\|K\|_{\infty}\right)^{2}}\right) .
$$

Due to A_{1} we get that $\left\|F^{-1}(G+E)\right\|_{D}<1$. Hence, $I+F^{-1}(G+E)$ is bijective and there is only one solution $u \in W_{0, \text { div }}^{1,2}$ fulfilling (3.1.3). Moreover, one gets
$\|u\|_{1,2} \leq c\|f\|_{-1,2}$ according to Lemma 11. Note that there exists a constant c such that $\|f\|_{D}<c\|f\|_{-1,2}$. Now we can express p from equation (3.1.2) by

$$
\nabla p=\operatorname{div}(C A) \mathcal{D} u-\nabla C A \mathcal{D} u+h
$$

and, since $[\operatorname{div}(C A) \mathcal{D} u-\nabla C A \mathcal{D} u+h, \varphi]_{-1,2}=0$ for $\varphi \in W_{0, \text { div }}^{1,2}(\Omega)$ according to (3.1.3), existence of p is proved due to the Lemma 15 . Moreover, this lemma leads to an estimate

$$
\|u\|_{1,2}+\|p\|_{2} \leq c\|f\|_{-1,2} .
$$

Throughout the rest of this section we assume that A_{2} holds. We work with three operators F, E and G defined in (3.1.4).

26 Lemma. $\operatorname{Ker}\left(F^{\prime}+G^{\prime}+E^{\prime}\right)$ is a set of all weak solutions $\psi \in W_{0, \text { div }}^{1,2}(\Omega)$ to a system

$$
\begin{align*}
\operatorname{div}(C A)^{T} \nabla \psi+\operatorname{div}((\nabla C) A)^{T} \psi & =0, \\
\operatorname{div} \psi & =0, \\
\left.\psi\right|_{\partial \Omega} & =0 . \tag{3.1.6}
\end{align*}
$$

A set $\operatorname{Ran}\left(F^{\prime}+G^{\prime}+E^{\prime}\right)$ can be described as

$$
\begin{align*}
& \left\{\varphi \in W_{0, \operatorname{div}}^{1,2}(\Omega), \exists \psi \in W_{0, d i v}^{1,2}(\Omega),\right. \\
& \left.\quad\langle\varphi, z\rangle_{D}=\left[\operatorname{div}(C A)^{T} \nabla \psi+\operatorname{div}((\nabla C) A)^{T} \psi, z\right] \forall z \in W_{0, d i v}^{1,2}(\Omega)\right\} . \tag{3.1.7}
\end{align*}
$$

Proof. Let ψ be a weak solution to the equation (3.1.6), which means that ψ satisfies the equation

$$
\int_{\Omega} C A \mathcal{D} \varphi \nabla \psi+\int_{\Omega}(\nabla C) A \mathcal{D} \varphi \psi=0 \quad \forall \varphi \in W_{0, d i v}^{1,2}(\Omega) .
$$

The left hand side of this equation coincides with $\langle(F+G+E) \varphi, \psi\rangle_{D}$ and an identity

$$
\begin{equation*}
\langle(F+G+E) \varphi, \psi\rangle_{D}=\left\langle\left(F^{\prime}+G^{\prime}+E^{\prime}\right) \psi, \varphi\right\rangle_{D} \tag{3.1.8}
\end{equation*}
$$

completes the proof of the first part.
Now, φ is in $\operatorname{Ran}\left(F^{\prime}+G^{\prime}+E^{\prime}\right)$ if and only if there exists $\psi \in W_{0, \text { div }}^{1,2}(\Omega)$ such that for all $z \in W_{0, \text { div }}^{1,2}(\Omega)$

$$
\begin{align*}
& \langle\varphi, z\rangle=\left\langle\left(F^{\prime}+G^{\prime}+E^{\prime}\right) \psi, z\right\rangle_{D}=\langle\psi,(F+G+E) z\rangle_{D}= \\
& \quad \int_{\Omega} C A \mathcal{D} z \nabla \psi+(\nabla C) A \mathcal{D} z \psi=\left[\operatorname{div}(C A)^{T} \nabla \psi+\operatorname{div}((\nabla C) A)^{T} \psi, z\right] \tag{3.1.9}
\end{align*}
$$

which is the desired conclusion.

27 Lemma. The operator $E: W_{0, \mathrm{div}}^{1,2}(\Omega) \mapsto W_{0, \text { div }}^{1,2}(\Omega)$ is compact.
Proof. We may factorize E as follows

$$
\begin{array}{rlll}
W_{0, \operatorname{div}}^{1,2}(\Omega) & \xrightarrow{E} & W_{0, \operatorname{div}}^{1,2}(\Omega) \\
\mathcal{E} \downarrow & & \uparrow \mathcal{H} \\
\left(L^{2}\left(\Omega, \mathbb{R}^{d}\right)\right)^{\prime} & \xrightarrow{\mathcal{I}} & \left(W_{0, \operatorname{div}}^{1,2}(\Omega)\right)^{\prime},
\end{array}
$$

Here \mathcal{H} is an identification between a Hilbert space and its dual, while \mathcal{I} is dual to the compact embedding between $W_{0, \text { div }}^{1,2}$ and L^{2}, thus \mathcal{I} is compact (see [28] Theorem 4.19). \mathcal{E} is defined in the same way as E, it means

$$
\mathcal{E}(u) \varphi=\int_{\Omega}(\nabla L) A \mathcal{D} u \varphi
$$

for all $\varphi \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$.
Proof of Theorem 2. Let assumption A_{2} hold. As in the previous section we focus on the equation

$$
(F+G+E) u=h .
$$

By A_{2} we get $\left\|F^{-1}\right\|\|G\|<1$, thus all assumptions to Lemma 17 are satisfied, since E is compact due to Lemma 27. Applying Lemma 26 we get the claim.

3.2 Higher differentiability

Before formulating a proof of the main results, we show a proof of the interior regularity via bootstrap argument presented in [22].

28 Lemma. Let $\Omega^{\prime} \subset \Omega$ be a nonempty open and bounded set which fulfills $\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right) \geq \gamma>0$. Moreover, let $A \in W^{1, \infty}\left(\Omega, R^{d^{2} \times d^{2}}\right), B \in W^{2, \infty}\left(\Omega, R^{d^{2}}\right)$, $f \in L^{2}\left(\Omega, R^{d}\right), g \in W^{1,2}$ satisfying $\int_{\Omega} g=0$, let condition A_{1} be fulfilled and (u, p) be a weak solution to (1.1.5). Then $\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial p}{\partial x_{1}}\right) \in W^{1,2}\left(\Omega^{\prime}\right) \times L^{2}\left(\Omega^{\prime}\right)$ and

$$
\begin{aligned}
\left\|\frac{\partial u}{\partial x_{1}}\right\|_{1,2, \Omega^{\prime}} & \leq c\left(\|f\|_{2}+\|g\|_{1,2}\right) \\
\left\|\frac{\partial p}{\partial x_{1}}\right\|_{2, \Omega^{\prime}} & \leq c\left(\|f\|_{2}+\|g\|_{1,2}\right)
\end{aligned}
$$

Proof. Denote $V=\overline{\Omega^{\prime}}$. Then V is a compact set and there exists an open set $\Omega_{V} \subset \Omega$ such that $V \subset \Omega_{V}$ and $\operatorname{dist}\left(\Omega_{V}, \partial \Omega\right)>\frac{\gamma}{2}$. We choose an arbitrary smooth bounded function ϑ such that $\operatorname{dist}(\operatorname{supp} \vartheta, \partial \Omega)>\frac{\gamma}{4}$ and $\vartheta(x)=1 \forall x \in \Omega^{\prime}$. We
multiply formally (1.1.5) by a function ϑ (i.e. we apply a test function $\vartheta \varphi$ instead of φ). Thus

$$
\begin{align*}
-(\operatorname{div} A \mathcal{D} u) \vartheta+(B \nabla p) \vartheta & =f \vartheta \text { on } \Omega, \\
\vartheta \operatorname{div} u & =g \vartheta \text { on } \Omega . \tag{3.2.1}
\end{align*}
$$

It holds that

$$
\begin{aligned}
(-\operatorname{div} A \mathcal{D}(u \vartheta)) & =-\frac{1}{2}\left(\frac{\partial}{\partial x_{i}} A_{i j}^{k l} \frac{\partial(u \vartheta)_{l}}{\partial x_{j}}+\frac{\partial}{\partial x_{i}} A_{i j}^{k l} \frac{\partial(u \vartheta)_{j}}{\partial x_{l}}\right)_{k=1}^{d} \\
& =-(\operatorname{div} A \mathcal{D} u) \vartheta-\operatorname{div}(A((\nabla \vartheta) u))-A \mathcal{D} u \nabla \vartheta \\
B \nabla(p \vartheta) & =\left(B_{k i}\left(\frac{\partial \vartheta p}{\partial x_{i}}\right)\right)_{k=1}^{d}=\left(B_{k i} \frac{\partial p}{\partial x_{i}} \vartheta+B_{k i} p \frac{\partial \vartheta}{\partial x_{i}}\right)_{k=1}^{d} \\
& =(B \nabla p) \vartheta+(B \nabla \vartheta) p .
\end{aligned}
$$

Hence the system (3.2.1) is equivalent to

$$
\begin{align*}
-\operatorname{div} A \mathcal{D}(u \vartheta)+B \nabla(p \vartheta) & =f \vartheta-F(u, p, A, B, \vartheta) \text { on } \Omega, \\
\operatorname{div}(u \vartheta) & =g \vartheta+u \nabla \vartheta \text { on } \Omega \tag{3.2.2}
\end{align*}
$$

where F is defined as

$$
F(u, p, A, B, \vartheta)=\operatorname{div}(A(\nabla \vartheta u))+A \mathcal{D} u \nabla \vartheta-B \nabla \vartheta p
$$

and the L^{2} norm of F can be estimated by

$$
\|R\|_{2} \leq c\left(\|A\|_{1, \infty}\|\vartheta\|_{2, \infty}\|u\|_{1,2}+\|B\|_{\infty}\|\nabla \vartheta\|_{\infty}\|p\|_{2}\right)
$$

We set $\bar{u}=u \vartheta, \bar{p}=p \vartheta, \bar{f}=f \vartheta-F(u, p, A, B, \vartheta)$ and $\bar{g}=g \vartheta+u \nabla \vartheta$. The equation (3.2.2) can be written as

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D} \bar{u}+B \nabla \bar{p} & =\bar{f} \text { on } \Omega \\
\operatorname{div} \bar{u} & =\bar{g} \text { on } \Omega
\end{aligned}
$$

The Green's formula shows that

$$
\int_{\Omega} \bar{g}=\int_{\Omega} \vartheta g+\int_{\Omega} u \nabla \vartheta=\int_{\Omega} \vartheta \operatorname{div} u+\int_{\Omega} u \nabla \vartheta=\int_{\partial \Omega} u \vartheta \nu=0 .
$$

Here ν stands for a unit outer normal. In order to shorten the notation, we write $\Delta_{\delta e_{1}} u(x)$ instead of $u\left(x+\delta e_{1}\right)-u(x)$. By the linearity of (1.1.5),

$$
\begin{align*}
-\operatorname{div} A \mathcal{D}\left(\frac{\Delta_{\delta e_{1}} \bar{u}}{\delta}\right)+B \nabla\left(\frac{\Delta_{\delta e_{1}} \bar{p}}{\delta}\right)= & \frac{1}{\delta} \Delta_{\delta e_{1}} \bar{f}+\frac{1}{\delta}\left(\operatorname{div}\left(\Delta_{\delta e_{1}} A\right) \mathcal{D} \bar{u}\left(.+\delta e_{1}\right)\right) \\
& +\frac{1}{\delta}\left(\left(\Delta_{\delta e_{1}} B\right) \nabla \bar{p}\left(.+\delta e_{1}\right)\right) \\
\operatorname{div} \frac{\Delta_{\delta e_{1}} \bar{u}}{\delta}= & \frac{\Delta_{\delta e_{1}} \bar{g}}{\delta} \\
\left.\Delta_{\delta e_{1}} \bar{u}\right|_{\partial \Omega}= & 0 \tag{3.2.3}
\end{align*}
$$

For δ small enough, there exists a constant c, which is independent of δ, such that

$$
\begin{aligned}
\left\|\frac{1}{\delta} \Delta_{\delta e_{1}} \bar{f}\right\|_{-1,2} & \leq c\|\bar{f}\|_{2} \\
\left\|\frac{1}{\delta} \Delta_{\delta e_{1}} \bar{g}\right\|_{2} & \leq c\|\bar{g}\|_{1,2} \\
\left\|\frac{1}{\delta} \Delta_{\delta e_{1}} B\right\|_{1, \infty} & \leq c\|B\|_{2, \infty} \\
\left\|\frac{1}{\delta} \Delta_{\delta e_{1}} A\right\|_{\infty} & \leq c\|A\|_{1, \infty}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\left(\Delta_{\delta e_{1}} B\right) \nabla \bar{p}\left(.+\delta e_{1}\right)\right\|_{-1,2} & \leq c\|p\|_{2}\left\|\Delta_{\delta e_{1}} B\right\|_{1, \infty}, \\
\left\|\operatorname{div}\left(\Delta_{\delta e_{1}} A\right) \mathcal{D} \bar{u}\left(.+\delta e_{1}\right)\right\|_{-1,2} & \leq c\|u\|_{1,2}\left\|\Delta_{\delta e_{1}} A\right\|_{\infty} .
\end{aligned}
$$

Moreover,

$$
\|\bar{f}\|_{2}+\|\bar{g}\|_{1,2}+\|u\|_{1,2}+\|p\|_{2} \leq c\left(\|f\|_{2}+\|g\|_{2}\right)
$$

where $c=c(\theta, A, B, \Omega)$. The equation (3.2.3) satisfies the assumptions of Theorem 1 thus

$$
\begin{aligned}
\left\|\frac{\Delta_{\delta e_{1}} \bar{u}}{\delta}\right\|_{1,2} & \leq c\left(\|f\|_{2}+\|g\|_{1,2}\right) \\
\left\|\frac{\Delta_{\delta e_{1}} \bar{p}}{\delta}\right\|_{2} & \leq c\left(\|f\|_{2}+\|g\|_{1,2}\right)
\end{aligned}
$$

We conclude from [10], Lemma 15.5 that $\frac{\partial \bar{u}}{\partial x_{1}}$ is in $W^{1,2}, \frac{\partial \bar{p}}{\partial x_{1}}$ is in L^{2}, and that

$$
\begin{aligned}
\left\|\frac{\partial}{\partial x_{1}}(\vartheta u)\right\|_{1,2} & \leq c\left(\|f\|_{2}+\|g\|_{1,2}\right) \\
\left\|\frac{\partial}{\partial x_{1}}(\vartheta p)\right\|_{2} & \leq c\left(\|f\|_{2}+\|g\|_{1,2}\right)
\end{aligned}
$$

The L^{2} norm of $\frac{\partial}{\partial x_{1}} p$ can be estimated in the same way.
The derivative with respect to the first canonical vector was chosen just for simplification of the proof. It is obvious, that the previous lemma can be modified for a derivative with respect to any canonical vector.

29 Theorem. Let Ω^{\prime} be an arbitrary nonempty open subset of Ω such that $\operatorname{dist}\left(\Omega^{\prime}, \Omega\right) \geq \gamma>0$. Let $A \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{4}}\right), B \in W^{2, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right), f \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$, $g \in W^{1,2}(\Omega, \mathbb{R})$ and let condition A_{1} be fulfilled. Then a weak solution (u, p) is in space $W^{2,2}\left(\Omega^{\prime}, \mathbb{R}^{d}\right) \times W^{1,2}\left(\Omega^{\prime}, \mathbb{R}\right)$ and following estimates hold

$$
\begin{aligned}
\|u\|_{2,2, \Omega^{\prime}} & \leq c\left(\|f\|_{2}+\|g\|_{1,2}\right) \\
\|p\|_{1,2, \Omega^{\prime}} & \leq c\left(\|f\|_{2}+\|g\|_{1,2}\right)
\end{aligned}
$$

Regularity of some special cases of the system (1.1.5) can be found in [10], [14]. Here we use the result published in [12].

30 Definition. We say that a matrix A is weakly coercive if there exists $\lambda>0$ such that for all $u \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right)$

$$
\int_{\Omega} A \mathcal{D} u \mathcal{D} u>\lambda\|\nabla u\|_{2}^{2}
$$

31 Theorem. Let $k \in \mathbb{N} \cup\{0\}$, Ω be a bounded domain of class C^{k+2}. We assume that $A \in W^{k+1, \infty}\left(\Omega, \mathbb{R}^{d^{4}}\right)$ is weakly coercive, $g \in W^{k+1,2}(\Omega, \mathbb{R})$ and $f \in$ $W^{k, 2}\left(\Omega, \mathbb{R}^{d}\right)$. Then any weak solution (u, p) to a system

$$
\begin{align*}
-\operatorname{div} A \mathcal{D} u+\nabla p & =f \text { in } \Omega, \\
\operatorname{div} u & =g \text { in } \Omega, \\
\left.u\right|_{\partial \Omega} & =0 \tag{3.2.4}
\end{align*}
$$

belongs to $W^{k+2,2}(\Omega) \times W^{k+1,2}(\Omega)$, and

$$
\|u\|_{k+2,2}+\|p\|_{k+1,2} \leq c\left(\|f\|_{k, 2}+\|g\|_{k+1,2}+\|u\|_{2}\right) .
$$

Proof. For details, we refer reader to Theorem 1.2 and Remark 1.5 in Part II in [12]. The proof of the theorem given there can be easily generalized.

As written before the system (1.1.5) can be arranged as

$$
\begin{align*}
-\operatorname{div} C A \mathcal{D} u+\nabla p & =f-\mathcal{D} C A \nabla u \\
\operatorname{div} u & =g \tag{3.2.5}
\end{align*}
$$

We recall that $C=B^{-1}$.

32 Lemma. The matrix $C A$ is weakly coercive under A_{2}.
Proof. We suppose that $C=I-L$. Let us compute

$$
\begin{aligned}
\int_{\Omega} C A \mathcal{D} u \mathcal{D} u=\int_{\Omega} A \mathcal{D} u \mathcal{D} u-L A \mathcal{D} u \mathcal{D} u \geq \alpha\|\mathcal{D} u\|_{2}^{2}- & \|L\|_{\infty}\|A\|_{\infty}\|\mathcal{D} u\|_{2}^{2} \geq \\
& \left(\alpha-\|A\|_{\infty}\|L\|_{\infty}\right)|\mathcal{D} u|^{2}
\end{aligned}
$$

Assumption A_{2} grants that $\|A\|\|L\|<\alpha$ and thus the proof is complete.
As a consequence we obtain a proof of Theorem 3.

Proof of 3. Let assumption A_{2} hold. It suffices to show the claim for a weak solution to (3.2.5). By Lemma 32, the matrix $C A$ is weakly coercive, thus Theorem 31 gives

$$
\|u\|_{k+2,2}+\|p\|_{k+1,2} \leq c\left(\|f\|_{k, 2}+\|\mathcal{D} C\|_{\infty}\|A\|_{\infty}\|u\|_{k+1,2}+\|g\|_{k+1,2}+\|u\|_{2}\right)
$$

For $k=0$ we get

$$
\|u\|_{2,2}+\|p\|_{1,2} \leq c\left(\|f\|_{2}+\|\mathcal{D} C\|_{\infty}\|A\|_{\infty}\|u\|_{1,2}+\|g\|_{1,2}+\|u\|_{2}\right),
$$

thus

$$
\|u\|_{2,2}+\|p\|_{1,2} \leq c\left(\|f\|_{2}+\|g\|_{1,2}+\|u\|_{1,2}\right)
$$

Let the estimate

$$
\begin{equation*}
\|u\|_{k+2,2}+\|p\|_{k+1,2} \leq c\left(\|f\|_{k, 2}+\|g\|_{k+1,2}+\|u\|_{1,2}\right) \tag{3.2.6}
\end{equation*}
$$

hold for some $k \in \mathbb{N}$. Then for $k+1$ we get, according to Theorem 31,

$$
\|u\|_{k+3,2}+\|p\|_{k+2,2} \leq c\left(\|f\|_{k+1,2}+\|\mathcal{D} C\|_{\infty}\|A\|_{\infty}\|u\|_{k+2,2}+\|g\|_{k+2,2}+\|u\|_{2}\right)
$$

From (3.2.6) we have an estimate on $\|u\|_{k+2,2}$ and we immediately get the first claim of Theorem 3. If A_{1} holds, Theorem 1 give us an estimate on $\|u\|_{1,2}$, whence $\|u\|_{k+2,2}+\|p\|_{k+1,2} \leq c\left(\|f\|_{k, 2}+\|g\|_{k+1,2}\right)$.

3.3 Hölder regularity

In this section, we use results on solutions to the system

$$
\begin{align*}
-\operatorname{div} A \mathcal{D} u+\nabla p & =\operatorname{div} F \text { on } \Omega, \\
\operatorname{div} u & =0 \text { on } \Omega \\
u & =0 \text { on } \partial \Omega, \tag{3.3.1}
\end{align*}
$$

proved in [8]. Results concerning regularity of weak solutions to (3.3.1) are given in the following theorem.

33 Theorem. Let $A \in V M O_{B}$ be elliptic and Ω be a C^{1} domain. Then there exists a positive constant c_{8} such that, for any (u, p) which solves (3.3.1) and a right hand side $F \in L^{2, \mu}\left(\Omega, \mathbb{R}^{d^{2}}\right),(0 \leq \mu<d)$, we have

$$
\begin{equation*}
\|\mathcal{D} u\|_{L^{2, \mu}}+\|p\|_{L^{2, \mu}} \leq c_{8}\|F\|_{L^{2, \mu}} . \tag{3.3.2}
\end{equation*}
$$

Let (u, p) be a weak solution to (1.1.5). Then assumption $p \in L^{2, \mu}$ leads to the claim that p and $\mathcal{D} u$ are in $L^{2, \mu+2}$. This fact is formulated in the following lemma.

