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Abstract  
This thesis focuses on variance-covariance matrix modeling and forecasting. 

Majority of existing research evaluates covariance forecasts by statistical 

criteria. Our main contribution is economic comparison of parametric and non-

parametric approaches of covariance matrix modeling. Parametric approach 

relies on RiskMetrics and Dynamic Conditional Correlation GARCH models 

that are applied on daily data. In the second approach, estimates of variance-

covariance matrix are directly obtained from the high-frequency data by non-

parametric techniques Realized Covariation and Multivariate Realized Kernels. 

These estimates are further modeled by Heterogeneous and Wishart 

Autoregression. Moreover, our contribution arises from the use of dataset that 

covers period of financial crisis. Portfolio of assets that is dynamically optimized 

consists of two highly liquid assets - Light Crude NYMEX and Gold COMEX, 

and of European asset represented by DAX index. Forecast evaluation results 

indicate better economic performance of models estimated on daily data. 

However, we found out that data synchronization procedure is the main driver 

of the results.    
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Abstrakt  
Táto práca sa zameriava na modelovanie a prognózovanie variančnej-

kovariančnej matice. Väčšina súčasného výskumu vyhodnocuje prognózy 

kovariančnej matice pomocou štatistických kritérií. Naším hlavným prínosom je 

ekonomické porovnanie parametrických a neparametrických prístupov k 

modelovaniu kovariančnej matice. Parametrický prístup je v práci zastúpený 

modelmi RiskMetrics a Dynamic Conditional Correlation GARCH, ktoré sú 

odhadnuté na denných dátach. V neparametrickom prístupe sú odhady 

variančnej-kovariančnej matice získané priamo z vysokofrekvenčných dát 

pomocou metód Realized Covariation a Multivariate Realized Kernels. Tieto 

odhady sú ďalej modelované pomocou heterogénnej a Wishartovej autoregresie. 

Ďalším prínosom tejto práce je použitie dát z obdobia finančnej krízy. Portfólio 

aktív, ktoré je dynamicky optimalizované, pozostáva z dvoch vysokolikvidných 

aktív - Light Crude NYMEX (ropa) a Gold COMEX (zlato), a európskeho 

aktíva zastúpeného DAX indexom. Výsledky ekonomického porovnania prognóz 

kovariančnej matice naznačujú lepšiu výkonnosť modelov odhadnutých na 

denných dátach. Zistili sme však, že hlavnou príčinou získania daných výsledkov 

je proces synchronizácie dát.  

 
Klasifikace C32, C58,  G11,  G17  

Klíčová slova denné dáta, vysokofrekvenčné dáta, DCC-

GARCH model, RiskMetrics model, 

heterogénny autoregresný model,  Wishartov 

autoregresný model, ekonomické ohodnotenie 

predpovedí 

  

E-mail autora fero.cech@gmail.com 

E-mail vedoucího práce barunik@utia.cas.cz 

 

http://ideas.repec.org/j/F12.html
http://ideas.repec.org/j/F12.html
mailto:fero.cech@gmail.com
mailto:barunik@utia.cas.cz


Contents 

 
List of Tables .............................................................................................................. ix 

List of Figures .............................................................................................................. x 

Acronyms .................................................................................................................... xi 

Master Thesis Proposal ............................................................................................. xii 

Chapter 1  Introduction ............................................................................................ 1 

Chapter 2  Methodology ........................................................................................... 4 

2.1. RiskMetrics .......................................................................................... 5 

2.2. Dynamic Conditional Correlation GARCH ........................................... 6 

2.3. Realized Measures .............................................................................. 10 

2.3.1. Construction of Realized Volatility and Covariation ................. 12 

2.3.2. Multivariate Realized Kernels ................................................... 14 

2.4. Heterogeneous Autoregressive model ................................................. 15 

2.5. Wishart Autoregressive model ............................................................ 18 

2.6. Evaluation of forecasts ....................................................................... 20 

2.6.1. Root Mean Square Forecasting Error ........................................ 20 

2.6.2. Mean-Variance optimization ..................................................... 21 

2.6.3. Global Minimum Variance Portfolio ......................................... 22 

2.6.4. Value-at-Risk............................................................................ 23 

Chapter 3  Data ......................................................................................................... 26 

3.1. Data processing .................................................................................. 27 



3.2. High-frequency data ........................................................................... 28 

3.3. Daily data ........................................................................................... 30 

Chapter 4  Empirical Findings ............................................................................. 33 

4.1. Before crisis ....................................................................................... 35 

4.1.1. Root Mean Square Forecasting Error ........................................ 35 

4.1.2. Mean-Variance optimization ..................................................... 37 

4.1.3. Global Minimum Variance Portfolio ......................................... 38 

4.1.4. Value-at-Risk............................................................................ 40 

4.2. During crisis ....................................................................................... 41 

4.2.1. Root Mean Square Forecasting Error ........................................ 41 

4.2.2. Mean-Variance optimization ..................................................... 43 

4.2.3. Global Minimum Variance Portfolio ......................................... 44 

4.2.4. Value-at-Risk............................................................................ 45 

4.3. Full sample ......................................................................................... 46 

4.3.1. Root Mean Square Forecasting Error ........................................ 47 

4.3.2. Mean-Variance optimization ..................................................... 48 

4.3.3. Global Minimum Variance Portfolio ......................................... 49 

4.3.4. Value-at-Risk............................................................................ 50 

Chapter 5  Discussion of results ........................................................................... 53 

5.1. Overall performance ........................................................................... 53 

5.2. Simple or sophisticated model? .......................................................... 56 

5.3. Daily or High-frequency data? ............................................................ 57 

5.4. Concluding remarks............................................................................ 58 

Chapter 6  Conclusion ............................................................................................ 60 

Bibliography .............................................................................................................. 62 



Appendix A ................................................................................................................ 66 

Appendix B ................................................................................................................ 67 

Appendix C ................................................................................................................ 71 

 



List of Tables  ix 
 

List of Tables 

Table 3-1: Descriptive statistics of high-frequency closing prices and returns .... 29 

Table 3-2: Descriptive statistics of close-close prices and returns ....................... 31 

Table 3-3: Descriptive statistics of open-close prices and returns ....................... 31 

Table 4-1: before crisis RMSFE .......................................................................... 35 

Table 4-2: before crisis GMVP ........................................................................... 38 

Table 4-3: before crisis Value-at-Risk ................................................................. 40 

Table 4-4: during crisis RMSFE ......................................................................... 41 

Table 4-5: during crisis GMVP .......................................................................... 44 

Table 4-6: during crisis Value-at-Risk ................................................................ 45 

Table 4-7: full sample RMSFE ........................................................................... 47 

Table 4-8: full sample GMVP............................................................................. 49 

Table 4-9: full sample Value-at-Risk .................................................................. 51 

Table 5-1: cumulative daily returns.................................................................... 58 

Table A-1: Non-rejection region for Proportion of Failures Value-at-Risk test .. 66 

Table B-1: Root Mean Square Forecasting Error results .................................... 67 

Table B-2: Global Minimum Variance Portfolio results ..................................... 68 

Table B-3: Value-at-Risk - 95% .......................................................................... 69 

Table B-4: Value-at-Risk - 99%.......................................................................... 70 

Table C-1: Heterogeneous Autoregression -parameter estimates ........................ 71 

Table C-2: Cholesky Heterogeneous Autoregression -parameter estimates ......... 73 

Table C-3: DCC-GARCH parameter estimates .................................................. 75 

 

 



List of Figures  x 
 

 

List of Figures 

Figure 2-1: Efficient frontier ............................................................................... 22 

Figure 3-1: 5-minute closing prices, 5-minute returns and daily high-frequency 
returns ................................................................................................................ 30 

Figure 3-2: daily closing prices and close-close returns ....................................... 32 

Figure 3-3: open-close prices and open-close returns .......................................... 32 

Figure 4-1: before crisis efficient frontiers - daily data ....................................... 37 

Figure 4-2: before crisis efficient frontiers - high-frequency data ........................ 38 

Figure 4-3: during crisis efficient frontiers - daily data....................................... 43 

Figure 4-4: during crisis efficient frontiers - high-frequency data ....................... 44 

Figure 4-5: full-sample efficient frontiers - daily data ......................................... 48 

Figure 4-6: full-sample efficient frontiers - high-frequency data ......................... 49 

Figure 5-1: degrees of freedom for Wishart Autoregression ................................ 55 

 

  



Acronyms  xi 
 

Acronyms 

CL Light Crude NYMEX  

DA DAX index  

DCC  Dynamic Conditional Correlation 

GARCH Generalized Autoregressive Conditional Heteroscedasticity 

GC Gold COMEX  

GMVP Global Minimum Variance Portfolio 

HAR Heterogeneous Autoregression 

MRK Multivariate Realized Kernels 

RCOV Realized Covariation 

RMSFE Root Mean Square Forecasting Error 

VaR Value-at-Risk 

WAR Wishart Autoregression 

  

 

  



Master Thesis Proposal  xii 
 

Master Thesis Proposal 

Author Bc. František Čech 

Supervisor PhDr.Jozef Baruník, Ph.D. 

Proposed topic Dynamic portfolio optimization during financial crisis using 

daily data and high frequency data  

Topic characteristics The aim of the thesis is to find optimal portfolio 

consisting of four assets (gold futures, euro-dollar futures, crude oil futures and  

stock index) using two different approaches. Risk knowledge of financial assets is 

a key issue of portfolios managers. Risk of the individual assets could be 

described by the volatility of the asset. While volatility can serve as a clue for 

selecting assets in a portfolio, it does not count with dependencies between 

assets. If one is interested in correlation structure of many assets, variance-

covariance (VCV) matrix is of particular interest.  In this thesis dynamic VCV 

matrix will be estimated using two different data sets. One will contain daily 

data and will be estimated by Dynamic Conditional Correlation GARCH. The 

second one will use high frequency data for estimation of realized variance and 

covariance. Based on the VCV matrices estimates optimal weights of the 

portfolio will be calculated.  

Hypotheses  

1. Dynamic Conditional Correlation GARCH estimated on daily data serves 

as a best estimator of variance covariance matrix used for dynamic 

portfolio optimization. 



Master Thesis Proposal  xiii 
 

2. Realized measures using heterogeneous autoregression provide us with 

accurate estimates of variance covariance matrix used for dynamic portfolio 

optimization.  

3. Correlations among assets evolve in time and changed dramatically during 

financial crisis.  

Methodology Thesis will be divided into two parts – analysis of daily data and 

high frequency data. Robert Engel’s Dynamic Condition Correlation GARCH 

will be used for the daily data analysis. DCC-GARCH is a special version of 

multivariate GARCH models used for dynamic conditional correlations 

estimation among multiple time series. Model can be estimated in two stages. 

First one involves univariate GARCH estimation. Second one uses standardized 

residuals from the first stage for conditional correlations estimation. For the 

high frequency data realized measures will be used. Consequently, daily realized 

variance and covariance will be calculated from the high frequency data. 

Realized measures could be further estimated using simple OLS regression 

resulting in Heterogeneous Autoregression (HAR). Having the VCV matrices 

estimated optimal weights of a portfolio will be calculated in order to construct 

minimum variance portfolio.  

Outline 

1. Introduction 

2. Data 

3. Methodology 

3.1. Dynamic Conditional Correlation GARCH 

3.2. Realized measures 

4. Portfolio optimization  

5. Results – comparison of performance of DCC-GARCH and realized 
measures 

6. Conclusion 

 



Master Thesis Proposal  xiv 
 

Core bibliography 

1. ANDERSEN, TORBEN G., BOLLERSLEV TIM, DIEBOLD FRANCIS X. & LABYS 

PAUL: "Modeling and Forecasting Realized Volatility." Econometrica ,Vol. 
71, no. 2 (2003): 579-625. 

2. ANDERSEN, TORBEN G., BOLLERSLEV TIM, CHRISTOFFERSEN PETER & 

DIEBOLD FRANCIS X.: "Practical Volatility and Correlation Modeling for 
Financial Market Risk Management." In The Risks of Financial 
Institutions, by Mark Carey and René M. Stulz, 513-548. University of 
Chicago Press, 2007. 

3. BARNDORFF-NIELSEN, OLE E.& NEIL SHEPHARD: "Econometric Analysis of 
Relaized Covariation: High Frequency Based Covariance, Regression, and 
Correlation in Financial Economics." Econometrica ,Vol. 72, no. 3 (2004): 
885-925. 

4. CHIRIAC, ROXANA & VALERI VOEV: "Modelling and Forecasting 
Multivariate Reralized Volatility." Journal of Applied Econometrics, 2011: 
922-947. 

5. ENGLE, ROBERT: "Dynamic Conditional Correlation - A Simple Class of 
Multivariate GARCH Models." Forthcoming Journal of Business and 
Economic Statistics 2002, 2002. 

6. ENGLE, ROBERT F & SHEPPARD KEVIN: "Theoretical and Empirical 
Properties of Dynamic Conditional Correlation Multivariate GARCH." 
NBER Working Paper Series, 2001: Working Paper 8554. 

7. VOEV, VALERI. „On the Economic Evaluation of Volatility Forecasts.“ 
CREATES Research Paper 2009-56 . 

 

 

 

 

 
Author  Supervisor 



 

Chapter 1  

Introduction 

Volatility modeling is one of the key issues in the area of financial econometrics. 

The risk of individual financial instruments is crucial for asset pricing, portfolio 

and risk management. Besides volatility of individual assets knowledge of 

covariance and correlation structure is of great importance. Accurate forecasts of 

variance-covariance matrices are particularly important in asset allocation and 

portfolio management. 

Nature of the financial data with dependencies in higher moments of the daily 

return series motivated the work of Engle (1982) and later Bollerslev (1986). 
They have developed a new family of parametric univariate conditionally 

heteroscedastic models represented by widely used Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH). In the late eighties and nineties 

numerous multivariate extensions of the GARCH were created. Among all of 

them let us mention Constant Conditional Correlation GARCH of Bollerslev 
(1990) further generalized by Engle (2002) and BEKK model of Engle & Kroner 
(1995). Multivariate GARCH (MGARCH) models are popular in the literature 

although they suffer from curse of dimensionality problem. Detailed information 

about MGARCH specifications can be found in Bauwens et al. (2006) for 

example.   

Increased availability of high-frequency data in the last decade resulted in 

development of the new non-parametric approach of treating volatility, which is 
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an interesting alternative to traditional MGARCH models. Model-free estimator 

called "realized volatility" that makes volatility observable is proposed in 

Andersen et al. (2001). Most influential works providing rigorous theoretical 

background of the concept of realized volatility is Andersen et al. (2003) and 

Barndorff-Nielsen & Shephard (2004). In Barndorff-Nielsen & Shephard (2004) 
theory of realized volatility is completed with "realized covariation". Estimates 

of variance-covariance matrix that are obtained by realized covariation method 

do not have to be necessarily positive semi-definite due to market microstructure 

noise. Therefore Barndorff-Nielsen et al. (2011) introduced Multivariate 

Realized Kernels estimator guaranteeing the positive semi-definiteness of the 

variance-covariance matrix. 

Once the covariance matrix is estimated from the high-frequency data it 

needs to be further modeled. There is still ongoing research dedicated to the 

entire covariance matrices modeling. From the already established methods let 

us mention Wishart Autoregression (WAR) of Gourieroux et al. (2009) with  

numerous extensions presented in Bonato et al. (2009) and Bonato et al. (2012). 
The use of Cholesky factors further estimated by Vector Autoregressive 

Fractionally Integrated Moving Average (VARFIMA), Heterogeneous 

Autoregresion (HAR) or WAR-HAR  can be found in Chiriac & Voev (2011).   
Selection of the assets included in the portfolio that is dynamically optimized 

is crucial for research. Majority of researchers (Andersen et al. (2001), Andersen 
et al. (2003), Bonato et al. (2009), Voev (2007) among others) concentrate on 

instruments traded mostly on the United States market (S&P 500 index or U.S. 

treasury bills) and evaluate forecasting performance generally by statistical 

criteria. However, our main contribution is that we include the European asset 

in portfolio and we evaluate covariance forecasts mostly by economic criteria. 

Economic evaluation of volatility forecasts is of great importance especially for 

financial practitioners because it provides direct financial evaluation of their 

decisions.     

In our work covariance matrix forecasts used for dynamic portfolio 

optimization are obtained from two "return based" models represented by 
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RiskMetrics and DCC-GARCH and four "covariance based" models that include 

HAR, Cholesky-HAR, WAR and diagonal WAR. Moreover, we evaluate 

accuracy of these forecasts by one statistical (Root Mean Square Forecasting 

Error) and three economic criteria (Global Minimum Variance Portfolio, Mean-

Variance optimization, Value-at-Risk). Our findings indicate better performance 

of covariance based models according to Root Mean Square Forecasting Error 

and  Global Minimum Variance Portfolio criteria. On the other hand covariance 

based models are outperformed by RiskMetrics and DCC-GARCH for Mean-

Variance optimization and Value-at-Risk forecast evaluation methods. 

