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Abstrakt: Tato práce poskytuje stručný úvod do problematiky turbulence plazma-
tu v okrajové vrstvě tokamaku a diskutuje některé aspekty anomální difuze plazma-
tu v této oblasti. V rámci modelování turbulence generované výměnnou nestabili-
tou je s užitím kódu ESEL zkoumán vliv paralelního transportu, a to především
charakteru paralelních proudů, na vlastnosti turbulentních struktur s přihlédnutím
k možnostem experimentálního ověření. Na základě modelovaných charakteristik
turbulence je pak diskutován vliv fluktuací na měření elektrostatických sond v
okrajové vrstvě tokamaku v režimu vysoké srážkovosti. Srovnání modelu s měře-
ním provedeným na tokamaku ASDEX Upgrade vysvětluje některé neočekávané
výsledky experimentu, jako například přítomnost ’hrbu’ ve frekvenčních spektrech
potenciálu plazmatu. Dále je vysvětleno chování korelační funkce hustoty měřené
na dvou prostorově separovaných Langmuirových sondách v oblasti magnetické
separatrix a je poukázáno na nejednoznačnost metody měření vorticity plazmatu
pomocí sady plovoucích Langmuirových sond. V závěrečné části je pak modelován
transport těžších příměsí plazmatu v prostředí turbulentního elektrostatického po-
tenciálu. V prostředí driftové turbulence je identifikována změna směru radiálního
pohybu částic v závislosti na typu částice jako důsledek nestabilního pohybu těž-
ších slabě ionizovaných částic v kladných potenciálových strukturách. Výsledky
jsou srovnány s driftovým přiblížením zanedbávajícím Larmorův poloměr částic.

Klíčová slova: Tokamak, turbulence plazmatu, anomální difuze, elektrostatické
sondy, výměnná nestabilita
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1. Introduction
Nowadays, there is a high demand for development of new types of energy sources.
This comes as a reaction on two fundamental limitations of conventional sources
based on burning of fossil fuels, i.e. limited amount of fossil fuels accessible at
reasonable cost and large amounts of carbon dioxide released by the process of
burning into the atmosphere. Recently, especially the issue of carbon dioxide emis-
sions and their impact on global climatic and biospherical changes were largely
discussed. Even though this discussion is still far from being resolved, it is evident
that energy production based on principles with reduced carbon cycle and not
limited by availability of some ’rare’ commodity are essential for a future energy
production.

Currently exploited non-fossil sources of energy have issues of their own which
limit their usability as a global substitute of fossil burning. As a result of crisis
in Japan nuclear power plant Fukushima in 2011, discussion about future use of
nuclear power plants has been raised again and they have been recently banned
in several countries due to strong concerns about risks connected with leaks of
radioactive or toxic material in case of any accident. On the other hand, renewable
energy sources based on exploitation of energy of natural processes like wind, hyd-
ropower, sunlight, tides or geothermal heat, are often bound only to the (limited
number of) places with favourable environment. Moreover, they may strongly in-
terfere with the environment, alter (not only) surrounding landscape and biosphere
and their power output is dependent on strength of the natural source, which may
be fluctuating very strongly.

Nuclear fusion is an alternative concept of energy production which utilizes
the fact that the nuclear binding energy of light atoms mostly strongly increases
with their atomic number (see Fig. 2.1) and thus combining two lighter atoms into
heavier one will release the spare energy. This is just opposite of nuclear fission,
where the energy is released by splitting of heavy atoms. The main advantages of
fusion process would be the large power-gain per mass of the fuel and abundance
of the fuel (mainly deuterium, which forms cca. 0, 015% of hydrogen atoms in
the see water). Compared to renewable sources, the power source would not be
subject to any fluctuations and its safety compared to nuclear power plants would
be significantly higher.

The idea of production of energy due to fusion reactions was first raised by At-
kinson and Houtermans [7] in the twenties of the 20th century as an explanation
of power production by the sun and at the beginning of 1930s first experimental
fusion of two deuterium atoms with simultaneous release of energy was successfully
accomplished. The interest in nuclear fusion strongly rose after the second world
war when a military research focused on development of a hydrogen bomb. After
its successful construction there was a strong optimism that the route to a civil
utilisation of the fusion power will be of similar difficulty as in the case of ato-
mic bombs and nuclear power plants (first controlled reaction made in 1942; first
atomic bomb constructed in 1945; first civil nuclear power plant built in 1954).
This optimism, however, was strongly exaggerated and even though the military
research on this topic was declassified in 1958 and strong international cooperation
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started, controlled nuclear fusion remains one of the biggest scientific and techno-
logical challenges today. After 50 years of research, construction of tokamak ITER,
the first reactor that is expected to demonstrate energy production larger then its
input power, started just recently in 2007.

In order to reach nuclear fusion, it is necessary to heat fuel to the tempera-
tures of the order of 108K (104 eV). At this temperature, the matter exists in an
ionized state called plasma, consisting of separate ions and electrons. Since the
individual plasma particles are charged, they are subjected to electromagnetic for-
ces and it is possible to utilize electromagnetic field in order to influence plasma
behaviour. This allowed A. Sacharovov and I. Tamm to design device (later called
tokamak) capable of confining hot plasma in a toroidally shaped magnetic field.
Tokamak concept became famous in 1968 when Russian tokamak T-3 reached re-
cord electron temperature of 1 keV. This record, even though disbelieved at first,
triggered high interest of scientific community in the tokamak concept and for
a long time suppressed development of other concepts. For more details of early
history of tokamaks, see e.g. [136].

This work focuses on study of plasma behaviour in the edge region of tokamak
device. Even though this region, with its relatively low plasma density and tem-
perature, does not contribute to the fusion reactions themselves, it is crucial for
future success of tokamaks in several ways. First, it is the region where plasma tou-
ches the first wall and therefore behaviour and conditions in the edge region may
significantly influence plasma-wall interaction and wall degradation. This problem
is most severe in the case when hot and dense plasma objects are present, as in the
case of edge localized modes (ELMs) that spontaneously appear in some modes
with improved confinement (H-mode, see chapter 2.4). Secondly, properties of the
edge region naturally form boundary conditions for the central region and may
very significantly improve or degrade plasma and energy confinement, if outward
transport in the edge region is reduced or enhanced, respectively. Moreover, for any
diagnostic, heating or fuelling system that wants to reach the core, it is necessary
to penetrate the edge region first. Its properties then may influence functionality
of the system.

At first, plasma edge transport was considered to be driven by collisional pro-
cesses [70]. This led to overestimation of confinement time during the design of
first devices and to significant underestimation of plasma losses, so called problem
of anomalous diffusion. Search for explanation of high magnitude of observed out-
ward transport was hot topic of nuclear fusion for a long time. In the last 15 years
it was recognized and generally accepted that dominant role in transport processes
in the edge region may be attributed to presence of turbulent structures in this
region [88, 31]. The edge turbulence naturally arises as a consequence of magnetic
configuration of the tokamak device and nonuniformity of the plasma. Then, co-
herent turbulent structures that are self-consitently formed may advect significant
amounts of plasma density or energy outward. This work aims to contribute to
the discussion of properties of the edge turbulence itself and properties of induced
plasma transport, which are nowadays subjects of an intensive research.

This work is organized as follows. First, in chapter 2, principle of thermonuclear
fusion is briefly explained and basic geometry and principle of tokamak is descri-
bed. Experimental observations of turbulence in tokamak edge and its transport
properties are summarized in chapter 3. Chapter 4 presents basics of theory of
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plasma transport, with plasma treated either as single particles (section 4.1) or as
a fluid (section 4.3). Section 4.4 discusses reduction of fluid equations introduced
in previous chapter to 2D plane perpendicular to magnetic field. In chapter 5, we
present results of our simulations with interchange fluid model ESEL and discuss
properties of turbulence structures under different assumptions on transport along
magnetic field lines. The results of ESEL simulations are used also in the chapter
6 to interpret and discuss several results obtained by experimental measurements
using probe diagnostics. Finally, transport of individual particles (mainly plasma
impurities) in the potential field generated by tokamak edge turbulence is studied
in chapter 7. Each of the chapters 5, 6 and 7 firts contains brief introduction to
its topic (Secs. 5.1, 6.1 and 7.1-7.4) followed by our results (Secs. 5.2-5.7, 6.2-6.5,
7.3 and 7.5-7.7).
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2. Fusion basics and tokamak
concept

2.1 Thermonuclear fusion
As was already mentioned in the introduction chapter, controlled thermonuclear
fusion is one of the most promising candidates for future sustainable energy source.
Compared to conventional power systems, the CO2 emissions are in the optimistic
case expected to be 100 times lower then in coal burning systems and about 2
times lower than in fission power plants [156], however with somewhat higher cost
of energy (without assuming any carbon tax on a conventional sources, factor of
2 was estimated in [156]).

Similarly to the concept of nuclear power plants, concept of fusion facility is
based on energy release caused by transmutation of atoms. Figure of nuclear bin-
ding energies per nucleon (Fig. 2.1) shows that up to the iron, the binding energy
per nucleon in most cases increases with mass number, while for elements hea-
vier then iron, it slowly drops down. This is a consequence of competition between
short-ranged (exponentially decaying) strong binding force and electrostatic repul-
sion between positively charged protons in the nuclei. While nuclear fission utilizes
the right part of the curve, where the energy is released by breaking heavy nucleus
apart, the nuclear fusion is focused on the left part, where energy can be released
by fusing two light nuclei into a heavier one. There are several nuclear reactions
that could possibly be utilized, however when cross-section of the reaction toge-
ther with its optimum temperature is taken into account, the deuterium-tritium
reaction

2
1D +3

1 T →4
2 He (3.5MeV) +1

0 n
0 (14.1MeV) (2.1)

comes out as the best candidate with the highest cross-section at the lowest tem-
perature. Unfortunately, about 80% of the energy is released in the neutron part
of the reaction. This is associated with problems with reduced lifetime and functi-
onality of reactor materials and systems in the environment with high neutron
fluxes, activation of the materials or demands on biological shielding. Moreover,
tritium is a radioactive isotope which brings further problems with fuel retention
in plasma-facing components (PFC) of the reactor. The retention of the tritium
has not been thoroughly investigated so far, but it is expected to be similar to
retention of deuterium [119]. High risk of tritium is in its chemical similarity to
the hydrogen that allows its easy penetration into biological systems. Due to this
concerns, even though the D-T reaction is reaction of the first choice at this point
of research, there exist other candidates that will be probably taken into consi-
deration (even though more difficult to ignite) after controlling D-T reaction is
mastered. Another problem of D-T reaction is a relative rareness of the tritium
isotope. To solve this issue, interaction of fusion neutrons with lithium in a special
blanket is planned,

1
0n

0 +6
3 Li→4

2 He+3
1 T. (2.2)

This process is refered to as tritium breeding and is expected to provide tritium
self-sustainability for the reactor.
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Figure 2.1: Binding energy per nucleon as a function of mass number A. Most common
and most stable isotopes are marked with black solid line. Plotted data adopted from [9].

In order to ignite plasma, i.e. produce sufficient energy output from the fusion
that will compensate all radiation losses and maintain the plasma temperature,
criterion derived by Lawson [92] must be fulfilled. Nowadays, it is usually expressed
as a condition in form of triple product that relates plasma density n, energy
confinement time τE and central ion temperature T for ignition of D-D reaction
[154]

nTτE ≥ 3 · 1021 keV · s ·m−3. (2.3)

There are different strategies how to maximize the Lawson’s triple product. In
inertial fusion, the confinement times are very small (pulse duration in order of
nanoseconds) which must be compensated by increased density. On the other hand,
magnetic confinement relies on confining rather low-density plasma (n ≈ 1020 m−3)
for the times in order of seconds at temperatures T ≈ 104 eV. After more than half
a century of research, there are several concepts of fusion devices, each in different
state of development and struggling with different kinds of problems. To name the
most common:

• Laser fusion is based on the concept of inertial confinement and relies on
rapid compression and heating of a fuel to the fusion parameters as illustra-
ted in Fig. 2.2. In laser fusion, as the outer layer of a small target is rapidly
heated by high-energy laser beams, it expands outwards, compressing and
heating the inner part of the fuel pellet due to reaction force. If the com-
pression and heating is sufficiently strong, fusion reactions appear in the
center, that further heat and ignite surrounding parts of the fuel pellet. No
additional means of confinement are required, the fuel is confined fully by
its inertia. The main difficulties of the inertial confinement come from the
necessity to efficiently couple the laser light energy to the target and effi-
ciently (adiabatically) compress the fuel. There are also strict requirements
on the symmetry of the pellet and uniformity of the surface heating and if
not fulfilled, Rayleigh-Taylor instabilities develop [8], diverting large part of
the energy from the inward flux, thus preventing ignition in the central part.
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Despite of these technical difficulties, inertial confinement is at present time
one of the two most promising fusion concepts.

• In Z-pinch device, large electric current is driven in the plasma. This creates
magnetic field that compresses the plasma due to the Lorentz force (illustra-
ted in Fig. 2.2). Interestingly, history of Z-pinch goes down to the 1790, when
first experiments with discharging high electric energy into a metal wire were
made (see [61] and reference 12 therein). At the beginning of fusion research,
Z-pinch concept was considered very promising. However, due to presence of
strong magnetohydrodynamic (MHD) and Rayleigh-Taylor instabilities, the
main focus was later shifted in favour of Z-pinch competitors. Nowadays, Z-
pinch is, among other applications, investigated as a strong X-ray or neutron
source.

• Reversed field pinch (RFP) is a pinch with axisymmetric toroidal confi-
guration. The plasma is confined by poloidal magnetic field created by toro-
idal plasma current and by toroidal field created partly by plasma currents
and partly by external magnetic field coils. The name comes from the fact,
that the toroidal field reverses its direction near the plasma edge. In steady-
state, the reversed configuration is maintained by a nonlinear dynamo effect.
Compared to the tokamak concept, RFP does require much weaker toroi-
dal magnetic field (comparable in magnitude to the poloidal field) and thus
has smaller demands on power input and supporting infrastructure. On the
other hand, complicated feedback system is needed to stabilize and control
magnetohydrodynamic modes, whose non-linear dynamics is still not fully
understood.

• Tokamak concept has currently the most developed physics basis among
fusion devices with magnetic confinement [101]. It is a toroidal device, simi-
larly to RFP, but with significantly larger toroidal field generated by external
coils. This toroidal field largely improves the confinement, but on the other
side significantly increases operational costs. Twist of magnetic field lines
by poloidal component of the magnetic field, necessary to prevent drifting
of plasma to the wall, is generated mainly by externally induced toroidal
currents flowing in the plasma. Main toroidal current is in standard scena-
rios driven by transformer effect with plasma as a secondary transformer
circuit. This limits tokamak operation to pulsed regime. Tokamak concept
will be discussed in more detail in the following sections.

• Stellarator, in contrast to tokamaks, generates necessary twist of magnetic
field lines by adjusting the externally imposed magnetic field. This requires
very complicated geometry of magnetic field coils and brings difficulties wi-
th coils manufacturing and with diagnostics and theoretical description of
stellarator plasma. On the other hand, this approach can avoid complexi-
ty of tokamak’s current drive systems and allow, in principle, steady-state
operation of the device.

Among others, also concept of hybrid reactors is nowadays intensively discus-
sed. It is a middle-step between fusion and fission power plant. A fusion device,
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Figure 2.2: Left: Illustration of principle of target heating and compression in laser fusion.
Right: Illustration of Z-pinch principle.

that does not have sufficient fusion energy gain factor Q, is coupled to a con-
ventional fission reactor and serves as a source of neutrons. Then, it is possible
to maintain fission reaction with only subcritical amount of fission material, thus
increasing control over the reaction and eliminating the risk of uncontrolled chain
reaction.

Size of the device with magnetic confinement is limited from the bottom by
many factors, such as confinement and stability of the plasma, ratio of tritium
breeding or neutron shielding [101]. At present time, the world largest tokamak,
ITER 1, is under construction in France by a consortium of seven countries. It
is assumed that it will be the first tokamak capable of achieving fusion power
Pfusion higher then power Pin required to keep a steady-state plasma, with fusion
energy gain factor Q = Pfusion/Pin ≈ 10. Even when this goal is achieved, another
facilities will be needed before a commercial fusion power plant becomes available.
High energy gain factor Q is a first step only and future devices will have to achieve
engineering efficiency Qeng > 1, which takes into account efficiency of all systems
involved in the power plant. The most important goals of post-ITER facilities
will be to demonstrate all the technologies and their economical competitiveness,
scalability and operability on large scales ([101] and references therein).

2.2 Principle of tokamak

The name ’tokamak’ originates in Russian. It is an abbreviation of ’toroidalna-
ya kamera i magnitnaya katushka’, which means ’toroidal vessel with magnetic
winding’. Obviously, the name itself describes basic construction scheme of the
tokamak illustrated in Fig. 2.3. It is a ring-shaped vacuum vessel (torus) with
D-shaped or circular (older tokamaks) cross section. In order to maintain the fusi-
on process, plasma particles must be confined in the central part of the vessel,
otherwise the plasma would quickly cool down and loose its density by contact wi-
th walls. For this purpose, the vessel is surrounded by several systems of magnetic

1http://www.iter.org/

12



Figure 2.3: Left: Illustration of tokamak scheme. Right: Illustration of toroidal coordinates
r, θ, ξ on a torus with major radius R and minor radius a.

coils that create required magnetic field which keeps the plasma confined inside
the vessel.

Charged particles in a strong magnetic field are forced to move mainly along
magnetic field lines. Therefore, the strong toroidal magnetic field (in orders of
≈ 1 T) created by toroidal field coils is the primary means of confining plasma
particles. The field described in toroidal coordinates (see Fig. 2.3) is

B =
B0R

R + r cos θ
(2.4)

with on-axis field B0. This field itself, however, is not sufficient for long-term
plasma confinement, because purely toroidal closed field lines circulating the torus
result in curvature and ~∇B-drifts (4.21) on the plasma particles. The drifts are
charge dependent and the ions and electrons become verticaly separated, creating
vertical electric field that moves the plasma by ~E × ~B drift (4.13) outwards.

This issue was solved by introducing poloidal component of the magnetic field.
This field twists the field lines into helical field, consequently (in common case)
forming structure of nested magnetic surfaces. Every field line then can be found
moving along the surface of corresponding magnetic surface. In this configuration,
the force due to magnetic field curvature on a particle passing along field line
changes sign as the field line appears below or above the magnetic axis. As a result,
plasma electrons and ions do not separate and do not create the unfavourable
vertical electric field. This compensation mechanism, however, does not work in a
boundary region with open field lines and drive due to magnetic field curvature is
an important part of transport processes in this region, as will be shown in Chap.
5.

The poloidal magnetic field is created partly by external poloidal field coils
and partly by toroidal plasma current inside the vessel. The current is driven by
transformer effect with plasma as a secondary circuit and primary winding in form
of solenoid going through the torus center. On top of that, there are also other
magnetic systems responsible e.g. for plasma shaping or position feedback.

Tokamak vessel possess azimuthal symmetry and can be conveniently described
by toroidal coordinate system shown in Fig. 2.3. To reflect dependence of magnetic
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field on radial position (2.4), part of the poloidal cross-section with −π/2 < θ < π2

is often referred as low-field side (LFS), the rest of the cross section as high-field
side (HFS). Sometimes, terms inboard and outboard are used instead. Size of a
tokamak is usually described in the toroidal coordinates by its major radius R
and minor radius a. Both radii may vary by an order between different tokamaks.
Major radius of nowadays operated tokamaks ranges from several decimetres (e.g.
GOLEM tokamak R = 0.4 m) to several meters (JET with R = 2.96 m) and
minor radius a from several centimetres (GOLEM with a = 0.06 m) to several
meters (JET with aV = 2.1 m in vertical direction and aH = 1.25 m in horizontal
direction). Size of ITER tokamak that is currently under construction is planned
to be R = 6.2 m and aH = 2 m.

2.3 Tokamak boundary
In the tokamak boundary region, magnetic field lines, in contrast to the central
part, are not closed. Instead, on both ends they are connected to material parts of
the tokamak. This region is referred to as scrape-off layer (SOL). SOL is located
next to the region of closed field-lines and both regions are separated by last closed
flux surface (LCFS) - (magnetic) separatrix. There are two main types of tokamak
plasma, divided by the means how the SOL is created.

• In limited plasma the separatrix on some toroidal position directly touches
a material surface (limiter, see Fig. 2.4). The limiter penetrates through all
magnetic surfaces outside the separatrix and therefore magnetic field lines
outward the separatrix are open, connected to the limiter, or to some other
material surface. Plasma that gets into the SOL quickly hits the limiter and
the region is effectively ’scraped-off’. Even though some tokamaks still use
this configuration, it is unfavourable for several reasons. Since the limiter
and confined plasma are in direct contact, impurities and neutrals released
by plasma-wall interaction can easily penetrate through the separatrix. Mo-
reover, the limiter is exposed to high heat fluxes, which further amplify the
impurity release.

• In diverted plasma the separatrix does not get into contact with material
surfaces. Instead, by applying external poloidal magnetic field with direction
opposite to the poloidal component of magnetic field inside the vessel, an
X-point (sometimes more than one) is created (Fig 2.4). X-point prevents
contact of the main plasma with the walls and localizes most of the plasma-
wall interaction into a divertor region, where the divertor tiles are carefully
designed to withstand high heat fluxes. This configuration allows tokamak
to reach higher energies stored in the central plasma, compared to limited
plasma, without a risk of damaging the plasma facing components.

The divertor tiles can be localized far from the main plasma, which limits
core contamination by impurities released due to sputtering process during
plasma-wall interaction and localizes neutral recycling processes mainly into
a divertor region.

Both cases are schematically depicted in Fig. 2.4.
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Figure 2.4: Sketch showing limiter (left) and divertor (right) configuration in the poloidal
cross-section.

Definition of the term plasma edge in the literature is somewhat unclear. In
some cases it denotes only region of closed field lines in the vicinity of separatrix
(core edge in Fig. 2.4), in other cases its meaning includes also region of open field
lines (SOL and wall-shadow region). In this work, plasma edge or edge plasma
will denote core edge together with SOL and wall-shadow, while edge region will
denote core edge only.

2.4 L-mode and H-mode
In 1982, H-mode [6], a new high-confinement mode, was discovered on tokamak
ASDEX. In this mode the energy confinement time is strongly improved compa-
red to what is measured in the standard low-confinement mode (L-mode). This is
caused by reduction of effective heat and particle diffusivity at the plasma edge. A
strong shear of poloidal plasma rotation is observed near the LCFS [57] and it is
generally believed that it results in creation of edge transport barrier by decorrela-
ting turbulence structures and thus strongly suppressing the turbulent transport.
In H-mode, in the inner vicinity of LCFS a region of high radial pressure gradient
called pedestal is formed (see Fig. 2.5). The pedestal is supported by the edge
transport barrier that suppresses radial turbulent transport and prevents transiti-
on back to L-mode profiles. The pedestal is, however, not stable in typical H-mode
conditions and it periodically collapses due to peeling-ballooning MHD instability
generating large convective structures, ELMs (edge localized modes) [154, 142].
ELMs can carry very large heat fluxes and quickly erode material surfaces inside
tokamak. The question of ELM mitigation is therefore one of the most intensively
studied questions in the field today.

The spontaneous transition from L-mode to H-mode (L-H transition) occurs
only with sufficient plasma heating power and even after 40 years of intensive
study, its mechanism is still not understood. It is likely that coupling of different
turbulent modes may play an important role in the formation of the H-mode barrier
[40] which motivates study of edge turbulence in L-mode, even though the main

15



operating regime of future tokamaks will be H-mode or some more advance mode.

Figure 2.5: Schematic illustration of radial pressure profile in pedestal and its collapse
associated with appearance of ELMs.

2.5 Plasma-wall interaction

When plasma particles hit solid surface, several physical processes can occur [154].
To name the most important, plasma particles may be neutralized and trapped
inside the solid material, possibly undergoing chemical reaction. They may also
knock atoms out of the solid into the plasma or be scattered back themselves.

During physical sputtering, incident plasma particles knock atoms of the solid
material out into the plasma. The released particles become ionized in the plasma
and their species form a new fraction of the plasma. Atomic mass of released
particles is typically significantly larger than that of the ions of main plasma.
Divertor tiles are usually made of carbon, beryllium or wolfram compounds, but
plasma impurities may be composed from virtually any particle species present
in any plasma facing component (PFC) such as first wall, diagnostics, etc., or in
the air trapped in cavities of PFC material. The rate of physical sputtering differs
between materials as shown in Fig. 2.6. The yield of the process is dependent
mainly on the mass and energy of incident ions and the sputtering may, with
some probability, occur any time plasma particle hits the solid. Particles of the
solid are sputtered by momentum transfer from incident particles and therefore
the sputtering process induced by plasma electrons may be neglected compared to
that induced by plasma ions. Larger fraction of heavy plasma impurities scattered
from PFC and incidenting back on the same material surface could even lead to
uncontrolled sputter erosion of the material [120, 146].

Plasma particles incidenting on the PFC may chemically react and become
chemically bound to the solid material. This process has typically very low energy
threshold [120] and is relevant especially for carbon PFC, because carbon is highly
chemically active with hydrogen isotopes of the main plasma. This leads to tritium
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Figure 2.6: Dependence of physical sputtering yield of different materials on temperature
of incident plasma ions. Data adopted from [120].

retention by chemical reaction with the eroded carbon, which is one of the negative
aspects of current tokamak design, as mentioned earlier.