34 Lemma. Let Ω be a C^{1} domain, $\Omega_{1} \subset \Omega$ be a nonempty open subset, $0<$ $\mu<d-2$ (resp. $\mu=0$ for $d \leq 2$) and $\nu \in[\mu, \mu+2]$ (resp. $\nu \in[0, d)$ for $d \leq 2)$. Let $A \in V M O_{B}$ be symmetric and elliptic, $f=\operatorname{div} F, F \in L^{2, \nu}\left(\Omega, \mathbb{R}^{d^{2}}\right)$, $B \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right), c_{8}\|I-B\|_{\infty}=: l<1$ and $g=0$. We suppose, moreover, that a weak solution $(u, p) \in W^{1,2}(\Omega) \times L^{2, \mu}(\Omega)$ to (1.1.5) fulfills $\int_{\Omega_{1}} p=0$. Then there exists a constant c such that

$$
\|\mathcal{D} u\|_{L^{2, \nu}}+\|p\|_{L^{2}, \nu} \leq c\left(\|F\|_{L^{2}, \nu}+\|p\|_{L^{2, \mu}}\right)
$$

Proof. From $B=I-K$, the first equation in (1.1.5) can be rewritten as

$$
-\operatorname{div} A \mathcal{D} u+(I-K) \nabla p=\operatorname{div} F
$$

which is equivalent to

$$
\begin{equation*}
-\operatorname{div} A \mathcal{D} u+\nabla p=\operatorname{div} F+\operatorname{div}(K p)-(\operatorname{div} K) p \tag{3.3.3}
\end{equation*}
$$

The first and third terms on the right hand side are in appropriate Morrey spaces. To handle the second term, we use Banach fixed-point theorem. Let us equip the space $W_{0, \text { div }}^{1,2, \nu}(\Omega) \times L^{2, \nu}(\Omega)$ with a norm $\|(u, p)\| \stackrel{\text { def }}{=}\|\mathcal{D} u\|_{2, \nu}+\|p\|_{2, \nu}$. Fix (u, p) and, for a given F, we define an operator $P: W_{0, \text { div }}^{1,2, \nu} \times L^{2, \nu} \mapsto W_{0, \text { div }}^{1,2, \nu} \times L^{2, \nu}$ by

$$
\begin{align*}
P(v, q) & =(w, r) \stackrel{\text { def }}{\Leftrightarrow} \\
& -\operatorname{div} A \mathcal{D} w+\nabla r=\operatorname{div} F+\operatorname{div}(K q)-(\operatorname{div} K) p \quad \& \int_{\Omega_{1}} r=0 . \tag{3.3.4}
\end{align*}
$$

The right hand side of the equation in (3.3.4) can be expressed as $\operatorname{div} G$ where G is in a space $L^{2, \nu}\left(\Omega, \mathbb{R}^{d^{2}}\right)$. Indeed, F and $K q$ are in $L^{2, \nu}$ and (div $\left.K\right) p$ is in $L^{2, \mu}$. Thus, according to Lemma 19, (div K) p can be expressed as a divergence of some function from $L^{2, \nu}\left(\Omega, \mathbb{R}^{d^{2}}\right)$. Theorem 1 gives the existence of a unique solution to the equation (3.3.4) and from Theorem 33 it follows that this solution is in $W_{0, \text { div }}^{1,2, \nu}(\Omega) \times L^{2, \nu}(\Omega, \mathbb{R})$. Thus target space of the operator P is $W_{0, \text { div }}^{1,2, \nu}(\Omega) \times$ $L^{2, \nu}(\Omega, \mathbb{R})$ and the operator is well defined.
Let us estimate a norm $\left\|P\left(v_{1}, q_{1}\right)-P\left(v_{2}, q_{2}\right)\right\|=\left\|\mathcal{D} w_{1}-D w_{2}\right\|_{L^{2, \nu}}+\left\|r_{1}-r_{2}\right\|_{L^{2, \nu}}$. Due to the linearity of (1.1.5) we have

$$
-\operatorname{div} A \mathcal{D}\left(w_{1}-w_{2}\right)+\nabla\left(r_{1}-r_{2}\right)=-\operatorname{div}\left(K\left(q_{1}-q_{2}\right)\right)
$$

According to Theorem 33 and Lemma 19

$$
\left\|\mathcal{D} w_{1}-\mathcal{D} w_{2}\right\|_{L^{2, \nu}}+\left\|r_{1}-r_{2}\right\|_{L^{2, \nu}} \leq c_{8}\|K\|_{\infty}\left\|q_{1}-q_{2}\right\|_{L^{2, \nu}}=l\left\|q_{1}-q_{2}\right\|_{L^{2, \nu}} .
$$

Hence, due to assumptions, the mapping P is a contraction. Note that the whole procedure can be done even for P extended on $W_{0, \operatorname{div}}^{1,2}(\Omega) \times L^{2}(\Omega, \mathbb{R})$. That is, $P: W_{0, \operatorname{div}}^{1,2}(\Omega) \times L^{2}(\Omega, \mathbb{R}) \mapsto W_{0, \operatorname{div}}^{1,2}(\Omega) \times L^{2}(\Omega, \mathbb{R})$ is also a contraction. Therefore, there exists a fixed point, i.e. a pair $\left(v_{0}, q_{0}\right) \in W_{0, \text { div }}^{1,2, \nu}(\Omega) \times L^{2, \nu}(\Omega, \mathbb{R})$ such that $P\left(v_{0}, q_{0}\right)=\left(v_{0}, q_{0}\right)$. Because P is a contraction on the space $W_{0, \operatorname{div}}^{1,2}(\Omega) \times L^{2}(\Omega, \mathbb{R})$, this fixed point coincides with the solution (u, p). We get

$$
\|\mathcal{D} u\|_{L^{2, \nu}}+\|p\|_{L^{2, \nu}} \leq c\|F\|_{L^{2, \nu}}+l\|p\|_{L^{2, \nu}}+c\|p\|_{L^{2, \mu}}
$$

The claim follows immediately due to the assumption $l<1$.
As a consequence of the previous lemma we get a proof of Theorem 4.
Proof of Theorem 4. Let $B \in W^{1, \infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ and let $c_{8}\|I-B\|_{\infty}=: l<1$. For a dimension two or less we get the claim immediately from Lemma 34. We now assume that a dimension is greater than two. Note that, according to Theorem 1 , we get the claim for $\mu=0$. Suppose for a moment that the claim is true for some μ_{0}. Then Lemma 34 gives the validity of the claim for $\mu<\min \left\{d, \mu_{0}+2\right\}$ and the Theorem is proven by induction.

3.4 Few additional lemmas

35 Lemma. Let Ω be a bounded Lipschitz domain, $A \in L^{\infty}\left(\Omega, \mathbb{R}^{d^{4}}\right)$ be an elliptic matrix and $(u, p) \in W^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega, \mathbb{R}), \int_{\Omega} p=0$, be a weak solution to the system

$$
\begin{align*}
-\operatorname{div} A \mathcal{D} u+\nabla p & =\operatorname{div} F, \\
\operatorname{div} u & =g, \\
\left.u\right|_{\partial \Omega} & =0 . \tag{3.4.1}
\end{align*}
$$

Then there exists $\delta>0$ such that, for $F \in L^{2+\delta}\left(\Omega, \mathbb{R}^{d^{2}}\right)$ and $g \in L^{2+\delta}(\Omega, \mathbb{R})$,

$$
\begin{equation*}
\|\mathcal{D} u\|_{2+\delta}+\|p\|_{2+\delta} \leq c\left(\|F\|_{2+\delta}+\|g\|_{2+\delta}\right) \tag{3.4.2}
\end{equation*}
$$

Proof. According to Bogovskii lemma (see [2] for more) there exists u_{1} such that $\operatorname{div} u_{1}=g,\left.u_{1}\right|_{\partial \Omega}=0$ and $\left\|\mathcal{D} u_{1}\right\|_{2+\delta} \leq c\|g\|_{2+\delta}$.

Let $\left(u_{0}, p\right)$ solve the following system

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D} u_{0}+\nabla p & =\operatorname{div} F+\operatorname{div} A \mathcal{D} u_{1} \\
\operatorname{div} u_{0} & =0 \\
\left.u_{0}\right|_{\partial \Omega} & =0
\end{aligned}
$$

According to Lemma 2.6 in [17], we have

$$
\left\|\mathcal{D} u_{0}\right\|_{2+\delta} \leq c\left\|F+A \mathcal{D} u_{1}\right\|_{2+\delta} \leq c\left(\|F\|_{2+\delta}+\|g\|_{2+\delta}\right)
$$

Finally, Lemma 2.7 in [2] implies

$$
\|p\|_{2+\delta} \leq c\left(\left\|F+A \mathcal{D}\left(u_{0}+u_{1}\right)\right\|_{2+\delta}\right) \leq c\left(\|F\|_{2+\delta}+\|g\|_{2+\delta}\right)
$$

As a consequence, the pair ($u=u_{0}+u_{1}, p$) solves (3.4.1) and (3.4.2) holds
36 Lemma. Let $A \in L^{\infty}\left(B_{R}(0), \mathbb{R}^{d^{4}}\right)$ be an elliptic matrix and let $(u, p) \in$ $W^{1,2}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right) \times L^{2}\left(B_{R}^{+}(0), \mathbb{R}\right), \int_{B_{R}^{+}} p=0,\left(\right.$ resp. $\quad(u, p) \in W^{1,2}\left(B_{R}(0), \mathbb{R}^{d}\right) \times$ $\left.L^{2}\left(B_{R}(0), \mathbb{R}\right), \int_{B_{R}} p=0\right)$ be a weak solution to a system

$$
\begin{align*}
-\operatorname{div} A \mathcal{D} u+\nabla p & =\operatorname{div} F, \\
\operatorname{div} u & =g, \\
\left.u\right|_{\partial B_{R}^{+}(0)} & =0, \\
\left(\text { resp. }\left.u\right|_{\partial B_{R}(0)}\right. & =0) . \tag{3.4.3}
\end{align*}
$$

Then there exists $\delta>0$ such that, for functions $F \in L^{2+\delta}\left(B_{R}(0), \mathbb{R}^{d^{2}}\right)$ and $g \in L^{2+\delta}\left(B_{R}(0), \mathbb{R}\right)$, we get $p \in L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right)\left(\right.$ resp. $\left.p \in L^{2+\delta}\left(B_{R}(0), \mathbb{R}\right)\right)$. Moreover, there exists a constant c_{9} independent of R and right hand side such that

$$
\|p\|_{2+\delta} \leq c_{9}\left(\|F\|_{2+\delta}+\|g\|_{2+\delta}\right)
$$

Proof. For $R=1$, it follows from Lemma 35. For arbitrary $R>0$, it suffices to use change of variables. Set $\tilde{u}(x)=u(R x), \tilde{p}(x)=p(R x), \tilde{F}(x)=F(R x)$ and $\tilde{g}(x)=g(R x)$ for $x \in B_{1}^{+}(0)$. Then (\tilde{u}, \tilde{p}) solves

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D} \tilde{u}+\nabla R \tilde{p} & =\operatorname{div} R \tilde{F} \text { in } B_{1}^{+}(0) \\
\operatorname{div} \tilde{u} & =R \tilde{g} \text { in } B_{1}^{+}(0) \\
\left.\tilde{u}\right|_{\partial B_{1}^{+}(0)} & =0 \\
\text { (resp. }\left.\tilde{u}\right|_{\partial B_{1}(0)} & =0)
\end{aligned}
$$

By Lemma 35, we get

$$
\|R \tilde{p}\|_{2+\delta} \leq c\left(\|R \tilde{F}\|_{2+\delta}+\|R \tilde{g}\|_{2+\delta}\right)
$$

where c does not depend on R, which implies the result.

37 Remark. Let assumptions of the previous lemma hold. It is also true, that

$$
\|p\|_{2} \leq c_{10}\left(\|F\|_{2}+\|g\|_{2}\right)
$$

Furthermore, according to Lemma 2.6 in [17], it holds that $c_{10} c_{9}^{-1}<1$.
38 Corollary. Let $A \in L^{\infty}\left(B_{R}(0), \mathbb{R}^{d^{4}}\right)$ be an elliptic matrix and let a matrix $B \in$ $L^{\infty}\left(B_{R}(0), \mathbb{R}^{d^{2}}\right)$ satisfy $\|B\|_{\infty}<c_{9}^{-1}$. Let $(u, p) \in W^{1,2}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right) \times L^{2}\left(B_{R}^{+}(0), \mathbb{R}\right)$ (resp. $\left.(u, p) \in W^{1,2}\left(B_{R}(0), \mathbb{R}^{d}\right) \times L^{2}\left(B_{R}(0) \mathbb{R}\right)\right)$ be a weak solution to a system

$$
\begin{align*}
-\operatorname{div} A \mathcal{D} u+\nabla p & =\operatorname{div} F-\operatorname{div}(B p) \\
\operatorname{div} u & =g \\
\left.u\right|_{\partial B_{R}^{+}(0)} & =0 \\
\left(\text { resp. }\left.u\right|_{\partial B_{R}(0)}\right. & =0) . \tag{3.4.4}
\end{align*}
$$

Then there exists $\delta>0$ and c_{11} such that, for $F, g \in L^{2+\delta}\left(B_{R}(0)\right)$, we get $u \in W^{1,2+\delta}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right), p \in L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right)\left(\right.$ resp. $u \in W^{1,2+\delta}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right)$, $\left.p \in L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right)\right)$. Moreover, if $\int_{B_{R}^{+}} p=0$ (resp. $\int_{B_{R}} p=0$), then

$$
\|\mathcal{D} u\|_{2+\delta}+\|p\|_{2+\delta} \leq c_{11}\left(\|F\|_{2+\delta}+\|g\|_{2+\delta}\right) .
$$

Proof. We give the proof only for the upper half ball; the other case can be proven in a similar way. For given $q \in L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right)$ let v, q^{\prime} be a weak solution to a system

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D} v+\nabla q^{\prime} & =\operatorname{div} F-\operatorname{div}(B q) \text { in } B_{R}^{+}(0) \\
\operatorname{div} v & =0 \text { in } B_{R}^{+}(0) \\
\left.v\right|_{\partial B_{R}^{+}(0)} & =0 \\
\int_{B_{R}^{+}} q^{\prime} & =\int_{B_{R}^{+}} p
\end{aligned}
$$

and we define operator $T: L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right) \mapsto L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right)$ as $T(q)=q^{\prime}$. This operator is well defined according to the previous lemma. Let $q_{1}, q_{2} \in L^{2+\delta}$ be arbitrary and set $q_{1}^{\prime}=T\left(q_{1}\right)$ and $q_{2}^{\prime}=T\left(q_{2}\right)$. The linearity of the generalized Stokes problem implies

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D}\left(v_{1}-v_{2}\right)+\nabla\left(q_{1}^{\prime}-q_{2}^{\prime}\right) & =\operatorname{div}\left(B\left(q_{1}-q_{2}\right)\right) \text { in } B_{R}^{+}(0), \\
\operatorname{div}\left(v_{1}-v_{2}\right) & =0 \text { in } B_{R}^{+}(0) \\
\left.\left(v_{1}-v_{2}\right)\right|_{\partial B_{R}^{+}(0)} & =0
\end{aligned}
$$

and $\int_{B_{R}}\left(q_{1}^{\prime}-q_{2}^{\prime}\right)=0$. From Lemma 36 we obtain

$$
\left\|q_{1}^{\prime}-q_{2}^{\prime}\right\|_{2+\delta} \leq c_{9}\|B\|_{\infty}\left\|q_{1}-q_{2}\right\|_{2+\delta} \leq \gamma\left\|q_{1}-q_{2}\right\|_{2+\delta}
$$

where $\gamma=c_{9}\|B\|_{\infty}<1$. Hence T is a contraction and thus there exists $q \in$ $L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right)$ such that $T(q)=q$ and

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D} v+\nabla q & =\operatorname{div} F-\operatorname{div} B q \text { in } B_{R}^{+}(0) \\
\operatorname{div} v & =0 \text { in } B_{R}^{+}(0) \\
\left.v\right|_{\partial B_{R}^{+}(0)} & =0
\end{aligned}
$$

It can be derived from Lemma 36 that $v \in W^{1,2+\delta}$. Functions (v, q) coincide with (u, p) since (3.4.4) has a unique solution as proven further. Therefore, for $\int_{B_{R}^{+}} p=0$, we get following estimate by Lemma 35

$$
\|\mathcal{D} u\|_{2+\delta}+\|p\|_{2+\delta} \leq c\left(\|F\|_{2+\delta}+\|g\|_{2+\delta}+\|B p\|_{2+\delta}\right) \leq c_{11}\left(\|f\|_{2+\delta}+\|g\|_{2+\delta}\right) .
$$

It remains to prove the uniqueness of solution to (3.4.4). Let $\left(u_{1}, p_{1}\right),\left(u_{2}, p_{2}\right) \in$ $W^{1,2}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right) \times L^{2}\left(B_{R}^{+}(0), \mathbb{R}\right)$ be weak solutions to (3.4.4) such that $\int_{B_{R}^{+}(0)} p_{1}=$ $\int_{B_{R}^{+}(0)} p_{2}$. Then

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D}\left(u_{1}-u_{2}\right)+\nabla\left(p_{1}-p_{2}\right) & =-\operatorname{div} B\left(p_{1}-p_{2}\right), \\
\operatorname{div}\left(u_{1}-u_{2}\right) & =0 \\
u_{1}-\left.u_{2}\right|_{\partial B_{R}^{+}(0)} & =0
\end{aligned}
$$

and $\int_{B_{R}^{+}(0)} p_{1}-p_{2}=0$. Thus, according to Lemma 36,

$$
\left\|p_{1}-p_{2}\right\|_{2} \leq c_{10} c_{9}^{-1}\left\|p_{1}-p_{2}\right\|_{2}
$$

Since $c_{10} c_{9}^{-1}<1$, we get $p_{1}=p_{2}$ and, consequently, $u_{1}=u_{2}$.
39 Corollary. Let $R_{1}>0$ and let $A \in L^{\infty}\left(B_{R_{1}}^{+}(0), \mathbb{R}^{d^{4}}\right)$ be an elliptic matrix and let $B \in L^{\infty}\left(B_{R_{1}}^{+}(0), \mathbb{R}^{d^{2}}\right)$ satisfy $\|B\|_{\infty}<c_{9}^{-1}$. Then there exists R_{0} such that for all $R \in\left(0, R_{0}\right)$ the following holds.
Let $(u, p) \in W^{1,2}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right) \times L^{2}\left(B_{R}^{+}(0) \mathbb{R}\right)$ be a weak solution to a system

$$
\begin{align*}
-\operatorname{div} A \mathcal{D} u+\nabla p & =\operatorname{div} F-\operatorname{div}(B p)+R S(u, p) \text { on } B_{R}^{+}(0) \\
\operatorname{div} u & =g \text { on } B_{R}^{+}(0) \\
\left.u\right|_{\partial B_{R}^{+}} & =0 \tag{3.4.5}
\end{align*}
$$

where $S: W^{1,2+\delta}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right) \times L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right) \mapsto W^{-1,2+\delta}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right)$ is a linear operator which is bounded independently of R.
Then there exists $\delta>0$ such that for $(F, g) \in L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}^{d^{2}} \times \mathbb{R}\right)$, we get $(u, p) \in W^{1,2+\delta}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right) \times L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right)$

Proof. As in the previous proof, we use Banach fixed-point theorem. We define $T: W_{0}^{1,2+\delta}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right) \times L_{0}^{2+\delta}\left(B_{R}^{+}(0)\right) \mapsto W_{0}^{1,2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right) \times L_{0}^{2+\delta}\left(B_{R}^{+}(0)\right)$ as follows

$$
T(v, r)=(u, p) \Leftrightarrow \quad \begin{aligned}
-\operatorname{div} A \mathcal{D} u+\nabla p & =\operatorname{div} F-\operatorname{div}(B p)+R S(v, r) \\
\operatorname{div} u & =q \\
\left.u\right|_{\partial B_{R}^{+}} & =0 .
\end{aligned}
$$

Let $\left(u_{i}, p_{i}\right)=T\left(v_{i}, r_{i}\right), i \in\{1,2\}$. Then

$$
\begin{aligned}
-\operatorname{div} A \mathcal{D}\left(u_{1}-u_{2}\right)+\nabla\left(p_{1}-p_{2}\right)= & -\operatorname{div}\left(B\left(p_{1}-p_{2}\right)\right) \\
& +R S\left(v_{1}-v_{2}, q_{1}-q_{2}\right) \text { in } B_{R}^{+}(0) \\
\operatorname{div}\left(u_{1}-u_{2}\right)= & 0 \text { in } B_{R}^{+}(0) \\
\left.\left(u_{1}-u_{2}\right)\right|_{\partial B_{R}^{+}}= & 0
\end{aligned}
$$

According to Lemma 38 it holds, that
$\left\|\mathcal{D}\left(u_{1}-u_{2}\right)\right\|_{2+\delta, B_{R}^{+}}+\left\|p_{1}-p_{2}\right\|_{2+\delta, B_{R}^{+}} \leq R c_{11} c\left(\left\|\mathcal{D}\left(v_{1}-v_{2}\right)\right\|_{2+\delta, B_{R}^{+}}+\left\|q_{1}-q_{2}\right\|_{2_{\delta, B_{R}^{+}}}\right)$.
It is enough to choose R_{0} such that $R_{0} c_{11} c<1$ and the operator T is a contraction for any $R \in\left(0, R_{0}\right)$. Uniqueness of solution to Stokes problem implies the claim of the corollary.