The rest of the thesis is structured as follows. We provide theoretical 

background for models in Chapter 2. Chapter 3 describes daily and high-

frequency datasets. Chapter 4 presents results of out-of-sample forecast 

evaluation. In Chapter 5 we discuss our results. Chapter 6 concludes the thesis.     



 

Chapter 2  

Methodology  

Riskiness of the financial instruments is crucial for asset allocation. Generally, 

we have some assets and we are interested in modeling and forecasting their 

volatility and correlations. In order to capture dependencies among assets we 

need variance-covariance (VCV) matrix. The general unconditional VCV matrix 

has the following form 

𝑉𝐶𝑉 =

⎝

⎛
𝜎112 𝑐𝑜𝑣(1,2) ⋯ 𝑐𝑜𝑣(1,𝑛)

𝑐𝑜𝑣(2,1) 𝜎222 ⋯ 𝑐𝑜𝑣(2,𝑛)
⋮

𝑐𝑜𝑣(𝑛, 1)
⋮

𝑐𝑜𝑣(𝑛, 2)
⋱
⋯

⋮
𝜎𝑛𝑛2 ⎠

⎞.  

On the main diagonal it has variances, off-diagonal elements are covariance and 

by definition is symmetric. Nowadays we know that volatility and correlations 

are not constant over time but they are time-varying. Therefore unconditional 

covariances are not sufficient from the asset allocation point of view and the 

dynamics of the asset dependencies need to be modeled dynamically.   

In this chapter the theoretical background of dynamic covariance matrix 

modeling and forecasting together with forecasts evaluation methods are 

presented.   

The first method of obtaining variance-covariance matrix forecasts is based on 

traditional time-series models that use daily returns for estimation. The models 

that we use are Exponentially Weighted Moving Average with parameter set to 
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RiskMetrics standards presented in section 2.1 and Dynamic Conditional 

Correlation GARCH described in section 2.2. 

The next method relies on the use of high-frequency data. From the intraday 

closing prices the covariance matrices are directly calculated and afterwards 

modeled. Realized Covariation and Multivariate Realized Kernels presented in 

sections 2.3.1 and 2.3.2 are used for covariance matrix estimation. These 

estimates are further modeled by HAR and WAR model specifications described 

in sections 2.4 and 2.5.    

In the end of the chapter we describe techniques of variance-covariance 

matrix forecasts evaluation.   

2.1. RiskMetrics  

Exponentially Weighted Moving Average (EWMA) that uses RiskMetrics is set 

as the benchmark for all competing models in this thesis. It has the simplest 

form among used models and it is also easy to implement even if the portfolio is 

composed of higher number of assets. Due to its simplicity RiskMetrics is 

commonly set as benchmark model and it is also widely used in financial 

practice. 

Under RiskMetrics methodology1 we consider a 𝑁 × 1 vector of returns 𝑟𝑡 

for 𝑡 = 1, . . . ,𝑇 such that 
�𝑟𝑡|ℱ𝑡−1~𝑁(𝜇𝑡 ,𝜎𝑡2) (1)  

where 𝜇𝑡 is conditional mean and 𝜎𝑡2 stands for conditional variance of daily 

returns. Moreover if we assume 𝜇𝑡 = 0, conditional variance has the form  

𝜎2 = (1 − 𝜆)�𝜆𝑡−1𝑟𝑡2
𝑇

𝑡=1

 (2)  

with 𝜆𝜖(0; 1) representing decay factor. According to RiskMetrics standards we 

set decay factor to 0.94. 

Equation (2) can be rewritten in recursive form, which will be used for 

estimation. 

1 for detailed information see J.P.Morgan & Reuters (1996) 
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𝜎𝑡2 = 𝜆𝜎𝑡−12 + (1 − 𝜆)𝑟𝑡−12  (3)  

Extension from univariate to multivariate processes and thus to modeling not 

only variance but also covariance is straightforward. We modify equation (2) 

into  

𝜎𝑖,𝑗 = (1− 𝜆)�𝜆𝑡−1𝑟𝑖𝑟𝑗

𝑇

𝑡=1

 (4)  

with recursive form 
𝜎𝑖,𝑗,𝑡 = 𝜆𝜎𝑖,𝑗,𝑡−1 + (1 − 𝜆)𝑟𝑖,𝑡−1𝑟𝑗,𝑡−1 (5)  

where expression 𝜎𝑖,𝑗,𝑡 denotes covariance between assets 𝑖 and 𝑗 in time 𝑡. Note 

that for 𝑖 = 𝑗  equations (2) and (5) are the same. 

Nice feature of easily employable estimation remains valid also for EWMA 

forecasting. Having all relevant information at time 𝑡, one-step ahead covariance 

forecast has form    

𝜎𝑖,𝑗,𝑡+1 = 𝜆𝜎𝑖,𝑗,𝑡 + (1− 𝜆)𝑟𝑖,𝑡𝑟𝑗,𝑡   . (6)  

Simplicity of the RiskMetrics might be the limiting factor of time-varying 

covariance matrix modeling. In the literature more accurate models that capture 

dynamic correlation and covariance structure of the assets have been developed. 

Most commonly used in literature is Dynamic Conditional Correlation GARCH 

of Engle (2002). 

2.2. Dynamic Conditional Correlation GARCH 

The Dynamic Condition Correlation (DCC) GARCH model is a special version 

of multivariate GARCH models which allow us to examine dynamic conditional 

correlations among multiple time series. It was introduced by Engle (2002) and 

can be seen as generalization of Bollerslev (1990)’s Constant Conditional 

Correlation GARCH model. DCC-GARCH is a two stage estimator. In the first 

stage the univariate GARCH model is estimated for each time series. Second 

stage works with standardized residuals from the first step that are used to 

conditional correlations estimation. 
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Similar to RiskMetrics, let us denote 𝑟𝑡 as a daily return such that  
�𝑟𝑡|ℱ𝑡−1~𝑁(0,𝐻𝑡) (7)  

and  
𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 (8)  

Matrices 𝐷𝑡 and 𝑅𝑡 are diagonal matrix of conditional time varying standard 

deviations and conditional correlation matrix respectively. 𝐷𝑡 is 𝑁 × 𝑁 matrix 

with conditional standard deviations on the main diagonal and zeros elsewhere. 

Formally elements of 𝐷𝑡 are defined as follows: 

𝑑𝑖𝑗,𝑡 = ℎ𝑖𝑗,𝑡
−1 2�  for 𝑖 = 𝑗 

and  

𝑑𝑖𝑗,𝑡 = 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, … ,𝑁. 

Conditional standard deviations ℎ𝑖𝑡 are obtained from univariate GARCH 

models 

ℎ𝑖,𝑡 = 𝜔𝑖 + ∑ 𝛼𝑖,𝑝𝑟𝑖,𝑡−𝑝2𝑃𝑖
𝑝=1 + ∑ 𝛽𝑖,𝑞ℎ𝑖,𝑡−𝑞

𝑄𝑖
𝑞=1 . 

 𝑅𝑡 is 𝑁 ×𝑁 time varying correlation matrix and has the form 
𝑅𝑡 = 𝑄𝑡∗−1𝑄𝑡𝑄𝑡∗−1  (9)  

where 

𝑄𝑡 = �1 − � 𝛼𝑚

𝑀

𝑚=1

−�𝛽𝑛

𝑁

𝑛=1

�𝑄� + � Α𝑚

𝑀

𝑚=1

(𝜀𝑡−𝑚𝜀𝑡−𝑚𝑇 ) + �Β𝑛

𝑁

𝑛=1

𝑄𝑡−𝑛 (10)  

and 

𝑄𝑡∗ =

⎝

⎜
⎛
𝑞11
1 2⁄ 0 ⋯ 0
0 𝑞22

1 2⁄ ⋯ 0
⋮
0

⋮
0

⋱
⋯

⋮
𝑞𝑘𝑘
1 2⁄
⎠

⎟
⎞

. (11)  

𝑄� in equation (10) is the unconditional covariance matrix of the standardized 

residuals from the first stage estimation, 𝛼𝑚 ≥ 0, 𝛽𝑚 ≥ 0 and ∑ 𝛼𝑚𝑀
𝑚=1 +

∑ 𝛽𝑛𝑁
𝑛=1 < 1 and the elements of the 𝑅𝑡 are of the form 𝜌𝑖𝑗,𝑡 = 𝑞𝑖𝑗,𝑡

�𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡
.  

The way the model is formulated ensures that the variance-covariance matrix 

𝐻𝑡 is positive definite. Assumption of normally distributed returns allows us to 

use Maximum Likelihood estimator. If the assumption of normality is not valid 
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we can  still use Quasi-Maximum Likelihood estimator (Engle (2002), Engle & 
Sheppard (2001)). 
The log-likelihood can be expressed as  

𝐿 = −
1
2�

(𝑛 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝐻𝑡| + 𝑟𝑡𝑇𝐻𝑡−1𝑟𝑡)
𝑇

𝑡=1

 

(12)  

𝐿 = −
1
2�

(𝑛 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝐷𝑡𝑅𝑡𝐷𝑡| + 𝑟𝑡𝑇𝐷𝑡−1𝑅𝑡−1𝐷𝑡−1𝑟𝑡)
𝑇

𝑡=1

 

𝐿 = −
1
2�

(𝑛 𝑙𝑜𝑔(2𝜋) + 2𝑙𝑜𝑔|𝐷𝑡| + 𝑙𝑜𝑔|𝑅𝑡| + 𝜀𝑡𝑇𝑅𝑡−1𝜀𝑡)
𝑇

𝑡=1

 

𝐿 = −
1
2�

(𝑛 𝑙𝑜𝑔(2𝜋) + 2𝑙𝑜𝑔|𝐷𝑡| + 𝑟𝑡𝑇𝐷𝑡−1𝐷𝑡−1𝑟𝑡 − 𝜀𝑡𝑇𝜀𝑡 + 𝑙𝑜𝑔|𝑅𝑡|
𝑇

𝑡=1

+ 𝜀𝑡𝑇𝑅𝑡−1𝜀𝑡) 
Last equation in (12) can be further decomposed to volatility and correlation 

part. We denote the parameters in 𝐷𝑡 as 𝜃 and the additional parameters in 𝑅𝑡 

as 𝜙. The volatility part consists of terms containing 𝐷𝑡 and correlation part is 

composed of terms containing 𝑅𝑡. The decomposed log-likelihood has the 

following form 
𝐿( 𝜃,𝜙) = 𝐿𝑉( 𝜃) + 𝐿𝐶( 𝜃,𝜙). (13)  

Volatility part of the equation is 

𝐿𝑉( 𝜃) = −
1
2�

(𝑛 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔|𝐷𝑡|2 + 𝑟𝑡𝑇𝐷𝑡−2𝑟𝑡)
𝑇

𝑡=1

 (14)  

and could be rewritten as  

𝐿𝑉( 𝜃) = −
1
2��� 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔�ℎ𝑖,𝑡� +

𝑟𝑖,𝑡2

ℎ𝑖,𝑡
� .

𝑛

𝑖=1

𝑇

𝑡=1

 (15)  

The equation (15) is simply the sum of individual GARCH log-likelihoods. 

Generally it is possible to use any GARCH(𝑝, 𝑞) process. For the sake of 

simplicity we will illustrate GARCH(1,1) which is the most widely used process. 

The conditional variance of GARCH(1,1) process is given by ℎ𝑖𝑡2 = 𝜔𝑖 + 𝛼𝑖𝑟𝑖𝑡−12 +

𝛽𝑖ℎ𝑖𝑡−12   where 𝜔𝑖 > 0; 𝛼𝑖 ≥ 0;  𝛽𝑖 ≥ 0 and  𝛼𝑖 + 𝛽𝑖 < 0. 

Our goal is to find 
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𝜃� = arg max{LV( 𝜃)} (16)  

and it can be done by jointly maximizing equation (15) by separately 

maximizing each N terms. 

The correlation component of equation (13) is 

𝐿𝐶( 𝜃,𝜙) = −
1
2�

( 𝑙𝑜𝑔|𝑅𝑡| + 𝜀𝑡𝑇𝑅𝑡−1𝜀𝑡 − 𝜀𝑡𝑇𝜀𝑡)
𝑇

𝑡=1

 (17)  

and can be maximized with respect to 𝜙 by using 𝜃� from the first stage. 

Formally we are looking for a solution of maximization problem  
𝑚𝑎𝑥
𝜙

�𝐿𝐶�𝜃�,𝜙��. (18)  

Engle & Sheppard (2001) formulated some reasonable regularity condition under 

which our maximum likelihood estimator is consistent and also asymptotically 

normally distributed. 

Having all available information at time 𝑡, one-step ahead forecast in the 

DCC-GARCH framework can be obtained using following equations: 
𝐻𝑡+1 = 𝐷𝑡+1𝑅𝑡+1𝐷𝑡+1 (19)  

where elements of 𝐷𝑡+1 are square roots of forecasts of univariate GARCH 

processes 
ℎ𝑖,𝑡+1 = 𝜔𝑖 + 𝛼𝑖𝑟𝑖,𝑡2 + 𝛽𝑖ℎ𝑖,𝑡 (20)  

and dynamics in 𝑅𝑡+1 is described by equation 
𝑅𝑡+1 = 𝑄𝑡+1∗−1𝑄𝑡+1𝑄𝑡+1∗−1  (21)  

with 
𝑄𝑡+1 = (1− 𝛼 − 𝛽)𝑄� + Α(𝜀𝑡𝜀𝑡𝑇) + Β𝑄𝑡 (22)  

RiskMetrics and DCC-GARCH are models that require daily data for 

estimation. However, technological progress in last decade enable us to collect 

data at higher than daily frequencies. Techniques of covariance matrix 

estimating and modeling with the use of high-frequency data are presented in 

next sections.  
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2.3. Realized Measures 

Realized measures as such were first introduced in Andersen et al. (2001) where 

the whole new concept of using high frequency data for volatility calculation was 

used. Realized volatility can be characterized as a non-parametric model-free 

estimator. It can be easily computed as a sum of intraday squared returns. 

Despite the easy construction the theory behind is deep, based on quadratic 

variation. The main advantage of realized volatility is that it can be seen as 

observable. In contrast, parametric models such as GARCH treat the volatility 

as latent. Concept of the realized volatility was further developed in Andersen et 
al. (2003) and Barndorff-Nielsen & Shephard (2004) where we can find general 

framework for treating realized measures.  

Similar to Andersen et al. (2003) we consider an n-dimensional price process 

defined on a complete probability space,  (Ω,ℱ,𝑃), evolving in continuous time 

over the interval [0,𝑇], where 𝑇 denotes a positive integer. We further consider 

an information filtration, i.e., in increasing family of 𝜎-fields, (ℱ𝑡)𝑡∈[0,𝑇] ⊆  ℱ, 

which satisfies the usual conditions of 𝑃-completeness and right continuity. 

Finally, we assume that the asset prices through time 𝑡, including the relevant 

state variables, are included in the information set ℱ𝑡.  

For the rest of the section we define continuously compounded return over 
[𝑡 − ℎ, 𝑡], [𝑡 − ℎ, 𝑡] denoting time interval such that 0 ≤ ℎ ≤ 𝑡 ≤ 𝑇, as the 

difference between log-prices at time 𝑡 and 𝑡 − ℎ as 
𝑟𝑡,ℎ = 𝑝𝑡 − 𝑝𝑡−ℎ (23)  

Using previous equation, the cumulative return process from 𝑡 = 0 to 𝑇 can be 

written as 
𝑟𝑡 ≡ 𝑟𝑡,𝑡 = 𝑝𝑡 − 𝑝0. (24)  

Let us turn to the concept of semi-martingales. Process 𝑌 is a semi-martingale 

if it can be decomposed into a drift term and a local martingale. We can rewrite 

it as 𝑌 = 𝐴 + 𝑀, where A is a finite variation process (drift term) and M is a 

local martingale. If we want the above mentioned decomposition, the canonical 

decomposition, to be unique, we need to use special semi-martingales. According 
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to Back (1991) we have to impose various weak regularity conditions to ensure 

semi-martingales to be special. The main characteristic of the special semi-

martingales is that we assume finite variation process from the canonical 

decomposition to be predictable, hence the value of the predictable process at 

time 𝑡 is known just before 𝑡. For more information on semi-martingales see 

Protter (2004) or Delbaen & Schachermayer (1994).     
Special semi-martingales are crucial for further work using quadratic variation 

theory. Andersen et al. (2003) use martingales to generally describe asset return 

process in Proposition 1.  According to that proposition, price process can be 

decomposed into finite variation and predictable mean component and a local 

martingale, therefore price process can be seen as a semi-martingale process.  In 

addition, both finite variation and local martingale components have continuous 

and jump part with jumps ensuring the price process to be arbitrage free in the 

following way. If there is a predictable jump in the price, which generates the 

arbitrage opportunity, the no-arbitrage condition is ensured by the simultaneous 

jump, large enough to overweight the jump in the price, in the local martingale 

in opposite direction.   

