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hlavńı výsledky uvedeny v prvńı kapitole.
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List of notation
Notation Meaning Condition

Rd d–dimensional Euclidean space

BR(x) {y ∈ Rd, |y − x| < R} x ∈ Rd, R > 0

B+
R(x) {y ∈ Rd, |y − x| < R, yd > 0} x ∈ Rd, R > 0

Bd−1
R {x ∈ Rd, |x| < R, xd = 0} R > 0

BΩ
R(x) BR(x) ∩ Ω x ∈ Rd,Ω ⊂ Rd, R > 0

Rd2

sym Space of symmetric d× d matrices

I An identity matrix

Lπ(Ω,Rd) Lebesgue spaces Ω ⊂ Rn, 1 ≤ π ≤ ∞
of functions f : Ω �→ Rd

‖.‖π, ‖.‖π,Ω Norm on Lπ(Ω,Rd)

W k,π(Ω,Rd) Sobolev spaces Ω ⊂ Rn, 1 ≤ π ≤ ∞
of functions f : Ω �→ Rd k ∈ N

‖.‖k,π, ‖.‖k,π,Ω Norm on W k,π(Ω,Rd)

W 1,π
0 C∞

0 (Ω,Rd)
‖.‖1,π

1 ≤ π <∞
π′ π

π−1
1 < π <∞

W−1,π
(
W 1,π′

0

)′
π ∈ (1,∞)

L2
0(Ω)

{
g ∈ L2(Ω,R),

∫
Ω
g = 0

}
Ω ⊂ Rd

W 1,2
0,div {u ∈ W 1,2

0 (Ω,Rd), div u = 0} Ω ⊂ R
d

[., .]X Duality between X ′ and X

〈., .〉H Scalar product on H H is a Hilbert space

μ Lebesgue measure

(f)E,σ σ(E)−1
∫
E
fdσ σ is a measure on R

d,

E ⊂ Rd, σ(E) > 0,

f is σ−measurable

(f)x,R (f)BR(x),μ x ∈ Rd, R > 0

Hn n−dimensional Hausdorff measure

as stated in [11]

(f)Γ (f)Γ,Hd−1 Γ ⊂ Rd

is a (d-1)-dimensional

manifold

Ran(F ) Range of an operator F

Ker(F ) Kernel of an operator F

VMO Space of functions with

vanishing mean oscillations

VMOB VMO ∩ L∞
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Chapter 1

Introduction

1.1 Motivation

Non-Newtonian fluid is a type of fluid whose flow properties differ from those

of Newtonian fluids which are described by the Navier–Stokes system. However,

there are many physical phenomena which can not be expressed by the typical

Navier–Stokes model, such as shear thinning, shear thickening, die swell, etc.

The viscosity of non–Newtonian fluids is not generally constant but depends on

shear rate and, as many experimental works show, there are several liquids whose

viscosity depends on pressure. On the other hand, changes in the density of these

liquids are negligible as the pressure grows (see for example [3, 7]). Thus we

can model these liquids as being incompressible and, in this case, the governing

equation has a form

ut − div T (Du, p) + div(u⊗ u) +∇p = f in (0, τ)× Ω,

div u = 0 in (0, τ)× Ω, (1.1.1)

where Ω ⊂ Rd is a body, p stands for pressure, u is a velocity field, Du denotes

a symmetrical gradient of u, i.e. Du = 1
2

(∇u+ (∇u)T ), and f represents body

forces. Further, T stands for the deviatoric stress tensor and div(u ⊗ u) is a

convective term.

A plenty of works studying this system under various boundary and growth con-

ditions have been published, see for example [4, 5, 9, 17, 18, 26] and references

given there. However, there are still many open questions, mostly regarding re-

gularity of solutions.
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In this work, we deal with a steady case, i.e. we study an equation

− div T (Du, p) + div(u⊗ u) +∇p = f in Ω,

div u = 0 in Ω,

u|∂Ω = 0. (1.1.2)

We assume that there exist positive constants c1, c2, c3 such that1 the deviatoric

stress tensor T obeys the following growth condition for all ξ ∈ Rd2

sym, allD ∈ Rd2

sym

and π ∈ R:

c1|ξ|2 < ∂T (D, π)

∂D
(ξ ⊗ ξ) < c2|ξ|2,∣∣∣∣∂T (D, π)∂π

∣∣∣∣ < c3. (1.1.3)

Partial regularity of solution to (1.1.2) in interior domains has been studied in

[24, 25]. N. D. Huy studied partial regularity up to a straight boundary in his

dissertation thesis ([15]). Chapter 4 of this work is devoted to the partial Hölder

regularity for system (1.1.2) in a bounded C2 domain Ω. In the remainder of this

work, we assume that the tensor T fulfills

T (0, π) = 0, ∀π ∈ R

∃S : Rd2 × R → R; T (D, π) =
∂S(D, π)

∂D
, ∀(D, π) ∈ R

d2 × R. (1.1.4)

In order to obtain partial regularity, we use so called indirect approach to regulari-

ty. To learn more about this approach we refer reader to [11] where this procedure

is used to obtain partial regularity of solution to certain elliptic systems. The

blow–up system of (1.1.2) has a form of the generalized Stokes system which can

be read as follows

− div(ADu) +B∇p = f on Ω,

div u = g on Ω,

u = 0 on ∂Ω. (1.1.5)

The coefficients A and B come from identities

Aklij =
1

2

(
∂Tij
∂ξkl

+
∂Til
∂ξkj

)
(a, e),

Bkj = δkj − ∂Tij
∂τ

(a, e)

1Hereinafter in this text we use a letter c for an arbitrary constant which can vary from line

to line. A subscribed letter c (e.g. c1, c2) stands for a specific constant.
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where a ∈ Rd2 and e ∈ R are defined later.

The existence and uniqueness of solution to (1.1.5) is well known for B = I - in

this case it is sufficient to test the equation by selenoidal functions and to use

Lax-Milgram lemma and de Rham theorem [30]. Also the Hilbert regularity and

the Hölder regularity is known and its proof can be found in [14] and [8]. The

case of a constant matrix B, generally not equal to identity, was studied in [14]

where existence, uniqueness and higher differentiability of solution was proven.

One may ask whether this kind of results can be obtained even for a non-constant

matrix B. The existence and uniqueness of solution to such problem was provided

in my diploma thesis. However, these results are mentioned here for completeness

of this work. Moreover, we provide two regularity results. The first part of this

thesis was published in two articles, namely [22] and [23].

All main results are formulated in the next section.

1.2 Main results

In case of a linear system, we present two existence results and two regularity

results. In nonlinear case, we full regularity for dimension d = 2 and partial

regularity for dimension d = 3. As a byproduct we obtain higher differentiability

in a bounded domain.

1 Theorem. Let Ω ⊂ Rd be a bounded Lipschitz domain and let a matrix A ∈
L∞(Ω,Rd4) be elliptic and symmetric. Then there exists a neighborhood U ⊂
W 1,∞(Ω,Rd2) of an identity matrix such that for a matrix B ∈ U and for every

f ∈ W−1,2(Ω,Rd) and g ∈ L2
0(Ω) there exists a unique weak solution (u,p) of

equation (1.1.5). In addition, following inequality holds

‖u‖1,2 + ‖p‖2 ≤ c(‖f‖−1,2 + ‖g‖2)

with c independent of u, p, f and g.

2 Theorem. Let Ω ⊂ Rd be a bounded Lipschitz domain and let a matrix A ∈
L∞(Ω,Rd4) be elliptic and symmetric. Then there exists a neighborhood V ⊂
W 1,∞(Ω,Rd2) of an identity matrix, which is generally bigger then U from the

previous theorem, such that for a matrix B ∈ V , g = 0 and f ∈ W−1,2 the

following is true.

• If [f, (B−1)Tψ]W 1,2
0

= 0 for all weak solutions ψ to dual equation (3.1.6)

then there exists a weak solution to (1.1.5). The space of functions f , for

which solution does not exist, has a finite dimension.
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• For every couple of weak solutions (u1, p1) and (u2, p2) to (1.1.5) it holds

that

[div((B−1A)T∇ψ + (∇B−1A)Tψ), (u1 − u2)]W 1,2
0,div

= 0

for every ψ ∈ W 1,2
0,div. Moreover, the space of weak solutions to (1.1.5) has

a finite dimension.

We also show higher differentiability of solutions for the linear system and for

the smooth data.

3 Theorem. Let k ∈ N ∪ {0}. Let Ω ⊂ Rd be a bounded Ck+2 domain.

Suppose that f ∈ W k,2(Ω,Rd), g ∈ W k+1,2(Ω,R), A ∈ W k+1,∞(Ω,Rd4), B ∈
W k+1,∞(Ω,Rd2), B ∈ V and let (u, p) ∈ W 1,2

0 (Ω,Rd) × L2(Ω,R) be a weak solu-

tion to (1.1.5). Then (u, p) ∈ W k+2,2(Ω,Rd)×W k+1,2(Ω,R) and

‖u‖k+2,2 + ‖p‖k+1,2 ≤ c(‖f‖k,2 + ‖g‖k+1,2 + ‖u‖1,2).

In case B ∈ U , we get

‖u‖k+2,2 + ‖p‖k+1,2 ≤ c(‖f‖k,2 + ‖g‖k+1,2).

And the following result deals with Hölder regularity of solutions to the linear

system.

4 Theorem. Let Ω ⊂ Rd be a C1 domain and Ω1 ⊂ Ω be a nonempty open subset

and let A ∈ VMOB be elliptic and symmetric. Then there exists a neighborhood

U ′ ∈ W 1,∞(Ω,Rd2) of an identity matrix such that following holds. Let B ∈ U ′,

f = divF , F ∈ L2,μ(Ω,Rd2) and g = 0. Moreover, let solution (u, p) ∈ W 1,2(Ω)×
L2(Ω) to (1.1.5) fulfills

∫
Ω1
p = 0. Then there exists a constant c such that

‖Du‖L2,μ + ‖p‖L2,μ ≤ c‖F‖L2,μ

for all μ < d.

The main result for the nonlinear system can be read as follows.

5 Theorem. Let d ≤ 3 and let Ω ⊂ Rd be a C2 domain and f ∈ L2+δ(Ω,Rd) ∩
L2,d−1+α(Ω,Rd2) for some δ > 0 and α ∈ (0, 1).Then there is a positive constant

γ such that if c3 < γ then for any weak solution (u, p) to (1.1.2) there exists a

closed set Ω′ ⊂ Ω such that Hd−2(Ω′) = 0 and ∇u and p are Hölder continuous

in Ω \ Ω′.
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Chapter 2

Preliminaries

2.1 Definitions

Unless stated otherwise, we assume that the domain Ω ⊂ R
d is bounded and

Lipschitz. The space L∞(Ω,Rd) is considered with a norm ‖u‖∞ =
√∑d

i=1 ‖ui‖2∞.

We consider one additional norm on the space W 1,2
0 except the standard one

(‖∇u‖2), namely ‖u‖D := ‖Du‖2. We use the same notation for norms in a

dual space, thus for u′ ∈ W−1,2 the notation ‖u′‖D means sup{|(u′, u)W 1,2
0
|; u ∈

W 1,2
0 ; ‖u‖D ≤ 1}. Spaces W 1,2

0 and W 1,2
0,div are Hilbert spaces with scalar product

〈u, v〉D =
∫
Ω
DuDv. For operator T on a Hilbert space, we denote its Hilbert

adjoint operator by T ′.

We also provide a definition of Morrey and VMO spaces and their basic properties

which are used later. For more informations about this spaces we refer to [19]

and [6].

6 Definition - Morrey Spaces. Let 0 ≤ μ < d. We define a space L2,μ(Ω,Rn)

as a space of the functions u ∈ L2(Ω,Rn) for which ‖u‖L2,μ <∞ where

‖u‖L2,μ
def
= supx∈Ω,0<ρ<diam(Ω)

(
1

ρμ

∫
BΩ

ρ (x)

|u(y)|2dy
)1/2

Additionally, we define a space W 1,2,μ
0,div (Ω) as a space of functions belonging to

W 1,2
0,div(Ω) with ∇u ∈ L2,μ(Ω,Rd2).

7 Definition. For a real valued function f ∈ L1(Ω,R) and r > 0, x ∈ Ω we

define:

n(x, r)(f)
def
= sup0<ρ≤r

1

|BΩ
ρ (x)|

∫
BΩ

ρ (x)

|f(y)− (f)BΩ
ρ (x)|dy

and n(r)(f)
def
= supx∈Ω n(x, r)(f). We define the space VMO(Ω,Rd) by the fol-
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lowing relation:

VMO(Ω,Rd) =

{f ∈ L1(Ω,Rd), n(r)(f) < +∞ for all r ∈ (0, diam(Ω)〉 and lim
r→0+

n(r) = 0}

Moreover, we work with a space VMOB(Ω,R
d) = VMO(Ω,Rd) ∩ L∞(Ω,Rd).

8 Definition. A matrix A ∈ L∞(Ω,Rd2×d2) is said to be symmetric if Aklij =

Akjil = Ailkj for all i, j, k, l ∈ {1, . . . , d} and for almost all x ∈ Ω.

We call a matrix A ∈ L∞(Ω,Rd2×d2) elliptic if there exists a constant α > 0 such

that A(x)(ξ ⊗ ξ) ≥ α‖ξ‖2 for all ξ ∈ Rd2

sym and for almost all x ∈ Ω.

9 Definition. For A ∈ L∞(Ω,Rd2×d2) symmetric, B ∈ W 1,∞(Ω,Rd2), f ∈
W−1,2(Ω,Rd) and g ∈ L2

0(Ω), a weak solution to (1.1.5) is defined as a couple

(u, p) ∈ W 1,2
0 (Ω,Rd)× L2(Ω,R) fulfilling1:∫

Ω

Aklij (Du)jl(Dϕ)ik +
∫
Ω

p
∂ (Bkjϕk)

∂xj
= [f, ϕ]W 1,2

0
∀ϕ ∈ W 1,2

0 (Ω,Rd),

div u = g a.e on Ω. (2.1.1)

We call the weak solution unique if for any Ω1 ⊂ Ω there exists only one weak

solution (u, p) such that
∫
Ω1
p = 0.

10 Definition. Let f ∈ W−1,2(Ω,Rd). We say, that (u, p) ∈ W 1,2
0,div(Ω)×L2(Ω,R)

is a weak solution to (1.1.2), if, for ∀ϕ ∈ W 1,2
0,div, it holds that∫

Ω

Tij(Du, p)∂ϕj
∂xi

+

∫
Ω

ujui
∂ϕj
∂xi

= [f, ϕ]W 1,2
0

and, for all ∀ϕ ∈ W 1,2
0 (Ω,Rd)∫

Ω

p divϕ = −
∫
Ω

T (Du, p)∇ϕ−
∫
Ω

(u⊗ u)∇ϕ+ [f, ϕ]W 1,2
0
.

2.2 Observations

11 Lemma. There exist constants c4 and c5 such that for every u ∈ W 1,2
0 (Ω,Rd)

following inequalities hold:
1

c4
‖u‖2 ≤ ‖u‖D (2.2.1)

‖u‖D ≤ ‖∇u‖2 ≤ c5‖u‖D (2.2.2)

1Summation convention is used throughout this paper.
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Proof. The proof of the first inequality in (2.2.2) is obvious. The rest comes

from Korn’s inequality (see cf. [13]). Inequality (2.2.1) immediatelly follows from

(2.2.2) and from Poincaré inequality (see c.f. [1], Theorem 6.30).

12 Assumptions. Let a matrix A ∈ L∞ be symmetric and elliptic with a constant

α > 0, a matrix B = I −K, K ∈ W 1,∞(Ω,Rd2), ‖K‖∞ < 1.

• We say that an assumption A1 is fulfilled if the inequality

c5
√
d‖K‖∞

(1− ‖K‖∞)
+
c4
√
d‖∇K‖∞

(1− ‖K‖∞)2
<

α

‖A‖∞ (2.2.3)

holds.

• If

‖K‖∞ <
α
√
d

c5‖A‖∞
√
d+ α

, (2.2.4)

we say that an assumption A2 is fulfilled.

13 Lemma. There exists a bounded linear operator T : L2
0(Ω) �→ W 1,2

0 (Ω,Rd)

fulfilling

div Tg = g ∀g ∈ L2
0(Ω). (2.2.5)

Proof. For proof see [30], Lemma 2.1.1 in Chapter II.

14 Corollary. Let there exist a weak solution to equation (1.1.5) for g = 0. Then

there exists a weak solution to equation (1.1.5) for any g ∈ L2
0(Ω).

Let a weak solution to equation (1.1.5) with g = 0 be unique. Then a weak solution

to (1.1.5) is unique for any g ∈ L2
0(Ω).

Let (u, p) be a weak solution to (1.1.5) with g = 0 which satisfies ‖u‖1,2 + ‖p‖2 ≤
c‖f‖−1,2. Then a weak solution to (1.1.5) with the same data A, B and f but

general g ∈ L2
0(Ω) fulfills

‖u‖1,2 + ‖p‖2 ≤ c(‖f‖−1,2 + ‖g‖2). (2.2.6)

Proof. Let g ∈ L2
0. Then, according to Lemma 13, we get the existence of u1 such

that div u1 = g with ‖u1‖1,2 ≤ c‖g‖2. We define a function u
def
= u0 + u1 where

u0 ∈ W 1,2
0,div such that u0 solve

− divADu0 +B∇p = f + divADu1.

The existence of such a solution is granted by the assumptions of this corollary.