Chapter 4

Navier-Stokes System with Pressure-dependent Viscosity

Throughout this chapter, we focus on the equation (1.1.2) in dimension d equal 2 or 3 .

4.1 Existence of Solution

40 Lemma. Let Ω be a Lipschitz domain, $c_{3}<\frac{c_{1}}{\left(c_{1}+c_{2}\right) c_{7}}$. Then there exists a constant $c>0$ such that for all $f \in W^{-1,2}\left(\Omega, \mathbb{R}^{d}\right)$ there exists a weak solution $(u, p) \in W^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L_{0}^{2}(\Omega)$ to (1.1.2) satisfying

$$
\|\nabla u\|_{2}+\|p\|_{2} \leq c\|f\|_{-1,2}
$$

Proof. Since we use the same method as in [9] where an analogous result is proven for the growth $m<2$, we provide only a sketch of the proof. This sketch is divided into two steps. At first, we introduce an approximative problem

$$
\begin{align*}
-\operatorname{div} T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)+\left(u^{\varepsilon} \nabla\right) u^{\varepsilon}+\frac{\operatorname{div} u^{\varepsilon}}{2} u^{\varepsilon}+\nabla p^{\varepsilon} & =f \text { in } \Omega, \\
-\varepsilon \Delta p^{\varepsilon}+\varepsilon p^{\varepsilon}+\operatorname{div} u^{\varepsilon} & =0 \text { in } \Omega, \\
u & =0 \text { on } \partial \Omega \\
\frac{\partial p^{\varepsilon}}{\partial \nu} & =0 \text { on } \partial \Omega \tag{4.1.1}
\end{align*}
$$

and we show the existence of solution $\left(u^{\varepsilon}, p^{\varepsilon}\right)$ to (4.1.1). Then we find a sequence $\left(u^{\varepsilon_{n}}, p^{\varepsilon_{n}}\right)$ converging to (u, p) and we show that (u, p) is a solution to (1.1.2).

Existence of solution to the approximative problem

In order to prove the existence of solution to (4.1.1), we use the Galerkin approximations.

Let $\left\{\alpha^{k}\right\}_{k=1}^{\infty}$ be a basis in $W^{1,2}(\Omega, \mathbb{R})$ and $\left\{a^{k}\right\}_{k=1}^{\infty}$ be a basis in $W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right)$. For $n \in \mathbb{N}$ set

$$
p^{n}=\sum_{k=1}^{n} c_{k}^{n} \alpha^{k}, \quad u^{n}=\sum_{k=1}^{n} d_{k}^{n} a^{k},
$$

where p^{n} and u^{n} solve a system

$$
\begin{align*}
& \varepsilon \int_{\Omega} \nabla p^{n} \nabla \alpha^{r}+\varepsilon \int_{\Omega} p^{n} \alpha^{r}-\int_{\Omega} u^{n} \nabla \alpha^{r}=0, \quad r=1, \ldots, n, \tag{4.1.2}\\
& \int_{\Omega} T\left(\mathcal{D} u^{n}, p^{n}\right) \mathcal{D} a^{s}+\int_{\Omega}\left(u^{n} \nabla\right) u^{n} a^{s}+\int_{\Omega} \frac{\operatorname{div} u^{n}}{2} u^{n} a^{s}= \\
& \quad-\int_{\Omega} \nabla p^{n} a^{s}+\left[f, a^{s}\right]_{W_{0}^{1,2}}, \quad s=1, \ldots, n . \tag{4.1.3}
\end{align*}
$$

We multiply (4.1.2) by c_{r}^{n}, (4.1.3) by d_{s}^{n} and we sum all together over $r=1, \ldots, n$ and $s=1, \ldots, n$. Since

$$
\begin{equation*}
\int_{\Omega}\left(u^{n} \nabla\right) u^{n} u^{n}+\int_{\Omega} \operatorname{div} u^{n} \frac{\left|u^{n}\right|^{2}}{2}=0 \tag{4.1.4}
\end{equation*}
$$

we get

$$
\varepsilon\left(\left\|\nabla p^{n}\right\|_{2}^{2}+\left\|p^{n}\right\|_{2}^{2}\right)+\int_{\Omega} T\left(\mathcal{D} u^{n}, p^{n}\right) \mathcal{D} u^{n}=\left[f, u^{n}\right]_{W_{0}^{1,2}}
$$

Lemma 21 implies

$$
\varepsilon\left(\left\|\nabla p^{n}\right\|_{2}^{2}+\left\|p^{n}\right\|_{2}^{2}\right)+\left\|\nabla u^{n}\right\|_{2}^{2} \leq c_{12}
$$

and

$$
\left\|T\left(\mathcal{D} u^{n}, p^{n}\right)\right\|_{2}^{2} \leq c_{12}
$$

Thus, up to a subsequence, $\left(u^{n}, p^{n}\right) \rightarrow(u, p)$ weakly in $W^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times W^{1,2}(\Omega, \mathbb{R})$ and $\left(u^{n}, p^{n}\right) \rightarrow\left(u^{\varepsilon}, p^{\varepsilon}\right)$ strongly in $L^{4}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega, \mathbb{R})$. Moreover, $T\left(\mathcal{D} u^{n}, p^{n}\right) \rightarrow$ χ weakly in $L^{2}\left(\Omega, \mathbb{R}^{d^{2}}\right)$. That is enough to assert that, for all $\varphi \in W^{1,2}(\Omega, \mathbb{R})$ and for all $\psi \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right)$,

$$
\begin{gather*}
\varepsilon \int_{\Omega} \nabla p^{\varepsilon} \nabla \varphi+\varepsilon \int_{\Omega} p^{\varepsilon} \varphi+\int_{\Omega} \operatorname{div} u^{\varepsilon} \varphi=0 \tag{4.1.5}\\
\int_{\Omega}\left(u^{\varepsilon} \nabla\right) u^{\varepsilon} \psi+\frac{1}{2} \int_{\Omega}\left(\operatorname{div} u^{\varepsilon}\right) u^{\varepsilon} \psi+\int_{\Omega} \chi \mathcal{D} \psi-\int_{\Omega} p^{\varepsilon} \operatorname{div} \psi=[f, \psi]_{W^{-1,2}} \tag{4.1.6}\\
\varepsilon\left(\left\|\nabla p^{\varepsilon}\right\|_{2}^{2}+\left\|p^{\varepsilon}\right\|_{2}^{2}\right)+\int_{\Omega} \chi \mathcal{D} u^{\varepsilon}=\left[f, u^{\varepsilon}\right]_{W^{-1,2}}
\end{gather*}
$$

In order to conclude the first part of the proof, it is sufficient to show $T\left(p^{\varepsilon}, \mathcal{D} u^{\varepsilon}\right)=$ χ. We still proceed as in [9]. First we prove strong convergence of $\mathcal{D} u^{n}$ to $\mathcal{D} u^{\varepsilon}$
in $L^{2}\left(\Omega, \mathbb{R}^{d^{2}}\right)$. Lemma 21 implies

$$
\begin{aligned}
c_{1}\left\|\mathcal{D} u^{n}-\mathcal{D} u^{\varepsilon}\right\|_{2}^{2} \leq & \int_{\Omega}\left(T\left(\mathcal{D} u^{n}, p^{n}\right)-T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)\right)\left(\mathcal{D} u^{n}-\mathcal{D} u^{\varepsilon}\right)+\frac{c_{3}}{2 c_{1}}\left\|p^{n}-p^{\varepsilon}\right\|_{2}^{2} \\
= & \int_{\Omega} T\left(\mathcal{D} u^{n}, p^{n}\right) \mathcal{D} u^{n}-\int_{\Omega} T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right) \mathcal{D}\left(u^{n}-u^{\varepsilon}\right) \\
& -\int_{\Omega} T\left(\mathcal{D} u^{n}, p^{n}\right) \mathcal{D} u^{\varepsilon}+\frac{c_{3}}{2 c_{1}}\left\|p^{n}-p^{\varepsilon}\right\|_{2}^{2} \\
= & {\left[f, u^{n}\right]_{W_{0}^{1,2}}-\varepsilon\left(\left\|\nabla p^{n}\right\|_{2}^{2}+\left\|p^{n}\right\|_{2}^{2}\right)-\int_{\Omega} T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right) \mathcal{D}\left(u^{n}-u^{\varepsilon}\right) } \\
& -\int_{\Omega} T\left(\mathcal{D} u^{n}, p^{n}\right) \mathcal{D} u^{\varepsilon}+\frac{c_{3}}{2 c_{1}}\left\|p^{n}-p^{\varepsilon}\right\|_{2}^{2},
\end{aligned}
$$

And, due to a weak lower semi-continuity of norms, we obtain

$$
c_{1} \lim _{n \rightarrow \infty}\left\|\mathcal{D} u^{n}-\mathcal{D} u^{\varepsilon}\right\|_{2}^{2} \leq\left[f, u^{\varepsilon}\right]_{W_{0}^{1,2}}-\varepsilon\left(\left\|\nabla p^{\varepsilon}\right\|_{2}^{2}+\left\|p^{\varepsilon}\right\|_{2}^{2}\right)-\int_{\Omega} \chi \mathcal{D} u^{\varepsilon} \leq 0 .
$$

Thus, $\mathcal{D} u^{n} \rightarrow \mathcal{D} u^{\varepsilon}$ strongly in $L^{2},\left(\mathcal{D} u^{n}, p^{n}\right) \rightarrow\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)$ almost everywhere in Ω. Due to the Vitali theorem,

$$
\int_{\Omega} T\left(\mathcal{D} u^{n}, p^{n}\right) \mathcal{D} \psi \rightarrow \int_{\Omega} T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right) \mathcal{D} \psi=\int_{\Omega} \chi \mathcal{D} \psi
$$

Convergence of approximative solutions

We need to estimate p^{ε} and u^{ε} independently of ε. We take $\varphi=p^{\varepsilon}$ in (4.1.5) and $\psi=u^{\varepsilon}$ in (4.1.6). We get

$$
\begin{aligned}
& \varepsilon\left(\left\|\nabla p^{\varepsilon}\right\|_{2}^{2}+\left\|p^{\varepsilon}\right\|_{2}^{2}\right)+\int_{\Omega} p^{\varepsilon} \operatorname{div} u^{\varepsilon}=0 \\
& \int_{\Omega} T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right) \mathcal{D} u^{\varepsilon}-\int_{\Omega} p^{\varepsilon} \operatorname{div} u^{\varepsilon}=\left[f, u^{\varepsilon}\right]_{W_{0}^{1,2}}
\end{aligned}
$$

Consequently,

$$
\varepsilon\left(\left\|\nabla p^{\varepsilon}\right\|_{2}^{2}+\left\|p^{\varepsilon}\right\|_{2}^{2}\right)+\left\|\nabla u^{\varepsilon}\right\|_{2}^{2} \leq c_{13}
$$

and, due to Lemma 21,

$$
\left\|T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)\right\|_{2} \leq c_{13} .
$$

We test equation (4.1.1) by φ^{ε} defined by

$$
\begin{aligned}
\operatorname{div} \varphi^{\varepsilon} & =p^{\varepsilon} \text { in } \Omega \\
\varphi^{\varepsilon} & =0 \text { on } \partial \Omega
\end{aligned}
$$

We emphasize, that $\int_{\Omega} p^{\varepsilon}=0$ due to $(4.1 .1)_{2}$ and (4.1.1) . Further, due to the Bogovskiï lemma, $\|\varphi\|_{1,2} \leq c_{7}\left\|p^{\varepsilon}\right\|_{2}$. We obtain

$$
\left\|p^{\varepsilon}\right\|_{2}^{2}=\int_{\Omega} T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right) \mathcal{D} \varphi^{\varepsilon}-\left[f, \varphi^{\varepsilon}\right]_{W_{0}^{1,2}}+\int_{\Omega}\left(u^{\varepsilon} \nabla\right) u^{\varepsilon} \varphi^{\varepsilon}+\frac{1}{2} \int_{\Omega}\left(\operatorname{div} u^{\varepsilon}\right) u^{\varepsilon} \varphi^{\varepsilon}
$$

It can be derived, using Lemma 21, that

$$
\begin{aligned}
\left\|p^{\varepsilon}\right\|_{2}^{2} & \leq\left(c\left(1+\left\|\mathcal{D} u^{\varepsilon}\right\|_{2}\right)+\|f\|_{-1,2}\right)\left\|\varphi^{\varepsilon}\right\|_{1,2}+2\left\|\nabla u^{\varepsilon}\right\|_{2}\left\|u^{\varepsilon}\right\|_{4}\left\|\varphi^{\varepsilon}\right\|_{4} \\
& \leq c\left\|\varphi^{\varepsilon}\right\|_{1,2} \leq c\left\|p^{\varepsilon}\right\|_{2},
\end{aligned}
$$

and therefore $\left\|p^{\varepsilon}\right\|_{2} \leq c$. Thus, up to a subsequence, $\left(u^{\varepsilon}, p^{\varepsilon}\right) \rightarrow(u, p)$ weakly in $W_{0}^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega)$ and $T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right) \rightarrow \chi$ weakly in L^{2}. Above obtained estimate is enough to proceed to a limit in (4.1.1) as follows

$$
\begin{aligned}
\int_{\Omega} \chi \mathcal{D} \varphi+\int_{\Omega}(u \nabla) u \varphi-\int_{\Omega} p \operatorname{div} \varphi & =[f, \varphi]_{W_{0}^{1,2}} \\
\operatorname{div} u & =0 .
\end{aligned}
$$

As in the first step, it is sufficient to show that $\chi=T(\mathcal{D} u, p)$ which can be done by proving that $\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right) \rightarrow(\mathcal{D} u, p)$ strongly in L^{2}. We define φ^{ε} as

$$
\begin{aligned}
\operatorname{div} \varphi^{\varepsilon} & =p^{\varepsilon}-p \operatorname{in} \Omega \\
\varphi^{\varepsilon} & =0 \text { on } \partial \Omega
\end{aligned}
$$

We remind, that $\varphi^{\varepsilon} \rightarrow 0$ weakly in $W^{1,2}\left(\Omega, \mathbb{R}^{d}\right)$. Hence, by testing (4.1.1) by φ^{ε}, we get

$$
\begin{aligned}
\left\|p^{\varepsilon}-p\right\|_{2}^{2}= & \int_{\Omega} p\left(p^{\varepsilon}-p\right)-\left[f, \varphi^{\varepsilon}\right]_{W_{0}^{1,2}}+\frac{1}{2} \int_{\Omega}\left(\operatorname{div} u^{\varepsilon}\right) u^{\varepsilon} \varphi^{\varepsilon}+\int_{\Omega} T(\mathcal{D} u, p) \mathcal{D} \varphi^{\varepsilon} \\
& +\int_{\Omega}\left(u^{\varepsilon} \nabla\right) u^{\varepsilon} \varphi^{\varepsilon}+\int_{\Omega}\left(T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)-T(\mathcal{D} u, p)\right) \mathcal{D} \varphi^{\varepsilon}
\end{aligned}
$$

and consequently,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|p^{\varepsilon}-p\right\|_{2}^{2}=\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left(T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)-T(\mathcal{D} u, p)\right) \mathcal{D} \varphi^{\varepsilon} \tag{4.1.7}
\end{equation*}
$$

It can be easily seen that

$$
\begin{align*}
\int_{\Omega}\left(T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)-T(\mathcal{D} u, p)\right) \mathcal{D} \varphi^{\varepsilon} & \leq c_{2} \int_{\Omega}\left|\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right|\left|\mathcal{D} \varphi^{\varepsilon}\right|+c_{3} \int_{\Omega}\left|p^{\varepsilon}-p \| \mathcal{D} \varphi^{\varepsilon}\right| \\
& \leq c_{2}\left\|\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right\|_{2}\left\|\mathcal{D} \varphi^{\varepsilon}\right\|_{2}+c_{3}\left\|p^{\varepsilon}-p\right\|_{2}\left\|\mathcal{D} \varphi^{\varepsilon}\right\|_{2} \\
& =c_{2} c_{7}\left\|\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right\|_{2}\left\|p^{\varepsilon}-p\right\|_{2}+c_{3} c_{7}\left\|p^{\varepsilon}-p\right\|_{2}^{2} \tag{4.1.8}
\end{align*}
$$

and further,

$$
\frac{c_{1}}{2}\left\|\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right\|_{2}^{2} \leq \int_{\Omega}\left(T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)-T(\mathcal{D} u, p)\right)\left(\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right)+\frac{c_{3}^{2}}{2 c_{1}}\left\|p^{\varepsilon}-p\right\|_{2}^{2}
$$

We test (4.1.1) by $\varphi^{\varepsilon}=u^{\varepsilon}-u$. We obtain

$$
\begin{aligned}
& \int_{\Omega}\left(T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)-T(\mathcal{D} u, p)\right)\left(\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right)=-\int_{\Omega} T(\mathcal{D} u, p) \mathcal{D}\left(u^{\varepsilon}-u\right) \\
& +\int_{\Omega} p^{\varepsilon} \operatorname{div}\left(u^{\varepsilon}-u\right)+\left[f, u^{\varepsilon}-u\right]_{W_{0}^{1,2}}-\int_{\Omega}\left(u^{\varepsilon} \nabla\right) u^{\varepsilon}\left(u^{\varepsilon}-u\right) \\
& \quad-\frac{1}{2} \int_{\Omega}\left(\operatorname{div} u^{\varepsilon}\right) u^{\varepsilon}\left(u^{\varepsilon}-u\right) .
\end{aligned}
$$

Since $\int_{\Omega} p^{\varepsilon} \operatorname{div} u^{\varepsilon}=-\varepsilon\left(\left\|\nabla p^{\varepsilon}\right\|_{2}^{2}+\left\|p^{\varepsilon}\right\|_{2}^{2}\right)$, we conclude that

$$
\begin{aligned}
& \int_{\Omega}\left(T\left(\mathcal{D} u^{\varepsilon}, p^{\varepsilon}\right)-T(\mathcal{D} u, p)\right)\left(\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right)+\varepsilon\left(\left\|\nabla p^{\varepsilon}\right\|_{2}^{2}+\left\|p^{\varepsilon}\right\|_{2}^{2}\right) \\
&=-\int_{\Omega} T(\mathcal{D} u, p) \mathcal{D}\left(u^{\varepsilon}-u\right)+\left[f, u^{\varepsilon}-u\right]_{W_{0}^{1,2}}- \int_{\Omega}\left(u^{\varepsilon} \nabla\right) u^{\varepsilon}\left(u^{\varepsilon}-u\right) \\
&-\frac{1}{2} \int_{\Omega}\left(\operatorname{div} u^{\varepsilon}\right) u^{\varepsilon}\left(u^{\varepsilon}-u\right) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{c_{1}}{2}\left\|\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right\|_{2}^{2} \leq \lim _{\varepsilon \rightarrow 0} \frac{c_{3}^{2}}{2 c_{1}}\left\|p^{\varepsilon}-p\right\|_{2}^{2} \tag{4.1.9}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|\mathcal{D} u^{\varepsilon}-\mathcal{D} u\right\|_{2} \leq \lim _{\varepsilon \rightarrow 0} \frac{c_{3}}{c_{1}}\left\|p^{\varepsilon}-p\right\|_{2} \tag{4.1.10}
\end{equation*}
$$

From (4.1.7), (4.1.8) and (4.1.9) it may be concluded that

$$
\left(1-c_{3} c_{7}\right) \lim _{\varepsilon \rightarrow 0}\left\|p^{\varepsilon}-p\right\|_{2}^{2} \leq \frac{c_{2} c_{7} c_{3}}{c_{1}} \lim _{\varepsilon \rightarrow 0}\left\|p^{\varepsilon}-p\right\|_{2}^{2}
$$

As $\left(1-c_{3} c_{7}\left(1+\frac{c_{2}}{c_{1}}\right)\right)>0$, it can be derived that

$$
\lim _{\varepsilon \rightarrow 0}\left\|p^{\varepsilon}-p\right\|_{2}=0
$$

and from (4.1.10) we get

$$
\lim _{\varepsilon \rightarrow 0}\left\|\mathcal{D}\left(u^{\varepsilon}-u\right)\right\|_{2}=0
$$

whence the proof is complete.

4.2 Higher differentiability

41 Lemma. Let Ω be a C^{2} domain and let $f \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$. Let assumption (1.1.3) be satisfied with $c_{3}<\frac{c_{1}}{\left(c_{1}+c_{7} c_{2}\right) c_{7}}$. Then a weak solution to (1.1.2) belongs to $W^{2,2}\left(\Omega, \mathbb{R}^{d}\right) \times W^{1,2}(\Omega, \mathbb{R})$.