Using definition of the return process and the Proposition 1 from Andersen et 
al. (2003) the return process is a special semi-martingale and can be further 

uniquely decomposed to predictable and integrable mean component and a local 

martingale. From the Proposition 2 in Andersen et al. (2003) and the fact that 

return process is a special semi-martingale, return process has a corresponding 

quadratic variation process. According to Barndorff-Nielsen & Shephard (2004) 
quadratic variation (QV) process can be defined as  

[𝑟, 𝑟]𝑡 = 𝑝𝑙𝑖𝑚 𝑀→∞ � �𝑟𝑡𝑗+1 − 𝑟𝑡𝑗   � �𝑟𝑡𝑗+1 − 𝑟𝑡𝑗   � ′
𝑀−1

𝑗=0

, (25)  

where 𝑝𝑙𝑖𝑚 stands for probability limit. Definition of QV implies  

𝑅𝐶𝑂𝑉𝑡
𝑝
→ [𝑟, 𝑟]𝑡−[𝑟, 𝑟]𝑡−1 (26)  

for all semi-martingales [𝑟, 𝑟]𝑡 and for 𝑀 going to infinity, that realized 

covariation consistently estimates increments of quadratic variation process. The 
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more detailed description of relationship between quadratic variation and the 

conditional covariance matrix is in Theorem 1 in Andersen et al. (2003). In 

short, the Theorem 1 states that conditional variance-covariance matrix of 

returns at time 𝑡, at given information set available at the same time, is equal to 

sum of expected value of difference in quadratic variation at time 𝑡 + ℎ and 𝑡, 

variance of difference between finite variation components at time 𝑡 + ℎ and 𝑡, 

and expected value of product of finite variation components at time 𝑡 + ℎ and 

difference in local martingales from 𝑡 + ℎ to 𝑡.  

Following Corollary 1 in Andersen et al. (2003), if we assume that the mean 

process is pre-determined and independent from the innovation process, 

conditional variance-covariance matrix of returns might be simplified to the 

following form  

𝐶𝑜𝑣��𝑟𝑡+ℎ,𝑡� ℱ𝑡� = 𝐸([𝑟, 𝑟]𝑡+ℎ − [𝑟, 𝑟]𝑡|ℱ𝑡�). (27)  
The ex-post realized quadratic variation at time 𝑡 + ℎ is also an unbiased 

estimator of conditional variance-covariance matrix of returns at time 𝑡. Finally 

the return distribution is described in Proposition 3 and Theorem 2 of Andersen 
et al. (2003). For the daily returns it is easy to show that they are  normally 

distributed with daily realized quadratic variation determining the distribution.  

2.3.1. Construction of Realized Volatility and Covariation 

The previous section describes theory which allows us to use realized variance 

and covariance. Now we are proceeding to a practical construction of realized 

volatility and covariation estimators. 

First let us use definition from Hautsch (2011). If we have 𝑛 high-frequency 

intervals of length ∆, where ∆= 1
𝑛
, realized variance has the form2  

𝑅𝑉𝑛 ∶= ��𝑝𝑘∆ − 𝑝(𝑘−1)∆�
2
∶= �𝑟𝑘∆,𝑛

2  
𝑛

𝑘=1

 .
𝑛

𝑘=1

  

Suppose now we have 𝑖 asset and 𝑡 = 1, . . . ,𝑇 days. Realized variance of asset 𝑖 

on day 𝑡 is defined as  

2 Notation here is slightly different from that in Hautsch (2011).   
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𝑅𝑉𝑖,𝑡 = ��𝑝𝑖,𝑡−1+𝑘∆ − 𝑝𝑖,𝑡−1+(𝑘−1)∆�
2

= �𝑟𝑖,𝑡−1+𝑘∆2  
𝑛

𝑘=1

 ,
𝑛

𝑘=1

 (28)  

where 𝑝𝑖,𝑡−1+𝑗∆ − 𝑝𝑖,𝑡−1+(𝑗−1)∆  are intraday returns of day 𝑡. In a similar way we 

can construct realized volatility, realized covariance and realized correlation. 

Realized volatility of asset 𝑖 at time 𝑡, i.e. 𝑅𝑉𝑂𝐿𝑖,𝑡, is constructed as a square 

root of realized variance    

𝑅𝑉𝑂𝐿𝑖,𝑡 = �𝑅𝑉𝑖 ,𝑡 . (29)  

Realized covariation of asset 𝑖 and 𝑗, i.e. 𝑅𝐶𝑂𝑉𝑖 ,𝑗,𝑡,  takes form  

𝑅𝐶𝑂𝑉𝑖,𝑗,𝑡 = ��𝑝𝑖,𝑡−1+𝑘∆ − 𝑝𝑖,𝑡−1+(𝑘−1)∆��𝑝𝑗,𝑡−1+𝑘∆ − 𝑝𝑗,𝑡−1+(𝑘−1)∆� = 
𝑛

𝑘=1

 

(30)  

= �𝑟𝑖,𝑡−1+𝑘∆𝑟𝑗,𝑡−1+𝑘∆ 
𝑛

𝑘=1

 

RCOV computation require synchronized data. In a real world we observe 

asynchronous trading activity for different assets, so some synchronization 

scheme such as Refresh time in Barndorff-Nielsen et al. (2011) have to be 

employed. Generally variance-covariance matrix can be of dimension 𝑁 × 𝑁. 

However, Andersen et al. (2003) pointed out that it is positive semi-definite as 

long as number of assets is lower or equal to number of intraday observations. In 

our case it is therefore of the following form 

𝑅𝐶𝑂𝑉𝑡 = �𝒓𝑡−1+𝑘∆𝒓𝑡−1+𝑘∆′  ,
𝑛

𝑘=1

 (31)  

where 𝒓𝑡−1+𝑘∆is 𝑚 × 1 vector composed of difference of price vectors  𝒑𝑡−1+𝑘∆and 

𝒑𝑡−1+(𝑘−1)∆. Logarithmic price vector 𝒑𝒕 is defined as 𝒑𝒕 = �𝑝1,𝑡 , … ,𝑝𝑚,𝑡�
𝑇. 

Finally, realized correlation between asset 𝑖 and 𝑗, 𝑅𝐶𝑖,𝑗,𝑡, can be computed as a 

ratio of covariance between assets 𝑖 and 𝑗, and product of volatilities of assets 𝑖 

and 𝑗. Mathematically speaking 

𝑅𝐶𝑖,𝑗,𝑡 =
𝑅𝐶𝑂𝑉𝑖,𝑗,𝑡

𝑅𝑉𝑂𝐿𝑖,𝑡𝑅𝑉𝑂𝐿𝑗,𝑡
 . (32)  
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Under some suitable conditions such as no market-microstructure noise or 

absence of jumps in prices realized volatility is consistent, unbiased and efficient 

volatility estimator. However real-world data rarely possess previous properties 

therefore positive semi-definiteness of covariance matrix estimates is not 

guaranteed. Recently, the new estimator, Multivariate Realized Kernels, that 

guarantees covariance matrix to be PSD was introduced in Barndorff-Nielsen et 
al. (2011). 

2.3.2. Multivariate Realized Kernels 

The Multivariate Realized Kernels (MRK) estimator proposed in Barndorff-
Nielsen et al. (2011) is the second type of covariance estimator we use in the 

thesis. The MRK estimates are guaranteed to be positive-semidefinite and the 

estimator can also deal with non-synchronous trading. If the high-frequency 

returns are synchronized the positive semi-definite MRK covariances are defined 

as follows 

𝑅𝐶𝑂𝑉𝑡𝑀𝑅𝐾 = � 𝑘�
ℎ
𝐻�𝛤ℎ

𝑛

ℎ=−𝑛

 , (33)  

where 𝛤ℎ stands for h-th realized autocovariance and 𝑘 is a non-stochastic weight 

function. 𝛤ℎ is defined in the following way 

𝛤ℎ = � 𝑥𝑗𝑥𝑗−ℎ′
n

j=j+1

, (34)  

for ℎ ≥ 0, and  

𝛤ℎ = 𝛤−ℎ′ , (35)  

for ℎ < 0. 

The kernel function we use for estimation is a Parzen function defined as 

𝑘(𝑥) = �
1 − 6𝑥2 + 6𝑥3

2(1 − 𝑥)3
0

    
0 ≤ 𝑥 ≤ 1 2⁄
1 2⁄ ≤ 𝑥 ≤ 1

𝑥 > 1
�. (36)  

Having described Realized Covariation and Multivariate Realized Kernels, 

techniques that are designed to obtain variance-covariance matrix estimates, we 
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now turn to description of Heterogeneous Autoregression and Wishart 

Autoregression. These models use VCV matrix estimates for further modeling 

and forecasting.  

2.4. Heterogeneous Autoregressive model 

The Heterogeneous Autoregressive model (HAR) presented here was proposed 

by Corsi (2009). It represents a new approach to volatility modeling using high-

frequency data and realized volatility. The work of Corsi (2009) was inspired by 

Heterogeneous Market Hypothesis presented in Müller et al. (1993). The 

Heterogeneous Market Hypothesis states that heterogeneity among investors 

arises due to the different investment strategies and time horizons. In 

heterogeneous market we can divide investors to a two categories according to 

their time horizons. Short term investors are represented by speculative traders, 

whose positions are likely to be closed at the end of day. Long term investors are 

represented by central banks, commercial organizations and pension funds which 

trade less frequently but in larger volumes. Müller et al. (1993) claim that 

volatility is empirically positively correlated with market presence and volume. 

On the contrary, in the homogeneous market, volatility is supposed to be 

negatively correlated with market presence and activity. Therefore different 

trading strategies of market participants in heterogeneous market create the 

volatility. Corsi (2009) suggests three primary volatility components: short term 

traders with trading horizon of one day, medium term investors with weekly 

trading frequency and long term investors who trade at monthly basis.   

HAR is of the AR-type class of models. It tries to combine a short term and 

long term volatility together. Although it is not truly long memory model such 

as ARFIMA or FIGARCH, it is still able to capture long memory of volatility.     

Now let us turn to the model. We consider the following standard continuous 

price process  

𝑑𝑝(𝑡) = 𝜇(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡) ,  (37)  
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where 𝑝(𝑡) is a logarithmic price process, 𝜇(𝑡) is a cadlág3 finite variation 

process, 𝑊(𝑡) is a Brownian motion and 𝜎(𝑡)is a stochastic process independent 

of 𝑊(𝑡). Integrated volatility associated with day 𝑡 is defined as a square root of 

the integral of instantaneous variance over a one trading day 1𝑑, 

𝜎𝑡
(𝑑) = � � 𝜎2(𝜔)𝑑(𝜔)

𝑡

𝑡−1𝑑

 .  (38)  

Theory described in section 2.3.1 allows us to construct an estimator of realized 

volatility defined as 

𝑅𝑉𝑂𝐿𝑡
(𝑑) = �� 𝑟𝑡−𝑗.∆

2
𝑀−1

𝑗=𝑂

 , (39)  

where 𝑡 denotes day, 𝑗 stands for the time within day 𝑡, ∆= 1𝑑/𝑀 is the number 

of observation during one day and 𝑟𝑡−𝑗.∆ = 𝑝𝑡−𝑗.∆ − 𝑝𝑡−(𝑗−1).∆ represents intraday 

returns sampled at frequency ∆. 𝑅𝑉𝑂𝐿𝑡
(𝑑) is referred as a daily volatility. For the 

HAR model we also need volatilities over longer time period. Namely we use 

weekly and monthly one. Weekly, 𝑅𝑉𝑂𝐿𝑡
(𝑤), is the average of last five working 

days volatilities and monthly, 𝑅𝑉𝑂𝐿𝑡
(𝑚), is the average of the volatilities of last 

22 working days, i.e.  

𝑅𝑉𝑂𝐿𝑡
(𝑤) =

1
5 �𝑅𝑉𝑂𝐿𝑡

(𝑑) + 𝑅𝑉𝑂𝐿𝑡−1𝑑
(𝑑) + ⋯+ 𝑅𝑉𝑂𝐿𝑡−4𝑑

(𝑑) � (40)  

𝑅𝑉𝑂𝐿𝑡
(𝑚) =

1
22 �𝑅𝑉𝑂𝐿𝑡

(𝑑) + 𝑅𝑉𝑂𝐿𝑡−1𝑑
(𝑑) + ⋯+ 𝑅𝑉𝑂𝐿𝑡−21𝑑

(𝑑) � (41)  

Next, we define the latent partial volatility 𝜎�𝑡
(∙). In the market each participant 

is generating only certain volatility component. These should be divided into 

three categories: daily, weekly and monthly denoted as 𝜎�𝑡
(𝑑), 𝜎�𝑡

(𝑤) and 𝜎�𝑡
(𝑚) 

respectively.  In addition, the highest frequency volatility component determines 

the market volatility, i.e. 𝜎�𝑡
(𝑑) = 𝜎𝑡

(𝑑). The daily and weekly components depend 

on past daily and weekly realized volatility respectively and the expectation of 

3 right continuous process with left limits 
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the next-period volatility of the longer-term. The monthly component depends 

only on its past realizations. The model is then characterized by three equations      

𝜎�𝑡+1𝑚
(𝑚) = 𝑐(𝑚) + 𝜙(𝑚)𝑅𝑉𝑂𝐿𝑡

(𝑚) + 𝜔�𝑡+1𝑚
(𝑚)   (42)  

𝜎�𝑡+1𝑤
(𝑤) = 𝑐(𝑤) + 𝜙(𝑤)𝑅𝑉𝑂𝐿𝑡

(𝑤) + 𝛾(𝑤)𝐸𝑡�𝜎�𝑡+1𝑚
(𝑚) � + 𝜔�𝑡+1𝑤

(𝑤)  (43)  

𝜎�𝑡+1𝑑
(𝑑) = 𝑐(𝑑) + 𝜙(𝑑)𝑅𝑉𝑂𝐿𝑡

(𝑑) + 𝛾(𝑑)𝐸𝑡�𝜎�𝑡+1𝑤
(𝑤) � + 𝜔�𝑡+1𝑑

(𝑑)  (44)  

where  𝜔�𝑡+1𝑚
(𝑑) , 𝜔�𝑡+1𝑚

(𝑤)  and 𝜔�𝑡+1𝑚
(𝑚)  contemporaneously and serially independent 

zero mean innovations. Moreover, to ensure positivity of partial volatilities error 

terms have appropriately truncated left tail. 

By substituting equation (42) into the (43) and then transformed (43) into (44) 

and using fact that 𝜎�𝑡
(𝑑) = 𝜎𝑡

(𝑑) we get 

𝜎𝑡+1𝑑
(𝑑) = 𝑐 + 𝛽(𝑑)𝑅𝑉𝑂𝐿𝑡

(𝑑) + 𝛽(𝑤)𝑅𝑉𝑂𝐿𝑡
(𝑤) + 𝛽(𝑚)𝑅𝑉𝑂𝐿𝑡

(𝑚) + 𝜔�𝑡+1𝑑
(𝑑) ,  (45)  

Moreover, ex-post 𝜎𝑡+1𝑑
(𝑑)  can be written as a sum of realized volatility and 

innovations term that count for latent daily volatility measurement and 

estimation error. 

𝜎𝑡+1𝑑
(𝑑) = 𝑅𝑉𝑂𝐿𝑡

(𝑑) + 𝜔𝑡+1𝑑
(𝑑) ,  (46)  

Finally, substituting equation (46) into the equation (45) we arrive at 

𝑅𝑉𝑂𝐿𝑡+1𝑑
(𝑑) = 𝑐 + 𝛽(𝑑)𝑅𝑉𝑂𝐿𝑡

(𝑑) + 𝛽(𝑤)𝑅𝑉𝑂𝐿𝑡
(𝑤) + 𝛽(𝑚)𝑅𝑉𝑂𝐿𝑡

(𝑚) + 𝜔𝑡+1𝑑 ,  (47)  

where 𝜔𝑡+1𝑑 = 𝜔�𝑡+1𝑑
(𝑑) −𝜔𝑡+1𝑑

(𝑑) . Equation (47) represents simple AR-type model of 

realized volatility which can be estimated using the ordinary least squares 

(OLS). 

One-step ahead forecast using Heterogeneous Autoregression is computed as 

follows 

𝑅𝑉𝑂𝐿𝑡+1 = 𝑐 + 𝛽(𝑑)𝑅𝑉𝑂𝐿𝑡
(𝑑) + 𝛽(𝑤)𝑅𝑉𝑂𝐿𝑡

(𝑤) + 𝛽(𝑚)𝑅𝑉𝑂𝐿𝑡
(𝑚) (48)  

If the Heterogeneous Autoregressive model is applied on the elements of 

variance-covariance matrix estimates positive semi-definiteness of the covariance 

forecasts is not guaranteed. In order to ensure positivity of the VCV matrix 

forecasts we use Wishart Autoregressive model of Gourieroux et al. (2009).   
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2.5. Wishart Autoregressive model 

Gourieroux et al. (2009) introduced new model for modeling dynamics of 

realized covariance by conditional Wishart distribution. The Wishart 

Autoregressive model (WAR) is an interesting alternative to the classical 

multivariate volatility models as it reduces number of parameters4 from �𝑛(𝑛+1)
2

�
2
 

to  1 + 𝑛(𝑛+1)
2

+ 𝑛2 and it does not require any further restrictions to produce 

positive definite and symmetric covariance matrix.  