The function u solves system (1.1.5) due to its linearity. Since ‖u0‖1,2 + ‖p‖2 ≤
c‖f‖−1,2 we immediately obtain (2.2.6).
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Now suppose that there exists a unique solution to (1.1.5) such that div u = 0. For

contradiction assume that there exist at least two solutions (u1, p1) and (u2, p2)

solving (1.1.5) with the same f , A, B and g and with div u1 = div u2 = g. Their

difference solve

− divAD(u1 − u2) +B∇(p1 − p2) = 0,

− div(u1 − u2) = 0.

Naturally, one solution to this problem is zero and according to the assumptions

this solution is unique. Thus we get (u1, p1) = (u2, p2) and the corollary is

proved.

15 Lemma. Let Ω0 ⊂ Ω. There exists a constant c such that for each f ∈
W−1,2(Ω,Rd) satisfying

[f, ϕ]W 1,2 = 0 ∀ϕ ∈ W 1,2
0,div(Ω)

there exists a uniquely determined p ∈ L2(Ω,R) satisfying

∇p = f,

∫
Ω0

p = 0, ‖p‖2 ≤ c‖f‖−1,2.

Proof. For proof see [30], Lemma 2.1.1 in chapter II.

16 Lemma. Let B = I − K, where K ∈ W 1,∞(Ω,Rd2) and ‖K‖∞ < 1. Then

there exists an inversion C
def
= B−1 ∈ W 1,∞(Ω,Rd2) of the form C = I+L, where

L =
∑∞

i=1K
i. Moreover, following estimates holds

‖∇C‖∞ = ‖∇L‖∞ ≤
( √

d‖∇K‖∞
(1− ‖K‖∞)2

)
,

‖L‖∞ ≤
√
d‖K‖∞

1− ‖K‖∞ .

Proof. Space L∞(Ω,Rd2) equipped with a norm

‖X‖a def= sup

⎧⎨
⎩
√√√√ d∑

i,k=1

(
d∑
j=1

‖XijYjk‖∞
)2

; Y ∈ L∞(Ω,Rd2), ‖Y ‖∞ ≤ 1

⎫⎬
⎭

is Banach algebra hence we can use Neumann Lemma (i.e. Theorem 10.7 in [28]).

Moreover, ‖X‖∞√
d

≤ ‖X‖a ≤ ‖X‖∞. The assumption ‖K‖∞ < 1 implies that

‖K‖a < 1 and thus B is invertible and ‖B−1‖a <∞. Because B−1 ∈ L∞(Ω,Rd2)

we get
1

detB
∈ L∞(Ω) (it follows immediately from

1

detB
= detB−1). We

9



denote the cofactor matrix to B by B. Following identities hold true for inverse

matrices

B−1
ij =

1

detB
Bji,

∂B−1
ij

∂xk
=

∂Bji

∂xk
detB −Bji

∂(detB)
∂xk

(detB)2

and thus we obtain B−1 ∈ W 1,∞(Ω,Rd). Moreover, the precise form of matrix

C = B−1, which comes from Neumann Lemma, can be written as

C = I + L = I +

∞∑
i=1

Ki.

We use triangle inequality together with property of Banach algebra (‖x.y‖ ≤
‖x‖.‖y‖) to get

‖L‖a =
∥∥∥∥∥

∞∑
i=1

Ki

∥∥∥∥∥
a

≤
∞∑
i=1

‖Ki‖a ≤
∞∑
i=1

‖K‖ia =
‖K‖a

1− ‖K‖a .

For ∂L
∂xj

it holds

∂L

∂xj
=

∂

∂xj

∞∑
i=1

Ki =
∞∑
i=1

∂

∂xj

(
Ki
)
=

∞∑
i=1

i∑
l=1

Ki−l ∂K
∂xj

K l−1

and following estimate can be derived for the norm of
∥∥∥ ∂L
∂xj

∥∥∥
a

∥∥∥∥ ∂L∂xj
∥∥∥∥
a

≤
∥∥∥∥∂K∂xj

∥∥∥∥
a

∞∑
i=1

i‖K‖i−1
a =

∥∥∥ ∂K∂xj∥∥∥a
(1− ‖K‖a)2 .

Obviously ∥∥∥∥ ∂L∂xj
∥∥∥∥
∞

≤
√
d
∥∥∥ ∂K∂xj∥∥∥∞

(1− ‖K‖∞)2
.

After summation we get

‖∇L‖2∞ =

d∑
j=1

∥∥∥∥ ∂L∂xj
∥∥∥∥2
∞

≤ d

(1− ‖K‖∞)4

d∑
j=1

∥∥∥∥∂K∂xj
∥∥∥∥2
∞

=

( √
d‖∇K‖∞

(1− ‖K‖∞)2

)2

.

17 Lemma - Fredholm’s alternative. Let H be a Hilbert space equipped with

a norm ‖.‖H and let there be three bounded linear operators F , G, E : H �→ H

such that F is invertible and E is compact. Moreover let |λ| > ‖G‖H∗‖F−1‖H∗.

Then following holds:
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1. Ran(λF ′ +G′ + E ′) = Ker(λF +G+ E)⊥,

2. Ran(λF +G+ E) = Ker(λF ′ +G′ + E ′)⊥,

3. dim(Ker(λF +G+ E)) <∞.

Proof. Composition of operators λF +G and F−1 is λI+GF−1. This operator is

obviously invertible since λ > ‖G‖H∗‖F−1‖H∗ . Also operator λF +G is invertible

because F is one-to-one. So we can apply the operator (λF +G)−1 and work with

operators (I+(λF +G)−1E) and (I+E(λF +G)−1). The operator E is compact

and the same holds true for the operators (λF+G)−1E and E(λF+G)−1). Hence

Fredholm alternative (cf [20]) together with following identities:

Ran(I + E(λF +G)−1) = Ran(λF +G+ E),

Ker(I + (λF +G)−1E) = Ker(λF +G + E)

yield

Ran(λF ′+G′+E ′) = Ran(I+E ′((λF +G)−1)′) = Ran(I+((λF +G)−1E)′) =

= Ker(I + (λF +G)−1E)⊥ = Ker(λF +G+ E)⊥

and

Ran(λF +G+ E) = Ran(I + E(λF +G)−1) = Ker(I + (E(λF +G)−1)′)⊥ =

= Ker(I + ((λF +G)−1)′E ′)⊥ = Ker(λF ′ +G′ + E ′)⊥.

The finite dimension of the null space is a direct result of the Fredholm alternative.

18 Observations. The space L2,μ can be identified with L2 for μ = 0. The space

L2,α is embedded into L2,μ for μ < α < d (see for instance [19]).

Immediately from the definition we see that for f ∈ L2,μ(Ω) and g ∈ L∞(Ω) we

get gf ∈ L2,μ(Ω) and ‖gf‖L2,μ ≤ ‖g‖∞‖f‖L2,μ.

19 Lemma. Let Ω be a C1 domain and n ∈ N.

1. Let d ≥ 3. For any μ < d− 2 there exists a constant c such that for all f ∈
L2,μ(Ω,Rn) there is a function F ∈ L2,μ+2(Ω,Rn×d) fulfilling f = − divF

in the weak sense (i.e.
∫
Ω
fϕ =

∫
Ω
F∇ϕ for all ϕ ∈ W 1,2

0 (Ω,Rn)) and

‖F‖2,μ+2 ≤ c‖f‖2,μ.

2. Let d ≤ 2. Then there exists a constant c such that for all f ∈ L2(Ω,Rn)

there is a function F ∈ L2,μ(Ω,Rn×d), 0 < μ < d fulfilling f = divF in the

weak sense and ‖F‖2,μ ≤ c‖f‖2.

11



Proof. Let us consider a weak solution w of the following system

−Δw = f on Ω,

w = 0 on ∂Ω.

In case d ≥ 3 the Theorem 3.16 in [31] immediately gives the existence of a con-

stant c independent of f such that the estimate ‖∇w‖2,μ+2 ≤ c‖f‖2,μ is fulfilled.

Let d ≤ 2. Then ∇w ∈ W 1,2 and W 1,2 is embedded into L2,μ for μ ∈ (0, d) (see

Theorems 2.3 and 2.1 in [31]). Now it suffices to set F = ∇w.

If Ω is a C2 domain, we can suppose that ∂Ω can be described in a neighbor-

hood of x0 ∈ ∂Ω as a function Γx0 : Rd−1 �→ Rd fulfilling Γx0(0) = x0 and, since

both systems (1.1.2) and (1.1.5) are invariant under rotation and translation, we

require that ∂Γi

∂xj
(0) = δij , i ∈ {1, . . . , d}, j ∈ {1, . . . , d− 1}. Furthermore, we can

assume that there exist constants α, β > 0 such that2

{(x′, xd) ∈ R
d, |x′| < α,Γ(x′) < xd < Γ(x′) + β} ⊂ Ω

and

{(x′, xd) ∈ R
d, |x′| < α,Γ(x′)− β < xd < Γ(x′)} ⊂ R

d \ Ω.
See Definition A.3.29 in [16] for more. We define a new function Fx0 : R

d �→ R
d by

Fx0(x) = Γx0(x
′) + (0, xd). We write Fx0,R(x) for Fx0(Rx). The image of B+

1 (0)

under mapping Fx0,R is denoted as Ωx0,R. For simplicity of notation, we omit

suffix x0 if possible.

20 Observations. Let Ω be a C2-domain, x0 ∈ ∂Ω. Then

(i) ∇Fx0,R(0) = RI.

(ii) ∇Fx0,R(x) = RI+R2ω(x), where ω is a function, which is bounded uniformly

with respect to x0 and R.

(iii) There exist c > 0 and R0 > 0 such that, for all R < R0 and x ∈ B+
1 (0),

Rd − cRd+1 ≤ | det∇Fx0,R(x)| ≤ Rd + cRd+1.

(iv) Especially, there exist R1 ∈ (0, R0) and c, c
′ > 0 such that, for all 0 < R <

R1 and for all x ∈ B+
1 (0), there exists F−1

x0,R
and

cRd ≤ | det∇Fx0,R(y)| ≤ c′Rd,

cR−d ≤ | det∇F−1
x0,R

(x)| ≤ c′R−d,

for all y ∈ B+
1 (0) and x ∈ Ωx0,R.

2Here x′ is understood as the first (d − 1)–tuple of coordinates of x, i.e. x =

(x1, x2, . . . , xd−1, xd) = (x′, xd).
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(v) There exist R2 and constants c, c′ > 0 such that, for all R ∈ (0, R2),

Ωx0,cR ⊂ (BR(x0) ∩ Ω) ⊂ Ωx0,c′R.

Proof. (i) It follows immediately from the definition of Fx0,R.

(ii) According to the mean value theorem, we have

∂Fx0,R
∂xi

(x)− ∂Fx0,R
∂xi

(0) =
∂2Fx0,R
∂xi∂xj

(ξ)xi

for some ξ ∈ B+
1 (0). The definition of Fx0,R implies ‖∇2Fx0,R(ξ)‖∞ =

cR2‖∇2Γ(Fx0,R(ξ))‖∞. Since Ω is a C2 domain, ∇2Γ is bounded and the

rest follows immediately.

(iii) It follows immediately from the definition of determinant and (ii).

(iv) According to (iii), for R sufficiently small, we have | det∇Fx0,R| > 0 and,

due to the inverse function theorem, Fx0,R is invertible. We can also assume

that cR ≤ 1
2
and thus

Rd

2
= Rd− 1

2
Rd ≤ Rd− cRRd ≤ | det∇Fx0,R| ≤ Rd+ cRRd ≤ Rd

(
1 +

1

2

)
.

The identity

1 = | det I| = ∣∣det (∇Fx0,R∇F−1
x0,R

)∣∣ = |det∇Fx0,R|
∣∣det∇F−1

x0,R

∣∣
implies the rest.

(v) Let x ∈ Ωx0,R. Then there exists y ∈ B+
1 (0) such that x = Fx0,R(y). Further,

since ∇Fx0,R is bounded according to (ii), Fx0,R is Lipschitz with a constant

R+ cR2. Thus, |x−x0| ≤ (R+ cR2)|y− 0| and x ∈ BR(1+cR)(x0). Thus, for

R sufficiently small, the first inclusion is proven.

Let x ∈ Bx0,R ∩ Ω for R sufficiently small. Then |x − x0| < R and since

F−1
x0,R′ is Lipschitz with constant cR′−1 we get |F−1

x0,R′(x) − 0| < c R
R′ . It is

enough to choose R′ = Rc and, consequently x ∈ Fx0,R′(B+
1 (0)).

21 Lemma. Let T satisfy (1.1.3) and (1.1.4) and let D,D1, D2 ∈ Rd2 and

p, p1, p2 ∈ R. Then

(i) c1
2
|D1 −D2|2 ≤ (T (D1, p1)− T (D2, p2)) (D1 −D2) +

c23
2c1

|p1 − p2|2,

(ii) T (D, p)D ≥ c1
4
(|D|2 − 1),
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(iii) |T (D, p)| ≤ c2 (1 + |D|).

Proof. The proof of inequality (i) follows the proof of Lemma 3.3 in [9]. Set

D1,2(s) = D2 + s(D1 −D2) and p1,2(s) = p2 + s(p1 − p2).

We have

T (D1, p1)− T (D2, p2) =

∫ 1

0

∂

∂s
T (D1,2(s), p1,2(s))ds

=

∫ 1

0

∂T (D1,2(s), p1,2(s))

∂D
(D1 −D2)ds

+

∫ 1

0

∂T (D1,2(s), p1,2(s))

∂p
(p1 − p2)ds.

We denote (T (D1, p1)−T (D2, p2))(D1−D2) byM1,2. Young and Hölder inequality

together with assumption (1.1.3) imply

c1|D1 −D2|2 ≤
∫ 1

0

∂T (D1,2(s), p1,2(s))

∂D
(D1 −D2)(D1 −D2)ds

≤M1,2 +

∣∣∣∣
∫ 1

0

∂T (D1,2(s), p1,2(s))

∂p
(p1 − p2)(D1 −D2)ds

∣∣∣∣
≤M1,2 + c3|p1 − p2||D1 −D2|

≤M1,2 +
c23
2c1

|p1 − p2|2 + c1
2
|D1 −D2|2

and the desired inequality follows immediately. The inequalities (ii) and (iii)

comes from Lemma 1.19, Chapter 5 in [27].

22 Lemma - Poincaré inequalities. Let Ω be a C2 domain and let f ∈
W 1,p(Ω), let ΩR ⊂ Ω be a neighborhood of a point x0 ∈ ∂Ω described as ΩR =

Fx0,R(B
+
1 (0)) and let ΓR = ΩR ∩ ∂Ω. Then ‖f‖avg := |(f)ΓR

|+ ‖∇f‖p,ΩR
is equi-

valent to ‖.‖1,p,ΩR
.

Especially, there exists a constant c independent on f such that

c‖f‖p,ΩR
≤ R

d
p |(f)ΓR

|+R‖∇f‖p,ΩR

and

‖f − (f)ΓR
‖p,ΩR

≤ cR‖∇f‖p,ΩR

hold for all R < R0, where R0 is sufficiently small.

Proof. The equivalence of norms can be found in [16] as Lemma A.3.80.

For the proof of the inequalities we suppose that R0 is small such that FR is
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invertible for all R < R0 and ‖ detFR‖∞ ≤ cR. We use a rescaling argument. A

function f fulfills

‖f‖pp,ΩR
=

∫
ΩR

|f |p =
∫
ΩR0

|f(FR(F−1
R0

(y)))|p.| det∇FR(y)|.| det∇F−1
R0

(y)|dy

≤c‖ det∇FR‖∞‖ det∇F−1
R0

‖∞
∫
ΩR0

|f(FR(F−1
R0

(y)))|pdy

≤c
(
R

R0

)d ∫
ΩR0

|f(FR(F−1
R0

(y)))|pdy

According to the above mentioned equivalence of norms, we get∫
ΩR0

|f(FR(F−1
R0

(y)))|pdy

≤c
⎛
⎝|(f(FR(F−1

R0
(y))))ΓR0

|+
(∫

ΩR0

|∇yf(FR(F
−1
R0

(y)))|pdy
) 1

p

⎞
⎠p

≤c|(f(x))ΓR
|p + c

∫
ΩR0

|∇xf(FR(F
−1
R0

(y)))∇FR(F−1
R0

(y))∇F−1
R0

(y)|pdy

≤c|(f(x))ΓR
|p +

(
R

R0

)p ∫
ΩR0

|∇xf(FR(F
−1
R0

(y)))|pdy.

The last term can be estimated via change of variables as follows∫
ΩR0

|∇xf(FR(F
−1
R0

(y)))|pdy ≤
∫
ΩR

|∇xf(x)|p| detF−1
R detFR0 |dx

≤c
(
R0

R

)d
‖∇f‖pp,ΩR

.

We put these three inequalities together and, since R0 is fixed, we get

‖f‖pp,ΩR
≤ cRd|(f)ΓR

|+ cRp‖∇f‖pp,ΩR
.

This inequality applied to a function (f − (f)ΓR
) implies

‖f− (f)ΓR
‖p,ΩR

≤ c
(
R

d
p |(f − (f)ΓR

)ΓR
|+R‖∇f −∇(f)ΓR

‖p,ΩR

)
≤ cR‖∇f‖p,ΩR

and the lemma is proven.

23 Lemma . Let G ⊂ Rd be an open set, v ∈ L1
loc(G,R), 0 ≤ α < d and set

Eα(v) =

{
x ∈ G, lim sup

ρ→0+
ρ−α

∫
Bρ(x)

|v| > 0

}

. Then Hα(Eα(v)) = 0.

Proof. See Theorem 2.2, Chapter IV in [11].
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24 Corollary. Let G ⊂ Rd be an open set, s ∈ (0, 1] and3 v ∈ W s,p
loc (G,R). Set

F = {x ∈ G, lim
ρ→0+

(v)x,ρ does not exist} ∪ {x ∈ G, lim
ρ→0+

|(v)x,ρ| = ∞}.

