Univerzita Karlova v Praze

Matematicko-fyzikalni fakulta

BAKALARSKA PRACE

Vojtech Witzany

Chaos v porusenych polich ¢ernych dér

Ustav teoretické fyziky

Vedouci bakalarské prace: doc. RNDr. Oldrich Semerak, Dr., DSc.
Studijni program: Fyzika
Studijni obor: Obecna fyzika

Praha 2013



Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Vojtech Witzany

Chaos in Perturbed Black-Hole Fields

Institute of Theoretical Physics

Supervisor of the bachelor thesis: doc. RNDr. Oldtich Semerak, Dr., DSc.
Study program: Physics

Study specialization: General Physics

Praha 2013



Rad bych podékoval predevsim doc. Semerdkovi za vedeni prace, Mgr. Sukové
za Cetné konzultace a Dr. Heyrovskému za zapujceni literatury.

The access to computing and storage facilities owned by parties and projects
contributing to the National Grid Infrastructure MetaCentrum, provided under
the programme " Projects of Large Infrastructure for Research, Development, and
Innovations” (LM2010005) is highly appreciated.



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In oo date ................ signature



Nézev prace: Chaos v porusenych polich ¢ernych dér
Autor: Vojtéch Witzany
Katedra: Ustav teoretické fyziky

Vedouci bakalarské prace: doc. RNDr. Oldfich Semerak, Dr., DSc., Ustav teo-
retické fyziky
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vskutku mnohokrat potvrzeno, ze i velmi symetricka perturbace Kerrovy nebo
Schwarzschildovy metriky muze zpusobit chaoticky pohyb volnych testovacich
castic. V této bakalarské praci studujeme dynamiku testovacich ¢éstic v poli
Schwarzschildovy ¢erné diry obklopené tenkym prstencem nebo diskem, pouzivajice
nicméné Newtonovu gravitaci s jednoduchym ,,pseudo-newtonovskym* potencialem
napodobujicim ¢ernou diru. Poincarého fezy ukazuji, ze studovany (pseudo-)
newtonovsky systém je nepatrné vice chaoticky nez obecné-relativisticky. Po-
zorovany rozdil se zda byt korelovéan s vétsi otevienosti povolenych oblasti fazového
prostoru k centru v pseudo-newtonovském pripadeé.
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Abstract:

The loss of complete geodesic integrability is one of the important consequences
(and thus indicators) of deviation from the Kerr-type space-time. Indeed, it has
been confirmed many times in the literature that even a highly symmetric per-
turbation of the Kerr or Schwarzschild metric can make the free test-particle
motion chaotic. In this thesis, we study the test-particle dynamics in the field
of a Schwarzschild black hole surrounded by a thin disc or ring, using, however,
Newton’s gravity with a simple “pseudo-Newtonian” potential to mimic the black
hole. The Poincaré sections show that the (pseudo-)Newtonian system is slightly
more chaotic than the general relativistic one. The difference seems to be corre-
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Prologue

Weak mortals, chained to the earth, creatures of clay as frail as the foliage of the
woods, you unfortunate race, whose life is but darkness, as unreal as a shadow,
the illusion of a dream, hearken to us, who are immortal beings, ethereal, ever
young and occupied with eternal thoughts, for we shall teach you about all celestial
matters; you shall know thoroughly what is the nature of the birds, what the origin
of the gods, of the rivers, of Erebus, and Chaos; thanks to us, even Prodicus will
envy you your knowledge.

At the beginning there was only Chaos, Night, dark Erebus, and deep Tar-
tarus. Farth, the air and heaven had no existence. Firstly, blackwinged Night
laid a germless eqq in the bosom of the infinite deeps of Erebus, and from this, af-
ter the revolution of long ages, sprang the graceful Eros with his glittering golden
wings, swift as the whirlwinds of the tempest. He mated in deep Tartarus with
dark Chaos, winged like himself, and thus hatched forth our race, which was the
first to see the light.

- The Leader of the Chorus in Aristophanes’ Birds (O’Neill, [1938)).

The arousal of interest in the phenomenon of deterministic chaos is strongly
connected with the work on weather prediction by Edward Lorenz (Lorenz, [1963)
at the beginning of the sixties of the twentieth century. However, the latent
knowledge of the phenomenon is rooted deeper in the history of classical physics.

The known universe - koouos of bounded physical systems during the nine-
teenth century was composed of asymptotically static, periodic, or quasi-periodic
motiong’} Yet before the end of the nineteenth century there is a limited number
of physicists and mathematician, who are known or assumed to have been aware
of a different type of motion.

For example James Clerk Maxwell, having developed notably the statistical
approach to the theory of gasses, opposed the fully deterministic cause of Pierre
Simon Laplace and others in his Fssay on Science and Free Will (Campbell &
Garnett, [2010): “It appears then that in our own nature there are more singular
points — where prediction, except from absolutely perfect data, and guided by the
omniscience of contingency, becomes impossible — than there are in any lower
organisation.”

In the essay Maxwell however supported his statement by examples of sys-
tems with unstable equilibria or at least “singular events” such as a stone on an

Tronically, this was also a paradigm Lorenz had to confront once presenting his results, since
his colleagues were utterly convinced that a dissipative system must converge to stationary or
static motion.



infinitely sharp tip of a mountain or a ray refracting very close to the axis of a
biaxial crystal. Thus he immediately softens the tone of his former sentence with
the latter: “But singular points are by their very nature isolated, and form no
appreciable fraction of the continuous course of our existence.” He then concludes
that the study of such instabilities and singularities may change the view of the
“intelligent public” on the matter of strict determinism.

Therefore, by the end of the 19th century the instability of a trajectory was
more or less still imprisoned in isolated “bifurcations” of points and events of
zero measure and awaited to be unleashed to devour whole portions of phase
space. Nevertheless, even in the time of Maxwell the worm of global chaos al-
ready awaited to be discovered in the apple least expected — the motion of celestial
bodies.

The irony of the development was not only in the fact that the foremost exam-
ple of regularity — the solar system — actually bore small seeds of stochasticity, but
also in the fact that the chaotization of the “musica universalis” of the heavenly
spheres is assisted by resonances — a perfectly rational proportion of the periods
of motion.

It was furthermore the most ardent guardian of determinism, Pierre Simon
Laplace, who unconsciously began the route to the discovery of the problem of
“small divisors” by first employing the classical perturbation theory with his col-
league Joseph Louis Lagrange. The whole history of the perturbation theory and
of the problem of “small divisors” hiding in the shades would amount to a full
thesis if it was to be treated in detail.

Let us thus jump to year 1885, when King Oscar II offered a prize to anyone
who would establish the stability of the solar system. This would require proving
the existence of solution for a large set of Newton’s equations of motion and the
assessment whether they are bound in space. A 31 year old mathematician Jules
Henri Poincaré did not feel up to the full challenge but first concentrated on a
very simple model - the restricted planar three body problem.

In this problem the first two bodies move on perfect Keplerian orbits in ac-
cordance with the solution of a two body problem and the third particle moves
strictly in the plane of the orbits and has “infinitely small mass” (it does not per-
turb the motion of the first bodies). Poincaré, in his intuitively visual approach,
found not only that even this problem cannot be resolved analytically but also
that some of the initial conditions must lead to strikingly complex movement now
known as “chaotic”.

The heritage of Poincaré was of course continued to be silently developed by
mathematicians such as George Birkhoff or Andrei Kolmogorov. The still persis-
tent fascination by the contrast of kKdouog and yc@og then needed only one thing to
be triggered - large scale computer simulations and visualization of the acquired
results.

The “rediscovery” of chaos by Edward Lorenz illustrates perhaps the best the
frail illusion of applied mathematicians and physicists beginning from the times
of the inventors of calculus, Isaac Newton and Gottfried Wilhelm Leibniz. It



is the unsubstantiated and mostly tacit faith that small corrections in the in-
put of physical problems, apart from isolated ill-conditioned cases, create small
corrections to the output.

Lorenz, in this faith, reset a numerical simulation of a simplified model of
the Earth’s atmosphere, submitting the initial data with a smaller number of
digits after the decimal point, to find to his astonishment that the output of the
simulation was completely different from the results of the previous run. For the
studied system, the stated response to change of initial data was even found to
apply globally.

The belief of small error of a result caused by small error in the initial data is
perhaps in tight correspondence with the belief of analyticity or at least smooth-
ness in the relations of a dynamical system. In practice, the implicit assumption
is even stronger — the Taylor expansions of the characteristic relations of the
problem are assumed to converge so fast that, when taking just a few first terms,
the rest of the expansion sums up to a contribution of much smaller orders of
magnitude.

Nonetheless, chaos responds in it’s own fashion — the relations are found not
to be only non-analytic but also non-smooth in any possible meaning of smooth-
ness. Almost every boundary between areas of initial conditions leading to dif-
ferent evolutions is fractal-like, i.e., continuous and often nowhere-smooth with
an infinitely fine structure of edges and cusps.

A necessary condition for determining a chaotic motion completely is an in-
finitely precise set of initial data or a countable-infinite set of integer-like data
about the motion (such as finite precision states of the system at an infinite num-
ber of times). This is true even for regular motion, but for a chaotic trajectory
the reliability of a prediction based on finite data decays roughly exponentially,
whereas in the regular case the decay is at most linear.

However, as only finite precision and finite data is in practice available to our
unfortunate human race, our knowledge of the chaotic state almost completely
dissolves after a certain time. From an anthropocentric point of view, the system
tends for us to fall again and again into a certain dark, primordial and shapeless
state — a state an Ancient Greek would most probably call ydos.

First relativity overhauled the paradigm of the very fundamental objects of Euro-
pean natural philosophy, and then quantum mechanics in the Copenhagen inter-
pretation even tampered with realistic ontology itself. Relativity and quantum
mechanics are, however, theories which can be omitted in a number of fields of
science and engineering.

Chaos, on the contrary, is ubiquitous in every non-linear dynamical science,
thus almost exclusively defining the interdisciplinary theory of dynamical sys-
tems. The clash of the former tradition of theoretical physics, golden-winged
with analyticity, with chaos, dark-winged mainly with the numerical “shadowing
trajectories”, lead some popular authors to even predict the discovery of chaos
to define a completely “new science” (e.g., the title of (Gleick, 1997)).




Introduction and Outline

Accretion discs are flattened astronomical objects made of rapidly rotating gas
which slowly spirals onto a central gravitating body. The physics of accretion are
governed by a non-linear combination of a number of physical interactions and
phenomena, including gravity, hydrodynamics, viscosity, radiation and magnetic
fields. The basic idea of accretion discs was proposed soon after the confirmation
of quasarg’] and it’s classical picture established at the beginning of the 1970s.
The classical models of accretion discs such as those of [Shakura & Sunyaev| (1973);
Novikov & Thorne| (1973)ff| however neglected the self-gravitation of the disc itself,
considering the disc only as test matter either in a field of a Newtonian monopole
or in a Kerr metric.

Nevertheless, it has been proven that in a number of cases the complete
geodesic integrability in the Kerr or Schwarzschild metric breaks down under
various perturbationsﬂ thus changing some of the very qualitative properties of
the respective test motion. The chaotization of disturbed black-hole fields is thus
an astrophysically motivated subject of study with possible observational conse-
quences.

The history of the so called pseudo-Newtonian potentials is intertwined with the
history of accretion disc modeling, since they are often used and invented as a
tool facilitating relativistic effects in otherwise non-relativistic dynamics of the
disc. [Paczynsky & Wiital (1980)) introduced the first pseudo-Newtonian potential
mimicking the black-hole horizon along with an accretion disc model in it’s field,
the model nowadays called the Polish donut disc.

The Paczynisky-Wiita potential was later shown to formally reproduce a num-
ber of properties of the Schwarzschild black-hole very well (Artemova, Bjornsson
& Novikov, (1996, see chapt. 2 of the current thesis for further reference) and is
still very popular for it’s simplicity.

Following the mentioned astrophysical motivation, the onset of chaos in non-
Kerr metrics has also been studied by Sukoval (2009); [Semerak & Sukova| (2010,
2012) in static, axially symmetric space-times consisting of a Schwarzschild black
hole surrounded by a thin disc or ring as the “perturbation”. In the current the-
sis, we study and compare analogous situations to those of Semerak and Sukova

2Very distant quasi-stellar objects brightly shining in the radio spectrum later identified as
active galaxies with supermassive black holes at their centres.

3The so-called a-model is sometimes even called the standard model of accretion discs (Mon-
tesinos Armijo, [2012).

4See chapter 2 of the current thesis for references to some examples, or introduction of
Semerak & Sukova (2010]) for a more thorough overview.



in a pseudo-Newtonian approach. l.e., we simulate the test-motion in Newtonian
gravitational potentials of the discs and rings with the Paczynsky-Wiita potential
in the center instead of the Schwarzschild black hole.

The comparison of the respective dynamics via Poincaré surfaces of section
can be a possible indicator of the usefulness of the pseudo-Newtonian approxi-
mation for the study of long-term behavior in the mentioned fields. Nonetheless,
the model can also be of interest as a peculiar Hamiltonian system, where for
example the line between regularity and chaoticity of a trajectory in many cases
decides whether the trajectory is bound (orbits eternally) or unbound (falls in
the black hole).