Part of the incident ion flux is neutralized and scattered back into the plasma.
In the plasma, the neutral atoms are gradually ionized by collisions with plasma
particles and increase local plasma density by process called recycling. Especially in
diverted plasma recycling process may form dense cloud of neutrals in the vicinity
of divertor tiles and largely increase local plasma density. This leads to divertor
detachment from the SOL plasma, reducing heat load on the divertor tiles and
having consequences on properties of turbulent transport in the SOL as will be
shown in Secs. 4.4.4 and 4.4.5.

Note that plasma-wall interaction processes are non-linear functions of plasma
ion energy and therefore it is not sufficient to estimate wall erosion, recycling and
impurity release on the basis of mean plasma temperature near the solid surfa-
ce. Fluctuations of the turbulent plasma may be intermittent and small fracti-
on of events (e.g. ELMs in H-mode) may be responsible for majority of surface-
interaction processes.

2.6 Plasma impurities

Impurities of the main hydrogen plasma may be released from solid surfaces by
plasma-wall interaction, intentionally as a part of spectroscopic diagnostics, a part
of an experiment or as a product of fusion reactions (helium ash). Their presence
increases complexity of the edge plasma by atomic processes and their impact on
plasma parameters may be both positive and negative.

Historically the most severe problem was cooling of the main plasma by im-
purity radiation that in first tokamaks formed the main source of energy losses
[154, 146]. The radiation depends strongly on atomic mass Z, being lower for
lower Z species. The low-Z impurities are fully ionized for temperatures around
1 keV and hence they contribute only by bremsstrahlung radiation. On the other
hand, high-Z impurities retain part of the electrons and their line radiation largely
increases the total radiated power. It is therefore beneficial to use low-Z materials
for PFC and materials based on carbon are often used for that purpose. Unfortu-
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nately, not all effects of using low-Z impurities are beneficial and e.g. radiation of
not-fully ionized low-Z impurities in the edge, when localized poloidally or at q = 2
rational surface, may destabilize the plasma and cause density limit disruptions
[146].

On the contrary, volumetric power-loss caused by impurities may have bene-
ficial consequences when located in the SOL, because it spreads out part of the
energy of usually highly localized plasma-wall interaction events. This lowers requi-
rements on the parameters of PFC material and increases their lifetime.

Presence of impurities in the core leads to fuel dilution. Since the total plasma
pressure summed over all plasma species is limited by MHD instabilities (β-limit
[154]), electrons released by the impurities together with impurity ions themselves
may occupy a major fraction of the allowable pressure, hence limiting amount of
fuel that can be contained in the plasma.

In the first approximation, impurities at given radius are quickly homogenized
over poloidal and toroidal directions by rapid parallel transport and transport of
impurities from their source into the core plasma is often treated as 1D problem
described by cross-field diffusion coefficient D⊥ and pinch velocity vpinch [146]:

− Γ⊥,imp = D⊥
∂

∂r
nimp + vpinchnimp. (2.5)

The transport equation is not directly related to any physical diffusive or convective
process and measured values of transport coefficients D⊥ and vpinch are anomalous
(see Sec. 3 for explanation),D⊥,imp ≈ 1 m2s−1 and vpinch,imp ≈ 10 ms−1. It describes
the overall rate of transport only, regardless of the real transport mechanism. In
Chap. 7 we will investigate movement of plasma impurities in the potential field of
edge turbulence and discuss role of the turbulence in impurity transport process.
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3. Anomalous plasma transport in
tokamak edge

3.1 Collisional, neoclassical and Bohm diffusion

At the beginning of fusion research, it was assumed that transport in the tokamak
edge is dominated by collisional processes [70]. Collisional transport of plasma
can be described by diffusion equation resulting in radial density flux Γn given by
Fick’s law [30]

Γn = −Dc
n

∂

∂r
n (3.1)

with coefficient of perpendicular particle diffusion due to Coulomb collisions and
ambipolar effects [19]

Dc
n = (1 +

Ti
Te

)r2
L,eνei (3.2)

where Ti and Te are ion and electron temperature, respectively, rL,e is electron
cyclotron radius. Transport of heat and momentum may be described similarly by
momentum diffusion coefficient Dc

µ and ion Dc
χ,i and electron Dc

χ,e heat diffusivity
[19]:

Dc
µ ≈

3

8
Dc
χ,i (3.3)

Dc
χ,i = 2r2

L,iνii (3.4)
Dc
χ,e = 4.66r2

L,eνee. (3.5)

Characteristic spatial scale of the diffusion process at temperature Tj is given by
Larmor radius rL,j of electrons (j = e) or ions (j = i) with charge qj and mass mj,

rL,j =

√
eTjmj

qjB
. (3.6)

The time scale is represented by frequency of collisions between electrons, νee,
electrons and ions, νei and between ions, νii, [19]

νei = Z
√

2νee =

√
2Znee

4 ln Λ

12π3/2ε20m
1/2
e T

3/2
e

(3.7)

νii =

(
me

2mi

)1/2(
Te
Ti

)3/2

νei (3.8)

where e and me are charge and mass of plasma electrons, Ze and mi are charge
and mass of plasma ions, nj, Tj are density and temperature of each species, ε0 is
vacuum permittivity and ln Λ is Coulomb logarithm.

For typical values of density and temperature in tokamak edge, n ≈ 1019 m−3

and T ≈ 100 eV, the value of classical collisional diffusion coefficient is in the
order of Dn ≈ 10−4 m2 · s−1 and for deuterium plasma Dµ/Dn ≈ 25, Dχ,i/Dn ≈
60 and Dχ,e/Dn ≈ 2.5 [39]. These all are very small values that led to large
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expectations during design of first fusion devices. Moreover, Eqs. (3.2-3.5) scale as
1/B2, predicting large impact of strength of magnetic field on plasma confinement.
Unfortunately, it was very soon observed that experimentally measured cross-field
particle diffusion coefficient Dn,exp is significantly larger, with values in the order
of 1 m2 · s−1 [26]. Behaviour of Dn,exp on many magnetic confinement devices was
observed to fulfil semi-empirical relation [30, 154]

Dn,exp ≈
1

16

Te
eB
≡ DB (3.9)

where DB is called Bohm diffusion coefficient. Contrary to the collisional diffusi-
on (3.2), DB increases with Te which is clearly unfavourable for achieving fusion
plasma parameters. Moreover, since DB ∼ 1/B, scaling of confinement time in
real devices is much weaker then predicted from collisional theory and this brings
significant difficulties in achieving parameters of plasma necessary for fusion re-
action. Physical mechanism responsible for observed values of Dn,exp remained
unexplained for a long time and it was often referred as a problem of anomalous
diffusion. Nowadays, radial transport induced by presence of convective turbulence
structures is generally recognized as a mechanism that can enhance effective radial
diffusion to the experimentally observed levels [88, 31].

In tokamaks, classical cross-field diffusion described by Eqs. (3.2-3.5) may beco-
me enhanced by effects of toroidicity of the device. This is referred to as neoclassical
diffusion and neoclassical effects may dominate by one or two orders over classical
Coulomb collisions [67] (even though still being significantly smaller than obser-
ved Bohm diffusion). For the case of low collisionality, important contribution to
the radial transport may come from particles that are trapped by mirror effect
due to change of |B| along magnetic field line. Such particles are oscillating in so
called bannana orbits. Distribution of trapped and untrapped particles may signi-
ficantly differ and the resulting anisotropy of pressure tensor drives net outward
flux [67]. Estimate of neoclassical diffusion coefficient in this regime is given by ef-
fective collisional frequency of trapped particles ν ′ (which is larger then collisional
frequency of untrapped particles ν, ν ′ ∼ νR/r), radial width of the banana orbits
∆r ∼ qrL,e/

√
r/R and fraction of particles that are trapped Ntr ∼

√
r/R [154]

Dnc,bannana ∼ Ntrν
′(∆r)2 ∼ q2ν(r/R)−3/2r2

L,e. (3.10)

For sufficiently collisional plasmas (ν > 1) such anisotropy is destroyed by
collisions forcing particles to skip from/into trapped mode frequently. On the other
hand, parallel mean-free path in collisional plasma is short, allowing presence of
non-negligible parallel pressure gradient. The source of this gradient is build-up
of charge, particles and pressure due to non-divergence-free part of diamagnetic
flux. Such parallel pressure gradient naturally drives return parallel flows and
currents known as Pfirsch-Schlüter (PS) flows (currents) [146]. In highly collisional
regime parallel friction of these flows induces radial fluxes in the direction of major
radius [146, 67]. Note that in cylindrical geometry the diamagnetic flux would be
divergence-free and there would be no drive for radial transport of this type. Net
flux averaged over the whole flux surface can be in the lowest order written in
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Figure 3.1: Dependence of diffusion coefficient Dn on collision frequency ν. ε is inverse
aspect ratio of relevant magnetic surface ε = r/R and vT is thermal velocity. [154].

diffusive form (3.1) with diffusion coefficients [67, 68]

Dn = Dc
n +Dnc

n ≈ (1 + 1.3q2)Dc
n (3.11)

Dµ = Dc
µ +Dnc

µ ≈ (1 + 1.6q2)Dc
µ (3.12)

Dχ,i = Dc
χ,i +Dnc

χ,i ≈ (1 + 1.3q2)Dc
χ,i (3.13)

Dχ,e = Dc
χ,e +Dnc

χ,e ≈ (1 + 1.6q2)Dc
χ,e (3.14)

where subscripts c and nc denote classical and neoclassical diffusion coefficient,
respectively, and q is safety-factor.

For collisionality in middle range between banana and PS regime, (r/R)3/2 <
ν < 1, the collisional transport is dominated by particles with small parallel velo-
city and diffusion coefficient stays roughly constant [154]. The resulting scaling of
diffusion coefficient with collisionality is schematically depicted in Fig. 3.1.

We should note that expressions (3.11-3.14) were derived on the basis of as-
sumption of closed field lines (averaging over flux surfaces was performed) and
should not be directly aplicated on situation in SOL with open field lines because
of two main effects [39]. On one side, the radial flux induced by (PS) flows is
poloidally dependent, stronger in low-field side then on high-field side. Therefore,
when flux surface averaging is not possible, local value should be used. On the
other hand, open field lines present local sinks for plasma and act against build-
up of charge, density and pressure caused by compressibility of diamagnetic flux
that drives the PS flows. Authors of [39] therefore argue that in the vicinity of
low-field side midplane the two mechanisms compensate each other and standard
neoclassical diffusion coefficients (3.11-3.14) can be used.
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3.2 Langmuir probes
The most common and the simplest diagnostics for measurement of fluctuations
and transport of edge plasma is electrostatic Langmuir probe - simple electrical
sensor located inside the plasma. The spatial resolution of the sensor given by
its size is often ≈ 1 mm, with temporal resolution up to the order of MHz. In
some configurations, the time resolution may be, however, limited by capacitive
effects of the electronics [72, 73]. This makes Langmuir probe ideal for diagnostics
of rapid transport events associated with plasma turbulence. Unfortunately, direct
presence of the probe inside the plasma limits its applicability to the edge region
only and if located deeper in the main plasma, the probe may get damaged by
large heat fluxes. Means of save probe penetration deeper into the plasma are still
subject of a research [75]. Also interpretation of measured quantities is not fully
straightforward, as we will discuss in the following paragraphs.

When voltage is applied on the probe, measured current scales with local
electron temperature Te, density n and plasma potential φ as [77, 100, 145]

I = I+
s (n, Te)

(
1− e(V−Vfl(Te,φ))/Te

)
(3.15)

where I+
s and Vfl is ion saturation current and floating potential, respectively.

Relation (3.15) is referred as I-V characteristics of the probe and it is a consequence
of formation of sheath layer at the boundary of plasma and solid materials. Mobility
of electrons along magnetic field lines is higher than that of ions and more electrons
than ions are lost to the wall. This leaves plasma with positive potential compared
to the wall and the electric field limits number of electrons that can enter the area.
Due to Debye shielding in the plasma [30, 154], the potential drop is restricted
mainly to the distance of several Debye lengths from the material surface, to the
layer called sheath. The Debye length λD is defined as

λD =

√
ε0Te
ne2

(3.16)

where ε0 is permittivity of vacuum.
I+
s is the maximum positive current (due to ions) that can reach the wall.

As Eq. (3.15) shows, it is measured for large negative biasing potential V . The
maximum ion current is basically proportional to plasma density n, ion charge Zi
and to ion sound speed cs [146],

I+
s = AeZincs (3.17)

cs =

√
Te + ZiTi

mi

(3.18)

where A is a factor describing influence of probe surface area and effects of ion
acceleration to the sheath, Ti is ion temperature and mi ion mass.

Measured value of I+
s is usually used for determination of n. In this case local

(fluctuating) values of Te and Ti should be known. However, to obtain Te and
especially Ti fluctuations with Langmuir probe is very problematic. Therefore cs
is often replaced by its value c̄s based on mean temperature and either fixed value
of ion temperature itself Ti ≈ const. or fixed value of Te/Ti ≈ const. is assumed.
This, indeed, brings underestimation of density fluctuations in the places with
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large temperature fluctuations and their overestimation in the places where the
fluctuations are small. Moreover, factor A may be dependent on Ti [145] which
brings another source of error, estimated in [72] for conditions of TCV tokamak
by a factor A(Ti)/A(Ti = 0) ≈ 2.

Similarly to the situation with I+
s , the current measured by the probe saturates

at some minimum value I−s when sufficiently large positive bias voltage V is ap-
plied. This effect is not described by simplified model (3.15) and more complicated
expression is needed to describe the full I-V characteristics. Note that due to larger
mobility of electrons it usually holds that I−s � I+

s . Information obtained from the
electron saturated part of I-V characteristic is rarely used in the measurements of
tokamak edge plasma and we will therefore stick with model (3.15) and in the rest
of the work we will neglect any influence of saturation of electron current.

Vfl describes potential on the solid surface without external biasing that is
related to the plasma potential as

Vfl = φ− αTe. (3.19)

Term αTe describes height of the potential drop in the sheath caused by high
mobility of electrons that are quickly lost to the surface, leaving plasma biased
positively [146],

α =
1

2
ln

(
1

2π

mi

me

Te
Ti + Te

)
. (3.20)

Typical value of α in tokamak edge plasma is α ≈ 2.5− 3.
Both quantities I+

s and Vfl (or all three quantities n, Te, φ) can be simul-
taneously obtained from fit of the whole I-V characteristics (3.15) measured by
sweeping probe that periodically changes biasing potential V applied on the pro-
be, thus scanning over the whole range of I-V characteristics. Another option is
to use separate probes that are either negatively biased (for I+

s ) or electrically
floating (for Vfl). The sweeping technique allows measurement of plasma density,
temperature and potential simultaneously at the same place at the price of worse
temporal resolution. This is due to the fact that measurement over many values of
biasing potential has to be made before single value of n, Te and φ is obtained. The
measurement with several separate probes fast measurements of I+

s and Vfl, but
estimation of n and φ has to be based on previously stated assumptions on Te and
Ti behaviour. Moreover, such simultaneous measurement of I+

s and Vfl is not spa-
tially localised which brings complications in interpretation of the data by physical
models. There exist several other, non-perturbing, diagnostic techniques capable of
measuring edge plasma properties (see e.g. [145, 146]), however Langmuir probes
are still the most often used due to their small spatio-temporal resolution. Cross-
comparison of different diagnostics shows that density measurement by Langmuir
probes agrees with other diagnostics well, up to the factor of 2 [146].

3.3 Experimental observations of edge plasma
fluctuations

Since the first measurements in tokamaks, large fluctuations of plasma density in
tokamak edge have been observed. The relative density fluctuation level σn/〈n〉 in
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Figure 3.2: Gass-puff imaging of turbulence structure propagation located at outboard
midplane of NSTX tokamak in H-mode. Time delay between frames is 7.5µs, size of each
frame is 24 × 24 cm. The image represents part of radial-poloidal plane, white vertical
lines show position of the LCFS. Reproduced from [97].

SOL in L-mode (see Chap. 2.4) is typically observed in range 0.3 − 0.6, increa-
sing with distance from LCFS and often reaching values σn/〈n〉 ≈ 1 at the most
outward positions [26, 56, 18, 74]. These fluctuations are highly correlated with
radial velocity vr and probability distribution function (PDF) of radial particle
flux Γn = nvr is not Gaussian, exhibiting long intermittent tail as shown in Fig.
3.3. It shows that in the SOL, large fraction of the total radial plasma outflux
is caused by small fraction of transport events. The long-tailed shape of PDF of
density fluctuations is surprisingly universal for different magnetic confinement
devices [31] indicating robust mechanism of radial plasma losses. Fluctuations of
floating potential are observed with comparable amplitude and approximately π/2
phase shift against density fluctuations [33]. If the temperature fluctuations are
neglected, this can be interpreted as a source of radial transport of density by
Ep ×B drift with flux

Γn = −ñ 1

B

∂

∂p
Ṽfl. (3.21)

Here coordinate p means poloidal direction and tilde denotes fluctuation of the
quantity. The error made by using Vfl instead of φ is proportional to the term
ñ∂T̃ /∂p that depends on spatial correlations between density and temperature. We
note that when ñ and T̃ are out of phase, the term can be negligible even in cases
when Vfl itself is significantly influenced by local temperature. While mean profiles
of density and temperature are routinely measured, relation between fluctuations
of density and temperature is not fully clear. While modelling and simple theory
of interchange motions predict high spatial correlation of ñ and T̃ [44], there are
some new experimental measurements that put this relation into question [74].
Generally, the measured relative level of fluctuations is lower for temperature than
for density, estimated as σT/〈T 〉 ≈ (0.2− 0.4)σn/〈n〉 in [18, 74].

In the measurements with imaging techniques like fast cameras, gas-puff ima-
ging or 2D-arrays of Langmuir probes, high-density coherent structures (blobs)
are observed in the SOL (see Fig. 3.2). They appear intermittently in time with
non-Gaussian distribution of amplitude of associated particle flux and they are ge-
nerally responsible for the long-tailed PDF of Γn shown in Fig. 3.3. These structures
are typically ≈ 0.5 − 4 cm in size with radial velocity ≈ (0.5 − 4) × 103 m · s−1

and relative density ñ/〈n〉 ≈ 1 [93, 31]. In one-point measurements by Langmuir
probes, techniques of conditional averaging (CA) or computing of auto-correlation
(cross-correlation) functions are often used to visualise average wave-form of de-
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Figure 3.3: Top: Time signal of radial particle flux Γn/〈Gamman〉 measured at midplane
of ASDEX in the SOL at position r−rLCFS ≈ 1−2 cm. Bottom: Probability distribution
function of Γn signal shown upwards. Both figures reproduced from [33].

tected structures.
In the CA method, mean value 〈g〉 and standard deviation σg of time-trace of

triggering quantity g (usually density) measured at fixed point is computed. Then,
times ti of all local maxima of the signal fulfilling the condition g(ti) ≥ 〈g〉+gthrσq
are detected and the signal of second quantity h is averaged in the surroundings
of each ti in window of size 2δt,

hCA,g(t) =
1

N

∑
i=1..N

h(ti + t); −δt ≤ t ≤ δt. (3.22)

Due to large fluctuations carried by blobs, compared to the background, and its in-
termittent character, value of the averaging threshold gthr is usually chosen around
2. Note that both quantities, the trigger g and averaged quantity h, can be (and
often are) the same. An example of conditionally-averaged blob wave-form for one-
point and 2D Langmuir probe measurements is shown in Fig. 3.4, demonstrating
that the CA technique can be also used in 2D case to obtain typical radial-poloidal
form of the blobs. The 1D profiles exhibit very sharp density growth in the front
of the blob and slow decay in its trailing wake with exponential growth and decay
rates independent on amplitude of density perturbation [50]. Simultaneous measu-
rement of potential together with density reveals bipolar character of blobs with
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poloidally separated potential hill and valley that are located on blob’s sides and
with zero potential at the position of density maximum [58]. The radial E × B
movement (see Sec. 4.1.3) of the blob is then driven by potential difference between
the potential valley and hill.

Figure 3.4: Left: TCV tokamak - conditional average of density at level nthr = 2.5 for
several discharges with different line-averaged density n̄e. Symbol nrms denotes root
mean square of density fluctuations and n̄ is mean density at the point of measurement.
Gray line shows results of numerical model of interchange turbulence ESEL (see Sec. 5).
Reproduced from [50]. Right: CASTOR - 2D image of negative conditionally averaged
Vfl structure with CA triggering threshold Vfl,thr = −1.5. Reproduced from [98].

There is still an ongoing discussion on the question how strongly is the edge
turbulence linked with electromagnetic effects (see e.g. Section 5 in [28] and re-
ferences therein). Generally, it is expected that the turbulence should be mainly
electrostatic in the conditions with low β (≡ p/(2B/µ0) in the plasma with pres-
sure p, magnetic field B and vacuum permeability µ0) while the electromagnetic
effects may play a role in high-β conditions. Recent experimental observations show
that the level of magnetic fluctuations B̃/B and associated current J̃‖ carried by
turbulent structures differ between L-mode turbulence and H-mode ELMs. This
is being explained by the fact that ELMs are larger transport events that carry
generally much higher pressure perturbation then L-mode turbulence. In [99] an
order of magnitude difference between fluctuations of current carried by L-mode
structures and H-mode ELMs was found. Typically, the L-mode turbulence is con-
sidered electrostatic while the current carried by ELMs is non-negligible [150, 99]
and for correct description of the ELM cycle (still an open issue) the description
should be fully electromagnetic and global [113].

In the last two decades understanding of plasma transport in tokamak edge
changed from classical model describing competition of (anomalous) diffusive ra-
dial transport with parallel losses [145] to more complicated picture consisting of
transport dominated by convection of plasma by long-living coherent turbulent
structures (blobs) [88]. Even though large level of fluctuations (that are associated
with the presence of the coherent structures) was observed from the beginning, it
was assumed in the classical picture that the decrease of radial density and heat
profiles is dominated by parallel losses and effect of turbulent fluctuations was
described only by effective (anomalous) diffusion coefficient [88]. The new para-
digm was motivated by observations of edge plasma by fast visible cameras (one
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of the first in [55]), 2D arrays of Langmuir probes and other imaging diagnostics
that revealed intermittent presence of long-lived radially moving structures in SOL
carrying large amount of the particle flux. However, even though these observati-
ons has been long known, radial plasma transport by blobs was not recognized as
significant (and often dominant) transport mechanism in the SOL until measure-
ments on Alcator C-Mod [149]. On Alcator C-Mod there were for the first time
observed similar magnitudes of fluxes passing through LCFS and those hitting first
tokamak wall, which demonstrated that parallel losses were very small compared
to radial transport.

In the last ten years several numerical and analytical models that discussed
properties of plasma transport induced by blob presence in SOL appeared and they
are summarized e.g. in [88, 31]. Advances in edge plasma diagnostics now allow
direct comparison between statistical features of the models with experimental
measurements and we recommend review paper [31] that summarizes the work
made in experiment-theory comparison.

3.4 Drift waves
In tokamak edge, it is radial pressure gradient that provides dominant source of
free energy for turbulence drive. Several modes are unstable in these conditions
[27] and in this section and in the following one we will briefly describe the two
most relevant - interchange and drift modes.

Electrostatic modes called drift waves appear in low-β plasmas (typical si-
tuation in tokamaks) in which pressure gradient perpendicular to B is present.
Dynamics of the drift waves and the drift-wave turbulence is a result of balan-
ce between parallel electron currents (governed by generalized Ohm’s law (4.79))
and E×B drift dynamics in drift plane locally perpendicular to magnetic field. In
isothermal case (bearing in mind that inhomogeneous temperature does not prin-
cipally change the drift wave dynamics [128]) any perturbation of density ñ, that
locally appears at a field line, gives rise to parallel electron current that changes
plasma potential φ and that tries to establish Boltzmann relation φ̃/Te ≈ ñ/n.
In case of zero parallel resistivity ñ and φ̃ are in phase and the resulting E×B
drift is out of phase from ñ by π/2. Then, harmonic perturbation along direction
~ny = (~b×~n∇n) moves in this direction with electron diamagnetic velocity vDe, but
there is no net transport Γn in direction of the density gradient, only oscillations
[30]. In case of finite resistivity (the waves are often called resistive drift waves)
the response of parallel current is delayed, perturbations ñ and φ̃ are slightly out
of phase, and net flux Γn in direction ~n∇n appears. An example of φ̃ and ñ fields
taken from our simulation of Hasegawa-Wakatani model of drift waves (see Sec.
7.6) is shown in Fig. 3.5.

The resistive drift waves have small but nonzero parallel wave number which
fulfils relation k‖ � ky [30]. Since drift-waves require presence of nonzero pertu-
rbation along the field line, k‖ 6= 0, it is often assumed that their effect in the
SOL, where all parallel perturbations quickly expand towards material targets, is
limited. Instead, only flute-like perturbations (k‖ = 0) of interchange type discus-
sed in the next section are often considered in modelling and analysis of turbulent
transport in the SOL region [85, 43, 88, 53, 31]. Indeed, discussion on this topic
is far from being closed and recent studies show that drift-waves can significantly
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influence plasma transport in SOL when convective rate of interchange structures
is on the order of drift-wave growth rates [3, 4]. On the other hand, in the region
of closed field lines the finite k‖ cannot vanish [127] and drift-waves dominate over
interchange modes for typical edge plasma parameters [130].

Figure 3.5: Snapshot of density fluctuation, n′, potential fluctuation, φ′ and vorticity, Ω,
fields from our code modelling Hasegawa-Wakatani equations (Sec. 7.6). All fields are
normalized according to 7.47.