Then for all ε > 0

Hd−ps+ε(F ) = 0.

Proof. For s = 1 we refer to [11]. Let s ∈ (0, 1). From definition of W s,p, it may

be concluded that w = |v(x)−v(y)|p
(x−y)d+sp ∈ L1(G×G,R). We consider a set E ⊂ G×G

defined as E = Ed−ps+ε (w). Set

diagE := {x ∈ G, (x, x) ∈ E}.

It suffices to show that F ⊂ diagE. So let x /∈ diagE. For some r0 sufficiently

small, it holds that sup0<r<r0

(
r−d+ps−ε

∫
Br(x,x)

|v(z)−v(y)|p
(z−y)d+sp dzdy

)
≤ M < ∞. Let

0 < r
2
≤ t < r < r0. Then

|(v)x,r−(v)x,t| = c

∣∣∣∣r−d
∫
Br(x)

v(y)dy − t−d
∫
Bt(x)

v(z)dz

∣∣∣∣
=c

∣∣∣∣(tr)−d
∫
Bt(x)

(∫
Br(x)

v(y)dy

)
dz − (rt)−d

∫
Br(x)

(∫
Bt(x)

v(z)dz

)
dy

∣∣∣∣
≤c(tr)−d

∫
Bt(x)×Br(x)

|v(y)− v(z)|dydz

≤c(tr)−d/p
(∫

Bt(x)×Br(x)

|v(y)− v(z)|pdydz
)1/p

≤c
(
r−d+ps

∫
Bt(x)×Br(x)

|v(y)− v(z)|p
|y − z|d+ps dydz

)1/p

≤crε/p
(
r−d+ps−ε

∫
Bt(x)×Br(x)

|v(y)− v(z)|p
|y − z|d+ps dydz

)1/p

≤c6M1/prε/p,

which gives the continuity of σ(r)
def
= (u)x,r as a function of r ∈ (0,∞) for fixed

x. It remains to prove that limr→0 σ(r) exists and is finite. Let {ri}∞i=1 be non-

increasing sequence converging to zero. Then σ(ri) is Cauchy sequence. Indeed,

for every θ > 0 there exists i0 ∈ N such that r
ε/p
j <

θ(1−( 1
2)

ε/p
)

c6M1/p whenever j ≥ i0.

We set s0 = rj and sk = sk−1

2
=

rj
2k
. For every i > j there exists l such that

3i.e. v ∈ Lp(G) and v(x)−v(y)

|x−y|d/p+s ∈ Lp
loc(G×G) for s ∈ (0, 1)
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sl+1 ≤ ri < sl. Then

|σ(ri)− σ(rj)| ≤ |σ(ri)− σ(sl)|+
l∑

k=1

|σ(sk)− σ(sk−1)|

≤ c6M
1/ps

ε/p
l +

l−1∑
k=0

c6M
1/ps

ε/p
k ≤ c6M

1/p

l∑
k=0

( rj
2k

)ε/p
≤ c6M

1/pr
ε/p
j

1

1− (1
2

)ε/p ≤ θ.

Hence limr→0+(u)x,r exists and it is finite, thus x /∈ F .

25 Lemma. Let (w, q) ∈ W 1,2(B+
1 (0))×L2(B+

1 (0)) be a weak solution to a system

− divADw + (I − B)∇q = 0 on B+
1 (0),

divw = 0 on B+
1 (0),

w = 0 on Bd−1
1 ,

where A ∈ R
d4, B ∈ R

d2 are constant matrices and there exist λ > 0, Λ > 0 and

γ > 0 such that following inequality holds true for all ξ ∈ Rd2

λ|ξ|2 ≤ A(ξ ⊗ ξ) ≤ Λ|ξ|2,
B ≤ γ.

If4 γ ≤ λ
(λ+c7Λ)c7

, then for all τ, α ∈ (0, 1), R ≤ 1 there is a positive constant C∗

such that

Ew,q(0, τR) ≤ C∗ταEw,q(0, R)

where C∗ depends only on λ, Λ, γ and d.

Proof. See Lemma 2.2 in [14].

4Here the constant c7 comes from Bogovskĭi operator.
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Chapter 3

Generalized Stokes System

3.1 Existence and Uniqueness

In this chapter, we assume that A ∈ L∞(Ω,Rd4) and B ∈ W 1,∞(Ω,Rd2) are non–

constant matrices. Under assumption A2, according to Lemma 16, there exists a

matrix B−1 ∈ W 1,∞(Ω,Rd2). Set C = B−1 and L = C − I. For ϕ ∈ W 1,2
0 (Ω),

a function CTϕ is in W 1,2
0 (Ω). Thus, we apply CTϕ as a test function to (2.1.1)

and we get ∫
Ω

ADuD (CTϕ
)
+

∫
Ω

p divBTCTϕ = [f, CTϕ]W 1,2
0
.

Let h ∈ W−1,2(Ω,Rd) be given by [h, ϕ]W 1,2
0

= [f, CTϕ]W 1,2
0
. It follows that∫

Ω

CADu∇ϕ+

∫
Ω

(∇C)ADuϕ+

∫
Ω

p divϕ = [h, ϕ], (3.1.1)

where (CA)mlij = CmkA
kl
ij and ((∇C)A)mli = ∂Cmk

∂xi
Aklij . Hence the problem (1.1.5)

is equivalent to

− div(CA)Du+ (∇C)ADu+∇p = h,

div u = g,

u|∂Ω = 0. (3.1.2)

Proof of Theorem 1. Let assumption A1 hold. By Corollary 14 it is enough to

consider the case g = 0. Testing (2.1.1) by the function CTϕ, divϕ = 0 we get

(according to (3.1.1))∫
Ω

ADuDϕ+

∫
Ω

(LA)Du∇ϕ+

∫
Ω

(∇L)ADuϕ = [h, ϕ]W 1,2
0
. (3.1.3)
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Consider three linear operators F,G,E : W 1,2
0,div(Ω) �→W 1,2

0,div(Ω) defined as follows

F : u �→ Fu such, that 〈Fu, ϕ〉D =
∫
Ω
ADuDϕ,

G : u �→ Gu such, that 〈Gu, ϕ〉D =
∫
Ω
(LA)Du∇ϕ,

E : u �→ Eu such, that 〈Eu, ϕ〉D =
∫
Ω
(∇L)ADuϕ.

(3.1.4)

Since

|〈Fu, ϕ〉| =

∣∣∣∣∣∣
∫
Ω

d∑
n,m=1

(
d∑

j,l=1

Amlnj (x)(Du)lj(x)
)
(Dϕ)mn

∣∣∣∣∣∣
≤
∫
Ω

d∑
m,n=1

(
d∑

j,l=1

|Amlnj (x)||(Du)lj(x)|
)
|(Dϕ)mn|

≤ ‖A‖∞
⎛
⎝∫

Ω

d∑
j,l=1

|(Du)lj(x)|2
⎞
⎠

1
2 (∫

Ω

d∑
m,n=1

|(Dϕ)mn|2
) 1

2

≤ ‖A‖∞‖Du‖2‖Dϕ‖2 = ‖A‖∞‖u‖D‖ϕ‖D, (3.1.5)

we get

‖F‖D ≤ ‖A‖∞.
The operators G and E can be estimated in the same way as follows

‖G‖D ≤ c5‖L‖∞‖A‖∞
‖E‖D ≤ c4‖∇L‖∞‖A‖∞.

Thus the operators F , G and E are well defined. The matrix A is elliptic with

a constant α, whence 〈Fu, u〉 ≥ α‖u‖2D and operator F is bijective according to

Lax-Milgram lemma (see cf. [29], Corollary 8.2). This gives

‖F‖−1
D ≤ ‖F−1‖D ≤ 1

α
.

The operator F + G + E is bijective if and only if I + F−1(G + E) is bijective.

Let us compute

‖F−1(G+ E)‖D ≤ ‖F−1‖D(‖G‖D + ‖E‖D) ≤ 1

α
‖A‖(c5‖L‖∞ + c4‖∇L‖∞).

We conclude, using the estimates from Lemma 16, that

‖F−1(G+ E)‖D ≤ ‖A‖∞
α

(
c5
√
d‖K‖∞

(1− ‖K‖∞)
+
c4
√
d‖∇K‖∞

(1− ‖K‖∞)2

)
.

Due to A1 we get that ‖F−1(G + E)‖D < 1. Hence, I + F−1(G + E) is bijective

and there is only one solution u ∈ W 1,2
0,div fulfilling (3.1.3). Moreover, one gets
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‖u‖1,2 ≤ c‖f‖−1,2 according to Lemma 11. Note that there exists a constant c

such that ‖f‖D < c‖f‖−1,2. Now we can express p from equation (3.1.2) by

∇p = div(CA)Du−∇CADu+ h

and, since [div(CA)Du − ∇CADu + h, ϕ]−1,2 = 0 for ϕ ∈ W 1,2
0,div(Ω) according

to (3.1.3), existence of p is proved due to the Lemma 15. Moreover, this lemma

leads to an estimate

‖u‖1,2 + ‖p‖2 ≤ c‖f‖−1,2.

Throughout the rest of this section we assume that A2 holds. We work with

three operators F , E and G defined in (3.1.4).

26 Lemma. Ker(F ′ + G′ + E ′) is a set of all weak solutions ψ ∈ W 1,2
0,div(Ω) to a

system

div(CA)T∇ψ + div((∇C)A)Tψ = 0,

divψ = 0,

ψ|∂Ω = 0. (3.1.6)

A set Ran(F ′ +G′ + E ′) can be described as

{ϕ ∈ W 1,2
0,div(Ω), ∃ψ ∈ W 1,2

0,div(Ω),

〈ϕ, z〉D = [div(CA)T∇ψ + div((∇C)A)Tψ, z] ∀z ∈ W 1,2
0,div(Ω)}. (3.1.7)

Proof. Let ψ be a weak solution to the equation (3.1.6), which means that ψ

satisfies the equation∫
Ω

CADϕ∇ψ +

∫
Ω

(∇C)ADϕψ = 0 ∀ϕ ∈ W 1,2
0,div(Ω).

The left hand side of this equation coincides with 〈(F + G + E)ϕ, ψ〉D and an

identity

〈(F + G+ E)ϕ, ψ〉D = 〈(F ′ +G′ + E ′)ψ, ϕ〉D (3.1.8)

completes the proof of the first part.

Now, ϕ is in Ran(F ′+G′+E ′) if and only if there exists ψ ∈ W 1,2
0,div(Ω) such that

for all z ∈ W 1,2
0,div(Ω)

〈ϕ, z〉 = 〈(F ′ +G′ + E ′)ψ, z〉D = 〈ψ, (F +G+ E)z〉D =∫
Ω

CADz∇ψ + (∇C)ADzψ = [div(CA)T∇ψ + div((∇C)A)Tψ, z] (3.1.9)

which is the desired conclusion.
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27 Lemma. The operator E : W 1,2
0,div(Ω) �→ W 1,2

0,div(Ω) is compact.

Proof. We may factorize E as follows

W 1,2
0,div(Ω)

E−→ W 1,2
0,div(Ω)

E ↓ ↑ H
(L2(Ω,Rd))′ I−→ (W 1,2

0,div(Ω))
′,

Here H is an identification between a Hilbert space and its dual, while I is dual

to the compact embedding between W 1,2
0,div and L2, thus I is compact (see [28]

Theorem 4.19). E is defined in the same way as E, it means

E(u)ϕ =

∫
Ω

(∇L)ADuϕ

for all ϕ ∈ L2(Ω,Rd).

Proof of Theorem 2. Let assumption A2 hold. As in the previous section we focus

on the equation

(F +G+ E)u = h.

By A2 we get ‖F−1‖‖G‖ < 1, thus all assumptions to Lemma 17 are satisfied,

since E is compact due to Lemma 27. Applying Lemma 26 we get the claim.

3.2 Higher differentiability

Before formulating a proof of the main results, we show a proof of the interior

regularity via bootstrap argument presented in [22].

28 Lemma. Let Ω′ ⊂ Ω be a nonempty open and bounded set which fulfills

dist(Ω′, ∂Ω) ≥ γ > 0. Moreover, let A ∈ W 1,∞(Ω, Rd2×d2), B ∈ W 2,∞(Ω, Rd2),

f ∈ L2(Ω, Rd), g ∈ W 1,2 satisfying
∫
Ω
g = 0, let condition A1 be fulfilled and

(u, p) be a weak solution to (1.1.5). Then
(
∂u
∂x1
, ∂p
∂x1

)
∈ W 1,2(Ω′)× L2(Ω′) and

∥∥∥∥ ∂u∂x1
∥∥∥∥
1,2,Ω′

≤ c(‖f‖2 + ‖g‖1,2),∥∥∥∥ ∂p∂x1
∥∥∥∥
2,Ω′

≤ c(‖f‖2 + ‖g‖1,2).

Proof. Denote V = Ω′. Then V is a compact set and there exists an open set

ΩV ⊂ Ω such that V ⊂ ΩV and dist(ΩV , ∂Ω) >
γ
2
. We choose an arbitrary smooth

bounded function ϑ such that dist(supp ϑ, ∂Ω) > γ
4
and ϑ(x) = 1 ∀x ∈ Ω′. We
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multiply formally (1.1.5) by a function ϑ (i.e. we apply a test function ϑϕ instead

of ϕ). Thus

−(divADu)ϑ+ (B∇p)ϑ = fϑ on Ω,

ϑ div u = gϑ on Ω. (3.2.1)

It holds that

(− divAD(uϑ)) = −1

2

(
∂

∂xi
Aklij

∂(uϑ)l
∂xj

+
∂

∂xi
Aklij

∂(uϑ)j
∂xl

)d
k=1

= −(divADu)ϑ− div(A((∇ϑ)u))−ADu∇ϑ

B∇(pϑ) =

(
Bki

(
∂ϑp

∂xi

))d
k=1

=

(
Bki

∂p

∂xi
ϑ+Bkip

∂ϑ

∂xi

)d
k=1

= (B∇p)ϑ+ (B∇ϑ)p.

Hence the system (3.2.1) is equivalent to

− divAD(uϑ) +B∇(pϑ) = fϑ− F (u, p, A,B, ϑ) on Ω,

div(uϑ) = gϑ+ u∇ϑ on Ω, (3.2.2)

where F is defined as

F (u, p, A,B, ϑ) = div(A(∇ϑu)) + ADu∇ϑ−B∇ϑp

and the L2 norm of F can be estimated by

‖R‖2 ≤ c(‖A‖1,∞‖ϑ‖2,∞‖u‖1,2 + ‖B‖∞‖∇ϑ‖∞‖p‖2).

We set u = uϑ, p = pϑ, f = fϑ − F (u, p, A,B, ϑ) and g = gϑ + u∇ϑ. The

equation (3.2.2) can be written as

− divADu+B∇p = f on Ω,

div u = g on Ω.

The Green’s formula shows that∫
Ω

g =

∫
Ω

ϑg +

∫
Ω

u∇ϑ =

∫
Ω

ϑ divu+

∫
Ω

u∇ϑ =

∫
∂Ω

uϑν = 0.

Here ν stands for a unit outer normal. In order to shorten the notation, we write

Δδe1u(x) instead of u(x+ δe1)− u(x). By the linearity of (1.1.5),

− divAD
(
Δδe1u

δ

)
+B∇

(
Δδe1p

δ

)
=

1

δ
Δδe1f +

1

δ
(div(Δδe1A)Du(.+ δe1))

+
1

δ
((Δδe1B)∇p(.+ δe1)) ,

div
Δδe1u

δ
=

Δδe1g

δ
,

Δδe1u|∂Ω = 0. (3.2.3)
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For δ small enough, there exists a constant c, which is independent of δ, such

that ∥∥∥∥1δΔδe1f

∥∥∥∥
−1,2

≤ c‖f‖2,∥∥∥∥1δΔδe1g

∥∥∥∥
2

≤ c‖g‖1,2,∥∥∥∥1δΔδe1B

∥∥∥∥
1,∞

≤ c‖B‖2,∞,∥∥∥∥1δΔδe1A

∥∥∥∥
∞

≤ c‖A‖1,∞

and

‖(Δδe1B)∇p(.+ δe1)‖−1,2 ≤ c‖p‖2‖Δδe1B‖1,∞,
‖ div(Δδe1A)Du(.+ δe1)‖−1,2 ≤ c‖u‖1,2‖Δδe1A‖∞.

Moreover,

‖f‖2 + ‖g‖1,2 + ‖u‖1,2 + ‖p‖2 ≤ c(‖f‖2 + ‖g‖2),
where c = c(θ, A,B,Ω). The equation (3.2.3) satisfies the assumptions of Theo-

rem 1 thus ∥∥∥∥Δδe1u

δ

∥∥∥∥
1,2

≤ c(‖f‖2 + ‖g‖1,2)∥∥∥∥Δδe1p

δ

∥∥∥∥
2

≤ c(‖f‖2 + ‖g‖1,2)

We conclude from [10], Lemma 15.5 that ∂u
∂x1

is in W 1,2, ∂p
∂x1

is in L2, and that

‖ ∂

∂x1
(ϑu)‖1,2 ≤ c(‖f‖2 + ‖g‖1,2),

‖ ∂

∂x1
(ϑp)‖2 ≤ c(‖f‖2 + ‖g‖1,2).

The L2 norm of ∂
∂x1
p can be estimated in the same way.

The derivative with respect to the first canonical vector was chosen just for

simplification of the proof. It is obvious, that the previous lemma can be modified

for a derivative with respect to any canonical vector.