Following Gourieroux et al. (2009) and Bonato et al. (2009), let us denote 

realized covariance as 𝑌𝑡. 𝑌𝑡 follows Wishart process of order 1, denote 

𝑊[𝐾,𝑀,𝛴], if it satisfies  

𝑌𝑡 = �𝑥𝑘,𝑡𝑥𝑘,𝑡
′

𝐾

𝑘=1

  , (49)  

where processes 𝑥𝑘,𝑡 for 𝑘 = 1, … ,𝐾 are independent Gaussian 𝑉𝐴𝑅(1) processes 

of dimension 𝑛 with 𝐾 degrees of freedom. Moreover 𝑥𝑘,𝑡 have the same 

autoregressive parameter matrix 𝑀 and common innovation variance 𝛴  
𝑥𝑘,𝑡 = 𝑀𝑥𝑘,𝑡−1 + 𝜀𝑘,𝑡        𝜀𝑘,𝑡  ~ 𝑁(0,𝛴). (50)  

Proposition 2 from Gourieroux et al. (2009) describes first and second order 

conditional moments of 𝑊𝐴𝑅(1) process. Useful property of this proposition is 

that we are able to combine equation (49) and (50) which yields  
𝑌𝑡 = 𝑀𝑌𝑡−1𝑀′ + 𝐾𝛴 + 𝜂𝑡 ,       (51)  

where 𝜂𝑡 is matrix of heteroscedastic error terms with zero conditional mean. 

Important feature of the model is number of degrees of freedom. According to 

Bonato (2009) and  Chiriac & Voev (2011) matrix 𝑌𝑡 is positive definite if and 

only if 𝐾 > 𝑛. On the other hand  if the 𝐾 is smaller than 𝑛, process 𝑌𝑡 has a 

degenerate Wishart distribution and if the 𝐾 < 𝑛 − 1 there is no density 

function defined for the variance-covairance distribution. 

There are three parameters that need to be estimated in the WAR model: 

• matrix of autoregressive parameters 𝑀 

4 see  Gourieroux et al. (2009), p.168 
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• symmetric, positive definite innovation covariance matrix 𝛴  

• degrees of freedom 𝐾 

Estimation procedure follows Proposition 9 from Gourieroux et al. (2009) in 

which if 𝐾 > 𝑛 − 1 

(i) 𝐾 and 𝛴 are identifiable, and the autoregressive matrix M is identifiable up 

to its sign. 

(ii)  𝛴∗ = 𝛴𝐾 is first-order identifiable and M is first-order identifiable up to its 

sign. The degree of freedom 𝐾 and the innovation covariance matrix 𝛴 are 

second-order identifiable. 

The non-linear least squares using first-order conditional moments are used 

for the first order identification as they are equivalent to Method of Moments 

estimation. The estimator is given by  
�𝑀� ,𝛴�∗� = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑀 ,𝛴∗
𝑆2 (𝑀,𝛴∗),       (52)  

where 

𝑆2(𝑀,𝛴∗) = ���𝑌𝑖𝑗 ,𝑡 −��𝑌𝑘𝑙,𝑡−1𝑚𝑖𝑘𝑚𝑙𝑗 − 𝜎𝑖𝑗∗
𝑛

𝑙=1

𝑛

𝑘=1

�
2

𝑖<𝑗

𝑇

𝑡=2

   

(53)  

= �‖𝑣𝑒𝑐ℎ(𝑌𝑡) − 𝑣𝑒𝑐ℎ(𝑀𝑌𝑡−1𝑀′ + Σ∗)‖2
𝑇

𝑡=2

   

and 𝑣𝑒𝑐ℎ represents vector of stacked elements of lower/upper triangular matrix 

𝑌𝑡. Equation (52) can be estimated using any software that accounts for 

heteroscedasticity. 

Identification of covariance matrix Σ and degrees of freedom 𝐾 is obtained 

from second-order moments. In case of 𝑊𝐴𝑅(1), the marginal distribution of the 

process is centered Wishart distribution. The portfolio's volatility conditional 

variance has the following form 

𝑉(𝛼′𝑌𝑡𝛼) =
2
𝐾

[𝛼′𝛴∗(∞)𝛼]2,       (54)  

where  

𝛴∗(∞) = 𝐾𝛴(∞)     (55)  

and 
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𝛴(∞) = 𝑀𝛴(∞)𝑀′ + 𝛴.    (56)  

A consistent estimator of degrees of freedom 𝐾 is  

𝐾�(𝛼) = 2
�𝛼′𝛴�∗(∞)𝛼�

2

𝑉�(𝛼′𝑌𝑡𝛼) .    
(57)  

and consistent estimator of covariance matrix Σ is  

𝛴�(𝛼) =
𝛴�∗

𝐾�(𝛼).    (58)  

Detailed estimation procedure can be found in Gourieroux et al. (2009) or 

Bonato et al. (2009). 
One-step ahead forecast in WAR framework can be computed according to 

following equation 
𝑌𝑡+1 = 𝑀𝑌𝑡𝑀′ + 𝐾𝛴. (59)  

Having defined models that are designed to produce variance-covariance 

matrix forecasts we now turn to forecast evaluation methods.   

2.6. Evaluation of forecasts 

Last section is dedicated to statistical and economic evaluation of variance-

covariance matrix forecasts. Statistical evaluation employed in this thesis is 

based on the Root Mean Square Forecasting Error. According to perspective of 

portfolio optimization we employ three economic criteria. Namely they are 

Mean-Variance optimization, Global Minimum Variance Portfolio and Value-at-

Risk.  

2.6.1. Root Mean Square Forecasting Error 

Root Mean Square Forecasting Error (RMSFE) as a statistical measure was 

selected due to the fact that it was used in Chiriac & Voev (2011) and Voev 
(2009) where they compared model based on daily as well as high-frequency 

data. We define RMSFE loss function as 
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𝑅𝑀𝑆𝐹𝐸 =
1

𝑇 − 1�
�𝛴𝑡+1 − 𝛴�𝑡+1|𝑡��𝐹

𝑇

𝑡=1

,       (60)  

where 𝛴�𝑡+1|𝑡� is a forecast of VCV matrix, 𝛴𝑡+1 is the true VCV matrix proxied 

by both Realized Covariation and Multivariate Realized Kernel estimates and 

�𝛴𝑡+1 − 𝛴�𝑡+1|𝑡��𝐹 denotes a Frobenius norm. According to Watkins (2002) the 

Frobenius norm is defined as  

‖𝐴‖𝐹 = ����𝑎𝑖𝑗�
2

𝑛

𝑗=1

𝑛

𝑖=1

.       (61)  

Having described statistical evaluation of covariance forecasts we now turn to 

economic evaluation criteria. We begin with Mean-Variance optimization 

approach followed by Global Minimum Variance Portfolio and Value-at-Risk 

approaches.  

2.6.2. Mean-Variance optimization 

Portfolio selection in the Mean-Variance optimization framework dates back to 

Markowitz (1952) and his work Portfolio Selection. We have two possibilities for 

selecting optimal portfolio. First one involves specifying expected portfolio 

return and finding optimal weights of portfolio assets so the volatility of the 

entire portfolio is minimized. In second option investor is trying to maximize 

expected return of portfolio at given volatility level.  

Let us consider a risk averse investor who wants to maximize his utility. 

Weights of portfolio assets, 𝑤 = (𝑤1, … ,𝑤𝑛)′, maximizing utility of the investor 

can be found solving following problem 

𝑚𝑖𝑛
𝑤𝑡+1

 𝑤𝑡+1′ 𝛴�𝑡+1|𝑡�𝑤𝑡+1 

(62)  𝑠. 𝑡.   𝑙′′′𝑤𝑡+1 = 1 
𝑤𝑡+1′ 𝜇̂𝑡+1|𝑡� = 𝜇𝑃  

where 𝑤𝑡+1 is vector of assets weights, 𝛴�𝑡+1|𝑡� represents a covariance matrix 

forecast, 𝑙 denotes a vector of ones, 𝜇̂𝑡+1|𝑡� is a vector of mean forecasts and 𝜇𝑃 
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stands for portfolio return. Detailed analytical procedure of finding such a 

portfolios is described in Merton (1972). Once we solved equation (62) for 

different expected portfolio returns or  volatility levels, we are able to construct 

mean-variance efficient frontier.  

 

2.6.3. Global Minimum Variance Portfolio 

Using the mean forecasts is the main drawback of the Mean-Variance 

optimization. Mean forecasts might be extremely noisy so the portfolio weights 

and variance can become notably sensitive to changes in assets mean. Solution 

to this problem is the Global Minimum Variance Portfolio (GMVP) 

optimization as it does not require use of mean forecasts. GMVP  is specified as 

follows    

𝑚𝑖𝑛
𝑤𝑡+1

 𝑤𝑡+1′ 𝛴�𝑡+1|𝑡�𝑤𝑡+1 
(63)  

𝑠. 𝑡.   𝑙′′′𝑤𝑡+1 = 1 

According to Kempf & Memmel (2006) the solution of the previous 

minimization problem has the form 

𝑤𝑡+1𝐺𝑀𝑉 =
𝛴�𝑡+1|𝑡�
−1 𝑙

𝑙′𝛴�𝑡+1|𝑡�
−1 𝑙

   ,       (64)  

and the expected return variance is calculated as  
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Standard Deviation 

 
Figure 2-1: Efficient frontier 

Source: Author  
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𝜎2𝑡+1
𝐺𝑀𝑉 = 𝑤𝑡+1𝐺𝑀𝑉′𝛴�𝑡+1|𝑡� 𝑤𝑡+1𝐺𝑀𝑉 =

1
𝑙′𝛴�𝑡+1|𝑡�

−1 𝑙
  .       (65)  

2.6.4. Value-at-Risk 

Previous methods of evaluating covariance forecasts "only" rank the forecasts 

according to some criterion. Value-at-Risk approach has the advantage that it 

quantifies the risk as a single number representing maximum potential loss at 

given probability level. 

Jorion (2007) defines Value-at-Risk as the "worst loss over a target horizon 
such that there is a low, prespecified probability that the actual loss will be 
larger". Let the 𝑐 be the confidence level and 𝐿 be the loss of the portfolio. Then 

the VaR is defined as  
𝑃(𝐿 > 𝑉𝑎𝑅) ≤ 1 − 𝑐 .       (66)  

If we set confidence level to 𝑐 = 0.95 or 𝑐 = 0.99, then the probability of 

experiencing loss greater than VaR is less than 5 or 1 percent respectively. Three 

basic approaches can be used for Value-at-Risk calculation. According to Jorion 
(2007) VaR can be computed using 

• variance-covariance method - VaR is calculated analytically using 

forecasts of variance-covariance matrix and assumption that returns are 

normally distributed  

• historical simulation - from the historical data we construct return 

distribution in which the specific quantile represents the VaR 

• Monte Carlo simulation - we generate 𝑁 random return processes 

according to specific distribution. From the generated processes the 

quantile of the return process is selected and the VaR is calculated.    

Our aim is to access the performance of different covariance forecasting 

models so we stick to the variance-covariance method of VaR calculation. The 

more detailed description of the method follows. 

For variance-covariance method we use parametric approach with standard 

deviation of the portfolio as the input parameter. The most simple case assume 

that the returns are standard normally distributed. Having estimated portfolio's 
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standard deviation, the VaR at confidence level 𝑐 with corresponding quantile of  

standard normal distribution 𝛼 calculated over 𝑡 days with invested amount 𝑊 

is defined as  

𝑉𝑎𝑅 = 𝛼𝜎√𝑡 𝑊.       (67)  

The most frequent confidence levels or cut-off points are 0.95 and 0.99 with 

corresponding quantiles 1.645 and 2.326 respectively.  

VaR as a risk measure is widely used in the banking sector. In the 

RiskMetrics framework we calculate one-day VaR with a cut-off  point set to 

0.95. Banking regulation standards introduced by Basel Committee proposed to 

calculate minimum capital requirements of the banks as 10-day VaR at 99% 

confidence level. 

Backtesting of VaR     
Normality of returns distribution might be too strong and restrictive leading to 

miscalculation of  VaR. In order to minimize financial risks we need to test the 

VaR performance of different covariance forecasts. Importance of backtesting is 

best described in Brown (2008): "VaR is only as good as its backtest. 
When someone shows me a VaR number, I don’t ask how it is computed, I 
ask to see the backtest. If I think I could make money betting either side at 100 
to 1 on whether or not a break will occur tomorrow, I disregard the VaR. If 
anyone argues with me, I challenge them to take my bet over the next year." 

From the numerous backtesting procedures we employ test proposed by 

Kupiec (1995). Basic idea of unconditional coverage Proportion of Failures 

(PoF) test  is to compare the number of VaR exceedance with total numbers of 

VaR forecasts. If we denote number of VaR exceptions 𝑥 and total number of 

forecasted VaRs 𝑁, the PoF ratio 𝑥
𝑁
 should not deviate much from (1−

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙). To put it more formally we test   
𝐻0:     𝑝 = 𝑝∗       (68)  

where 𝑝 = (1 − 𝑐) and 𝑝∗ =  𝑥
𝑁

 . The null hypothesis is tested using likelihood 

ratio test with test statistic 

𝐿𝑅 = −2𝑙𝑛[(1− 𝑝∗)𝑁−𝑥(𝑝∗)𝑥] + 2𝑙𝑛 ��1 −
𝑥
𝑁�

𝑁−𝑥
�
𝑥
𝑁�

𝑥
�       (69)  
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Under the 𝐻0, the PoF test is 𝜒2 distributed with one degree of freedom. In 

Kupiec (1995) the non-rejection regions for different 𝑝∗ and 𝑁 can be found.  

  



 

Chapter 3  

Data 

Having defined methodology, let us turn to data description. In our work we use 

daily and high-frequency data. By term high-frequency (HF) we mean data 

collected at  5-minute interval. To be precise, we use 5-minute closing prices. All 

data were obtained from Tick Data. Samples which we use cover period from 

July 1, 2003 until November 30, 2011.  

Selection of the financial instruments was done on the basis of European 

investor´s perspective, whose portfolio includes not only world's most traded 

assets such as S&P 500 but also local one. The final portfolio consists of highly 

liquid commodity, "safe haven" investment and European asset. Namely, our 

portfolio contains Light Crude NYMEX, Gold COMEX and DAX index. To get 

a better picture of our dataset short description of assets follows.  

Light Crude NYMEX (denoted with symbol CL) represents light crude oil 

futures contracts traded at the New York Mercantile Exchange. Crude oil is the 

most traded physical commodity worldwide with prices quoted in U.S. dollars 

(USD). CL contracts are highly liquid. One trade unit of CL is 1 000 barrels. 

The minimum price fluctuation is one cent per barrel that is 10 USD per 

contract. Our sample consists of 2503 trading days. 

Gold COMEX (denoted with symbol GC) is traded at the metal division, 

formerly known as Commodity Exchange, of the New York Mercantile 

Exchange. Gold is considered as a secure investment by many investors, thus 

safe haven. From the historical point of view, gold preserves its value during 
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politically and economically uncertain times and serves as inflationary hedge. 

GC contracts are traded in USD. The size of the contract is 100 troy ounces 

with the minimum price change of ten cents per troy ounce (10 USD per 

contract). Our sample covers 2485 trading days. 

DAX index (denoted with symbol DA) is the representative of European 

market in our portfolio. DAX is the German stock index, that consists of 30 

German most actively traded companies at Frankfurt Stock Exchange. Its stock 

volume represents approximately 3/4 of German listed stocks. DAX was chosen 

as a representative of European market due to the prominent role of German 

economy within Europe. The prices of DAX are quoted in Euro (EUR). Number 

of days when DAX was traded within our sample is 2148. 

3.1. Data processing 

Our goal is to examine and model mutual dependencies among chosen assets. 

Models defined in previous chapter require synchronized dataset for proper 

estimation - assets have to be traded at the same time. By this constraint 

several problems arise. First one emerges from different trading hours. Final 

dataset has to contain only those trading days during which all assets were 

traded in case of daily data. For HF data, we keep closing prices with the same 

timestamp depending on the day, hour and minute. Another problem arises from 

the goal of the thesis to compare forecasts based on daily and HF data. To avoid 

this problem, days used for estimation must be the same in both datasets. 

Generally, data are synchronized using following procedure 

1. only observation with the same date for all time series are kept   

2. in case of HF data we repeat procedure from the first step also for values 

of hours and minutes 

2.1. we keep only days with more than 69 observations, resulting in at least 

6.5 hours of trading 

3. once 5-minute data are synchronized we delete those days from daily data 

that are not included in the final high-frequency dataset. 