Proof. As an interior regularity has been proven already (see e.g. [24]), we focus only on boundary regularity. Unknowns u and p satisfy following integral identity

$$
\int_{\Omega} T(\mathcal{D} u, p) \mathcal{D} \varphi-(u \otimes u) \nabla \varphi-p \operatorname{div} \varphi-f \varphi=0
$$

for all $\varphi \in W_{0}^{1,2}$. Let $0 \in \partial \Omega$ and suppose that φ is supported in some sufficiently small neighborhood $\Omega_{0, R}$. A precise value of R will be specified later. We define
functions

$$
\begin{align*}
& \hat{u}(x)=u\left(F_{R}\left(\frac{x}{R}\right)\right), \\
& \hat{p}(x)=p\left(F_{R}\left(\frac{x}{R}\right)\right), \\
& \hat{f}(x)=f\left(F_{R}\left(\frac{x}{R}\right)\right), \\
& \psi(x)=\varphi\left(F_{R}\left(\frac{x}{R}\right)\right), \tag{4.2.1}
\end{align*}
$$

where $x \in B_{R}^{+}(0)$. We remind that $F_{R}\left(\frac{x}{R}\right)=F(x)$. We set $y=F(x)$. Following relations hold ${ }^{1}$

$$
\begin{aligned}
& \nabla \hat{u}(x)=\nabla_{y} u(F(x)) \nabla F(x)=\nabla_{y} u(F(x)) I+R \nabla_{y} u(F(x)) \omega(x), \\
& \mathcal{D} \hat{u}(x)=\mathcal{D}_{y} u(F(x))+R \omega(x) \nabla_{y} u(F(x))
\end{aligned}
$$

and thus (\hat{u}, \hat{p}) satisfy the equation

$$
\begin{gathered}
\int_{B_{R}^{+}(0)} T\left(\mathcal{D}_{y} u(F), p(F)\right) \mathcal{D}_{y} \varphi(F)|\operatorname{det} \nabla F|+\int_{B_{R}^{+}(0)} u(F) \otimes u(F) \nabla_{y} \varphi(F)|\operatorname{det} \nabla F| \\
-\int_{B_{R}^{+}(0)} p(F) \operatorname{div}_{y} \varphi(F)|\operatorname{det} \nabla F|-\int_{B_{R}^{+}(0)} f(F) \varphi(F)|\operatorname{det} \nabla F|=0
\end{gathered}
$$

Let R be sufficiently small and $x \in B_{R}^{+}(0)$. Then we have

$$
\begin{aligned}
\nabla F^{-1}(y) & =I+R \omega(y) \\
\nabla^{2} F(x) & <\infty
\end{aligned}
$$

The functions (\hat{u}, \hat{p}) fulfill

$$
\begin{align*}
\int_{B_{R}^{+}(0)} T(\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p}) \mathcal{D} \psi \nabla F^{-1} & -\int_{B_{R}^{+}(0)}(\hat{u} \otimes \hat{u}) \mathcal{D} \psi \nabla F^{-1} \\
& -\int_{B_{R}^{+}(0)} \hat{p} \operatorname{Tr}\left(\nabla \psi \nabla F^{-1}\right)=\int_{B_{R}^{+}(0)} f \psi \tag{4.2.2}
\end{align*}
$$

for all $\psi \in W_{0}^{1,2}\left(B_{R}^{+}(0)\right)$. In further calculations, we omit the term $|\operatorname{det} \nabla F|$. We provide only a sketch of the proof because we follow step-by-step the proof presented in [24]. Let $i \in\{1, \ldots, d-1\}$. We emphasize, that the operator $\Delta_{\delta e_{i}}$ is defined as $\Delta_{\delta e_{i}} f(x)=f\left(x+\delta e_{i}\right)-f(x)$. We apply operator $\frac{1}{\delta} \Delta_{\delta e_{i}}$ on equation (4.2.2). We denote $\frac{1}{\delta} \Delta_{\delta e_{i}}$ by Δ and $\frac{1}{\delta} \Delta_{-\delta e_{i}}$ by Δ_{-}to shorten the notation. We set

$$
\begin{aligned}
& \hat{A}(x)=\int_{0}^{1} \frac{\partial T\left(\mathcal{D} \hat{u}(x)+R \omega \nabla \hat{u}(x)+t \Delta_{\delta e_{i}}(\mathcal{D} \hat{u}(x)+R \omega \nabla \hat{u}(x)), p(x)+t \Delta_{\delta e_{i}} p(x)\right)}{\partial \mathcal{D}} d t \\
& \hat{B}(x)=\int_{0}^{1} \frac{\partial T\left(\mathcal{D} \hat{u}(x)+R \omega \nabla \hat{u}(x)+t \Delta_{\delta e_{i}}(\mathcal{D} \hat{u}(x)+R \omega \nabla \hat{u}(x)), p(x)+t \Delta_{\delta e_{i}} p(x)\right)}{\partial p} d t .
\end{aligned}
$$

[^5]From equation (4.2.2), we conclude, that (\hat{u}, \hat{p}) satisfies

$$
\begin{aligned}
& \int_{B_{R}^{+}(0)} \hat{A} \Delta \mathcal{D} \hat{u} \mathcal{D} \psi+\int_{B_{R}^{+}(0)} \hat{B} \Delta \hat{p} \mathcal{D} \psi+R \int_{B_{R}^{+}(0)}(\hat{A} \Delta \mathcal{D} \hat{u} \mathcal{D} \psi+\hat{B} \Delta \hat{p} \mathcal{D} \psi) \omega \\
&+ \int_{B_{R}^{+}(0)} T(\mathcal{D} \hat{u}+R \omega \hat{u}, \hat{p}) \mathcal{D} \psi \Delta \nabla F^{-1}+ \\
& \int_{B_{R}^{+}(0)} \Delta(u \otimes u) \mathcal{D} \psi \nabla F^{-1}+\int_{B_{R}^{+}(0)}(u \otimes u) \mathcal{D} \psi \Delta \nabla F^{-1} \\
&+\int_{B_{R}^{+}(0)} \Delta p \operatorname{Tr}\left(\nabla \psi \nabla F^{-1}\right)=\int_{B_{R}^{+}(0)} f \Delta \Delta_{-} \psi .
\end{aligned}
$$

Choose a test function $\psi(x)=\eta^{2}(x) \Delta \hat{u}(x)$, where $\eta \in C^{\infty}\left(B_{R}^{+}\right)$is a nonnegative cut-off function. In what follows, norms $\|\omega\|_{\infty},\left\|\Delta_{-} \nabla F^{-1}\right\|_{\infty},\|\eta\|_{1, \infty},\|\hat{u}\|_{1,2}$ and $\|\hat{p}\|_{2}$ will be included in a general constant c. We obtain

$$
\begin{gathered}
\left(c_{1}-R c\right)\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}} \leq \int_{B_{R}^{+}} \eta^{2}(I+R \omega) \hat{A} \mathcal{D} \Delta(\hat{u} \eta) \mathcal{D} \Delta(\hat{u} \eta) \\
=-\int_{B_{R}^{+}}(I+R \omega) 2 \eta \hat{A} \mathcal{D}(\Delta \hat{u}) \nabla \eta \Delta \hat{u} \\
\quad-\int_{B_{R}^{+}}(I+R \omega) \hat{B}(\Delta p) \eta \mathcal{D}(\Delta \hat{u}) \eta-2 \int_{B_{R}^{+}}(I+R \omega) \hat{B}(\Delta p) \eta \Delta \hat{u} \nabla \eta \\
+\int_{B_{R}^{+}} T(\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p}) \eta^{2} \mathcal{D}(\nabla \hat{u}) \Delta \nabla F^{-1}+\int_{B_{R}^{+}} T(\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p}) 2 \eta \nabla \eta \nabla \hat{u} \Delta \nabla F^{-1} \\
\quad+\int_{B_{R}^{+}}(I+R \omega) \Delta(\hat{u} \otimes \hat{u}) \eta \mathcal{D}(\Delta u) \eta+\int_{B_{R}^{+}}(I+R \omega) \Delta(\hat{u} \otimes \hat{u}) 2 \eta \nabla \eta \Delta u \\
\quad+\int_{B_{R}^{+}}(\hat{u} \otimes \hat{u}) 2 \eta \nabla \eta \Delta \hat{u} \Delta \nabla F^{-1}+\int_{B_{R}^{+}}(\hat{u} \otimes \hat{u}) \eta^{2} \mathcal{D}(\nabla \hat{u}) \Delta \nabla F^{-1} \\
+\int_{B_{R}^{+}} \Delta p \operatorname{Tr}\left(2 \eta \nabla \eta \Delta \hat{u} \nabla F^{-1}\right)+\int_{B_{R}^{+}} \Delta \hat{p} \eta^{2} \operatorname{Tr}(\Delta \nabla \hat{u}(I+R \omega))+\int_{B_{R}^{+}} f \Delta_{-}\left(\eta^{2} \Delta \hat{u}(x)\right) \\
\quad=-I_{1}-I_{2}-I_{3}+I_{4}+I_{5}+I_{6}+I_{7}+I_{8}+I_{9}+I_{10}+I_{11}+I_{12} .
\end{gathered}
$$

Since $\operatorname{Tr}(\nabla \hat{u}(I+R \omega))=0$, we immediately get $I_{11}=0$. For I_{1} and I_{3} it is enough to use the Young inequality and boundedness of \hat{A} and \hat{B} to get

$$
\begin{equation*}
\left|I_{1}\right| \leq c(\varepsilon)+\varepsilon\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}} \tag{4.2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{3}\right| \leq c(\varepsilon)+\varepsilon\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}} \tag{4.2.4}
\end{equation*}
$$

The Young inequality also gives

$$
\begin{equation*}
\left|I_{10}\right| \leq c(\varepsilon)+\varepsilon\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}} . \tag{4.2.5}
\end{equation*}
$$

The boundedness of \hat{B} yields

$$
\begin{equation*}
\left|I_{2}\right| \leq c_{3}\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}} \tag{4.2.6}
\end{equation*}
$$

The term $T(\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p})$ is estimated from above according to Lemma 21. Thus we have

$$
\begin{equation*}
\left|I_{4}\right|+\left|I_{5}\right| \leq c(\varepsilon)+\varepsilon\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}} . \tag{4.2.7}
\end{equation*}
$$

For term I_{6} we have

$$
\begin{aligned}
\left|I_{6}\right| & \leq\left(\int_{B_{R}^{+}}(\eta \mathcal{D} \Delta \hat{u})^{2}\right)^{1 / 2}\left(\int_{B_{R}^{+}}(|\Delta \hat{u}\|\hat{u}\| \eta|)^{2}\right)^{1 / 2} \\
& \leq\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}}\|\hat{u}\|_{6, B_{R}^{+}}\|\eta \Delta \hat{u}\|_{3, B_{R}^{+}}
\end{aligned}
$$

The interpolation inequality $\|f\|_{3, B_{R}^{+}} \leq c\|f\|_{1,2, B_{R}^{+}}^{d / 6}\|f\|_{2, B_{R}^{+}}^{1-d / 6}$ (see Theorem 5.8 in [1]) implies

$$
\begin{aligned}
\left|I_{6}\right| & \leq c\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}\|\nabla(\eta \Delta \hat{u})\|_{2, B_{R}^{+}}^{d / 6}\|\eta \Delta \hat{u}\|_{2, B_{R}^{+}}^{1-d / 6} \leq c\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}\|\mathcal{D}(\eta \Delta \hat{u})\|_{2, B_{R}^{+}}^{d / 6} \\
& \leq c\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}\left(\|\nabla \eta \Delta \hat{u}\|_{2, B_{R}^{+}}^{d / 6}+\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}^{d / 6}\right) \\
& \leq c\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}+c\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}^{1+d / 6} \leq c(\varepsilon)+\varepsilon\|\eta \Delta \mathcal{D} u\|_{2 B_{R}^{+}}^{2} .
\end{aligned}
$$

The same procedure may be applied on I_{6}, I_{7} and I_{8}. Thus

$$
\begin{equation*}
\left|I_{6}\right|+\left|I_{7}\right|+\left|I_{8}\right|+\left|I_{9}\right| \leq c(\varepsilon)+\varepsilon\|\eta \Delta \mathcal{D} u\|_{2 B_{R}^{+}}^{2} \tag{4.2.8}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\left|I_{12}\right| \leq c(\varepsilon)+\varepsilon\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}}^{2} \tag{4.2.9}
\end{equation*}
$$

Inequalities (4.2.3), (4.2.4), (4.2.5), (4.2.6), (4.2.7), (4.2.8) and (4.2.9) yield

$$
\begin{align*}
\left(c_{1}-c R\right)\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}} \leq \varepsilon & \left(\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}}^{2}+\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}^{2}\right)+ \\
& +\left(c_{3}+\varepsilon\right)\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}}+c(\varepsilon) \tag{4.2.10}
\end{align*}
$$

In order to get an estimate of pressure, we choose $\Phi \in W_{0}^{1,2}$ as a solution to the following problem

$$
\begin{aligned}
\operatorname{div} \Phi & =\eta \Delta \hat{p}-\left|B_{R}^{+}\right|^{-1} \int \eta(x) \Delta \hat{p}(x) d x \text { in } \Omega \\
\Phi & =0 \text { on } \partial \Omega
\end{aligned}
$$

It holds that $\|\Phi\|_{1,2 . B_{R}^{+}} \leq c_{7}\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}$We use a test function $\psi=\eta \Phi$ to get

$$
\begin{aligned}
0= & \int_{B_{R}^{+}}(\hat{A} \mathcal{D} \Delta \hat{u}+\hat{B} \Delta \hat{p}) \eta \mathcal{D} \Phi(I+R \omega)+\int_{B_{R}^{+}} \Delta T(\mathcal{D} \hat{u}+R \omega \hat{u}, \hat{p}) \nabla \eta \Phi(I+R \omega)+ \\
& \int_{B_{R}^{+}} \Delta(\hat{u} \otimes \hat{u}) \mathcal{D}(\eta \Phi)-\int_{B_{R}^{+}} \Delta p \eta \operatorname{div}(\eta \Phi)-\int_{B_{R}^{+}} f \Delta_{-} \Phi \\
& -\int_{B_{R}^{+}} \Delta p \eta \operatorname{Tr}\left(\Phi\left(I-\nabla F^{-1}\right)\right)+\int_{B_{R}^{+}} T(\mathcal{D} \hat{u}+R \omega \hat{u}, \hat{p}) \mathcal{D}(\eta \Phi) \Delta \nabla F^{-1} \\
& +\int_{B_{R}^{+}}(\hat{u} \otimes \hat{u}) \mathcal{D}(\eta \Phi) \Delta \nabla F^{-1}=J_{1}+J_{2}+J_{3}-J_{4}-J_{5}-J_{6}+J_{7}+J_{8}
\end{aligned}
$$

Hölder inequality implies

$$
\begin{equation*}
\left|J_{1}\right| \leq\left(c_{2}\|\eta \mathcal{D} \Delta \hat{u}\|_{2, B_{R}^{+}}+c_{3}\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}\right)\left(c_{7}\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}+c\right) . \tag{4.2.11}
\end{equation*}
$$

Easily, using Young inequality,

$$
\begin{equation*}
\left|J_{2}\right| \leq\left|\int_{B_{R}^{+}} T(\mathcal{D} \hat{u}+R \omega \hat{u}, \hat{p}) \Delta_{-}(\nabla \eta \Phi)\right| \leq c(\varepsilon)+\varepsilon\|\eta \Delta p\|_{2, B_{R}^{+}}^{2} \tag{4.2.12}
\end{equation*}
$$

where ε stands for arbitrary real positive number. Further

$$
\begin{aligned}
\left|J_{3}\right| & \leq\left|\int_{B_{R}^{+}} \Delta \hat{u} \hat{u} \eta \nabla \Phi\right|+\left|\int_{B_{R}^{+}} \Delta(\hat{u} \otimes \hat{u}) \nabla \eta \Phi\right| \\
& \leq\|\Delta \hat{p} \eta\|_{2, B_{R}^{+}}\|\hat{u} \eta \Delta \hat{u}\|_{2, B_{R}^{+}}+\left|\int_{B_{R}^{+}}(\hat{u} \otimes \hat{u}) \Delta_{-}(\nabla \eta \Phi)\right| .
\end{aligned}
$$

Because $\|\hat{u} \eta \Delta \hat{u}\|_{2, B_{R}^{+}} \leq\|\hat{u}\|_{6, B_{R}^{+}}\|\eta \Delta \hat{u}\|_{3, B_{R}^{+}} \leq c\|\hat{u}\|_{6, B_{R}^{+}}\|\nabla(\eta \Delta \hat{u})\|_{2, B_{R}^{+}}^{d / 6}\|\eta \Delta \hat{u}\|_{2, B_{R}^{+}}^{1-d / 6}$, we get

$$
\begin{equation*}
\left|J_{3}\right| \leq \epsilon\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}\|\eta \Delta p\|_{2, B_{R}^{+}}+\varepsilon\|\eta \Delta p\|_{2, B_{R}^{+}}^{2}+c(\varepsilon) . \tag{4.2.13}
\end{equation*}
$$

Further,

$$
\begin{align*}
J_{4} & \geq \int_{B_{R}^{+}} \Delta p(\eta \operatorname{div} \Phi+\nabla \eta \Phi) \geq\|\eta \Delta p\|_{2}-\left(\int_{B_{R}^{+}}(\Delta p) \eta\right)^{2}-\int_{B_{R}^{+}}\left|p \Delta_{-}(\nabla \eta \Phi)\right| \\
& \geq\|(\Delta p) \eta\|_{2, B_{R}^{+}}^{2}-c(\varepsilon)-\varepsilon\|(\Delta p) \eta\|_{2, B_{R}^{+}}^{2} . \tag{4.2.14}
\end{align*}
$$

Easily

$$
\begin{equation*}
\left|J_{5}\right| \leq c(\varepsilon)+\varepsilon\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}} \tag{4.2.15}
\end{equation*}
$$

Finally

$$
\begin{gather*}
\left|J_{6}\right| \leq c R\|\Delta p \eta\|_{2, B_{R}^{+}}^{2} \tag{4.2.16}\\
\left|J_{7}\right| \leq c(\varepsilon)+\varepsilon\|\Delta p \eta\|_{2, B_{R}^{+}}^{2} \tag{4.2.17}
\end{gather*}
$$

and, since $(u \otimes u) \in L^{3}$, we get

$$
\begin{equation*}
\left|J_{8}\right| \leq c(\varepsilon)+\varepsilon\|\Delta p \eta\|_{2}^{2} \tag{4.2.18}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}^{2} \leq\left(c_{2} c_{7}+\varepsilon+c R\right)\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}\|\eta \Delta p\|_{2, B_{R}^{+}}+\left(c_{3} c_{7}+\varepsilon+c R\right)\|\eta \Delta p\|_{2, B_{R}^{+}}^{2}+c(\varepsilon) . \tag{4.2.19}
\end{equation*}
$$

Here we use Young inequality in a form $a b \leq \frac{a^{2}}{2\left(c_{7} c_{2}+c_{1}\right)}+\frac{b^{2}\left(c_{7} c_{2}+c_{1}\right)}{2}$. We obtain

$$
\begin{aligned}
\left(1-c_{3} c_{7}-\frac{c_{2} c_{7}}{2\left(c_{7} c_{2}+c_{1}\right)}+\right. & \varepsilon+c R)\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}^{2} \leq \\
& \left(\frac{c_{2} c_{7}\left(c_{2} c_{7}+c_{1}\right)}{2}+\varepsilon+R c\right)\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}^{2}+c(\varepsilon) .
\end{aligned}
$$

The assumption $c_{3}<\frac{c_{1}}{\left(c_{1}+c_{2} c_{7} c_{7}\right.}$ implies that there exist $R>0$ and $\varepsilon>0$ such that

$$
1-c_{3} c_{7}-\frac{c_{1} c_{7}}{2\left(c_{2} c_{7}+c_{1}\right)}-\varepsilon-R c>\frac{c_{2} c_{7}}{2\left(c_{2} c_{7}+c_{1}\right)} .
$$

Thus

$$
\begin{equation*}
\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}^{2} \leq\left(\left(c_{2} c_{7}+c_{1}\right)^{2}+\varepsilon+R c\right)\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}^{2}+c(\varepsilon) . \tag{4.2.20}
\end{equation*}
$$

The same Young inequality applied on (4.2.10) implies

$$
\begin{array}{r}
\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}^{2} \leq \frac{c_{3}}{c_{1}}\left(\frac{1}{2\left(c_{2} c_{7}+c_{1}\right)}\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}^{2}+\frac{c_{2} c_{7}+c_{1}}{2}\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}^{2}\right) \\
+(\varepsilon+R c)\|\eta \mathcal{D} \nabla \hat{u}\|_{2, B_{R}^{+}}^{2}+c(\varepsilon) \\
\quad \leq\left(\frac{c_{3}\left(c_{2} c_{7}+c_{1}\right)}{c_{1}}+\varepsilon+R c\right)\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}^{2}+c(\varepsilon)
\end{array}
$$

According to assumptions, we can choose R and ε such that $\frac{c_{3}\left(c_{7} c_{2}+c_{1}\right)}{c_{1}}+\varepsilon+R c<1$ and thus we get

$$
\|\eta \Delta \mathcal{D} \hat{u}\|_{2, B_{R}^{+}}^{2}+\|\eta \Delta \hat{p}\|_{2, B_{R}^{+}}^{2} \leq c
$$

Now it is enough to choose η as

$$
\eta=\left\{\begin{array}{r}
1 \text { in } B_{R / 2}^{+} \\
0 \text { in } \mathbb{R}^{d} \backslash B_{R} \\
\text { smoothly }
\end{array}\right.
$$