29 Theorem. Let Ω′ be an arbitrary nonempty open subset of Ω such that

dist(Ω′,Ω) ≥ γ > 0. Let A ∈ W 1,∞(Ω,Rd4), B ∈ W 2,∞(Ω,Rd2), f ∈ L2(Ω,Rd),

g ∈ W 1,2(Ω,R) and let condition A1 be fulfilled. Then a weak solution (u, p) is in

space W 2,2(Ω′,Rd)×W 1,2(Ω′,R) and following estimates hold

‖u‖2,2,Ω′ ≤ c(‖f‖2 + ‖g‖1,2),
‖p‖1,2,Ω′ ≤ c(‖f‖2 + ‖g‖1,2).
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Regularity of some special cases of the system (1.1.5) can be found in [10],

[14]. Here we use the result published in [12].

30 Definition. We say that a matrix A is weakly coercive if there exists λ > 0

such that for all u ∈ W 1,2
0 (Ω,Rd)∫

Ω

ADuDu > λ‖∇u‖22.

31 Theorem. Let k ∈ N ∪ {0}, Ω be a bounded domain of class Ck+2. We

assume that A ∈ W k+1,∞(Ω,Rd4) is weakly coercive, g ∈ W k+1,2(Ω,R) and f ∈
W k,2(Ω,Rd). Then any weak solution (u, p) to a system

− divADu+∇p = f in Ω,

div u = g in Ω,

u|∂Ω = 0 (3.2.4)

belongs to W k+2,2(Ω)×W k+1,2(Ω), and

‖u‖k+2,2 + ‖p‖k+1,2 ≤ c(‖f‖k,2 + ‖g‖k+1,2 + ‖u‖2).

Proof. For details, we refer reader to Theorem 1.2 and Remark 1.5 in Part II in

[12]. The proof of the theorem given there can be easily generalized.

As written before the system (1.1.5) can be arranged as

− divCADu+∇p = f −DCA∇u,
div u = g. (3.2.5)

We recall that C = B−1.

32 Lemma. The matrix CA is weakly coercive under A2.

Proof. We suppose that C = I − L. Let us compute∫
Ω

CADuDu =

∫
Ω

ADuDu− LADuDu ≥ α‖Du‖22 − ‖L‖∞‖A‖∞‖Du‖22 ≥

(α− ‖A‖∞‖L‖∞)|Du|2

Assumption A2 grants that ‖A‖‖L‖ < α and thus the proof is complete.

As a consequence we obtain a proof of Theorem 3.
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Proof of 3. Let assumption A2 hold. It suffices to show the claim for a weak so-

lution to (3.2.5). By Lemma 32, the matrix CA is weakly coercive, thus Theorem

31 gives

‖u‖k+2,2 + ‖p‖k+1,2 ≤ c(‖f‖k,2 + ‖DC‖∞‖A‖∞‖u‖k+1,2 + ‖g‖k+1,2 + ‖u‖2).

For k = 0 we get

‖u‖2,2 + ‖p‖1,2 ≤ c(‖f‖2 + ‖DC‖∞‖A‖∞‖u‖1,2 + ‖g‖1,2 + ‖u‖2),

thus

‖u‖2,2 + ‖p‖1,2 ≤ c(‖f‖2 + ‖g‖1,2 + ‖u‖1,2).
Let the estimate

‖u‖k+2,2 + ‖p‖k+1,2 ≤ c(‖f‖k,2 + ‖g‖k+1,2 + ‖u‖1,2) (3.2.6)

hold for some k ∈ N. Then for k + 1 we get, according to Theorem 31,

‖u‖k+3,2 + ‖p‖k+2,2 ≤ c(‖f‖k+1,2 + ‖DC‖∞‖A‖∞‖u‖k+2,2 + ‖g‖k+2,2 + ‖u‖2).

From (3.2.6) we have an estimate on ‖u‖k+2,2 and we immediately get the first

claim of Theorem 3. If A1 holds, Theorem 1 give us an estimate on ‖u‖1,2, whence
‖u‖k+2,2 + ‖p‖k+1,2 ≤ c(‖f‖k,2 + ‖g‖k+1,2).

3.3 Hölder regularity

In this section, we use results on solutions to the system

− divADu+∇p = divF on Ω,

div u = 0 on Ω,

u = 0 on ∂Ω, (3.3.1)

proved in [8]. Results concerning regularity of weak solutions to (3.3.1) are given

in the following theorem.

33 Theorem. Let A ∈ VMOB be elliptic and Ω be a C1 domain. Then there

exists a positive constant c8 such that, for any (u, p) which solves (3.3.1) and a

right hand side F ∈ L2,μ(Ω,Rd2), (0 ≤ μ < d), we have

‖Du‖L2,μ + ‖p‖L2,μ ≤ c8‖F‖L2,μ. (3.3.2)
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Let (u, p) be a weak solution to (1.1.5). Then assumption p ∈ L2,μ leads to

the claim that p and Du are in L2,μ+2. This fact is formulated in the following

lemma.

34 Lemma. Let Ω be a C1 domain, Ω1 ⊂ Ω be a nonempty open subset, 0 <

μ < d − 2 (resp. μ = 0 for d ≤ 2) and ν ∈ [μ, μ + 2] (resp. ν ∈ [0, d) for

d ≤ 2). Let A ∈ VMOB be symmetric and elliptic, f = divF , F ∈ L2,ν(Ω,Rd2),

B ∈ W 1,∞(Ω,Rd2), c8‖I − B‖∞ =: l < 1 and g = 0. We suppose, moreover,

that a weak solution (u, p) ∈ W 1,2(Ω)×L2,μ(Ω) to (1.1.5) fulfills
∫
Ω1
p = 0. Then

there exists a constant c such that

‖Du‖L2,ν + ‖p‖L2,ν ≤ c(‖F‖L2,ν + ‖p‖L2,μ).

Proof. From B = I −K, the first equation in (1.1.5) can be rewritten as

− divADu+ (I −K)∇p = divF,

which is equivalent to

− divADu+∇p = divF + div (Kp)− (divK)p. (3.3.3)

The first and third terms on the right hand side are in appropriate Morrey spaces.

To handle the second term, we use Banach fixed-point theorem. Let us equip the

space W 1,2,ν
0,div (Ω) × L2,ν(Ω) with a norm ‖(u, p)‖ def

= ‖Du‖2,ν + ‖p‖2,ν . Fix (u, p)

and, for a given F , we define an operator P : W 1,2,ν
0,div × L2,ν �→W 1,2,ν

0,div × L2,ν by

P (v, q) = (w, r)
def⇔

− divADw +∇r = divF + div(Kq)− (divK)p &

∫
Ω1

r = 0. (3.3.4)

The right hand side of the equation in (3.3.4) can be expressed as divG where

G is in a space L2,ν(Ω,Rd2). Indeed, F and Kq are in L2,ν and (divK)p is in

L2,μ. Thus, according to Lemma 19, (divK)p can be expressed as a divergence

of some function from L2,ν(Ω,Rd2). Theorem 1 gives the existence of a unique

solution to the equation (3.3.4) and from Theorem 33 it follows that this solution

is in W 1,2,ν
0,div (Ω)× L2,ν(Ω,R). Thus target space of the operator P is W 1,2,ν

0,div (Ω)×
L2,ν(Ω,R) and the operator is well defined.

Let us estimate a norm ‖P (v1, q1)−P (v2, q2)‖ = ‖Dw1−Dw2‖L2,ν +‖r1−r2‖L2,ν .

Due to the linearity of (1.1.5) we have

− divAD(w1 − w2) +∇(r1 − r2) = − div(K(q1 − q2)).
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According to Theorem 33 and Lemma 19

‖Dw1 −Dw2‖L2,ν + ‖r1 − r2‖L2,ν ≤ c8‖K‖∞‖q1 − q2‖L2,ν = l‖q1 − q2‖L2,ν .

Hence, due to assumptions, the mapping P is a contraction. Note that the whole

procedure can be done even for P extended on W 1,2
0,div(Ω) × L2(Ω,R). That is,

P : W 1,2
0,div(Ω)×L2(Ω,R) �→W 1,2

0,div(Ω)×L2(Ω,R) is also a contraction. Therefore,

there exists a fixed point, i.e. a pair (v0, q0) ∈ W 1,2,ν
0,div (Ω) × L2,ν(Ω,R) such that

P (v0, q0) = (v0, q0). Because P is a contraction on the spaceW 1,2
0,div(Ω)×L2(Ω,R),

this fixed point coincides with the solution (u, p). We get

‖Du‖L2,ν + ‖p‖L2,ν ≤ c‖F‖L2,ν + l‖p‖L2,ν + c‖p‖L2,μ.

The claim follows immediately due to the assumption l < 1.

As a consequence of the previous lemma we get a proof of Theorem 4.

Proof of Theorem 4. Let B ∈ W 1,∞(Ω,Rd2) and let c8‖I − B‖∞ =: l < 1. For

a dimension two or less we get the claim immediately from Lemma 34. We now

assume that a dimension is greater than two. Note that, according to Theorem

1, we get the claim for μ = 0. Suppose for a moment that the claim is true for

some μ0. Then Lemma 34 gives the validity of the claim for μ < min{d, μ0 + 2}
and the Theorem is proven by induction.

3.4 Few additional lemmas

35 Lemma. Let Ω be a bounded Lipschitz domain, A ∈ L∞(Ω,Rd4) be an elliptic

matrix and (u, p) ∈ W 1,2(Ω,Rd) × L2(Ω,R),
∫
Ω
p = 0, be a weak solution to the

system

− divADu+∇p = divF,

div u = g,

u|∂Ω = 0. (3.4.1)

Then there exists δ > 0 such that, for F ∈ L2+δ(Ω,Rd2) and g ∈ L2+δ(Ω,R),

‖Du‖2+δ + ‖p‖2+δ ≤ c(‖F‖2+δ + ‖g‖2+δ). (3.4.2)

Proof. According to Bogovskĭi lemma (see [2] for more) there exists u1 such that

div u1 = g, u1|∂Ω = 0 and ‖Du1‖2+δ ≤ c‖g‖2+δ.
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Let (u0, p) solve the following system

− divADu0 +∇p = divF + divADu1,
div u0 = 0,

u0|∂Ω = 0.

According to Lemma 2.6 in [17], we have

‖Du0‖2+δ ≤ c‖F + ADu1‖2+δ ≤ c(‖F‖2+δ + ‖g‖2+δ).

Finally, Lemma 2.7 in [2] implies

‖p‖2+δ ≤ c(‖F + AD(u0 + u1)‖2+δ) ≤ c(‖F‖2+δ + ‖g‖2+δ).

As a consequence, the pair (u = u0 + u1, p) solves (3.4.1) and (3.4.2) holds

36 Lemma. Let A ∈ L∞(BR(0),R
d4) be an elliptic matrix and let (u, p) ∈

W 1,2(B+
R(0),R

d) × L2(B+
R(0),R),

∫
B+

R
p = 0, (resp. (u, p) ∈ W 1,2(BR(0),R

d) ×
L2(BR(0),R),

∫
BR
p = 0) be a weak solution to a system

− divADu+∇p = divF,

div u = g,

u|∂B+
R (0) = 0,

(resp. u|∂BR(0) = 0). (3.4.3)

Then there exists δ > 0 such that, for functions F ∈ L2+δ(BR(0),R
d2) and

g ∈ L2+δ(BR(0),R), we get p ∈ L2+δ(B+
R(0),R) (resp. p ∈ L,2+δ(BR(0),R)).

Moreover, there exists a constant c9 independent of R and right hand side such

that

‖p‖2+δ ≤ c9(‖F‖2+δ + ‖g‖2+δ).
Proof. For R = 1, it follows from Lemma 35. For arbitrary R > 0, it suffices to

use change of variables. Set ũ(x) = u(Rx), p̃(x) = p(Rx), F̃ (x) = F (Rx) and

g̃(x) = g(Rx) for x ∈ B+
1 (0). Then (ũ, p̃) solves

− divADũ+∇Rp̃ = divRF̃ in B+
1 (0),

div ũ = Rg̃ in B+
1 (0),

ũ|∂B+
1 (0) = 0,

(resp. ũ|∂B1(0)
= 0).

By Lemma 35, we get

‖Rp̃‖2+δ ≤ c(‖RF̃‖2+δ + ‖Rg̃‖2+δ),

where c does not depend on R, which implies the result.
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37 Remark. Let assumptions of the previous lemma hold. It is also true, that

‖p‖2 ≤ c10(‖F‖2 + ‖g‖2).

Furthermore, according to Lemma 2.6 in [17], it holds that c10c
−1
9 < 1.

38 Corollary. Let A ∈ L∞(BR(0),R
d4) be an elliptic matrix and let a matrix B ∈

L∞(BR(0),R
d2) satisfy ‖B‖∞ < c−1

9 . Let (u, p) ∈ W 1,2(B+
R(0),R

d)×L2(B+
R(0),R)

(resp. (u, p) ∈ W 1,2(BR(0),R
d)× L2(BR(0)R)) be a weak solution to a system

− divADu+∇p = divF − div (Bp) ,

div u = g,

u|∂B+
R (0) = 0,

(resp. u|∂BR(0) = 0). (3.4.4)

Then there exists δ > 0 and c11 such that, for F, g ∈ L2+δ(BR(0)), we get

u ∈ W 1,2+δ(B+
R(0),R

d), p ∈ L2+δ(B+
R(0),R) (resp. u ∈ W 1,2+δ(B+

R(0),R
d),

p ∈ L2+δ(B+
R(0),R)). Moreover, if

∫
B+

R
p = 0 (resp.

∫
BR
p = 0), then

‖Du‖2+δ + ‖p‖2+δ ≤ c11(‖F‖2+δ + ‖g‖2+δ).

Proof. We give the proof only for the upper half ball; the other case can be proven

in a similar way. For given q ∈ L2+δ(B+
R (0),R) let v, q

′ be a weak solution to a

system

− divADv +∇q′ = divF − div(Bq) in B+
R(0),

div v = 0 in B+
R (0),

v|∂B+
R(0) = 0,∫

B+
R

q′ =

∫
B+

R

p

and we define operator T : L2+δ(B+
R(0),R) �→ L2+δ(B+

R(0),R) as T (q) = q′. This

operator is well defined according to the previous lemma. Let q1, q2 ∈ L2+δ be

arbitrary and set q′1 = T (q1) and q′2 = T (q2). The linearity of the generalized

Stokes problem implies

− divAD(v1 − v2) +∇(q′1 − q′2) = div (B(q1 − q2)) in B+
R(0),

div(v1 − v2) = 0 in B+
R(0),

(v1 − v2)|∂B+
R(0) = 0

and
∫
BR

(q′1 − q′2) = 0. From Lemma 36 we obtain

‖q′1 − q′2‖2+δ ≤ c9‖B‖∞‖q1 − q2‖2+δ ≤ γ‖q1 − q2‖2+δ
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where γ = c9‖B‖∞ < 1. Hence T is a contraction and thus there exists q ∈
L2+δ(B+

R(0),R) such that T (q) = q and

− divADv +∇q = divF − divBq in B+
R (0),

div v = 0 in B+
R(0),

v|∂B+
R(0) = 0.

It can be derived from Lemma 36 that v ∈ W 1,2+δ. Functions (v, q) coincide

with (u, p) since (3.4.4) has a unique solution as proven further. Therefore, for∫
B+

R
p = 0, we get following estimate by Lemma 35

‖Du‖2+δ + ‖p‖2+δ ≤ c (‖F‖2+δ + ‖g‖2+δ + ‖Bp‖2+δ) ≤ c11 (‖f‖2+δ + ‖g‖2+δ) .

It remains to prove the uniqueness of solution to (3.4.4). Let (u1, p1), (u2, p2) ∈
W 1,2(B+

R(0),R
d)×L2(B+

R(0),R) be weak solutions to (3.4.4) such that
∫
B+

R(0)
p1 =∫

B+
R(0)

p2. Then

− divAD(u1 − u2) +∇(p1 − p2) = − divB(p1 − p2),

div(u1 − u2) = 0,

u1 − u2|∂B+
R (0) = 0

and
∫
B+

R(0)
p1 − p2 = 0. Thus, according to Lemma 36,

‖p1 − p2‖2 ≤ c10c
−1
9 ‖p1 − p2‖2.

Since c10c
−1
9 < 1, we get p1 = p2 and, consequently, u1 = u2.

39 Corollary. Let R1 > 0 and let A ∈ L∞(B+
R1
(0),Rd4) be an elliptic matrix and

let B ∈ L∞(B+
R1
(0),Rd2) satisfy ‖B‖∞ < c−1

9 . Then there exists R0 such that for

all R ∈ (0, R0) the following holds.

Let (u, p) ∈ W 1,2(B+
R(0),R

d)× L2(B+
R(0)R) be a weak solution to a system

− divADu+∇p = divF − div(Bp) +RS(u, p) on B+
R(0)

div u = g on B+
R(0)

u|∂B+
R

= 0, (3.4.5)

where S : W 1,2+δ(B+
R(0),R

d)×L2+δ(B+
R(0),R) �→W−1,2+δ(B+

R(0),R
d) is a linear

operator which is bounded independently of R.

Then there exists δ > 0 such that for (F, g) ∈ L2+δ(B+
R(0),R

d2 × R), we get

(u, p) ∈ W 1,2+δ(B+
R(0),R

d)× L2+δ(B+
R(0),R)
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Proof. As in the previous proof, we use Banach fixed–point theorem. We define

T : W 1,2+δ
0 (B+

R(0),R
d) × L2+δ

0 (B+
R(0)) �→ W 1,2+δ

0 (B+
R(0),R) × L2+δ

0 (B+
R(0)) as

follows

T (v, r) = (u, p) ⇔
− divADu+∇p = divF − div(Bp) +RS(v, r)

div u = q

u|∂B+
R

= 0.