3.5 Interchange instability
Another mode crucial for understanding of turbulent transport in tokamak edge
is an interchange mode, often called Rayleigh-Taylor. The nature of interchange
mode in plasma is similar to the behaviour of inversely stratified fluid in classi-
cal hydrodynamics [49]. The interchange instability in tokamaks appears due to
presence of inhomogeneous magnetic and pressure fields and its mechanism is ni-
cely discussed e.g. in [42]. In fluid description (see Sec. 4.3) the mechanism can be
described as follows. When small pressure perturbation locally appears, diamagne-
tic drift (corresponding to charge-dependent curvature, grad-B and magnetization
single-particle drifts) is compressible at the sides of the perturbation (transverse
to direction of magnetic field gradient) and leads to separation of charge. This
creates potential perturbation that is by π/2 out of phase from the pressure per-
turbation and the resulting E×B drift moves the initial pressure perturbation. At
the same time there is a (weaker) electric field between regions of separated charge
and surrounding neutral plasma. This electric field moves the surrounding plasma
in the opposite direction, along the sides of main pressure perturbation. The whole
situation is schematically illustrated in Fig. 3.6.

If gradient of the global pressure equilibrium ∇p is present, relative amplitude
of the initial perturbation δp either grows with the E×B movement or decreases,
depending on the direction of the movement relative to the direction of the bac-
kground pressure gradient (illustrated in Fig. 3.7). In tokamaks, the interchange
mode is unstable on the low-field side where ∇p · ∇B > 0 and δp grows during its
movement, while it is stabilized on the high-field side where ∇p · ∇B < 0. This
leads to so called ballooning nature of the transport that refers to the fact that
majority of the flux through LCFS is observed at the 30◦ angle around outer mi-
dplane [59]. In this region the hot and dense confined plasma is interchanged with

28



relatively cold and sparse plasma from SOL in form of convective cells called blobs
(hot and dense) and holes (relatively cold and sparse). An illustrative example of
growth of interchange structure can be found also in Fig. 7.20.

From the point of view of a single field line located in the SOL, ballooning
nature of the interchange transport causes perturbations of pressure and energy to
appear approximately in the middle of the field line length (depending on symmet-
ry of divertor legs, limiter position, etc.). These perturbations then quickly expand
along the field line towards its ends. Time scale of the plasma expansion along the
field line and time scale of cross-field interchange motions are comparable and the
interplay between the two processes may become non-Markovian (with memory)
and non-linear (see discussion in Sec. 5.7.1)

Experimental measurements of plasma fluctuations in SOL have been compared
with predictions of the interchange model for several times, finding good agree-
ment. Large part of the work on this experiment-theory comparison is summarized
in recent review paper [31].

Figure 3.6: Left : Schematic illustration of interchange structure (blob) moving radially
outwards due to radial electric field Er created by charge polarization. Two holes moving
inwards at the edges of the main blob are illustrated as well. Blue and red circles represent
areas of opposite charge and oposit sign of vorticity. [132] Right : Snapshot of turbulent
potential in ESEL model of interchange turbulence (see Chap. 5) showing tilted bipolar
blob structure [132].

3.6 Zonal flows
Magnitude of turbulence fluctuations in tokamak plasma is often regulated by
layers exhibiting large radial shear of poloidal E×B velocity. Such layers that can
be observed as large poloidally and toroidally symmetrical potential (φ) structures
are called zonal flows [32]. If the shearing rate

ωE×B = 1/τshear ≡ ∂vp/∂r = − 1

B

∂2φ

∂r2
(3.23)

becomes comparable with inverse of autocorrelation time (1/τac) of individual tur-
bulence structures then the shear layer is able to destroy their coherence and limit
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Figure 3.7: Illustration of mechanism leading to growth of interchange structures at outer
side of tokamak and their suppression at the inner side.

turbulent transport [32, 45]. This mechanism called shear decorrelation is schema-
tically illustrated in Fig. 3.8.

One of the processes contributing to generation of the sheared flows is the
turbulence itself through mechanism called Reynolds stress [10, 110]. When the
advective term ~v · ~∇~v appearing e.g. in Navier-Stokes [17] or fluid equations (see
Eq. 4.45) is averaged over time, it gives two different contributions. One is given
by mean velocity 〈~v〉 and the second one by time average of their fluctuation parts
〈ṽiṽj〉 [10, 17],

〈~v · ~∇~v〉 = 〈~v〉 · ~∇〈~v〉+
←→
R where Rij = 〈ṽiṽj〉. (3.24)

←→
R is Reynolds stress tensor that couples energy in the turbulent velocity fluctuati-
ons (i.e. fluctuations of electric field when E×B drift is dominant) and mean plasma
flows. The dynamics of turbulence together with poloidal flows can be described as
predator-prey model [49, 96, 13, 34]. High level of turbulence generates strong and
sheared poloidal flows that in turn start to decorrelate and suppress the turbulen-
ce when the condition τshear ≈ τac is fulfilled. Without the turbulence drive the
flows dissipate and as the shear decorrelation mechanism weakens, the turbulence
structures appear again. Such system can be found in the state close to marginal
stability τshear ≈ τac [69]. Nice illustration of this interplay between interchange
instability and self-generated poloidal flows is shown in Fig. 3.9.

The self-regulation of turbulence by zonal flow generation is important for both,
drift as well as interchange modes [82]. In the literature term transport barrier is
often used and it describes regions of reduced radial turbulent transport, usually
due to shear decorrelation.
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Figure 3.8: Illustration of mechanism decorrelating turbulent structures by radial shear
of poloidal velocity ∂vp/∂r.

Figure 3.9: Kinetic energy in the turbulent fluctuations, K, and sheared poloidal flows,
U, in ESEL model [44]. Time t is normalized to ωci. Reproduced from [44].
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4. Guiding center drifts and fluid
description of plasma turbulence
Plasma behaviour and its transport properties are significantly influenced by pre-
sence of electromagnetic fields. In tokamak these fields are of two types - exter-
nally imposed and those created self-consistently by collective motions of plasma
particles. Especially the latter is very important for generation of tokamak edge
turbulence and for understanding its enhanced transport properties.

In the following section 4.1 we will recall basic theory of motion of charged
particle in an electromagnetic field. This one-particle Lagrangian description will
be then used in Sec. 4.3 to interpret collective plasma motion in fluid approximation
and set of fluid equations describing basic properties of edge plasma turbulence
will be derived and discussed.

4.1 Single particle drifts in guiding center appro-
ximation

4.1.1 Cyclotron gyration of particle in constant magnetic
field

Motion of particle with charge q and mass m in magnetic ~B(~x, t) and electric
~E(~x, t) fields is given by Lorentz force [30]

d~v
dt

=
q

m

(
~E + ~v × ~B

)
. (4.1)

The simplest case is a motion of particle in homogeneous purely magnetic field
~B0 = B0

~b, ~E = 0, where ~b represents unit vector in direction of the field. In this
case the equation (4.1) reads

d~v⊥
dt

+
d~v‖
dt

=
q

m
~v⊥ × ~B0 (4.2)

where ~v‖ = (~v · ~b)~b = v‖~b is field-aligned part of the velocity (~v‖ × ~b = 0) and
~v⊥ = ~v−~v‖ is its cross-field part (~v⊥ ·~b = 0). By scalar multiplication of (4.2) with
~b we readily see that v‖ is constant, given by initial conditions. Solving remaining
two coupled differential equations reveals that in the plane perpendicular to ~b
particle position ~x undergoes cyclotron gyration around center ~xc (that moves
itself with ~v‖),

~x− ~xc = rL(sin(ωct+ φ0), cos(ωct+ φ0), 0) (4.3)

with initial phase φ0, constant cyclotron frequency ωc and radius (Larmor radius)
rL

ωc =
qB0

m
, rL =

mv⊥
|q|B0

. (4.4)
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Velocity of such cyclotron motion ~vgyr is in the plane perpendicular to ~b described
by relations [42]

d~vgyr
dt

= ωc~vgyr ×~b, (4.5)

~vgyr = ωc(~x− ~xc)×~b. (4.6)

4.1.2 Guiding center approximation

If any additional term (force) ~F (~x, t) arises in equation of motion,

d~v
dt

=
q

m
~v × ~B0 +

1

m
~F, (4.7)

its effect can be described by motion of the gyration center with velocity ~u(~x, t).
Separating motion of guiding center ~u and gyromotion ~vgyr in (4.1), ~v = ~u+~vgyr,

and reminding (4.5), Eq. (4.7) transforms to

d~u
dt

=
q

m
~u× ~B0 +

1

m
~F. (4.8)

An additional assumption can be often placed on ~u,

d~u/dt� ~u. (4.9)

This allows to evaluate ~u iteratively. After dividing ~u into field-aligned part ~u‖ =

u‖~b and cross-field part ~u⊥ = ~u− ~u‖ we can rewrite previous equation as

~u⊥ =
1

mωc
~F ×~b− 1

ωc

d~u
dt
×~b (4.10)

~u‖ =
1

m

∫ [
~F ·~b−~b · d~u⊥

dt

]
dt. (4.11)

Generally, the perturbation force F may be dependent on phase of the gyro-
motion or explicitly on time or particle position. Then, also the guiding center
drift would have explicit temporal or spatial dependency. If the strength of the
perturbation is low and the dependency is approximately periodic, ~u is usually
time-averaged over one gyroperiod, as we will show in the following chapter 4.1.3,
giving the averaged gyrocenter drift 〈~u〉.

In most cases, velocity and/or direction of the guiding center drift differ for
different plasma species. Then, there is a current density associated to the drift,

~j =
∑
k

nkqk~uk (4.12)

where k goes through all relevant plasma species, nk is their density, qk charge and
uk corresponding guiding center drift.
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4.1.3 Static electromagnetic field

If constant electric field ~E is present together with the constant magnetic field, the
force acting on particle is ~FE = q ~E (see Eq. 4.1). Then, according to (4.11), its
parallel component uniformly accelerates the particle along magnetic field lines.
The cross-field electric field causes E ×B drift of the center of cyclotron gyration
as described by Eq. (4.10),

~uE =
~E ×~b
B0

. (4.13)

The total velocity is thus given as sum of all three parts, ~v = (v‖,0 +u‖)~b+~uE+~vgyr
where v‖,0 is initial parallel velocity of the particle. It is important to note, that
~uE is not dependent neither on charge nor mass and therefore any plasma species
moves due to E × B drift with the same velocity in the same direction and for
quasineutral plasma no net current is generated, ~jE = 0.

In a weakly inhomogeneous magnetic field, series expansion of the field in the
position of gyration center ~xc(t) can be made to describe effects of the inhomo-
geneity on the motion of ~xc. In the first order of expansion the magnetic field
is

~B(~x) = ~B(~xc) + ((~x− ~xc) · ~∇) ~B(~xc). (4.14)

The error made by this approximation is in the order of O( (~x−~xc)2

l2
) ≈ O(

r2
L

l2
),

where l is the spatial scale of the inhomogeneity. This means that the scale of the
inhomogeneity must be significantly larger than rL, l� rL, otherwise higher-order
terms of the expansion should be taken into account.

To the first order we can assume that the cyclotron trajectory is not perturbed,
i.e. that the velocity on the right hand side of (4.1) is ~v ≈ ~vgyr. Substituting
expansion of ~B (4.14) into Lorentz force (4.1), comparing with (4.7) and averaging
over one gyroperiod, mean force due to the gradient of the magnetic field is

〈~F∇B〉 ≡ qωc

∫ ω−1
c

0

~vgyr ×
(
~b((~x− ~xc) · ~∇)B(~xc)

)
dt (4.15)

where we have used the fact that particle gyrates in plane perpendicular to ~b,
(~x − ~xc) · ~b = 0. After substitution of trajectory of unperturbed cyclotron orbit
(4.3) and its velocity (4.6) and performing the integration, one gets the mean force

〈~F∇B〉 = −qωcr
2
L

2
~∇B (4.16)

and the corresponding guiding center drift (4.10)

~u∇B =
v2
⊥

2ωc
~b× ~∇ lnB. (4.17)

During derivation of∇B-drift we have assumed that the direction of the magne-
tic field does not change in the cross-field plane, ~∇⊥~b = 0. However, also curvature
of the field lines ~∇‖~b 6= 0 must be taken into account. The local change of magnetic
field as particle moves along the field line is

d~b
dt

= (~v · ~∇)~b = v‖(~b · ~∇)~b. (4.18)
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The additional term arising from the fact that d~v‖/dt = dv‖/dt ·~b+ v‖d~b/dt is

~Fcurv = −mv‖
d~b
dt

= −mv2
‖(
~b · ~∇)~b. (4.19)

This is usually interpreted as centrifugal force acting on a particle and bending
its trajectory to move along the curved field line [42, 30]. The guiding center
drift (4.10) resulting from the centrifugal force is (using vector calculus identity
(~b · ~∇)~b = −~b× (~∇×~b) + 1

2
~∇(~b ·~b))

~ucurv =
v2
‖

ωc
~∇×~b. (4.20)

When the volume currents can be neglected, the Maxwell equation ~∇ × ~B = 0
implies that ~∇ × ~b = ~b × ~∇ lnB and both, curvature and grad-B drifts, can be
written together as

~u∇B+curv =
1

ωc
~b× ~∇ lnB(

1

2
v2
⊥ + v2

‖). (4.21)

Note that regardless of particle energy, the direction of the combined drift in to-
roidal tokamak geometry with magnetic field described in Eq. (2.4) will be always
outwards. The drift (4.21) is charge dependent which may give rise to current asso-
ciated with inhomogeneities of magnetic field. Since the drift depends on particle
velocity, we will anticipate results of Sec. 4.2 and write the current ~J∇B+curv due
to inhomogeneous curved magnetic field as

~J∇B+curv =
1

B
(p⊥ + p‖)~b× ~∇ lnB (4.22)

where pressure p = nT is in both directions summed over pressure of all species.
Similar expansion can be made for the case of inhomogeneous electrostatic field,

~E(~x) = ~E(~xc) + ((~x− ~xc) · ~∇) ~E(~xc) +
1

2
((~x− ~xc)2~∇2) ~E(~xc). (4.23)

Note that the expansion is made up to the factor O(
r3
L

k3 ), where k is spatial scale
of the inhomogeneity in the electrical field, i.e. one order more than for magnetic
field. The reason is that gyro-averaging of the first order term gives zero and the
first non-zero term is the second-order correction. Performing averaging over an
unperturbed cyclotron orbit gives second-order correction to the E ×B drift

~uE+∇E = ~uE + ~u∇E = (1 +
1

4
r2
L
~∇2)

~E ×~b
B0

. (4.24)

Larmor radius rL is significantly different for electrons and ions and therefore ~u∇E
drift has an associated current (in contrast to the basic E × B drift (4.13)) and
may lead to charge separation.
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4.1.4 Inertia drift

Inertia drift (often called polarization drift) of the guiding center appears in pre-
sence of time-dependent electric field ~E(t). Then the time derivative of ~u in (4.10)
cannot be neglected and besides the usual E×B drift ~uE we get a new term, polari-
zation drift ~uP . To be able to solve Eq. (4.10) iteratively, the term (1/ωc)d~u/dt×~b
must be a second order correction i.e., the characteristic rate of change of the
electric field ωE must be much smaller then the cyclotron frequency ωc,

ωE � ωc. (4.25)

In such slowly varying electric field the polarization drift is

~uP =
1

ωcB

d ~E⊥
dt

. (4.26)

Note that the time derivative of electric field has a form of convective derivative,
not partial, and therefore it has to be evaluated along particle trajectory. In the
lowest order, performing gyro-averaging replaces the full velocity in the convective
derivative by perpendicular E ×B drift ~uE. Since ~E⊥ may change along field line,
parallel velocity ~u‖ (4.11) should be also taken into account.

Inertia drift is charge and mass dependent and hence gives rise to a polarization
current

~Jp =
∑
k

nkmk

B2

d ~E⊥
dt

=
∑
k

nkmk

B2

(
∂

∂t
+ ~u · ~∇

)
~E⊥ (4.27)

where we sum over electron and ion species. The current is called polarization
current because compressibility of the partial derivative of ~E⊥ in (4.27) gives rise to
bound charge, similar to the bound charge in dielectric medium. For slow changes
of ~E and small variation of E‖ the bound charge increases relative permittivity in
the plasma by factor inversely proportional to the second power of B,

εr = 1 +
∑
i

nimi

ε0B2
. (4.28)

Value of εr is typically very large, with values in typical tokamak edge plasma in
the order of εr ≈ 103.

4.2 Velocity averaged single particle drifts
Particle velocity distribution in tokamak plasma is often considered as approxima-
tely Maxwellian [154], especially in the edge where the collisionality is relatively
large. Distribution function of particle momentum p in such case is

f(~p) =
n

(2πmkT⊥)
√

2πmkT‖
exp

(
−(~p⊥ −m~v⊥,0)2

2mkT⊥
−

(~p‖ −m~v‖,0)2

2mkT‖

)
, (4.29)

where n is local plasma density, T⊥ and T‖ local temperature perpendicular and
parallel to magnetic field, respectively, m is particle mass, ~p = ~p⊥ + ~p‖ = m~v
particle momentum, ~v0 = ~v⊥,0 + ~v‖,0 mean velocity of the plasma at given point
and k is Boltzman constant. Since some of the single-particle velocities derived in
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Sec. 4.1 are dependent on the velocity of the particle, one should take into account
the momentum distribution function and derive their averaged form.

First, we will discuss the cyclotron motion itself. If the particle density and
temperature as well as the magnetic field are all homogeneous, there is no net drift
of particles due to their cyclotron motion and no net current. However, if at least
one of the three quantities is inhomogeneous in space, the local current exists. This
can be described as magnetization current ~Jµ =

∫
~∇× (n~µ(v⊥))f(~v⊥)d~v⊥, where

~µ = −(mv2
gyr/(2B))~b is magnetic moment of current loop created by cyclotron

orbit of single particle (4.3). After performing the integration we find average
velocity of plasma element ~uµ = ~j/(nq) as [42]

〈~uµ〉 =
1

qnB

[
~b× ~∇(nT⊥)− (nT⊥)

(
~b× ~∇ lnB + ~∇×~b

)]
. (4.30)

E × B drift (4.13) is not velocity dependent and after averaging it remains in
the same form. The velocity averaging of grad-B drift (4.17) and curvature (4.20)
drift gives

〈~u∇B+curv〉 =
1

qB

(
T⊥~b× ~∇ lnB + T‖~∇×~b

)
. (4.31)

In vacuum field we get this drift in somewhat simpler form, obtained from Eq.
(4.21),

〈~u∇B+curv〉 =
T⊥ + T‖
qB

~b× ~∇ lnB. (4.32)

4.3 Fluid approximation

Reducing complicated particle motion in plasmas to guiding center drifts makes
the description of plasma transport significantly easier, however it is still necessa-
ry to handle large number of particles, trace their trajectory and self-consistently
evaluate time dependent electric fields. Due to large number of particles typically
present in plasmas, all of this may be very time consuming. This task may be
further simplified when the plasma is treated as a fluid and described using lo-
cal macroscopic quantities such as particle density n, mass density ρ, momentum
density ~π, pressure tensor ←→τ and others. This represents transition from Lagran-
gian to Eulerian formulation of plasma movement, which is often easier to handle.
The macroscopic quantities are defined as moments of particle distribution functi-
on f(~x, ~p, t),

n ≡ 〈f〉, (4.33)
ρ ≡ nm, (4.34)
~π ≡ 〈~pf〉 = mn~v = ρ~v, (4.35)
←→
T ≡ 1

m
〈~p~pf〉 = mn~v~v +←→τ = ρ~v~v +←→τ . (4.36)

Here 〈·〉 means averaging over momentum space. Note that
←→
T and ←→τ are by the

definition symmetric with only 6 independent components. The pressure tensor
is often divided into scalar pressure p and viscous stress tensor

←→
Π , [54] ←→τ =

←→
I p+

←→
Π . Particle mobility along and across magnetic field lines may differ, which
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is reflected in direction dependence of temperature in (4.29) and pressure p⊥ 6= p‖.
In such case we will denote by

←→
Π the difference of ←→τ from gyrotropic pressure

tensor,
←→τ = (

←→
I −~b~b)p⊥ +~b~bp‖ +

←→
Π . (4.37)

Kinetic energy ε = 〈p2/2m〉 and heat energy ε0 of the element are given by the
trace of ←→τ and

←→
T as

ε0 ≡
1

2
Tr(←→τ ) (4.38)

ε ≡ 1

2
Tr(
←→
T ) =

1

2
ρv2 + ε0. (4.39)

The kinetic energy is a sum of two components, representing energy of the mean
flow of particles in the fluid element and energy ε0 of their random motion. If we
assume Maxwellian distribution function (4.29), it allows for explicit integration
of the moments and we can write the form of ←→τ and ε0 using perpendicular
p⊥ = nkT⊥ and parallel p‖ = nkT‖ pressure, obtaining gyrotropic pressure tensor

←→τ = p⊥(
←→
I −~b~b) + p‖~b~b (4.40)

and
ε0 = p⊥ +

1

2
p‖ (4.41)

The components of 3rd-order momentum of f correspond to heat flux Qijk

Qijk =
1

m2
〈pipjpkf〉 = ρvivjvk + viτ jk + vjτ ik + vkτ ij + qijk (4.42)

where qijk is heat flux in the frame of reference co-moving with the fluid element.
For better readability, we will write more complicated expressions in components
(using Einstein summation law) whenever needed. Due to symmetry, there are
only 10 independent components of Qijk.

All the defined macroscopic quantities are space and time dependent and their
time evolution is governed by time evolution of the underlying distribution function
f . Boltzmann equation describing time evolution of distribution function f(~x, ~p, t)
of particles with charge q and massm under influence of electric field with potential
φ and magnetic field ~B is [154]

∂f

∂t
+
~p

m
· ∂f
∂~x

+ q[−~∇φ+ (~v × ~B)] · ∂f
∂~p

=

(
δf

δt

)
c

(4.43)

where ~x and ~p are position and momentum, respectively, and
(
δf
δt

)
c
is change of

the distribution function due to collisions.If any other effects that change f (like
recombination, ionisation, chemical reactions, etc.) should be taken into account,
they would modify the Boltzmann equation similarly to the collisional term.

Computing moments of (4.43) in momentum space gives equations for time
evolution of the moments of the distribution function (4.33-4.36) and (4.42). These
equations then form a hierarchy where time evolution of the n-th order moment
is dependent also on the moment of the order n + 1. In the following sections we
will explicitly write these evolution equations for the first three moments and use
closure that will allow to cut of all moments of order higher then 3. In order to
perform the integration 〈·〉 ≡

∫
d3p we will assume boundary conditions such that

boundary terms in per-partes method will become zero.
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4.3.1 Momentum equation

The first moment of Boltzman equation (4.43),
∫
~pd3p), gives time evolution of the

momentum ~π or velocity ~v.

∂

∂t
~π + ~∇ ·

←→
T − nq[−~∇φ+ (~v × ~B)] =

(
δ~π

δt

)
c

(4.44)

mn(
∂

∂t
+ ~v · ~∇)~v + ~∇ ·←→τ − nq[−~∇φ+ (~v × ~B)] =

(
δ~π

δt

)
c

− ~vm
(
δn

δt

)
c

(4.45)

Note that to come from (4.44) to (4.45) we have anticipated the result of the next
section, the continuity equation (4.53).

Since character of particle motion perpendicular to the magnetic field is sig-
nificantly different than the motion along magnetic field lines, we will separate
the perpendicular dynamics in (4.45) by vector multiplication with term ~b/(qnB),
which gives

~v⊥ = ~vE + ~vD + ~vP + ~vC =
1

B
~b× ~∇φ+

1

qnB
~b× ~∇ ·←→τ + (4.46)

+
m

qB
~b× (

∂

∂t
+ ~v · ~∇)~v +

1

qnB
~b×

[(
δ~π

δt

)
c

− ~vm
(
δn

δt

)
c

]
.

Here we have defined electrical, or E × B, drift ~vE, diamagnetic drift ~vD, polari-
zation drift ~vP and drift due to collisions ~vC . The two terms on the right still keep
dependency on the total velocity ~v, however when D/dt � qB/m and collisional
frequency ν � qB/m, the problem can be treated iteratively [139, 41] substituting
~vE.

There exists direct correspondence between fluid and gyrocenter drifts which
is very illustratively explained in [42]. The correspondence between E×B drift in
fluid (4.13) and gyrocenter (4.46) approximation can be readily seen. When the
distribution function f is Maxwell-Boltzmann, the pressure tensor is gyrotropic,
given by (4.41), and form of diamagnetic drift becomes similar to the sum of
velocity averaged single particle ∇B and curvature drifts (4.32) and magnetization
drift (4.30) [42]:

~vD =
1

qnB
~b× ~∇(p⊥) +

p‖ − p⊥
qnB

~∇×~b. (4.47)

Therefore, the diamagnetic drift covers real movement of particle gyrocenters
(grad-B and curvature drifts) together with magnetization effects. In typical edge
plasma parameters the E × B drift is dominant and correspondence of vP with
uP in (4.26) can be acquired substituting ~E⊥ = ~B × ~vE. Through the outlined
links, motion of the fluid can be understood in terms of motion of its individual
particles.