Data  28 
 

To illustrate the cleaning procedure, let us explain it using a simple example,  

supposing we have 3 trading days - November 1 to November 3, 2011. On 

November 1 we are left with 100 closing prices, November 2 contains 65 

observations and on November 3 assets were traded 90 times. On November 2 

there were less than 70 trades so we do not use this day for estimation although 

open and close prices are available and daily returns are possible to calculate. 

Final dataset would thus contain only days November 1 and November 3, 2011.  

1930 days left once the data processing procedure is applied. The more detailed 

description of the time-series follows.  

3.2. High-frequency data  

Theoretically, the more data we have, the more information we are able to 

extract and thus our estimates should be more precise. The dramatic increase of 

computer performance in the last decade enables us to collect data for all 

executed trades. However, using tick data for estimation is not effective due to 

complications arising from their nature. The raw data might be contaminated by 

market microstructure noise due to bid-ask bounce or might suffer from 

asynchronous trading. To overcome problems, proper filters and sampling 

frequency must be chosen. As mentioned at the beginning of the chapter, we use 

5-minute closing prices similar to Andersen et al. ( 2005) or Chiriac & Voev 
(2011). Having briefly described concept of using HF data, let us summarize 

main characteristics of time-series. 

Our original dataset covers the period from July 1, 2003 until November 30, 

2011. In total we have 2 503 trading days  with 541 721 closing prices for CL, 2 

485 trading days  with 501 660 closing prices for GC and 2 148 trading days 

with 221 203 closing prices for DA. Substantial increase in trading activity for 

CL and GC occurred during sample period. The average number of observations 

per day increases from 176 in 2003, 231 in 2005, to 279 in both 2010 and 2011 in 

case of crude oil. For gold, observations increased from 185 in 2003, almost 200 

in 2005 to 279 in 2010 and 267 in 2011. Since 2007 market for crude oil and gold 
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became real 24/7 global market with only one hour of no trading activity during 

trading day. Trading hours and number of observation per day remains almost 

constant for DAX. There are 102 observations per day during period 2003 to 

2006. Two more observations occurred in 2007. This increase remained 

unchanged also in the following years. 

By the process of synchronization 573, 555 and 218 days were removed from 

CL, GC and DA time series respectively. The total number of synchronized 

closing prices  included in our sample is 184 699. Elimination of more than 350 

000 data points in case of CL, almost 317 000 and 37 000 in case of GC and DA 

led to higher overnight returns. The mean of overnight returns is highest for 

crude oil, -0.0735% (DA: -0.00754%; GC: 0.0409%) with highest positive, 17.98% 

(DA: 12.99%; GC: 10.57%) and negative, -16.73% (DA: -13.29%; GC: -10.59%) 

return. 

The basic characteristics of the synchronized HF dataset is summarized in the 

Table 3-1.    

Table 3-1: Descriptive statistics of high-frequency closing prices and returns 

 5 min prices  daily returns 
 CL DA GC  CL DA GC 

Mean 73.7 5877.1 888.9  -0.0013 -3.5402e-04 -2.7987e-04 

Min 26.8 3207.7 342.1  -0.0781 -0.0766 -0.0556 

Max 145.1 8143.7 1913.5  0.086 0.0894 0.0559 

Std. dev. 22.3 1169.7 372.7  0.0164 0.0119 0.0102 

Kurtosis 3.3037 2.1089 2.5686  5.6011 9.4141 6.725 

Skeweness 0.5142 -0.1259 0.6152  -0.081 -0.199 -0.3191 

Source: Author's computation 

Figure 3-1 shows final closing prices series with corresponding returns. The 

effects of financial crisis are mostly evident in CL and DA. There was a huge 

drop in value of both assets in 2008 and at the beginning of 2009. Financial 

crisis did not affect price of gold as much as in case of crude oil and DAX index. 

During 2008 and first quarter of 2009 price of gold more or less stagnated. In the 

following period until the end of our sample price almost doubled. If we 
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concentrate more on return series, period of high volatility is clearly observable 

for all the time series during financial crisis 2008/2009.       

Figure 3-1: 5-minute closing prices, 5-minute returns and daily high-frequency 
returns  

 
Source: Author's computation 

3.3. Daily data 

Daily data are divided into two groups. In the first group, returns are calculated 

as a logarithmic difference between closing price at time 𝑡 and 𝑡 − 1. Such data 

are referred as "close-close" or "CC" in the rest of the work. Second group of 

daily data consists of returns computed as logarithmic difference between closing 

price and opening price at time 𝑡. These data will be denoted as "open-close" or 

"OC".  

Original and synchronized datasets consist of identical number of days as in 

case of HF data. Data synchronization procedure significantly impacts values of 
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overnight returns. The highest mean of overnight returns is recorded for DA, 

0.0587% (CL: 0.0294%; GC: 0.0409%).  Values of maximum positive returns for 

CL, DA and GC equal 19.24%, 6.78% and 5.73% respectively. The maximum 

negative returns are -7.62%, -9.11% and -3.51% for CL, DA and GC 

respectively.  

Descriptive statistics of CC and OC prices and returns are in Table 3-2 and 

Table 3-3.  

Table 3-2: Descriptive statistics of close-close prices and returns 

 prices CC  daily returns CC 
 CL DA GC  CL DA GC 

Mean 72.1 5789.8 859.5  6.1765e-04 2.8616e-04 8.3343e-04 

Min 27.2 3235.1 344.4  -0.1294 -0.0809 -0.0764 

Max 145.5 8105.7 1902.8  0.1902 0.1187 0.1052 

Std. dev. 22.5 1193.1 375.9  0.025 0.0153 0.0134 

Kurtosis 3.2833 2.0465 2.6239  6.7504 10.1059 7.3386 

Skeweness 0.5353 -0.0603 0.6851  0.1166 0.1449 -0.1919 

Source: Author's computation 

Table 3-3: Descriptive statistics of open-close prices and returns 

 prices OC  daily returns OC 
 CL DA GC  CL DA GC 

Mean 72.2 5790.6 859.4  3.2695e-04 -3.0130 e-04 4.1722e-04 

Min 26.9 3235.1 344.4  -0.1263 -0.0756 -0.0766 

Max 145.4 8137.7 1912  0.1269 0.0879 0.1025 

Std. dev. 22.5 1192.7 375.8  0.0235 0.012 0.013 

Kurtosis 3.2827 2.0439 2.6257  5.0705 8.8081 7.8462 

Skeweness 0.5343 -0.0599 0.6847  -0.1863 -0.2023 -0.2755 

Source: Author's computation 

The Figure 3-2 and Figure 3-3 show us prices and corresponding returns for CC 

and OC data respectively. As in the case of HF data, the significant decrease in 

the value can be observed for CL and DA during 2008 and beginning of 2009. 

Price of gold follows its increasing trend throughout the whole dataset. Return 
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series of all assets indicates period of particularly high volatility during second 

half of  2008 and first half of 2009.   

Figure 3-2: daily closing prices and close-close returns 

 
Source: Author's computation 

 

Figure 3-3: open-close prices and open-close returns 

 
Source: Author's computation 

  



 

Chapter 4  

Empirical Findings 

In this chapter we present forecasting results obtained from models defined in 

Chapter 2. To study effects of financial crisis, the models are estimated on two 

sub-samples, representing period before crisis and during crisis, and full sample, 

covering period July 8, 2003 to November 29, 2011. The sub-samples are 

obtained by dividing whole dataset into two equal parts. Period "before crisis" 

represents 965 days (July 8, 2003 - February 8, 2008). "During crisis" sample 

starts on February 11, 2008 with last observation on November 29, 2011. Each 

period is further divided into in-sample and out-of-sample part. In-sample period 

lasts 713 days for all sub-samples. On the other hand out-of-sample period lasts 

252 days which represents one year for before crisis and during crisis sub-sample. 

In case of full dataset, duration of out-of-sample period is 1 217 days. 

The rolling window estimator of length 713 days is used for analysis. We 

describe rolling window estimation using data from before crisis period. First 

estimate is obtained using 713 daily observations with first observation at day 

one (period 1st to 713rd day). Using parameters from the fitted model, we 

calculate one-step ahead forecast for the day 714. Second estimate and forecast 

are obtained similarly, but the estimation window is moved by one day to 2nd - 

714th observation. The one-step ahead forecast for the day 715 is calculated 

using estimates from second period of rolling window estimation. Same 

procedure is applied for 3rd to 251st estimation. Finally we are left with 252 

fitted models and 252 forecasts.    
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Models used in our work are divided into two groups. First group includes 

models that use returns as input parameters. These models are DCC-GARCH 

and EWMA with decay factor set to RiskMetrics standards (in the remaining 

part of the work the model is denoted as RiskMetrics). In second group, four 

models that use variance-covariance matrix as input parameter are used. First 

one, HAR model, estimates each element of VCV matrix separately. Second 

model, Cholesky-HAR, is HAR applied on the elements of Cholesky decomposed 

VCV matrix. Positive definiteness of forecasts in case of Cholesky HAR is 

guaranteed by following transformation:  

1. original VCV matrix is Cholesky decomposed, 𝑉𝐶𝑉 = 𝑈𝑈′, where 𝑈 is 

lower triangular matrix  

2. standard HAR is applied on elements of 𝑈  

3. estimates from second step are used for one-step ahead forecast 

4. "reverse" Cholesky decomposition on matrix of forecasts, 𝑈𝐹, is applied. 

The outcome is VCV matrix of forecasts  𝑈𝐹𝑈𝐹′ = 𝑉𝐶𝑉𝐹 

Last two models are WAR(1) and diagonal WAR(1). The diagonal WAR(1) 

model is restricted version of WAR(1), where the matrix of autoregressive 

parameters 𝑀 is diagonal. Data processing, models estimation, forecasting and 

evaluation of forecasts were done in MATLAB, Version 7.12.0.0635 (R2011a). 

Estimation of DCC-GARCH was carried out using UCSD GARCH Toolbox5, 

RiskMetrics and Multivariate Realized Kernels estimates were obtained using 

Oxford MFE Toolbox6. Both toolboxes are developed by Kevin Sheppard. 

WAR(1) and diagonal WAR(1) models are estimated using codes written by 

Matteo Bonato for article Risk spillovers in international equity portfolios by 

Bonato et al. (2012). Parameter estimates from individual models are presented 

in the Appendix C. 

In sections 4.1 - 4.3 we present results of forecast evaluations for before crisis, 

during crisis and full sample period respectively. 

5 http://www.kevinsheppard.com/wiki/UCSD_GARCH 
6 http://www.kevinsheppard.com/wiki/MFE_Toolbox 
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4.1. Before crisis 

This section summarizes forecasts evaluation within before crisis period. The in-

sample period of before crisis sub-sample starts on July 8, 2003 and lasts until 

February 6, 2007. On the other hand the out-of-sample period starts on 

February 7, 2007 and lasts until February 8, 2008, which covers 252 days. Four 

methods are used for evaluation of covariance forecasts. First one Root Mean 

Square Forecasting Error is followed by Mean-Variance optimization and Global 

Minimum Variance Portfolio and at the end of the section Value-at-Risk 

estimates are presented. 

4.1.1. Root Mean Square Forecasting Error  

In Table 4-1 values of RMSFE for individual models are presented 

Table 4-1: before crisis RMSFE (values time 10-4) 

RMSFE    
before crisis 

RCOV   MRK  
RCOV 

 
MRK 

CC OC HF  CC OC HF   
DCC-GARCH 2.5474 2.4711 1.1905  2.7628 2.6953 1.4066     

RiskMetrics 3.3411 2.9181 1.5386  3.4441 3.0336 1.6219     

HAR         1.1747  1.3632 

Cholesky HAR         1.0634  1.2936 

WAR(1)         6.1726  6.4110 
diagonal 
WAR(1) 

        3.5965  3.7032 

Note:  CC denotes daily returns calculated from daily closing prices, OC denotes daily returns 
calculated from daily open-close prices and HF denotes daily returns calculated from 5-
minute closing prices. Proxy for RMSFE calculation are RCOV and MRK. RCOV and 
MRK stands for Realized Covariation and Multivariate Realized Kernels respectively.  

Source: Author's computation 

First part of the table (DCC and RiskMetrics) presents "return as input" models 

results, second part (HAR - Diagonal WAR) show results of models using VCV 

matrix as input parameter. RMSFE for DCC-GARCH and RiskMetrics are 

calculated using both Realized Covariation  and Multivariate Realized Kernels 

covariance matrix estimates as we do not know which one is the true VCV 
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matrix. Moreover models are evaluated separately for daily data returns, CC 

and OC, and high frequency returns, HF. In case of HAR and WAR models, 

Realized Covariation estimates are used for RMSFE calculation only when they 

are also used for model estimation. In case of Multivariate Realized Kernels the 

same logic is applied. 

Concentrating on the first part of the Table 4-1 the best forecasting 

performance is achieved by DCC-GARCH followed by RiskMetrics both 

estimated on HF returns. Results are similar using RCOV and also MRK as a 

proxy for RMSFE calculation. Comparing close-close and open-close returns, the 

OC returns slightly dominates. Ranking of the models according to returns 

calculated from different datasets is in line with expected outcome. Once RCOV 

and MRK, estimated on the restricted dataset is set as a proxy for RMSFE 

calculation, models using returns from restricted dataset show the best 

performance. Because dataset of OC returns is much more similar to HF data, 

their fit compared to CC returns is better. Due to the fact that the overnight 

trading returns included in close-close data are not included in RCOV and 

MRK, fit of CC returns is the worst one.   

In the second part of the table, models using RCOV estimates of covariance 

matrix show better results compared to MRK. There is a clear dominance of 

HAR based model over WAR models for both RCOV and MRK. The best 

performance among all the models including DCC-GARCH and RiskMetrics is 

achieved by Heterogeneous Autoregression estimated on the Cholesky 

decomposed covariance matrix. Poor forecasting power of WAR and diagonal 

WAR is quite surprising as both models are designed to model covariance 

matrix directly.  

Overall, models using RCOV for estimation purposes and as a proxy for 

RMSFE calculation left us with better results than MRK alternative. The fit of 

model with the poorest performance, WAR(1) using MRK estimates, was six 

times worse than the fit of Cholesky HAR estimated on covariance matrix 

obtained from RCOV. In addition, WAR models were outperformed by 

RiskMetrics, which is the simplest model.  



Empirical Findings  37 
 

4.1.2. Mean-Variance optimization 

This section summarizes the risk-return tradeoff of individual models. Results 

are represented by efficient frontiers shown in following figures. Individual 

figures are presented for daily and high-frequency datasets. Results are separated 

due to considerable difference in annualized return level.     

Figure 4-1 depicts efficient frontiers of models that use daily data for 

estimation. As shown, better results are obtained using OC returns. With risk 

level under 20%, DCC-GARCH outperforms RiskMetrics models. With the risk 

increase, performance of RiskMetrics estimated on OC returns increases as well. 

Above 26% risk level, RiskMetrics using OC returns becomes the model with the 

best risk-return tradeoff. 

Figure 4-1: before crisis efficient frontiers - daily data 

 
Source: Author's computation 

In the Figure 4-2 efficient frontiers of models estimated on high-frequency 

data are presented. At first sight, bad performance of WAR based models is 

obvious. For WAR(1) models the lowest risk level achieved is almost twice as 

high as the maximum risk of simple RiskMetrics model. In case of diagonal 

WARs the lowest standard deviation is smallest among all the models, however 

this is accompanied by significantly lower and negative returns. Major drawback 

of the diagonal WAR models is faster risk increase compared to slower growth of 

returns. On the other hand HAR based models together with DCC-GARCH and 
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RiskMetrics show similar paterns of risk-return tradeoff. There is one case when 

the performance of return based, DCC-GARCH, is better than covariance based 

HAR model. Cholesky-HAR using MRK estimates is the best mean-variance 

performance model followed by Cholesky-HAR estimated on RCOV covariances. 

Multivariate Realized Kernels covariance approximation generally results in 

better performance of the models.   

Figure 4-2: before crisis efficient frontiers - high-frequency data 

 
Source: Author's computation 

4.1.3. Global Minimum Variance Portfolio 

Forecasting ability of our models from the perspective of finding portfolio with 

the lowest possible variance is summarized in Table 4-2 

Table 4-2: before crisis GMVP (values times 10-5) 
GMVP 
before 
crisis 

CC  OC  HF  RCOV  MRK 

mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

DCC-
GARCH 

6.41 3.03 
 

4.71 2.95 
 

3.44 1.86 
 

  
 

  

RiskMetrics 10.0 6.09  8.02 5.88  5.43 4.47       

HAR          3.18 1.70  3.19 1.83 

Cholesky 
HAR 

         
2.86 1.57 

 
2.58 1.50 

WAR(1)          20.5 23.6  21.1 28.2 
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diagonal 
WAR(1) 

         
2.27 1.97 

 
2.17 2.22 

Note:  CC denotes daily returns calculated from daily closing prices, OC denotes daily returns 
calculated from daily open-close prices and HF denotes daily returns calculated from 5-
minute closing prices. RCOV and MRK stands for Realized Covariation and 
Multivariate Realized Kernels respectively.  