Thus

$$
\left\|\frac{\partial \nabla \hat{u}}{\partial x_{i}}\right\|_{2, B_{R / 2}}+\left\|\frac{\partial \hat{p}}{\partial x_{i}}\right\|_{2, B_{R / 2}} \leq c\left(\|u\|_{1,2},\|p\|_{2},\|f\|_{2}, \omega, R, T\right)
$$

for all $i \in\{1, \ldots, d-1\}$.
It suffices to show that also the derivatives with respect to the normal vector are bounded in proper spaces. The functions (\hat{u}, \hat{p}) satisfy equation

$$
\begin{align*}
-\operatorname{div} T\left(\mathcal{D} \hat{u}+\left(\nabla F^{-1}-I\right) \nabla \hat{u}, \hat{p}\right) \nabla F^{-1} & \\
-\nabla \hat{p} \nabla F^{-1} & =g \tag{4.2.21}\\
\operatorname{div} \hat{u} & =\operatorname{Tr}\left(\left(\nabla F^{-1}-I\right) \nabla \hat{u}\right) \tag{4.2.22}
\end{align*}
$$

where $g \in L^{\frac{3}{2}}$ contains right hand side and the convective term. We rewrite this system in point of view of an unknown vector $s=\left(\frac{\partial^{2} \hat{u_{1}}}{\partial x_{d}^{2}}, \ldots, \frac{\partial^{2} \hat{u_{d}}}{\partial x_{d}^{2}}, \frac{\partial \hat{p}}{\partial x_{d}}\right)$. The equation (4.2.21) can be reformulated as follows

$$
\begin{equation*}
\bar{A}_{i j}^{k l} \frac{\partial^{2} u_{i}}{\partial x_{l} \partial x_{j}}+\left(\delta_{k l}+R \omega+(I-R \omega) \frac{\partial T_{k l}(\mathcal{D} \hat{u}-R \omega \mathcal{D} \hat{u}, \hat{p})}{\partial \hat{p}}\right) \frac{\partial p}{\partial x_{l}}=g^{\prime} \tag{4.2.23}
\end{equation*}
$$

where $\bar{A}=-(I-R \omega) \frac{\partial T(\mathcal{D} \hat{u}-R \omega \mathcal{D} \hat{\mathcal{u}}, \hat{p})}{\partial \mathcal{D}}$. Therefore $\|\bar{A}\| \leq c_{2}\|I+R \omega\|$. We emphasize that according to the assumptions $\left|\frac{\partial T}{\partial p}\right|<c_{3}<1$ and thus, for $R>0$ sufficiently small, there exists an inverse matrix $C=\left(\delta_{k l}+(I-R \omega) \frac{\partial T_{k l}(\mathcal{D} \hat{u}-R \omega \mathcal{D} \hat{\mathcal{u}}, \hat{p})}{\partial \hat{p}}\right)^{-1}$. We multiply (4.2.23) by C and we put all the already estimated terms on the right hand side. Hence, we obtain, for $m \in\{1, \ldots, d\}^{2}$

$$
\begin{equation*}
(-\tilde{A} s)_{m}=\left(C g^{\prime}\right)_{m}+\frac{\partial p}{\partial x_{m}}\left(1-\delta_{d m}\right)-\sum_{l, j \in\{1, \ldots, d\}^{2} \backslash\{(d, d)\}, i \in\{1, \ldots, d\}}(C \bar{A})_{i j}^{m l} \frac{\partial^{2} u_{i}}{\partial x_{l} \partial x_{j}} \tag{4.2.24}
\end{equation*}
$$

where \tilde{A} is defined as a $d \times(d+1)$ matrix

$$
\tilde{A}_{m i}=\left(\begin{array}{r}
0 \tag{4.2.25}\\
(C \bar{A})_{i d}^{m d} \\
\vdots \\
\\
1
\end{array}\right) .
$$

We denote the right hand side of $(4.2 .24)$ by \tilde{g}. We add to (4.2.24) the equation (4.2.22) differentiated with respect to x_{d}. We get

$$
\begin{equation*}
\left(\tilde{A}^{\prime} s\right)_{m}=\tilde{g}_{m}\left(1-\delta_{m(d+1)}\right)+\delta_{m(d+1)} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial^{2} F_{j}^{-1}}{\partial x_{i} \partial x_{d}} \tag{4.2.26}
\end{equation*}
$$

Here

$$
\tilde{A}^{\prime}=\binom{\tilde{A}}{0, \ldots, 0,1,0}+R \omega .
$$

Further, we denote the right hand side of (4.2.26) by \tilde{g}^{\prime}. We compute det \tilde{A}^{\prime}. We expand the determinant of \tilde{A}^{\prime} along the last row and along the last column. We get $\operatorname{det} \tilde{A}^{\prime}=\operatorname{det} \tilde{A}_{M}+R c$ where \tilde{A}_{M} is the $(d-1) \times(d-1)$ matrix that results from \tilde{A} by removing the last two columns and last row. The matrix $C \bar{A}$ is elliptic. Indeed, \bar{A} is elliptic with constant $c_{1}-R c$ because $\frac{\partial T}{\partial D}$ is elliptic. Further, $C \bar{A}$ is elliptic with a constant $c_{1}-c_{2} \frac{c_{3}}{1-c_{3}}-R c$ which is, for R small enough, greater than zero according to the assumptions. Thus also a matrix \tilde{A}_{M} is elliptic and it has nonzero determinant. We get, that, for R sufficiently small, there exists an inverse matrix $\left(\tilde{A}^{\prime}\right)^{-1} \in L^{\infty}$. From (4.2.26) we have for arbitrary $r \in \mathbb{R}$

$$
\begin{equation*}
\|s\|_{r} \leq C\left(\left\|\tilde{g}^{\prime}\right\|_{r}+\left\|\left(\frac{\partial p}{\partial x_{i}}\right)_{i=1, \ldots, d-1}\right\|_{r}+\left\|\left(\frac{\partial^{2} u_{i}}{\partial x_{l} \partial x_{j}}\right)_{i, j=1, \ldots, d-1}\right\|_{r}\right) \tag{4.2.27}
\end{equation*}
$$

Since $\tilde{g}^{\prime} \in L^{\frac{3}{2}}$, we have $\nabla^{2} u \in L^{\frac{3}{2}}\left(B_{R}^{+}(0), \mathbb{R}^{d^{3}}\right)$. The Sobolev embedding theorem implies $u \in W^{1,3} \cap L^{6}$, thus $u \nabla u \in L^{2}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right)$ and the right hand side \tilde{g}^{\prime} in

[^6](4.2.26) is bounded in L^{2}. By iterating this process, we obtain
\[

$$
\begin{equation*}
\|s\|_{2} \leq C\left(\left\|g^{\prime}\right\|_{2}+\left\|\left(\frac{\partial p}{\partial x_{i}}\right)_{i=1, \ldots, d-1}\right\|_{2}+\left\|\left(\frac{\partial^{2} u_{i}}{\partial x_{l} \partial x_{j}}\right)_{i, j=1, \ldots, d-1}\right\|_{2}\right) \tag{4.2.28}
\end{equation*}
$$

\]

which concludes the proof.

4.3 Higher integrability

42 Lemma. Let $c_{3}<\min \left\{\frac{c_{1}}{\left(c_{1}+c_{7} c_{2}\right) c_{7}}, c_{9}^{-1}\right\}$ and Ω be a C^{2} domain. Then there exists a constant $\delta>0$ such that, for $f \in L^{2+\delta}\left(\Omega, \mathbb{R}^{d}\right)$, a weak solution (u, p) to (1.1.2) belongs to $W^{2,2+\delta}\left(\Omega, \mathbb{R}^{d}\right) \times W^{1,2+\delta}(\Omega, \mathbb{R})$.

Proof. Assume that $0=x_{0} \in \Omega$ and let $R>0$ be such that $B_{2 R} \subset \Omega$. Since all assumptions of the previous lemma holds, we can assume, that $(u, p) \in$ $W^{2,2}\left(\Omega, \mathbb{R}^{d}\right) \times W^{1,2}(\Omega, \mathbb{R})$. We differentiate (1.1.2) with respect to x_{i} for $i \in$ $\{1, \ldots, d\}$ fixed. We get

$$
\begin{equation*}
-\operatorname{div} \frac{\partial T}{\partial D} \mathcal{D}\left(\frac{\partial u}{\partial x_{i}}\right)-\operatorname{div} \frac{\partial T}{\partial p} \frac{\partial p}{\partial x_{i}}+\nabla \frac{\partial p}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}(f-\operatorname{div}(u \otimes u)) . \tag{4.3.1}
\end{equation*}
$$

Set $A=\frac{\partial T}{\partial D}(\mathcal{D} u, p), B=\frac{\partial T}{\partial p}(\mathcal{D} u, p), U=\frac{\partial u}{\partial x_{i}}$ and $P=\frac{\partial p}{\partial x_{i}}$. The equation (4.3.1) can be rewritten as

$$
-\operatorname{div} A \mathcal{D} U+\nabla P=\frac{\partial}{\partial x_{i}}(f-\operatorname{div}(u \otimes u))+\operatorname{div} B P .
$$

We multiply this equation by a cut-of function $\eta \in C^{\infty}$ which is defined by

$$
\eta(x)=\left\{\begin{array}{ll}
1 & x \in B_{R / 2} \\
0 & x \in \mathbb{R}^{d} \backslash B_{R}
\end{array} .\right.
$$

Thus functions $(\tilde{U}, \tilde{P}) \stackrel{\text { def }}{=}(U \eta, P \eta)$ solve

$$
\begin{array}{r}
-\operatorname{div} A \nabla \tilde{U}+\nabla \tilde{P}=F+\operatorname{div} B \tilde{P} \\
\operatorname{div} \tilde{U}=g \\
\left.\tilde{U}\right|_{B_{R}}=0
\end{array}
$$

where

$$
F=\eta \frac{\partial}{\partial x_{i}}(f-\operatorname{div}(u \otimes u))+(\nabla \eta) P+(\nabla \eta) B P+\operatorname{div}(A(\nabla \eta) U)
$$

and

$$
g=\frac{\partial \eta}{\partial x_{j}} U_{j} .
$$

Since $\nabla U \in L^{2}\left(\Omega, \mathbb{R}^{d^{2}}\right), U$ belongs to $L^{6}\left(\Omega, \mathbb{R}^{d}\right)$. Thus we have $g \in L^{2+\delta}(\Omega, \mathbb{R})$. Further, F can be written as $F=\operatorname{div} F^{\prime}$, where $F^{\prime} \in L^{2+\delta}\left(\Omega, \mathbb{R}^{d^{2}}\right)$. Indeed, since $u \nabla u \in L^{5}\left(\Omega, \mathbb{R}^{d}\right)$, the term $\eta \frac{\partial}{\partial x_{i}}(f-\operatorname{div}(u \otimes u))+\operatorname{div} A(\nabla \eta) U$ is in space $W^{-1,2+\delta}\left(\Omega, \mathbb{R}^{d}\right)$. Moreover, $F-\eta \frac{\partial}{\partial x_{i}}(f-\operatorname{div}(u \otimes u)) \in L^{2}\left(\Omega, \mathbb{R}^{d}\right)$ because $U \in$ $W^{1,2}\left(\Omega, \mathbb{R}^{d}\right), P \in L^{2}(\Omega, \mathbb{R})$ and $B \in L^{\infty}\left(\Omega, \mathbb{R}^{d^{2}}\right)$. Thus, according to Corollary 38 , we get that $(\nabla U, P)$ are in space $L^{2+\delta}\left(\Omega, \mathbb{R}^{d^{2}} \times \mathbb{R}\right)$. Since i can be chosen arbitrarily, we immediately obtain $u \in W^{2,2+\delta}\left(B_{\frac{R}{2}}, \mathbb{R}^{d}\right)$ and $p \in W^{1,2+\delta}\left(B_{\frac{R}{2}}, \mathbb{R}\right)$.
Let $0=x_{0} \in \partial \Omega$ and $\Omega_{x_{0}, R}$ be the neighborhood defined earlier. We define quantities \hat{u}, \hat{p} and \hat{f} by (4.2.1) and we differentiate equation (1.1.2) with respect to $x_{i}, i \in\{1, \ldots, d-1\}$. We assume that $\frac{\partial \hat{u}}{\partial x_{i}}$ is equal to zero on $\partial B_{R}^{+}(0)$. We set $A=\frac{\partial T}{\partial \mathcal{D}}((\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p}))$ and $B=\frac{\partial T}{\partial p}((\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p}))$ and we have

$$
\begin{align*}
\int_{B_{R}^{+}} A \mathcal{D} \frac{\partial \hat{u}}{\partial x_{i}} \mathcal{D} \psi+\int_{B_{R}^{+}} B \frac{\partial \hat{p}}{\partial x_{i}} \mathcal{D} \psi & -\int_{B_{R}^{+}} \frac{\partial \hat{p}}{\partial x_{i}} \operatorname{div} \psi \\
& =R S_{1}\left(\frac{\partial \hat{u}}{\partial x_{i}}, \frac{\partial \hat{p}}{\partial x_{i}}, \psi\right)+S_{2}(\hat{u}, \hat{p}, \psi) \tag{4.3.2}
\end{align*}
$$

where

$$
\begin{aligned}
S_{1}\left(\frac{\partial \hat{u}}{\partial x_{i}}, \frac{\partial \hat{p}}{\partial x_{i}}, \psi\right)= & \int_{B_{R}^{+}}\left(T(\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p}) \omega \nabla \frac{\partial \hat{u}}{\partial x_{i}} \mathcal{D} \psi \nabla F+\frac{\partial \hat{p}}{\partial x_{i}}(\operatorname{Tr} \nabla \psi \omega)\right. \\
& \left.+A \mathcal{D} \frac{\partial \hat{u}}{\partial x_{i}} \mathcal{D} \psi \omega+B \frac{\partial \hat{p}}{\partial x_{i}} \mathcal{D} \psi \omega\right)
\end{aligned}
$$

and

$$
\begin{aligned}
S_{2}(\hat{u}, \hat{p}, \psi)= & \int_{B_{R}^{+}}\left(-f \frac{\partial \psi}{\partial x_{i}}-T(\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p}) \frac{\partial \nabla F}{\partial x_{i}} \mathcal{D} \psi+\hat{p} \operatorname{Tr}\left(\nabla \psi \frac{\partial \nabla F}{\partial x_{i}}\right)\right. \\
& +\frac{\partial}{\partial x_{i}}(\hat{u} \otimes \hat{u}) \mathcal{D} \psi \nabla F+(\hat{u} \otimes \hat{u}) \mathcal{D} \psi \frac{\partial \nabla F}{\partial x_{i}} \\
& \left.+T(\mathcal{D} \hat{u}+R \omega \nabla \hat{u}, \hat{p}) \mathcal{D} \psi \frac{\partial \nabla F}{\partial x_{i}}\right) .
\end{aligned}
$$

It holds that

$$
\begin{aligned}
& \left|S_{2}(\hat{u}, \hat{p}, \psi)\right| \leq \\
& c\left(\|f\|_{L^{2+\delta}}+\|\nabla \hat{u}\|_{L^{2+\delta}}+\|\hat{p}\|_{L^{2+\delta}}+\left\|\frac{\partial}{\partial x_{i}}(\hat{u} \otimes \hat{u})\right\|_{L^{2+\delta}}+\|\hat{u} \otimes \hat{u}\|_{L^{2+\delta}}\right)\|\psi\|_{W_{0}^{1,(2+\delta)^{\prime}}} .
\end{aligned}
$$

Thus the term $S_{2}(\hat{u}, \hat{p}, \psi)$ can be represented as $\int G \nabla \psi$ where $G \in L^{2+\delta}\left(\Omega, \mathbb{R}^{d^{2}}\right)$.
For S_{1} we have, due to Hölder inequality,

$$
\begin{array}{r}
\left.\left\|S_{1}\left(\frac{\partial \hat{u}}{\partial x_{i}}, \frac{\partial \hat{p}}{\partial x_{i}}, .\right)\right\|_{-1,2+\delta}=\sup _{\psi \in W_{0}^{1,(2+\delta)^{\prime}},\|\psi\|_{1,(2+\delta)^{\prime} \leq 1} \left\lvert\, S_{1}\left(\frac{\partial \hat{u}}{\partial x_{i}},\right.\right.} \frac{\partial \hat{p}}{\partial x_{i}}, \psi\right) \mid \\
\leq c\left(\left\|\nabla \frac{\partial \hat{u}}{\partial x_{i}}\right\|_{2+\delta}+\left\|\frac{\partial \hat{p}}{\partial x_{i}}\right\|_{2+\delta}\right) .
\end{array}
$$

According to Lemma 39 there exists $R_{0}>0$ such that for all $R<R_{0}$ it holds that $\left(\frac{\partial \hat{u}}{\partial x_{i}}, \frac{\partial \hat{p}}{\partial x_{i}}\right) \in W^{1,2+\delta}\left(B_{R}^{+}(0), \mathbb{R}^{d}\right) \times L^{2+\delta}\left(B_{R}^{+}(0), \mathbb{R}\right)$.
The same considerations can be done even for a function, which is not supported in B_{R}^{+}. It is enough to take $\frac{\partial \hat{u}}{\partial x_{i}} \eta$ instead of $\frac{\partial \hat{u}}{\partial x_{i}}$ where η is a nonnegative smooth cut-off function defined as

$$
\eta(x)=\left\{\begin{array}{r}
1 \quad x \in B_{R / 2}^{+} \\
0
\end{array} \quad x \in \mathbb{R} \backslash B_{3 R / 4} .\right.
$$

The regularity of the derivation with respect to the normal vector can be done similarly as in proof of Lemma 41 . Hence, since $\bar{\Omega}$ is compact, we get the claim of the lemma.

43 Corollary. Let all assumptions of Lemma 42 holds. Then there exists $\delta>0$ such that $(\mathcal{D} u, p) \in W^{1 / 2,2+\delta}(\partial \Omega)$.

Proof. Follows immediately from properties of the trace operator.

4.4 Key lemma and its consequences

For needs of this section, we define quantity $E^{u, p}(x, R)$ for $\alpha \in(0,1)$ as follows

$$
E^{u, p}(x, R)=R^{\frac{2-d}{2}}\left\|\nabla^{2} u\right\|_{2, \Omega_{x, R}}+R^{\frac{2-d}{2}}\|\nabla p\|_{2, \Omega_{x, R}}+R^{\alpha} .
$$

Throughout this section, we assume that Ω is a bounded C^{2} domain.
44 Key lemma. Let (1.1.3) be satisfied with $c_{3}<\frac{c_{1}}{\left(c_{1}+c_{7} c_{2}\right) c_{7}}$, let $\alpha \in(0,1)$ and let $f \in L^{2, \mu}\left(\Omega, \mathbb{R}^{d}\right)$ where $\mu>d-1+\alpha$. There exists $R_{0}>0$ such that for all $M>0$ and $\tau \in(0,1)$ there exists $\varepsilon>0$ for which the following implication holds: Let $(u, p) \in W^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega, \mathbb{R})$ be a weak solution of system (1.1.2) and let for any $x_{0} \in \partial \Omega$ and $R \in\left(0, R_{0}\right)$ the inequalities

$$
E^{u, p}\left(x_{0}, R\right)<\varepsilon,(|\nabla u|)_{\Gamma_{h}}+\left|(p)_{\Gamma_{h}}\right| \leq M
$$

hold. Then

$$
E^{u, p}\left(x_{0}, \tau R\right) \leq 2 C^{*} \tau^{\alpha} E^{u, p}\left(x_{0}, R\right)
$$

Proof. We prove this lemma via blow up system.
Throughout the proof, we write F_{h} instead of $F_{x_{h}, R_{h}}$ and Ω_{h} instead of $\Omega_{x_{h}, R_{h}}$. We define a set Γ_{h} as $\Gamma_{h}=\partial \Omega_{h} \cap \partial \Omega$. For a contradiction, we suppose that there exist $M, \tau, x_{h} \in \partial \Omega, \varepsilon_{h} \rightarrow 0, R_{h} \rightarrow 0$, as h tends to zero, and weak solutions $\left(u_{h}, p_{h}\right)$ to (1.1.2) satisfying

$$
\begin{equation*}
E^{u_{h}, p_{h}}\left(x_{h}, R_{h}\right)=\varepsilon_{h},\left|\left(\nabla u_{h}\right)_{\Gamma_{h}}\right|+\left|\left(p_{h}\right)_{\Gamma_{h}}\right| \leq M \tag{4.4.1}
\end{equation*}
$$

and

$$
E^{u_{h}, p_{h}}\left(x_{h}, \tau R_{h}\right)>2 C^{*} \tau^{\alpha} E^{u_{h}, p_{h}}\left(x_{h}, R_{h}\right) .
$$

We, moreover, assume that ${ }^{3}$

$$
\begin{aligned}
\left(p_{h}\right)_{\Gamma_{h}} & \rightarrow a \text { in } \mathbb{R} \\
\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}} & \rightarrow e \text { in } \mathbb{R}^{d \times d} .
\end{aligned}
$$

Further, from the assumption (4.4.1), it follows that $\frac{R_{h}}{\varepsilon_{h}}=R_{h}^{1-\alpha} \frac{R_{h}^{\alpha}}{\varepsilon_{h}} \rightarrow 0$ as h tends to zero. We set $x=F_{h}(y)$ and we introduce new rescaled quantities v_{h}, q_{h} and f_{h}, defined by

$$
\begin{aligned}
v_{h}(y) & =\frac{u_{h}\left(F_{h}(y)\right)-(\nabla u)_{\Gamma_{h}} \cdot\left(0, \ldots, 0, y_{d}\right) R_{h}}{R_{h} \varepsilon_{h}} \\
q_{h}(y) & =\frac{p_{h}\left(F_{h}(y)\right)-\left(p_{h}\right)_{\Gamma_{h}}}{\varepsilon_{h}} \\
f_{h}(y) & =\frac{R_{h}}{\varepsilon_{h}} f\left(F_{h}(y)\right) .
\end{aligned}
$$