In the homogeneous magnetic field ~vE would be incompressible, ~∇ · ~vE = 0.
This, however, does not hold for a magnetic field in tokamak toroidal geometry
(2.4) and all drifts from 4.46 become compressible. For the case of gyrotropic
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pressure tensor (4.41) and lowest order iteration ~v ≈ ~vE it is

~∇ · ~vE = C(φ) (4.48)

~∇ · ~vD =
1

qn
C(p⊥) +

1

qnB
(~∇×~b) · (~∇δp− δp~∇ lnB)− ~vD ·

~∇n
n

(4.49)

~∇ · ~vP =
m

q
~K · d~vE

dt
− m

qB
~b ·
(
~∇× d~vE

dt

)
≈ − m

qB
~b ·
(
~∇× d~vE

dt

)
(4.50)

where C is curvature operator

C =
1

B
[~∇×~b+~b× ~∇ lnB] · ~∇ = ~K · ~∇ (4.51)

and δp = p‖−p⊥. Note, that even though ~vP itself is typically small (it is a second-
order drift) and we have neglected all terms directly proportional to d~vE/dt, its
divergence may become not negligible due to the remaining (rightmost) term in
(4.50). As will be described in Sec. 4.3.6, it is the divergence of polarization current
that controls the evolution of plasma vorticity and gives rise to turbulent convective
structures. Amper’s law (~∇× ~B = µ0

~J) shows that both terms in the first equality
in curvature operator (4.51) differ by term proportional to plasma current ~J . For
low-β tokamak plasmas the current can be neglected and both terms considered
equal [44].

4.3.2 Continuity equation

The zeroth moment of Boltzman equation (4.43), the continuity equation, can be
obtained by integration of (4.43) over momentum space:

∂n

∂t
+

1

m
~∇ · ~π =

(
δn

δt

)
c

(4.52)

∂n

∂t
+ ~∇ · (n~v) =

(
δn

δt

)
c

(4.53)

Evolution of the velocity ~v can be either solved together with full momentum
equation (4.45) or reduced to the algebraic equation (4.46), separating motion
parallel and perpendicular to magnetic field lines. Since the latter will be used
in two models of edge tokamak plasma that we will present later, we will further
discuss mainly the reduced approach.

Assuming low-frequency variations, in the lowest order we will neglect flux due
to polarization drift, which is of the second order, and rewrite continuity equation
(4.53) using (4.46) and (4.48-4.49) into form

(
∂

∂t
+ ~vE · ~∇)n + nC(φ) +

1

q
C(p) +

1

qB
(~∇×~b) · (~∇δp− δp~∇ lnB) =

= −~∇ · (n~vC)− ~∇ · (n~v‖) +

(
δn

δt

)
c

(4.54)

where we have split the total velocity into its perpendicular and parallel compo-
nent, ~v = ~v⊥ + ~v‖. The first term on the left-hand side shows that the density is
advected purely by E × B drift (with some possible corrections due to ~vC) and
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expected advection by diamagnetic drift is cancelled by the terms coming from the
compressibility of ~vD. We can see this more explicitly in Eq. (4.49) that shows that
n~∇ · ~vD contains term −~vD · ~∇n that cancels the advection. This is called effect
of diamagnetic cancellation and will be present in the energy equation (Sec. 4.3.3)
as well. Due to similar mechanism the diamagnetic drift does not contribute to
the advective nonlinearity in the polarization drift [44]. From the point of view of
movement of individual particles, we may understand the diamagnetic cancellation
in terms of magnetization drift discussed in Sec. 4.2 that shows nonzero average
velocity of particles at given point even when the magnetic field is homogeneous
(i.e. no curvature and grad-B drifts) and gyration center of all particles is fixed
(there is no advection of local n or T ).

4.3.3 Energy equation

Similarly to continuity and momentum equation, the equation for pressure tensor
is obtained by integration of (4.43) multiplied by pipj. For better readability, we
will present it in components (with summation over similar indexes) and get back
to vector notation in energy equation.

∂T jk

∂t
+

∂Qijk

∂xi
− q

m
(πjEk + πkEj + εjlmT klBm + εklmT jlBm) =

(
δT jk

δt

)
c

(4.55)

∂τ jk

∂t
+

∂qijk

∂xi
+
∂(viτ jk)

∂xi
+ τ ki

∂vj

∂xi
+ τ ji

∂vk

∂xi
− q

m
(εjlmτ klBm + εklmτ jlBm) =

=

(
δT jk

δt

)
c

+mvjvk
(
δn

δt

)
c

− vj
(
δπk

δt

)
c

− vk
(
δπj

δt

)
c

(4.56)

Energy of fluid element is given by trace of the ←→τ or
←→
T in (4.38) or (4.39),

respectively. By making contraction of (4.55) and (4.56) we get energy equations

∂ε

∂t
+ ~∇ · ~Q− qn~v · ~E =

(
δε

δt

)
c

(4.57)

(4.58)
∂ε0
∂t

+ ~∇ · ~q + ~∇ · (~vε0) +←→τ : ~∇~v =

(
δε

δt

)
c

+
mv2

2

(
δn

δt

)
c

− ~v ·
(
∂~π

δt

)
c

where

Qi =
1

2
Qikk; qi =

1

2
qikk (4.59)

Rewriting the energy equations in terms of (4.37), (4.41) and separating terms
involving perpendicular velocity and viscosity (blue, two indexes ⊥), parallel terms
(red, index ‖) and mixed terms (magenta) will allow us to see structure of the

42



energy equations in more detail.

∂

∂t

(
1

2
nT‖ +

1

2
mnv2

‖

)
+
∂

∂t

(
nT⊥ +

1

2
mnv2

⊥

)
+ (4.60)

∂

∂x‖

(
v‖(

3

2
nT‖ + nT⊥) +

1

2
mnv‖v2

‖ + v‖Π
‖
‖

)
+

∂

∂x‖

(
1

2
mnv‖v2

⊥ + v⊥αΠ
‖
⊥α + v‖Π⊥α⊥α

)
+

∂

∂x⊥α

(
v⊥α(2nT⊥ +

1

2
nT‖) +

1

2
mnv⊥αv2

⊥ + v⊥βΠ⊥α⊥β + v⊥αΠ
⊥β
⊥β

)
+

∂

∂x⊥α

(
1

2
mnv⊥αv2

‖ + v‖Π⊥α‖ + v⊥αΠ
‖
‖

)
+

+
∂q‖

∂x‖
+
∂q⊥α

∂x⊥α
− qnv‖E‖ − qnv⊥αE⊥α =

(
δε

δt

)
c

1

2
n

(
∂

∂t
+ v‖

∂

∂x‖

)
T‖ + nT‖

∂v‖

∂x‖
+
∂q‖

∂x‖
+ Π

‖
‖
∂v‖

∂x‖
+ Π⊥α‖

∂v⊥α

∂x‖
(4.61)

n

(
∂

∂t
+ v⊥α

∂

∂x⊥α

)
T⊥ + nT⊥α

∂v⊥α

∂x⊥α
+
∂q⊥α

∂x⊥α
+ Π⊥α⊥β

∂v⊥β

∂x⊥α
+ Π

‖
⊥α

∂v‖

∂x⊥α
=(

δε

δt

)
c

+

(
1

2
mv2 − 1

2
T‖ − T⊥

)(
δn

δt

)
c

− v⊥α
(
δπ⊥α

δt

)
c

− v‖
(
δπ‖

δt

)
c

Here we used pk = nTk and assumed that viscous forces vary in time slowly such
that terms ∂

←→
Π /∂t can be neglected.

4.3.4 Effects of collisions

Evolution of heat flux ~q and viscous terms
←→
Π can be described by their own

moments of Boltzmann equation, however at this point the hierarchy of moment
equations is often closed by assuming an explicit form of both terms. Including
effects of collisions with assumption of highly magnetized plasmas (ωc,j/νji � 1
where νji represents frequency of collisions of species j), isotropic pressure p‖ =
p⊥ = p and quasineutrality, ne ≈ ni ≈ n, the remaining terms can be written in
following form [54, 154, 76].

Momentum transfer due to collisions is the same, but with opposite sign, for
electrons and ions

(
δ ~πe
δc

)
c

= −
(
δ ~πi
δc

)
c

= ~R and has two components, ~R = ~Ru + ~RT ,
frictional force ~Ru due to plasma resistivity and thermal force ~RT .

~Ru = 0.51
meνei
e

~j‖ (4.62)

~RT = −0.71n∇‖Te −
3

2

nνei
ωc,e

~b×∇⊥Te (4.63)

The collisional heating is, again, of the same magnitude but opposite sign for
electrons and ions,

(
δεe
δc

)
c

= −
(
δεi
δc

)
c

= Q.

Q = 3
me

mi

nνei(Ti − Te) (4.64)

Further, change of
(
δn
δc

)
c
,
(
δ~π
δc

)
c
and

(
δε
δc

)
c
due to ionisation, recombination and

charge exchange can be taken into account.
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Closure of the heat flux ~q has form

~qTj =
nTj
mjωc,j

(
−ωc,j
νji

κj1‖ ∇‖Tj −
νji
ωc,j

κj2⊥∇⊥Tj +
5

2
~b×∇⊥Tj

)
(4.65)

~qv = 0.71nTev‖ +
3nTeνei

2ωce
(4.66)

~qi = ~qTi ; ~qe = ~qTe + ~qv (4.67)

where j is index of plasma species (i or e), ~qTj is thermal gradient heat flux, ~qv
frictional heat flux and κe1 = 3.2, κi1 = 3.9, κe2 = 4.7 and κi2 = 2. The term

~qD⊥ =
5

2

nkT⊥
qB

~b× ~∇T (4.68)

is not of collisional origin but it represents cross-field diamagnetic heat flux. The
net heat flux comes from the difference in energies of particles having their gui-
ding center in the regions with different temperatures. It is charge dependent and
electron and ion contribution can cancel. Since the flux heads along isotemperatu-
re lines, it does not change temperature of the plasma. Similarly to the situation
with diamagnetic cancellation in continuity equation, the compressibility of dia-
magnetic heat flux ~∇ · ~qD⊥ together with compressibility of diamagnetic velocity
T ~∇·~vD cancel the advective contribution of diamagnetic velocity ~vD · ~∇T and the
temperature field is advected across magnetic field by E ×B drift only [44].

Closure of
←→
Π is rather complicated and since it will not be directly involved in

any physics discussed later we refer reader to its explicit form that can be found
e.g. at p. 38 in [76].

4.3.5 Vorticity relation to plasma potential

In the tokamak edge, cross-field fluid velocity is in the lowest order given by ~vE.
Vorticity of such flow, given by curl of velocity field, is

~Ω = ~∇× ~vE = ~∇×
(

1

B
~b× ~∇φ

)
. (4.69)

After some algebra (see e.g. Appendix of [72]) this can be rewritten for vacuum
field (~∇ ·B = 0) to the form

~Ω =
1

B

[
~b(~∇2

⊥φ)− (~b · ~∇)~∇⊥φ+ (~∇⊥φ · ~∇)~b− (~∇ lnB · ~∇⊥φ)~b
]
. (4.70)

Because turbulent potential structures in the edge are much smaller compared to
∇ lnB ∼ 1/R, i.e. k⊥R � 1, magnetic field variation in the third and fourth
term on right-hand side of (4.70) can be neglected. The second term vanishes for
perturbations with k‖ � k⊥. Then the vorticity has only one nonzero component

Ω = Ω‖ =
1

B
~∇2
⊥φ. (4.71)

Comparing this expression with Gauss’s law

∇2φ = ∇2
⊥φ+∇2

‖φ = −ρq
ε0

(4.72)

shows that when k⊥ � k‖, the vorticity Ω represents (is proportional to) local
charge density. This has consequences for the derivation of vorticity equation as
will be shown in the next section.
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4.3.6 Quasineutrality and vorticity equation

To describe behaviour of the electric field, we will first subtract continuity equation
(4.53) for electron and ions to obtain conservation of charge density ρq = e(ne−ni)
(asumming Zi = 1)

∂ρq
∂t

+ ~∇ · (ρq(~vE + ~v‖)) + ~∇ · ~J =

(
δρq
δt

)
c

. (4.73)

The local charge density can be changed in three ways. Either by compressibility of
flux ρq(~vE + ~v‖) maintained by E ×B and parallel drifts that advect both plasma
species similarly, by compressibility of current density ~J given by polarization
or diamagnetic current, or by other processes such as collisions. When the terms
describing advection of charge density by ~vE are expanded using Gauss’s law (4.72),

∂ρq
∂t

+ ~vE · ~∇ρq → ε0

(
∂

∂t
+ ~vE · ~∇

)
~∇2φ (4.74)

are compared with compressibility of polarization current ~Jp = miqivp,i +meqevp,e
in the lowest order,

(4.75)

~Jp =
(nimi + neme)

B
~b×

(
∂

∂t
+ ~vE · ~∇

)
~vE ≈

nmi

B
~b×

(
∂

∂t
+ ~vE · ~∇

)
~vE

~∇ · ~Jp ≈ −nmi

B

(
∂

∂t
+ ~vE · ~∇

)
~∇× ~vE ≈ −

nmi

B2

(
∂

∂t
+ ~vE · ~∇

)
~∇2
⊥φ (4.76)

we find that dominant terms describing compressibility of polarization drift (4.76)
are similar to the advection by ~vE (4.74), but larger by factor nimi/(ε0B

2) [44]
where ε0 is vacuum permittivity andmi andme ion and electron mass, respectively.
The factor is large in typical tokamak plasma, for B ≈ 1 T and n ≈ 1×1019 m−3 we
get nmi/(ε0B

2) ≈ 103. The extra parallel derivative of potential in (4.74) compared
to (4.76) does not overweight this factor, because parallel wavenumber of poten-
tial structures is usually significantly smaller than the perpendicular one. Then,
neglecting also (δρq/δt)c term in (4.73) and parallel advection of both charges, we
can write quasineutrality equation in the common form

~∇ · ~J = 0. (4.77)

By making curl of momentum equation (4.45) and neglecting collisional terms,
equation describing time evolution of vorticity ~Ω can be obtained. Its field-aligned
(parallel) component has form similar to the quasineutrality equation (4.77) [47],

− nmi

B

(
∂

∂t
+ (~vE + ~v‖) · ~∇

)
Ω + C(p) = −~∇ · ~J‖, (4.78)

and numerical tracking of evolution of vorticity (charge density) in form of Eq.
(4.78) is more precise than solution of continuity equations (4.53) separately for
electrons and ions and their subsequent subtraction. The first term on the left
hand side of (4.78) describes compressiblity of Jp together with parallel advection
of vorticity and the second term is just compressiblity of diamagnetic current for
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isotroppic pressure. The form of parallel current ~J‖ will be discussed in Secs. 4.4.2-
4.4.8. It has high impact on the process of turbulent generation and transport and
we will devote Secs. 5.5 and 5.6 to modelling of two different assumptions on ~∇· ~Jd.

We end this section with remark on Eq. (4.78) in which we have neglected,
among others, terms of the form ~Jp ·~∇ lnn. This is called Boussinesq approximation
and it is usually introduced since it allows computationally much less demanding
solver for Eq. 4.78. However, the term may have non-negligible values when density
gradients are large, which is often the case in SOL. In [157] it is demonstrated
that relaxing the Boussinesq approximation can change dynamics of turbulent
structures, especially in later stages of their development, and increase their radial
speed.

4.3.7 Generalized Ohm’s law

In previous chapters, perpendicular drifts and associated perpendicular currents
were discussed. To describe form of parallel current J‖ = e(nivi,‖ − neve,‖) ≈
en(vi,‖ − ve,‖) (with Zi = 1), one can subtract momentum equations (4.45) for
electrons and ions and after neglecting terms with factor me/mi, small quadratic
terms of the form (~v · ~∇)~v, assuming slow variations such that ∂/∂t terms can be
neglected and using collisional terms (4.62) and (4.63) he gets [54]

η‖J‖ = −∇‖φ+
1

en
∇‖p+

1

e
0.71∇‖Te. (4.79)

This equation is referred as generalized Ohm’s law and it describes response of the
parallel current to parallel electric field and pressure and temperature gradients.

As already discussed in Sec. 3.4, two basic types of low frequency modes can be
distinguished - drift modes and interchange/MHD-type modes [153]. Drift modes
have high parallel electron mobility with near-Boltzman electron distribution and
non-negligible k‖ which plays important role in the dynamics through the gradients
in (4.79). In the MHD-type modes parallel electric field is close to zero and in
electrostatic case k‖ is small such that time scale of parallel advection due to
parallel gradients is smaller than growth-rate of relevant modes (k‖vth,e � ω)
[153]. Then, the gradients in (4.79) can be neglected in the first order and the
transport is ambipolar with no net parallel current. These two modes can be found
in different regions of tokamak edge plasmas. In the region inside LCFS, where
magnetic field-lines are closed, k‖ 6= 0 can be easily established and the parallel
dynamics is dominated by drift-type modes. In case of open field lines outside
LCFS, any perturbation with k‖ 6= 0 quickly expands to the targets. Then, k‖
can be considered very small (ideally flute mode with k‖ = 0) and dynamics of
pressure-driven MHD modes becomes important. Mutual coupling of both types
of dynamics in its nonlinear phase may become complicated, with growth of MHD
modes later surpassed by drift dynamics [130], and it is still subject of a current
research.

4.4 2D model of turbulence in tokamak geometry
Fluid modelling of edge plasma needs to resolve turbulence on temporal scales
of ion cyclotron frequency ωci ≈ 107 Hz and spatial scales of the order of hybrid
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gyroradius ρs ≈ 10−3 m in direction perpendicular to the magnetic field and scale of
parallel gradients (≈ 1 m) in parallel direction. 3D modelling of the whole tokamak
edge (edge thickness ≈ 10−2 m, perimeter ≈ 1 m, connection length ≈ 10 m)
for a period sufficient to obtain reasonable turbulent statistics (tens of ms) is
very demanding even for computational resources of current computers. Therefore,
reduction of the problem from 3D to 2D is still often used. In this approach,
dynamics parallel to the field lines is decoupled and reduced to simple analytical
expressions (e.g. [63, 39, 87, 83]) dependent on quantities known in the 2D cross-
field plane. Indeed, such description cannot cover gradients of magnetic field along
field line and associated change of dynamics (e.g. stabilization of interchange modes
on the inner midplane) nor effects of magnetic shear or nonlinear interaction of
different parallel modes. Therefore, the parallel transport terms are fully localized
to a certain parallel position, averaged over the whole field line or only some
characteristic value is considered.

4.4.1 Slab coordinates

Reduced 2D equations are often described in Cartesian slab coordinates x,y, where
x − y plane is perpendicular to the magnetic field, which itself goes along third
coordinate s. This largely simplifies terms in the fluid equations for computational
use.

For all the terms except curvature operator, we will neglect toroidicity and
use cylindrical coordinates. If characteristic size of the modelled problem (perpen-
dicular size of turbulent structures δ) is much smaller then tokamak minor radius,
δ � r, cylindrical coordinates can be expanded in the vicinity of reference radius
r = a and the slab coordinates are defined as [126]

x = r − a (4.80)

y = a(θ − ξ

q
) (4.81)

s = Rξ (4.82)

where

q =
dξ
dθ

=
rB

RBp

(4.83)

is safety factor describing field line pitch, θ and ξ are poloidal and toroidal angle,
respectively, and Bp is poloidal component of magnetic field. x coordinate then
represents radial coordinate and y represents poloidal coordinate with correction
to toroidal position that ensures that both coordinates are perpendicular to ~b and
s, respectively. Moving in toroidal direction, poloidal position of a field line changes
with rate (4.83). Term −ξ/q then shifts y to compensate this field line rotation:

~b · ~∇x = ~b · ~∇r = 0 (4.84)

~b · ~∇y = a

(
~b · ~∇θ − 1

q
~b · ~∇ξ +

ξ

q2

∂q

∂r
~b · ~∇r

)
= ~b · (~∇θ − 1

q
~∇ξ) = 0 (4.85)

~b · ~∇s = R~b · ~∇ξ = R
1

R
= 1. (4.86)
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Note that the coordinates are not orthogonal if magnetic shear is present. When
∂q(r)/∂r 6= 0, y coordinate changes with radius r and

~∇x · ~∇y = a(~∇r · ~∇θ − 1

q
~∇r · ~∇ξ +

ξ

q2

∂q

∂r
~∇r · ~∇r) =

as

Rq2

∂q

∂r
= S 6= 0 (4.87)

Metric tensor in such situation is [126]

gij =

 1 S 0
S 1 + S2 0
0 0 1

 (4.88)

and
~∇2
⊥ =

(
∂

∂x
+ S

∂

∂y

)2

+
∂2

∂2y
. (4.89)

The dissipative terms then depend on toroidal position and act on structures dif-
ferently on different positions along field line [126]. In the following chapters, we
will neglect the role of the shear (S ≈ 0) and use fully orthogonal slab coordinates
p and r.

Advection of quantity g by drift of the form v ∼ ~b × ~∇f that appears in
fluid equations is proportional to the expression ~b × ~∇f · ~∇g = ~b · ~∇f × ~∇g. For
perturbations with k‖ � k⊥, parallel derivation ∂/∂s can be neglected and after
some algebra we find that [126]

~b× ~∇f · ~∇g =

(
∂f

∂x

∂g

∂y
− ∂g

∂x

∂g

∂y

)
+O

(
k‖
k⊥

)
= [f, g] +O

(
k‖
k⊥

)
. (4.90)

The square brackets [, ] stand for Poisson brackets.
Magnetic curvature is another toroidal effect that needs to be discussed. As

was shown in Sec. 4.3.1, presence of the curvature gives rise to compressibility
of vE (Eq. (4.48)) and vD (Eq. (4.48)). These terms drive the vorticity equation
(4.78) and it is therefore crucial to keep them even in 2D slab coordinates. To
do this, first-order toroidicity correction in form of inhomogeneous magnetic field
(2.4) must be included. Curvature operator reduces in low-β limit by ~∇×~b term
in (4.51) to

C ≈ 1

B
~b× ~∇ lnB · ~∇. (4.91)

To obtain curvature operator in slab coordinates we will substitute magnetic field
(2.4) into (4.91), neglect dependence ∂θ/∂s ≈ 0 and get

C = − 1

R

[
sin θ

∂

∂x
+ (cos θ + S sin θ)

∂

∂y

]
. (4.92)

If the region is located at the outer midplane (θ = 0) with magnetic field without
shear (S = 0), curvature operator acting on any plasma quantity q reduces to
simple derivative

C(q) = − 1

R

∂

∂y
q = [

1

B(x)
, q]. (4.93)

Discussion of coordinates used for 3D models can be found e.g. in [131]
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4.4.2 Closed field lines and Hasegawa-Wakatani model of
parallel transport

In the region of closed field lines, parallel gradients of plasma quantities do not
vanish [127]. Famous Hasegawa-Wakatani (H-W) model [63] describes behaviour of
a single parallel mode (4.79) in these conditions. If collisional damping is stronger
then Landau damping, isothermal approximation ∇‖Te ≈ 0 may be introduced
[63]. Then (4.79) can be rewritten in the form

∇‖J‖ = − Te
η‖e
∇2
‖

(
eφ

Te
− lnn

)
. (4.94)

Next, fluctuations are separated from profiles, q̃ = q−〈q〉 for all plasma quantities
q. Second derivation of the profiles vanishes ∇2

‖〈q〉 = 0. If the parallel structure of
fluctuations is dominated by single parallel mode k‖, we may replace ∇2

‖q → −k2
‖ q̃

and write (4.94) as

∇‖J‖ ≈
Tek

2
‖

η‖e

(
eφ̃

Te
− l̃nn

)
. (4.95)

Note, that l̃nn denotes fluctuation of the density logarithm and for small fluctuati-
ons it is often linearised by l̃nn ≈ ñ/〈n〉.

Classical Hasegawa-Wakatani approach treats only single parallel mode and
neglects its interaction with other modes. This largely simplifies the problem and
allows its modelling in 2D. More complex 3D models, however, exist, including
electromagnetic effects, interaction of different parallel modes and gyro-effects (e.g.
[129]). In this thesis we will focus on the 2D case and simulations of drift waves
will be presented in Sec. 7.6.1.

Generalization of (4.95) for the non-isothermal case was derived in [83]. It does
not neglect collisional term 1

e
0.71∇‖Te in (4.79) which modifies (4.95) for small

perturbations to

∇‖J‖ ≈
〈Te〉k2

‖

η‖e

(
eφ̃

〈Te〉
− ñ

〈n〉
− 1.71

T̃e
〈Te〉

)
. (4.96)

4.4.3 Equivalent electric circuit

To illustrate behaviour of parallel currents in SOL, useful idea of equivalent electric
circuit was introduced in [88]. It is schematically illustrated in Fig. 4.1. Basic
property of blobs in SOL is their dipole structure that creates poloidal electric
field responsible for radial E×B motion of the structure. This charge polarization
can be conceived as a current source I that generates dipole structure of parallel
currents. There are different possible ways how the current paths close the electric
circuit, such as by the contact with material surface, due to collisional dissipation
or perpendicular polarization currents. Most relevant closures will be discussed in
the following sections.