Source: Author's computation 

In Table 4-2 the mean of forecasted portfolio variances with corresponding 

standard deviations are presented (for the sake of simplicity we use "variance" 

instead of "mean of variances" in the rest of the section). The DCC-GARCH 

and RiskMetrics have the lowest variances in case returns calculated from HF 

dataset are used. Comparing results for HF and CC returns the variance is 

almost twice as high for CC one. As expected the DCC-GARCH performs better 

than RiskMetrics except for the case when we directly compare results from CC 

and HF data.  In that particular case the variance is lower for RiskMetrics, 

however it is compensated by the higher volatility represented by standard 

deviation.    

If we concentrate on models using RCOV and MRK, it is not obvious, which 

covariance estimates provide us with better results. Variance of HAR and 

WAR(1) forecasts is lower using RCOV while it is more beneficial for Cholesky-

HAR and diagonal WAR(1) to use MRK. Diagonal WAR(1) estimated on MRK 

covariance is the model with the lowest variance. In contrast, variance of the 

worst model, WAR(1) using MRK estimates, is almost ten times higher. It is 

hard to choose the best model according to GMVP criteria because lower 

variance of diagonal WAR models is compensated with higher volatility. On the 

other hand lower volatility in case of Cholesky-HAR models is accompanied by 

slightly higher variance.   

Overall, from the GMVP point of view models that use covariance matrices 

for estimation, except WAR(1), outperform return based models. There is no 

clear winner between RCOV and MRK. Results of DCC-GARCH estimated on 

high-frequency returns do not deviate much from covariance based models. 
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4.1.4. Value-at-Risk 

Performance of covariance forecasts according to Value-at-Risk is summarized in 

Table 4-3. Global minimum variances are used for VaR calculation. Results are 

presented for both  95% and 99% VaR.   

Table 4-3: before crisis Value-at-Risk 
Value-at-Risk 
before crisis  

CC  OC  HF  RCOV  MRK 
N p=p*  N p=p*  N p=p*  N p=p*  N p=p* 

p*=0.05 
DCC-GARCH 19 accept  19 accept  18 accept       

RiskMetrics 12 accept  13 accept  14 accept       

HAR          23 reject  24 reject 

Cholesky HAR          25 reject  28 reject 

WAR(1)          0 reject  0 reject 

diagonal WAR(1)          24 reject  25 reject 

p*=0.01 
DCC-GARCH 8 reject  11 reject  7 accept       

RiskMetrics 4 accept  5 accept  5 accept       

HAR          8 reject  9 reject 

Cholesky HAR          13 reject  15 reject 

WAR(1)          0 accept  0 accept 

diagonal WAR(1)          14 reject  10 reject 

Note:  "N" stands for "number of exceedance", p=p* represents null hypothesis of  Proportion 
of Failures test, CC denotes daily returns calculated from daily closing prices, OC 
denotes daily returns calculated from daily open-close prices and HF denotes daily 
returns calculated from 5-minute closing prices. RCOV and MRK stands for Realized 
Covariation and Multivariate Realized Kernels respectively.  

Source: Author's computation 

Let us concentrate on 95% VaR (p*=0.05) first. For DCC-GARCH and 

RiskMetrics evaluation of market risk is appropriate. All tested specifications do 

not reject null hypothesis of properly specified risk level. On the other hand 

covariance based models reject null hypothesis thus the market risk is not 

properly evaluated. For HAR, Cholesky-HAR and diagonal WAR(1) the risk is 

underestimated while in case of WAR(1) we have overestimated risk. 
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Underestimation of the risk might lead to potential huge losses. On the other 

hand opportunity costs are the outcome of  risk overestimation. 

If we turn to 99% VaR (p*=0.01) situation changes for both model groups. In 

the first group, estimates of DCC-GARCH using CC and OC returns 

underestimate risk. In the second group difference is in case of WAR(1). Number 

of exceedance for that particular model is zero so one has to be really careful 

interpreting the result. From the definition of VaR, equation (67), we know that 

VaR depends heavily on variance. For the sample small enough (number of days 

lower than 6117 for 99% VaR), with the increasing variance, the number of 

exceedance is approaching zero. If the variance is high enough we would never 

reject null hypothesis about properly specified risk level.  

Now we turn to description of during crisis sub-period.         

4.2. During crisis 

In this section, we present results of covariance forecasts evaluation using during 

crisis period data. The in-sample period of our dataset includes 713 trading days, 

which starts on February 11, 2008 and lasts until December 6, 2010. The out-of-

sample period covers 252 days that lasts from December 7, 2010 until November 

29, 2011. Similar to before crisis period, order of evaluation methods is as 

follows: Root Mean Square Forecasting Error, Mean-Variance optimization, 

Global Minimum Variance Portfolio and Value-at-Risk. 

4.2.1. Root Mean Square Forecasting Error 

Table 4-4 presents fits of the models according to RMSFE criteria for during 

crisis period. 

Table 4-4: during crisis RMSFE (values time 10-4) 
RMSFE  

during crisis 
RCOV   MRK  

RCOV 
 

MRK 
CC OC HF  CC OC HF   

DCC-GARCH 3.8706 3.6231 2.1759  4.0782 3.8609 2.3849     

7 author's computation 
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RiskMetrics 4.4926 4.0484 2.3057  4.6523 4.2534 2.5020     

HAR         2.0548  2.3343 

Cholesky HAR         1.9758  2.2609 

WAR(1)         11  11 
diagonal 
WAR(1) 

   
 

   
 

4.7459 
 

4.8682 

Note:  CC denotes daily returns calculated from daily closing prices, OC denotes daily returns 
calculated from daily open-close prices and HF denotes daily returns calculated from 5-
minute closing prices. Proxy for RMSFE calculation are RCOV and MRK. RCOV and 
MRK stands for Realized Covariation and Multivariate Realized Kernels respectively.  

Source: Author's computation 

Organization of the Table 4-4 is the same as in before crisis period. Performance 

of DCC-GARCH and RiskMetrics is the best when HF returns for both proxies 

are used. Within RCOV and MRK groups open-close returns show the second 

best performance. The performance of close-close returns is the worst one. 

RCOV as a proxy for RMSFE calculation ensures generally better fit of the 

models. The RiskMetrics performance using HF returns within RCOV group is 

surprisingly better than DCC-GARCH performance using MRK as a proxy.  

Covariance based models show better forecasting performance using RCOV. 

The best fit is presented by Cholesky-HAR followed by HAR model. The 

diagonal and full WAR show poor performance exactly as in the before crisis 

period. Order of the models is similar for RCOV and MRK: Cholesky-HAR 

followed by HAR, diagonal WAR(1) and WAR(1) at the end. 

Cholesky-HAR estimated on RCOV has the best fit among all the models 

used. HAR using RCOV estimates is on the second place. Third best fit 

achieved by DCC-GARCH using HF returns unexpectedly outperforms HAR 

models estimated on MRK covariance matrices. Even more surprising is the 

result of RiskMetrics using RCOV as proxy estimated on HF returns because it 

outperforms HAR model estimated on MRK. RiskMetrics also outperformed 

both full and diagonal WAR.    
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4.2.2. Mean-Variance optimization 

Efficient frontiers constructed within the framework of mean-variance 

optimization using during crisis period forecasts are presented in this section. 

Similar to before crisis section the results are presented by individual figures for 

each dataset. 

In the Figure 4-3 efficient frontiers of the models using daily data for 

estimation are presented. Models that use open-close returns are generally less 

risky but also less profitable. For DCC-GARCH and RiskMetrics better risk-

return tradeoff is achieved by the first one.  

Figure 4-3: during crisis efficient frontiers - daily data 

 
Source: Author's computation 

Figure 4-4 displays efficient frontiers of models that use high-frequency data 

for estimation. Similar to before crisis period, WAR(1) are models with the 

worst performance. For the rest of the models we concentrate on parts of the 

efficient frontiers where the returns are positive. Surprisingly, the best mean-

variance tradeoff is recorded for DCC-GARCH. Cholesky-HAR using MRK 

estimates is on the second place. Cholesky-HAR is almost outperformed by 

RiskMetrics at the higher risk level and that is probably the most surprising 

result. The score of RiskMetrics for positive returns is also better than HAR and 

WAR.      
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Figure 4-4: during crisis efficient frontiers - high-frequency data 

 
Source: Author's computation 

4.2.3. Global Minimum Variance Portfolio 

Mean and standard deviation of forecasted variances based on financial crisis 

data are presented in the following table. "Mean of variances" are denoted as 

"variance" in this section. 

Table 4-5: during crisis GMVP (values times 10-5) 
GMVP 
during 
crisis 

CC  OC  HF  RCOV  MRK 

mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

DCC-
GARCH 8.78 5.53  7.65 5.59  4.79 3.23       

RiskMetrics 12.9 10.8  11.6 10.1  7.02 6.37       

HAR          6.05 4.60  5.65 4.12 
Cholesky 

HAR 
         5.31 4.39  4.52 3.50 

WAR(1)          42.5 42.1  41.8 43.9 
diagonal 
WAR(1) 

         5.05 4.17  4.86 4.22 

Note:  CC denotes daily returns calculated from daily closing prices, OC denotes daily returns 
calculated from daily open-close prices and HF denotes daily returns calculated from 5-
minute closing prices. RCOV and MRK stands for Realized Covariation and 
Multivariate Realized Kernels respectively.  

Source: Author's computation 

The lowest variance is achieved by DCC-GARCH followed by RiskMetrics both 

estimated on HF returns. Moreover, if we take into account all models HF 
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returns based DCC-GARCH achieve the lowest volatility of variance. Variances 

calculated from open-close and close-close returns are substantially larger for 

both models. Higher variances are also associated with higher volatility 

(standard deviation).    

If we concentrate on covariance based models, better results are obtained 

using MRK estimates. The lowest variances are achieved by Cholesky-HAR and 

diagonal WAR(1) model. As usual, WAR(1) is the model with the worst 

performance.  

Overall, model with the lowest variance is Cholesky-HAR estimated on MRK 

covariance. Unexpectedly, DCC-GARCH estimated on HF data is the second 

best one. If the WAR(1) is excluded, covariance based models are better than 

the return based models. 

4.2.4. Value-at-Risk 

During crisis market risk evaluation by Value-at-Risk approach is presented in 

the Table 4-6. Similar to before crisis period, variances for VaR calculations 

from GMVP approach are used and results for 95% and 99% VaRs are 

presented.  

Table 4-6: during crisis Value-at-Risk 

Value-at-Risk 
during crisis  

CC  OC  HF  RM  MRK 
N p=p*  N p=p*  N p=p*  N p=p*  N p=p* 

p*=0.05 
DCC-GARCH 15 accept  18 accept  20 reject       

RiskMetrics 12 accept  15 accept  16 accept       

HAR          17 accept  16 accept 

Cholesky HAR          18 accept  21 reject 

WAR(1)          0 reject  0 reject 

diagonal WAR(1)          21 reject  23 reject 

p*=0.01 
DCC-GARCH 3 accept  6 accept  8 reject       

RiskMetrics 4 accept  3 accept  6 accept       
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HAR          4 accept  3 accept 

Cholesky HAR          5 accept  6 accept 

WAR(1)          0 accept  0 accept 

diagonal WAR(1)          2 accept  1 accept 

Note:  "N" stands for "number of exceedance", p=p* represents null hypothesis of  Proportion 
of Failures test, CC denotes daily returns calculated from daily closing prices, OC 
denotes daily returns calculated from daily open-close prices and HF denotes daily 
returns calculated from 5-minute closing prices. RCOV and MRK stands for Realized 
Covariation and Multivariate Realized Kernels respectively.   

Source: Author's computation 

On the 5% probability level the covariance forecasts correctly evaluate the risk 

in case of 8 models out of 14. There is one risk underestimation in case of return 

based model. By one VaR exceedance, the null hypothesis of correctly specified 

risk level is rejected for DCC-GARCH estimated on HF returns. Covariance 

based models underestimate risk in 3 cases. Namely, these models are diagonal 

WARs using both RCOV and MRK estimates and Cholesky HAR estimated on 

MRK covariances. The risk is overestimated in case of WAR(1).  

We accept that the risk is correctly specified for all but one model at 1% 

probability level. Similar to 95% VaR, rejection occurs due to one additional 

exceedance in case of DCC-GARCH estimated on HF returns. As in case of 

before crisis period we have to be careful about not rejecting results for WAR(1) 

specifications. Zero number of VaR exceptions might not be result of correctly 

specified risk level but possibly overestimated portfolio variance.  

Having described all the forecast evaluation methods within during crisis 

period we turn to full dataset results.  

4.3. Full sample 

Finally, we present performance of covariance forecasts for the whole dataset. 

In-sample period of the whole dataset is identical to the in-sample before crisis 

period. The out-of-sample period covers 1 217 trading days (approximately 4.5 

years) and starts on February 7, 2007  with the last observation on November 

29, 2011. Structure of the section is the same as for before and during crisis 
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periods. Firstly, we present results of Root Mean Square Forecasting Error, 

followed by Mean-Variance optimization and Global Minimum Variance 

Portfolio and we present results for Value-at-Risk approach in the end.  

4.3.1. Root Mean Square Forecasting Error 

Statistical evaluation of one-step ahead covariance forecasts represented by Root 

Mean Square Forecasting Error is shown in the Table 4-7. The structure of the 

Table is the same as in both before and during crisis sections. 

Table 4-7: full sample RMSFE (values time 10-4) 
RMSFE  

full sample 

RCOV   MRK  
RCOV 

 
MRK 

CC OC HF  CC OC HF   

DCC-GARCH 5.0974 4.1015 2.4199  5.3267 4.4451 2.8335     

RiskMetrics 6.5171 5.1420 2.9864  6.6526 5.3339 3.2490     

HAR         2.2476  2.7336 

Cholesky HAR         2.1168  2.5907 

WAR(1)         12  12 

diagonal 
WAR(1) 

   
 

   
 

4.7654 
 

5.0420 

Note:  CC denotes daily returns calculated from daily closing prices, OC denotes daily returns 
calculated from daily open-close prices and HF denotes daily returns calculated from 5-
minute closing prices. Proxy for RMSFE calculation are RCOV and MRK. RCOV and 
MRK stands for Realized Covariation and Multivariate Realized Kernels respectively.  

Source: Author's computation 

Best performance in return based model group is achieved by DCC-GARCH 

that uses high-frequency returns for estimation and RCOV as a proxy for 

RMSFE calculation. Moreover, DCC-GARCH outperforms RiskMetrics within 

each the return and the proxy group. Ranking of the forecasts according to 

return groups, starting with the best result, is following: high-frequency, open-

close and close-close returns. According to proxy selection, better results are 

obtained for RCOV.  

Turning our attention to covariance based models, RCOV estimates show 

better performance. The best results are achieved by Cholesky-HAR and HAR. 
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The HAR based models outperform WAR one for the both covariance 

specifications. WAR(1) is model with the worst fit.   

Overall, models with the best fit are Cholesky-HAR and HAR using Realized 

Covariation estimates. DCC-GARCH estimated on HF returns with Realized 

Covariation set as a proxy has the third best fit. WAR(1) models are always 

outperformed. On the other hand, diagonal WAR(1) perform better than two 

DCC-GARCH and four RiskMetrics specifications.  

4.3.2. Mean-Variance optimization 

The mean-variance tradeoff of covariance forecasts calculated at full dataset is 

presented in this section. The section is divided similarly to before and during 

crisis period into models using daily and high-frequency data.      

Efficient frontiers displayed in Figure 4-5 are constructed on the basis of daily 

data covariance forecasts. Open-close return based models are less risky but also 

less profitable. The difference in achievable returns is more than 80% comparing 

OC and CC returns. A better risk-return tradeoff is recorded in the case of 

DCC-GARCH.  

Figure 4-5: full-sample efficient frontiers - daily data 

 
Source: Author's computation 

For high-frequency data the efficient frontiers are presented in Figure 4-6. If we 

look at it we can see negative annualized returns as a consequence of huge losses 

experienced during financial crisis. WAR(1) and diagonal WAR(1) specifications 
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are substantially outperformed by all remaining models. If we do not take 

WARs into account the rank of the models is in line with what we have 

expected. The best risk-return tradeoff is achieved by Cholesky-HAR and HAR 

models. DCC-GARCH performance is almost identical to HAR model using 

RCOV and the worst mean-variance tradeoff belongs to RiskMetrics. 

Figure 4-6: full-sample efficient frontiers - high-frequency data 

 
Source: Author's computation 

4.3.3. Global Minimum Variance Portfolio 

Average values of one-step ahead global minimum variance portfolio forecasts 

with corresponding standard deviations are presented in the Table 4-8. We keep 

notation from before and during crisis period so by "variance" we denote "mean 

of variances" in the rest of the section.  

Table 4-8: full sample GMVP (values times 10-5) 
GMVP  

full 
sample 

CC  OC  HF  RCOV  MRK 

mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

 mean std. 
dev. 