Let (ui, pi) = T (vi, ri), i ∈ {1, 2}. Then

− divAD(u1 − u2) +∇(p1 − p2) = − div(B(p1 − p2))

+RS(v1 − v2, q1 − q2) in B
+
R(0)

div(u1 − u2) = 0 in B+
R(0)

(u1 − u2)|∂B+
R

= 0.

According to Lemma 38 it holds, that

‖D(u1−u2)‖2+δ,B+
R
+‖p1−p2‖2+δ,B+

R
≤ Rc11c

(
‖D(v1 − v2)‖2+δ,B+

R
+ ‖q1 − q2‖2δ,B+

R

)
.

It is enough to choose R0 such that R0c11c < 1 and the operator T is a contraction

for any R ∈ (0, R0). Uniqueness of solution to Stokes problem implies the claim

of the corollary.
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Chapter 4

Navier–Stokes System with

Pressure–dependent Viscosity

Throughout this chapter, we focus on the equation (1.1.2) in dimension d equal

2 or 3.

4.1 Existence of Solution

40 Lemma. Let Ω be a Lipschitz domain, c3 <
c1

(c1+c2)c7
. Then there exists a

constant c > 0 such that for all f ∈ W−1,2(Ω,Rd) there exists a weak solution

(u, p) ∈ W 1,2(Ω,Rd)× L2
0(Ω) to (1.1.2) satisfying

‖∇u‖2 + ‖p‖2 ≤ c‖f‖−1,2

Proof. Since we use the same method as in [9] where an analogous result is proven

for the growthm < 2, we provide only a sketch of the proof. This sketch is divided

into two steps. At first, we introduce an approximative problem

− div T (Duε, pε) + (uε∇)uε +
div uε

2
uε +∇pε = f in Ω,

−εΔpε + εpε + div uε = 0 in Ω,

u = 0 on ∂Ω
∂pε

∂ν
= 0 on ∂Ω (4.1.1)

and we show the existence of solution (uε, pε) to (4.1.1). Then we find a sequence

(uεn, pεn) converging to (u, p) and we show that (u, p) is a solution to (1.1.2).

Existence of solution to the approximative problem

In order to prove the existence of solution to (4.1.1), we use the Galerkin appro-

ximations.
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Let {αk}∞k=1 be a basis in W 1,2(Ω,R) and {ak}∞k=1 be a basis in W 1,2
0 (Ω,Rd). For

n ∈ N set

pn =

n∑
k=1

cnkα
k, un =

n∑
k=1

dnka
k,

where pn and un solve a system

ε

∫
Ω

∇pn∇αr + ε

∫
Ω

pnαr −
∫
Ω

un∇αr = 0, r = 1, . . . , n, (4.1.2)

∫
Ω

T (Dun, pn)Das +
∫
Ω

(un∇)unas +

∫
Ω

div un

2
unas =

−
∫
Ω

∇pnas + [f, as]W 1,2
0
, s = 1, . . . , n. (4.1.3)

We multiply (4.1.2) by cnr , (4.1.3) by d
n
s and we sum all together over r = 1, . . . , n

and s = 1, . . . , n. Since∫
Ω

(un∇)unun +

∫
Ω

div un
|un|2
2

= 0, (4.1.4)

we get

ε
(‖∇pn‖22 + ‖pn‖22

)
+

∫
Ω

T (Dun, pn)Dun = [f, un]W 1,2
0
.

Lemma 21 implies

ε
(‖∇pn‖22 + ‖pn‖22

)
+ ‖∇un‖22 ≤ c12

and

‖T (Dun, pn)‖22 ≤ c12.

Thus, up to a subsequence, (un, pn) → (u, p) weakly in W 1,2(Ω,Rd)×W 1,2(Ω,R)

and (un, pn) → (uε, pε) strongly in L4(Ω,Rd)×L2(Ω,R). Moreover, T (Dun, pn) →
χ weakly in L2(Ω,Rd2). That is enough to assert that, for all ϕ ∈ W 1,2(Ω,R) and

for all ψ ∈ W 1,2
0 (Ω,Rd),

ε

∫
Ω

∇pε∇ϕ+ ε

∫
Ω

pεϕ+

∫
Ω

div uεϕ = 0, (4.1.5)

∫
Ω

(uε∇)uεψ +
1

2

∫
Ω

(div uε)uεψ +

∫
Ω

χDψ −
∫
Ω

pε divψ = [f, ψ]W−1,2 , (4.1.6)

ε
(‖∇pε‖22 + ‖pε‖22

)
+

∫
Ω

χDuε = [f, uε]W−1,2 .

In order to conclude the first part of the proof, it is sufficient to show T (pε,Duε) =
χ. We still proceed as in [9]. First we prove strong convergence of Dun to Duε
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in L2(Ω,Rd2). Lemma 21 implies

c1‖Dun −Duε‖22 ≤
∫
Ω

(T (Dun, pn)− T (Duε, pε)) (Dun −Duε) + c3
2c1

‖pn − pε‖22

=

∫
Ω

T (Dun, pn)Dun −
∫
Ω

T (Duε, pε)D(un − uε)

−
∫
Ω

T (Dun, pn)Duε + c3
2c1

‖pn − pε‖22

=[f, un]W 1,2
0

− ε(‖∇pn‖22 + ‖pn‖22)−
∫
Ω

T (Duε, pε)D(un − uε)

−
∫
Ω

T (Dun, pn)Duε + c3
2c1

‖pn − pε‖22,

And, due to a weak lower semi-continuity of norms, we obtain

c1 lim
n→∞

‖Dun −Duε‖22 ≤ [f, uε]W 1,2
0

− ε
(‖∇pε‖22 + ‖pε‖22

)− ∫
Ω

χDuε ≤ 0.

Thus, Dun → Duε strongly in L2, (Dun, pn) → (Duε, pε) almost everywhere in

Ω. Due to the Vitali theorem,∫
Ω

T (Dun, pn)Dψ →
∫
Ω

T (Duε, pε)Dψ =

∫
Ω

χDψ.

Convergence of approximative solutions

We need to estimate pε and uε independently of ε. We take ϕ = pε in (4.1.5) and

ψ = uε in (4.1.6). We get

ε
(‖∇pε‖22 + ‖pε‖22

)
+

∫
Ω

pε div uε = 0,∫
Ω

T (Duε, pε)Duε −
∫
Ω

pε div uε = [f, uε]W 1,2
0
.

Consequently,

ε
(‖∇pε‖22 + ‖pε‖22

)
+ ‖∇uε‖22 ≤ c13

and, due to Lemma 21,

‖T (Duε, pε)‖2 ≤ c13.

We test equation (4.1.1) by ϕε defined by

divϕε = pε in Ω,

ϕε = 0 on ∂Ω.

We emphasize, that
∫
Ω
pε = 0 due to (4.1.1)2 and (4.1.1)4. Further, due to the

Bogovskĭi lemma, ‖ϕ‖1,2 ≤ c7‖pε‖2. We obtain

‖pε‖22 =
∫
Ω

T (Duε, pε)Dϕε − [f, ϕε]W 1,2
0

+

∫
Ω

(uε∇)uεϕε +
1

2

∫
Ω

(div uε)uεϕε.
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It can be derived, using Lemma 21, that

‖pε‖22 ≤ (c(1 + ‖Duε‖2) + ‖f‖−1,2) ‖ϕε‖1,2 + 2‖∇uε‖2‖uε‖4‖ϕε‖4
≤c‖ϕε‖1,2 ≤ c‖pε‖2,

and therefore ‖pε‖2 ≤ c. Thus, up to a subsequence, (uε, pε) → (u, p) weakly in

W 1,2
0 (Ω,Rd)×L2(Ω) and T (Duε, pε) → χ weakly in L2. Above obtained estimate

is enough to proceed to a limit in (4.1.1) as follows∫
Ω

χDϕ+

∫
Ω

(u∇)uϕ−
∫
Ω

p divϕ = [f, ϕ]W 1,2
0
,

div u = 0.

As in the first step, it is sufficient to show that χ = T (Du, p) which can be done

by proving that (Duε, pε) → (Du, p) strongly in L2. We define ϕε as

divϕε = pε − p in Ω,

ϕε = 0 on ∂Ω.

We remind, that ϕε → 0 weakly in W 1,2(Ω,Rd). Hence, by testing (4.1.1) by ϕε,

we get

‖pε − p‖22 =
∫
Ω

p(pε − p)− [f, ϕε]W 1,2
0

+
1

2

∫
Ω

(div uε)uεϕε +

∫
Ω

T (Du, p)Dϕε

+

∫
Ω

(uε∇)uεϕε +

∫
Ω

(T (Duε, pε)− T (Du, p))Dϕε

and consequently,

lim
ε→0

‖pε − p‖22 = lim
ε→0

∫
Ω

(T (Duε, pε)− T (Du, p))Dϕε. (4.1.7)

It can be easily seen that∫
Ω

(T (Duε, pε)− T (Du, p))Dϕε ≤ c2

∫
Ω

|Duε −Du||Dϕε|+ c3

∫
Ω

|pε − p||Dϕε|

≤c2‖Duε −Du‖2‖Dϕε‖2 + c3‖pε − p‖2‖Dϕε‖2
=c2c7‖Duε −Du‖2‖pε − p‖2 + c3c7‖pε − p‖22

(4.1.8)

and further,

c1
2
‖Duε −Du‖22 ≤

∫
Ω

(T (Duε, pε)− T (Du, p)) (Duε −Du) + c23
2c1

‖pε − p‖22.

We test (4.1.1) by ϕε = uε − u. We obtain∫
Ω

(T (Duε, pε)− T (Du, p)) (Duε −Du) = −
∫
Ω

T (Du, p)D(uε − u)

+

∫
Ω

pε div(uε − u) + [f, uε − u]W 1,2
0

−
∫
Ω

(uε∇)uε(uε − u)

− 1

2

∫
Ω

(div uε)uε(uε − u).
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Since
∫
Ω
pε div uε = −ε(‖∇pε‖22 + ‖pε‖22), we conclude that

∫
Ω

(T (Duε, pε)− T (Du, p)) (Duε −Du) + ε
(‖∇pε‖22 + ‖pε‖22

)
= −

∫
Ω

T (Du, p)D(uε − u) + [f, uε − u]W 1,2
0

−
∫
Ω

(uε∇)uε(uε − u)

− 1

2

∫
Ω

(div uε)uε(uε − u).

Therefore

lim
ε→0

c1
2
‖Duε −Du‖22 ≤ lim

ε→0

c23
2c1

‖pε − p‖22 (4.1.9)

and, consequently,

lim
ε→0

‖Duε −Du‖2 ≤ lim
ε→0

c3
c1
‖pε − p‖2 (4.1.10)

From (4.1.7), (4.1.8) and (4.1.9) it may be concluded that

(1− c3c7) lim
ε→0

‖pε − p‖22 ≤
c2c7c3
c1

lim
ε→0

‖pε − p‖22.

As (1− c3c7(1 +
c2
c1
)) > 0, it can be derived that

lim
ε→0

‖pε − p‖2 = 0

and from (4.1.10) we get

lim
ε→0

‖D(uε − u)‖2 = 0,

whence the proof is complete.

4.2 Higher differentiability

41 Lemma. Let Ω be a C2 domain and let f ∈ L2(Ω,Rd). Let assumption

(1.1.3) be satisfied with c3 <
c1

(c1+c7c2)c7
. Then a weak solution to (1.1.2) belongs

to W 2,2(Ω,Rd)×W 1,2(Ω,R).

Proof. As an interior regularity has been proven already (see e.g. [24]), we focus

only on boundary regularity. Unknowns u and p satisfy following integral identity∫
Ω

T (Du, p)Dϕ− (u⊗ u)∇ϕ− p divϕ− fϕ = 0

for all ϕ ∈ W 1,2
0 . Let 0 ∈ ∂Ω and suppose that ϕ is supported in some sufficiently

small neighborhood Ω0,R. A precise value of R will be specified later. We define
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functions

û(x) = u
(
FR

( x
R

))
,

p̂(x) = p
(
FR

( x
R

))
,

f̂(x) = f
(
FR

( x
R

))
,

ψ(x) = ϕ
(
FR

( x
R

))
, (4.2.1)

where x ∈ B+
R(0). We remind that FR

(
x
R

)
= F (x). We set y = F (x). Following

relations hold1

∇û(x) = ∇yu(F (x))∇F (x) = ∇yu(F (x))I +R∇yu(F (x))ω(x),

Dû(x) = Dyu(F (x)) +Rω(x)∇yu(F (x))

and thus (û, p̂) satisfy the equation∫
B+

R(0)

T (Dyu(F ), p(F ))Dyϕ(F ) |det∇F |+
∫
B+

R(0)

u(F )⊗u(F )∇yϕ(F ) |det∇F |

−
∫
B+

R (0)

p(F ) divy ϕ(F ) |det∇F | −
∫
B+

R (0)

f(F )ϕ(F ) |det∇F | = 0.

Let R be sufficiently small and x ∈ B+
R (0). Then we have

∇F−1(y) = I +Rω(y),

∇2F (x) <∞.

The functions (û, p̂) fulfill∫
B+

R(0)

T (Dû+Rω∇û, p̂)Dψ∇F−1 −
∫
B+

R (0)

(û⊗ û)Dψ∇F−1

−
∫
B+

R (0)

p̂Tr(∇ψ∇F−1) =

∫
B+

R(0)

fψ (4.2.2)

for all ψ ∈ W 1,2
0 (B+

R(0)). In further calculations, we omit the term | det∇F |.
We provide only a sketch of the proof because we follow step-by-step the proof

presented in [24]. Let i ∈ {1, . . . , d − 1}. We emphasize, that the operator Δδei

is defined as Δδeif(x) = f(x+ δei)− f(x). We apply operator 1
δ
Δδei on equation

(4.2.2). We denote 1
δ
Δδei by Δ and 1

δ
Δ−δei by Δ− to shorten the notation. We

set

Â(x) =

∫ 1

0

∂T (Dû(x) +Rω∇û(x) + tΔδei(Dû(x) +Rω∇û(x)), p(x) + tΔδeip(x))

∂D dt

B̂(x) =

∫ 1

0

∂T (Dû(x) +Rω∇û(x) + tΔδei(Dû(x) +Rω∇û(x)), p(x) + tΔδeip(x))

∂p
dt.

1The ω denotes, as usual, arbitrary matrix–, vector–, or real–valued function which is

bounded independently on R and on the right hand side.
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From equation (4.2.2), we conclude, that (û, p̂) satisfies∫
B+

R(0)

ÂΔDûDψ +

∫
B+

R(0)

B̂Δp̂Dψ +R

∫
B+

R(0)

(ÂΔDûDψ + B̂Δp̂Dψ)ω

+

∫
B+

R(0)

T (Dû+Rωû, p̂)DψΔ∇F−1+

∫
B+

R(0)

Δ(u⊗u)Dψ∇F−1+

∫
B+

R (0)

(u⊗u)DψΔ∇F−1

+

∫
B+

R(0)

ΔpTr(∇ψ∇F−1) =

∫
B+

R(0)

fΔ−ψ.

Choose a test function ψ(x) = η2(x)Δû(x), where η ∈ C∞(B+
R) is a nonnegative

cut-off function. In what follows, norms ‖ω‖∞, ‖Δ−∇F−1‖∞, ‖η‖1,∞, ‖û‖1,2 and
‖p̂‖2 will be included in a general constant c. We obtain

(c1 − Rc) ‖ηDΔû‖2,B+
R
≤
∫
B+

R

η2(I +Rω)ÂDΔ(ûη)DΔ(ûη)

= −
∫
B+

R

(I +Rω)2ηÂD(Δû)∇ηΔû

−
∫
B+

R

(I +Rω)B̂(Δp)ηD(Δû)η − 2

∫
B+

R

(I +Rω)B̂(Δp)ηΔû∇η

+

∫
B+

R

T (Dû+Rω∇û, p̂)η2D(∇û)Δ∇F−1+

∫
B+

R

T (Dû+Rω∇û, p̂)2η∇η∇ûΔ∇F−1

+

∫
B+

R

(I +Rω)Δ(û⊗ û)ηD(Δu)η +

∫
B+

R

(I +Rω)Δ(û⊗ û)2η∇ηΔu

+

∫
B+

R

(û⊗ û)2η∇ηΔûΔ∇F−1 +

∫
B+

R

(û⊗ û)η2D(∇û)Δ∇F−1

+

∫
B+

R

ΔpTr(2η∇ηΔû∇F−1)+

∫
B+

R

Δp̂η2Tr(Δ∇û(I+Rω))+
∫
B+

R

fΔ−(η2Δû(x))

= −I1 − I2 − I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10 + I11 + I12.

Since Tr(∇û(I+Rω)) = 0, we immediately get I11 = 0. For I1 and I3 it is enough

to use the Young inequality and boundedness of Â and B̂ to get

|I1| ≤ c(ε) + ε ‖ηDΔû‖2,B+
R

(4.2.3)

and

|I3| ≤ c(ε) + ε ‖ηΔp̂‖2,B+
R
. (4.2.4)

The Young inequality also gives

|I10| ≤ c(ε) + ε ‖ηΔp̂‖2,B+
R
. (4.2.5)

The boundedness of B̂ yields

|I2| ≤ c3‖ηΔp̂‖2,B+
R
‖ηDΔû‖2,B+

R
. (4.2.6)
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The term T (Dû + Rω∇û, p̂) is estimated from above according to Lemma 21.