4.4.4 Turbulent structures in touch with material surface

If plasma in SOL follows magnetic field lines that intersect material surfaces, sim-
plified model of ~b ·∇J‖ can be derived from the properties of the sheath layer that
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Figure 4.1: Equivalent electric circuit and illustration of possible current paths. Dipole
structure of the blob (grey area) acts as a current source I. Closure of parallel current
J‖ on material surface and by perpendicular polarization current J⊥pol is illustrated.
Reproduced from [88].

forms close to the surfaces [47]. Parallel mobility of electrons is higher then that
of ions and more electrons then ions are lost to the wall. This leaves plasma with
positive potential compared to the wall. Due to Debye shielding in the plasma,
the potential drop is restricted to the distance of several Debye lengths from the
wall, to the layer referred as sheath. Bohm sheath criterion formulates condition
necessary for the sheath to establish - ions must enter the layer with their prallel
velocity vi,‖ higher then the ion sound speed [146, 30],

vi,‖ > cs =

√
kTe
mi

. (4.97)

This condition guarantees, that there will be always more ions in the sheath than
electrons and the potential of plasma will remain positive compared to the wall. In
order to describe influence of the material surface in the fluid model, simple model
is often used. Assuming that the electron distribution is Boltzmann, vi‖ = cs and
the surface is electrically floating, the parallel electric current at the boundary is
[47]

J‖ = −encs
(

1− exp

(
−eδφ
Te

))
~n ·~b (4.98)

where δφ is deviation of the plasma potential with respect to the surface potential
φs = 2.8Te/e and ~n is the surface unit normal vector. ∇‖J‖ needed in the vorticity
equation (4.78) is then taken as an average value of its divergence along the whole
field line (neglecting plasma resistivity) and therefore it is given by difference of
the currents J‖ at both field line ends. Since the current has opposite direction at
both ends, the closure is

〈~∇ · ~J‖〉 ≈ 〈~b · ∇J‖〉 =
encs
L‖

(
1− exp

(
−eδφ
Te

))
(4.99)

where L‖ is connection length from the midplane to the target or half of the
connection length from target to target in asymmetric case.
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4.4.5 Subsonic advection along open field lines

In case that the particles’ mean free path in parallel direction is small compared to
the connection length L‖, one may assume that∇‖J‖ given by the sheath boundary
condition are located near the field line ends and uncorrelated with its value at the
outer midplane (location of the turbulent drive). Then, (∇‖J‖)|midplane ≈ 0. Then,
subsonic advection of vorticity is the dominant mechanism of parallel vorticity
losses in (4.78). Such losses may be described by term [39](

∂Ω

∂t

)
‖
≈ −v‖∇‖Ω ≈ −

csM‖
L

Ω = −τ−1
Ω Ω (4.100)

where M‖ is parallel Mach number, in SOL of TCV experimentally determined as
M‖ ≈ 0.5, and τΩ is characteristic time of parallel vorticity losses. L is characteristic
parallel length scale of the structures, taken as connection length from midplane
to divertor target in [39]. We have shown in [65] that due to ballooning nature of
the interchange turbulence that localized mainly around outer midplane, L should
be rather related to the length of the field line inside the unstable region, roughly
estimated as 2πRq95/6 with factor 1/6 describing extent of the ballooning region.

In some cases, the ∇‖J is completely neglected and vorticity advection is not
taken into account. This is called as inertial, hydrodynamic or Rayleigh-Taylor
limit and is discussed e.g. in [88].

Simulations show that sheath-connected structures tend to form radially elon-
gated ’fingers’ (see e.g. [125]), while sheath-disconnected structures are more roun-
ded and drop-like (see e.g. [47, 48]). This can be understood as a consequence of
difference in parallel damping terms in vorticity equation (4.78). When collisional
dissipation and curvature drive are neglected and Fourier transform of potential is
made (φ→ φ̃k, Ω→ k2φ̃k), vorticity equation reveals that [39]

d ln φ̃k
dt

≈ τ−1
Ω (4.101)

for sheath-disconnected structures described by damping (4.100) and

d ln φ̃k
dt

≈ τ−1
φ k−2 (4.102)

for sheath-connected structures described by damping (4.99). Large structures in
sheath-connected regime are apparently quickly suppressed with damping rate
proportional to the square of their size.

4.4.6 Parallel currents in the X-point region

As blobs expand toroidally along magnetic field lines, their wave-form in poloidal
plane deforms due to magnetic shear. When the magnetic shear is high, the relevant
flux tube is stretched [35] as illustrated in Fig. 4.2(right). This situation is most
relevant for the X-point region, where poloidal magnetic field component is very
small and the local magnetic shear very large.

When the flux tube thickness drops below certain threshold, bipolar structure
of parallel currents can be effectively short-circuited by cross-field currents. Namely
the role of ion polarization currents and electron collisional terms has been studied
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(see [87] and references therein). Note, that stretching the flux tube enhances
processes that contain ~∇⊥ terms, such as cross-field polarization currents (∼ ~∇2

⊥φ)
or magnetic diffusion (∼ η‖~∇2

⊥A‖) [88]. In the X-point, (4.79) can be simplified to

∇‖J‖ ≈
−ik‖
L‖η‖

φ (4.103)

In the electrostatic limit [105], where the spatial scales are given by dispersion
relation k2

‖σ‖ = −k2
⊥σ⊥ (with σ = 1/η denoting plasma conductivity), one gets

closure for vorticity equation due to X-point influence

∇‖J‖ ≈
√
σ‖σ⊥

L‖δb
φ (4.104)

where σ⊥ is cross-field plasma conductivity given by the ion polarization current
or by the electron collisional process. δb ≈ 1/k⊥ is perpendicular size of the blob.
The transition of X-point closure (4.104) to the sheath-connected limit (4.99) was
studied in [106] using two coupled 2D simulations in the midplane and X-point
region. They show that X-point closure is relevant when ellipticity of flux tube
deformation in the X-point region ε ≈ k⊥x/k⊥y is

ε >

√
L2
‖

ρsR

(
ρs
δb

)5/2

(4.105)

where R is tokamak major radius and ρs hybrid ion gyroradius (5.7).

4.4.7 Parallel currents in the large-β case

In case plasma pressure p inside turbulent structure is large compared to magnetic
pressure pM = B2/(2µ0), i.e. value of blob’s β

βb =
2nTµ0

B2
(4.106)

is large, magnetic field may be dragged by radially moving turbulent structures.
This situation is illustrated in Fig. 4.2. Magnetic field lines bended by moving
blobs may touch material surface at midplane even without touching divertor tar-
gets. The 2D description of these 3D magnetic effects was originally developed in
the study of material ablation from pellets [124, 118]. As the bending (originally
localized only at outer midplane due to ballooning) spreads along the field line,
parallel current associated with Alfven waves is emitted at its ends. In order to
maintain quasineutrality, this current is compensated by current flowing along field
lines,

J‖ = − 1

µ0

~∇2
⊥A‖ (4.107)

where A‖ is parallel part of vector magnetic potential. Parallel electric field remains
negligible

E‖ = −ik‖φ+ iωA‖ ≈ 0 (4.108)

with k‖ and ω given by dispersion relation of Alfvén waves,

ω

k‖
= vA =

B
√
µ0mn

. (4.109)
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Figure 4.2: Left: Illustration of bending of magnetic field line dragged by high-β blob.
Reproduced from [157]. Right: Illustration of flux tube deformation close to the X-point.
Points (1),(2) and (3) represent flux tube at different toroidal positions. Reproduced from
[88].

Similarly to the already discussed case of sheath-connected blobs, the ∇‖J‖ term is
approximated as an average value over the length of the magnetic field perturbation
Lb, i.e. given by (4.107) at the ends of perturbation. If symmetry of the problem is
assumed, currents at both ends are the same, but with opposite direction, which
gives factor 2. After substitution of 4.108 into 4.107 and averaging one finds that
[87]

∇‖J‖ ≈ −
2

µ0vALb
~∇2
⊥φ = − 2B

µ0vALb
Ω. (4.110)

The vA is evaluated at the end point of spreading magnetic perturbation i.e.,
with background density 〈n〉. Writing this expression in dimensionless form, with
vorticity normalized by ωci, Ω→ ωciΩ

′, we get

∇‖J ′‖ = −2vA
Lb

q〈n〉Ω′. (4.111)

Then, the term 1
qn
∇‖J ′‖ is similar to advective term (4.100) up to the factor given

by ratio of vA and cs. For SOL plasma, this ratio is typically very large and loss
of vorticity by Alfvén waves (4.111) should dominate if the β is sufficiently large
to allow perturbations of magnetic field induced by turbulent structures.

4.4.8 Dissipative closure

In this closure, collisional dissipation of vorticity µΩ (3.12) is taken into account,
effectively giving [88]

∇J‖ ≈ µΩ
~∇4
⊥φ. (4.112)

Although the collisional diffusion coefficient µΩ is quite small, it is important to
keep numerical simulations stable by suppressing numerical noise and structures
with spatial scales below resolution of the simulation. Especially when the ion
polarization current is dominant, vorticity quickly cascades to small scales [88].
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Therefore, the diffusion term (4.112) is often added to the simulations with ad hoc
value in order to cut-off the vorticity cascade.
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5. Modelling of interchange
turbulence in SOL

5.1 ESEL model
ESEL [43, 44, 48] is 2D electrostatic model of interchange turbulence in tokamak
edge developed at Technical University of Denmark. Presently, we use and further
develop this model for simulations of edge turbulence in tokamaks ASDEX, JET,
TCV and COMPASS. Some of the simulations will be presented in this chapter.

ESEL consists of three fluid equations for time evolution of plasma vorticity Ω
(Eq. (4.78)), density n (Eq. (4.54)), electron temperature Te (blue terms in (4.61))
in the drift plane perpendicular to magnetic field and of additional equation for
calculation of plasma potential φ from the vorticity field (Eq. (4.71)). Plasma
momentum equation (4.45) is reduced to the algebraic expression for cross-field
drifts (4.46) - E ×B, diamagnetic and polarization drift,

~v⊥ = ~vE + ~vD + ~vP . (5.1)

The polarization drift is neglected in the temperature and density equation. Com-
pressiblity of polarization current, however, gives rise to the vorticity equation in
form (

∂

∂t
+

1

B
~b× ~∇φ · ~∇

)
Ω− C(nTe) = ΛΩ (5.2)

where ΛΩ describes collisional dissipation and parallel losses and C represents cur-
vature operator (4.51).

The continuity and temperature equations have form(
∂

∂t
+

1

B
~b× ~∇φ · ~∇

)
n+ nC(φ)− C(nTe) = Λn, (5.3)(

∂

∂t
+

1

B
~b× ~∇φ · ~∇

)
Te+

2
3
TeC(φ)− 7

3
TeC(Te)− 2

3
T 2
e

n
C(n) = ΛTe . (5.4)

Advection of all three quantities in (5.2)-(5.4) is due to E × B drift only and
generated structures fulfil k⊥ � k‖. Therefore, one may utilize assumptions from
Sec. 4.3.5 and relate plasma potential to the vorticity as

Ω = ∇2
⊥φ. (5.5)

In this chapter all quantities are dimensionless (unless otherwise specified) with
Bohm normalization

~x/ρs → ~x ; tωci → t ; B/B0 → B ; n/n0 → n ; Te/Te,0 → T ; eφ/Te,0 → φ (5.6)

with ion sound speed cs, hybrid gyroradius ρs (Larmor radius evaluated at ion mass
and electron temperature) and ion cyclotron frequency ωci evaluated at Te,0,n0 and
B0,

ρs =

√
eTe,0mi

qiB0

; ωci =
qiB0

mi

; cs = ρsωci. (5.7)
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Normalization of density, n0, temperature, T0, and magnetic field, B0, is typically
chosen as values at the position of LCFS.

Sink terms Λn, ΛT , ΛΩ describe collisional dissipation and parallel losses,

Λn = Dn∇2
⊥n+

(
∂n

∂t

)
‖
, (5.8)

ΛΩ = DΩ∇2
⊥Ω +

(
∂Ω

∂t

)
‖
, (5.9)

ΛT = DT∇2
⊥T +

(
∂T

∂t

)
‖
. (5.10)

The dissipative term represents neoclassical collisional diffusion (3.11)-(3.14) and
parallel losses estimated from 0D analytical model are considered as advective for
density and vorticity and diffusive for temperature, with characteristic time scales
of parallel transport τn, τΩ and τT [39],(

∂n

∂t

)
‖

=
n

τn
= −

nv‖
L‖,n

, (5.11)(
∂Ω

∂t

)
‖

=
Ω

τΩ

= −
Ωv‖
L‖,Ω

, (5.12)(
∂T

∂t

)
‖

=
T

τT
= −2

3

Tχ‖e
L2
‖,T

. (5.13)

Term DT covers both electron and ion energy dissipation, Dχ,e and Dχ,i, respecti-
vely,

DT = Dχ,e + Θi,eDχ,i (5.14)

where the coupling term Θi,e ranges from 0 to 1 and describes coupling between
electron and ion energy channels [39]. Speed of parallel advection v‖ = M‖cS is
chosen according to experiments [72, 39] that show Mach number of parallel fluxes
in the SOL, M‖ ≈ 0.5. The characteristic parallel length of the parallel transport
processes is in the lowest approximation (assuming simple SOL conditions) ta-
ken as the connection length L‖ from midplane to the solid target. Electron heat
diffusivity is approximated by Spitzer-Harm expression χ‖e ≈ χSH‖e = 3.2v2

T,e/νee
given by electron thermal velocity vT,e and electron-electron collisional frequency
νee.

ESEL uses Cartesian slab coordinates with simulation region located at the
outer midplane (Fig. 5.1). In these coordinates curvature operator and convective
derivative may be simplified to a form of Poisson bracket - Eqs. (4.90) and (4.93).
To compute the Poisson bracket, Arakawa scheme [5] is used. This conserves mean
square vorticity and mean kinetic energy of the flow, preventing computational
instability that might otherwise arise from the nonlinear terms. The equations are
advanced in time by a 3rd order explicit linear multistep method (7.55).

5.1.1 Edge, SOL and wall shadow regions

As an analogue to typical dependency of L‖ in tokamak edge on radial coordinate,
the simulation region in ESEL is divided into three parts as illustrated in Fig. 5.1.
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Figure 5.1: Sketch of tokamak edge geometry (a) with black rectangle zoomed in (b).
ESEL simulation region (c) approximates geometry of the tokamak edge.

The innermost part represents edge region inside LCFS with L‖ → ∞, ef-
fectively setting parallel sinks to zero. In the edge region nonzero value of k‖ is
predicted [127] and parallel sinks should be represented by drift wave terms (e.g.
(4.95) in H-W closure). These drift waves effects are, however, neglected in the
ESEL model. It is argued that turbulent transport in SOL is dominated by con-
vective structures of interchange nature that are born in the vicinity of LCFS and
in the first approximation, their properties are decoupled from the properties of
drift waves that may create their initial perturbation. Validity of this assumption is
still under investigation. While some simulations show that drift wave nonlinearity
may outweigh the interchange drive [130, 3], comparison with experimental mea-
surements on TCV [39, 46, 50] and JET [39] shows reasonable agreement between
some properties of the turbulence generated by ESEL model and those measured
by reciprocating probes.

Second region, with L‖ ≈ 10 m, represents the SOL itself. Continual outflow
of plasma along field lines to divertor creates large radial pressure gradient on
the inner boundary of the region (there are no parallel sinks in the edge region)
i.e. around LCFS. Since (∂p/∂r) · (∂B/∂r) > 0, convective structures grow by
interchange instability and propagate radially into the SOL. Radial density profiles
typically flatten in the outter part of the SOL and sometimes designations ’near
SOL’ (steep density gradient close to the LCFS) and ’far SOL’ (flatter density
gradient, outward part of SOL) is used.

In the outermost part of the simulation, called wall shadow, L‖ ≈ 1 m. Wall
shadow represents region slightly below the tokamak midplane, where the field
lines hit tokamak wall on one end and divertor target on the other. Due to close
distance to the wall (≈ 1 m) plasma losses significantly increase compared to the
SOL and blobs quickly loose their density and energy. At the inner boundary of
the region, pressure gradient increases similarly to the edge-SOL boundary and
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new vorticity may be generated by interchange drive.
To describe radial variations of processes in SOL for different discharges, it is

convenient to introduce dimensionless coordinate ρ as

ρ =
r − rLCFS

∆SOL

(5.15)

where rLCFS is radial position of the LCFS and ∆SOL is SOL width. In the following
we will use symbol ρ in this sense, instead of ρ as mass density as introduced in
the theoretical chapter 4.

5.1.2 Boundary conditions

ESEL simulation region is located at the outboard tokamak midplane. Neglecting
ballooning nature of interchange turbulence, i.e. assuming that B in slab coor-
dinates is independent on poloidal coordinate p, periodicity of the simulation in
poloidal direction in all four quantities (n, T,Ω, φ) can be used. Indeed, this brings
additional requirement that size of the simulation domain must be larger than
poloidal size of blobs. This condition has to be verified a posteriori and prevents
mutual interaction of different parts of the same blob.

In order to maintain large radial gradients observed in experiment, either Di-
richlet or Neumann boundary conditions (BC) are used. Dirichlet BCs placed at
inner boundary

n(r = rmin) = nBC ; T (r = rmin) = TBC ; Ω(r = rmin) = 0 ; φ(r = rmin) = φIN
(5.16)

maintain influx of density and temperature into the simulation by diffusive flux
driven by local radial gradients,

Γn,BC = −Dn
n(rmin + δr)− nBC

δr
; ΓT,BC = −DT

T (rmin + δr)− TBC
δr

. (5.17)

Dirichlet conditions on Ω and φ, that implicate their zero poloidal derivatives on
the boundary, then guarantee that there will be no E×B radial motion through the
boundary. Indeed, presence of the boundary inside the edge region is not physical,
but it helps to maintain profiles of n and T by balancing parallel losses in SOL
by the diffusive influx. Moreover, shear of poloidal velocity vp at the boundary
of edge and SOL region is assumed to decorrelate fluctuations from both regions,
thus efficiently decoupling turbulence in SOL from direct influence of the inner
boundary.

At the outer boundary, Neumann BCs used for density and temperature

∂n

∂r
(r = rmax) =

∂T

∂r
(r = rmax) = 0 (5.18)

allow large relative density fluctuations caused by intermittent presence of blobs.
On the other hand, it does not restrict n and T values from bellow and since ESEL
does not incorporate any atomic processes or neutral recycling that would keep n
and T at some minimal level, the values at the outermost part of the wall shadow
region may drop below realistic levels. Vorticity at the outer boundary is again
kept at zero level by Dirichlet condition

Ω(r = rmax) = 0. (5.19)
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There are two different outer BC typically used for φ [72] - either the value of
φ is set to zero,

φ(r = rmax) = 0, (5.20)

or zero poloidal velocity is assumed

∂φ

∂r
(r = rmax) = 0. (5.21)

Both BC conditions are not fully equivalent, they, however, produce very similar
turbulent statistics in SOL. This is due to the fact that Eqs. (5.2)-(5.4) are depen-
dent only on spatial derivatives of φ and not on the absolute value of φ itself. If
potential field φ(p, r) is obtained by solving Eq. (5.2), potential field φ′(p, r)

φ′(p, r) = φ(p, r) + Arr + App+B, (5.22)

where Ar, Ap and B are constants, is solution of Eq. (5.2) as well. Indeed, due
to poloidal periodicity we require Ap = 0. Analysis of ESEL equations shows that
using φ′ instead of φ does not change turbulent dynamics, changing only mean
poloidal rotation of the plasma:

v′p(p, r) = vp(p, r) + Ar. (5.23)

Therefore, for the case of BC (5.20) such Ar and B may be found that
〈∂φ′(p, r = rmax)/∂r〉p = φIN and φ′(p, r = rmin) = 0, getting φ′ very close to the
solution of Eq. (5.2) with Neumann BC (5.21). Here < · >p means averaging over
poloidal direction.

Note that this degree of freedom in φ (and vp) may implicate some problems
during comparison with experiment, because change vp → v′p naturally changes
time scales on all virtual probes in simulation (fixed in space) where vp 6= 0.

Discussion in previous paragraphs was based on assumption that there is no
term in Eqs. (5.2)-(5.4) that depends on absolute value of φ. However, if assumpti-
on of sheath connected blobs is used (see Sec. 4.4.4) instead of sheath-disconnected
blobs with vorticity sink dominated by subsonic advection (4.100), dependence of
parallel vorticity damping on φ arises as a consequence of Bohm’s sheath crite-
rion. Then transformation to φ′ (5.22) would lead to different vorticity damping
than the φ itself. In such case it is natural to prefer Dirichlet condition (5.20) at
the outer boundary because it will keep value of φ fixed (corresponding to fixed
value of sheath potential), whereas Neumann condition (5.21) would allow large
fluctuations of φ leading to large fluctuations of the vorticity damping term (4.99).
Reasonable radial profile of vp will be maintained by the sheath dissipation term
itself, because for slow fluctuations it tends to minimize parallel damping, keeping
mean potential near the level < φ >≈ α < Te >. More on this topic will be
discussed in Sec. 5.6.

5.1.3 Previous comparison of ESEL with experimental me-
asurements

In the past six years results of ESEL have been compared with experimentally
measured data on several tokamaks. Most often data from reciprocating Langmuir
probes have been used, since it is most suitable diagnostics to measure fluctuations
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of SOL plasma on short time and spatial scales that are needed to resolve turbulent
structures. To allow such comparison, there is a a set of virtual probes implemented
in the ESEL (illustrated in right part of Fig. 5.1). The virtual probes are located
poloidally in the center of the simulation region and have some small radial distance
(typically 1−4 mm) in order to cover and reproduce the whole radial profile. These
probes do not perturb the plasma, just output time trace of all quantities needed
for comparison. In order to take into account dimensions of real probe pins, each
quantity is averaged in space over area corresponding to the size of the pin. If
there is more than one probe pin on the real probe head, ESEL uses more virtual
probes on each radius in correspondence with geometry of the probe head. If not
stated otherwise, we will use probe head geometry from [72] in which there are
three virtual probes on each radius separated by poloidal distance 0.5 mm and one
additional probe shifted 1.5 mm inwards from the central probe. This allows more
realistic estimation of radial and poloidal derivatives as seen by the probe.

The most extensive comparison was done for parameters of TCV tokamak
[72, 46, 50, 39, 51]. For TCV case a surprisingly good agreement was found in
radial density profiles, density fluctuations as well as in conditionally averaged
profile of turbulent structures [50] (see Fig. 5.2). This comparison provides strong
support for a model of interchange plasma transport in SOL. The agreement was,
however, achieved only for a limited range of plasma parameters and the results
of ESEL do not follow experimentally observed scaling of density profiles with
parallel plasma collisionality

ν∗ei = L||/λei. (5.24)

Here λei is mean free path for ion-electron collisions. With decreasing collisionality
the e-folding length of radial density profile 〈n〉

λn =

(
∂ ln〈n〉
∂r

)−1

(5.25)

increases more rapidly in experiment than in the ESEL model. The disagreement in
λn was found mainly for JET [39] and ASDEX [152] cases in which the collisionality
was generally lower than for TCV. Interestingly, much lower discrepancy was found
in scaling of the e-folding length λT of radial electron temperature profiles. The
discrepancy in λn may have several reasons, the main of which are [39]:

• The simple analytical estimates for parallel losses in (5.11)-(5.13) do not take
into account ballooning nature of interchange transport i.e., the observation
that radial influx into SOL is located about 30◦ around outer midplane [59]).
This increases parallel gradients and effectively shortens parallel gradient
length L|| in (5.11)-(5.13). Our preliminary study ([65], see Sec. 5.7.1) shows
that this effect can increase parallel losses of density by an order of magnitude
while estimate of parallel losses of energy in (5.13) stays in the same order.

• With decreasing parallel collisionality ν∗, the subsonic vorticity advection
(4.100) may be no longer dominant and sheath dissipation term (4.99) should
be included in the model. The sheath-dissipative regime decelerates radial
blob motion [14] which in turn influences mean radial profiles. This topic will
be discussed in Sec. 5.6.
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• Radial electric field around LCFS, Er(rLCFS) may be influenced by other
processes than only by turbulent Reynolds stress, that is main source of
Er(rLCFS) in standard ESEL version, e.g. by presence of drift waves or ion
orbit losses [78]. Change of radial electric field in the vicinity of LCFS then
changes properties of blobs that survive shear decorrelation and penetrate
into the SOL. As a result, λn scales with Er(rLCFS). We show this process
in Sec. 5.6.

Figure 5.2: Comparison of radial density profile (left) and conditionally averaged profile of
density fluctuation (n−n̄) (right) in ESEL (gray) with profiles measured by reciprocating
Langmuir probe in several discharges on TCV (colors) at radial position ρ = 1. Color
coding is the same in both figures. Reproduced from [50].

5.2 Treatment of dissipative terms in ESEL and
OpenMP paralelization

Dissipative terms present in Eqs. (5.2)-(5.4) through (5.8)-(5.10) constitute a sti-
ff problem [79] and time integration scheme must be chosen properly. In ESEL
the dissipative terms are included implicitly by solving Helmholtz equation. For
simplicity we will illustrate the method on case of simple Euler scheme for time in-
tegration, but it can be appropriately generalized also for 3rd order explicit linear
multistep method described later in Eq. (7.55) that is actually used.

After time discretisation with constant time step ∆t, each of the Eqs. (5.2)-(5.4)
can be written in form

q(ti, p, r)− q(ti−1, p, r)

∆t
− f(ti−1, p, r) = Dq

~∇2
⊥q(t

i, p, r) (5.26)

where q stands for n, T or Ω and ti is time of i-th time step. f includes all
terms except the dissipative one and the dissipation is included implicitly. Poloidal
periodicity allows Fourier transform in poloidal direction (p → kp; q → q̃), giving
Helmhotz equation for q̃(ti, kp, r)[

(k2
p −

∂2

∂r2
) +

1

Dq∆t

]
q̃(ti, kp, r) =

1

Dq∆t
(q̃(ti−1, kp, r) + f̃(ti−1, kp, r)∆t). (5.27)
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Figure 5.3: Left: Scaling of running time of ESEL (solid lines), its computational part
(dash-dotted lines) and its output part (dashed lines) for several grid resolutions. Ideal
linear scaling is plotted as black dashed line. Right: Average running time of a time step
as a function of number of grid points nx × ny. Ratio nx = 1.5ny was used in all cases.
The total time (solid line, crosses), time of computational part (dash-dotted line, circles)
and time of file outputs (dashed line, plus signs) are plotted. In most of the cases the
dash-dotted line is almost identical to the solid line. Black dashed line illustrates slope
of linear scaling.