DCC-
GARCH 11.1 11.0  8.68 7.91  6.85 6.66       

RiskMetrics 17.5 22.1  13.9 15.3  10.1 11.9       

HAR          6.95 7.23  6.68 6.93 
Cholesky 

HAR 
         6.25 6.57  5.54 5.87 

WAR(1)          46.9 54.2  47.7 58.0 
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diagonal 
WAR(1) 

         5.25 5.20  5.11 5.37 

Note:  CC denotes daily returns calculated from daily closing prices, OC denotes daily returns 
calculated from daily open-close prices and HF denotes daily returns calculated from 5-
minute closing prices. RCOV and MRK stands for Realized Covariation and 
Multivariate Realized Kernels respectively.  

Source: Author's computation 

It is obvious from the Table 4-8 that the full sample, including forecasts during 

financial crisis (second half of 2008 and beginning of 2009), is the most volatile 

period. For almost all the models the standard deviation reaches values higher 

than variance.       

When we compare DCC-GARCH and RiskMetrics, the lowest variance can be 

obtained estimating DCC-GARCH on HF returns. DCC-GARCH is also the 

model for which standard deviation does not exceed the value of variance. The 

best performance of models is reached by HF based returns followed by OC one. 

From the GMVP optimization point of view, the CC alternative is the worst 

one.  

Looking at the results of covariance based models, overall better performance 

is achieved by MRK estimates. Diagonal WAR(1) estimated on the MRK 

covariance has the lowest variance followed by diagonal WAR(1) using RCOV 

estimates. The third and the fourth places are taken by Cholesky-HAR models 

using MRK and RCOV estimates respectively. Variances of the full WARs are 

the highest for all estimated models in the thesis. 

The overall performance is better for the covariance based models. From the 

return based group the only DCC-GARCH specification using high-frequency 

returns is able to compete.     

4.3.4. Value-at-Risk  

Finally, Value-at-Risk results are presented in the Table 4-9. Again, variances 

from GMVP are used for VaR calculations and we present results for both 95% 

and 99% VaR.  
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Table 4-9: full sample Value-at-Risk 

Value-at-Risk  
full sample 

CC  OC  HF  RM  MRK 
N p=p*  N p=p*  N p=p*  N p=p*  N p=p* 

p*=0.05 
DCC-GARCH 75 accept  90 reject  89 reject       

RiskMetrics 56 accept  64 accept  62 accept       

HAR          87 reject  86 reject 

Cholesky HAR          93 reject  107 reject 

WAR(1)          0 reject  0 reject 

diagonal WAR(1)          124 reject  127 reject 

p*=0.01 
DCC-GARCH 23 reject  30 reject  29 reject       

RiskMetrics 17 accept  15 accept  22 accept       

HAR          26 reject  27 reject 

Cholesky HAR          33 reject  41 reject 

WAR(1)          0 reject  0 reject 

diagonal WAR(1)          48 reject  36 reject 

Note:  "N" stands for "number of exceedance", p=p* represents null hypothesis of  Proportion 
of Failures test, CC denotes daily returns calculated from daily closing prices, OC 
denotes daily returns calculated from daily open-close prices and HF denotes daily 
returns calculated from 5-minute closing prices. RCOV and MRK stands for Realized 
Covariation and Multivariate Realized Kernels respectively.   

Source: Author's computation 

We reject the null hypothesis of properly evaluated risk for all covariance based 

models at 5% probability level. In case of HAR, Cholesky-HAR and diagonal 

WAR(1) the risk is underestimated. On the other hand, WAR(1) overestimates 

market risk. For the return based DCC-GARCH model we reject that the risk is 

set properly for all but one specification. Both rejected specifications, HF returns 

and OC returns, ends up with underestimated risk. RiskMetrics is the only 

model for which the risk level was set correctly.  

On 1% probability level, the risk is correctly specified only for RiskMetrics. 

For all but one remaining model, WAR(1), the market risk is underestimated. 
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Due to the length of the forecasting period the zero number of exceedance for 

WAR(1) does not end up in acceptance of properly specified risk. 

  



 

Chapter 5  

Discussion of results 

In this chapter we summarize and discuss our empirical findings. We start with 

combining results for  individual models from different time periods and we try 

to asses general performance of the models. To be more specific we try to answer 

the following questions. Which model provide us with appropriate forecasts? Do 

we gain some advantages using more sophisticated models compared to simple 

ones? What kind of data are to be used in order to minimize the risk of the 

portfolio? At the end of the chapter we add some comments and remarks on the 

data and portfolio selections. 

5.1. Overall performance 

In this section we summarize the performance of  estimated models. At the 

beginning  we focus on return based, next on evaluation of covariance based and 

at the end we comment on performance of models used to obtain covariance 

estimates from high-frequency data. 

Description of return based models starts with RiskMetrics. Forecasting 

performance of the RiskMetrics is the most stable one. From the Value-at-Risk 

perspective it is the only model with correctly specified risk level within all 

examined periods. Results of remaining evaluation methods show similar 

patterns for all periods, although they are not the best ones. The division into 
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sub samples does not affect performance of RiskMetrics much, making it 

applicable not only during the stable but also the volatile times.  

Second representative of the return based models, Dynamic Conditional 

Correlation GARCH, shows similar patterns for all evaluating methods except 

Value-at-Risk. From the RMSFE, GMVP  and Mean-variance optimization 

point of view, DCC-GARCH substantially outperforms RiskMetrics and both 

WAR models during all the periods. Value-at-Risk performance of DCC-

GARCH can be characterized as time dependant. Use of shorter time horizons 

leads to better performance. In the short sample, financial crisis does not affect 

results much, while in the long one, crisis might be the reason of worse 

performance.  

Now we turn to covariance based models. The first one is Heterogeneous 

Autoregression. Performance of HAR is very similar for the during crisis and the 

full sample period. According to Value-at-Risk, model shows best performance in 

during crisis period. The risk is specified correctly for both 95% and 99% VaRs. 

In case of before crisis and full sample period risk is underestimated. According 

to remaining forecasts evaluation methods, HAR is the model that outperformed 

almost all the other  models.    

Cholesky-HAR is the absolute winner if we take into account RMSFE, 

GMVP and Mean-variance optimization criteria and shows the best performance 

in all the time periods. From the Value-at-Risk point of view, similar to HAR, 

the risk is correctly specified for during crisis period and underestimated in case 

of before crisis and full sample period.    

Wishart Autoregressive model and diagonal Wishart Autoregressive model are 

the models with the worst forecasting performance. Although for diagonal WAR 

the lowest variance among all the models is achieved, the results are not 

conclusive. Estimated degrees of freedom fall below minimum level where no 

density function is specified for the covariance distribution.  
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Figure 5-1: degrees of freedom for Wishart Autoregression  

 
Source: Author's computation 

Degrees of freedom for WAR and diagonal WAR are the same across different 

periods thus results of the longest period are presented. Before crisis period is 

the only one with sufficient degrees of freedom. Generally, WAR models show a 

bad performance independent on the time-period.    

The last part of the section is dedicated to Realized Covariation and 

Multivariate Realized Kernels comparison. Differences in the performance of 

both methods are minor. According to results of the RMSFE, GMVP and Value-

at-Risk comparisons both methods show similar performance. From the Mean-

variance optimization point of view slightly better performance is achieved by 

Multivariate Realized Kernels. If both methods are compared across different 

time periods, results indicates that the performance of covariance estimates is 

not affected by financial crisis. 

Results of our analysis partially correspond to results of Voev (2009) and 

Chiriac & Voev (2011) where the Cholesky-HAR shows good forecasting 

performance. On the other hand, DCC-GARCH was outperformed by diagonal 

and full WAR which is not in line with our results. In the work of Bonato et al. 
(2009) where a set of different WAR specifications and the DCC-GARCH are 

estimated, diagonal WAR outperforms the DCC-GARCH while score of full 

WAR is the worse. Possible sources of differences in the results are the 

estimation time periods and the assets chosen for the purpose of analysis. In the 

above mentioned works, the period up to 2008 is considered for analysis while in 

our work financial crisis 2008/2009 is analyzed. Assets used in Voev (2009) and 

Chiriac & Voev (2011) include six S&P 500 constituents. Two currencies and 
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two bonds are used in Bonato et al. (2009). Within both asset groups similar 

characteristics (mean, standard deviation ...) are observed for all assets while in 

our work data are more volatile.           

5.2. Simple or sophisticated model? 

In an ideal world, the more sophisticated model we use, the better performance 

of the forecasts we get. However, situation in real world is  more complicated 

and the previous statement might not be necessarily true. Easy interpretation 

and implementation with low time and computing demands speak in favour of 

simple models. On the other hand, more sophisticated models based on advanced 

economic and mathematical theory perform well during simulation studies. 

However, software implementation, difficult economic interpretation of the 

estimated parameters, high time and technology requirements are their major 

disadvantages.  

Simple models presented in our work are RiskMetrics, HAR and Cholesky-

HAR. Except Cholesky-HAR, where the economic interpretation of the 

coefficient is ruled out by Cholesky decomposition, all above mentioned 

advantages can be found in the group. The major advantage is duration of the 

estimation and forecasting procedure. All results are obtained within a minute.   

DCC-GARCH and both WAR specifications belong to sophisticated models 

group.  The main disadvantage in case of DCC-GARCH and full WAR is their 

time-consumption. The rolling window estimation for period of 713 days 

estimated for 252 consecutive days can take more than half an hour. Diagonal 

WAR, restricted and  simplified version of full WAR, reduce time necessary for 

estimation to the level of simple models. Another disadvantage of these models 

is their software implementation. To our best knowledge there is no software 

with directly implemented WAR models.      

Besides covariance forecasting models, Realized Covariation and Multivariate 

Realized Kernels were used in the thesis. Realized Covariation can be 

characterized as easy to implement technique with straightforward 
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interpretation of the estimation procedure, although theory behind it requires 

deep mathematic knowledge. In contrast, implementation, interpretation of 

estimation procedure as well as theory of Multivariate Realized Kernels is rather 

complicated.  

Final choice of preferred methods for obtaining covariance forecasts is 

complicated. It always depends on needs, requirements and limitations of 

individual investors. 

5.3. Daily or High-frequency data? 

The choice between daily and high-frequency data might be extremely difficult. 

The main advantage of daily data is that they are freely available and the major 

drawback is that the information about prices is limited and not suitable for 

intraday trading. On the other hand, high-frequency data provide us with more 

information and also the intraday trading is not a problem. Using HF data for 

covariance forecasting is problematic when individual portfolio assets are traded 

during not fully overlapping hours. By synchronization of the dataset 

considerable amount of information might be lost resulting in poor performance 

of forecasts compared to daily data.  

In our work 56.2% of the 5-minute closing prices were thrown away during 

the process of synchronization. For individual assets the level of preserved 

observations is 34.1% in case of crude oil, 36.8% in case of gold and 83.5% in 

case of DAX index. The impact of such a huge reduction of the dataset is mostly 

visible in the return level. Cumulative daily returns for individual assets for the 

out-of sample period of full sample dataset are presented in the Table 5-1 
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Table 5-1: cumulative daily returns 
 close-close open-close 5-minute 

crude oil 5.92 % 5.39 % -84.39 % 
DAX index -19.75 % -15.82 % -46.95 % 

gold 18.36 % 10.95 % -37.79 % 
Source: Author's computation 

We can observe huge difference in return level between daily and high-frequency 

data. There is also a difference between close-close and open-close returns but it 

is a minor one. Comparing close-close and 5-minute returns decline is more than 

90, 25 and 50 percent for crude oil, DAX and gold respectively.  From our point 

of view, possible source of a huge drop are the trading hours for particular 

commodities. Although crude oil and gold are traded during DAX (European) 

trading hours, the primary market for these assets is US market thus the most 

of the trades are executed within US trading sessions. Once we do not include 

information from the prime trading hours higher volatility and miscalculation of 

returns occur.    

5.4. Concluding remarks  

Our analysis shows that the performance of models highly depends on datasets 

and also on chosen assets. Here we present comments on the portfolio selection. 

Assets included in the portfolio have to be chosen according to certain criteria. If 

the daily data are used for optimization, the most important thing we have to 

care for is similarity of the assets. The more similar assets are used, chance to 

obtain better results increases. By similarity of assets, the statistical properties 

like mean and standard deviation are meant. On the other hand, if  assets from 

different risk levels are used (variances of the assets are significantly different), 

asset weights of global minimum variance portfolio are highest (more than 50 %) 

for the least risky one. It might happen that the entire portfolio consists of only 

one asset in an extreme case. 

By using high-frequency data, besides similarity of assets, we have to add one 

more constraint. In order not to throw away significant amount of data by 
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synchronization procedure, trading hours of all assets have to be (almost) the 

same. 

  



 

Chapter 6  

Conclusion 

In this thesis we examine dynamic relationships between crude oil, DAX index 

and gold futures by covariance modeling during the period 2003 - 2011. Our 

main contribution comes from the use of European asset, represented by DAX 

index, together  with the worldwide heavily traded  assets (crude oil and gold) 

during times of financial crisis for estimation and direct comparison of 

performance of daily and high-frequency data.  

In the first part of the thesis theoretical background of the models used for 

the analysis is presented. We start with RiskMetrics and DCC-GARCH 

description, the models that require returns for calculation. After that, Realized 

Covariation and Multivariate Realized Kernels methods of obtaining covariance 

estimates from the high-frequency data are described. Then we follow with the 

description of HAR,  Cholesky-HAR, WAR(1) and the diagonal WAR(1), the 

models that use covariance matrices for estimation. We end the theoretical part 

with the definition of variance-covariance matrices forecasts evaluation methods. 

The next part of the thesis starts with description of the data. Firstly, data 

synchronization procedure is described in detail. Secondly, the main 

characteristics of daily and high-frequency datasets follows. Thirdly, we conclude 

with our empirical findings which is the most import part of the thesis.  

The empirical part of the thesis is divided into the before crisis, during crisis 

and  full sample periods where performance of the models is summarized. From 

the perspective of risk-minimizing investor who seeks for  least volatile portfolio 
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it is optimal to use Cholesky-HAR model with MRK covariance estimates. 

Moreover, stable performance of the model across all examined periods is an 

advantage in volatile times similar to financial crisis. On the other hand, both 

the WAR specifications are not able to deal with periods of particularly high 

volatility and are outperformed by models that use daily data. According to 

Value-at-Risk perspective which is used in banking regulation the most 

appropriate models are RiskMetrics and DCC-GARCH.    

Finally, the most interesting findings arise from risk-return tradeoff results. In 

that particular case, daily data based models substantially outperform high-

frequency covariance based models for all the time periods. This fact is clearly 

visible in full sample case when risk level is similar for both model groups, 

however returns are positive for daily data while in case of high-frequency data 

returns become negative. In our opinion it is a consequence of data 

synchronization procedure thanks to which more than a half of original data do 

not appear in final dataset. 
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Appendix A  

Table A-1: Non-rejection region for Proportion of Failures Value-at-Risk test 

 Non rejection region for x, 
n=252 days 

Non rejection region for x, 
n=1 217 days 

p*=0.05 6<x<20 46<x<77 
p*=0.01 x<8 4<x<23 

Source: Author's computation 



 

Appendix B 
Table B-1: Root Mean Square Forecasting Error results (values time 10-4) 

RMSFE 
RCOV   MRK  

RCOV 
 

MRK 
CC OC HF  CC OC HF   

before crisis 
DCC-GARCH 2.5474 2.4711 1.1905  2.7628 2.6953 1.4066     

RiskMetrics 3.3411 2.9181 1.5386  3.4441 3.0336 1.6219     

HAR         1.1747  1.3632 
Cholesky HAR         1.0634  1.2936 

WAR(1)         6.1726  6.4110 
diagonal WAR(1)         3.5965  3.7032 

during crisis 

DCC-GARCH 3.8706 3.6231 2.1759  4.0782 3.8609 2.3849     

RiskMetrics 4.4926 4.0484 2.3057  4.6523 4.2534 2.5020     

HAR         2.0548  2.3343 
Cholesky HAR         1.9758  2.2609 

WAR(1)         11  11 
diagonal WAR(1)         4.7459  4.8682 

full sample 

DCC-GARCH 5.0974 4.1015 2.4199  5.3267 4.4451 2.8335     

RiskMetrics 6.5171 5.1420 2.9864  6.6526 5.3339 3.2490     

HAR         2.2476  2.7336 
Cholesky HAR         2.1168  2.5907 

WAR(1)         12  12 
diagonal WAR(1)         4.7654  5.0420 

Note:  CC denotes daily returns calculated from daily closing prices, OC denotes daily returns 
calculated from daily open-close prices and HF denotes daily returns calculated from 5-
minute closing prices. Proxy for RMSFE calculation are RCOV and MRK. RCOV and 
MRK stands for Realized Covariation and Multivariate Realized Kernels respectively.  