The outline of this work and the aims of individual chapters are the following:
First, the exploration of basic terms and facts about the phenomenon of deter-
ministic chaos is undertaken in the chapter Hamiltonian chaos. Second, some
basic results in the study of static, axially symmetric relativistic space-times are
described in the chapter Chaos Around Black Holes along with the comparison
of Newtonian vs. relativistic integrability of motions and a short overview of
“relativistically” modified potentials — the pseudo-Newtonian potentials.

Third, in the chapter Simulation of Test Particle Motion the outline of the
realization of the original work of this thesis is given. The original, fully rel-
ativistic studies of static axially symmetric space-times by Semerak & Sukova
(2010} 2012); Sukova (2009) are mentioned and their chosen pseudo-Newtonian
counterpart is presented along with a brief comment on the technical realization
of the numerical study.

Fourth, in the final chapter Results of the Simulation the output of the con-
ducted free particle simulations is presented via Poincaré surfaces of section. The
plots are then compared with the surfaces of section of the original relativistic
problem.



Chapter 1

Hamiltonian Chaos

The history of chaos theory especially from the perspective of celestial, i.e., au-
tonomous Hamiltonian mechanics was informally introduced in the Prologue.
Dropping most of the informality, we shall continue in the spirit of Henri Poincaré
and his geometrical image of dynamics to describe a minimal portion of chaos
theory and of chaos in Hamiltonian systems with two degrees of freedom.

The reader should also understand that this is not a completely instructive in-
troduction to the subject, mostly presenting the used nomenclature and notation
and some non-trivial facts on the matter.

1.1 Elementary chaos theory

1.1.1 Basic definitions

In the oncoming section, the basic construction of differential geometry as de-
veloped for example in [Helgason| (1962) is assumed. For the sake of brevity,
we shall introduce less general definitions and theorems relevant particularly to
chaos in continuous-time autonomous dynamical systems and especially non time-
dependent Hamiltonian systems. Unless stated otherwise, all the mentioned ob-
jects are presumed to be of class C*° even though for this subsection C* objects
would suffice.

Definition 1.1. Let M be a manifold and ®; : M — M a Lie group of automor-
phisms with the real parameter ¢ with the condition ®; = I'd. Then the set M,
= (M, Dy, t) is called a continuous-time dynamical system (in short dynamical
system in further text) where the set of automorphisms is usually called the time

flow and the parameter the time-parameter. The generator of the time flow <

dt
shall be denoted as the time derivative vector field. The manifold M shall often

be called the phase space.

Definition 1.2. Let M, be a dynamical system. Then we define the following
equivalence relation ~ on the manifold: m,n € M,m ~n < 3t: &,(m) =n. A
trajectory v of a point m € M is its ~ equivalence class in M. (We shall also
often talk about a trajectory without specifying it’s “initial” point.)

A trajectory has a natural structure of a submanifold parametrized by a privileged



parameter ¢ which has however no preferred choice of the origin.

Definition 1.3. Let M; be a dynamical system with an affine connection V.
Then we define the variation space V(M) as the space of vector fields X € X' (M)

satisfying the condition

d
X=~£x— 1.1

where the symbol £ denotes, as per usual, the Lie derivative. The intuitive
meaning of the condition is that the field varies along the trajectory (left
hand side) proportionally to the change of the time derivative vector field in the
direction of the vector X (right hand side). It can be shown that the field thus
varies along a single trajectory as the “distance” between the observed trajec-
tory and an infinitely close different trajectory. The variation space is still rather
large for practical work and the “evolved” vector fields on separate trajectories
are independent up to smoothness, it is hence imminent to define the following.

Definition 1.4. We say that two vector fields are equivalent on + iff their dif-
ference vanishes on the points of the trajectory v. We define the variation space
V, of a trajectory v in M, as the set of all classes of vector fields from V(M,)
equivalent on 7.

For wltralocal operations on the perturbation space and operations local only
up to the trajectoryﬂ7 the class can thus be represented by any of it’s members.

Theorem 1.1. If V, is non-trivial, it has the same dimension as the ambient

manifold M.

The proof is obvious from the fact that by giving a vector at an arbitrary point the
field along the trajectory is completely determined by the first order differential
equation (1.1). The non-triviality condition is added due to possibly degenerate
flows.

Definition 1.5. Let (M;) be a dynamical system with a vector norm || e||, affine
conection V and ~ a trajectory in it. Then the Lyapunov exponents Ay are all
the existing limits

1 X (P
Ar = limsup — lnM

,me~, X eP,.
twoo U [|[X(m)] !

Apart from degenerate points of the time derivative vector field, the exponent
for a given X are independemﬂ of the point m (and thus often points placed in
t — —oo) . It should be also noted that according to Smale (1967), the sign of
the Lyapunov exponents is independent of the used norm.

!That is, depending only on the “immediate components” of the vector fields and on the
components’ derivatives in the direction of the trajectory.

2Usual definitions often state that the Lyapunov exponents are “coordinate dependent”. As
can be seen, this is true only under the assumption of a coordinate based connection (often
trivial) or metric (often “euclidean”).



We shall now mention a theorem useful in our case of Hamiltonian flows.

Theorem 1.2. (Oseledets, 2008) For a p-measure preservinﬂ dynamical system
of dimension m, there exist m Lyapunov exponents (some of them multiple) for
p-almost every trajectory.

Definition 1.6. A trajectory is called bounded iff it is mappable by a finite
number of maps of the manifolds and each of these maps is finite.

All the important definitions have now been prepared to finally define a chaotic
trajectory.

Definition 1.7. A chaotic trajectory is a bounded trajectory that isn’t quasiperi-
odic, asymptotically quasiperiodic and has at least one positive Lyapunov expo-
nent.

This definition is due to |Alligood, Sauer & Yorke (1996) and is rather inele-
gant, yet perhaps the most practical. There are however various other definitions
of chaos (summarized e.g. in Haller| (1999)) involving the notion of instability in
regard to initial conditions, as portrayed by the Lyapunov exponents in the case
of our definition, and also topological transitivity with possible further require-
ments.

As pointed out in [Haller| (1999)), there is nonetheless a general consent on the
chaoticity of the dynamical systems called the Bernoulli shift map and the Smale
horseshoe map by all the usual definitions. Furthermore, since chaos in Hamilto-
nian systems is always associated with a homoclinic tangle which is topologically
conjugate to the horseshoe dynamics (see subsect. , the discussed cases
will involve chaotic portions of phase space by any of these definitions. Further
arguments shall be discussed in section [1.4]

1.1.2 Methods of diagnosis

There exists a variety of tests and theoretical results which aid the classification
and analysis of chaoticity of experimental data (see e.g. |Ott, Sauer & Yorke
(1994)). The methods include phase-space reconstruction from time series, re-
currence methods and other more sophisticated indicators. In some cases, sur-
prisingly detailed reports of the system structure can be retrieved from a single
time-series, such as the fractal dimension of the attractoif]] of the dynamical sys-
tem or an estimate of the Lyapunov exponents.

Anyhow, an even larger set of methods can be employed in the case of diag-
nosis of a given mathematical model. What is important, the whole geometric
structure of the flow is observable with rather less effort. Fractal boundaries be-
tween areas of certain “fate” of trajectories can be found as an indicator of chaos.
In dissipative dynamical systems, the “fates” can be the asymptotic falls on the
different attractors of the system (e.g. Grebogi et al., [1987), in the unbounded
case of chaotic scattering the angle of escape from the system into infinity and
in general relativity, the shunless destiny of the trajectory may be the fall into a
black hole or a singularity (e.g. Dettmann, Frankel & Cornish, 1995; Podolsky &

3The affine connection must also preserve the respective volume form.
4 Attracting sets on the phase space in the case of a dissipative system.

10



N N
AL

-<
NN
o

Figure 1.1: Hlustration of a Poincaré surface of section in three dimensions, taken
from [Sukova (2009))

Kofron, 2007).

In the case of Hamiltonian systems the qualitative analysis of certain projections
called the Poincaré surfaces of section is often employed in a very similar fashion
as has been originally proposed by Poincaré himself (Poincaré, |1899| chapt. 33).

In the works of Poincaré and subsequently of Birkhoff| (1917)), the surface was
defined only for systems of two degrees of freedom’| such as the restricted three-
body problem. The original notion requested the surface of section to be a surface
(2-dimensional submanifold) which is crossed infinite times by every trajectory
in the possible phase space of the considered motion (see fig. . Along these
lines, the sequence of points of intersection define a map of the surface for which
area preservation can be proved (Poincaré, 1899, loc. cit.).

For a well defined map and a system with two degrees of freedom (4 dimen-
sions), two other coordinates of the position of the surface must be specified
apart from the two coordinates on the submanifold. A very frequent choice of
the surface definition is a fixed value of one of the canonical coordinates and a
fixed energy level®| sometimes with a further specification due to non-monotony
of the Hamiltonian function.

Examples of surfaces of section can be found at the end of the last chapter of
this thesis.

Occasionally, the plot of coordinates (or a certain projection) of a point un-
der discrete 7-timeshifts @, is exploited for dynamics understanding instead of
surfaces of section. The timeshift approach is frugal especially in the families
of integrable systems “kicked” periodically by a d-pulse for which the time-shift
maps are almost always explicit (a brief survey can be found in Zaslavskii (2007,

5Half of the dimension of the Hamiltonian dynamical system, see def.

SEven this choice may often be stated to be “planar”, the surface is almost always curved
in the sense of canonical coordinates since it is formed by an intersection with the H = const.
submanifold.

11
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Figure 1.2: The so called Standard map modeling the kicked oscillator - a global
view of a 2 x 2 period of phase space (left) and a close-up of the stochastic layer
near the separatrix (right). Taken from Zaslavskii (2007)).

chapt. 1)). An example of such a timeshift map can be found in figure|1.2} The
similarity or even equivalence to Poincaré surfaces of sections is readily justified
by a formal extension of the phase space by a periodic time coordinate and a
conjugate momentum (Arnol’d, Kozlov & Neishtadt, [1993).

1.2 Hamiltonian systems
If not stated otherwise, the results brought in this section can be found e.g. in
Arnol’d| (1989).

Definition 1.8. If on an even-dimensional manifold M there exists a differential
2-form w which is closed and non-degenerate, then the pair (M,w) is called a
symplectic manifold and the form is called symplectic.

For a manifold of dimension 2N a natural volume-form is defined with the use of
the exterior product A,

W = WA N times A\ W. (1.2)

As the form w is also non-degenerate, it can be used for the so-called “musical
isomorphisms” or “index lowering” and “raising” quite similarly to the analogous
operations in relativity and riemannian geometry

WX = pw, W(wa) = a, (1.3)

where X is a vector field,a a one-form on the manifold and ¢x denotes contraction
with X. The “sharp” mapping is implicitly defined as the inverse of w” which is
well defined due to it’s non-degeneracy.

Definition 1.9. If a 2n-dimensional symplectic manifold (M, w) is also a dy-

12



namical system, and the time flow ®, is a flow of a vector field of the form

d
— = WwhidH 1.4
a Y (14)

for some function H on the manifold M, then the dynamical system is called
Hamiltonian (similarly the vector field, it’s flow and the function H). The num-
ber n is then called the number of degrees of freedom (dof).

It is not surprising that the local coordinates on the manifold can always be
chosen so that w = dp A dg and the hamilton’s equations (1.4 gain the usual
canonical form

,_ on . _on

The classical result of Hamiltonian (energy) preservation is also inferable from
the equation (|1.4)).

(1.5)

Theorem 1.3. The Hamiltonian flow preserves the symplectic structure, i.e.
djw=w.

As a consequence, any A-power of w is invariant under the flow corresponding to
integral Poincaré invariants, the highest being the mentioned volume form ([1.2))
corresponding to the phase space volume.

The symmetry of the flow has further consequences for eigenvalues of lineariza-
tions around trajectories and fixed points (Cvitanovi¢ et all 2012, chapt.7). A
rough behavior of a very close trajectory from a fixed point (dH = 0) can be
described by finding the eigendirections and eigenvalues of the jacobian of the
flow. The distance of a trajectory very close to the fixed point in an eigendirec-
tion of an eigenvalue A can be estimated as exp(R(A)t) and I(\) determines the
rotation (orbiting) of the trajectory around the point (where R, & denote the real
and imaginary part of the eigenvalue respectively).

In the Hamiltonian case in canonical coordinates, the eigenvalues of jaco-
bians however always come come in quartets — A\, =\, A*, —=\*. E.g. in one dof
(2-dimensional) systems, a fixed point must be either hyperbolic ($(\) = 0) or
elliptic ®(\) = 0.

A special case where the eigenvalues can be defined for the trajectory as a whole
are periodic trajectories. In that case, there is a linear operator of evolution
of very close trajectories around one loop called the monodromy operator. The
monodromy operator can be also shown to have analogous eigenvalue quartets as
mentioned in the previous paragraph.

Considering systems of two degrees of freedom and isoenergetic levels, the
resulting submanifold is only three dimensional. For the monodromy operators on
these spaces one eigenvalue is always 0 corresponding to the direction of the flow
and the other two eigenvalues then automatically satisfy either of the conditions
A = £X*. In this sense, periodic trajectories in 2-dof systems are either stable
(elliptic) or unstable (hyperbolic).
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For an isoenergetic Poincaré surface of section of a 2-dof system, there will
thus be only elliptid’] or hyperbolic fixed points and periodic orbits.

In conclusion of this section, we would also like to point out the consequences
of the mentioned facts about Hamiltonian systems for Lyapunov exponents. As
the phase space volume is conserved by the flow, the Oseledets theorem is
applicable and almost every trajectory has thus got a complete set of Lyapunov
exponents.