After space discretisation (regular grid and central differences are used) this equati-
on can be solved for each kp separately. For given kp, operator standing on the left
hand size of (5.27) before q̃(ti) has a form of tridiagonal matrix of size nr × nr
where nr is number of grid points in radial direction. Such matrix can be easily
solved in linear time [79]. The Helmohltz equation is solved for np distinct values
of kp where np is number of grid points in poloidal direction. Note that simi-
lar approach using Fourier transform in poloidal direction can be used also for
radially varying diffusion coefficient Dq(r), but not if the diffusion coefficient is
poloidally dependent, Dq(p, r). In case of Dq(p, r) the poloidal Fourier transform
of Dq(t

i, p, r)~∇2
⊥q(t

i, p, r) would result in convolution of both fields and operator
applied on q(ti, kp, r) on the left-hand side of (5.27) would have more complicated
structure, not solvable in linear time.

Since modelling of low-collisional plasmas with small diffusivities requires very
refined spatial grid, the ESEL simulation may become very slow. Therefore, we
have performed shared-memory parallelization of the original code using OpenMP
library1. All the terms in Eqs. (5.2)-(5.4) that are covered by term f(ti−1, kp, r)
in Eq. (5.26) are local in space and their parallelization is straightforward. The
spatial grid is divided into N domains, where N is number of available threads, and
each thread computes f(ti−1, kp, r) on a single domain. Parallelization of Helmholtz
solver is allowed by the fact that the fast Fourier transform (FFT) is made for each
radius separately and it is independent on data located on different radial positions.
This allows to compute several forward and/or backward FFTs by different threads
at the same time. Consequently, also Eq. (5.27) can be solved for each kp separately.
Tested on server with four quad-core CPUs AMD Opteron 8356 2.3 GHz with 2MB

1http://www.openmp.org
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L2 cache, usage of 12 OpenMP threads provides for grid of 1024×1536 points 11×
shorter running time of the main part of the code that advances fluid Eqs. (5.2)-
(5.4) in time, compared to a single-threaded application. Such acceleration of our
code is sufficient for our current purposes, however, the scaling of performance
gain with respect to number of used threads is sublinear (see Fig. 5.3) and further
rearrangement of the code and data memory layout is planned in order to optimize
access of threads to a relatively slow main memory and hence achieve better scaling.
The scaling improves with finer grid resolution as the computational complexity
of local (cached) operations rises more quickly then the amount of data that need
to be transferred. The file output consumes approx. 10% of the running time and
scales very weekly, with maximum performance gain of factor 2.5.

In Sec. 5.7 we present first results of coupling of ESEL code with code SOLF1D
that computes transport along field lines, replacing analytical estimates (5.11)-
(5.13). In typical situation the SOLF1D part is several times slower then ESEL
and therefore most of the available CPU cores/threads is used by SOLF1D. The
SOLF1D part constitutes the main bottleneck and performance of the ESEL OMP
parallelization (typically 1-2 OMP threads used) was sufficient in all tested cases.

5.3 Overview of performed ESEL simulations
In the frame of this work we have made several ESEL simulations for parameters
of edge plasma in tokamaks TCV and ASDEX. The basic parameters of these
simulations are summarized in Tab. 5.1. There are two sets of simulations for the
TCV case that differ in the values of diffusion coefficients and estimation of parallel
losses. The run referred as #116 uses ad hoc values of the diffusivities and constant
values of characteristic parallel loss times that were used in the original papers
[72, 46], while the second TCV run is based on neoclassical collisional diffusivities
and parallel losses derived in [39] and presented in this work as Eqs. (5.8)-(5.10).
The potential boundary conditions were set as φ(rmax) = 0, 〈∂φ/∂r〉(rmax) = 0 and
(∂φ/∂p)(rmin) = 0 where the brackets 〈·〉 denote averaging over poloidal extent
of the simulation. These boundary conditions are different from that used in the
original ESEL simulations [72] and their purpose is to improve behaviour of plasma
potential and its fluctuations. The boundary conditions set the potential and mean
poloidal E × B velocity to zero at the position of outer wall, which agrees with
experimental observations [74].

Both TCV simulations were at first made with resistive closure ∇J‖ ≈ 0 and
vorticity sink described only by subsonic advection (4.100), that is routinely used
in ESEL. These simulations later served as a basis for set of simulations with alte-
red ∇J‖ term. The simulation #116 was used in Sec. 5.5 for assessment of impact
of parallel vorticity losses by Alfvén speed. the TCV simulation with neoclassical
diffusivities provided base for set of simulations in Sec. 5.6 investigating role of
sheath dissipation and radial electric field in the edge region on blob transport in
the SOL. The run #116 was also used in Sec. 5.4.2 for tracking of blob trajecto-
ries and in Chap. 6 where several aspects of electrostatic probe measurements in
turbulent environment are discussed.

The last simulation, made for parameters of ASDEX Upgrade, should be con-
sidered as preliminary. The parallel collisionality in this case is lower than in the
TCV case and thus sheath dissipation is expected to play more significant role
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than for parameters of TCV plasmas. Since sheath dissipation wass neglected in
the performed simulation, this manifests itself in significantly flatter radial profiles
of density than those observed in experiment on ASDEX Upgrade while at the
same time there is an agreement in radial profiles of electron temperature (see Sec.
6.2). This behaviour of ESEL model was already reported for JET case in [39].
Based on the results of Secs. 5.6 and 5.7.1 we believe that the disagreement may
be caused by non-negligible role of the sheath dissipation together with underes-
timated parallel losses of density. New simulations with improvements concerning
these mechanisms are in preparation.

TCV #116 [72, 46] TCV ASDEX [74]
nLCFS [1019 m−3] 2 2 1.1
TLCFS [eV] 20 20 65
B0 [T] 1.4 1.4 2.34
q95 3.0 3.0 4.5
L1,‖ (L2,‖) [m] 15 10 ≈ 10 (40)
Lw.s.,‖ [m] 1 1 1
ν∗e 66 66 2.5− 5.5
ρs,LCFS [10−3 m] 0.46 0.46 0.5
cs,LCFS|Ti=0 [103 m · s−1] 31 31 56
ωci [106 s−1] 67 67 112
width of SOL region [10−3 m] 25 25 52
D⊥,n,LCFS/Db,LCFS 4.5× 10−3 8.5× 10−4 1.2× 10−4

D⊥,Ω,LCFS/Db,LCFS 2.5× 10−2 1.7× 10−2 2.3× 10−3

D⊥,T,LCFS/Db,LCFS 1.0× 10−2 1.6× 10−2 2.5× 10−4

1/(τn,0ωci) 3.1× 10−5 3.3× 10−5 3.5× 10−5

1/(τΩ,0ωci) 3.1× 10−5 3.3× 10−5 3.5× 10−5

1/(τT,0ωci) 1.9× 10−4 1.8× 10−4 1.4× 10−3

D =const. YES NO NO
τ =const. YES NO NO
spatial resolution 256× 512 512× 768 1024× 1536
time step [1/ωci] 0.5 0.15 0.1
run time [1/ωci] 106 106 106

Table 5.1: Basic edge plasma parameters and derived transport coefficients for performed
simulations. Values of characteristic parallel damping times τ and diffusivities D⊥ for
middle and right case are computed from n and T values on LCFS. In the left case,
ad hoc values of τ and D⊥ adopted from original ESEL simulation [46] are used. If the
connection length L1,‖ in the SOL is asymmetric, both values, L1,‖ and L2,‖, are presented
in the table. The parallel losses in the simulation are, however, computed from the shorter
one only. Connection length to the nearest wall in wall shadow region was in all cases
estimated as Lw.s.,‖ = 1 m.D =const. distinguishes whether diffusion coefficients are kept
spatially constant or whether they are dependent on poloidally averaged (at each time)
values of density and temperature according to (3.11)-(3.14). τ =const. distinguishes
between constant values of characteristic parallel loss times and values dependent on
local n and T . Normalization constant Db = ρ2

s/ωci ∼ Te,0/B0. All values are computed
for deuterium plasma.
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5.4 2D blob detection and tracking
In order to determine properties and statistics of individual bobs and holes in
the simulation, we developed a blob tracking routine and used it together with
ESEL code. The algorithm is based on conditional averaging approach used for
blob detection by Langmuir probes (see Sec. 3.3).

First, it is necessary to let the simulation evolve into a state of saturated
turbulence, where the time-averaged radial density profile n̄(r) becomes stable.
Then, in every algorithm time step, field of density fluctuations ñ(r, p) is obtained
by subtracting mean radial density profile 〈n〉(r) from instantaneous density field
n(r, p),

ñ(r, p) = n(r, p)− 〈n〉(r). (5.28)

For a given threshold ñth, all areas with

± ñ ≥ ñthσn (5.29)

are detected, with + sign for blobs,− sign for holes and σn being standard deviation
of density fluctuations at given radius. Each detected area Si is considered a single
structure. Every structure is characterized by its center of mass (CMS)

~xi,CMS =

∫
Si

~x(r, p)ñ(r, p)drdp, (5.30)

geometrical center

~xi,center =

∫
Si

~x(r, p)drdp, (5.31)

maximum relative amplitude

ñi,max = max
Si

ñ(r, p) (5.32)

and location of the maximum ~xi,max.
In order to get more detailed information on properties of blobs and to detect

their possible merging or splitting, ñth does not have a single value, but covers
the range from 1 upto some maximum value chosen separately for every particular
simulation (according to the level of fluctuations in the simulation). Then, if two
structures detected at higher threshold are contained inside a single structure
detected at lower threshold, it is a signal of process of merging or splitting of two
different structures.

The trajectory and velocity of every blob is determined by comparing position
of its center of mass ~xi,CMS and/or position of the maximum density ~xi,max with
~xj,CMS and/or ~xj,max of all blobs found in previous detection time step. The condi-
tion to identify two structures in two consequent times as the same, but translated
blob is set as |δ~x| < ∆x , where ∆x is chosen constant and δ~x is either difference
in positions of center of mass or of density maxima of two structures detected in
consequent times. Testing shows that tracking structures according to their center
of mass gives better results than tracking of the point of maximum relative density
inside the structure. The later may fail when secondary maximum rises over the
primary one. In such case the tracking point can jump over distance that may
be larger then ∆x. If the algorithm time step is ∆t, two distinct blobs will be
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identified as the same when their mutual distance δ~x and relative speed δ~v fulfil
|δ~x∆t − δ~v| > ∆x∆t. On the other hand, single blob may be identified as two
blobs when its velocity |~v| > ∆x/∆t. These two conditions set natural constraints
on the choice of ∆x and ∆t.

Figure 5.4: Illustration of merging two already detected areas into one blob by renumbe-
ring elements in array ’blob #’. Before (left) and after (right).

For each structure Si(t) successfully matched to structure Sj(t − ∆t) from
previous time, intersection Si(t)∩Sj(t−∆t) is computed. We assume that change
of structure area in time ∆t can be neglected and set ∆t and ∆x such that ratio
(Si(t) ∩ Sj(t−∆t))/Si(t) > 0.9. This helps to reduce false alarm ratio (when two
different structures are detected as one) caused by ∆t and ∆x being too large.

The detection of area of all structures with density fluctuation above certain
threshold is done by modification of algorithm of connected component labelling.
The algorithm proceeds in the following way:

1. Array of all data points ñrel(r, p) together with pointers to their neighbours
is created and sorted according to amplitude of ñrel(r, p). Each array element
contains also an additional integer iblob that will store pointer to second array
containing blob numbers. The sorting is computationally most demanding
part, since the algorithm sorting N data points is, contrary to the following
steps, always slower then O(N). The benefit of computing list of points
sorted according to their ñrel value comes when blob detection is made at
several different threshold values for single image. Then, it is not necessary
to go repeatedly through all the points in the frame, but information obtai-
ned during detection with higher threshold ñth,high can be easily reused also
for the lower threshold ñth,low. Then only points with their value in range
ñth,low ≤ ñrel(r, p) ≤ ñth,high are processed and ’glued’ to already detected
blobs.

2. Starting with the largest value of the threshold ñth, index ith of the last data
point with value above ñth is found, dividing the array to the data points
inside and outside detected structures.

3. Going through the array from the first element (with largest ñrel) without
any blob assigned:
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• The lowest number of already detected blob in element neighbourhood
is found and assigned to the element by setting its iblob. If neighbouring
points do not have any blob number assigned, a new unique value of
iblob is added to the element and new entry in the array containing blob
numbers is created. To prevent situations where a thin part of a blob
is divided into several pieces as shown in Fig. 5.5, we use the whole
8-point neighbourhood instead of 4-point one.

• If there is more than one distinct blob number found in the element
neighbourhood, all points in the image with these blob numbers are
merged into one blob. This is done by renumbering entries in the array
containing blob numbers, keeping pointers iblob of all points intact as
illustrated in Fig. 5.4. Merging blobs is then made in time proportional
to number of already detected structures.

4. When all data elements before index ith are processed, position, size and all
other needed properties are computed for every detected structure.

5. Lower threshold value ñth is taken, new ith found and the algorithm continues
with step 3.

Figure 5.5: Example of field of relative density fluctuations in the edge region of ESEL
simulation (left) and results of turbulent structure detection with 4-point (middle) and
8-point (right) neighbourhood. Different structures are distinguished by different colors.
4-point detection algorithm breaks single structure into several pieces when a narrow
part is present, while 8-point algorithm detects structures correctly.

5.4.1 Estimation of blob size and tilting

Information obtained during blob detection may be used to estimate spatial cha-
racteristics of detected structures. In the first approximation we will assume that
boundary of structure can be described in slab radial and poloidal coordinates r̃
and p̃ shifted to the center of the blob by an ellipse of size δr, deltap, rotated by
angle ξ:(

cos2 ξ

δ2
r

+
sin2 ξ

δ2
p

)
r̃2 − sin(2ξ)

(
1

δ2
r

− 1

δ2
p

)
p̃r̃ +

(
cos2 ξ

δ2
p

+
sin2 ξ

δ2
r

)
p̃2 = 1. (5.33)
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Computing integral of r̃2, p̃2 and r̃p̃ over area S of the ellipse (5.33) gives set
of three equations

∫
S

r̃2drdp = 〈r̃2〉 =
πδrδp

4
(δ2
p cos2 ξ + δ2

r sin2 ξ) (5.34)∫
S

p̃2drdp = 〈p̃2〉 =
πδrδp

4
(δ2
r cos2 ξ + δ2

p sin2 ξ) (5.35)∫
S

r̃p̃drdp = 〈r̃p̃〉 =
πδrδp

8
(δ2
p − δ2

r)(δ
2
p cos2 ξ + δ2

r sin2 ξ)× (5.36)

× sin ξ cos ξ.

Since area of each blob is detected during blob tracking, terms 〈r̃2〉 ≡ 〈(r −
〈r〉blob)2〉blob, 〈p̃2〉 ≡ 〈(p − 〈p〉blob)2〉blob, 〈r̃p̃〉 ≡ 〈(r − 〈r〉blob)(p − 〈p〉blob)〉blob can
be computed in the simulation and shape of the blob approximated by equivalent
ellipse whose properties δr, δp and ξ are obtained by solving Eqs. (5.34)-(5.36). The
fact that shape of the structures can be approximated by ellipse (5.33) is verified
a posteriori as shown in Fig. 5.6.

Typical interchange structure in highly-collisional regime evolve from ellipsoi-
dal shape to banana shape (can be seen in Fig. 5.6), as its center moves with higher
radial velocity than the edges. In cases with low collisionality, this behaviour is
even more pronounced. Therefore, even though in most cases we find reasonable
agreement with ellipsoidal blob shape, we plan to generalize the method to include
also this bending of blob shape. Several snapshots of density field in the simulation
are presented in Fig. 5.6 where the algorithm successfully detects all regions with
relative density perturbation ñ/〈n〉 > 2σn (marked by white line) and approxi-
mates them by ellipsoidal shapes. The black line shows trajectory of the center
of the ellipse for each blob, starting from the time of the first snapshot shown or
from the time of first blob detection, depending on what was first. The trajectory
is smooth, which allows good estimation of blob velocity as difference of position
of blob center divided by time step of the detection algorithm. Note that the de-
tected center of the blob (ellipse) is not equivalent to the position of its maximum
density, which is located at the steep front of the blob. In times 29.8 µs and 44.7
µs we can observe two typical cases of blob disintegration. When smaller blobs
lose their radial momentum, they not only stop their radial movement, but they
are often influenced by potential of the surrounding plasma that can reverse the
radial movement for a short while until they completely disappear. This can be
observed also in Fig. 5.7 that shows bundle of different blob trajectories. Spatially
larger blobs tend to break up into two separate pieces created by their two lobes.
This happens when potential hill and valley (that create poloidal electric that mo-
ves the blob radially) become too separated in space or amplitude of at least one
of them too weak. In such case the local E × B drift is influenced by potential
difference between the lobe and surrounding plasma (either background plasma
or lobe of another blob). This happens especially when strongly tilted blob enters
wall shadow region. In such case potential of the more outward lobe is quickly lost
due to increased vorticity losses in the wall shadow and electric field driving the
blob as a coherent structure disappears.
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Figure 5.6: Snapshots of field of relative density normalized to standard deviation of local
density fluctuations σn (left) and snapshot of density field (right) in ESEL simulation
#116. Regions with ñ/〈n〉 > 2σn are bordered by white line and approximated by black
dashed ellipse. Trajectory of center of the ellipse beginning at time of the first plotted
snapshot or at time of first detection of the blob is marked by black solid line. Black
cross marks position of maximum of ñ/〈n〉, white cross geometrical center and magenta
cross center of mass of each detected blob.
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5.4.2 Properties of blobs in SOL

Investigation of properties of blob trajectory, size and tilting in the SOL can provi-
de information on mechanisms that form or dissipate blob’s bipolar structure, thus
regulating its internal electric field and associated E×B velocity. In several works
(e.g. [47, 108]) the topic of impact of ∇J‖ closure on movement of single Gaussian
blob imposed over some fixed background was studied. The main disadvantage of
these ’seeded blob’ studies is, however, the fact that they neglect interaction with
inhomogeneous background plasma and its poloidal flows. These effects can dis-
turb idealised (and often symmetric) evolution of the seeded blob and bring more
complicated blob dynamics. Our blob-tracking algorithm brings the advantage of
studying blob properties in an environment of fully developed self-regulated tur-
bulence. This provides more realistic statistics of initial blob perturbations and of
influence of non-uniform background on the blob motion than the case of single
seeded blob imposed on fixed background. In this section, properties of blob mo-
vement and deformation will be characterized for the standard ESEL simulation
#116, with parallel vorticity losses described by subsonic advection, that was pre-
viously successfully compared with radial experimental profiles. Analogous study is
currently being prepared for the case of ∇J‖ closure describing sheath dissipation,
which should allow more detailed comparison of properties of both modes.

The blob tracking algorithm presented in Secs. 5.4 and 5.4.1 allows visualisation
of trajectories of individual blobs in ESEL simulation together with estimation of
blob’s spatial extent and associated density or temperature fluctuations. In Fig. 5.7
we plot trajectories of several randomly chosen blobs detected at LCFS. Poloidal
periodicity of the simulation allowed to shift all trajectories to a single poloidal
location at LCFS. Each trajectory is plotted in color that corresponds either to
maximum relative density fluctuation inside the tracked blob (n − 〈n〉)/σn (left
part) or to poloidal size of the blob δp (right part). These trajectories reveal that
blobs carrying less density as well as poloidally smaller blobs (both cases plotted by
dark blue color) feel poloidal plasma flow stronger than blobs with higher poloidal
extent or higher density amplitude. Many of the small blobs do not even reach
outer part of SOL and they are dissipated in the middle of SOL. And, vice versa,
only the largest blobs (in the sense of their spatial extent as well as of their relative
density fluctuation) are able to penetrate into the wall shadow region and hit the
outer wall. As parallel losses of density, energy and vorticity dissipate the blobs,
number of detected structures decreases with radius (Fig. 5.8(left)). Large blobs
move faster in the radial direction (Fig. 5.9(left)) and therefore fraction of large
blobs compared to the small ones increases in the far SOL (Fig. 5.8(left)).

Radial profile of blobs’ mean radial (vr) and poloidal (vp) velocity is plotted
in Fig. 5.9. The poloidal velocity of blobs in the SOL is almost independent on
their density amplitude and it is different from the mean poloidal plasma flow.
This indicates that rotation (tilt) of blobs is such that it just compensates diffe-
rencies in the total blob velocity and all blobs have (on average) the same poloidal
velocity component vp regardless of their amplitude. Fig. 5.10(right) confirms that
stronger/larger blobs are less tilted (their tilt angle α is closer to zero). As a con-
sequence, the differences in inner electric field of blobs, that drives their motion, is
projected mainly to the radial velocity component, which is larger for blobs carry-
ing larger density perturbation. Therefore, even though large blobs move poloidally
with the same speed as the small ones, the difference in vr is responsible for the
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Figure 5.7: Trajectories of randomly chosen blobs detected at position of LCFS in ESEL
simulation #116. The color coding distinguishes blobs according to their maximum rela-
tive density fluctuation (left) and estimated poloidal size (right) at the position of LCFS.
LCFS and end of SOL are marked by vertical dashed lines.

final shape of their trajectory. Large blobs move almost radially, their time spent
in the SOL is short and, therefore, they are able to reach the wall shadow before
being dissipated by parallel plasma losses. Generaly, poloidal velocity of the blobs
consists of two components. Mean poloidal plasma flow dragging the blobs and
movement of the blob generated by its internal electrical field. The latter produces
radially almost constant offset (≈ 0.02cs0) of blob poloidal velocity from the mean
poloidal plasma flow (Fig. 5.9(right)).

Measurement of average poloidal (δp) and radial (δr) sizes of blobs in SOL can
be achieved with reciprocating probe diagnostics. In [155] it was shown that blob
structures on JET are poloidally elongated in the vicinity of LCFS, δp/δr ≈ 2− 3,
transforming to a circular shape in the far SOL, δp/δr ≈ 1. Using the blob-tracking
we estimated the ratio δp/δr from the simulation as shown in Fig. 5.8. The results
show good agreement with the experimentally measured behaviour, which further
supports validity of ESEL simulations for modelling scrape-off layer transport. The
shape of the blobs can be visualised using 2D conditional average that is shown
in Fig. 5.16(left) and in 5.15 the radial and poloidal sizes of blobs are compared
between two different ∇J‖ closures.

The blobs entering the wall shadow are often tilted (Fig. 5.10) and one of the
lobes enters the region earlier than the other one. Since vorticity losses increase
with decreased connection length in this region, the vorticity of this lobe gets
weaker then vorticity of the other lobe. This asymmetry causes rotation of the
whole structure and its possible disintegration (see Fig. 5.6 as an example). This
can be observed in profile of poloidal velocity of blobs (Fig. 5.9(right)) where a
small wave generated by disintegrating blobs can be observed at the boundary of
far SOL and wall shadow regions. The rotation is visible also in histogram of tilting
angles in Fig. 5.10(left) where large number of the rotated blobs is discontinued
at the boundary of SOL and wall shadow. Only small number of blobs or their
fragments with minor axis oriented in the radial direction (ξ ≈ 0) penetrate into the
wall shadow. Note that since large blobs are much less tilted, their dissintegration
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Figure 5.8: Left: Radial decay of number of blobs detected at LCFS with three different
thresholds of relative density fluctuation, normalized to their number at LCFS. All blobs
detected with given thresholds at radius 0 ≥ (r−rLCFS)/ρs < 5 were taken into account
which results in artificial increase of the blue curve above 1 at position (r−rLCFS)/ρs = 5.
LCFS and end of SOL are marked by vertical dashed lines. Right: Logarithm of histogram
of ratio δp/δr for blobs detected at LCFS with n−〈n〉 > 1.5σn. The histogram was divided
by number of all blobs detected with given condition at LCFS and by verticle size of the
bins, ∆(δp/δr) = 0.05.

Figure 5.9: Mean radial (left) and poloidal (right) velocity of blobs tracked in ESEL
simulation #116 for different values of blobs’ relative density fluctuation. Only blobs
with specified relative density fluctuation at LCFS (see legend) were taken into account.
Mean poloidal velocity of plasma in the simulation is plotted by black line. LCFS and
end of SOL are marked by vertical dashed lines.
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Figure 5.10: Left : Logarithm of histogram of blob tilting angles ξ for blobs with amplitude
at LCFS 1.5σn < n − 〈n〉 < 2.5σn. The histogram was divided by number of all blobs
detected with given condition at LCFS and by verticle size of the bins, ∆ξ = 0.05. Right
: Mean tilting angle 〈ξ〉 as a function of radius for blobs with two different amplitude
ranges. In both figures the black horizontal dashed line indicates tilting angle ξ = 0 in
which case the blob axes are aligned with radial and poloidal directions. LCFS and end
of SOL are marked by vertical dashed lines.

at this boundary is less probable.
In this section, we have discussed properties of blobs present in SOL when

subsonic vorticity advection is dominant and similar analysis is prepared also for
regime with sheath dissipation included. In principle, all the results allow verifi-
cation by measurement made either by set of radially and poloidally separated
Langmuir or ball-pen probes (the spatial separation is needed to measure electric
fields and/or blob dimensions) or by gass-puff imagining (GPI) that can visuali-
se blob shape in 2D and allows estimation of their dimensions and velocities. On
COMPASS tokamak, the former diagnostics is already available and installation of
the GPI is considered. Using both diagnostics for comparison with the presented
results is envisaged as a part of effort for characterisation of SOL in this newly
installed machine.