Their derivatives fulfill

$$
\begin{align*}
\nabla_{y} v_{h}(y)= & \frac{\nabla_{x} u_{h}\left(F_{h}(y)\right)-\left(\nabla_{x} u_{h}\right)_{\Gamma_{h}} \cdot(0, \ldots, 0,1)}{\varepsilon_{h}}+\frac{R_{h}}{\varepsilon_{h}} \omega \nabla_{x} u_{h}\left(F_{h}(y)\right) \\
\mathcal{D}_{y} v_{h}(y)= & \frac{\mathcal{D}_{x} u_{h}\left(F_{h}(y)\right)-\left(\mathcal{D}_{x}^{*} u_{h}\right)_{\Gamma_{h}}}{\varepsilon_{h}}+ \\
& +\frac{1}{2}\left(\frac{R_{h}}{\varepsilon_{h}} \omega \nabla_{x} u_{h}\left(F_{h}(y)\right)+\left(\frac{R_{h}}{\varepsilon_{h}} \omega \nabla_{x} u_{h}\left(F_{h}(y)\right)\right)^{T}\right) \\
\nabla_{y}^{2} v_{h}(y)= & \frac{1}{R_{h} \varepsilon_{h}}\left(\nabla_{x}^{2} u_{h}\left(F_{h}(y)\right)\left(\nabla F_{h}(y)\right)^{2}\right)+ \\
& +\frac{1}{\varepsilon_{h} R_{h}} \nabla_{x} u_{h}\left(F_{h}(y)\right) \nabla^{2} F_{h}(y) \\
\nabla_{y} q_{h}(y)= & \frac{R_{h} \nabla_{x} p_{h}\left(F_{h}(y)\right)}{\varepsilon_{h}}+\frac{R_{h}^{2}}{\varepsilon_{h}} \omega \nabla_{x} p_{h}\left(F_{h}(y)\right) . \tag{4.4.2}
\end{align*}
$$

By the change of variables, we have, due to properties of F_{h} (see Observations 20),

$$
\begin{aligned}
&\left(\left|R_{h}^{d}\right|-c\left|R_{h}^{d+1}\right|\right) \int_{B_{1}^{+}(0)}\left|\nabla_{x} p_{h}\left(F_{h}(y)\right)\right|^{2} d y \leq \int_{\Omega_{h}}\left|\nabla_{x} p_{h}\right|^{2} d x \\
& \leq\left(\left|R_{h}^{d}\right|+c\left|R_{h}^{d+1}\right|\right) \int_{B_{1}^{+}(0)}\left|\nabla_{x} p_{h}\left(F_{h}(y)\right)\right|^{2} d y \\
&\left(\left|R_{h}^{d}\right|-c\left|R_{h}^{d+1}\right|\right) \int_{B_{1}^{+}(0)}\left|\nabla_{x}^{2} u_{h}\left(F_{h}(y)\right)\right|^{2} d y \leq \int_{\Omega_{h}}\left|\nabla_{x}^{2} u_{h}\right|^{2} d x \\
& \leq\left(\left|R_{h}^{d}\right|+c\left|R_{h}^{d+1}\right|\right) \int_{B_{1}^{+}(0)}\left|\nabla_{x}^{2} u_{h}\left(F_{h}(y)\right)\right|^{2} d y
\end{aligned}
$$

[^7]Thus

$$
\begin{align*}
& \frac{1}{\sqrt{R_{h}^{d}+c R_{h}^{d+1}}}\left\|\nabla_{x} p_{h}\right\|_{2, \Omega_{h}} \leq\left\|\nabla_{x} p_{h}\left(F_{h}(.)\right)\right\|_{2, B_{1}^{+}(0)} \leq \frac{1}{\sqrt{R_{h}^{d}-c R_{h}^{d+1}}}\left\|\nabla_{x} p_{h}\right\|_{2} \\
& \frac{1}{\sqrt{R_{h}^{d}+c R_{h}^{d+1}}}\left\|\nabla_{x}^{2} u_{h}\right\|_{2, \Omega_{h}} \leq\left\|\nabla_{x}^{2} u_{h}\left(F_{h}(.)\right)\right\|_{2, B_{1}^{+}(0)} \leq \frac{1}{\sqrt{R_{h}^{d}-c R_{h}^{d+1}}}\left\|\nabla_{x}^{2} u_{h}\right\|_{2, \Omega_{h}} \tag{4.4.3}
\end{align*}
$$

The identity $\left(\nabla F_{h}\right)^{2}=R_{h}^{2} I+R_{h}^{3} \omega+R_{h}^{4} \omega$ implies that

$$
\begin{aligned}
\left\|\nabla^{2} v_{h}\right\|_{2, B_{1}^{+}(0)} & +\left\|\nabla q_{h}\right\|_{2, B_{1}^{+}(0)} \leq\left\|\frac{1}{R_{h} \varepsilon_{h}} \nabla_{x}^{2} u_{h}\left(F_{h}(.)\right)\left(\nabla F_{h}\right)^{2}\right\|_{2, B_{1}^{+}(0)}+ \\
& +\left\|\frac{1}{R_{h} \varepsilon_{h}} \nabla_{x} u_{h}\left(F_{h}(.)\right) \nabla^{2} F_{h}\right\|_{2, B_{1}^{+}(0)}+ \\
& +\left\|\frac{R_{h}}{\varepsilon_{h}} \nabla_{x} u_{h}\left(F_{h}(.)\right)\right\|_{2, B_{1}^{+}(0)}+\left\|\frac{R_{h}^{2}}{\varepsilon_{h}} \omega \nabla_{x} p_{h}\left(F_{h}(.)\right)\right\|_{2, B_{1}^{+}(0)} \\
\leq & \frac{R_{h}^{\frac{2-d}{2}}}{\varepsilon_{h} \sqrt{1-c R_{h}}}\left(\left\|\nabla^{2} u_{h}\right\|_{2, \Omega_{h}}+\left\|\nabla p_{h}\right\|_{2, \Omega_{h}}\right)+ \\
& +c R_{h} \frac{R_{h}^{\frac{2-d}{2}}}{\varepsilon_{h} \sqrt{1-c R_{h}}}\left(\left\|\nabla^{2} u_{h}\right\|_{2, \Omega_{h}}+\left\|\nabla p_{h}\right\|_{2, \Omega_{h}}\right)+ \\
& +\left\|\frac{1}{R_{h} \varepsilon_{h}} \nabla_{x} u_{h}\left(F_{h}(.)\right) \nabla^{2} F_{h}\right\|_{2, B_{1}^{+}(0)} \\
\leq & \frac{1+c R_{h}}{\varepsilon_{h} \sqrt{1-c R_{h}}} E^{u_{h}, p_{h}}\left(x_{h}, R_{h}\right)+\left\|\frac{1}{R_{h} \varepsilon_{h}} \nabla_{x} u_{h}\left(F_{h}(.)\right) \nabla^{2} F_{h}\right\|_{2, B_{1}^{+}(0)}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& \left\|\nabla^{2} v_{h}\right\|_{2, B_{1}^{+}(0)}+\left\|\nabla q_{h}\right\|_{2, B_{1}^{+}(0)} \geq \\
& \quad \geq \frac{1-c R_{h}}{\varepsilon_{h} \sqrt{1+c R_{h}}} E^{u_{h}, p_{h}}\left(x_{h}, R_{h}\right)-\left\|\frac{1}{R_{h} \varepsilon_{h}} \nabla_{x} u_{h}\left(F_{h}(.)\right) \nabla^{2} F_{h}\right\|_{2, B_{1}^{+}(0)}
\end{aligned}
$$

The term $\left\|\frac{1}{R_{h} \varepsilon_{h}} \nabla_{x} u_{h}\left(F_{h}(.)\right) \nabla^{2} F_{h}\right\|_{2, B_{1}^{+}(0)}$ converges to zero as h tends to zero. Indeed, according to the Poincaré inequality (Lemma 22) we get

$$
\begin{aligned}
\left\|\frac{1}{R_{h} \varepsilon_{h}} \nabla_{x} u_{h}\left(F_{h}(.)\right) \nabla^{2} F_{h}\right\|_{2, B_{1}^{+}(0)} & \leq \frac{c R_{h}}{\varepsilon_{h}}\left\|\nabla_{x} u_{h}\left(F_{h}(.)\right)\right\|_{2, B_{1}^{+}(0)} \leq c \frac{R_{h}}{\varepsilon_{h} R^{\frac{d}{2}}}\left\|\nabla u_{h}\right\|_{2, \Omega_{h}} \\
& \leq c\left(\frac{R_{h}}{\varepsilon_{h}}\left|\left(\nabla u_{h}\right)_{\Gamma_{h}}\right|+R_{h} \frac{R_{h}^{1-\frac{d}{2}}}{\varepsilon_{h}}\left\|\nabla^{2} u_{h}\right\|_{2, \Omega_{h}}\right) \\
& \leq c\left(\frac{R_{h}}{\varepsilon_{h}} M+R_{h} \frac{E^{u_{h}, p_{h}}\left(x_{h}, R_{h}\right)}{\varepsilon_{h}}\right) \\
& \leq c\left(\frac{R_{h}}{\varepsilon_{h}} M+R_{h}\right) \rightarrow 0 .
\end{aligned}
$$

It follows that

$$
\begin{gather*}
E^{v_{h}, p_{h}}(0,1) \rightarrow 1 \text { as } h \rightarrow 0 \\
E^{v_{h}, p_{h}}(0, \tau)>2 C^{*} \tau^{\alpha} E^{v_{h}, p_{h}}(0,1) \text { for } h \text { sufficiently small. } \tag{4.4.4}
\end{gather*}
$$

Boundedness of the second gradient of v_{h} and the first gradient of p_{h} in space L^{2} implies that, up to a subsequence,

$$
\left(v_{h}, p_{h}\right) \rightarrow(v, p) \text { in } W^{2,2}\left(B_{1}^{+}(0)\right) \times W^{1,2}\left(B_{1}^{+}(0)\right) \text { weakly }
$$

We set $x=F_{h}(y)$ and $\psi(y)=\varphi\left(F_{h}(y)\right)=\varphi(x)$. Every term in a weak formulation of the equation (1.1.2) can be reformulated as follows

$$
\begin{aligned}
& \int_{\Omega_{R_{h}}\left(x_{h}\right)} f(x) \varphi(x) d x=\int_{B_{1}^{+}(0)} f\left(F_{h}(y)\right) \psi(y)\left|\operatorname{det} \nabla F_{h}(y)\right| d y \\
& \int_{\Omega_{R_{h}}\left(x_{h}\right)} u_{h}(x) \otimes u_{h}(x) \mathcal{D} \varphi(x) d x= \\
& =\frac{1}{R_{h}} \int_{B_{1}^{+}(0)} u_{h}\left(F_{h}(y)\right) \otimes u_{h}\left(F_{h}(y)\right) \mathcal{D} \psi(y)\left|\operatorname{det} \nabla F_{h}(y)\right| d y- \\
& \quad-R_{h} \int_{B_{1}^{+}(0)} u_{h}\left(F_{h}(y)\right) \otimes u_{h}\left(F_{h}(y)\right) \mathcal{D} \psi(y) \omega\left|\operatorname{det} \nabla F_{h}(y)\right| d y
\end{aligned}
$$

similarly

$$
\begin{aligned}
& \int_{\Omega_{R_{h}}\left(x_{h}\right)} T\left(\mathcal{D} u_{h}(x), p_{h}(x)\right) \mathcal{D} \varphi(x) d x= \\
& =\frac{1}{R_{h}} \int_{B_{1}^{+}(0)} T\left(\mathcal{D} u_{h}\left(F_{h}(y)\right), p_{h}\left(F_{h}(y)\right)\right) \mathcal{D} \psi(y)\left|\operatorname{det} \nabla F_{h}(y)\right| d y- \\
& \quad-R_{h} \int_{B_{1}^{+}(0)} T\left(\mathcal{D} u_{h}\left(F_{h}(y)\right), p_{h}\left(F_{h}(y)\right)\right) \mathcal{D} \psi(y) \omega\left|\operatorname{det} \nabla F_{h}(y)\right| d y
\end{aligned}
$$

and, due to $\operatorname{div} \psi(y)=\operatorname{Tr}\left(\nabla \varphi \nabla F_{h}\right)=R_{h} \operatorname{div} \varphi+R_{h}^{2} \nabla \varphi \omega$,

$$
\begin{aligned}
\int_{\Omega_{R_{h}}\left(x_{h}\right)} p_{h}(x) \operatorname{div} \varphi(x) d x & =\frac{1}{R_{h}} \int_{B_{1}^{+}(0)} p_{h}\left(F_{h}(y)\right) \operatorname{div} \psi(y)\left|\operatorname{det} \nabla F_{h}(y)\right| d y+ \\
& +R_{h} \int_{B_{1}^{+}(0)}\left(p_{h}\left(F_{h}(y)\right)\right) \operatorname{Tr}\left(\nabla \varphi\left(F_{h}(y)\right) \omega\right)\left|\operatorname{det} \nabla F_{h}(y)\right| d y
\end{aligned}
$$

Hence, for all $\psi \in W_{0}^{1,2}\left(B_{1}^{+}(0)\right)$, holds

$$
\begin{align*}
I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} & =0 \\
\operatorname{div} v_{h} & =-\frac{1}{\varepsilon_{h}}\left(\frac{\partial u_{h d}}{\partial x_{d}}\right)_{\Gamma_{h}}+\frac{R_{h}}{\varepsilon_{h}} \omega \operatorname{div} u_{h} \\
\left.v_{h}\right|_{B_{1}^{d-1}} & =0 \tag{4.4.5}
\end{align*}
$$

where the terms I_{i} are defined as

$$
\begin{aligned}
I_{1}= & \int_{B_{1}^{+}(0)} \frac{1}{\varepsilon_{h}} T\left(\mathcal{D} v_{h} \varepsilon_{h}+\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}}, q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right): \mathcal{D} \psi \frac{\left|\operatorname{det} \nabla F_{h}(y)\right|}{R_{h}^{d}}, \\
I_{2}= & \int_{B_{1}^{+}(0)} \frac{1}{\varepsilon_{h}}\left(T \left(\mathcal{D} v_{h} \varepsilon_{h}+\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}}+R_{h} \frac{1}{2}\left(\nabla u_{h} \omega+\right.\right.\right. \\
& \left.\left.\left(\nabla u_{h} \omega\right)^{T}\right), q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Omega_{R_{h}}\left(x_{h}\right)}\right)- \\
& \left.T\left(\mathcal{D} v_{h} \varepsilon_{h}+\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}}, q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right)\right): \mathcal{D} \psi \frac{\left|\operatorname{det} \nabla F_{h}(y)\right|}{R_{h}^{d}}, \\
I_{3}= & \int_{B_{1}^{+}(0)}-\frac{1}{\varepsilon_{h}}\left(q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right) \operatorname{div} \psi \frac{\left|\operatorname{det} \nabla F_{h}(y)\right|}{R_{h}^{d}}, \\
I_{4}= & -\int_{B_{1}^{+}(0)} f_{h} \psi \frac{\left|\operatorname{det} \nabla F_{h}(y)\right|}{R_{h}^{d}}, \\
I_{5}= & \int_{B_{1}^{+}(0)} \frac{1}{\varepsilon_{h}}\left(v_{h} R_{h} \varepsilon_{h}+\left(\nabla u_{h}\right)_{\Gamma_{h}}(0, \ldots, 0,1) R_{h}\right) \otimes \\
& \otimes\left(v_{h} R_{h} \varepsilon_{h}+\left(\nabla u_{h}\right)_{\Gamma_{h}}(0, \ldots, 0,1) R_{h}\right) \mathcal{D} \psi \frac{\left|\operatorname{det} \nabla F_{h}(y)\right|}{R_{h}^{d}}, \\
I_{6}= & \frac{R_{h}^{2}}{\varepsilon_{h}} \int_{B_{1}^{+}(0)}\left(\left(p_{h}\left(F_{h}(y)\right)\right) \operatorname{Tr}\left(\nabla \varphi\left(F_{h}(y)\right) \omega\right)+\right. \\
& +u_{h}\left(F_{h}(y)\right) \otimes u_{h}\left(F_{h}(y)\right) \mathcal{D} \psi(y) \omega \\
& \left.+T\left(\mathcal{D} u_{h}\left(F_{h}(y)\right), p_{h}\left(F_{h}(y)\right)\right) \mathcal{D} \psi(y) \omega\right) \frac{\left|\operatorname{det} \nabla F_{h}(y)\right|}{R_{h}^{d}} .
\end{aligned}
$$

Since $\operatorname{div}_{y} u_{h}=0$, we have

$$
\operatorname{Tr}\left(\nabla_{y} u_{h}\left(F_{h}(y)\right)\left(\nabla F_{h}(y)\right)^{-1}\right)=0
$$

and identity $F_{h}(y)=\frac{1}{R_{h}}\left(I+R_{h} \omega\right)$ implies

$$
\operatorname{div}_{y} u_{h}\left(F_{h}(y)\right)=-R_{h} \omega \nabla_{y} u_{h}\left(F_{h}(y)\right) .
$$

By the zero-Dirichlet boundary condition, $\left.\frac{\partial u_{h i}\left(F_{h}(y)\right)}{\partial y_{j}}\right|_{\left(y^{\prime}, 0\right)}=0$ for all $y^{\prime} \in B_{1}^{d-1}$, $i \in\{1, \ldots, d\}$ and $j \in\{1, \ldots, d-1\}$. Thus, for every $y \in B_{1}^{d-1}$,

$$
\left|\nabla_{y} u_{h d}\left(F_{h}(y)\right)\right| \leq c R_{h}\left|\nabla_{y} u_{h}\left(F_{h}(y)\right)\right|
$$

Thus, for $\left(\frac{\partial u_{h d}}{\partial x_{d}}\right)_{\Gamma_{h}}$, we have

$$
\begin{aligned}
\int_{\Gamma_{h}}\left|\frac{\partial u_{h d}}{\partial x_{d}}(x)\right| d x & =\int_{B_{1}^{d-1}}\left|\frac{\partial u_{h d}}{\partial x_{d}}\left(F_{h}(y)\right)\right|\left|\operatorname{det} \nabla F_{h}(y)\right| d y \\
& \leq c \int_{B_{1}^{d-1}}\left|\nabla_{y} u_{h d}\left(F_{h}(y)\right)\left(\nabla F_{h}\right)^{-1}\right|\left|\operatorname{det} \nabla F_{h}(y)\right| d y \\
& \leq c R_{h}\left\|\left(\nabla F_{h}\right)^{-1}\right\|_{\infty} \int_{B_{1}^{d-1}}\left|\nabla_{y} u_{h}\left(F_{h}(y)\right)\right|\left|\operatorname{det} \nabla F_{h}(y)\right| d y \\
& =c R_{h}\left\|\left(\nabla F_{h}\right)^{-1}\right\|_{\infty} \int_{B_{1}^{d-1}}\left|\nabla_{x} u_{h}\left(F_{h}(y)\right) \nabla F_{h}\right|\left|\operatorname{det} \nabla F_{h}(y)\right| d y \\
& \leq c R_{h}\left\|\left(\nabla F_{h}\right)^{-1}\right\|_{\infty}\left\|\nabla F_{h}\right\|_{\infty} \int_{\Gamma_{h}}\left|\nabla_{x} u_{h}\right| d x \leq c R_{h}\left|\Gamma_{h}\right| M .
\end{aligned}
$$

Therefore $\frac{1}{\varepsilon_{h}}\left|\left(\frac{\partial u_{h d}}{\partial x_{d}}\right)_{\Gamma_{h}}\right| \leq c \frac{R_{h}}{\varepsilon_{h}} M \rightarrow 0$. Also $\frac{R_{h}}{\varepsilon_{h}} \omega \operatorname{div} u_{h} \rightarrow 0$ and thus $\operatorname{div} v_{h}$ tends to zero.
The term $\frac{\left|\operatorname{det} \nabla F_{h}(y)\right|}{R_{h}^{d}}$ tends to 1 in L^{∞} as h goes to zero. Thus we omit it in further computations. The term I_{6} tends to zero as the integral is bounded and $\frac{R_{h}}{\varepsilon_{h}} \rightarrow 0$. Similarly, also the terms I_{5} and I_{2} goes to zero. The term I_{4} can be handled as

$$
\begin{aligned}
\left|I_{4}\right|=\frac{1}{\varepsilon_{h} R_{h}^{d-1}} & \left|\int_{\Omega_{h}} f \psi\right| \leq \frac{R_{h}}{\varepsilon_{h}} R_{h}^{-d} \int_{\Omega_{h}}|f \psi| \leq \\
& \leq \frac{R_{h}^{(\mu+1-d)}}{\varepsilon_{h}} R^{-\mu}\|f\|_{2, \Omega_{h}}\|\psi\|_{2, \Omega_{h}} \leq R^{\mu+1-d-\alpha} \frac{R^{\alpha}}{\varepsilon_{h}}\|f\|_{2, \mu}\|\psi\|_{2} \rightarrow 0
\end{aligned}
$$

We rewrite the term I_{1} as follows

$$
\begin{aligned}
I_{1}= & \frac{1}{\varepsilon_{h}}\left(\int_{B_{1}^{+}(0)} T\left(\mathcal{D} v_{h} \varepsilon_{h}+\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}}, q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right): \mathcal{D} \psi\right. \\
& -\underbrace{\int_{B_{1}^{+}(0)} T\left(\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}},\left(p_{h}\right)_{\Gamma_{h}}\right): \mathcal{D} \psi}_{=0}) \\
= & \frac{1}{\varepsilon} \int_{B_{1}^{+}(0)} \int_{0}^{1} \frac{\partial}{\partial s} T\left(s \mathcal{D} v_{h} \varepsilon_{h}+\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}}, s q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right) d s \\
= & \int_{B_{1}^{+}(0)}\left(\int_{0}^{1} \frac{\partial T\left(s \mathcal{D} v_{h} \varepsilon_{h}+\left(D^{*} u_{h}\right)_{\Gamma_{h}}, s q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right)}{\partial D} d s\right) \mathcal{D} v_{h}: \mathcal{D} \psi(y) d y+ \\
& +\int_{B_{1}^{+}(0)}\left(\int_{0}^{1} \frac{\partial T\left(s \mathcal{D} v_{h} \varepsilon_{h}+\left(D^{*} u_{h}\right)_{\Gamma_{h}}, s q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right)}{\partial p} d s\right) q_{h} \mathcal{D} \psi(y) d y .
\end{aligned}
$$