From the relations between the eigenvalues, it can be shownﬂ that the Lya-
punov exponents in Hamiltonian systems come in pairs +A. An intuitive inter-
pretation of the relation between Lyapunov exponents is that the contraction of
the neighboring phase-space roughly proportional to e~ is compensated by the
expansion in another direction e* thus conserving phase-space volume.

1.3 The homoclinic tangle, KAM theory and
beyond

As is fittingly stated in |Cvitanovi¢ et al| (2012)), the flows of 2n-dimensional
Hamiltonian systems are “morally n-dimensional” due to the n integral invariants
mentioned in the previous section.

This can be also demonstrated by the truth that a general set of 2n ordinary
differential equations of first order needs a set of 2n first integrals to be integrated.
However, it is a well known fact that the 2n hamilton’s equations (|1.4)) need only
n integrals of motion in involution to be solved by quadrature. Let us develop
this statement more formally.

1.3.1 Integrable systems

Definition 1.10. We define the Poisson brackets on a symplectic manifold M, w
of two functions F, G on the manifold consequently

{F,G} = w(w'dF,w'dG).

We say that two functions are in involution if their Poisson bracket is zero.

Definition 1.11. A function F' on a dynamical system is called a first integral
iff q

—(F) =0,

It follows that the trajectories are then confined to submanifolds defined by the
constant values of the first integrals. The Hamilton’s function is also an integral
of motion.

"Even “circular” in canonical coordinates, as in that case the eigenvalues always have the
same norim.

8The affine connection on the manifold must be however Levi-Civita with respect to the
norm used in definition and the norm must be further chosen so that the volume form
is coincident with the respective metric volume form.
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Theorem 1.4. Let F = {Fy,--- , F,} denote the set of n first integrals of a 2n-
dimensional Hamiltonian dynamical system in involution. Let then Ng(fi,--+ , fn)
be the invariant manifold of the integrals with values f1,--- , f, respectively. Then
if the differentials dF; are linearly independent on the invariant manifold:

e If NF is compact and connected, then it is diffeomorphic to T".

e The motion on the said torus is diffeomorphic to stationary rotations with
frequencies dependent solely on the values of the first integrals. I.e. there
is a set of local coordinates I = (Iy,--- ,1,), ¢ = (¢1,- -+ ,Pn) So that the
Hamilton’s equations take the form

. oH . 8H
H=H(I), I = 0, ¢ = S = u(I,) (L6)
0
where v = (v1,--+ ,v,) is a vector constant in time called the frequency

vector and the respective coordinates are called action-angle.
e The equations can be solved by quadratures.

We call such a Hamiltonian system an integrable systenf]in further text. If the
integral submanifolds Nz are non-compact, the manifolds are diffeomorphic to
Cartesian products of the real line and the unit circle with similarly regular mo-
tion. Secondly, if the invariant manifolds N aren’t connected, the differentiable
components satisfy relations analogous to the theorem. Usually, mutually diffeo-
morphic invariant manifolds foliate whole portions of phase space changing their
differentiable structure only in association with points where the differentials of
integrals of motion aren’t independent.

The degeneracy of the integrals is often due to a hyperbolic fixed point (dH =
0) of the Hamiltonian, or in a mechanical interpretation an “unstable equilibrium
of forces”, with a stable and unstable manifold separating qualitatively different
modes of motion. An example of such foliation of phase space is the non-linearized
mathematical pendulum in figure

1.3.2 Homoclinic tangle

The hyperbolic points are not only important in the change of foliation of the
phase space, but also as “seeds of chaos” as is notoriously stated in literature
(e.g. Zaslavskii (2007) or Alligood, Sauer & Yorke (1996)). The latter alias of
hyperbolic points is due to the phenomenon of a “homoclinic tangle” near the
separatrices of the hyperbolic points discovered by [Poincaré (1899). We shall
introduce a few definitions to discuss the problem in a rigorous fashion.

Definition 1.12. For a fixed point or periodic trajectory we define the stable
(unstable) manifold as the maximal manifold of which every point converges to
the fixed point or periodic trajectory for t — 400 (t — —00).

Obviously, two manifolds of the same stability family cannot intersect as the
points on the intersection would have to be asymptotic to two different objects,

9Even though this is not strictly correct, we shall leave out the epithet “bounded” for the
purposes of this thesis.
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Figure 1.3: Phase space portrait of a mathematical pendulum - the phase space
foliated by circular rotations and linear librations is divided by a separatrix - a
singular trajectory (bold) spanning from the hyperbolic fixed point in § = £7.
(taken from Wikipedia (2013))

“Cela est encore absurde” as Poincaré stated. Intersections of manifolds of dif-
ferent stability are however possible.

Definition 1.13. The intersection of a stable and an unstable manifold of a
single fixed point or trajectory is called a homoclinic manifold.

Definition 1.14. An intersection of two submanifolds M and N is called trans-
verse when for every point m of the intersection the following equality is satisfied

dim(T,, M @ T, N) = dim(M) + dim(N), (1.7)

where T,, M, T,, M are the tangent spaces of the respective submanifolds at m
and the direct sum is executed in the sense of the tangent space of the ambient
manifold.

The intuitive meaning of definition is that the submanifolds do not tan-
gentially touch but they cross, i.e. their tangent spaces don’t coincide in any
direction and their immersion spans the whole T,, M.

The stable and unstable manifolds form invariant sets of the flow and so does
consequently a homoclinic manifold. The statement now stands: if the homo-
clinic manifold is formed by a transverse intersection, the structure of the stable
and unstable manifolds gets infinitely complicated so that “On serra frappé de la
complexité de cette figure, que je ne cherche méme pas a tracer. ’F_U] - “One will be
struck by the complexity of this figure, which I shall not even attempt to draw.”

10Poincaré (1899, chapt.33, p.389)
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Figure 1.4: An approximate picture of the homoclinic tangle in the Standard
Map. The lobes of the stable and unstable manifolds intersect more and more
frequently approaching the hyperbolic point at the centre of the picture forming
the so-called “tangle”.

Howeve,r unlike Poincaré, we will give a rough illustration of the situation in
fig. which has been gained by numerical computation. Constructive argu-
ments justifying the provided picture were given by Melnikov or Smale (Gucken-
heimer & Holmes, 1990; Smale, 1967)).

The situation in the homoclinic tangle can be described as follows. Suppose we
have a Poincaré map on an isoenergetical level in 2-dof intersecting transversally
a hyperbolic trajectory. As has been mentioned in subsection the periodic
trajectory is then represented by a hyperbolic fixed point with lines as the stable
and unstable manifolds. The transversal intersection is then also represented by a
point but as it’s homoclinicity is invariant under the flow and the map, there has
to be an infinity of other intersections (points) at both the forward and backward
iterates of the Poincaré map.

Following the lines of Poincaré, Smale (1967)) proved the following theorem
through topological conjugacy to a model diffeomorphism of the plane now known
as the Smale horseshoe:

Theorem 1.5. Suppose x is a transversal homoclinic point of an auto-diffeomorphism
f of a manifold N'. Then there is a Cantor set A € N', x € A, and n € Z* such
that f*(A) = A and f" restricted to A is topologically a shift automorphism.

A shift automorphism is for example the Bernoulli shift - a formal shift to the
result of another coin flip in the sequence of such - and it can be proven to have
positive Lyapunov exponents (e.g. Alligood, Sauer & Yorke, |1996]). The transver-
sal homoclinic intersection thus implies chaos in a portion of phase space which is
however of zero measure. As|Contopoulos (2010) states, there is ample evidence
of chaos in larger non-integrable regions of the phase-space neighboring the ho-
moclinic tangle, but there does not seem to be an analytical result guaranteeing
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chaos in non-zero measure regions due to the homoclinic tangle.

1.3.3 Stability of the invariant structures

There is a rich perturbation theory assessing the persistence of order in integrable
systems under non-integrable influences developed since the onset of classical
mechanics, as has been mentioned in the Prologue. The collection of results
developed through fifties and sixties concerning themselves with persistence of the
invariant tori under non-integrable perturbations of the Hamiltonian function is
called the Kolmogorov-Arnold-Moser theory (KAM theory) according to it’s main
contributors. We shall introduce here only one main theorem and a qualitative
discussion of more general cases and extensions as discussed in Arnol’d, Kozlov
& Neishtadt| (1993), |Zaslavskii| (2007) and Haller| (1999).

Definition 1.15. We say that a torus of an integrable system is resonant iff the
trajectories on the torus compactE].

The invariant structure of the torus is then further foliated into S! invariant man-
ifolds - the periodic trajectories. In the action-angle coordinates, this condition
can be alternatively expressed in terms of integer ratios between the frequencies
on the torus i.e.: (k,v)=)> kv, =0,k ecZ"

Definition 1.16. A Hamiltonian system is called nondegenerate if the lie bracket
[4, e] is non-vanishing (even locally) on at least n vector fields of a commuting

set of 2n vector fields.

In the case of an integrable system, the non-vanishing set is also at most n and
the degenerate case corresponds to “too much integrals of motion” (sometimes
only in a local sense).

Definition 1.17. A Hamiltonian system is called isoenergetically nondegenerate
iff the flow is nondegenerate on every submanifold of constant H (with sets of
2n — 1 commuting vector fields on the submanifold) and dH # 0.

In a nondegenerate integrable system, resonant tori form a dense subset of the
phase space of zero measure, whereas the tori with irrational frequency vectors
form a dense subset with nonzero measure. For an isoenergetically nondegenerate

integrable system, this is true even for every isoenergetic (H =const.) submani-
fold.

Theorem 1.6. Suppose the Hamiltonian of an integrable system is analytz’cfz] and
the system is nondegenerate or isoenergetically nondegenerate. Then if the Hamil-
tonian is subject to a sufficiently small perturbation term of order € and of class
C", where v > 21", then a majority of the nonresonant invariant tori survive
the perturbation with slight deformations and unchanged frequencies. These tori
are called Kolmogorov tori and their union is the Kolmogorov set. The statement
can be developed more formally:

U This definition, however non-standard, seems to be the most elegant coordinate-free way
to express the fact that the trajectory closes after a finite number of loops.

12For the term “analytic” to have a good meaning, the manifold has to be analytic as well.

131 can be considered a non-integer, thus allowing C™ to be a Holder space.
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1. For a gwen number jn:n —1 < pu < g —1 the frequencies of motion on the
Kolmogorov tori form the following set:

Q. ={£:€£€Q—k,|(k,E)| < k|kl" Yk € Z"},

where € is the unperturbed set of frequencies v(I), Q) — Kk the set of points
whose k neighborhood is contained in ), and k is a quantity of order \/e.

2. The measure of tori destroyed by the perturbation does not exceed a quantity
of order \/e. If the frequency on the torus belongs to Qs with § > k, the
deformation of the torus does not exceed a quantity of order €/6 (and hence

of order \/e).

The proof is described e.g. in |Arnol’d, Kozlov & Neishtadt| (1993)) and is based
on an iterative series of canonical coordinate transformations based on modified
methods of averaging theory. The series converges quadratically in € to a set of
new action-angle coordinates on the Kolmogorov set.

Obviously, the theorem does not address the “strength” of the perturbation term
apart from a moderately smooth behaviour. Hence the strict applicability of the
theorem is very limited without further analytical investigations.

For specific perturbations, analytic estimates of the development of invariant
structure can be obtained using the mentioned averaging methods. As pointed
out in|Contopoulos (2010, see p. 71 for a complete set of references), the estimates
of perturbation strengths for which the Kolmogorov tori may be destroyed were
usually found to be much smaller than “critical” strengths of perturbation found
by numerical simulations.

1.4 The onset of chaos in two degrees of freedom

The situation of 2-dof systems is special in a number of aspects. Firstly, it
follows from Poincaré-Bendixson theorem (Haller, 1999) that a 2-dof system is
the simplest autonomous Hamiltonian system with the possibility of chaos.

Secondly, on isoenergetical levels of a weakly perturbed integrable system,
the 3-dimensional flow is divided by 2-dimensional tori. The nonintegrable flow
is hence confined to small separate regions of phase space effectively close to the
original system. In higher degrees of freedom, the tori do not provide a division of
phase space letting the trajectories wander as illustrated in fig. [I.5] This process
of seemingly random wandering of trajectories in unconfined phase-space is often
called “Arnold diffusion”.

The last but not least important aspect of 2-dof systems again connected to
the fact that the flow is 3-dimensional is that the isoenergetical levels have almost
always Poincaré surfaces of section. The integrability of 2-dof systems can thus
be qualitatively studied just by straightforward examination of the surfaces of
section without an urgent need for time-series analysis and other techniques.

Let us now qualitatively describe the “evolution” of the perturbed 2-dof sys-
tem under the perturbation parameter € in the language of Poincaré surfaces of

section as portrayed by Zaslavskii (2007)) and (Guckenheimer & Holmes (1990).
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Figure 1.5: Illustration of confinement and diffusion in weakly nonintegrable sys-
tems. On the left is a situation analogous to 2-dof systems - unpredicatble tra-
jectories are well separated by lines. Whereas on the right a situation analogous
to higher dof systems is illustrated - “random” trajectories in different parts of
phase-space may visit arbitrary nonintegrable regions only “scattering” from in-
variant points or dots.