Thus we have

|I4|+ |I5| ≤ c(ε) + ε ‖ηDΔû‖2,B+
R
. (4.2.7)

For term I6 we have

|I6| ≤
(∫

B+
R

(ηDΔû)2

)1/2(∫
B+

R

(|Δû||û||η|)2
)1/2

≤‖ηDΔû‖2,B+
R
‖û‖6,B+

R
‖ηΔû‖3,B+

R
.

The interpolation inequality ‖f‖3,B+
R
≤ c‖f‖d/6

1,2,B+
R

‖f‖1−d/6
2,B+

R

(see Theorem 5.8 in

[1]) implies

|I6| ≤ c‖ηΔDû‖2,B+
R
‖∇(ηΔû)‖d/6

2,B+
R

‖ηΔû‖1−d/6
2,B+

R

≤ c‖ηΔDû‖2,B+
R
‖D(ηΔû)‖d/6

2,B+
R

≤ c‖ηΔDû‖2,B+
R

(
‖∇ηΔû‖d/6

2,B+
R

+ ‖ηΔDû‖d/6
2,B+

R

)
≤ c‖ηΔDû‖2,B+

R
+ c‖ηΔDû‖1+d/6

2,B+
R

≤ c(ε) + ε‖ηΔDu‖2
2B+

R
.

The same procedure may be applied on I6, I7 and I8. Thus

|I6|+ |I7|+ |I8|+ |I9| ≤ c(ε) + ε‖ηΔDu‖2
2B+

R
. (4.2.8)

Finally,

|I12| ≤ c(ε) + ε ‖ηDΔû‖22,B+
R

(4.2.9)

Inequalities (4.2.3), (4.2.4), (4.2.5), (4.2.6), (4.2.7), (4.2.8) and (4.2.9) yield

(c1 − cR) ‖ηDΔû‖2,B+
R
≤ ε

(
‖ηDΔû‖22,B+

R
+ ‖ηΔp̂‖22,B+

R

)
+

+ (c3 + ε) ‖ηΔp̂‖2,B+
R
‖ηDΔû‖2,B+

R
+ c(ε) (4.2.10)

In order to get an estimate of pressure, we choose Φ ∈ W 1,2
0 as a solution to the

following problem

div Φ = ηΔp̂− |B+
R |−1

∫
η(x)Δp̂(x)dx in Ω,

Φ = 0 on ∂Ω.

It holds that ‖Φ‖1,2.B+
R
≤ c7‖ηΔp̂‖2,B+

R
We use a test function ψ = ηΦ to get

0 =

∫
B+

R

(
ÂDΔû+ B̂Δp̂

)
ηDΦ(I+Rω)+

∫
B+

R

ΔT (Dû+Rωû, p̂)∇ηΦ(I+Rω)+∫
B+

R

Δ(û⊗ û)D(ηΦ)−
∫
B+

R

Δpη div(ηΦ)−
∫
B+

R

fΔ−Φ

−
∫
B+

R

ΔpηTr(Φ(I −∇F−1)) +

∫
B+

R

T (Dû+Rωû, p̂)D(ηΦ)Δ∇F−1

+

∫
B+

R

(û⊗ û)D(ηΦ)Δ∇F−1 = J1 + J2 + J3 − J4 − J5 − J6 + J7 + J8.
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Hölder inequality implies

|J1| ≤
(
c2 ‖ηDΔû‖2,B+

R
+ c3 ‖ηΔp̂‖2,B+

R

)(
c7 ‖ηΔp̂‖2,B+

R
+ c
)
. (4.2.11)

Easily, using Young inequality,

|J2| ≤ |
∫
B+

R

T (Dû+Rωû, p̂)Δ−(∇ηΦ)| ≤ c(ε) + ε‖ηΔp‖2
2,B+

R
, (4.2.12)

where ε stands for arbitrary real positive number. Further

|J3| ≤
∣∣∣∣∣
∫
B+

R

Δûûη∇Φ

∣∣∣∣∣ +
∣∣∣∣∣
∫
B+

R

Δ(û⊗ û)∇ηΦ
∣∣∣∣∣

≤‖Δp̂η‖2,B+
R
‖ûηΔû‖2,B+

R
+ |
∫
B+

R

(û⊗ û)Δ−(∇ηΦ)|.

Because ‖ûηΔû‖2,B+
R
≤ ‖û‖6,B+

R
‖ηΔû‖3,B+

R
≤ c‖û‖6,B+

R
‖∇(ηΔû)‖d/6

2,B+
R

‖ηΔû‖1−d/6
2,B+

R

,

we get

|J3| ≤ ε‖ηΔDû‖2,B+
R
‖ηΔp‖2,B+

R
+ ε‖ηΔp‖2

2,B+
R
+ c(ε). (4.2.13)

Further,

J4 ≥
∫
B+

R

Δp(η div Φ +∇ηΦ) ≥ ‖ηΔp‖2 −
(∫

B+
R

(Δp)η

)2

−
∫
B+

R

|pΔ−(∇ηΦ)|

≥‖(Δp)η‖2
2,B+

R
− c(ε)− ε‖(Δp)η‖2

2,B+
R
. (4.2.14)

Easily

|J5| ≤ c(ε) + ε ‖ηΔp̂‖2,B+
R
. (4.2.15)

Finally

|J6| ≤ cR‖Δpη‖2
2,B+

R
, (4.2.16)

|J7| ≤ c(ε) + ε‖Δpη‖2
2,B+

R
(4.2.17)

and, since (u⊗ u) ∈ L3, we get

|J8| ≤ c(ε) + ε‖Δpη‖22. (4.2.18)

Thus we have

‖ηΔp̂‖2
2,B+

R
≤ (c2c7+ε+cR)‖ηΔDû‖2,B+

R
‖ηΔp‖2,B+

R
+(c3c7+ε+cR)‖ηΔp‖22,B+

R
+c(ε).

(4.2.19)

Here we use Young inequality in a form ab ≤ a2

2(c7c2+c1)
+ b2(c7c2+c1)

2
. We obtain(

1− c3c7 − c2c7
2(c7c2 + c1)

+ ε+ cR

)
‖ηΔp̂‖2

2,B+
R
≤(

c2c7(c2c7 + c1)

2
+ ε+Rc

)
‖ηΔDû‖2

2,B+
R
+ c(ε).
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The assumption c3 <
c1

(c1+c2c7)c7
implies that there exist R > 0 and ε > 0 such

that

1− c3c7 − c1c7
2(c2c7 + c1)

− ε− Rc >
c2c7

2(c2c7 + c1)
.

Thus

‖ηΔp̂‖2
2,B+

R
≤ ((c2c7 + c1)

2 + ε+Rc
) ‖ηΔDû‖2

2,B+
R
+ c(ε). (4.2.20)

The same Young inequality applied on (4.2.10) implies

‖ηΔDû‖2
2,B+

R
≤ c3
c1

(
1

2(c2c7 + c1)
‖ηΔp̂‖2

2,B+
R
+
c2c7 + c1

2
‖ηΔDû‖2

2,B+
R

)
+ (ε+Rc)‖ηD∇û‖2

2,B+
R
+ c(ε)

≤
(
c3(c2c7 + c1)

c1
+ ε+Rc

)
‖ηΔDû‖2

2,B+
R
+ c(ε)

According to assumptions, we can choose R and ε such that c3(c7c2+c1)
c1

+ε+Rc < 1

and thus we get

‖ηΔDû‖2
2,B+

R
+ ‖ηΔp̂‖2

2,B+
R
≤ c.

Now it is enough to choose η as

η =

⎧⎪⎪⎨
⎪⎪⎩

1 in B+
R/2

0 in R
d \BR

smoothly

.

Thus ∥∥∥∥∂∇û∂xi

∥∥∥∥
2,BR/2

+

∥∥∥∥ ∂p̂∂xi
∥∥∥∥
2,BR/2

≤ c(‖u‖1,2, ‖p‖2, ‖f‖2, ω, R, T )

for all i ∈ {1, . . . , d− 1}.
It suffices to show that also the derivatives with respect to the normal vector are

bounded in proper spaces. The functions (û, p̂) satisfy equation

− div T (Dû+ (∇F−1 − I)∇û, p̂)∇F−1

−∇p̂∇F−1 = g, (4.2.21)

div û = Tr((∇F−1 − I)∇û), (4.2.22)

where g ∈ L
3
2 contains right hand side and the convective term. We rewrite this

system in point of view of an unknown vector s =
(
∂2û1
∂x2d

, . . . , ∂
2ûd
∂x2d

, ∂p̂
∂xd

)
. The

equation (4.2.21) can be reformulated as follows

A
kl

ij

∂2ui
∂xl∂xj

+

(
δkl +Rω + (I − Rω)

∂Tkl(Dû− RωDû, p̂)
∂p̂

)
∂p

∂xl
= g′, (4.2.23)
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where A = −(I−Rω)∂T (Dû−RωDû,p̂)
∂D . Therefore ‖A‖ ≤ c2‖I+Rω‖. We emphasize

that according to the assumptions |∂T
∂p
| < c3 < 1 and thus, for R > 0 sufficiently

small, there exists an inverse matrix C =
(
δkl + (I − Rω)∂Tkl(Dû−RωDû,p̂)

∂p̂

)−1

. We

multiply (4.2.23) by C and we put all the already estimated terms on the right

hand side. Hence, we obtain, for m ∈ {1, . . . , d}2

(−Ãs)m = (Cg′)m +
∂p

∂xm
(1− δdm)−

∑
l,j∈{1,...,d}2\{(d,d)},i∈{1,...,d}

(CA)mlij
∂2ui
∂xl∂xj

,

(4.2.24)

where Ã is defined as a d× (d+ 1) matrix

Ãmi =

⎛
⎜⎜⎜⎜⎜⎝(CA)mdid

0
...

0

1

⎞
⎟⎟⎟⎟⎟⎠ . (4.2.25)

We denote the right hand side of (4.2.24) by g̃. We add to (4.2.24) the equation

(4.2.22) differentiated with respect to xd. We get

(Ã′s)m = g̃m(1− δm(d+1)) + δm(d+1)
∂ui
∂xj

∂2F−1
j

∂xi∂xd
. (4.2.26)

Here

Ã′ =

(
Ã

0, . . . , 0, 1, 0

)
+Rω.

Further, we denote the right hand side of (4.2.26) by g̃′. We compute det Ã′. We

expand the determinant of Ã′ along the last row and along the last column. We

get det Ã′ = det ÃM + Rc where ÃM is the (d − 1)× (d − 1) matrix that results

from Ã by removing the last two columns and last row. The matrix CA is elliptic.

Indeed, A is elliptic with constant c1 − Rc because ∂T
∂D

is elliptic. Further, CA

is elliptic with a constant c1 − c2
c3

1−c3 −Rc which is, for R small enough, greater

than zero according to the assumptions. Thus also a matrix ÃM is elliptic and it

has nonzero determinant. We get, that, for R sufficiently small, there exists an

inverse matrix (Ã′)−1 ∈ L∞. From (4.2.26) we have for arbitrary r ∈ R

‖s‖r ≤ C

(
‖g̃′‖r +

∥∥∥∥∥
(
∂p

∂xi

)
i=1,...,d−1

∥∥∥∥∥
r

+

∥∥∥∥∥
(

∂2ui
∂xl∂xj

)
i,j=1,...,d−1

∥∥∥∥∥
r

)
. (4.2.27)

Since g̃′ ∈ L
3
2 , we have ∇2u ∈ L

3
2 (B+

R(0),R
d3). The Sobolev embedding theorem

implies u ∈ W 1,3 ∩ L6, thus u∇u ∈ L2(B+
R(0),R

d) and the right hand side g̃′ in

2Here d is not a summation index.
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(4.2.26) is bounded in L2. By iterating this process, we obtain

‖s‖2 ≤ C

(
‖g′‖2 +

∥∥∥∥∥
(
∂p

∂xi

)
i=1,...,d−1

∥∥∥∥∥
2

+

∥∥∥∥∥
(

∂2ui
∂xl∂xj

)
i,j=1,...,d−1

∥∥∥∥∥
2

)
, (4.2.28)

which concludes the proof.

4.3 Higher integrability

42 Lemma. Let c3 < min
{

c1
(c1+c7c2)c7

, c−1
9

}
and Ω be a C2 domain. Then there

exists a constant δ > 0 such that, for f ∈ L2+δ(Ω,Rd), a weak solution (u, p) to

(1.1.2) belongs to W 2,2+δ(Ω,Rd)×W 1,2+δ(Ω,R).

Proof. Assume that 0 = x0 ∈ Ω and let R > 0 be such that B2R ⊂ Ω. Since

all assumptions of the previous lemma holds, we can assume, that (u, p) ∈
W 2,2(Ω,Rd) × W 1,2(Ω,R). We differentiate (1.1.2) with respect to xi for i ∈
{1, . . . , d} fixed. We get

− div
∂T

∂D
D
(
∂u

∂xi

)
− div

∂T

∂p

∂p

∂xi
+∇ ∂p

∂xi
=

∂

∂xi
(f − div(u⊗ u)). (4.3.1)

Set A = ∂T
∂D

(Du, p), B = ∂T
∂p
(Du, p), U = ∂u

∂xi
and P = ∂p

∂xi
. The equation (4.3.1)

can be rewritten as

− divADU +∇P =
∂

∂xi
(f − div(u⊗ u)) + divBP.

We multiply this equation by a cut–of function η ∈ C∞ which is defined by

η(x) =

{
1 x ∈ BR/2

0 x ∈ Rd \BR

.

Thus functions (Ũ , P̃ )
def
= (Uη, Pη) solve

− divA∇Ũ +∇P̃ = F + divBP̃ ,

div Ũ = g,

Ũ
∣∣∣
BR

= 0,

where

F = η
∂

∂xi
(f − div(u⊗ u)) + (∇η)P + (∇η)BP + div(A(∇η)U)

and

g =
∂η

∂xj
Uj.
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Since ∇U ∈ L2(Ω,Rd2), U belongs to L6(Ω,Rd). Thus we have g ∈ L2+δ(Ω,R).

Further, F can be written as F = divF ′, where F ′ ∈ L2+δ(Ω,Rd2). Indeed,

since u∇u ∈ L5(Ω,Rd), the term η ∂
∂xi

(f − div(u⊗ u)) + divA(∇η)U is in space

W−1,2+δ(Ω,Rd). Moreover, F − η ∂
∂xi

(f − div(u ⊗ u)) ∈ L2(Ω,Rd) because U ∈
W 1,2(Ω,Rd), P ∈ L2(Ω,R) and B ∈ L∞(Ω,Rd2). Thus, according to Corollary

38, we get that (∇U, P ) are in space L2+δ(Ω,Rd2 × R). Since i can be chosen

arbitrarily, we immediately obtain u ∈ W 2,2+δ(BR
2
,Rd) and p ∈ W 1,2+δ(BR

2
,R).

Let 0 = x0 ∈ ∂Ω and Ωx0,R be the neighborhood defined earlier. We define

quantities û, p̂ and f̂ by (4.2.1) and we differentiate equation (1.1.2) with respect

to xi, i ∈ {1, . . . , d− 1}. We assume that ∂û
∂xi

is equal to zero on ∂B+
R (0). We set

A = ∂T
∂D ((Dû+Rω∇û, p̂)) and B = ∂T

∂p
((Dû+Rω∇û, p̂)) and we have∫

BR+

AD ∂û

∂xi
Dψ +

∫
B+

R

B
∂p̂

∂xi
Dψ −

∫
B+

R

∂p̂

∂xi
divψ

= RS1

(
∂û

∂xi
,
∂p̂

∂xi
, ψ

)
+ S2(û, p̂, ψ), (4.3.2)

where

S1

(
∂û

∂xi
,
∂p̂

∂xi
, ψ

)
=

∫
B+

R

(
T (Dû+Rω∇û, p̂)ω∇ ∂û

∂xi
Dψ∇F +

∂p̂

∂xi
(Tr∇ψω)

+AD ∂û

∂xi
Dψω +B

∂p̂

∂xi
Dψω

)
and

S2(û, p̂, ψ) =

∫
B+

R

(
−f ∂ψ

∂xi
− T (Dû+Rω∇û, p̂)∂∇F

∂xi
Dψ + p̂Tr(∇ψ∂∇F

∂xi
)

+
∂

∂xi
(û⊗ û)Dψ∇F + (û⊗ û)Dψ∂∇F

∂xi

+T (Dû+Rω∇û, p̂)Dψ∂∇F
∂xi

)
.

It holds that

|S2(û, p̂, ψ)| ≤

c

(
‖f‖L2+δ + ‖∇û‖L2+δ + ‖p̂‖L2+δ +

∥∥∥∥ ∂

∂xi
(û⊗ û)

∥∥∥∥
L2+δ

+ ‖û⊗ û‖L2+δ

)
‖ψ‖

W
1,(2+δ)′
0

.

Thus the term S2(û, p̂, ψ) can be represented as
∫
G∇ψ where G ∈ L2+δ(Ω,Rd2).

For S1 we have, due to Hölder inequality,∥∥∥∥S1

(
∂û

∂xi
,
∂p̂

∂xi
, .

)∥∥∥∥
−1,2+δ

= sup
ψ∈W 1,(2+δ)′

0 ,‖ψ‖1,(2+δ)′≤1

∣∣∣∣S1

(
∂û

∂xi
,
∂p̂

∂xi
, ψ

)∣∣∣∣
≤ c

(∥∥∥∥∇ ∂û

∂xi

∥∥∥∥
2+δ

+

∥∥∥∥ ∂p̂∂xi
∥∥∥∥
2+δ

)
.
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According to Lemma 39 there exists R0 > 0 such that for all R < R0 it holds

that
(
∂û
∂xi
, ∂p̂
∂xi

)
∈ W 1,2+δ(B+

R (0),R
d)× L2+δ(B+

R (0),R).