5.5 Vorticity damping by emitted Alfvén waves
Resistive closure ∇J‖ ≈ 0 used in standard ESEL model is not the only one
possible. Some authors suggest [157, 87] that in case that the β of blobs is relatively
large, closure (4.111) describing parallel current associated with field line bending
by blobs and generation of Alfvén waves should be included in 2D models. In
analogy with modelling of drift turbulence, where coupling of drift waves with
Alfvén waves is an important process influencing plasma dynamics, the Alfvén
closure was proposed by B. Scott [112] to be used also in ESEL model. So far,
properties of blob transport in SOL influenced by vorticity drain by emitted Alfvén
waves was studied mostly analytically or numerically for the case of individual
seeded blobs [157, 87, 88]. In this section we show the way how the term (4.111)
influences dynamics in the situation of fully developed turbulence.
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Figure 5.11: Mean value 〈n〉, relative fluctuation level σn/〈n〉, skewness Sn and kurtosis
Kn of density fluctuations in ESEL simulation for TCV parameters with subsonic parallel
vorticity advection (dashed line) and Alfvénic closure of ∇J‖ (solid line).

In order to compare with standard case of subsonic parallel vorticity advection,
the simulation with Alfvénic vorticity damping was made for similar parameters of
TCV plasma as simulation #116, differing only in the vorticity parallel loss term.
Both loss terms, subsonic (4.100) and Alfvénic (4.111), have similar structure with
linear dependency on local vorticity (∂Ω/∂t)‖ = f(n, T )Ω. In Alfvénic case f ∼ vA
while in the subsonic case f ∼ cs due to subsonic advection. For typical parameters
of TCV plasmas (n ≈ 2·1019 m−3, Te ≈ 20 eV) the ion sound speed cs ≈ 40 km·s−1

is much smaller than Alfvén velocity vA ≈ 3500 km · s−1. Their ratio is vA/cs ≈ 90
and since the #116 simulation uses constant characteristic times for description of
parallel losses (i.e. τΩ,#116 =const.), the τΩ,#116 was divided by this factor,

τΩ,vA ≈ τΩ,#116/90. (5.37)

Indeed, the Alfvénic damping causes very strong vorticity losses. Such large drain
of vorticity influences potential structure of blobs, the corresponding electric field
and consequently also their radial velocity. This, in turn, has an effect on radial
profiles and fluctuation statistics in SOL as presented in Figs. 5.11-5.16.

Fig. 5.11 shows that fluctuation statistics inside the LCFS is almost the same for
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Figure 5.12: PDF of density fluctuations at position of LCFS (left) and SOL/wall-shadow
boundary (right). ESEL simulation for TCV parameters with subsonic parallel vorticity
advection (dashed line) and Alfvénic closure of ∇J‖ (solid line).

Figure 5.13: Radial profile of mean vorticity (left) and mean poloidal velocity (right) in
ESEL simulation for TCV parameters with subsonic parallel vorticity advection (dashed
line) and Alfvénic closure of ∇J‖ (solid line).
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Figure 5.14: Number of blobs per millisecond detected at level 3σn in simulation with
subsonic parallel vorticity advection (red) and with parallel vorticity losses given by
Alfvén speed (blue).
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Figure 5.15: Radial (left) and poloidal (right) size of blobs detected with threshold 2σn
in simulations with subsonic (red) and Alfvénic (blue) vorticity losses.
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Figure 5.16: Conditional average of relative density field at threshold 2σn in ESEL simu-
lation for TCV parameters [112]. Difference in blob shape for subsonic parallel vorticity
advection (left) and Alfvénic closure of ∇J‖ term (right) is shown. Crossection of thin
black dashed lines marks position of the CA trigger that was radially located at ρ = 0.04
(top), ρ = 0.37 (middle) and ρ = 1.04 (bottom).
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both cases. The same observation holds for temperature, vorticity and potential
fields and their mutual phase shifts. Therefore, in both simulations the initial
perturbations that give rise to blobs observed in SOL have similar characteristics.
Also characteristics of blobs that penetrate LCFS are similar. This is supported
by the left part of Fig. 5.12 that compares PDF of density fluctuations at LCFS.

In the SOL the fluctuation statistics clearly differs between the cases. While
the mean value 〈n〉 in the subsonic case drops down with radius in very good
agreement with experimentally measured profile as shown in [72, 50], it is almost
constant in the Alfvénic case. We explain that as follows. Drain of vorticity due
to generation of Alfvén waves significantly slows the blobs down. Therefore, on a
fixed probe the fraction of signal in which the blobs are present increases, which
in turn increases the mean value of density. Large number of blobs lose all their
vorticity inside the SOL, stops and does not even reach far SOL or wall shadow
region (Fig. 5.14). This further increases the mean density as the only way how
the material (and energy) brought by the destroyed blob can be removed is by the
parallel losses whose characteristic time (τ‖,n ≈ 3 × 104/ωci) is much larger then
characteristic time of the cross-field transport in the subsonic case (τ⊥ ≈ δ/v⊥ ≈
(20ρs)/(0.1cs) ≈ 2×102/ωci, where δ stands for blob size and v⊥ is cross-field blob
velocity). The presence of slow or destroyed blobs deforms the PDF of density
fluctuations in the far SOL (Fig. 5.12(right)), changing higher statistical moments
(for skewness and kurtosis see Fig. 5.11). In the subsonic case the PDF of density
fluctuations in the far SOL is well-described by Gamma distribution which, again,
agrees well with the experiment [50].

The excessive vorticity drain can be well demonstrated on radial profiles of vor-
ticity and poloidal velocity - Fig. 5.13. The Alfvénic term quickly damps vorticity
profile towards zero. Averaging relation (5.5) over poloidal direction and substi-
tuting vp = (∂φ/∂r)/B, the vorticity profile close to zero implies missing radial
shear of poloidal velocity in the SOL, ∂〈vp〉/∂r ∼ 〈Ω〉. The radial shear of vp is
responsible for blob tilting and elongated blob shape in the subsonic case and as
there is almost no shear in the Alfvénic case the blobs are less tilted as shown in
Fig. 5.16.

In addition to the basic fluctuation statistics, in Fig. 5.16 we have computed
conditionally averaged 2D density fields. First, radii rjCA on which the conditional
averaging will be performed were defined. All blobs with ñi,max/〈n〉 > 2σn were
tracked and whenever position of blob’s density maximum ~xi,max crossed radius rjCA
for the first time, the whole 2D field of relative density n(p, r)−〈n〉(r) was added to
the average. Blobs crossing each of the radii rjCA where averaged separately. Before
the averaging, each 2D field was poloidally rotated such that poloidal coordinate
of blob’s density maximum pi,max was the same in all averaged cases, pi,max =
38ρs. This is allowed by poloidal periodicity of the simulation and it ensures that
the result is not distorted by different poloidal positions of individual blobs. The
relative density field ñjCA conditionally averaged with condition placed at radius
rjCA can be written as

ñjCA(r, p) =
1

N j

∑
tij

ñ(tij, r, (p− pi,max + 38ρs) mod lp) (5.38)

where lp is poloidal extent of the simulation region, tij is time of detection of density
maxima of i-th blob at radius rjCA and N j is number of averaged blobs. Difference
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between the two studied cases, subsonic advection and Alfvénic vorticity damping,
is presented in Fig. 5.16. While in the subsonic case the blobs are elongated po-
loidally in the near SOL (with factor δp/δr ≈ 2) and transform to the circular
shape in the far SOL, the behaviour for Alfvénic case is just the opposite (see also
estimated blob sizes in Fig. 5.15). In the near SOL the blobs are almost circular
(due to low shear of vp) with δp/δr ≈ 1, and they elongate poloidally as they
slow down. The ratio of radial δr and poloidal δp blob size was measured on JET
[155], giving δp/δr ≈ 2− 3 at LCFS and δp/δr ≈ 1 in the far SOL. This, together
with difference in statistical moments of density fluctuations and missing shear
of poloidal velocity in the SOL, discussed in previous paragraphs, leads us to the
conclusion that Alfvénic closure of ∇J‖ term is not appropriate for 2D modelling
of fully developed interchange turbulence in the TCV and JET conditions [112].

5.6 Effect of electric connection of blobs to mate-
rial surface

In the literature it is often assumed that the turbulence in SOL is electrically con-
nected to material targets located at field line ends (typically limiter or divertor)
and closure of ∇J‖ (4.99) that describes sheath dissipation is used either in full
(e.g. [15, 16]) or linearised (e.g. [125, 107, 87]) form. The ESEL model was origi-
nally developed for the case of high parallel electron collisionality ν∗e > 10 and the
main arguments why influence of the sheaths is neglected in the model and only
subsonic vorticity advection is used are summarized in [39]. It is mainly the argu-
ment that the sheath-limited approach may not be suitable for conduction-limited
regime where the parallel transport is driven by local parallel gradients. Moreo-
ver, the term (4.99) represents field line average, which may not be appropriate if
the averaged terms are strongly non-linear. In this chapter we will analyse influ-
ence of the sheath dissipation on turbulence generated in ESEL (keeping plasma
parameters such that ν∗e > 10) and its relation to the experiment will be discussed.

First, before we discuss results of our simulations, we have to point out that
when the sheath dissipation term is used as a parallel vorticity sink, the simulation
is no longer independent on radial boundary conditions (BC) placed on potential
field and it gets an additional degree of freedom. The reason was already discussed
in Sec. 5.1.2. This dependency was not fully realized at the beginning and first
results of our simulations with the sheath dissipation included and with Dirichlet
BC (φIN = φOUT = 0) [114] produced turbulence with very weak shear of vp
around LCFS (fluctuation statistics of this simulation is shown as cyan line in Figs.
5.17, 5.18, 5.20, 5.21 and 5.23). In such case the potential structure representing
sheared poloidal E×B drift is quickly damped to the sheath potential ≈ 2.8Te and
since boundary condition φOUT = 0 limits radial electric field in the edge region,
the weakened transport barrier is not able to stop even the weakest turbulence
structures.

In the following set of simulations we add the sheath dissipation ∇J‖ closure
(4.99) on top of the standard advective loss term (4.100). Similarly to all other
parallel loss terms, the sheath dissipation is used in SOL and wall shadows regions
but not in the edge region. The boundary conditions on φ are placed such that
φOUT ≡ φ(r = rmax) = 0 and we make a scan over different values of φIN ≡
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φ(r = rmin). The value of outer BC φOUT = 0 is chosen to correspond to the
value of plasma potential measured in experiment in the wall shadow [74]. The
scan over φIN represents scan over mean radial electric field in the edge region
and consequently also scan over strength of the poloidal velocity shear layer. The
mechanism of regulating the shear layer by φIN is based on the fact that the
sheath dissipation term (4.99) quickly pushes local potential (in SOL and wall
shadow where the sheath dissipation is used) to the level φ ≈ 2.8Te and thus the
mean radial electric field inside LCFS (which implicates rotation inside LCFS) is
given as

〈Ēr〉edge ≈ −
φ̄(r = rLCFS)− φIN

rLCFS − rmin
≈ −2.8T̄e(r = rLCFS)− φIN

rLCFS − rmin
. (5.39)

Here the brackets 〈·〉edge denote averaging over radial extent of the edge regi-
on and the bar represents poloidally and time averaged quantity. By keeping
T̄e(r = rLCFS), rLCFS and rmin the same in all simulations and changing φIN ,
we regulate mean poloidal velocity in the edge region 〈v̄p〉edge ∼ 〈Ēr〉edge. When
the sheath dissipation is strong, the mean poloidal velocity in the near SOL can
be approximated as v̄p(r) ∼ ∂φ̄(r)/∂r ≈ 2.8∂T̄e(r)/∂r. The difference between the
poloidal velocity in the edge and near SOL regions implicates presence of shear
layer that limits plasma transport from the edge to the SOL. Term 〈v̄p〉edge repre-
sents mean value over the whole edge region and we note that the effect on local
poloidal velocity in the edge and its local shear may not scale fully linearly with
φIN .

5.6.1 Radial profiles of potential and poloidal velocity

Scaling of the poloidal velocity and properties of the velocity shear layer for diffe-
rent values of φIN are shown in Fig. 5.17. It reveals that the shear layer consists of
two parts, one with positive shear in the outer vicinity of the LCFS and one with
negative shear inside the LCFS. This property is clearly introduced by the sheath
dissipation term (through the mechanism outlined in previous paragraph) since
the shear in the standard advective case is always positive. Qualitative compari-
son of the shear layer structure with measurements of radial electric field made by
reciprocating ball-pen probe on ASDEX [104] shows that similar double structure
of the shear layer is observed also in the real tokamak plasmas. Zero radial electric
field (i.e. zero poloidal E×B drift) was measured at LCFS, which agrees with the
case modelled by the sheath dissipation (Fig. 5.17(right)). Similar experimental
data from TCV were, however, not available and similar set of simulations wi-
th sheath dissipation term is being prepared for parameters of ASDEX Upgrade
(Tab. 5.1) to allow direct comparison with 〈vp〉 profiles measured by ball-pen probe
technique in [74].

The shape of vp profile is directly derived from the profile of plasma potential,
〈vp〉 = (∂〈φ〉/∂r)/B, shown in Fig. 5.18. Influence of the introduced sheath dissi-
pation term can be directly seen on the radial dependency of ratio 〈φ〉/〈Te〉. The
interaction with the divertor sheaths causes that the parallel vorticity sink(

∂~∇2
⊥φ

∂t

)
‖

=

(
∂Ω

∂t

)
‖
≈ 1

n
∇J‖ ≈

cs
L‖

(2.8− φ

Te
) (5.40)
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Figure 5.17: Radial profile of poloidal velocity (right) and its radial shear (left) in ESEL
simulation for TCV parameters with subsonic vorticity advection (magenta dashed line)
and sheath (solid lines) closure of ∇J‖. Different values of φIN are plotted with different
colors.

minimizes difference (2.8 − φ/Te) and the radial profile of plasma potential (and
poloidal flows) is primarily determined by the temperature profile 〈φ〉 ≈ 2.8〈Te〉.
In the case of subsonic vorticity advection both quantities φ and Te are generally
independent and their ratio sharply increases towards the LCFS. Here we should
note that the electron temperature in the sheath dissipation term should be taken
at the position of the sheaths, i.e. at field line ends. This information is, however,
not available in 2D model and for simplicity it is substituted by the electron
temperature at the midplane, assuming flat temperature profiles along field lines.

More illustrative point of view to the relation between Te and φ in the simu-
lations is provided by Fig. 5.19 where scatter plot of their instantaneous values
on different positions (distinguished by different colors) is shown. In the sheath
dissipated case any perturbation of potential from the value φ ≈ 2.8Te results in
quick change of parallel current pushing potential back to its equilibrium value.
Due to this mechanism the potential fluctuation level is by factor of 2− 3 reduced
compared to the case of subsonic vorticity advection as seen also in Fig. 5.18(top
left) (except the case φIN = 0 where the transport barrier around the LCFS is
weakened and not able to hold plasma confined inside the LCFS). The reduction
of fluctuations of plasma (5.18(top right)) and floating (Fig. 5.18(bottom right))
potential is favourable - the simulations with sheath dissipation show good agree-
ment with experimental data on fluctuation level of floating potential Vfl (bottom
right in Fig. 5.18) which indicates that the sheath dissipation is present even in
conditions with high parallel collisionality.

Based on our analysis of the influence of the sheath dissipation term on the in-
terchange turbulence and on properties of the radial potential and velocity profiles,
Dr. A.H. Nielsen from Technical University of Denmark made a preliminary simu-
lation for ASDEX Upgrade parameters with the sheath dissipation term included.
In [152] the simulation was compared with reciprocating probe measurements and
surprisingly good agreement was found in radial profiles of plasma potential and
associated poloidal velocity. Moreover, improvement in previously (with subsonic
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Figure 5.18: Radial profile of plasma potential φ (top left) and its fluctuation level (top
right) for different values of parameter φIN . Radial profile of ratio of mean potential
and temperature (bottom left) and of floating potential fluctuation level σVfl (bottom
right). The experimental data from reciprocating probe measurements (crosses, [72])
for discharges with different line-averaged density are plotted for comparison: discharge
#24530 (red), discharge #26092 (green) and discharge #24529 (blue). Solid lines re-
present simulations with sheath dissipation, reference simulation with subsonic vorticity
advection is plotted by dashed magenta line.
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parallel vorticity advection) found discrepancy in density e-folding length λn was
achieved. The success in the comparison of φ and vp is strong indication that effects
of electrical connection of blobs to the sheath play a role in the real plasmas and
should be taken into account. This first simulation, however, used different set of
inner boundary conditions which were, in our opinion, the cause of unrealistically
high fluctuations of all quantities in the SOL (σφ/〈Te〉 ≈ 3). The situation is, to
some extent, probably similar to the φIN = 0 case in our analysis where high level
of potential fluctuations (Fig. 5.18(top right)) is observed as well. Therefore, full
scan over degree of freedom given by inner potential BC φIN made also for ASDEX
parameters is needed and it is already in preparation. Nevertheless, we note that
it was the first time when good agreement of plasma potential profile was obtained
in direct comparison between ESEL simulation and experiment.

5.6.2 Time scale of φ− Te coupling
The interaction with the sheaths not only changes the relation of the mean pro-
files of φ and Te and lowers the fluctuation level of φ, but it also couples their
fluctuations on a fast scale. This can be seen in the insets of Fig. 5.19 where the
PDF of fast fluctuations (below 15 µs) is plotted. Comparing both cases reveals
that independent (or slightly anticorrelated) fluctuations of φ and Te in the case
of subsonic vorticity advection become coupled when the sheath dissipation term
is introduced and the main axis of the PDF is rotated towards line φ = 2.8Te.

Even though local and instantaneous values of φ and Te are usually used when
modelling sheath dissipation, the reaction of the sheath dissipation term on po-
tential perturbations carried by blobs cannot be instantaneous [39]. Some time is
needed to carry the information from the midplane to the sheath were the equiva-
lent electric circuit is closed. This time may be comparable to or even larger than
the time of radial blob transit over single field line [39]. In such case, the response
of parallel currents on given field line would be delayed after turbulent fluctuations
passing over the field line and the effect of the sheath dissipation term (4.99) would
effectively average in time. In such situation the sheath dissipation acts on mean
potential and vorticity profiles but not on fast perturbations associated with blobs.
In such case the radial profiles of mean φ and Te would be highly correlated (due to
sheath dissipation) while there would be no (or only weak) correlation between the
fluctuations (fast vorticity fluctuations damped by subsonic advection). Therefore,
we suggest to use form of the sheath dissipation term (4.99) time-averaged over
characteristic parallel time τ‖,

~∇ · ~J‖ ≈ 〈
encs
L‖

(
1− exp

(
−eδφ
Te

))
〉τ‖ ≈ 〈

encs
L‖

eδφ

Te
〉τ‖ . (5.41)

The characteristic time scale of the φ and Te coupling, τ‖, could be determined
by the rate of rotation of the PDF with respect to the time scale of the studied
fluctuations (the high-pass filtering threshold). This type of analysis used on expe-
rimental data should determine character and reaction rate of the parallel currents
that couple midplane turbulence to the divertor sheaths. Currently, we have avai-
lable Te and φ data measured by reciprocating ball-pen probe on ASDEX Upgrade
([74]) and preliminary analysis revealed picture very similar to that shown in bot-
tom part of Fig. 5.19 i.e., it strongly favours the sheath dissipation regime. We
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Figure 5.19: Scatter plot of instantaneous values of plasma potential φ vs. electron tempe-
rature Te for subsonic vorticity advection (top) and case with sheath dissipation included
and φIN/TLCFS = −15 (bottom). Different colors distinguish radial positions. Inset figu-
re shows 2D probability distribution function of potential and temperature fluctuations
at all radii, i.e. PDF of high-pass filtered signals with filtering threshold 15 µs. Contours
at levels 0.05, 0.1, 0.2 and 0.3 are plotted in white.
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expect that confirmation or rejection of the hypothesis (5.41) will be brought by
detailed analysis of experimental data. Moreover, more information on this topic
will be brought by planned extension of SOLF1D model [65] with solver of genera-
lized Ohm’s law (4.79), replacing currently used assumption (∇J‖ ≈ 0). SOLF1D
computes transport along field lines and it was recently fully coupled with the
ESEL code (see Sec. 5.7). When augmented with full Ohm’s law, the coupled code
will allow to model behaviour of the ∇J‖ term in a highly fluctuating (turbulent)
environment and test our hypothesis (5.41).

5.6.3 Scaling of density and temperature

In Fig. 5.17 we have shown that change of φIN regulates strength of radial shear
of poloidal plasma velocity. This represents regulation of transport barrier around
LCFS and this mechanism influences blob penetration into SOL and has significant
impact on radial density and temperature profiles as shown in Figs. 5.20 and 5.21.
With increasing amplitude of the shear layer (decreasing φIN) the steepness of
density profile quickly rises as can be seen also on scaling of (minimal) radial
density and temperature e-folding lengths (λn = 1/(∂ lnn/∂r) and similarly for
λT ) in the near SOL shown in Fig. 5.22. By making fit to the data we find relations
(for φIN < φ(r = rLCFS))

λn ≈ 117 · exp
(

0.14 φIN
Te,LCFS

)
≈ 172 · exp

(
4.2× 10−3 · 〈Ēr〉edge

Te,LCFS

)
(5.42)

λT ≈ 36 · exp
(

0.08 φIN
Te,LCFS

)
≈ 44 · exp

(
2.4× 10−3 · 〈Ēr〉edge

Te,LCFS

)
(5.43)

where we have substituted φIN ≈ 2.8Te,LCFS + δr〈Ēr〉edge from (5.39), Te,LCFS ≡
T̄e(r = rLCFS) and δr = 3×10−2 m is radial width of edge region in the simulation.
Here φIN is given in V , Te in eV , Er in V/m and λ in mm. This dependency is,
in principle, experimentally verifiable when Te,LCFS and 〈Ēr〉edge are measured,
however, we note that the coefficients are relevant for the modelled TCV case
only. Since the coefficients may differ for other tokamaks, new set of simulations
would be needed.

In the case of weak radial electric field Er in the edge region (e.g. φIN = 0)
almost all perturbations can penetrate through the transport barrier and this
penetration happens very often. On the other hand, probability of blob penetrating
the transport barrier formed with large Er in the edge is small and such event
happens rarely. This is documented in Fig. 5.23(left) where number of events with
relative fluctuation threshold above 2σn is plotted for different values of φIN . With
decreasing φIN (increasing vp shear) the number of blobs ejected from edge into
SOL decreases. Conditional average of radial particle flux carried by these blobs
in the near SOL region (Fig. 5.23(right)) reveals that the flux decreases with
decreasing φIN , which results in further steepening of the density profile. At the
same time, the PDF of relative density fluctuations in Fig. 5.20(bottom) remains
more or less similar for all the studied cases,which agrees with observation made
in experimental data sets [50].

In Fig. 5.20 experimental data from TCV obtained from discharges with dif-
ferent line-averaged density are plotted for comparison. In the simulation, values
of φIN can be found such that the radial density profile in all three discharges is
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reasonably reproduced. This indicates that the radial electric field around LCFS
was different between the discharges, however, this could not be verified since ex-
perimental data on Er inside LCFS of TCV were not available. While profiles of
the mean values are matched well in all of the cases except φIN = 0, comparison
of fluctuation level σn shows larger differences, but not more than by factor of 2
(again, except case φIN = 0) and typically deeper in the SOL. The fluctuation
level grows as the profile steepens and best agreement with experimental values is
found approximately in the range −19 ≤ φIN/TLCFS ≤ −15. The different level of
fluctuations in the other cases may be influenced by several factors. In our opini-
on, the two most important are: (i) The analytical approximation of parallel sink
terms (Eqs. (5.11)-(5.13)) may not be fully appropriate [65] and incorrectly de-
termined density losses distort level of density fluctuations; (ii) The instantaneous
form of the sheath dissipation term (4.99) is appropriate only for conditions with
lower parallel collisionality (which is correlated with presence of steep gradients
of density profile [52]) where interaction with the sheath takes place on fast time
scales. Otherwise, its time averaged form (5.41) should be used, restricting she-
ath dissipation to time-averaged potential and velocity profiles only, keeping fast
fluctuations free, damped by subsonic advection only. Both topics will be examined
in our next works.

Radial profile of electron temperature scales similarly to the profile of density,
again showing reasonable agreement (except case φIN/TLCFS = −20) with ex-
perimentally measured profiles in the SOL (Fig. 5.20(left)). The disagreement in
temperature profiles in the wall shadow region is probably caused by inability of
the diagnostics to measure low temperatures. This topic will be discussed in more
details in Sec. 6.2. The temperature profile was measured by swept probe that does
not provide data on fast fluctuations. Instead, fast fluctuations of floating potential
were measured by nearby located probe. In [74] we have shown on data measured
at ASDEX Upgrade that fluctuation level of floating potential σVfl is dominated by
temperature fluctuations and it corresponds to approximately σVfl ≈ 2.8σT . Since
σVfl in the TCV simulations with sheath dissipation is comparable to experimen-
tally measured values (Fig. 5.18(bottom right)), it indicates that also fluctuation
level of temperature is in the simulation in correct order. Nevertheless, we note
that the temperature fluctuations are above interval σT/〈T 〉 ≈ (0.2 − 0.4)σn/〈n〉
reported in the literature [18, 74].