1.4.1 Chains of islands and their bifurcations

The periodic trajectories, represented by m-periodic points on the surfaces of
section, are affected most by the perturbation as they bifurcate into 2k n-periodic
trajectories represented as 2kn points alternating between hyperbolic and elliptic.
This sequence is often called a chain of resonance islands as the stable elliptic
points naturally forms a set of width of order /e of invariant tori separated
from the Kolmogorov set by the separatrices of the hyperbolic points (fig. .
The separatrices however often form a homoclinic tangle for even very small
perturbations and thus stable elliptic “islands” are almost always plunged in a
layer of a chaotic “sea”.

The generation of the resonance islands does not however terminate at the
primary tori of the original integrable system. Resonant tori of the unfolded el-
liptic islands can be destroyed as well, forming secondary chains of islands and
this sequence can reach to chains of islands of arbitrary order to form fractal-like
structures often encountered in surfaces of section.

As the perturbation parameter grows, further doubling bifurcations may occur
with a roughly geometrically growing frequency as has been found in a number of
2D area preserving maps (Benettin, Galgani & Giorgilli, 1980)) and some Poincaré
surfaces of section (Contopoulos, [2010)).

By reviewing the results presented e.g. in |Contopoulos| (2010)), the general bi-
furcation scheme for Poincaré surfaces of section does not seem to be established
as various different behaviours have been found. A passing from a bifurcating
phase to a “joining” phase has been numerically observed forming “infinite bub-
bles” and also a combination of switches between stability and instability has
been observed in a different model then evolving into “infinite gaps”. There is

thus no complete understanding of universality in conservative systems so far
(Gaidashev, Johnson & Martens, 2012)).
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Figure 1.6: A chain of resonance islands of period 6 and 1. Taken from [Zaslavskii
(2007).

1.4.2 Resonance overlap and heteroclinic intersection

The conventional distinction of “strong chaos” as opposed to “weak chaos” which
we have been describing to this moment, is the resonance overlap. The resonance
overlap occurs when /e is of order of the width between the primary resonances
and the chaotic layers get connected allowing for a widespread diffusion of irreg-
ular trajectories.

However, the distinction isn’t only conventional, as the resonance overlap
is the first moment when a heteroclinic intersection of two different resonances
usually occurs. I.e., the stable and unstable manifolds of different hyperbolic
points intersect transversally to generate chaos in a similar mechanism as descibed

in section [.3.2

1.4.3 Cantori and stickiness

By the analysis of the so called 2D twist maps it can be shown (Arnol’d, Kozlov
& Neishtadt], [1993)) that apart from continuous tori, the area preserving maps
can have invariant sets called cantori. The subsequent mappings of the points on
the cantorus can be shown to have a one-to-one correspondence with rotations
on a circle. Nevertheless, this one-to-one mapping is homeomorphic only up to a
countable infinity of points of discontinuity. Hence the name of the cantorus - it
then forms a cantor set (of zero length (MacKay, 1987)) in the original 2D space.

The cantori on the Poincaré surfaces of sections have been observed in a heft
of numerical simulations (see e.g Contopoulos (2010)), sect. 2.7.3, for a complete
set of references). The corresponding objects in the full phase space are obviously
twisting dicontinuous surfaces which however do not confine the trajectories in
between, presenting only partial barrier to the trajectory diffusion. Another par-
tial barrier considered e.g. by [Zaslavskii (2007) is the self-similar structure of
remnant islands around a main island.
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Figure 1.7: A set of eight sticky islands from the standard map. Taken from
Zaslavskii| (2007)).

The mentioned structures are generally considered to be the main actors in the
phenomenon of “stickiness”, the tendency of certain trajectories to spend very
long times in the neighborhood of stable islands even though they are not confined
by an invariant surface (i.e. escapes from the region are observed).

Stickiness of an island is observable as a “darker” region around the respective
island as seen in fig. [[.7. The statistics of irregular trajectories in chaotic seas
present rather curious behaviour often denoted as “fat tails” usually interpreted
as power laws.

For example, the mean escape time for a trajectory from a sticky region may
even amount to infinity (Zaslavskii, [2007). That is caused by the fact that the
probability density p(7) of escape after a time 7 is proportional to 777 with
B < 2 for 7 sufficiently large. Thus the designation “fat tail” of a probability
distribution which causes certain momenta of the distribution to diverge.

As has been noted in MacKay, Meiss & Percival (1984), the stated behaviour
can be acquired for example as a superposition of a countable set of exponential
decays with the right behaviour of coefficients in result of an infinitely delicate
structure in the neighborhood of the island. The set of decays could however
also be finite but very large and the phenomenon of a fat tail may fall of into a
“regular” exponential decay for very long times. Such times may however not be
accessible numerically.

We would like to conclude this subsection by noting that there is a rich variety
of results concerning stickiness and in general transport in Hamiltonian systems,
consequences for recurrence and statistical physics, as well as semi-analytical ap-
proaches to the problems. A complete review would however be way beyond the
scope of this thesis and thus we point the reader to the already cited |Contopoulos
(2010, loc. cit.), |Zaslavskii| (2007)), MacKay, Meiss & Percival| (1984) and also to
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(1992)) for a detailed review of the problems.
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Chapter 2
Chaos Around Black Holes

In the first section we will present an overview of differences of relativistic dynam-
ics in comparison with the Newtonian case and in the second section a minimal
introduction to Weyl space-times is outlined. Finally, in the last section the
pseudo-Newtonian approach is introduced along with an only partially complete
review of literature concerning itself with development and applications of non-
relativistic approximations of relativistic features.

2.1 Nonintegrability in relativistic geodesic flows

It would be a turn of tables if the relativistic motions were found to be completely
integrable in contrast to for example Poincaré’s three body problem, but this is
not the case. In some problems such as the geodesic flow in the field of two fixed
black holes |Contopoulos (2010, sect. 4.2) a flow completely integrable in the
Newtonian case has been found to be even completely chaotic (for null-geodesics).
A review of chaos in relativity can be found e.g. in the introduction of [Semerak
& Sukov4d (2010).

Arguments can be developed which explain volatility of an integrable relativis-
tic motion being subject to perturbation versus the volatility of it’s Newtonian
counterpart. Such is for example the Schwarzschild spacetime containing an un-
stable periodic trajectory which immediately after perturbation generates chaos.
Since a vast majority of local (i.e. non-cosmological) astrophysically relevant rela-
tivistic models involve a black hole with it’s unstable periodic orbit, chaos is often
found to be stronger in the relativistic case (see subsection for examples).

Nonetheless, there is no universal argument for the observed relativistic-
Newtonian non-integrability correspondence, since the formalism is comparable
only asymptotically and thus even the simplest integrable settings often differ in
qualitative tendencies of evolution.
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2.1.1 Motion of a test particle as a Hamiltonian flow

The equation of geodesicE] in a relativistic space-time does possess a Hamiltonian
formulation

1
H=—¢"p,p,, 2.1
579" Pub (2.1)

with p, = ma, the canonical momentum conjugate to x#, m the rest mass of
the particle, and the dot denotes covariant differentiation with respect to it’s
proper time 7. The Hamilton’s equations with the canonical symplectic form
w = dp, Adz* then stand without any modifications. The Hamiltonian has quite
obviously got a constant value of —1/2m corresponding to the four-velocity nor-
malization.

All the results of the previous chapter apply with the phase space being the
cotangent bundle of the 4-dimensional space-time. It would seem that the test
motion in relativity has more degrees of freedom than in the Newtonian case.
The dependency of the Hamiltonian on the fourth “extra” coordinate how-
ever corresponds to a time dependency of the gravitational field in the Newtonian
case. The four-velocity normalization then corresponds to ¢ = 1.

Hence the main formal difference between the Einstein and Newton gravity
as to the respective Hamiltonian dynamical system of a free particle is the fact
that the Newtonian case is always expressible in a set of coordinates in which the
configuration-space-independent kinetic energy 7T'(p) is separate from the gravi-
tational potential V'(q), on the contrary dependent only on the values of configu-
ration coordinates. On the other hand, the formally elegant relativistic case has
the whole dynamics tucked into a configuration-space dependent quadratic form
of the momenta.

The integrability and non-integrability of the relativistic geodesic flow is how-
ever a strongly geometric property (in a not strictly local sense) of the spacetime
expressible in terms of symmetries of the metric. Namely, a continuous isometry
group or equivalently a Killing vector field always corresponds to a linear mo-
mentum integral of motion and a Killing tensor of second order corresponds to
a quadratic integral of momenta. A brief overview of the link between Killing
tensors and their generalizations to integrability of geodesics can be found in
Stephani et al.| (2003] sect. 35.3).

2.1.2 Relativistic specialties

The Killing vectors have a Newtonian analogue - symmetries of the mass dis-
tributions and thus also of the gravitational potential. Anyhow, the topological
non-triviality of certain space-times cannot be dubbed by the Newtonian case.
There exists a number of results concerning topological obstructions to geodesic
integrability on Riemannian manifolds (Bolsinov & Jovanovic, 2003). For ex-
ample, it has been proven that if the fundamental group of the manifold has

1Strictly speaking, the described flow is a cogeodesic flow since it involves the whole cotangent
bundle of the manifold.
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exponential growth EI (as is the case with spaces with negative curvature), the
topological entropy of the geodesic flow must be positive. Furthermore, the posi-
tivity of topological entropy is proven to imply nonexistence of analytic integra-
bility of the flow. On the other hand, counterexamples have been found which
have positive topological entropy with smooth but non-analytic first integrals of
the flow.

Omitting the fact that the thin line between analyticity and smoothness of
the integrals is usually beyond the scope of a physicist’s interest, the mentioned
results consider only Riemannian metrics and the pseudo-Riemann case isn’t thor-
oughly discussed in the literature. Additionally, the results concerning topological
obstructions to integrability do not seem to have stirred wide physical interest as
general theorems associate non-trivial topology with physical singularities, con-
troversial closed time-like curves or censorship of the occurring phenomena for a
distant observer (see introduction of [Silval 2010)).

The other specific phenomenon of relativity are gravitational waves. These can
either be used to perturb the background leading to chaos (Bombelli & Calzettal,
1992; Letelier & Vieiraj, |1997) or possibly to analyze the wave-emitting chaotic
motion from far away (Kiuchi, Koyama & Maeda, 2007).

The last but not least special feature of General Relativity is the fact that the
background itself is governed by non-linear equations — even in a dynamical sense.
The matter is however delicate, since there is most often no preferred choice of
the time parameter, as has been a crucial historical argument in the discussion
of chaos in the Bianchi IX (Mixmaster) cosmological model.

According to |Contopoulos (2010, sect. 4.3), most of the classical cosmological
models include some degree of chaoticity at least in the sense of chaotic scattering
as seems to be the case of the Bianchi IX model (see introduction of Semerdk &
Sukova, 2010} for a recent list of contributions). Yet for example in the Bianchi
IX model most of the chaotic oscillations occur before Planck time where the
classical description is most probably invalid.

2.2 Weyl space-times

The metric describing static axisymmetric vacuum solutions of Einstein equations
was first devised by Weyl| (2012, first published 1917) with a nowadays surprising
motivation to attempt to elucidate the inner workings of an atom. Weyl him-
self admits by the end of the article that the result cannot be perhaps used in
the stated way, yet the metric has found use in the description of idealized as-
trophysical models. In Weyl’s canonical coordinates utilizing geometrized units
¢ =G =1 and the (— 4+ ++) signature, the metric reads.

ds? = —e2(Pa)qy? 4 p2e_2”(p’z)dgb2 + 62(/\(p7z)—V(97Z))(dp2 + sz). (2.2)

2The fundamental group is the group of homotopy-equivalent classes of loops passing through
a certain point. If the manifold is path-wise connected, the fundamental group is independent
of the respective point. Growth rate of the group is the rough dependency of the number of
nonequivalent loops generated by a fixed number of joinings of a generating set of loops.
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Einstein’s equations in vacuum impose the following conditions on the functions

v and \:
v 10v 0O*v

a—p2+;a—p+@:0 (23)
1N  [Ov\®  [Ov\?
s () +(5) =0 24
10X Ov Ov
;5 — 28_[)& =0 (2.5)

Equation [2.3]is the Laplace equation in cylindrical coordinates p, z. Furthermore,
analysis of the Einstein equations shows that v is actually the Newtonian poten-
tial of a mass distribution w(p, z) with respect to cylindrical coordinates p, z in
Galilean space-time.

Equations [2.4] 2.5 can be reformulated into the quadrature

(p2) o\’ o\’ Jv dv
“P’Z):/axisp(((a—p) (&) o) oo

where the lower bound is anywhere on the axis of symmetry and the integration
trajectory lays in vacuum entirely. The potentials v of different sources superpose
linearly, but the function A\ has to be almost always recalculated from eq. ({2.6]).

If the source of the field is an infinitely thin annular disc in the equatorial plane
with mass density w(p), the Poisson integral for v leads to (Semerak, [2004))

o) = —a [ 2VP'p :
(p, 2) 4/b \/(p’+p)2+22K<\/(p’+p)2> s, (2.7)

where b is the Weyl inner radius of the disﬂ and K (k) the complete elliptic
integral of the first kind.

Due to the singular behavior of K (k) around k — 17, v has got as much finite
derivatives as is the number of derivatives of w(p) which vanish as p — b". The
non-analyticity of the potential v around the inner radius of the disc proved to
be important in our numerical study, since the function cannot then be expanded
in it’s proximity.