The same considerations can be done even for a function, which is not supported

in B+
R . It is enough to take ∂û

∂xi
η instead of ∂û

∂xi
where η is a nonnegative smooth

cut–off function defined as

η(x) =

{
1 x ∈ B+

R/2

0 x ∈ R \B3R/4

.

The regularity of the derivation with respect to the normal vector can be done

similarly as in proof of Lemma 41. Hence, since Ω is compact, we get the claim

of the lemma.

43 Corollary. Let all assumptions of Lemma 42 holds. Then there exists δ > 0

such that (Du, p) ∈ W 1/2,2+δ(∂Ω).

Proof. Follows immediately from properties of the trace operator.

4.4 Key lemma and its consequences

For needs of this section, we define quantity Eu,p(x,R) for α ∈ (0, 1) as follows

Eu,p(x,R) = R
2−d
2 ‖∇2u‖2,Ωx,R

+R
2−d
2 ‖∇p‖2,Ωx,R

+Rα.

Throughout this section, we assume that Ω is a bounded C2 domain.

44 Key lemma. Let (1.1.3) be satisfied with c3 <
c1

(c1+c7c2)c7
, let α ∈ (0, 1) and

let f ∈ L2,μ(Ω,Rd) where μ > d − 1 + α. There exists R0 > 0 such that for all

M > 0 and τ ∈ (0, 1) there exists ε > 0 for which the following implication holds:

Let (u, p) ∈ W 1,2(Ω,Rd) × L2(Ω,R) be a weak solution of system (1.1.2) and let

for any x0 ∈ ∂Ω and R ∈ (0, R0) the inequalities

Eu,p(x0, R) < ε, (|∇u|)Γh
+ | (p)Γh

| ≤ M

hold. Then

Eu,p(x0, τR) ≤ 2C∗ταEu,p(x0, R).

Proof. We prove this lemma via blow up system.

Throughout the proof, we write Fh instead of Fxh,Rh
and Ωh instead of Ωxh,Rh

.

We define a set Γh as Γh = ∂Ωh ∩ ∂Ω. For a contradiction, we suppose that there

exist M , τ , xh ∈ ∂Ω, εh → 0, Rh → 0, as h tends to zero, and weak solutions

(uh, ph) to (1.1.2) satisfying

Euh,ph(xh, Rh) = εh, |(∇uh)Γh
|+ |(ph)Γh

| ≤M (4.4.1)
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and

Euh,ph(xh, τRh) > 2C∗ταEuh,ph(xh, Rh).

We, moreover, assume that3

(ph)Γh
→ a in R

(D∗uh)Γh
→ e in R

d×d.

Further, from the assumption (4.4.1), it follows that Rh

εh
= R1−α

h
Rα

h

εh
→ 0 as h

tends to zero. We set x = Fh(y) and we introduce new rescaled quantities vh, qh

and fh, defined by

vh(y) =
uh (Fh(y))− (∇u)Γh

· (0, . . . , 0, yd)Rh

Rhεh
,

qh(y) =
ph (Fh(y))− (ph)Γh

εh
,

fh(y) =
Rh

εh
f (Fh(y)) .

Their derivatives fulfill

∇yvh(y) =
∇xuh(Fh(y))− (∇xuh)Γh

· (0, . . . , 0, 1)
εh

+
Rh

εh
ω∇xuh(Fh(y)),

Dyvh(y) =
Dxuh(Fh(y))− (D∗

xuh)Γh

εh
+

+
1

2

(
Rh

εh
ω∇xuh(Fh(y)) +

(
Rh

εh
ω∇xuh(Fh(y))

)T)
,

∇2
yvh(y) =

1

Rhεh

(∇2
xuh(Fh(y)) (∇Fh(y))2

)
+

+
1

εhRh
∇xuh(Fh(y))∇2Fh(y),

∇yqh(y) =
Rh∇xph (Fh(y))

εh
+
R2
h

εh
ω∇xph(Fh(y)). (4.4.2)

By the change of variables, we have, due to properties of Fh (see Observations

20),

(|Rd
h| − c|Rd+1

h |)
∫
B+

1 (0)

|∇xph(Fh(y))|2dy ≤
∫
Ωh

|∇xph|2dx

≤ (|Rd
h|+ c|Rd+1

h |)
∫
B+

1 (0)

|∇xph(Fh(y))|2dy,

(|Rd
h| − c|Rd+1

h |)
∫
B+

1 (0)

|∇2
xuh(Fh(y))|2dy ≤

∫
Ωh

|∇2
xuh|2dx

≤ (|Rd
h|+ c|Rd+1

h |)
∫
B+

1 (0)

|∇2
xuh(Fh(y))|2dy.

3We use the convention ∇ =
(
∇′, ∂

∂d

)
. The operator D∗ is defined as D∗u def

=

1
2

((
0, ∂

∂d
u
)
+
(
0, ∂

∂d
u
)T)
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Thus

1√
Rd
h + cRd+1

h

‖∇xph‖2,Ωh
≤‖∇xph(Fh(.))‖2,B+

1 (0) ≤
1√

Rd
h − cRd+1

h

‖∇xph‖2,

1√
Rd
h + cRd+1

h

‖∇2
xuh‖2,Ωh

≤‖∇2
xuh(Fh(.))‖2,B+

1 (0) ≤
1√

Rd
h − cRd+1

h

‖∇2
xuh‖2,Ωh

.

(4.4.3)

The identity (∇Fh)2 = R2
hI +R3

hω +R4
hω implies that

‖∇2vh‖2,B+
1 (0) + ‖∇qh‖2,B+

1 (0) ≤
∥∥∥∥ 1

Rhεh
∇2
xuh(Fh(.))(∇Fh)2

∥∥∥∥
2,B+

1 (0)

+

+

∥∥∥∥ 1

Rhεh
∇xuh(Fh(.))∇2Fh

∥∥∥∥
2,B+

1 (0)

+

+

∥∥∥∥Rh

εh
∇xuh(Fh(.))

∥∥∥∥
2,B+

1 (0)

+

∥∥∥∥R2
h

εh
ω∇xph(Fh(.))

∥∥∥∥
2,B+

1 (0)

≤ R
2−d
2

h

εh
√
1− cRh

(‖∇2uh‖2,Ωh
+ ‖∇ph‖2,Ωh

)
+

+ cRh
R

2−d
2

h

εh
√
1− cRh

(‖∇2uh‖2,Ωh
+ ‖∇ph‖2,Ωh

)
+

+

∥∥∥∥ 1

Rhεh
∇xuh(Fh(.))∇2Fh

∥∥∥∥
2,B+

1 (0)

≤ 1 + cRh

εh
√
1− cRh

Euh,ph(xh, Rh) +

∥∥∥∥ 1

Rhεh
∇xuh(Fh(.))∇2Fh

∥∥∥∥
2,B+

1 (0)

and similarly

‖∇2vh‖2,B+
1 (0) + ‖∇qh‖2,B+

1 (0) ≥

≥ 1− cRh

εh
√
1 + cRh

Euh,ph(xh, Rh)−
∥∥∥∥ 1

Rhεh
∇xuh(Fh(.))∇2Fh

∥∥∥∥
2,B+

1 (0)

.

The term
∥∥∥ 1
Rhεh

∇xuh(Fh(.))∇2Fh

∥∥∥
2,B+

1 (0)
converges to zero as h tends to zero.

Indeed, according to the Poincaré inequality (Lemma 22) we get∥∥∥∥ 1

Rhεh
∇xuh(Fh(.))∇2Fh

∥∥∥∥
2,B+

1 (0)

≤cRh

εh
‖∇xuh(Fh(.))‖2,B+

1 (0) ≤ c
Rh

εhR
d
2

‖∇uh‖2,Ωh

≤c
(
Rh

εh
|(∇uh)Γh

|+Rh
R

1− d
2

h

εh
‖∇2uh‖2,Ωh

)

≤c
(
Rh

εh
M +Rh

Euh,ph(xh, Rh)

εh

)

≤c
(
Rh

εh
M +Rh

)
→ 0.
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It follows that

Evh,ph(0, 1) → 1 as h→ 0,

Evh,ph(0, τ) > 2C∗ταEvh,ph(0, 1) for h sufficiently small. (4.4.4)

Boundedness of the second gradient of vh and the first gradient of ph in space L2

implies that, up to a subsequence,

(vh, ph) → (v, p) in W 2,2(B+
1 (0))×W 1,2(B+

1 (0)) weakly.

We set x = Fh(y) and ψ(y) = ϕ(Fh(y)) = ϕ(x). Every term in a weak formulation

of the equation (1.1.2) can be reformulated as follows∫
ΩRh

(xh)

f(x)ϕ(x)dx =

∫
B+

1 (0)

f(Fh(y))ψ(y)| det∇Fh(y)|dy,

∫
ΩRh

(xh)

uh(x)⊗ uh(x)Dϕ(x)dx =

=
1

Rh

∫
B+

1 (0)

uh(Fh(y))⊗ uh(Fh(y))Dψ(y)| det∇Fh(y)|dy−

− Rh

∫
B+

1 (0)

uh(Fh(y))⊗ uh(Fh(y))Dψ(y)ω| det∇Fh(y)|dy,

similarly∫
ΩRh

(xh)

T (Duh(x), ph(x))Dϕ(x)dx =

=
1

Rh

∫
B+

1 (0)

T (Duh(Fh(y)), ph(Fh(y)))Dψ(y)| det∇Fh(y)|dy−

−Rh

∫
B+

1 (0)

T (Duh(Fh(y)), ph(Fh(y)))Dψ(y)ω| det∇Fh(y)|dy

and, due to divψ(y) = Tr(∇ϕ∇Fh) = Rh divϕ+R2
h∇ϕω,∫

ΩRh
(xh)

ph(x) divϕ(x)dx =
1

Rh

∫
B+

1 (0)

ph(Fh(y)) divψ(y)| det∇Fh(y)|dy+

+Rh

∫
B+

1 (0)

(ph(Fh(y))) Tr(∇ϕ(Fh(y))ω)| det∇Fh(y)|dy.

Hence, for all ψ ∈ W 1,2
0 (B+

1 (0)), holds

I1 + I2 + I3 + I4 + I5 + I6 = 0,

div vh = − 1

εh

(
∂uhd
∂xd

)
Γh

+
Rh

εh
ω div uh,

vh|Bd−1
1

= 0 (4.4.5)
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where the terms Ii are defined as

I1 =

∫
B+

1 (0)

1

εh
T (Dvhεh + (D∗uh)Γh

, qhεh + (ph)Γh
) : Dψ | det∇Fh(y)|

Rd
h

,

I2 =

∫
B+

1 (0)

1

εh

(
T

(
Dvhεh + (D∗uh)Γh

+Rh
1

2
(∇uhω+

(∇uhω)T
)
, qhεh + (ph)ΩRh

(xh)

)
−

T (Dvhεh + (D∗uh)Γh
, qhεh + (ph)Γh

)) : Dψ | det∇Fh(y)|
Rd
h

,

I3 =

∫
B+

1 (0)

− 1

εh
(qhεh + (ph)Γh

) divψ
| det∇Fh(y)|

Rd
h

,

I4 = −
∫
B+

1 (0)

fhψ
| det∇Fh(y)|

Rd
h

,

I5 =

∫
B+

1 (0)

1

εh
(vhRhεh + (∇uh)Γh

(0, . . . , 0, 1)Rh)⊗

⊗ (vhRhεh + (∇uh)Γh
(0, . . . , 0, 1)Rh)Dψ | det∇Fh(y)|

Rd
h

,

I6 =
R2
h

εh

∫
B+

1 (0)

((ph(Fh(y))) Tr(∇ϕ(Fh(y))ω)+

+uh(Fh(y))⊗ uh(Fh(y))Dψ(y)ω
+T (Duh(Fh(y)), ph(Fh(y)))Dψ(y)ω) | det∇Fh(y)|

Rd
h

.

Since divy uh = 0, we have

Tr
(∇yuh(Fh(y))(∇Fh(y))−1

)
= 0

and identity Fh(y) =
1
Rh

(I +Rhω) implies

divy uh(Fh(y)) = −Rhω∇yuh(Fh(y)).

By the zero-Dirichlet boundary condition, ∂uhi(Fh(y))
∂yj

∣∣∣
(y′,0)

= 0 for all y′ ∈ Bd−1
1 ,

i ∈ {1, . . . , d} and j ∈ {1, . . . , d− 1}. Thus, for every y ∈ Bd−1
1 ,

|∇yuhd(Fh(y))| ≤ cRh|∇yuh(Fh(y))|.
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Thus, for
(
∂uhd
∂xd

)
Γh

, we have

∫
Γh

∣∣∣∣∂uhd∂xd
(x)

∣∣∣∣ dx =

∫
Bd−1

1

∣∣∣∣∂uhd∂xd
(Fh(y))

∣∣∣∣ | det∇Fh(y)|dy
≤c
∫
Bd−1

1

∣∣∇yuhd(Fh(y))(∇Fh)−1
∣∣ | det∇Fh(y)|dy

≤cRh

∥∥(∇Fh)−1
∥∥
∞

∫
Bd−1

1

|∇yuh(Fh(y))| | det∇Fh(y)|dy

=cRh

∥∥(∇Fh)−1
∥∥
∞

∫
Bd−1

1

|∇xuh(Fh(y))∇Fh| | det∇Fh(y)|dy

≤cRh‖(∇Fh)−1‖∞‖∇Fh‖∞
∫
Γh

|∇xuh|dx ≤ cRh|Γh|M.

Therefore 1
εh

∣∣∣∣(∂uhd∂xd

)
Γh

∣∣∣∣ ≤ cRh

εh
M → 0. Also Rh

εh
ω div uh → 0 and thus div vh

tends to zero.

The term |det∇Fh(y)|
Rd

h
tends to 1 in L∞ as h goes to zero. Thus we omit it in further

computations. The term I6 tends to zero as the integral is bounded and Rh

εh
→ 0.

Similarly, also the terms I5 and I2 goes to zero. The term I4 can be handled as

|I4| = 1

εhR
d−1
h

∣∣∣∣
∫
Ωh

fψ

∣∣∣∣ ≤ Rh

εh
R−d
h

∫
Ωh

|fψ| ≤

≤ R
(μ+1−d)
h

εh
R−μ‖f‖2,Ωh

‖ψ‖2,Ωh
≤ Rμ+1−d−αR

α

εh
‖f‖2,μ‖ψ‖2 → 0.

We rewrite the term I1 as follows

I1 =
1

εh

(∫
B+

1 (0)

T (Dvhεh + (D∗uh)Γh
, qhεh + (ph)Γh

) : Dψ

−
∫
B+

1 (0)

T ((D∗uh)Γh
, (ph)Γh

) : Dψ︸ ︷︷ ︸
=0

⎞
⎟⎟⎟⎠

=
1

ε

∫
B+

1 (0)

∫ 1

0

∂

∂s
T (sDvhεh + (D∗uh)Γh

, sqhεh + (ph)Γh
)ds

=

∫
B+

1 (0)

(∫ 1

0

∂T (sDvhεh + (D∗uh)Γh
, sqhεh + (ph)Γh

)

∂D
ds

)
Dvh : Dψ(y)dy+

+

∫
B+

1 (0)

(∫ 1

0

∂T (sDvhεh + (D∗uh)Γh
, sqhεh + (ph)Γh

)

∂p
ds

)
qhDψ(y)dy.

Thus

I1 →
∫
B+

1 (0)

ADv : Dψ(y)dy +
∫
B+

1 (0)

BqDψ(y)dy
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where A and B are defined as

A
def
=

∂T (a, e)

∂D
,

B
def
=

∂T (a, e)

∂p
.

From the fact that
∫
B+

1 (0)
(ph)Γh

divψ = 0 for all ψ ∈ W 1,2
0 (B+

1 (0),R
d), we derive

that

I3 =

∫
B+

1 (0)

− 1

εh
(qhεh + (ph)Γh

) divψ

=

∫
B+

1 (0)

qh divψ →
∫
B+

1 (0)

q divψ.

We may conclude that v and q solve

− divADv + (I − B)∇q = 0 in B+
1 (0),

div v = 0 in B+
1 (0) (4.4.6)

and by Lemma 25

Ev,q(x, τR) ≤ CταEv,q(x,R). (4.4.7)

Our goal is to prove that

2C∗τα < Evh,qh(0, τ) → Ev,q(0, τ) ≤
≤ C∗ταEv,q(0, 1) ≤ C∗τα lim inf

h→0
Evh,qh(0, 1) ≤ C∗τα (4.4.8)

which is a contradiction. The first inequality comes from (4.4.4). The third

inequality is true due to (4.4.7). The weak lower semicontinuity of norm gives

the forth inequality and the fifth inequality is trivial. It remains to show that

Evh,qh(0, τ) → Ev,q(0, τ).

We do it by proving that (vh, qh) → (v, q) strongly inW 2,2(B+
τ (0))×W 1,2(B+

τ (0)).

Throughout the rest of this proof, we neglect the term | det∇Fh|
Rd

h
for simplicity. We

differentiate (4.4.5) with respect to xi, i ∈ {1, . . . , d− 1}. Set

Ah =
∂T

∂D
(Dvhεh + (D∗uh)Γh

, qhεh + (ph)Γh
) =

∂T

∂D
(ah, eh)

Bh =
∂T

∂p
(Dvhεh + (D∗uh)Γh

, qhεh + (ph)Γh
) =

∂T

∂p
(ah, eh) .