Thus

$$
I_{1} \rightarrow \int_{B_{1}^{+}(0)} A \mathcal{D} v: \mathcal{D} \psi(y) d y+\int_{B_{1}^{+}(0)} B q \mathcal{D} \psi(y) d y
$$

where A and B are defined as

$$
\begin{aligned}
& A \stackrel{\text { def }}{=} \frac{\partial T(a, e)}{\partial D} \\
& B \stackrel{\text { def }}{=} \frac{\partial T(a, e)}{\partial p}
\end{aligned}
$$

From the fact that $\int_{B_{1}^{+}(0)}\left(p_{h}\right)_{\Gamma_{h}} \operatorname{div} \psi=0$ for all $\psi \in W_{0}^{1,2}\left(B_{1}^{+}(0), \mathbb{R}^{d}\right)$, we derive that

$$
\begin{aligned}
I_{3} & =\int_{B_{1}^{+}(0)}-\frac{1}{\varepsilon_{h}}\left(q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right) \operatorname{div} \psi \\
& =\int_{B_{1}^{+}(0)} q_{h} \operatorname{div} \psi \rightarrow \int_{B_{1}^{+}(0)} q \operatorname{div} \psi
\end{aligned}
$$

We may conclude that v and q solve

$$
\begin{align*}
-\operatorname{div} A \mathcal{D} v+(I-B) \nabla q & =0 \text { in } B_{1}^{+}(0) \\
\operatorname{div} v & =0 \text { in } B_{1}^{+}(0) \tag{4.4.6}
\end{align*}
$$

and by Lemma 25

$$
\begin{equation*}
E^{v, q}(x, \tau R) \leq C \tau^{\alpha} E^{v, q}(x, R) \tag{4.4.7}
\end{equation*}
$$

Our goal is to prove that

$$
\begin{align*}
2 C^{*} \tau^{\alpha}<E^{v_{h}, q_{h}}(0, \tau) & \rightarrow E^{v, q}(0, \tau) \leq \\
\leq & C^{*} \tau^{\alpha} E^{v, q}(0,1) \leq C^{*} \tau^{\alpha} \liminf _{h \rightarrow 0} E^{v_{h}, q_{h}}(0,1) \leq C^{*} \tau^{\alpha} \tag{4.4.8}
\end{align*}
$$

which is a contradiction. The first inequality comes from (4.4.4). The third inequality is true due to (4.4.7). The weak lower semicontinuity of norm gives the forth inequality and the fifth inequality is trivial. It remains to show that

$$
E^{v_{h}, q_{h}}(0, \tau) \rightarrow E^{v, q}(0, \tau)
$$

We do it by proving that $\left(v_{h}, q_{h}\right) \rightarrow(v, q)$ strongly in $W^{2,2}\left(B_{\tau}^{+}(0)\right) \times W^{1,2}\left(B_{\tau}^{+}(0)\right)$. Throughout the rest of this proof, we neglect the term $\frac{\left|\operatorname{det} \nabla F_{h}\right|}{R_{h}^{d}}$ for simplicity. We differentiate (4.4.5) with respect to $x_{i}, i \in\{1, \ldots, d-1\}$. Set

$$
\begin{aligned}
A_{h} & =\frac{\partial T}{\partial D}\left(\mathcal{D} v_{h} \varepsilon_{h}+\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}}, q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right)=\frac{\partial T}{\partial D}\left(a_{h}, e_{h}\right) \\
B_{h} & =\frac{\partial T}{\partial p}\left(\mathcal{D} v_{h} \varepsilon_{h}+\left(\mathcal{D}^{*} u_{h}\right)_{\Gamma_{h}}, q_{h} \varepsilon_{h}+\left(p_{h}\right)_{\Gamma_{h}}\right)=\frac{\partial T}{\partial p}\left(a_{h}, e_{h}\right) .
\end{aligned}
$$

Further, we set $w_{h}=\frac{\partial v_{h}}{\partial x_{i}}$ and $r_{h}=\frac{\partial q_{h}}{\partial x_{i}}$. The functions w_{h} and r_{h} satisfy

$$
\begin{align*}
-\operatorname{div} A_{h} \mathcal{D} w_{h}+\operatorname{div}\left(\left(I-B_{h}\right) \cdot r_{h}\right) & =S_{h} \\
\operatorname{div} w_{h} & =g_{h} \\
\left.w_{h}\right|_{B_{1}^{d-1}} & =0 \tag{4.4.9}
\end{align*}
$$

where $S_{h} \in W^{-1,2}$ is defined as

$$
\begin{gather*}
{\left[S_{h}, \varphi\right]_{W^{-1,2}}=R_{h}^{2} \int_{B_{1}^{+}(0)} 2\left(w_{h} \otimes\left(v_{h} \varepsilon_{h}+\left(\nabla u_{h}\right)_{\Gamma_{h}}(0, \ldots, 0,1)\right)\right) \mathcal{D} \varphi+\int_{B_{1}^{+}(0)} f_{h} \frac{\partial \varphi}{\partial x_{i}}} \\
+\int_{B_{1}^{+}(0)}\left(\frac{\partial T}{\partial \mathcal{D}}\left(a_{h}+R_{h}\left(\nabla u_{h} \omega+\left(\nabla u_{h} \omega\right)^{T}\right), e_{h}\right)-\frac{\partial T}{\partial \mathcal{D}}\left(a_{h}, e_{h}\right)\right) \mathcal{D} \frac{\partial v_{h}}{\partial x_{i}} \mathcal{D} \varphi \\
\quad+\int_{B_{1}^{+}(0)}\left(\frac{\partial T}{\partial p}\left(a_{h}+R_{h}\left(\nabla u_{h} \omega+\left(\nabla u_{h} \omega\right)^{T}\right), e_{h}\right)-\frac{\partial T}{\partial p}\left(a_{h}, e_{h}\right)\right) \frac{\partial q_{h}}{\partial x_{i}} \mathcal{D} \varphi \\
\quad+\int_{B_{1}^{+}(0)} \frac{\partial T}{\partial \mathcal{D}}\left(a_{h}+R_{h}\left(\nabla u_{h} \omega+\left(\nabla u_{h} \omega\right)^{T}\right), e_{h}\right) \frac{\partial}{\partial x_{i}} \nabla u_{h}(F(h)) R_{h} \omega \mathcal{D} \varphi \\
\quad+\int_{B_{1}^{+}(0)} \frac{\partial T}{\partial \mathcal{D}}\left(a_{h}+R_{h}\left(\nabla u_{h} \omega+\left(\nabla u_{h} \omega\right)^{T}\right), e_{h}\right) \nabla u_{h}\left(F_{h}\right) \frac{\partial}{\partial x_{i}} \nabla F_{h} \mathcal{D} \varphi \\
+\frac{R_{h}}{\varepsilon_{h}} \int_{B_{1}^{+}(0)}\left[\frac{\partial}{\partial x_{i}}\left(u_{h}\left(F_{h}\right) \otimes u_{h}\left(F_{h}\right)\right) \mathcal{D} \varphi R_{h} \omega+u_{h}\left(F_{h}\right) \otimes u_{h}\left(F_{h}\right) \mathcal{D} \varphi \frac{\partial}{\partial x_{i}} \nabla F_{h}\right. \\
+\left(\frac{\partial T}{\partial \mathcal{D}}\left(\mathcal{D} u_{h}\left(F_{h}\right), p_{h}\left(F_{h}\right)\right) \mathcal{D} \frac{\partial}{\partial x_{i}} u_{h}\left(F_{h}\right)+\frac{\partial T}{\partial p}\left(\mathcal{D} u_{h}\left(F_{h}\right), p_{h}\left(F_{h}\right)\right) \frac{\partial}{\partial x_{i}} p_{h}\left(F_{h}\right)\right) \mathcal{D} \varphi R_{h} \omega \\
\left.+T\left(\mathcal{D} u_{h}\left(F_{h}\right), p_{h}\left(F_{h}\right)\right) \mathcal{D} \varphi \frac{\partial}{\partial x_{i}} \nabla F_{h}\right] \\
=J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7} . \tag{4.4.10}
\end{gather*}
$$

Further, g_{h} is defined as follows

$$
\begin{aligned}
& g_{h}= \\
& \frac{1}{\varepsilon_{h} R_{h}} \operatorname{Tr}\left(\nabla^{2} u_{h}\left(F_{h}(x)\right)\left(\frac{\partial F_{h}(x)}{\partial x_{i}}-R_{h} I\right) \nabla F_{h}(x)+\nabla u_{h}\left(F_{h}(x)\right) \frac{\partial}{\partial x_{i}} \nabla F_{h}(x)\right)
\end{aligned}
$$

From (4.4.9) and $\frac{\partial}{\partial x_{i}}(4.4 .6)$ we deduce

$$
\begin{align*}
-\operatorname{div} A \mathcal{D}\left(w_{h}-w\right)+(I-B) \nabla\left(r_{h}-r\right)= & S_{h}+\operatorname{div}\left(A_{h}-A\right) \mathcal{D} w_{h} \\
& +\operatorname{div}\left(B_{h}-B\right) r_{h} \\
\operatorname{div}\left(w_{h}-w\right)= & g_{h} . \tag{4.4.11}
\end{align*}
$$

Let there be a real smooth cut-off function $\theta \geq 0, \theta= \begin{cases}1 & \text { for } x \in B_{\tau}^{+}(0) \\ 0 & \text { for } x \in \mathbb{R}^{d} \backslash B_{1}^{+}(0)\end{cases}$ Set $\tilde{w}_{h}=\left(w_{h}-w\right) \theta$ and $\tilde{r}_{h}=\left(r_{h}-r\right) \theta$. We multiply system (4.4.11) by θ to get

$$
\begin{align*}
-\operatorname{div} A \mathcal{D} \tilde{w}_{h}+(I-B) \nabla \tilde{r}_{h}= & \theta S_{h}+\theta \operatorname{div}\left(A_{h}-A\right) \mathcal{D} w_{h} \\
& +\theta \operatorname{div}\left(B_{h}-B\right) r_{h}+(I-B)(\nabla \theta)\left(r_{h}-r\right) \\
& -\nabla \theta A \mathcal{D}\left(w_{h}-w\right)-\operatorname{div} A(\nabla \theta)\left(w_{h}-w\right) \\
\operatorname{div} \tilde{w}_{h}= & \theta g_{h}+\nabla \theta\left(w_{h}-w\right) \\
\left.\tilde{w}_{h}\right|_{\partial B_{1}^{+}}= & 0 . \tag{4.4.12}
\end{align*}
$$

We denote the left hand side of (4.4.12) by \tilde{S}_{h}. We test equation (4.4.12) by \tilde{w}_{h}. We get

$$
\begin{array}{r}
c_{1}\left\|\mathcal{D} \tilde{w}_{h}\right\|_{2}^{2} \leq A \int_{B_{1}^{+}} \mathcal{D} \tilde{w}_{h} \mathcal{D} \tilde{w}_{h}=\int_{B_{1}^{+}} \tilde{r}_{h} \operatorname{div} \tilde{w}_{h}+\int_{B_{1}^{+}} B \tilde{r}_{h} \mathcal{D} \tilde{w}_{h}+\left[\tilde{S}_{h}, \tilde{w}_{h}\right]_{-1,2} \\
\leq\left\|\tilde{r}_{h}\right\|_{2}\left\|\operatorname{div} \tilde{w}_{h}\right\|_{2}+c_{3}\left\|\tilde{r}_{h}\right\|_{2}\left\|\mathcal{D} \tilde{w}_{h}\right\|_{2} .
\end{array}
$$

Since $\left\|\operatorname{div} \tilde{w}_{h}\right\|_{2}=\left\|\theta g_{h}+\nabla \theta\left(w_{h}-w\right)\right\|_{2}=o(h) \rightarrow 0$, we get, using Young inequality

$$
\begin{equation*}
c_{1}\left\|\mathcal{D} \tilde{w}_{h}\right\|_{2}^{2} \leq \varepsilon\left(\left\|\mathcal{D} \tilde{w}_{h}\right\|_{2}^{2}+\left\|\tilde{r}_{h}\right\|_{2}^{2}\right)+c_{3}\left\|\tilde{r}_{h}\right\|_{2}\left\|\mathcal{D} \tilde{w}_{h}\right\|_{2}+c\left[\tilde{S}_{h}, w_{h}\right]_{-1,2}+o(h) . \tag{4.4.13}
\end{equation*}
$$

Further, we test equation (4.4.12) by φ_{h} which solves

$$
\begin{aligned}
\operatorname{div} \varphi_{h} & =\tilde{r}_{h}-\left(\tilde{r}_{h}\right)_{B_{1}^{+}} \\
\left.\varphi_{h}\right|_{\partial B_{1}^{+}} & =0
\end{aligned}
$$

We get

$$
\begin{aligned}
\left\|\nabla \tilde{r}_{h}\right\|_{2}^{2}=\int_{B_{1}^{+}} A \mathcal{D} \tilde{w}_{h} \mathcal{D} \varphi_{h} & +\int_{B_{1}^{+}} B \tilde{r}_{h} \mathcal{D} \varphi_{h}+\left[\tilde{S}_{h}, \varphi_{h}\right]_{-1,2} \\
\leq & c_{2} c_{7}\left\|\mathcal{D} \tilde{w}_{h}\right\|_{2}\left\|\tilde{r}_{h}\right\|_{2}+\left(c_{3} c_{7}+\varepsilon\right)\left\|\tilde{r}_{h}\right\|_{2}^{2}+\left[\tilde{S}_{h}, \varphi_{h}\right]_{-1,2}
\end{aligned}
$$

We use Young inequalities in the same way as in (4.2.10) to conlude

$$
\left\|\mathcal{D} \tilde{w}_{h}\right\|_{2}^{2}+\left\|\tilde{r}_{h}\right\|_{2}^{2} \leq c\left(\left[\tilde{S}_{h}, \tilde{w}_{h}\right]_{-1,2}+\left[\tilde{S}_{h}, \varphi_{h}\right]_{-1,2}\right)+o(h)
$$

We show that the terms $\left[\tilde{S}_{h}, \tilde{w}_{h}\right]_{-1,2}$ and $\left[\tilde{S}_{h}, \varphi_{h}\right]_{-1,2}$ tend to zero. In what follows, we estimate a term $\left[\tilde{S}_{h}, \varphi_{h}\right]$ since a method is the same even for the second term. The terms J_{1}, \ldots, J_{7} come from (4.4.10) with $\varphi=\varphi_{h}$.

$$
\begin{aligned}
& {\left[\tilde{S}_{h}, \varphi\right]_{-1,2}=J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7}+\int_{B_{1}^{+}} \nabla \theta\left(A_{h}-A\right) \mathcal{D} w_{h} \varphi_{h}} \\
& +\int_{B_{1}^{+}} \theta\left(A_{h}-A\right) \mathcal{D} w_{h} \mathcal{D} \varphi_{h}+\int_{B_{1}^{+}} \nabla \theta\left(B_{h}-B\right) r_{h} \varphi_{h}+\int_{B_{1}^{+}} \theta\left(B_{h}-B\right) r_{h} \nabla \varphi_{h} \\
& \quad-\int_{B_{1}^{+}} \nabla \theta A \mathcal{D}\left(w_{h}-w\right) \varphi_{h}-\int_{B_{1}^{+}} A \nabla \theta\left(w_{h}-w\right) \mathcal{D} \varphi_{h} \\
& \quad=J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7}+J_{8}+J_{9}+J_{10}+J_{11}-J_{12}-J_{13}
\end{aligned}
$$

Since $w_{h} \rightarrow w$ and $\varphi_{h} \rightarrow 0$ strongly in $L^{2}\left(\Omega, \mathbb{R}^{d}\right)$, it can be derived that J_{12} and J_{13} tend to zero.
Further, $A_{h} \rightarrow A$ almost everywhere, $B_{h} \rightarrow B$ a.e., $\frac{\partial T}{\partial D}\left(a_{h}+R_{h}\left(\nabla u_{h} \omega+\left(\nabla u_{h} \omega\right)^{T}\right), e_{h}\right) \rightarrow$ $\frac{\partial T}{\partial D}\left(a_{h}, e_{h}\right)$ a.e. and also $\frac{\partial T}{\partial p}\left(a_{h}+R_{h}\left(\nabla u_{h} \omega+\left(\nabla u_{h} \omega\right)^{T}\right), e_{h}\right) \rightarrow \frac{\partial T}{\partial p}\left(a_{h}, e_{h}\right)$ almost
everywhere. Thus, terms $J_{3}, J_{4}, J_{8}, J_{9}, J_{10}$ and J_{11} go to zero.
Term J_{2} can be estimated similarly as term I_{4}.
Because w_{h} and v_{h} are both bounded in L^{4}, we get $J_{1} \rightarrow 0$ due to $R_{h} \rightarrow 0$.
Further, $\frac{R_{h}}{\varepsilon_{h}} \rightarrow 0$, thus $J_{7} \rightarrow 0$.
The fact $R_{h} \rightarrow 0$ also implies $J_{5} \rightarrow 0$ and, since $\left\|\frac{\partial}{\partial x_{i}} \nabla F_{h}\right\|_{\infty} \leq R^{2} c$, we easily get $J_{6} \rightarrow 0$.
Thus we have $\left(\frac{\partial v_{h}}{\partial x_{i}}, \frac{\partial p}{\partial x_{i}}\right) \rightarrow\left(\frac{\partial v}{\partial x_{i}}, \frac{\partial p}{\partial x_{i}}\right)$ strongly in $W^{1,2}\left(B_{\tau}^{+}\right) \times L^{2}\left(B_{\tau}^{+}\right)$for all $i \in\{1, \ldots, d-1\}$. The convergence of derivations with respect to the normal vector can be done similarly as at the end of proof of Lemma 41.

45 Lemma. Let assumptions (1.1.3) be satisfied with $c_{3}<\frac{c_{1}}{\left(c_{1}+c_{7} c_{2} c_{7}\right.}$ and let $f \in L^{2, \mu}(\Omega, \mathbb{R})$ where $\mu>d-1+\alpha$. There exists R_{0} such that for all $M>0$ and $\gamma \in(0, \alpha)$ there exists $\tau \in(0,1)$ and $\varepsilon>0$ for which the following implication holds.
Let $(u, p) \in W^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega, \mathbb{R})$ be a weak solution of the system (1.1.2) and let for all $R \in\left(0, R_{0}\right)$ and for all $x_{0} \in \partial \Omega$ the inequalities

$$
E^{u, p}\left(x_{0}, R\right)<\varepsilon,(|\nabla u|)_{\Gamma_{x_{0}, R}}+\left|(p)_{\Gamma_{x_{0}, R}}\right| \leq \frac{M}{4}
$$

hold. Then

$$
E^{u, p}\left(x_{0}, \tau^{k} R\right) \leq \frac{1}{2^{k}} \tau^{k \gamma} E^{u, p}\left(x_{0}, R\right)
$$

for all $k \in \mathbb{N}$

Proof. According to Lemma 22, we get for $0<R<R^{\prime}$

$$
\begin{aligned}
\mid(p)_{\Gamma_{x, R}} & -(p)_{\Gamma_{x, R^{\prime}}}=\frac{c}{R^{\frac{d}{2}}}\left\|(p)_{\Gamma_{x, R}}-(p)_{\Gamma_{x, R^{\prime}}}\right\|_{2, \Omega_{x, R}} \\
& \leq c R^{\frac{-d}{2}}\left(\left\|(p)_{\Gamma_{x, R}}-p\right\|_{2, \Omega_{x, R}}+\left\|p-(p)_{\Gamma_{x, R^{\prime}}}\right\|_{2, \Omega_{x, R^{\prime}}}\right) \\
& \leq c_{14} R^{1-\frac{d}{2}}\|\nabla p\|_{2, \Omega_{x, R}}+c_{15} R^{\prime} R^{-\frac{d}{2}}\|\nabla p\|_{2, \Omega_{x, R^{\prime}}} .
\end{aligned}
$$

Fix τ such that $2 C^{*} \tau^{\alpha-\gamma}<\frac{1}{2}$ and $\tau<\frac{1}{2}$. According to Lemma 44 there exists ε_{1} such that

$$
E^{u, p}\left(x_{0}, \tau R\right) \leq 2 C^{*} \tau^{\alpha} E^{u, p}\left(x_{0}, R\right)
$$

whenever

$$
E^{u, p}\left(x_{0}, R\right)<\varepsilon_{1} .
$$

We suppose that $E^{u, p}\left(x_{0}, R\right)<\varepsilon_{2}$ where ε_{2} is such that $\left(c_{14}+2 c_{15} \tau^{-\frac{d}{2}}\right) \varepsilon_{2}<\frac{M}{4}$. According to the Lemma 44, the conclusion is true for $k=0$.