2.2.1 Schwarzschild black hole in Weyl coordinates

The Schwarzschild spherical coordinates are related to the Weyl coordinates by
the following relations

p=/r(r—2M)sinf, z = (r — M)cosb, (2.8)
where M could be any feasible constant, in this case the mass of the black hole.
The respective potentials of the Schwarzschild black hole then read

3Simply the first p, where the disc “starts”.
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QWeehw = 10 (1 — %> , (2.9)
r

r(r—2M)
(r — M)2 — M?2cos?(6)’
From the transformation rules (2.8 it can be seen that the black hole horizon is
transformed into a mere segment of the axis ranging from z = —M to +M.

et = In (2.10)

2.2.2 The Bach-Weyl ring and the first inverted Morgan-
Morgan disc

Considering an infinitely thin ring of Weyl radius b and total mass M in the
meridional plane, [Bach & Weyl| (2012, first pub. 1922) showed that the potential
v takes the form

2MK (k) 4bp

1% = — s = 5 5>
o T/ (p+b)? + 22 (p+b)%+ 22

where K (k) is again the elliptic integral. An explicit formula for A is to be found
in the cited article.

(2.11)

A class of static axi-symmetric solutions of Einstein’s equations was published
by Morgan & Morgan (1969)) describing classes of gravitating infinitely thin discs
with mass distributions

1
m (2m + 1)M P\
winal(p <) = (1=

where M is the disc mass and b is it’s Weyl radius. The discs are often called
counter-rotating, since they have no net angular momentum and their stability
is explained by particles orbiting back and forth in the disc with the same speed
(Saa & Venegeroles, 1999)). It is known that the Laplace equation is invariant
with respect to Kelvin transformation:

, (2.12)

) b2z
rendering the mass distribution
22 (1m1)2Mb b2\ "
(m) _

By the transformation the disc is thus inverted from the inside and spread into
infinity. The mass distribution however roughly vanishes as /% and the disc has
a finite mass

27r/ wim pdp = M. (2.15)
b

The Newtonian potential of the first inverted Morgan-Morgan disc reads
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L (pP -+ 2?)
—(3% — 362 + p? + 22
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where ¥ = /(p? + 22 — b2) — 4b222. It is easy to show that for p > b

o (m) .
lim, % = 2w | (2.17)

2.3 The pseudo-Newtonian approach

As can be seen from eq. , even very simple (highly symmetric) space-times
are often superposed nonlinearly in relativity causing interesting new phenomena,
but also technical difficulties. On the contrary, in Newtonian gravitation the
effects of mass superpose linearly.

The idea of pseudoﬂ-Newtonian potentials (PNP) is to capture or reproduce
some of the essential features of motion in a relativistic solution by a suitably
chosen potential in flat space.

2.3.1 Potentials for non-rotating black holes

As has been already mentioned in the introduction of this thesis, a pseudo-
Newtonian potential was first introduced by [Paczynsky & Wiita) (1980) to study
the accretion flows of gas onto non-rotating astrophysical black holes in a simpler
Newtonian mode. The potential for a black hole of mass M has the following
form in spherical coordinates

M
r—2M°
If the spherical coordinate r is put in correspondence with the Schwarzschild
radial coordinate, the potential reproduces a number of salient features of the
Schwarzschild space-time. Namely, the marginally stableﬂ and marginally boundﬂ
orbits are reproduced exactly (rps = 6M, r, = 4M) and the potential repro-
duces approximately also other features such as the binding energy and angular
momentum of circular orbits (Tejeda & Rosswog|, 2013).

Dpy = — (2.18)

Nowak & Wagoner| (1991)) introduced an alternative potential

M M M\?
Py = — — (1 — 3= 412 (—) ) : (2.19)
T T T

4The pseudo-Newtonian potentials usually do not comply to the classical Poisson equation
A® = 47p in any good sense.

5The radius of the smallest stable circular geodesic giving then usually the inner edge of the
accretion disc.

5The smallest circular geodesic with energy Ejm.
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which reproduces exactly the marginally stable orbit with it’s angular velocity
Q2 but fails to reproduce for example the marginally bound orbit by putting
'mb — 3.5M.

A survey of PNPs has been given by ? who introduce four new potentials for
rotating and non-rotating black holes. They conclude however that the Paczynski-
Wiita (PW) potential is most effective for non-rotating holes, rendering the pa-
rameters of accretion discs within 10-20% of accuracy. A refined PNP for rotating
black holes was proposed by |Semerdk & Karas (1999).

Another very recent survey was given by [Tejeda & Rosswog (2013) also in-
troducing a new generalized potential by identifying it in a low-energy limit of
the equations of motion of a test particle in the Schwarzschild space-time. The
potential reads

_ GM 2M r—MY ., 1%
o = r _(T—ZM) [(r—QM)T2+T]' (220)

The low-energy limit is —u; &~ 1 meaning mostly low velocities or weak fields, but
not necessarily. The Tejeda-Rosswog potential reproduces exactly a number of
traits of the Schwarzschild field such as the marginally bound, marginally stable
and circular photon orbits and generally shows excellent behavior of test particles,
notably failing only in connection with the coordinate behavior near the horizon.
The effective approximation is however taken one step further — to a “generalized”
pseudo-Newtonian approach as even a velocity dependence is introduced.

2.3.2 Chaos in Newtonian, pseudo-Newtonian and fully
relativistic approaches

In this subsection we present a short review of the works analyzing chaos in fully
relativistic and other modes concentrating mainly on the static, axially symmet-
ric configurations with a central black-hole (massive monopole).

Vieira & Letelier| (1999) considered a core-shell model describing a neutron star or
a black hole with a hollow halo of matter in a Newtonian and relativistic mode.
The authors found that even though the models show a similar regularity re-
sponse to the breaking of reflectional symmetry around the meridional plane, the
relativistic case showed much larger portions of phase space devoured by chaos.

The purely Newtonian monopole 1/ is thus considered to be an inappropri-
ate approximation in small distances from the horizon. A very similar conclusion
was drawn from the study of a superposition of a monopole and an infinite ho-
mogeneous thin disc in the relativistic and Newtonian mode conducted by |Saal
& Venegeroles (1999). The authors also considered a smoothening of the thin
disc into a thick one in a purely Newtonian mode, finding the smoothening to
suppress chaotic behavior.

In the footsteps of the latter study, Kiuchi, Koyama & Maeda; (2007) have fur-
ther analyzed the monopole-thick-disc system in a semi-classical approach. Even
though purely Newtonian motion was considered, the authors have, as already
mentioned in this chapter, utilized the quadrupole formula for retrieving possibly
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emitted gravitational waves a purely relativistic phenomenon.

In a mission to incorporate the essential relativistic effects in many-body simu-
lations, |Guéron & Letelier| (2001) tested the fully relativistic, pseudo-Newtonian
and Newtonian description of a massive monopole and a dipolar halo. Further-
more, they also compared special-relativistic and Galilean equations of motion
for the pseudo-Newtonian case.

The Newtonian case is completely integrable, but by modifying the monopole
potential, chaos spurs in the phase space strengthened further by the special-
relativistic equations of motion. On the contrary, the relativistic formulation
shows through Poincaré surfaces of section a somewhat weaker irregularity than
in the motion in the field of the Paczynski-Wiita potential. For one particular
set of parameters, the authors have found a larger maximal Lyapunov number in
the pseudo-Newtonian case than in the relativistic one and an even larger one for
the special-relativistic motion.

As the authors themselves state, in an attempt of a “zeroth step” to incorpo-
rate relativistic effects, Steklain & Letelier| (2006) investigated the influence of
introducing the PW potentials instead of the classical ones in the Hill problem.
Due to the nature of the Hill problem, the PNPs did not make a great difference
in the physically relevant cases, only slightly changing the stability of the system.
By investigation of maximal Lyapunov numbers and escape basin boundaries
they even concluded that for a certain finite value of Schwarzschild radius ry (in
1/(r —rs)) the system is less chaotic than in the Newtonian case.

Even though PNPs have not been involved in the work of |Wu & Zhang (20006)),
they have quite interestingly found that for a superposition of Weyl space-times
of a black hole and a thin disc, omitting the cross terms of leads to apparent
attenuation of chaos in the geodesic flow. According to the authors, the result
suggests that the non-linear superposition may be one of the “mechanisms” of
chaos generation in the space time. This conjecture would however require a more
stringent investigation.
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Chapter 3

Simulation of Test Particle
Motion

3.1 Statement of the problem

In Semerak & Sukoval (2010, 2012); Sukova (2009) the dynamics of time-like
geodesics in exact static, axially and reflection symmetric space-times has been
studied. The fields describe a superposition of a central Schwarzschild black hole
with thin discs and rings, namely, the first and fourth disc of the inverted Morgan-
Morgan (iMM) family and the Bach-Weyl (BW) ring described in the previous
chapter.

The study investigated the influence of parameters of the system on the
Poincaré surfaces of section in the equatorial plane and further analysed time
series of phase variables by various methods to indicate different degrees of chaos.
The varying parameters were specific particle momentum ¢ = % = Uy, specific
particle energy £ = % = —uy, inner disc or ring Schwarzschild radius rgis. and
ring or disc mass M (see figs for examples).

A variety of responses to the changes of parameters have been found on the
Poincaré surfaces of section of which the full set is to be found in Sukova (2009).

As described in the previous chapter, pseudo-Newtonian potentials often serve
as substitute to a fully relativistic solution in important astrophysical problems.
It is an open question how much of the relativistic behavior is actually repro-
duced by the modified potentials. At least a qualitative correspondence in every
aspect of motion should however stand for the pseudo-Newtonian approach to be
justified.

Our investigation will thus try this correspondence by numerically simulating
test particle dynamics in the mentioned disc/ring and black hole problem with
the sole difference of utilizing the pseudo-Newtonian approach instead of the
relativistic formulation. The Hamiltonian of the free particle will then take the
form

1
H = 5M*l(p,p) + Von + Vixt, (3.1)

where p are canonical momenta of the particle, M is the mass form or alterna-
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Figure 3.1: Relativistic surface of section for the first iMM disc superposition for
the parameter values rqisc = 156M, € = 0.955M, ¢ = 3.75M, M = 0.5M (Sukovéd,
2009)
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Figure 3.2: Relativistic surface of section for the first iMM disc superposition
for the parameter values rqs. = 20M, £ = 0.955M, ¢ = 3.75M, M = 0.42M
(Sukova, 2009)
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Figure 3.3: Relativistic surface of section for the BW ring superposition for the
parameter values rqi. = 20M, & = 0.935M, ¢ = 3.75M, M = 0.5M (Sukovéd,
2009)
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Figure 3.4: Relativistic surface of section for the BW ring superposition for the
parameter values rqisc = 20M, € = 0.935M, ¢ = 3.75M, M = 0.5M (Sukova,
2009)
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tively mass matriy]] and Vpy is the pseudo-Newtonian potential of a black hole
and Vg the potential of the external source, namely ring or disc. In our case
the mass matrix will be effectively coordinate independent and the potentials
will be, on the other hand, momentum independent, thus falling in a class of
Hamiltonians commonly called “separable”.

In this chapter, we will now present the procedure of testing the pseudo-
Newtonian vs. relativistic correspondence and the results.

3.2 Newtonization of the space-times

Firstly, as our PNP we choose the Paczynski-Wiita (PW) potential presented in

the last chapter:
M

r—2M°
Secondly, we choose the Bach-Weyl ring and the first Morgan-Morgan disc as the
external source perturbing the black hole background.

The last but perhaps the least trivial choice to make is the choice of coor-
dinate equivalence. To narrow the question - are the Weyl or the Schwarzschild
coordinates the “right” Euclidean coordinated] in which to express the Newtonian
motion? We choose the Weyl coordinates, as in those the external potentials
are exactly the Newtonian potentials of identical mass distributions in Euclidean
space. We then superpose the field of the external potentials with the PW po-
tential by putting r = \/p? + 22.

The stated choice however does not have any canonical or rigorous mean-
ing. I.e., the PW potential corresponds through the Newtonian Poisson equation
to negative mass distributions behind the horizon and a positive mass density
vanishing approximately as T%l far from the horizon. Furthermore, as has been
mentioned in the previous chapter, the Swarzschild black-hole horizon is repre-
sented as a bar on the symmetry axis in Weyl coordinates, which obviously isn’t
the case of our superposition.

The purpose of the relativistic vs. pseudo-Newtonian comparison is to inves-
tigate the justification of common practice in astrophysics, which is most usually
a fully Newtonian approach only superseding the Newtonian monopole by the
pseudo-Newtonian potential. Our selection can thus be understood as an effort
to mimic the conventional astrophysical method of modeling the situation without
the use of relativity.

Dpy = — (3.2)

3.3 Numerical realization

Numerical integration reproduces a trajectory of a dynamical system through
discrete steps h with an accumulated error of order h". The global error of the
trajectory, usually hidden behind the symbol O(h"), is however a complicated
perturbation power series which is difficult to investigate, since even the round-
off error in every integration step plays an important role in it’s creation.

IFor example in Euclidean coordinates M;; = mdy;.
2Tn the sense of respective Euclidean space in spherical and cylindrical coordinates.
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sympl. Euler, h =5 sympl. Euler, proj. onto H

Figure 3.5: Numerical integration of the Sun-Jupiter-Saturn system, image due
to [Hairer; (2006])

A quiet assumption of many applications of numerical integration is the fact
that for finite h the perturbation amounts to a reasonable error of an approximate
form Ah" where A is a not too large constant. This is obvously not true in chaotic
dynamical systems where an infinitely small perturbation of initial conditions may
lead to qualitatively different trajectories and the global error power series will
not converge in the stated manner.