Further, we set wh =
∂vh
∂xi

and rh =
∂qh
∂xi

. The functions wh and rh satisfy

− divAhDwh + div ((I − Bh) · rh) = Sh,

divwh = gh

wh|Bd−1
1

= 0 (4.4.9)
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where Sh ∈ W−1,2 is defined as

[Sh, ϕ]W−1,2 = R2
h

∫
B+

1 (0)

2 (wh ⊗ (vhεh + (∇uh)Γh
(0, . . . , 0, 1)))Dϕ+

∫
B+

1 (0)

fh
∂ϕ

∂xi

+

∫
B+

1 (0)

(
∂T

∂D (ah +Rh(∇uhω + (∇uhω)T ), eh)− ∂T

∂D (ah, eh)

)
D∂vh
∂xi

Dϕ

+

∫
B+

1 (0)

(
∂T

∂p
(ah +Rh(∇uhω + (∇uhω)T ), eh)− ∂T

∂p
(ah, eh)

)
∂qh
∂xi

Dϕ

+

∫
B+

1 (0)

∂T

∂D (ah +Rh(∇uhω + (∇uhω)T ), eh) ∂
∂xi

∇uh(F (h))RhωDϕ

+

∫
B+

1 (0)

∂T

∂D (ah +Rh(∇uhω + (∇uhω)T ), eh)∇uh(Fh) ∂
∂xi

∇FhDϕ

+
Rh

εh

∫
B+

1 (0)

[
∂

∂xi
(uh(Fh)⊗ uh(Fh))DϕRhω + uh(Fh)⊗ uh(Fh)Dϕ ∂

∂xi
∇Fh

+

(
∂T

∂D (Duh(Fh), ph(Fh))D ∂

∂xi
uh(Fh) +

∂T

∂p
(Duh(Fh), ph(Fh)) ∂

∂xi
ph(Fh)

)
DϕRhω

+ T (Duh(Fh), ph(Fh))Dϕ ∂

∂xi
∇Fh

]
= J1 + J2 + J3 + J4 + J5 + J6 + J7. (4.4.10)

Further, gh is defined as follows

gh =

1

εhRh
Tr

(
∇2uh (Fh(x))

(
∂Fh(x)

∂xi
− RhI

)
∇Fh(x) +∇uh (Fh(x)) ∂

∂xi
∇Fh(x)

)

From (4.4.9) and ∂
∂xi

(4.4.6) we deduce

− divAD(wh − w) + (I −B)∇(rh − r) = Sh + div(Ah −A)Dwh
+div(Bh − B)rh

div(wh − w) = gh. (4.4.11)

Let there be a real smooth cut–off function θ ≥ 0, θ =

{
1 for x ∈ B+

τ (0)

0 for x ∈ Rd \B+
1 (0)

Set w̃h = (wh −w)θ and r̃h = (rh − r)θ. We multiply system (4.4.11) by θ to get

− divADw̃h + (I − B)∇r̃h = θSh + θ div(Ah −A)Dwh
+θ div(Bh − B)rh + (I − B)(∇θ)(rh − r)

−∇θAD(wh − w)− divA(∇θ)(wh − w)

div w̃h = θgh +∇θ(wh − w)

w̃h|∂B+
1

= 0. (4.4.12)
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We denote the left hand side of (4.4.12) by S̃h. We test equation (4.4.12) by w̃h.

We get

c1‖Dw̃h‖22 ≤ A

∫
B+

1

Dw̃hDw̃h =
∫
B+

1

r̃h div w̃h +

∫
B+

1

Br̃hDw̃h + [S̃h, w̃h]−1,2

≤ ‖r̃h‖2‖ div w̃h‖2 + c3‖r̃h‖2‖Dw̃h‖2.

Since ‖ div w̃h‖2 = ‖θgh + ∇θ(wh − w)‖2 = o(h) → 0, we get, using Young

inequality

c1‖Dw̃h‖22 ≤ ε
(‖Dw̃h‖22 + ‖r̃h‖22

)
+c3‖r̃h‖2‖Dw̃h‖2+c[S̃h, wh]−1,2+o(h). (4.4.13)

Further, we test equation (4.4.12) by ϕh which solves

divϕh = r̃h − (r̃h)B+
1

ϕh|∂B+
1

= 0.

We get

‖∇r̃h‖22 =
∫
B+

1

ADw̃hDϕh +
∫
B+

1

Br̃hDϕh + [S̃h, ϕh]−1,2

≤ c2c7‖Dw̃h‖2‖r̃h‖2 + (c3c7 + ε)‖r̃h‖22 + [S̃h, ϕh]−1,2.

We use Young inequalities in the same way as in (4.2.10) to conlude

‖Dw̃h‖22 + ‖r̃h‖22 ≤ c([S̃h, w̃h]−1,2 + [S̃h, ϕh]−1,2) + o(h).

We show that the terms [S̃h, w̃h]−1,2 and [S̃h, ϕh]−1,2 tend to zero. In what follows,

we estimate a term [S̃h, ϕh] since a method is the same even for the second term.

The terms J1, . . . , J7 come from (4.4.10) with ϕ = ϕh.

[S̃h, ϕ]−1,2 = J1 + J2 + J3 + J4 + J5 + J6 + J7 +

∫
B+

1

∇θ(Ah − A)Dwhϕh

+

∫
B+

1

θ(Ah −A)DwhDϕh +
∫
B+

1

∇θ(Bh −B)rhϕh +

∫
B+

1

θ(Bh −B)rh∇ϕh

−
∫
B+

1

∇θAD(wh − w)ϕh −
∫
B+

1

A∇θ(wh − w)Dϕh

= J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8 + J9 + J10 + J11 − J12 − J13.

Since wh → w and ϕh → 0 strongly in L2(Ω,Rd), it can be derived that J12 and

J13 tend to zero.

Further, Ah → A almost everywhere, Bh → B a.e., ∂T
∂D

(ah+Rh(∇uhω+(∇uhω)T ), eh) →
∂T
∂D

(ah, eh) a.e. and also ∂T
∂p
(ah + Rh(∇uhω + (∇uhω)T ), eh) → ∂T

∂p
(ah, eh) almost
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everywhere. Thus, terms J3, J4, J8, J9, J10 and J11 go to zero.

Term J2 can be estimated similarly as term I4.

Because wh and vh are both bounded in L4, we get J1 → 0 due to Rh → 0.

Further, Rh

εh
→ 0, thus J7 → 0.

The fact Rh → 0 also implies J5 → 0 and, since
∥∥∥ ∂
∂xi

∇Fh
∥∥∥
∞

≤ R2c, we easily get

J6 → 0.

Thus we have
(
∂vh
∂xi
, ∂p
∂xi

)
→
(
∂v
∂xi
, ∂p
∂xi

)
strongly in W 1,2(B+

τ ) × L2(B+
τ ) for all

i ∈ {1, . . . , d − 1}. The convergence of derivations with respect to the normal

vector can be done similarly as at the end of proof of Lemma 41.

45 Lemma. Let assumptions (1.1.3) be satisfied with c3 < c1
(c1+c7c2)c7

and let

f ∈ L2,μ(Ω,R) where μ > d− 1+α. There exists R0 such that for all M > 0 and

γ ∈ (0, α) there exists τ ∈ (0, 1) and ε > 0 for which the following implication

holds.

Let (u, p) ∈ W 1,2(Ω,Rd)× L2(Ω,R) be a weak solution of the system (1.1.2) and

let for all R ∈ (0, R0) and for all x0 ∈ ∂Ω the inequalities

Eu,p(x0, R) < ε, (|∇u|)Γx0,R
+ | (p)Γx0,R

| ≤ M

4

hold. Then

Eu,p(x0, τ
kR) ≤ 1

2k
τkγEu,p(x0, R),

for all k ∈ N

.

Proof. According to Lemma 22, we get for 0 < R < R′

|(p)Γx,R
− (p)Γx,R′ | =

c

R
d
2

‖(p)Γx,R
− (p)Γx,R′‖2,Ωx,R

≤ cR
−d
2

(
‖(p)Γx,R

− p‖2,Ωx,R
+ ‖p− (p)Γx,R′‖2,Ωx,R′

)
≤ c14R

1− d
2‖∇p‖2,Ωx,R

+ c15R
′R− d

2‖∇p‖2,Ωx,R′ .

Fix τ such that 2C∗τα−γ < 1
2
and τ < 1

2
. According to Lemma 44 there exists ε1

such that

Eu,p(x0, τR) ≤ 2C∗ταEu,p(x0, R)

whenever

Eu,p(x0, R) < ε1.

We suppose that Eu,p(x0, R) < ε2 where ε2 is such that (c14 + 2c15τ
− d

2 )ε2 <
M
4
.

According to the Lemma 44, the conclusion is true for k = 0.
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Let the conclusion be true for some k ∈ N and let
∣∣∣(p)Γx0,τ

i−1R0

∣∣∣ < M
2

for all

i ≤ k − 1. We have

Eu,p(x0, τ
kR0) ≤ 1

2k
τkγEu,p(x0, R0).

We get Eu,p(x0, τ
kR0) <

1
2k

min{ε1, ε2} due to the assumptions . The function p

fulfills

|(p)Γ
x0,τ

kR0
| ≤ |(p)Γ

x0,τ
kR0

− (p)Γ
x0,τ

k−1R0
|+ |(p)Γ

x0,τ
k−1R0

|
≤ c14(τ

kR0)
1− d

2‖∇p‖2,Ω
x0,τ

kR0
+ c15τ

− d
2 (τk−1R0)

1− d
2‖∇p‖2,Ω

x0,τ
k−1R0

+ (|p|)Γ
x0,τ

k−1R0
.

The estimate (τkR0)
1− d

2‖∇p‖2,Ω
x0,τ

kR0
≤ Eu,p(x0, τ

kR0) ≤ 1
2k
ε2 implies

|(p)Γ
x0,τ

kR0
| ≤ 1

2k

(
c14 + 2c15τ

−d
2

)
ε2 + |(p)Γ

x0,τ
k−1R0

|.

Therefore

|(p)Γ
x0,τ

kR0
| ≤ M

4

k∑
i=1

1

2i
+ (p)Γx0,R0

≤ M

2
.

The same conclusion can be drawn for (|∇u|)Γ
x0,τ

kR0
. Thus (|∇u|)Γ

x0,τ
kR0

+

|(p)Γ
x0,τ

kR0
| ≤M and we can use Key Lemma to get

Eu,p(x, τk+1R0) ≤ 2C∗τα−γτγEu,p(x, τkR0) ≤ τγ

2

τkγ

2k
Eu,p(x,R0).

For (u, p) ∈ W 2,2(Ω) × W 1,2(Ω), x ∈ Ω and 0 < R we define quantities

Eu,p0 (x,R) and Eu,p(x,R) as follows

Eu,p0 (x,R)
def
= R

2−d
2 ‖∇2u‖2,BR(x)∩Ω +R

2−d
2 ‖∇p‖2,BR(x)∩Ω,

Eu,p(x,R) def= Eu,p0 (x,R) +Rα

Inclusions Ωx,R
2
⊂ (BR(x) ∩ Ω) ⊂ Ωx,2R are valid for R less or equal to certain

R0 hence it can be seen that there exists a constant c, which depends only on Ω,

such that
1

c
Eu,p(x,R) ≤ Eu,p(x,R) ≤ cEu,p(x,R)

for all x ∈ Γ.

Lemma 3.4 in [24] is a variant of the Key lemma for interior and can be read as

follows.
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46 Lemma. Let assumption (1.1.3) be satisfied with c3 <
c1

(c1+c7c2)c7
and let f ∈

L2,μ where μ > d − 1 + α. There exists R0 > 0 such that for all M > 0 and

τ ∈ (0, 1) there exists an ε > 0 for which the following implication holds.

Let (u, p) ∈ W 1,2(Ω,Rd)× L2(Ω,R) be a weak solution of the system (1.1.2) and

let for any x0 ∈ Ω and R ∈ (0, R0) the inequalities

Eu,p(x0, R) < ε,
∣∣∣(u)BR(x0)

∣∣∣+ ∣∣∣(Du)BR(x0)

∣∣∣+ ∣∣∣(p)BR(x0)

∣∣∣ ≤M

hold. Then

Eu,p(x0, τR) ≤ 2C∗ταEu,p(x0, R).

Following lemma can be obtained in similar way as Lemma 45.

47 Lemma. Let assumptions 1.1.3 be satisfied with c3 <
c1

(c1+c7c2)c7
and let f ∈

L2,μ where μ > d − 1 + α. There exists R0 > 0 such that for all M > 0 and

γ ∈ (0, α) there exists τ ∈ (0, 1) and ε > 0 for which the following implication

hold:

Let (u, p) ∈ W 1,2(Ω,Rd)× L2(Ω,R) be a weak solution of the system (1.1.2) and

let for any x0 ∈ Ω and R ∈ (0, R0) the inequalities

Eu,p(x0, R) < ε,
∣∣∣(u)BR(x0)

∣∣∣ + ∣∣∣(Du)BR(x0)

∣∣∣+ ∣∣∣(p)BR(x0)

∣∣∣ ≤ M

4

hold. Then

Eu,p(x0, τkR) ≤ 1

2k
τkγEu,p(x0, R)

for all k ∈ N

48 Corollary. Let (u, p) be a weak solution of (1.1.2) and let (1.1.3) be satisfied

with c3 =
c1

(c1+c7c2)c7
. If x0 ∈ ∂Ω fulfills

lim inf
R→0

Ev,p(x0, R) =0,

lim sup
R→0

|(p)Γx0,R
|+ (|∇u|)Γx0,R

<∞,

lim sup
R→0

|(p)Ωx0r,
|+ |(Du)Ωx0,R

|+ |(u)Ωx0,R
| <∞,

then Du and p are Hölder continuous on some neighborhood of x0.

Proof. Let x0 ∈ Γ satisfy the assumptions of the corollary. Our aim is to prove

that there exists constant c16 and γ > 0 such that for all x ∈ Ωx0,R2
, where R > 0

is sufficiently small, and for all ρ ≤ R
2
it holds that

Eu,p(x, ρ) ≤ c16ρ
γ . (4.4.14)
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This condition directly implies that (∇2u,∇p) ∈ L2,d−2+γ(Ω,Rd2)×L2,d−2+γ(Ω,R)

and thus ∇u and p are Hölder continuous.

It holds that lim infR→0E
u,p(x0, R) = 0 ⇒ ∀c > 0; ∀R0 > 0; ∃R < R0;E

u,p(x0, R) <

c and thus, according to the continuity of integral, there exists R1 ∈ (0, R0

4

)
, a

neighborhood Γx0,R1 and a constant c17 > 0 such that for all x ∈ Γx0,R1 it holds

that Eu,p(x0, R1) ≤ c17. Further, as lim infR→0 Eu,p(x0, R) = 0, we assume, with-

out loss of generality, that Eu,p(x,R1) ≤ c17 for all x ∈ Ωx0,R1.

Let ρ < R1

3
. We suppose that x ∈ Γ

x0,
R1
3
. We find k ∈ N such that τk+1R1 < ρ ≤

τkR1 where τ comes from Lemma 45. It can be easily seen that

Eu,p(x, ρ) ≤ max
{
1, τ

2−d
2

}
Eu,p

(
x, τkR1

)
.

Thus, according to Lemma 45, there exists constant c18 such that

cEu,p(x, ρ) ≤ Eu,p(x, ρ) ≤ cτkγEu,p (x0, R1)

≤ c
(
R1τ

k+1
)γ Eu,p (x,R1)

(R1τ)
γ ≤ ργc18. (4.4.15)

Let x ∈ Ωx0,R1/3 \ Γx0,R1/3. We distinguish between two situations. If ρ ≤
dist(x,Γx0,R1/3), we can simply repeat previous method using Lemma 47 instead

of Lemma 45 and we get that existence of a constant c19 such that

Eu,p(x, ρ) ≤ c19ρ
γ . (4.4.16)

In order to complete the proof we need to show, that Eu,p(x, ρ)ρ−γ is bounded

independently of ρ and x even for ρ > dist(x, ∂Ω).

If ρ > dist(x, ∂Ω), we can find x1 ∈ Γx0,R1/3 such that Bρ(x) ∩ Ω ⊂ B3ρ(x1) ∩ Ω.

Thus there exists a constant c20 such that

Eu,p(x, ρ) ≤ (3(d−2)/2 + 3α)Eu,p(x1, 3ρ) ≤ cEu,p(x1, 3ρ) ≤ cc17ρ
γ ≤ c20ρ

γ . (4.4.17)

Combining inequalities (4.4.15), (4.4.16) and (4.4.17) we get the validity of (4.4.14)

on some neighborhood of x0.

4.5 Proof of the main theorem

Let c3 < min
{

c1
(c1+c2c7)c7

, c−1
9

}
. We call a point x ∈ ∂Ω singular if there is no

relative neighborhood of x where Du and p are Hölder continuous. We denote

the set of all singular points by Σ. As a consequence of the previous corollary we
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get Σ ⊂ ⋃3
i=1Σi where

Σ1 ={x ∈ ∂Ω, lim inf
R→0

Eu,p(x,R) > 0},
Σ2 ={x ∈ ∂Ω, lim sup

R→0
(|Du|)Γx0,R

+ |(p)Γx0,R
| = ∞},

Σ3 ={x ∈ ∂Ω, lim sup
R→0

|(p)Ωx0,R
|+ |(Du)Ωx0,R

|+ |(u)Ωx0,R
| = ∞}.

We know, according to Lemma 42, that (Du, p) ∈ W 1/2,2+δ(∂Ω) and, according

to Corollary 24, we get

Hd−2(Σ2) = 0.

Note that (Du, p) ∈ W 1,6 and thus Corollary 24 also implies

Hd−2(Σ3) = 0.

Due to the Lemma 23

Hd−2(Σ1) = 0.

Thus

Hd−2(Σ) ≤ Hd−2(Σ1) +Hd−2(Σ2) +Hd−2(Σ2) = 0

and the proof of the main theorem is completed.
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