Source: Author's computation 
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Table B-2: Global Minimum Variance Portfolio results (values time 10-5) 

GMVP 
CC  OC  HF  RCOV  MRK 

mean 
std. 
dev. 

 mean 
std. 
dev. 

 mean 
std. 
dev. 

 mean 
std. 
dev. 

 mean 
std. 
dev. 

before crisis 
DCC-

GARCH 
6.41 3.03  4.71 2.95  3.44 1.86       

RiskMetrics 10.0 6.09  8.02 5.88  5.43 4.47       

HAR          3.18 1.70  3.19 1.83 

Cholesky 
HAR 

         2.86 1.57  2.58 1.50 

WAR(1)          20.5 23.6  21.1 28.2 

diagonal 
WAR(1) 

         2.27 1.97  2.17 2.22 

crisis 
DCC-

GARCH 
8.78 5.53 

 
7.65 5.59 

 
4.79 3.23 

 
  

 
  

RiskMetrics 12.9 10.8  11.6 10.1  7.02 6.37       
HAR          6.05 4.60  5.65 4.12 

Cholesky 
HAR 

         
5.31 4.39 

 
4.52 3.50 

WAR(1)          42.5 42.1  41.8 43.9 
diagonal 
WAR(1) 

         
5.05 4.17 

 
4.86 4.22 

full sample 
DCC-

GARCH 11.1 11.0 
 

8.68 7.91 
 

6.85 6.66 
 

  
 

  

RiskMetrics 17.5 22.1  13.9 15.3  10.1 11.9       
HAR          6.95 7.23  6.68 6.93 

Cholesky 
HAR 

         
6.25 6.57 

 
5.54 5.87 

WAR(1)          46.9 54.2  47.7 58.0 
diagonal 
WAR(1) 

         
5.25 5.20 

 
5.11 5.37 

Note:  CC denotes daily returns calculated from daily closing prices, OC denotes daily returns 
calculated from daily open-close prices and HF denotes daily returns calculated from 5-
minute closing prices. RCOV and MRK stands for Realized Covariation and 
Multivariate Realized Kernels respectively.  

Source: Author's computation 
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Table B-3: Value-at-Risk - 95% 

VaR95%  
CC  OC  HF  RCOV  MRK 

N p=p*  N p=p*  N p=p*  N p=p*  N p=p* 

before crisis 
DCC-GARCH 19 accept  19 accept  18 accept       

RiskMetrics 12 accept  13 accept  14 accept       

HAR          23 reject  24 reject 

Cholesky HAR          25 reject  28 reject 

WAR(1)          0 reject  0 reject 

diagonal WAR(1)          24 reject  25 reject 

crisis 

DCC-GARCH 15 accept  18 accept  20 reject       

RiskMetrics 12 accept  15 accept  16 accept       

HAR          17 accept  16 accept 

Cholesky HAR          18 accept  21 reject 

WAR(1)          0 reject  0 reject 

diagonal WAR(1)          21 reject  23 reject 

full sample 

DCC-GARCH 75 accept  90 reject  89 reject       

RiskMetrics 56 accept  64 accept  62 accept       

HAR          87 reject  86 reject 

Cholesky HAR          93 reject  107 reject 

WAR(1)          0 reject  0 reject 

diagonal WAR(1)          124 reject  127 reject 

Note:  "N" stands for "number of exceedance", p=p* represents null hypothesis of  Proportion 
of Failures test, CC denotes daily returns calculated from daily closing prices, OC 
denotes daily returns calculated from daily open-close prices and HF denotes daily 
returns calculated from 5-minute closing prices. RCOV and MRK stands for Realized 
Covariation and Multivariate Realized Kernels respectively. 

Source: Author's computation 
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Table B-4: Value-at-Risk - 99% 

VaR99%  
CC  OC  HF  RCOV  MRK 

N p=p*  N p=p*  N p=p*  N p=p*  N p=p* 
before crisis 

DCC-GARCH 8 reject  11 reject  7 accept       

RiskMetrics 4 accept  5 accept  5 accept       

HAR          8 reject  9 reject 

Cholesky HAR          13 reject  15 reject 

WAR(1)          0 accept  0 accept 

diagonal WAR(1)          14 reject  10 reject 

crisis 

DCC-GARCH 3 accept  6 accept  8 reject       

RiskMetrics 4 accept  3 accept  6 accept       

HAR          4 accept  3 accept 

Cholesky HAR          5 accept  6 accept 

WAR(1)          0 accept  0 accept 

diagonal WAR(1)          2 accept  1 accept 

full sample 

DCC-GARCH 23 reject  30 reject  29 reject       

RiskMetrics 17 accept  15 accept  22 accept       

HAR          26 reject  27 reject 

Cholesky HAR          33 reject  41 reject 

WAR(1)          0 reject  0 reject 

diagonal WAR(1)          48 reject  36 reject 

Note:  "N" stands for "number of exceedance", p=p* represents null hypothesis of  Proportion 
of Failures test, CC denotes daily returns calculated from daily closing prices, OC 
denotes daily returns calculated from daily open-close prices and HF denotes daily 
returns calculated from 5-minute closing prices. RCOV and MRK stands for Realized 
Covariation and Multivariate Realized Kernels respectively. 

Source: Author's computation 
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Table C-1: Heterogeneous Autoregression -parameter estimates 

 RCOV   MRK 
 𝑐 𝛽(𝑑) 𝛽(𝑤) 𝛽(𝑚) R2  𝑐 𝛽(𝑑) 𝛽(𝑤) 𝛽(𝑚) R2 

before crisis 
crude 4.47e-05 0.021 0.432 0.319 0.176  5.35e-05 -0.038 0.425 0.294 0.104 

 ***  *** ***   ***  *** ***  
crude-DAX -9.04e-08 0.176 0.250 0.351 0.163  1.63e-07 0.129 0.227 0.405 0.131 

  *** *** ***    *** *** ***  
crude-gold 1.93e-06 0.024 0.249 0.599 0.254  4.66e-06 0.054 0.218 0.522 0.162 

 **  *** ***   ***  *** ***  
DAX 1.19e-05 0.683 -0.096 0.238 0.462  1.29e-05 0.641 -0.107 0.257 0.407 

 ** *** * ***   *** *** ** ***  
DAX-gold 8.52e-07 0.284 0.100 0.254 0.138  1.52e-06 0.312 0.092 0.257 0.159 

  ***  **    ***  **  
gold 7.99e-06 0.103 0.429 0.368 0.401  1.04e-05 0.082 0.348 0.435 0.282 

 ** *** *** ***   ** ** *** ***  
crisis 

crude 1.54e-05 0.132 0.386 0.445 0.661  1.71e-05 0.151 0.330 0.475 0.616 
  *** *** ***    *** *** ***  

crude-DAX 1.08e-05 0.337 0.281 0.275 0.479  1.42e-05 0.156 0.321 0.400 0.361 
 ** *** *** ***   ** *** *** ***  

crude-gold 6.67e-06 0.213 0.450 0.232 0.472  1.01e-05 0.190 0.294 0.375 0.318 
 ** *** *** ***   ** *** *** ***  

DAX 2.69e-05 0.459 0.167 0.257 0.501  2.70e-05 0.419 0.126 0.335 0.452 
 ** *** *** ***   ** *** ** ***  

DAX-gold 2.86e-06 0.206 0.512 0.091 0.366  4.22e-06 0.153 0.489 0.116 0.268 
  *** ***     *** ***   

gold 7.73e-06 0.250 0.260 0.427 0.543  8.14e-06 0.173 0.096 0.661 0.459 
  *** *** ***    ***  ***  
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full sample 
crude 1.18e-05 0.113 0.397 0.451 0.654  1.26e-05 0.113 0.355 0.487 0.601 

 * *** *** ***   * *** *** ***  
crude-DAX 3.78e-06 0.329 0.286 0.309 0.556  5.16e-06 0.156 0.321 0.434 0.433 

 * *** *** ***   * *** *** ***  
crude-gold 3.27e-06 0.192 0.450 0.278 0.530  5.81e-06 0.171 0.294 0.416 0.355 

 ** *** *** ***   *** *** *** ***  
DAX 1.54e-05 0.486 0.140 0.270 0.532  1.50e-05 0.443 0.104 0.348 0.489 

 *** *** *** ***   *** *** ** ***  
DAX-gold 1.66e-06 0.222 0.454 0.128 0.341  2.62e-06 0.187 0.415 0.149 0.249 

 * *** *** ***   * *** *** ***  
gold 6.59e-06 0.224 0.291 0.421 0.538  7.40e-06 0.153 0.163 0.608 0.439 

 ** *** *** ***   ** *** *** ***  

Note: ***, ** and * denote significance at the 1%, 5% and 10% level respectively     
Source: Author's computation 
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Table C-2: Cholesky Heterogeneous Autoregression -parameter estimates 

 RCOV   MRK 
 𝑐 𝛽(𝑑) 𝛽(𝑤) 𝛽(𝑚) R2  𝑐 𝛽(𝑑) 𝛽(𝑤) 𝛽(𝑚) R2 

before crisis 
crude 0.0024 0.065 0.472 0.285 0.259  0.0033 0.064 0.450 0.280 0.150 

 *** * *** ***   ***  *** ***  
crude-DAX -8.50e-07 0.247 0.325 0.239 0.266  2.34e-05 0.150 0.320 0.328 0.194 

  *** *** **    *** *** ***  
crude-gold 1.17e-04 -0.003 0.200 0.695 0.286  2.77e-04 -0.032 0.324 0.547 0.206 

 *  ** ***   **  *** ***  
DAX 9.32e-04 0.501 0.180 0.191 0.477  0.0011 0.350 0.252 0.229 0.346 

 *** *** *** ***   *** *** *** ***  
DAX-gold 3.61e-05 0.032 0.108 0.531 0.074  8.15e-05 0.051 0.080 0.495 0.059 

    ***      ***  
gold 6.02e-04 0.153 0.410 0.363 0.483  6.75e-04 0.110 0.343 0.452 0.378 

 ** *** *** ***   ** *** *** ***  

crisis 
crude 6.41e-04 0.229 0.408 0.328 0.717  7.24e-04 0.150 0.415 0.393 0.653 

  *** *** ***    *** *** ***  
crude-DAX 3.04e-04 0.353 0.354 0.234 0.656  4.41e-04 0.181 0.378 0.369 0.515 

 ** *** *** ***   ** *** *** ***  
crude-gold 3.49e-04 0.228 0.527 0.142 0.525  5.54e-04 0.182 0.350 0.322 0.330 

 *** *** *** **   *** *** *** ***  
DAX 6.32e-04 0.522 0.260 0.164 0.737  6.35e-04 0.443 0.252 0.246 0.672 

 ** *** *** ***   ** *** *** ***  
DAX-gold 4.80e-05 0.205 0.401 0.234 0.350  5.51e-05 0.082 0.301 0.339 0.141 

  *** *** ***    ** *** ***  
gold 4.07e-04 0.284 0.339 0.330 0.659  4.37e-04 0.182 0.328 0.433 0.568 

 * *** *** ***   * *** *** ***  
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full sample 
crude 6.41e-04 0.175 0.438 0.347 0.679  7.06e-04 0.099 0.437 0.416 0.608 

 ** *** *** ***   ** *** *** ***  
crude-DAX 1.01e-04 0.335 0.361 0.268 0.722  1.55e-04 0.177 0.377 0.398 0.582 

 * *** *** ***   * *** *** ***  
crude-gold 1.64e-04 0.154 0.515 0.260 0.569  3.30e-04 0.102 0.365 0.416 0.354 

 *** *** *** ***   *** *** *** ***  
DAX 4.88e-04 0.516 0.243 0.190 0.733  4.83e-04 0.414 0.258 0.272 0.668 

 *** *** *** ***   *** *** *** ***  
DAX-gold 4.18e-05 0.117 0.325 0.355 0.223  6.48e-05 0.064 0.207 0.412 0.098 

  *** *** ***    ** *** ***  
gold 4.50e-04 0.237 0.366 0.344 0.614  4.84e-04 0.156 0.332 0.447 0.518 

 *** *** *** ***   ***  *** *** ***  

Note: ***, ** and * denote significance at the 1%, 5% and 10% level respectively     
Source: Author's computation 
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Table C-3: DCC-GARCH parameter estimates 
 GARCH parameters  DCC parameters  

Loglikelihood 
 𝜔  𝛼  𝛽  Α  Β  

 CC OC HF  CC OC HF  CC OC HF  CC OC HF  CC OC HF  CC OC HF 

before crisis 
crude 

3.97e-
06 

1.59e-
05 

4.60e-
06 

 0.030 0.043 0.036  0.960 0.916 0.937             

 
(1.41e-

11) 
(1.01e-

10) 
(1.38e-

11) 
 

(2.54e-
04) 

(2.34e-
05) 

(3.83e-
04) 

 
(5.05e-

04) 
(1.27e-

02) 
(1.36e-

02) 
            

DAX 
4.65e-

06 
2.81e-

06 
2.80e-

06 
 0.106 0.094 0.093  0.859 0.867 0.868  0.008 0.011 0.014  0.986 0.985 0.976  

8.41 
e+03 

8.83 
e+03 

9.46 
e+03 

 
(3.66e-

12) 
(5.64e-

12) 
(5.67e-

12) 
 

(9.74e-
04) 

(2.42e-
02) 

(2.40e-
02) 

 
(1.12e-

02) 
(5.47e-

02) 
(5.62e-

02) 
 

(7.94e-
06) 

(1.33e-
05) 

(3.28e-
05   ) 

 
(2.45e-

05) 
(4.77e-

05) 
(2.00e-

04) 
 

gold 
1.18e-

06 
9.34e-

07 
6.90e-

07 
 0.035 0.047 0.032  0.958 0.947 0.960             

 
(4.92e-

13) 
(4.20e-

13) 
(1.84e-

13) 
 

(6.90e-
05) 

(1.14e-
04) 

(7.60e-
05) 

 
(6.26e-

05) 
(1.30e-

04) 
(1.11e-

04) 
            

crisis 

crude 
8.73e-

06 
8.44e-

06 
2.29e-

06 
 0.059 0.057 0.043  0.928 0.930 0.950             

 
(2.43e-

11) 
(1.87e-

11) 
(2.18e-

12) 
 

(2.83e-
04) 

(2.31e-
04) 

(8.88e-
05) 

 
(4.03e-

04) 
(3.36e-

04) 
(1.17e-

04) 
            

DAX 
2.74e-

06 
2.66e-

06 
2.47e-

06 
 0.094 0.084 0.094  0.900 0.905 0.897  0.043 0.051 0.046  0.930 0.913 0.921  

7.88 
e+03 

8.09 
e+03 

8.72 
e+03 

 
(1.80e-

12) 
(2.15e-

12) 
(1.70e-

12) 
 

(3.36e-
04) 

(5.01e-
04) 

(5.96e-
04) 

 
(2.97e-

04) 
(5.82e-

04) 
(6.28e-

04) 
 

(5.02e-
05) 

(9.18e-
05) 

(7.62e-
05) 

 
(1.22e-

04) 
(2.59e-

04) 
(3.04e-

04) 
 

gold 
1.82e-

06 
1.71e-

06 
9.42e-

07 
 0.063 0.067 0.048  0.929 0.926 0.944             

 
(8.66e-

13) 
(8.40e-

13) 
(2.24e-

13) 
 

(2.74e-
04) 

(2.65e-
04) 

(1.08e-
04) 

 
(1.79e-

04) 
(1.81e-

04) 
(1.06e-

04) 
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full sample 

crude 
5.86e-

06 
7.80e-

05 
1.99e-

06 
 0.045 0.050 0.040  0.944 0.934 0.952             

 
(6.68e-

12) 
(9.73e-

12) 
(7.87e-

13) 
 

(9.59e-
05) 

(1.13e-
04) 

(6.51e-
05) 

 
(1.50e-

04) 
(2.17e-

04) 
(9.87e-

05) 
            

DAX 
2.63e-

06 
1.44e-

06 
1.53e-

06 
 0.093 0.085 0.090  0.895 0.906 0.901  0.030 0.035 0.034  0.953 0.940 0.950  

6.19 
e+03 

6.53 
e+03 

6.33 
e+03 

 
(8.17e-

13) 
(3.97e-

13) 
(4.12e-

13) 
 

(2.56e-
04) 

(4.15e-
04) 

(4.50e-
04) 

 
(2.48e-

04) 
(4.51e-

04) 
(4.88e-

04) 
 

(2.14e-
05) 

(3.53e-
05) 

(4.45e-
05) 

 
(6.96e-

05) 
(1.70e-

04) 
(1.46e-

04) 
 

gold 
1.55e-

06 
1.37e-

06 
8.15e-

07 
 0.048 0.059 0.041  0.944 0.934 0.951             

 
(3.57e-

13) 
(3.40e-

13) 
(9.95e-

14) 
 

(7.53e-
05) 

(9.98e-
05) 

(4.53e-
05) 

 
(6.02e-

05) 
(8.97e-

05) 
(5.71e-

05) 
            

Note: Standard errors of parameter estimates are presented in parentheses, CC denotes daily returns calculated from daily closing prices, OC 
denotes daily returns calculated from daily open-close prices and HF denotes daily returns calculated from 5-minute closing prices    

Source: Author's computation 
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