The main argument in support of the usage of numerical integration in chaos
are thus the Shadowing theorems of which an overview is given by [Palmer (2009).
The Shadowing theorem for continuous-time dynamical systems states that un-
der certain conditions the errorfull numerically acquired trajectory is shadowed
within a certain e-range by an actual trajectory of the dynamical system with
slightly different initial conditions.

As has been mentioned in the first chapter about Hamiltonian chaos, one of
the main features of Hamiltonian systems is the preservation of the symplectic
structure and the Hamiltonian. An overview of approaches to energy conservation
has been given e.g. by Hairer| (2006) and Hairer, Lubich & Wanner| (2006)).

As illustrated in figure [3.5] the attempts to conserve energy ezactly by pro-
jections of the trajectory on the energy hypersurface has been proven to be even
destructive towards the qualitative properties of the integrated solution. In the
following subsection we will present a very brief overview of the methods of tack-
ling energy conservation and of integration methods tailored for Hamiltonian
systems and discuss the application to our problem.

3.3.1 Symplectic integration

The most frugal approach to energy conservation has surprisingly come from the
exploitation of the symmetries of the dynamical system, namely time-reversal
symmetry, reversibility and the mentioned symplecticity. In studies of simple
mechanical systems an “accidental” discovery of the properties of symplectic al-
gorithms has been found leading to analytical investigations and a notable result
of Benettin, Galgani & Giorgilli| (1980]). The result basically states that the flow
of a symplectic integrator is an exact flow (up to round-off error) of a Hamiltonian
system very close to the original one for exponentially long times.

After a few necessary definitions, we shall mention here only a simplified
reformulation of the result referring the reader to the cited article for details.
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Definition 3.1. Let y(t) be the point of a trajectory at time ¢ in a dynamical
system. Then we define an h-step integrator of order r as a mapping V¥, for which

U(y(t) =yt +h) + OW*H). (3.3)

We call the sequence {y, = U} (y(0))} the pseudo-trajectory. An integrator is
called symplectic, if it preserves the symplectic form w under differential pull-
backﬂ. An integrator is called time-reversal symmetric when the following condi-
tion holds:

Uy, =V}, (3.4)

For a Hamiltonian dynamical system with canonical momenta and coordinates
(p(t), q(t)) we call the integrator reversible if the following holdd}

Un(p(t), q(t)) = ¥_r(—p(t), q(t))- (3.5)

Theorem 3.1. Consider
e o Hamiltonian system with an analytic Hamiltonian function H and
e a symplectic integrator V(h) of order r.

As long as the pseudo-trajectory {y,} is bounded, we have, for h — 0,
H(yn) = H(yo) + O(h") + O(nhe™/"), (3.6)

where v > 0 depends only on the method and w s related to the Lz’pschitz—constanﬂ
(or highest frequency) of the dynamical system.

This formulation is due to [Hairer| (2006)). In numerous situations the third term
on the right hand side is exponentially small and thus the energy error of the
integration is bounded to very small quantities. In practice the error may only
be due to the round-off error with the algorithm faulting only negligibly.

Another property of symplectic algorithms is the result that if a symplectic
integrator preserves energy ezactly, it is the exact flow of the system up to a time
reparametrization. Hence if the energy is preserved almost exactly, it is natural
to assume the flow almost exactf]

However, the most palpable drawback of symplectic integrators is the fact
that varying the time-step h during evolution breaks the error estimate (3.6 and
has been proven numerically to destroy the invariant geometric structures (local
integrals/invariant tori) of the problem. Special treatment for varying time-steps
and symplecticity is required, the respective integrators are very difficult to con-
struct and usually apply only to a certain class of Hamiltonians.

3For conventional reasons the symplecticity of an integrator is very often equivalently defined
by push-forward of the symplectic bivector w™! or “symplectic matrix” J.

4There exists a more general definition of a reversible integration method not needed in this
thesis.

5The maximal slope of a function.

6 A rigorous proof of this assumption is however difficult to find in literature.
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The important class of time-reversal symmetric integrators and their properties
will not be developed further in this thesis and the reader is referred to chapter
V and XI of Hairer, Lubich & Wanner (2006). We only note that the reversible
and time-reversal symmetric integrators have similar properties as the symplec-
tic ones including linear error growth, long-time integral near-conservation and
existence of invariant tori.

3.3.2 Ring, horizon and disc singularities

In our case, the Hamiltonian is however non-analytic, bearing singularities (on the
ring and the horizon) and cusps (on the disc, thus leading to jumps in the time-
derivative vector field). Hence in certain parts of the potentials the Lipschitz-
constant grows without bounds or is explicitly inifinite, corrupting the error es-
timate and causing energy error growth in the respective areas.

Furthermore, in the proximity of the horizon, the force due to the PW potential
is in the form (difference of two close floating point numbers)~2 leading to vast
round-off errors. This problem as well as a number of various other encountered
problems with numerical evaluation mainly due to floating point arithmetic, could
possibly be resolved by higher number representations which are however imple-
mentation difficult.

Another violation of the conditions for the estimate is the fact that the
trajectories falling into the horizon head towards infinite Velocitiesﬂ thus actually
stopping to be bounded in the phase space. This flux of the phase space of initial
conditions into the horizon is reflected by possibly numerical deformations of the
observed sticky regions and of the “visited areas” of chaotic trajectories.

We have tried to tackle these issues by choosing a time-reversal symmetric and
reversible integrator with a variable time-step called IGEM introduced by Seyrich
& Lukes-Gerakopoulos| (2012) which would then bind the error growth in steep
potentials. However a time-reversal symmetric integrator is necessarily implicit,
i.e. the evolution is found as an iterative solution of an implicit equation. Even
though the convergence of the fixed-point iteration of the implicit equation was
cleverly handled by the algorithm for sufficiently smooth potentials, it not so
surprisingly failed at the jump in the time-derivative vector field.

Following the iteration convergence difficulties, we have thus switched to an ex-
plicit symplectic integrator of sixth order due to Blanes & Moan| (2002). The
specific method is a partitioned Runge-Kutta-Nystrom method (possible only for
separable Hamiltonians) denoted by SRKNS,. For details on and definitions of
the mentioned terms the reader is referred to the cited article.

The main advantage of the method is a simple implementation and low com-
putation cost per step, yet without time-step control.

7An analogy of the particle passing through coordinate t = oo by falling into the horizon.
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3.4 Poincaré surfaces of section

For the simulation, almost identical sets of parameters of the system with the first
Morgan-Morgan disc and the Bach-Weyl ring have been taken as in |[Sukov| (2009).
Following the lines of the cited thesis, we have conducted simulations producing
Poincaré surfaces of section for these system parameters with the geometrized
units G = ¢ = 1 and the length unit M. Furthermore, the mass of the particle
is also taken m = 1 in accordance with the fact that the physical trajectory is
mass-independent and the canonical momentum is then identical with the particle
velocity w. Applying all the stated choices, the Hamiltonian in units of M reads
"o 1 9 0? 1

— i(up—l—uz)—kﬁ—m—l—%xt(p,z). (3.7)
For a fixed Vi, the Poincaré surface of section was chosen in the equatorial
plane z = 0 at a fixed specific energy £ and specific angular momentum ¢. As
a consequence, for a set of initial coordinates p,u, the inital size of u, on the
plane is determined. En plus, the Hamiltonian is also reflectionally symmetric
with respect to the equatorial plane and thus the sign of initial u, is irrelevant.
The Poincaré surface of section is thus a well defined single-valued discrete map
of the p,u, plane with all the important symplectic properties presented in the
first chapter.
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Chapter 4

Results of the Simulation

In this chapter we present the results of the simulations of the problem of the
Bach-Weyl (BW) ring and first inverted Morgan-Morgan (iMM) disc superposi-
tions introduced in the previous chapter.

The sets of parameters are not always strictly taken the same as in [Sukova
(2009), yet the series are taken so that a clear comparison can be made. Every
series of Poincaré sections depicting a given parameter influence has a first figure
(such as , the first figure of the specific-energy influence series in the iMM
superposition) presenting the set of parameter values staying constant. The other
figures of the series then only state the changing values of the given influence-
parameter (such as £ in figs with reference to the first figure of the series.
The units are always assumed to be M and are not further mentioned]

Almost every surface of section also shows the curve of zero velocity (COZV)
in gray - the border of the energetically allowed area - whereas the points of in-
tersection are plotted black. For technical reasons, all the figures with surfaces
of sections are placed at the end of the chapter

It should be noted that even though the relativistic surfaces of section from
Sukova (2009) are often referred and described in this chapter, a full set of the
relativistic surfaces of section would expand the present thesis unbearably and
would also be mere replicas of those in the cited thesis. The reader may thus rely
on the brief and partial description in this chapter or can asses the relativistic vs.
pseudo-Newtonian comparison utilizing the original thesis.

When talking about the relativistic vs. pseudo-Newtonian correspondence, we
take the Euclidean radius b of the disc or ring equivalent to 74, as well as with
all the other parameters (even though this correspondence may be highly flawed).
The velocity coordinate is taken as u, in contrast to the relativistic " but in
the equatorial plane z = 0 the Euclidean interpretation of " is the same as w,,.
The last difference from Sukova (2009) is the energy convention. We adopt the
convention common in Newtonian mechanics, i.e. the specific rest energy in zero
potential is 0, whereas in relativity the same situation gives specific rest energy 1.

In numerous surfaces of section, the influence of numerical error is discernible. As
per usual, there was a typical erroneity associated with a given superposition or

!The parameters P can be instead thought of as dimensionless: P= P/M
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set of parameters since small tweaks and variations were added to the numerical
algorithms on the go. Hence, observing phenomena such as invariant structure
blurring or COZV crossing might be used as a rule of thumb for assessing the
reliability of other phenomena on the entire surface of section.

The relative energy error was however never allowed to cross 1073, and in the
less cumbersome BW ring superposition, relative energy error larger than 10~*
was not allowed.

4.1 The first inverted counter-rotating Morgan-
Morgan disc

The first iMM disc has a jump in the derivative in the z direction for p > b. The
onset of the jump at the disc inner edge is sudden and non-analytic, causing per-
haps the strongest sources of perturbation in it’s neighborhood when the particle
passes through the disc.

On the other hand, intuitive arguments utilizing for example Gauss’s law can
show that the field is fairly weak on the inside of the disc. Hence, the disc can
be understood as a quite general perturbation when the inner edge is out of the
reach of the allowed area.

4.1.1 Influence of the particle energy

The surfaces of section for the test particle specific energy variation were taken
with the parameter values M = 0.5, b = 20, ¢ = 3.75 starting from & = —0.048
and are to be found in figs 4.6|

Right from the lowest energies, the main discrepancy in comparison with
the relativistic case is the communication of the allowed area with the horizon.
This makes the early pseudo-Newtonian surfaces of section resemble the higher
energetic relativistic surfaces of section starting from £ = —0.044 (0.956 with
the addition of rest energy), where the allowed area also communicates with the
horizon with large portions of chaotic phase space and bears a central 1-periodic
island wrapped by a large 3-periodic island.

The mentioned characteristic then more or less continues for the sections with
growing £ untill £ = —0.035 where in both cases the 3-periodic island vanishes
and a 5-periodic one appears (discernible as blank spaces in fig. .

Higher energies £ = —0.025, —0.02 (fig. then discord in the fact that a 2-
periodic island is additionally formed in the pseudo-Newtonian case, whereas the
relativistic case displays only the 1-periodic dominant island. The calculation of
the highest two energies turned out to be very time-costly so only a rough surface
of section is presented in fig.

4.1.2 Influence of the angular momentum

The angular momentum influence on the surfaces of section was studied for the
parameter values M = 0.4, £ = —0.4635, b = 20, starting from ¢ = 0.65 and
is depicted in figs. [{.7H4.9] The allowed areas are large and vastly open to the
horizon for most values of L, hence the chaotic trajectories usually did not leave
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many traces on the section before falling into the black hole. Also for this reason
the first three surfaces of section do not have a visible COZV in the plots.

Firstly, the main stable orbit and it’s island are visible with only three “ghosts”
in the pseudo-Newtonian case where on the other hand the relativistic case dis-
plays a robust 3-periodic island. The 3-periodic islands become more robust with
growing angular momentum but the pseudo-Newtonian image does not reach the
regularity of the relativistic surfaces of section which even close the communica-
tion channel with the horizon for ¢ = 3.75.

The COZVs tend to tighten the channel to the horizon much more in the
relativistic case, which seems to be the reason for the greater regularity of the
relativistic series.

4.1.3 Influence of the inner radius of the disc

The surfaces of section for small b with M = 0.5, £ = 3.75, £ = —0.045 are obvi-
ously the most erroneous from the whole set due to the frequent (and sometimes
even necessary) passing through the time-derivative field jump on the disc. Most
notably the first b = 3 is probably outright wrong because fo the COZV and
invariant structure crossing.

Even worse than the one-sided-smooth jump is the completely non-analytic
ring edge at which we had difficulty in evaluating the time-derivative vector field
precisely. This can be seen most explicitly in the haziness introduced when the

disc edge coincides with the stable 1-periodic trajectory at b = 15 (fig. 4.12)).