Let the conclusion be true for some $k \in \mathbb{N}$ and let $\left|(p)_{\Gamma_{x_{0}, \tau^{i-1} R_{0}}}\right|<\frac{M}{2}$ for all $i \leq k-1$. We have

$$
E^{u, p}\left(x_{0}, \tau^{k} R_{0}\right) \leq \frac{1}{2^{k}} \tau^{k \gamma} E^{u, p}\left(x_{0}, R_{0}\right)
$$

We get $E^{u, p}\left(x_{0}, \tau^{k} R_{0}\right)<\frac{1}{2^{k}} \min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ due to the assumptions. The function p fulfills

$$
\begin{aligned}
& \left\lvert\,(p)_{\Gamma_{x_{0}, \tau^{k} R_{0}}\left|\leq\left|(p)_{\Gamma_{x_{0}, \tau^{k} R_{0}}}-(p)_{\Gamma_{x_{0}, \tau^{k-1} R_{0}}}\right|+\left|(p)_{\Gamma_{x_{0}, \tau^{k-1} R_{0}}}\right|\right.} \begin{aligned}
& c_{14}\left(\tau^{k} R_{0}\right)^{1-\frac{d}{2}}\|\nabla p\|_{2, \Omega_{x_{0}, \tau^{k} R_{0}}}+c_{15} \tau^{-\frac{d}{2}}\left(\tau^{k-1} R_{0}\right)^{1-\frac{d}{2}}\|\nabla p\|_{2, \Omega_{x_{0}, \tau^{k-1} R_{0}}} \\
& +(|p|)_{\Gamma_{x_{0}, \tau^{k-1} R_{0}}}
\end{aligned} .\right.
\end{aligned}
$$

The estimate $\left(\tau^{k} R_{0}\right)^{1-\frac{d}{2}}\|\nabla p\|_{2, \Omega_{x_{0}, \tau^{k} R_{0}}} \leq E^{u, p}\left(x_{0}, \tau^{k} R_{0}\right) \leq \frac{1}{2^{k}} \varepsilon_{2}$ implies

$$
\left|(p)_{\Gamma_{x_{0}, r^{k} R_{0}}}\right| \leq \frac{1}{2^{k}}\left(c_{14}+2 c_{15} \tau^{\frac{-d}{2}}\right) \varepsilon_{2}+\left|(p)_{\Gamma_{x_{0}, r^{k-1}}}\right| .
$$

Therefore

$$
\left|(p)_{\Gamma_{x_{0}, \tau^{k} R_{0}}}\right| \leq \frac{M}{4} \sum_{i=1}^{k} \frac{1}{2^{i}}+(p)_{\Gamma_{x_{0}, R_{0}}} \leq \frac{M}{2}
$$

The same conclusion can be drawn for $(|\nabla u|)_{\Gamma_{x_{0}, \tau^{k} R_{0}}}$. Thus $(|\nabla u|)_{\Gamma_{x_{0}, \tau^{k} R_{0}}}+$ $\left|(p)_{\Gamma_{x_{0}, \tau^{k} R_{0}}}\right| \leq M$ and we can use Key Lemma to get

$$
E^{u, p}\left(x, \tau^{k+1} R_{0}\right) \leq 2 C^{*} \tau^{\alpha-\gamma} \tau^{\gamma} E^{u, p}\left(x, \tau^{k} R_{0}\right) \leq \frac{\tau^{\gamma}}{2} \frac{\tau^{k \gamma}}{2^{k}} E^{u, p}\left(x, R_{0}\right)
$$

For $(u, p) \in W^{2,2}(\Omega) \times W^{1,2}(\Omega), x \in \bar{\Omega}$ and $0<R$ we define quantities $\mathcal{E}_{0}^{u, p}(x, R)$ and $\mathcal{E}^{u, p}(x, R)$ as follows

$$
\begin{aligned}
& \mathcal{E}_{0}^{u, p}(x, R) \stackrel{\text { def }}{=} R^{\frac{2-d}{2}}\left\|\nabla^{2} u\right\|_{2, B_{R}(x) \cap \Omega}+R^{\frac{2-d}{2}}\|\nabla p\|_{2, B_{R}(x) \cap \Omega}, \\
& \mathcal{E}^{u, p}(x, R) \stackrel{\text { def }}{=} \mathcal{E}_{0}^{u, p}(x, R)+R^{\alpha}
\end{aligned}
$$

Inclusions $\Omega_{x, \frac{R}{2}} \subset\left(B_{R}(x) \cap \Omega\right) \subset \Omega_{x, 2 R}$ are valid for R less or equal to certain R_{0} hence it can be seen that there exists a constant c, which depends only on Ω, such that

$$
\frac{1}{c} E^{u, p}(x, R) \leq \mathcal{E}^{u, p}(x, R) \leq c E^{u, p}(x, R)
$$

for all $x \in \Gamma$.
Lemma 3.4 in [24] is a variant of the Key lemma for interior and can be read as follows.

46 Lemma. Let assumption (1.1.3) be satisfied with $c_{3}<\frac{c_{1}}{\left(c_{1}+c_{7} c_{2}\right) c_{7}}$ and let $f \in$ $L^{2, \mu}$ where $\mu>d-1+\alpha$. There exists $R_{0}>0$ such that for all $M>0$ and $\tau \in(0,1)$ there exists an $\varepsilon>0$ for which the following implication holds.
Let $(u, p) \in W^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega, \mathbb{R})$ be a weak solution of the system (1.1.2) and let for any $x_{0} \in \Omega$ and $R \in\left(0, R_{0}\right)$ the inequalities

$$
\mathcal{E}^{u, p}\left(x_{0}, R\right)<\varepsilon,\left|(u)_{B_{R}\left(x_{0}\right)}\right|+\left|(\mathcal{D} u)_{B_{R}\left(x_{0}\right)}\right|+\left|(p)_{B_{R}\left(x_{0}\right)}\right| \leq M
$$

hold. Then

$$
\mathcal{E}^{u, p}\left(x_{0}, \tau R\right) \leq 2 C^{*} \tau^{\alpha} \mathcal{E}^{u, p}\left(x_{0}, R\right)
$$

Following lemma can be obtained in similar way as Lemma 45.
47 Lemma. Let assumptions 1.1 .3 be satisfied with $c_{3}<\frac{c_{1}}{\left(c_{1}+c_{7} c_{2}\right) c_{7}}$ and let $f \in$ $L^{2, \mu}$ where $\mu>d-1+\alpha$. There exists $R_{0}>0$ such that for all $M>0$ and $\gamma \in(0, \alpha)$ there exists $\tau \in(0,1)$ and $\varepsilon>0$ for which the following implication hold:
Let $(u, p) \in W^{1,2}\left(\Omega, \mathbb{R}^{d}\right) \times L^{2}(\Omega, \mathbb{R})$ be a weak solution of the system (1.1.2) and let for any $x_{0} \in \Omega$ and $R \in\left(0, R_{0}\right)$ the inequalities

$$
\mathcal{E}^{u, p}\left(x_{0}, R\right)<\varepsilon,\left|(u)_{B_{R}\left(x_{0}\right)}\right|+\left|(\mathcal{D} u)_{B_{R}\left(x_{0}\right)}\right|+\left|(p)_{B_{R}\left(x_{0}\right)}\right| \leq \frac{M}{4}
$$

hold. Then

$$
\mathcal{E}^{u, p}\left(x_{0}, \tau^{k} R\right) \leq \frac{1}{2^{k}} \tau^{k \gamma} \mathcal{E}^{u, p}\left(x_{0}, R\right)
$$

for all $k \in \mathbb{N}$
48 Corollary. Let (u, p) be a weak solution of (1.1.2) and let (1.1.3) be satisfied with $c_{3}=\frac{c_{1}}{\left(c_{1}+c_{7} c_{2}\right) c_{7}}$. If $x_{0} \in \partial \Omega$ fulfills

$$
\begin{array}{r}
\liminf _{R \rightarrow 0} E^{v, p}\left(x_{0}, R\right)=0 \\
\limsup _{R \rightarrow 0}\left|(p)_{\Gamma_{x_{0}, R}}\right|+(|\nabla u|)_{\Gamma_{x_{0}, R}}<\infty \\
\limsup _{R \rightarrow 0}\left|(p)_{\Omega_{x_{0} r},}\right|+\left|(\mathcal{D} u)_{\Omega_{x_{0}, R}}\right|+\left|(u)_{\Omega_{x_{0}, R}}\right|<\infty
\end{array}
$$

then $\mathcal{D} u$ and p are Hölder continuous on some neighborhood of x_{0}.
Proof. Let $x_{0} \in \Gamma$ satisfy the assumptions of the corollary. Our aim is to prove that there exists constant c_{16} and $\gamma>0$ such that for all $x \in \Omega_{x_{0}, \frac{R}{2}}$, where $R>0$ is sufficiently small, and for all $\rho \leq \frac{R}{2}$ it holds that

$$
\begin{equation*}
\mathcal{E}^{u, p}(x, \rho) \leq c_{16} \rho^{\gamma} . \tag{4.4.14}
\end{equation*}
$$

This condition directly implies that $\left(\nabla^{2} u, \nabla p\right) \in \mathcal{L}^{2, d-2+\gamma}\left(\Omega, \mathbb{R}^{d^{2}}\right) \times \mathcal{L}^{2, d-2+\gamma}(\Omega, \mathbb{R})$ and thus ∇u and p are Hölder continuous.
It holds that $\lim \inf _{R \rightarrow 0} E^{u, p}\left(x_{0}, R\right)=0 \Rightarrow \forall c>0 ; \forall R_{0}>0 ; \exists R<R_{0} ; E^{u, p}\left(x_{0}, R\right)<$ c and thus, according to the continuity of integral, there exists $R_{1} \in\left(0, \frac{R_{0}}{4}\right)$, a neighborhood $\Gamma_{x_{0}, R_{1}}$ and a constant $c_{17}>0$ such that for all $x \in \Gamma_{x_{0}, R_{1}}$ it holds that $E^{u, p}\left(x_{0}, R_{1}\right) \leq c_{17}$. Further, as $\lim \inf _{R \rightarrow 0} \mathcal{E}^{u, p}\left(x_{0}, R\right)=0$, we assume, without loss of generality, that $\mathcal{E}^{u, p}\left(x, R_{1}\right) \leq c_{17}$ for all $x \in \Omega_{x_{0}, R_{1}}$.
Let $\rho<\frac{R_{1}}{3}$. We suppose that $x \in \Gamma_{x_{0}, \frac{R_{1}}{3}}$. We find $k \in \mathbb{N}$ such that $\tau^{k+1} R_{1}<\rho \leq$ $\tau^{k} R_{1}$ where τ comes from Lemma 45 . It can be easily seen that

$$
E^{u, p}(x, \rho) \leq \max \left\{1, \tau^{\frac{2-d}{2}}\right\} E^{u, p}\left(x, \tau^{k} R_{1}\right)
$$

Thus, according to Lemma 45, there exists constant c_{18} such that

$$
\begin{align*}
c \mathcal{E}^{u, p}(x, \rho) \leq E^{u, p}(x, \rho) \leq c \tau^{k \gamma} E^{u, p} & \left(x_{0}, R_{1}\right) \\
& \leq c\left(R_{1} \tau^{k+1}\right)^{\gamma} \frac{E^{u, p}\left(x, R_{1}\right)}{\left(R_{1} \tau\right)^{\gamma}} \leq \rho^{\gamma} c_{18} \tag{4.4.15}
\end{align*}
$$

Let $x \in \Omega_{x_{0}, R_{1} / 3} \backslash \Gamma_{x_{0}, R_{1} / 3}$. We distinguish between two situations. If $\rho \leq$ $\operatorname{dist}\left(x, \Gamma_{x_{0}, R_{1} / 3}\right)$, we can simply repeat previous method using Lemma 47 instead of Lemma 45 and we get that existence of a constant c_{19} such that

$$
\begin{equation*}
\mathcal{E}^{u, p}(x, \rho) \leq c_{19} \rho^{\gamma} \tag{4.4.16}
\end{equation*}
$$

In order to complete the proof we need to show, that $\mathcal{E}^{u, p}(x, \rho) \rho^{-\gamma}$ is bounded independently of ρ and x even for $\rho>\operatorname{dist}(x, \partial \Omega)$.
If $\rho>\operatorname{dist}(x, \partial \Omega)$, we can find $x_{1} \in \Gamma_{x_{0}, R_{1} / 3}$ such that $B_{\rho}(x) \cap \Omega \subset B_{3 \rho}\left(x_{1}\right) \cap \Omega$. Thus there exists a constant c_{20} such that

$$
\begin{equation*}
\mathcal{E}^{u, p}(x, \rho) \leq\left(3^{(d-2) / 2}+3^{\alpha}\right) \mathcal{E}^{u, p}\left(x_{1}, 3 \rho\right) \leq c \mathcal{E}^{u, p}\left(x_{1}, 3 \rho\right) \leq c c_{17} \rho^{\gamma} \leq c_{20} \rho^{\gamma} \tag{4.4.17}
\end{equation*}
$$

Combining inequalities (4.4.15), (4.4.16) and (4.4.17) we get the validity of (4.4.14) on some neighborhood of x_{0}.

4.5 Proof of the main theorem

Let $c_{3}<\min \left\{\frac{c_{1}}{\left(c_{1}+c_{2} c_{7}\right) c_{7}}, c_{9}^{-1}\right\}$. We call a point $x \in \partial \Omega$ singular if there is no relative neighborhood of x where $\mathcal{D} u$ and p are Hölder continuous. We denote the set of all singular points by Σ. As a consequence of the previous corollary we
get $\Sigma \subset \bigcup_{i=1}^{3} \Sigma_{i}$ where

$$
\begin{aligned}
& \Sigma_{1}=\left\{x \in \partial \Omega, \liminf _{R \rightarrow 0} E^{u, p}(x, R)>0\right\}, \\
& \Sigma_{2}=\left\{x \in \partial \Omega, \limsup _{R \rightarrow 0}(|\mathcal{D} u|)_{\Gamma_{x_{0}, R}}+\left|(p)_{\Gamma_{x_{0}, R}}\right|=\infty\right\}, \\
& \Sigma_{3}=\left\{x \in \partial \Omega, \limsup _{R \rightarrow 0}\left|(p)_{\Omega_{x_{0}, R}}\right|+\left|(\mathcal{D} u)_{\Omega_{x_{0}, R}}\right|+\left|(u)_{\Omega_{x_{0}, R}}\right|=\infty\right\} .
\end{aligned}
$$

We know, according to Lemma 42, that $(\mathcal{D} u, p) \in W^{1 / 2,2+\delta}(\partial \Omega)$ and, according to Corollary 24, we get

$$
\mathcal{H}^{d-2}\left(\Sigma_{2}\right)=0 .
$$

Note that $(\mathcal{D} u, p) \in W^{1,6}$ and thus Corollary 24 also implies

$$
\mathcal{H}^{d-2}\left(\Sigma_{3}\right)=0
$$

Due to the Lemma 23

$$
\mathcal{H}^{d-2}\left(\Sigma_{1}\right)=0 .
$$

Thus

$$
\mathcal{H}^{d-2}(\Sigma) \leq \mathcal{H}^{d-2}\left(\Sigma_{1}\right)+\mathcal{H}^{d-2}\left(\Sigma_{2}\right)+\mathcal{H}^{d-2}\left(\Sigma_{2}\right)=0
$$

and the proof of the main theorem is completed.

Bibliography

[1] Adams, R. A., Fourner, J. J. F. Sobolev spaces second edition, vol. 140 Pure and applied mathematics (2003)
[2] Amrouche, C., Girault, V., Decomposition of vector spaces and application to the Stokes problem i narbitrary dimension, Czechoslovak Math. J., 144(119), no. 1, 109-140, (1994)
[3] Bridgman, P. W., The physics of high pressure, MacMillan, New York, (1931)
[4] Bulíček, M., Kaplický, P. Incompressible fluids with shear rate and pressure dependent viscosity: regularity of steady planar flows, Discrete Contin. Dyn. Syst. Ser. S 1, no. 1, 41-50, (2008)
[5] Buličcek, M.,Málek, J., Rajagopal, K. R. Navier's Slip and Evolutionary Navier-Stokes-like Systems, Indiana University Mathematics Journal, Vol. 56, No. 1 (2007)
[6] Chiarenza, F., L^{p}-regularity for systems of PDE's with coeficients in VMO, Nonlinear Analysis, Function Spaces and Applications, Proceedings of the Spring School held in Prague, May 23-28, 1994. Vol. 5. Prometheus Publishing House, Praha, 1 - 32 (1994)
[7] Cutler, W. G., McMicle, R. H., Webb, W., Schiessler, R.W.,Study of the compressions of several high molecular weight hydrocarbons, J. Chem. Phys. 29, 727 - 740 (1958)
[8] Daněček, J., John, O., Stará, J. Morrey space regularity for weak solutions of Stokes systems with VMO coefficients, Ann. Mat. Pura Appl., 190(4), 681 - 701, (2011)
[9] Franta, M., Málek, J., Rajagopal, K. R. On steady flows of fluids with pressure- and shear- dependent viscosities, Proc. R. Soc., 651 - 670, (2005)
[10] Friedman, A. Partial differential equation, Holt, Rinehart and Winston, Inc. (1969)
[11] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press (1983)
[12] Giaquinta, M., Modica, G., Non linear systems of the type of the stationary Navier-Stokes system, Journal für die reine und angewandte Mathematik, Band 330, 173-214, (1982)
[13] Hlaváček, I., Nečas, J. Mathematical Theory of Elastic and Elastico-plastic Bodies: An Introduction, Elsevier Scientific Publishing Copmpany (1981)
[14] Huy, N. D., Stará, J. On existence and regularity of solutions to a class of generalized stationary Stokes problem, Comment. Math. Univ. Carolin. 47,2, 241-264, (2006)
[15] Huy, N., D., On Existence and Regularity of Solutions to Perturbed Systems of Stokes Type, dissertation thesis, Charles University in Prague, (2006)
[16] John, O., Málek, J., Pokorný, M., Rokyta, M., Stará, J., Úvod do teorie parciálních diferenciálních rovnic, http://www.karlin.mff.cuni.cz/ rokyta/vyuka/skripta-pdr/ (2008)
[17] Kaplický,P., Málek, J., Stará, J., C $C^{1, \alpha}$ solutions to a class of nonlinear fluids in two dimensions - stationary Dirichlet problem, J. Math. Sci., 109, no. 5, 1867-1893, (2002)
[18] Kaplický, P., Tichý, J., Boundary Regularity of Flows under Perfect Slip Boundary Conditions, to appear
[19] Kufner, A., Fučík, S., John, O., Function Spaces, Czechoslovak Mathematical Journal, Vol. 29, No. 2 (1979)
[20] Lax, D., P., Functional Analysis, John Wiley \& Sons Inc., 2002
[21] Mácha, V. Použití Fredholmových vět k dưkazu existence řešení soustav Stokesova typu, diploma thesis, Charles University in Prague, (2008)
[22] Mácha, V. Regularity of Solution to Generalized Stokes Problem, WDS'09, Proceedings of Contributed Papers, Part I, $80-83$, (2009)
[23] Mácha, V. On a Generalized Stokes Problem, Cent. Eur. J. Math., 9(4), 874 - 887, (2011)
[24] Málek, J., Mingione, G., Stará, J., Fluids With Pressure Dependent Viscosity, Partial Regularity of Steady Flows, to appear
[25] Málek, J., Mingione, G., Stará, J., Fluids With Pressure Dependent Viscosity, Partial Regularity of Steady Flows, Equadiff 2003, Proceedings of the International Conference of Differential Equations, 380-385 (2005)
[26] Málek, J., Nečas, J., Rajagopal, K. R., Global Analysis of the Flows of Fluids with Pressure-Dependent Viscosities, Arch. Rational Mech. Anal. 165, 243269, (2002)
[27] Málek, J., Nečas, J., Rokyta, M., Růžicka, M., Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman \& Hall, London, (1996)
[28] Rudin, W. Functional analysis, McGraw-Hill Inc., (1973)
[29] Schechter, M. Principles of functional analysis, Academic Press, Inc. (1971)
[30] Sohr, H. The Navier-Stokes equations, an elementary functional analytic approach, Birkhäuser Verlag (2001)
[31] Troianiello, G., M. Elliptic Differential Equations and Obstacle Problems, Plenum Press (1987)

[^0]: ${ }^{1}$ Hereinafter in this text we use a letter c for an arbitrary constant which can vary from line to line. A subscribed letter c (e.g. c_{1}, c_{2}) stands for a specific constant.

[^1]: ${ }^{1}$ Summation convention is used throughout this paper.

[^2]: ${ }^{2}$ Here x^{\prime} is understood as the first $(d-1)$-tuple of coordinates of x, i.e. $x=$ $\left(x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}\right)=\left(x^{\prime}, x_{d}\right)$.

[^3]: ${ }^{3}$ i.e. $v \in L^{p}(G)$ and $\frac{v(x)-v(y)}{|x-y|^{d / p+s}} \in L_{\text {loc }}^{p}(G \times G)$ for $s \in(0,1)$

[^4]: ${ }^{4}$ Here the constant c_{7} comes from Bogovskii operator.

[^5]: ${ }^{1}$ The ω denotes, as usual, arbitrary matrix-, vector--, or real-valued function which is bounded independently on R and on the right hand side.

[^6]: ${ }^{2}$ Here d is not a summation index.

[^7]: ${ }^{3} \mathrm{We}$ use the convention $\nabla=\left(\nabla^{\prime}, \frac{\partial}{\partial_{d}}\right)$. The operator \mathcal{D}^{*} is defined as $\mathcal{D}^{*} u \stackrel{\text { def }}{=}$ $\frac{1}{2}\left(\left(0, \frac{\partial}{\partial_{d}} u\right)+\left(0, \frac{\partial}{\partial_{d}} u\right)^{T}\right)$