Apart from the numerical problems, there is accordance with the relativistic case
even in the sequence of periodic island layers 1 — 5 — 3 counting from the central
1-periodic trajectory. The pseudo-Newtonian case then displays the 5-periodic
island for slightly higher radii until b = 17. Both the cases fully coincide with
growing inner disc radii from about b = 18 in the tendency of slowly eliminating
chaos in the phase space by a growing 1-periodic island with a large 3-periodic
layer.

The main dicrepancy is the absence of closing-off of the allowed area from the
horizon for higher radii (b = 20+ in the relativistic case). Such a closing-off does
not occur in the pseudo-Newtonian case even for higher radii than presented in

Sukovd| (2009) (fig. [4.15).

4.1.4 Disc mass influence

In the case of the disc mass influence on surfaces of section of the parameter values
E = —0.045, £ = 3.75,b = 20 starting from M = 0.1 (figs. [4.16}[4.27), the allowed
area is again open to the horizon right from the beginning unlike the relativistic
case. Consequently, the typical 1-periodic island with a 3-periodic island bracelet
is observed even for the initial mass of the disc again in contradiction to the
relativistic sections.

In the relativistic case the 3-period island created at M = 0.1 survives up to
the perturbation M = 0.86, whereas in the pseudo-Newtonian case the 3-island
is destroyed as early as for M = 0.7. In both cases, the 3-island is superseded
with a 5-periodic island.
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The 5-periodic island, or more precisely it’s remnants, survive perhaps until
M = 1.2, 1.025 in the relativistic and pseudo-Newtonian case, respectively. The
central 1-periodic island transforms into a 2-periodic island at M = 1.05, 0.98
in the relativistic vs. pseudo-Newtonian case, respectively. A first appearance of
a new l-periodic island in between the 2-periodic island occurs at M = 1.2, 1.1,
respectively.

The overall qualitative tendency is thus almost identical, yet the spawning
and vanishing of islands occurs for slightly weaker perturbations in the pseudo-
Newtonian case.

4.2 The Bach-Weyl ring

The Bach-Weyl ring is a more singular and thus in a sense “stronger” gravitating
source (a linear singularity) than the first iMM disc. Hence, a larger disagree-
ment of the simulations with the relativistic case is expected. The allowed phase
space is also vastly different since the singular ring creates it’s own allowed area
for an arbitrarily large binding energy no matter whether the area is or is not
topologically connected with the original black-hole allowed area in phase space.

The BW ring will play a major role in the formation of any invariant structure
in the nearby phase-space and can’t thus be strictly regarded as a perturbation
to the field. However, once far away enough, similar perturbation effects as for
the first iMM disc are also to be expected.

4.2.1 Influence of the particle energy

The initial situation for the surfaces of section at ¢ = 3.75, M = 0.5, b = 20
in figs [4.2844.34] starting from specific energy & = —0.085 is very similar in the
relativistic case — there is a set of two disconnected allowed areas (one near the
former stable circular orbit and the next one near the ring) with regular motion
and no communication with the horizon.

The situation however quickly changes in the pseudo-Newtonian case as the
“ring area” becomes fully chaotic and the area around the stable 1-periodic orbits
connects with the horizon at £ = —0.08. The two disconnected areas connect as
early as at & = —0.075 (fig. [£.29), unlike the relativistic case. However, for higher
energies the main characteristics coincide - the allowed area is simply connected
and communicating with the horizon with a most notable 1-periodic island and
some minor higher periodic islands.

At about £ = —0.055 (a tick later in the relativistic case), the 2-periodic
island inside the ring appears followed by the appearance of a 2-periodic island
oscillating from the around the radius of the ring. At & = —0.04 the inside 2-
periodic island disappears and the “oscillatory” island dominates in both cases.
A “new” stable 1-periodic orbit appears along with it’s island gaining magnitude
again in accordance in both cases at £ = —0.035. The highest-energy surface of
section at £ = —0.015 was unreachable numerically with sufficiently small energy
error in our case, most probably because of the “almost scattering” nature of the
states.
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4.2.2 Influence of the ring radius

There is hardly any strong analogy with the relativistic case in the influence of
the variation of b on surfaces of section at & = 0.94, ¢ = 3.75, M = 0.5. There
is a discrepancy even in the qualitative properties of the COZVs for b > 23. The
COZVs in the relativistic case close the escape route to the horizon and as early
as at b = 26 disconnect the allowed regions into two distinct parts. In the pseudo-
Newtonian case the horizon isn’t cut off at all and the disconnection occurs at
b= 29.

Appart from a similar portion of connected chaotic regions and the strong
role of the central 1-periodic island with intermittent stickiness, there is perhaps a
similarity between two sets of islands of different periodicity. Namely a 4-periodic
island in the relativistic case and a 3-periodic one in the pseudo-Newtonian grow
through b = 21 to higher radii and survive the conversion to the less chaotic mode
at the highest radii b = 25+.

The figures for b = 25, 26, 27, 29 clearly demonstrate the non-linear
dependence of the surfaces of section on the radius b since we can observe inter-
mittent connection and disconnection of the separatrix chaos of the 3-periodic
island with the chaotic sea.

The apparent discord between the relativistic and pseudo-Newtonian formu-
lation may be caused by the fact that the qualitative properties of the motion
are very sensitive to the ring radius and with a finer step of variation, analogies
might be found at different but close radii.

4.2.3 Influence of the ring mass

There are two important types of characteristic islands in the “evolution” of
the Poincaré surfaces of section in dependence on the mass of the ring M at
¢ = 3.75, & = —0.023, b = 20 depicted in figs [£.401[4.46] The first island is of
the original 1-periodic stable orbit and and the second are islands of a 2-periodic
trajectory “oscillating” around the ring.

A straight-forward analysis of the evolution is not easily possible, since for
small parameters starting from M = 0.001, uncountable complex structures spur
all over the surface of section. This phenomenon is not in contradiction with the
KAM-theory which in principle predicts the creation of islands of arbitrary order
and periodicity.

The reasons for the realization of such a phenomenon in this case may however
be two.Firstly, the singular ring is placed very close to the former stable circular
orbitﬂ (notice the slightly more complex structures in the case of the iMM disc
in fig. thus maybe hitting a “weak spot” of the whole island. Secondly, the
steep and singular potential may by definition provide a spectrum of perturba-
tions richer in the high-frequency region.

The generic 3-periodic island known from the “low frequency” perturbation modes
of the first iMM disc superposition as well as the 2-periodic “oscillation” island
are firstly discernible through M = 0.02, 0.04 in accordance with the relativistic

2There is exactly one stable circular orbit for a fixed £ in the situation unperturbed either by
the disc or ring. The circular trajectory is represented as the centre of the dominant 1-periodic
island.
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case. Even though the complex structures are not easy to analyze, there are dis-
cernible cases of higher periodic islands which do not have a corresponding island
in the relativistic case and vice versa.

The correspondence however fails most notably in the case of the strongest ring
field M = 1.1 where apart from the oscillatory island another large 2-periodic
island with an unstable periodic trajectory are formed outside the ring from the
former 1-periodic island. This is in strong contradiction to the relativistic case
where the 1-periodic island grows and does not change it’s nature.

4.3 Conclusions

As expected, differences between the surfaces of section in the relativistic and
pseudo-Newtonian cases were found. However, in some cases the qualitative cor-
respondence for slightly different values as in the case of the iMM disc mass
influence was quite impressive, considering the fact that the PW potential is a
mere effective ansatz.

Apart from a few examples of major periodic islands undubbed in the relativis-
tic surfaces of section such as for the highest perturbation masses of both the ring
and the disc, the overall qualitative correspondence in the sense of “roughly same
section phenomena at roughly same parameter values” was not gravely violated.

Furthermore, the disc and ring masses raised on the same level as the black-
hole mass would for the sake of consistence also require special pseudo-Newtonian
modifications as similarly strong gravitating sources. In the case of extreme ring
and disc masses, the analogy thus failed beyond the borderlines of it’s consistent
applicability.

Nonetheless, as the greatest source of discord could be identified the different
characteristics of the allowed areas for the surfaces of section. The PW potential
was numerically observed to close the areas for smaller sets of parameters which
caused the overall image of the pseudo-Newtonian case to be slightly less regular.

The inconsistency of the ring radius influence on the sections may also be caused
by the already mentioned “wildness” of the dependence together with consistency
problems in the coordinate interpretation. The Weyl p and Schwarzschild r are
related by p = /r(r —2M) in the equatorial plane as can be seen in fig. .
This relation slowly converges to equivalence but always shifts the meaning of
the p or r coordinate according to which FEuclidean interpretation we choose.
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Figure 4.1: The Weyl p and Schwarzschild r relation at z = 0 or § = 7/2. The
relation p = \/r(r — 2M) is in blue and the relation p = r is dashed.
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Figure 4.2: Surfaces of section at z = 0 for the first iMM disc superposition with
parameter values M = 0.5, b = 20, ¢ = 3.75 and £ = —0.048, —0.047 respectively.
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Figure 4.3: Surfaces of section for the first iMM disc superposition as in figure
for £ = —0.046, —0.045 respectively.
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Figure 4.4: Surfaces of section for the first iMM disc superposition as in figure
for £ = —0.044, —0.042 respectively.

49



wy
aa]

]

wy

10

in figure

ion as

t

isc superposi

Surfaces of section for the first iMM d

Figure 4.5

>
—
<]
>
.—
+>
Q
<)
o
12}
o)
=
Yon)
[aR)
)
=
_
-
<
()
_
I
W
-
L

50



t
| ]
T

0.1

0.0r

—0.1F

40 50

L
(==

10 20

0.1

0.0r

|
o
B
T

40 50 60

—_
L]
[
L]
LS
L]

Figure 4.6: Surfaces of section for the first iMM disc superposition as in figure
for £ = —0.025, —0.02 respectively.
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Figure 4.7: Surfaces of section at z = 0 for the first iMM disc superposition with
parameter values M = 0.5, b = 20, £ = —0.04635 and ¢ = 0.65, 1.0 respectively.
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Figure 4.8: Surfaces of section for the first iMM disc superposition as in figure
for £ = 1.30, 2.0 respectively.
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Figure 4.9: Surfaces of section for the first iMM disc superposition as in figure
for ¢ = 3.25, 3.75 respectively.
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Figure 4.10: Surfaces of section at z = 0 for the first iMM disc superposition with
parameter values M = 0.5, £ = 3.75, £ = —0.045 and b = 3, 8 respectively.
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Figure 4.11: Surfaces of section for the first iMM disc superposition as in figure
for b =9, 10 respectively.
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Figure 4.12: Surfaces of section for the first iMM disc superposition as in figure
for b = 15, 17 respectively.
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Figure 4.13: Surfaces of section for the first iMM disc superposition as in figure
for b = 19, 21 respectively.
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Figure 4.14: Surfaces of section for the first iMM disc superposition as in figure

for b = 23, 25 respectively.
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Figure 4.15: Surfaces of section for the first iMM disc superposition as in figure
for b = 27, 29 respectively.
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Figure 4.16: Surfaces of section at z = 0 for the first iMM disc superposition with
parameter values b = 20, £ = 3.75, £ = —0.045 and M = 0.1, 0.3 respectively.
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Figure 4.17: Surfaces of section for the first iMM disc superposition as in figure
for M = 0.48, 0.6 respectively.
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Figure 4.20: Surfaces of section for the first iMM disc superposition as in figure
for M = 0.86, 0.88 respectively.
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Figure 4.21: Surfaces of section for the first iMM disc superposition as in figure
for M = 0.90, 0.92 respectively.
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Figure 4.22: Surfaces of section for the first iMM disc superposition as in figure
for M = 0.94, 0.96 respectively.
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Figure 4.23: Surfaces of section for the first iMM disc superposition as in figure
for M = 0.98, 1.0 respectively.
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Figure 4.26: Surfaces of section for the first iMM disc superposition as in figure
for M = 1.2, 1.3 respectively.
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Figure 4.27: Surface of section for the first iMM disc superposition as in figure
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Figure 4.28: Surfaces of section at z = 0 for the BW ring superposition with
parameter values M = 0.5, b = 20, £ = 3.75 and £ = —0.085, —0.08 respectively.
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Figure 4.29: Surfaces of section for the BW ring superposition as in figure
for £ = —0.075, —0.07 respectively.
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Figure 4.30: Surfaces of section for the BW ring superposition as in figure
for £ = —0.065, —0.06 respectively.
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Figure 4.31: Surfaces of section for the BW ring superposition as in figure
for £ = —0.055, —0.05 respectively.
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Figure 4.32: Surfaces of section for the BW ring superposition as in figure
for £ = —0.045, —0.04 respectively.
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Figure 4.33: Surfaces of section for the BW ring superposition as in figure |4.28

for £ = —0.035, —0.03 respectively.
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Figure 4.35: Surfaces of section at z = 0 for the BW ring superposition with
parameter values M = 0.5, £ = —0.06, £ = 3.75 and b = 10, 15 respectively.
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Figure 4.36: Surfaces of section for the BW ring superposition as in figure
for b = 17, 19 respectively.

81



0.0r

h
—
[
—
h
2
[
=]
¥

0.0r

Ln
wn
[
(=]
=l
A

10 1

39

Figure 4.37: Surfaces of section for the BW ring superposition as in figure 4
for b = 21, 23 respectively.
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Figure 4.38: Surfaces of section for the BW ring superposition as in figure
for b = 25, 26 respectively.
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Figure 4.39: Surfaces of section for the BW ring superposition as in figure [4.35

for b = 27, 29 respectively.
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Figure 4.40: Surfaces of section at z = 0 for the BW ring superposition with pa-
rameter values b = 20, £ = —0.023, ¢ = 3.75 and M = 0.001, 0.003 respectively.
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Figure 4.41: Surfaces of section for the BW ring superposition as in figure [4.40]
for M = 0.006, 0.01 respectively.

86



0.1r

0.1+

wn
—
]
—_
LN
rJ
]
[ ]
[
L]
(==l

0.0r

—0.1F

|
o]
[ ]
T

L¥¥]

LN

[
—_
L
—
[
()
L]
[ )
n
L)
Law]
L¥S)
wn

Figure 4.42: Surfaces of section for the BW ring superposition as in
for M = 0.02, 0.04 respectively.
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Figure 4.43: Surfaces of section for the BW ring superposition as in figure
for M = 0.07, 0.08 respectively.
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Figure 4.44: Surfaces of section for the BW ring superposition as in figure [4.40]

for M = 0.1, 0.2 respectively.
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Figure 4.45: Surfaces of section for the BW ring superposition as in figure
for M = 0.3, 0.5 respectively.
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Figure 4.46: Surfaces of section for the BW ring superposition as in figure |4.40
for M = 0.6, 1.1 respectively.

91



Concluding Remarks

Some of the confidence in the presented results could be undermined by the
numerical errors, perhaps the main imperfection of this work. The strength of the
chosen symplectic algorithm however ensured that the strongly regular regions
are always computed at the verge of machine precision (10712 — 1071 relative
energy error). Such are for example the centers of major regular islands. Smaller
islands and edges of the larger ones on the other hand tend to slightly blur in
certain contexts.

An improvement of this bachelor thesis could be a truly systematic study
of the dynamics, not only a copy of parameters from [Sukova (2009) with higher
number representation ensuring greater accuracy, and more implementation work
invested in the time-derivative fields precise evaluations. It is also a question
whether an overly ardent study of fine dynamics in pseudo-Newtonian potentials
is truly needed with the relativistic formulations becoming more and more acces-
sible and also required for a full grasp of the astrophysical problems.

An ambitious extension of the work would be an elaborate quantitative com-
parison of some kind. Developing algorithms tracing the evolution of individual
invariant structures seems rather ambitious, but a kind of overall statistical eval-
uation might be realistic.

Physicists studying Hamiltonian chaos often state the need of “new statisti-
cal mechanics” reflecting chaos. In the case of perturbed black-hole fields the
scattering into the black-hole with scattering into infinity could present an exotic
equilibrium ensemble of “surviving” particles possibly presenting a challenge for
the apparatus of classical statistical mechanics.

Nevertheless, we have not given greater attention to the precise dynamics of the
phase space under parameter variation such as island spawning, complexification,
resonance overlap, stickiness, transport etc. Such a study is of better sense in
the context of highly realistic models with physically strongly motivated sets of
parameters, or, on the other hand, in the case of numerically very simple toy mod-
els allowing a very accurate and detailed study of the general chaotic phenomena.

The conclusion of our study is clear - the motion in pseudo-Newtonian super-
positions highly resembles through Poincaré surfaces of section the motion in the
fully relativistic formulation. But the most notable failures in the correspondence
expose the principal incommensurability of the two theories.

However, most of the correspondence suggests a possible recipe for simplify-
ing Hamiltonian dynamical systems in general. By finding a simpler Hamiltonian
which reproduces principal stable and unstable orbits and sets of initial conditions
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leading to similar scattering outcomes, we could probably get a dynamical system
acting similarly under perturbation in the fashion of the pseudo-Newtonian vs.
relativistic correspondence. This is nonetheless a quite unsubstantiated conjec-
ture.

93



Bibliography

Alligood K., Sauer T., Yorke J., 1996, Chaos: An Introduction to Dynamical
Systems, Textbooks in Mathematical Sciences, Springer

Arnol’d V., 1989, Mathematical Methods of Classical Mechanics, Graduate Texts
in Mathematics, Springer

Arnol’d V., Kozlov V., Neishtadt A., 1993, Dynamical Systems III: Mathematical
Aspects of Classical and Celestial Mechanics, Encyclopaedia of mathematical
sciences, Springer-Verlag

Artemova I. V., Bjornsson G., Novikov I. D., 1996, Modified Newtonian Potentials
for the Description of Relativistic Effects in Accretion Disks around Black
Holes, ApJ, 461, 565

Bach R., Weyl H., 2012, Republication of: New solutions to einstein’s equations
of gravitation. b. explicit determination of static, axially symmetric fields, Gen.
Rel. Grav., 44, 817

Benettin G., Galgani L., Giorgilli A.; 1980, Further results on universal properties
in conservative dynamical systems, Lett. Nuovo Cim. Ser. 2, 29, 163

Birkhoff G. D.; 1917, Dynamical systems with two degrees of freedom, Trans.
Am. Math. Soc., 18, pp. 199

Blanes S., Moan P. C., 2002, Practical symplectic partitioned runge-kutta and
runge—kutta—nystrom methods, J. Comput. Appl. Math., 142, 313

Bolsinov A. V., Jovanovic B., 2003, Integrable geodesic flows on Riemannian
manifolds: Construction and Obstructions, ArXiv Mathematical Physics e-
prints

Bombelli L., Calzetta E., 1992, Chaos around a black hole, Class. Quantum Grav.,
9, 2573

Campbell L., Garnett W., 2010, The Life of James Clerk Maxwell: With a Se-
lection from His Correspondence and Occasional Writings and a Sketch of His
Contributions to Science, Cambridge Library Collection - Physical Sciences,
Cambridge University Press

Contopoulos G., 2010, Order and Chaos in Dynamical Astronomy, Astronomy
and Astrophysics Library, Springer

94



Cvitanovi¢ P., Artuso R., Mainieri R., Tanner G., Vattay G., 2012, Chaos: Clas-
sical and Quantum, Niels Bohr Institute, Copenhagen, [Stable version 14, Dec
31st, 2012]

Dettmann C. P., Frankel N. E.; Cornish N. J., 1995, Chaos and fractals around
black holes., Fractals, 3, 161

Gaidashev D., Johnson T., Martens M., 2012, Rigidity for infinitely renormaliz-
able area-preserving maps, ArXiv e-prints

Gleick J., 1997, Chaos: Making a new science, Random House

Grebogi C., Kostelich E., Ott E., Yorke J. A., 1987, Multi-dimensioned inter-
twined basin boundaries: Basin structure of the kicked double rotor, Physica
D, 25, 347

Guckenheimer J., Holmes P., 1990, Nonlinear oscillations, dynamical systems, and
bifurcations of vector fields, Applied mathematical sciences, Springer-Verlag

Guéron E., Letelier P. S., 2001, Chaos in pseudo-Newtonian black holes with
halos, A&A, 368, 716

Hairer E., 2006, Cambridge University Press

Hairer E., Lubich C., Wanner G., 2006, Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations, Springer

Series in Computational Mathematics, Springer-Verlag Berlin and Heidelberg
GmbH & Company KG

Haller G., 1999, Chaos Near Resonance: Methods and Applications, Applied
Mathematical Sciences, 138, Springer-Verlag

Helgason S., 1962, Differential geometry and symmetric spaces, Pure and Applied
Mathematics, Elsevier Science

Kiuchi K., Koyama H., Maeda K.-I., 2007, Gravitational wave signals from a
chaotic system: A point mass with a disk, Phys. Rev. D, 76, 024018

Letelier P. S., Vieira W. M., 1997, Chaos in black holes surrounded by gravita-
tional waves, Class. Quantum Grav., 14, 1249

Lorenz E. N., 1963, Deterministic Nonperiodic Flow., J. Atmosph. Sci., 20, 130
MacKay R., 1987, Hyperbolic cantori have dimension zero, J. Phys. A, 20, L.559

MacKay R., Meiss J., Percival 1., 1984, Transport in hamiltonian systems, Physica
D, 13, 55

Meiss J. D., 1992, Symplectic maps, variational principles, and transport, Rev.
Mod. Phys., 64, 795

Montesinos Armijo M., 2012, Review: Accretion Disk Theory, ArXiv e-prints

Morgan T., Morgan L., 1969, The gravitational field of a disk, Phys. Rev., 183,
1097

95



Novikov I. D., Thorne K. S.; 1973, in Black Holes (Les Astres Occlus), Dewitt
C., Dewitt B. S., eds., pp. 343-450

Nowak M. A.; Wagoner R. V., 1991, Diskoseismology: Probing accretion disks. I
- Trapped adiabatic oscillations, ApJ., 378, 656

O’Neill E., 1938, The Complete Greek Drama, vol. 2., Random House, New York
Oseledets V., 2008, Oseledets theorem, Scholarpedia, 3, 1846

Ott E., Sauer T., Yorke J., 1994, Coping with Chaos, Wiley Series in Nonlinear
Science, Wiley

Paczynsky B., Wiita P. J.,; 1980, Thick accretion disks and supercritical lumi-
nosities, A&A, 88, 23

Palmer K. J., 2009, Shadowing lemma for flows, 4, 7918

Podolsky J., Kofron D., 2007, Chaotic motion in Kundt spacetimes, Class. Quan-
tum Grav., 24, 3413

Poincaré H., 1899, Les méthodes nouvelles de la mécanique céleste, Les méthodes
nouvelles de la mécanique céleste No. sv. 3, Gauthier-Villars et fils

Saa A., Venegeroles R., 1999, Chaos around the superposition of a black-hole and
a thin disk, Phys. Lett. A, 259, 201

Semerdk O., Karas V., 1999, Pseudo-Newtonian models of a rotating black hole
field, A&A, 343, 325

Semerdk O., Sukova P., 2010, Free motion around black holes with discs or rings:
between integrability and chaos - I, MNRAS, 404, 545

Semerdk O., Sukova P., 2012, Free motion around black holes with discs or rings:
between integrability and chaos - II, MNRAS, 425, 2455

Semerdk O., 2004, Exact power-law discs around static black holes, Class. Quan-
tum Grav., 21, 2203

Seyrich J., Lukes-Gerakopoulos G., 2012, Symmetric integrator for nonintegrable
Hamiltonian relativistic systems, Phys. Rev. D, 86, 124013

Shakura N. I., Sunyaev R. A., 1973, Black holes in binary systems. Observational
appearance., A&A, 24, 337

Silva I. P. C. e., 2010, On the Gannon-Lee singularity theorem in higher dimen-
sions, Class. Quantum Grav., 27, 155016

Smale S.; 1967, Differentiable dynamical systems, Bull. Am. Math. Soc., 73, 747

Steklain A. F., Letelier P. S., 2006, Newtonian and pseudo-Newtonian Hill prob-
lem, Phys. Lett. A, 352, 398

96



Stephani H., Kramer D., Maccallum M., Hoenselaers C., Herlt E., 2003, Exact
Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathemat-
ical Physics, Cambridge : Cambridge University Press

Sukova P., 2009, Chaotic motion around black holes, Master’s thesis, Charles
University, Czech republic

Tejeda E., Rosswog S., 2013, An accurate Newtonian description of particle mo-

tion around a Schwarzschild black hole, MNRAS

Vieira W. M., Letelier P. S., 1999, Relativistic and Newtonian Core-Shell Models:
Analytical and Numerical Results, ApJ, 513, 383

Weyl H., 2012, Republication of: 3. on the theory of gravitation, Gen. Rel. Grav.,
44,779

Wikipedia, 2013, Phase portrait of a simple pendulum

Wu X., Zhang H., 2006, Chaotic Dynamics in a Superposed Weyl Spacetime,
AplJ, 652, 1466

Zaslavskii G., 2007, The physics of chaos in Hamiltonian systems, Imperial Col-
lege Press

97



	Prologue
	Introduction and Outline
	Hamiltonian Chaos
	Elementary chaos theory
	Basic definitions
	Methods of diagnosis

	Hamiltonian systems
	The homoclinic tangle, KAM theory and beyond
	Integrable systems
	Homoclinic tangle
	Stability of the invariant structures

	The onset of chaos in two degrees of freedom
	Chains of islands and their bifurcations
	Resonance overlap and heteroclinic intersection
	Cantori and stickiness


	Chaos Around Black Holes
	Nonintegrability in relativistic geodesic flows
	Motion of a test particle as a Hamiltonian flow
	Relativistic specialties

	Weyl space-times
	Schwarzschild black hole in Weyl coordinates
	The Bach-Weyl ring and the first inverted Morgan-Morgan disc

	The pseudo-Newtonian approach
	Potentials for non-rotating black holes
	Chaos in Newtonian, pseudo-Newtonian and fully relativistic approaches


	Simulation of Test Particle Motion
	Statement of the problem
	Newtonization of the space-times
	Numerical realization
	Symplectic integration
	Ring, horizon and disc singularities

	Poincaré surfaces of section

	Results of the Simulation
	The first inverted counter-rotating Morgan-Morgan disc
	Influence of the particle energy
	Influence of the angular momentum
	Influence of the inner radius of the disc
	Disc mass influence

	The Bach-Weyl ring
	Influence of the particle energy
	Influence of the ring radius
	Influence of the ring mass

	Conclusions

	Concluding Remarks