5.6.4 Conclusions

After comparing behaviour of sheath dissipated turbulence in SOL with experi-
mental findings, we must pronounce that mechanism of sheath dissipation brings
improvements against case taking into account subsonic vorticity advection only.
Even though arguments about very high parallel collisionality ν∗e ≈ 60 in the stu-
died cases, that could decouple midplane turbulence from the influence of divertor
targets, may be risen, the comparison of floating potential fluctuations with expe-
rimental values indicates that connection to the sheath plays a role even in these
conditions. To join both arguments, we propose model (5.41) of sheath dissipation
term averaged over characteristic time scale of parallel transport τ‖. With incre-
asing τ‖, this model should exhibit smooth transition between sheath-dissipative
and purely advective case and the corresponding time scale can be principally ob-
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Figure 5.20: Radial profile of mean density (top left), relative density fluctuation level
(top right) and PDF of density fluctuations at ρ = 0.3 (bottom) in ESEL simulation
for TCV parameters with subsonic vorticity advection (magenta dashed line) and sheath
dissipation (solid lines). The experimental data from reciprocating probe measurements
(crosses, [72]) are plotted for comparison.
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Figure 5.21: Radial profile of mean temperature (left) and relative temperature fluctuati-
on level (right) in ESEL simulations for TCV parameters with subsonic vorticity advecti-
on (magenta dashed line) and sheath dissipation (solid lines).

Figure 5.22: Scaling of minimum density (red) and temperature (green) e-folding length
λn and λT , respectively, in the near SOL with boundary condition φIN in ESEL simulati-
ons (TCV parameters) with sheath dissipation term (crosses). Values obtained in case of
subsonic vorticity advection are plotted by horizontal lines.
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Figure 5.23: Left: Number of blobs per millisecond whose peak amplitude of density
fluctuation is above level 2σn. Scan over simulations with sheath dissipation included
and with different BC φIN is plotted with solid lines, standard case of subsonic vorticity
advection is plotted with dashed line. Right: Conditionally averaged profile of radial
particle flux Γn in the near SOL (ρ = 0.3). The CA trigger was set on density signal at
level 2σn.

tained from simultaneous experimental measurement of φ and Te signals. This is
one of the goals of our future work.

At the same time, simulations including sheath dissipation are able to cover
much broader range of density and temperature e-folding lengths than the simu-
lation with subsonic vorticity advection. The density and temperature profiles scale
with free parameter of the model, φIN , that changes mean radial electric field in
the edge region. Indeed, the relation (5.39) approximating radial electric field in
the edge by linear relationship between Te(r = LCFS) and φIN is of the lowest
order only and either physical processes contributing in this region to generation
of Er should be included in the model or the value of Er should be matched with
experimentally measured value. At present time, our work is focused on the latter
as there are data of Er obtained from two independent diagnostics available for
ASDEX Upgrade [104]. Nevertheless, scaling of the density and temperature profi-
les with φIN shows good agreement with experimental profiles in the case of TCV
at the cost of somewhat lower density fluctuation level when values of higher φIN
are used. We note, that the fluctuation statistics may be influenced by the way
how plasma is lost along field lines (Eqs. (5.11)-(5.13)). In [65] we have shown that
these analytical estimations of parallel losses may misinterpret the actual level of
parallel transport and in future we aim to clarify the effect of parallel density and
temperature sinks by coupling ESEL and SOLF1D codes (see Sec. 5.7).

5.7 Coupling of ESEL and SOLF1D codes and es-
timation of parallel losses

Closely connected with the topic of parallel dissipation of vorticity discussed in
previous sections is the issue of estimation of parallel losses of density and tempe-
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rature. Standard ESEL version uses analytical expressions (5.11)-(5.13) derived in
[39], that assume subsonic parallel advection of density and vorticity and Spitzer-
Harm diffusion of energy in conditions of simple SOL. These expressions are based
on two main assumptions. First, that the characteristic gradient of the quantities
along each field line is related to the connection length from midplane (where blobs
are generated) to the material targets. And second, that parallel losses are inde-
pendent on history of fluctuations on the field line. The first assumption, however,
neglects ballooning nature of interchange transport due to which blobs appear on
a field line as perturbations localised around midplane.

In order to assess validity of both assumptions we have, in cooperation with
Dr. Eva Havlíčková from Culham Centre for Fusion Energy, performed coupling
of the ESEL code with code SOLF1D. SOLF1D [64, 65] is a 1D fluid code sol-
ving Branginskii equations of plasma transport along field line, thus allowing to
replace analytical expressions for parallel losses in ESEL (5.11)-(5.13) by a more
realistic model. The equations solved by SOLF1D consist of parallel parts of: con-
tinuity equation (4.53) assuming ne ≈ ni ≈ n, ion momentum equation (4.45) and
energy equation (4.60) for both plasma species. Parallel momentum of electrons is
neglected. Presently, the generalised Ohm’s law is simplified assuming ambipolar
diffusion v

‖
e = v

‖
i = v‖ and neglecting parallel currents J‖ = 0, but relaxing of

these assumptions in upcoming version is considered. The final set of equations
solved by SOLF1D is [64, 65]:

∂n

∂t
+

∂

∂x‖
(nv‖) = Sni + Sn⊥, (5.44)
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‖
‖) = (5.47)

v‖
∂

∂x‖
(nTe) +Q+ SEi + SEi,⊥.

Terms Sni , Svi , SEe , SEi describe changes due to atomic processes (ionization, charge
exchange, recombination and excitation) and perpendicular sources Sn⊥, Sv⊥, SEe,⊥, SEi,⊥
represent effect of cross-field plasma motions that are computed and provided to
SOLF1D by ESEL. Since ESEL model does not include ion temperature, some
assumption has to be made on the form of SEi,⊥ that is typically taken as some
multiple (1 or 2) of SEe,⊥. Q is collisional heating (4.64). Optionally, effect of ne-
utral particles that are localized near divertor targets can be included by solving
their continuity and momentum equations.

Schematic illustration of coupling scheme of the codes is shown in Fig. 5.24.
Each spatial point in ESEL has an associated instance of SOLF1D code that
receives cross-field fluxes in form of perpendicular sources S⊥, advances Eqs. (5.44)-
(5.47) in time and returns parallel sinks to be substituted in ESEL for the rightmost
terms in (5.8)-(5.10). In SOLF1D, Gaussian profile of the cross-field sources along
field line is used,

S⊥(x‖) = S⊥,ESELe
−(x‖−x‖midplane)

2/∆2
ballooning , (5.48)
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Figure 5.24: Schematic illustration of geometry of ESEL-SOLF1D coupling. Field lines
in the wall shadow region are asymmetric, reflecting different connection length from
midplane to divertor (left side) and from midplane to the first wall (right side).

representing ballooning nature of the turbulent transport. Maximum of the sour-
ces is located at position of the midplane x‖midplane and width ∆balloning of the
Gaussian represents width of the ballooning region. Difference in local density and
temperature values between ESEL and corresponding SOLF1D instance is checked
and if needed, small artificial cross-field source is added on the input of SOLF1D
to ensure consistency of both solutions. The artificial source is, however, needed
very rarely and does not influence the final results. The coupled code neglects mi-
xed parallel-perpendicular transport terms in the energy equation (violet terms in
(4.60)) as well as in the momentum equation.

The parallelization of the coupled code has been made using Message Pas-
sing Interface (MPI) library such that the ESEL code constitutes the root MPI
thread and SOLF1D instances are homogeneously distributed between the rest of
available MPI threads. First performance tests made with ESEL run with spatial
resolution 256× 384 points show that during computation of one ESEL time on a
single CPU core time step of approximately 115 SOLF1D instances (each with 100
points in parallel direction) can be computed on equivalent CPU core. To speed
up the computation, the code allows reduction of number of SOLF1D instances
by computing parallel transport with SOLF1D on sparser grid than is spatial grid
used in ESEL. Then, the parallel sinks computed by SOLF1D instances are in
ESEL interpolated in space. The impact of the interpolation on the results has,
however, yet to be assessed.

5.7.1 Transport of turbulent fluctuations along field lines

In the first phase of the coupling we have used data from our ESEL simulation
#116 as a source of fluctuations and provided them to Dr. Eva Havlíčková, author
of the SOLF1D code, as an input to standalone SOLF1D code [64, 65, 66]. The
simulation verified stability of the SOLF1D under strong forcing and provided
some insight into spreading of turbulent fluctuations along magnetic field lines.

There are several observations that could be made prior to the full coupling
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Figure 5.25: Trace of cross-field sources Sn⊥ (left) and SE⊥ (right) at fixed point in ESEL
simulation #116 during blob transit (black) and its approximation by step function used
as an input for SOLF1D (green). [64].

of the codes. First, we have approximated cross-field sources associated with blob
moving over SOLF1D field line by a step function [64, 65]. 1 µs duration of the
event and amplitudes Sn⊥ = 4 · 1025 m−3 · s−1, SEe,⊥ = SEi,⊥ = 6 · 108 kg ·m−1 · s−3

were used as values representing typical transient event in the ESEL simulation
(see Fig. 5.25). The transient cross-field sources were applied on top of SOLF1D
steady-state solution with neutrals at time t = 30 µs. In order to model ballooning
nature of the interchange transport, Gaussian profile of the sources along field line
(5.48) was used. Width of the profile corresponded to the width of the ballooning
region for modelled parameters of TCV. Spreading of the event along field line
is shown in Fig. 5.26 where profile of plasma density, temperature and parallel
velocity are plotted at three different times: t = 25 µs - the steady state; t =
31 µs - maximum of density at midplane; t = 75 µs - relaxation back to the
steady state. Apparently, local density gradients are not given by connection length
between midplane (center of the field line) and divertor targets, L‖ = 15 m, as
is assumed in the approximation of parallel density losses (5.11) used in ESEL.
Instead, the perturbation splits into two separate halves that move in opposite
directions with Mach number M‖ = 0.5. As a result, parallel losses estimated by
analytical expression (5.11) are underestimated by a factor ≈ 2−10 [65]. Therefore,
we argue that the connection length L‖ should be in approximation of parallel
density losses (5.11) replaced by length of the ballooning region, L‖ → Lb ≈ L‖/6.
On the other hand, the temperature profile quickly spreads over the field line and
approximation of parallel gradients by connection length L‖ is reasonable except
the short time when the transient cross-field sources are present.

Both observations made for the case of step transient event are consistent with
results of ESEL modelling of JET [39] and ASDEX [152] cases, where comparison
with experiment founds density profiles being too flat in the simulation (i.e. parallel
losses are underestimated) while at the same time the temperature profiles are in
a reasonable agreement. The aim to improve this discrepancy provides one of the
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Figure 5.26: Time evolution of midplane density (top) and parallel profiles of density (bot-
tom left), parallel velocity (bottom midle) and temperature (bootom right) in SOLF1D
simulation with transient cross-field sources in form of step function with duration 1 µs.
The profiles are shown in three different times: original steady-state profile (yellow), ti-
me of maximum midplane density (red) and relaxation back to steady-state (green). The
transient event started at time t = 30 µs. [65].
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Figure 5.27: Parallel sink terms of density (left) and electron temperature (right) as
a function of local density (left) and electron temperature (right) in fully coupled
ESEL+SOLF1D code at radial position ρ = 0.2. SOLF1D version without neutrals was
used. Prediction of 0D analytical model (5.11)-(5.13) is plotted by green circles, results
of SOLF1D by blue crosses.

main motivations for the full coupling of both codes.
The second motivation for the full coupling is illustrated in Fig. 5.27. The

density, temperature and velocity profiles along each field line keep memory of
previous fluctuations and the whole system becomes, from the point of view of
ESEL, non-Markovian. As a result, the response of midplane parallel losses on the
same transient event is dependent on the history of fluctuations imposed on the
field line and it cannot be easily parametrised in terms of midplane density and
temperature as was done in Eqs. (5.11)-(5.13). Especially parallel losses of density
(Fig. 5.27(left)) behave differently from the analytical 0D estimation and do not
show any convincing dependence on local density and temperature in ESEL. The-
refore, the fully coupled code is necessary for correct evaluation of parallel plasma
losses from ESEL. The plotted data were taken from one of the first simulations
made with the fully coupled code for parameters of TCV and they confirm pre-
vious estimations made by standalone SOLF1D version with ESEL forcing [65].
We note, that the coupled code should not be considered as 3D, since it does not
include cross-field motions elsewhere, but in a single plane where the field lines
cut outer midplane. This, indeed, neglects possibly important effects such as sta-
bilisation of interchange modes at the inner midplane (illustrated in Fig.3.7) or
vortex stretching in the vicinity of X-point (illustrated in Fig. 4.2(right)).

Example of behaviour of parallel losses in the coupled code is presented in Fig.
5.28. It shows that while peak values of temperature losses are comparable with
the analytical model, density losses in the analytical model are most of the time
underestimated by a factor of 2. In quiescent phases, when there are temporarily no
turbulent structures crossing the field line, all density perturbations slowly expand
towards field line ends, characteristic parallel length scale becomes comparable to
the connection length and rate of density losses modelled by SOLF1D drops to
the level comparable to the analytical model. On the simplified case of a step-like
transient event we have shown that maximum of parallel density losses is delayed
behind maximum of local density [65] and the same behaviour is present in Fig.
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Figure 5.28: Time trace of local temperature and density (top) in coupled
ESEL+SOLF1D simulation and corresponding parallel losses of density (middle) and
temperature (bottom) predicted by 0D analytical model (5.11)-(5.13) (green) and mo-
delled by SOLF1D without neutrals (blue).

5.28(middle). After blob transits over the field line, the temperature damping is
negative and energy, that was spread along the field line when high-temperature
blob was present, flows back to the middle of the field line that, after the blob was
exchanged with background plasma by cross-field motion, became cooler than the
field line ends.

The full coupling of both codes has been performed very recently. Stability
and performance of the code were already successfully tested and relevant physical
results from the fully coupled code will be available soon. In the future, the code will
offer opportunity to compare modelled interplay between cross-field and parallel
turbulent motions with fairly unique diagnostic installed on tokamak COMPASS
- set of two reciprocating probes, one moving horizontally at the position of outer
midplane, one moving vertically down from the top of tokamak vessel. The toroidal
location of both reciprocating manipulators is such that approximate magnetic
connection of the probes, and thus observation of parallel spreading of individual
blobs, should be possible.

5.7.2 Averaging of transport coefficients

Radial profiles of mean density, temperature or pressure result from an interplay
between plasma transport perpendicular and parallel to magnetic field lines. Even
though the perpendicular transport is highly intermittent and plasma-surface in-
teraction non-linear, effective transport coefficients computed from mean values of
relevant thermodynamic quantity are often used in steady-state transport codes
such as EDGE2D and SOLPS. This may be one of the sources of disagreement ob-
served between result of the code and experiment [29]. Indeed, computing nonlinear
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radial position ρ = 0.0 ρ = 0.0 ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6
parallel position [m] x=0 x=10 x=15 x=0 x=0 x=0
〈n〉 [1019 m−3] 2.05 2.40 1.35 1.53 1.05 0.83

σn/〈n〉 0.37 0.08 0.18 0.49 0.64 0.76
〈Te〉 [eV] 20.99 20.33 3.52 12.33 6.68 4.23
σTe/〈Te〉 0.50 0.11 0.29 0.72 1.06 1.39

〈nTe〉/〈n〉〈Te〉 1.18 1.17 3.03 1.33 1.64 1.96
〈nT 3/2

e 〉/〈n〉〈Te〉3/2 1.37 1.31 4.30 1.75 2.68 3.81
〈T 5/2

e 〉/〈Te〉5/2 1.49 1.71 5.29 2.10 3.77 6.31
〈T 7/2

e 〉/〈Te〉7/2 2.33 2.16 12.30 4.73 14.83 36.69

Table 5.2: Error made by fluctuation averaging for several non-linear functions of density
n and electron temperature Te evaluated at several radial points in ESEL simulation (x
= 0 m) and along field line computed by SOLF1D that was located in the vicinity of
LCFS (ρ = 0). x = 0 m is position of midplane at the center of the field line, x = 15 m
is position of divertor target. [66].

function using average instead of fluctuating values in such intermittent environ-
ment as SOL may result in a significant error, with 〈f(n, Te)〉 6= f(〈n〉, 〈Te〉). The
size of the error depends on fluctuation statistics, correlations between n and Te
and nonlinearity of the considered term. Another example can be found when lower
hybrid wave propagation through edge plasma is studied [37, 38]. Then, presence
of fluctuations may lead to intermittent damping of the wave on blobs.

In order to estimate the error made by using averaged values in non-linear
function instead of averaging the whole function, we have used time trace of n and
Te fluctuations from different positions in ESEL run #116 and at the same time the
data were provided as a forcing for standalone SOLF1D code to Dr. Eva Havlíčková
[66]. Note that parallel losses computed by SOLF1D were not transferred back to
ESEL and constant characteristic loss times from Tab. 5.1 were used instead. Also
different potential boundary conditions in ESEL, φ(r = rmin) = 0 and (∂φ/∂r)(r =
rmax) = 0, were used in order to fully reproduce the original run from [46].

The error due to non-linear nature of several considered terms is summarized
in Tab. 5.2. The error is smallest near the LCFS at midplane and grows as the
relative fluctuations increase and become more intermittent i.e., towards the far
SOL and divertor targets. The biggest impact of the fluctuation averaging can be
seen on strong functions of temperature such as parallel heat conductivity (∼ T

5/2
e )

or thermal heat flux (∼ T
7/2
e ). Generally, the transport coefficients may have very

different dependency on n and Te and therefore, in Fig. 5.29 we visualise ratio
〈f(n, Te)〉/f(〈n〉, 〈Te〉) at the midplane for the whole set of functions having form
f ≈ nαnTαT .

We should note that due to lack of experimental data we cannot verify level
of Te fluctuations in the simulation and since experimentally measured level in-
dicates rather lower level of fluctuations of Te [18, 74] than observed in ESEL,
the values presented in Fig. 5.29 and Tab. 5.2 should be understood as an upper
estimate. Moreover, these results will be verified when the full coupling of both co-
des is used, which may change amplitude of temperature and density fluctuations.
Nevertheless, the observed impact of neglected fluctuations on value of transport
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coefficients is non-negligible and the approach of fluctuation averaging may bring
significant errors, especially in the boundaries of tokamak plasmas (outer wall,
divertor targets).

Figure 5.29: Error made by fluctuation averaging of functions of the form f = nαnTαTe
estimated for different radial positions in ESEL #116 simulation. Decimal logarithm of
the error i.e. function log10

(
〈f(n,Te)〉
f(〈n〉,〈Te〉)

)
is plotted.
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6. Interpretation of probe
measurements based on turbulence
modelling
Electric probes are widely used diagnostics of tokamak edge plasma. The main
advantage is their high spatial and temporal resolution. Besides basic Langmuir
probes discussed in Sec. 3.2, combinations of several probe pins on a single probe
head are often used, allowing measurement of gradients and correlation analysis.
There also exist several advanced probe concepts specialized on measurements of
quantities hardly obtainable from the basic Langmuir probes (see e.g. [100, 147]).
There are two basic plasma parameters, electron temperature and plasma poten-
tial, that can be determined with swept Langmuir probes by measuring the I-V
characteristic (3.15), however time resolution of such data is usually insufficient
to correctly resolve individual structures on time scale of SOL turbulence. Some
attempts were made to increase the sweeping frequency to ≈ 100 kHz - 1 MHz,
however this approach brings additional problems such as hysteresis of the measu-
red I-V characteristics caused by capacitive effects [73] and interpretation of the
data may become very problematic.

In the next three sections we will use turbulence simulations presented in
chapter 5 to discuss some aspects of measurement using concept of ball-pen probe
(BPP) i.e., probe designed to allow fast and direct measurement of plasma po-
tential and electron temperature. Then, in the last two sections of this chapter,
correlation technique for measurement of poloidal plasma velocity and U-probe
concept for determination of plasma vorticity will be discussed.

6.1 Ball-pen probe

Influence of local electron temperature Te on floating potential Vfl (3.19) is given
by factor α, whose value is in typical SOL α ≈ 2.5− 3. Since mean values as well
as standard deviation of Te and φ fluctuations are comparable in the SOL [74], the
term αTe may cause significant differencies of floating and plasma potential. The
basic idea of concepts of direct plasma potential measurement by emissive probe
and ball-pen probe (BPP) is to reduce the value of α, thus reducing also parasitic
influence of Te in the measured potential [147].

Well-known emissive probes achieve this by heating the probe (either directly
or indirectly by laser beam), which gives rise to electron emission current Iee. α is
then given as α = ln(I−sat/(I

+
sat + Iee)). When the ratio of currents is adjusted near

1, α ≈ 0 [147].
Alternative concept of BPP uses geometrical means to reduce I−sat by reducing

the number of electrons hitting the collector. Ball-pen probe utilizes the fact that in
strongly magnetized plasma Larmor radii of electrons and ions significantly differ.
The collector is therefore hidden inside insulating shielding, as shown in Fig. 6.1.
This allows ions with large Larmor radius to reach the collector, while majority of
the electrons is removed by the shielding. The collector is left electrically floating
and therefore no potential sweeping is necessary for potential measurement and
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Figure 6.1: Left: Illustration of ball-pen probe principle - ions with larger Larmor radius
reach the collector while electrons are removed by the shielding. Right: Change of measu-
red potential Vprobe and factor α = ln(I−sat/I

+
sat) with position of the collector (negative

position means collector retracted inside the shielding). Reproduced from [147].

high temporal resolution of the measurement (µs time scale) is possible.
The collector is usually made movable and the influence of collector position on

ratio of I−sat/I
+
sat was investigated in [147]. The result reproduced in Fig. 6.1 (right)

shows that measured potential sharply changes its value from Vfl in Langmuir-
probe mode to some new value, as the collector is retracted inside shielding. At the
same time the ratio of saturation currents drops approximately to I−sat/I

+
sat ≈ 1.1

which means that BPP with retracted collector measures potential very close to
plasma potential with α ≈ 0.6 ± 0.3 [2]. The reason why electrons are always
present inside the shielding and α does not drop to zero even for deeply retracted
collector, as expected from the simple geometrical arguments, is still not clear.
Recent particle-in-cell simulations of similar ion sensitive probe indicate that self-
consistently established electrical field in the entrance of the shielding may play
an important role in transport of the electrons into the shielded tube [80, 81].

6.2 Overestimation of electron temperature in the
wall shadow region by swept Langmuir probes

Previous comparison of ESEL simulations with Langmuir probe measurements on
TCV tokamak have shown disagreement in the value of electron temperature Te
in the wall shadow region [72]. While the measured radial profile is very flat in
this region with temperature almost constant (Te ≈ 5 eV), ESEL predicts strong
drop in the temperature profile as shown e.g. in Fig. 5.21(left). The drop in the
model is present due to rapid increase of parallel energy transport rate (5.13) as a
consequence of shortening of connection length to the nearest wall, L‖,SOL ≈ 10 m
becomes L‖,w.s. ≈ 1 m ([72]). The discrepancy may be related to the known issue
reported e.g. in [103], that Langmuir probes in the divertor region in high recycling
and detached regime measure higher temperature than other diagnostics. There
were some attempts to explain the discrepancy (e.g. by probe sensitivity to high-
energy electrons reaching the probe due to strong Te gradient along magnetic field
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Figure 6.2: Radial profile of electron temperature in ASDEX Upgrade measured in [74]
by swept Langmuir probe (triangles), ball-pen probe technique (crosses) and by Thomson
scattering (squares). Estimated e-folding length of Te profiles is 3× 10−2 m in SOL and
5× 10−3 m in wall shadow region. [74].

Figure 6.3: Left: Temperature e-folding length λT from ESEL simulation for parameters
of ASDEX Upgrade (red) compared with values λTe,SOL = 3 × 10−2 m and λTe,w.s. =
5 × 10−3 m estimated from the experimental BPP measurements (green) shown in Fig.
6.2. Right: Change of temperature PDF in the ESEL simulation in vicinity of far SOL
and wall shadow boundary.
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lines [71]), however its origin is still not fully understood.
Based on the capability of newly developed ball-pen probe to measure potential

close to the plasma potential, a method for fast electron temperature measurements
was proposed [2]. By subtracting floating potential Vfl measured by floating Lang-
muir probe and potential φBPP from a ball-pen probe located nearby, electron
temperature can be determined from (3.19) as

Te =
φBPP − Vfl
αVfl − αBPP

. (6.1)

Difference of factors α for cold Langmuir probe, αVfl , and for BPP, αBPP , gives
δα = 2.8− 0.6 = 2.2.

Simultaneous temperature measurement in SOL of ASDEX-Upgrade by me-
thod (6.1) and by swept Langmuir probe was carried out in [2, 74]. Comparison of
both methods (Fig. 6.2) shows similar difference in radial gradient of temperature
profile in wall shadow region as previously found in comparison of ESEL and swept
Langmuir probe measurement on TCV (Fig. 5.21(left), [72]). This indicates that
problems of swept Langmuir probe method in this region are responsible for the
discrepancy in temperature profile between ESEL model and experiment found in
[72], rather than incorrect physics in ESEL model. To strengthen the argument,
we have made ESEL simulation for relevant parameters of the ASDEX Upgrade
plasma (Tab. 5.1). The e-folding length of Te profile from the simulation is shown
in Fig. 6.3(left) and compared with values obtained by the ball-pen probe tech-
nique. In SOL, the e-folding length is around value λTe,SOL ≈ 3× 10−2 m for both
cases and drops to λTe,w.s. ≈ 5 − 6 × 10−3 m in wall shadow. Fig. 6.2 shows that
on the contrary to Te,BPP and Te,ESEL, profile of Te measured by Langmuir probes
remains flat in the wall shadow.

Figure 6.4: Left: Dependency of average rate of parallel losses 〈T/τT 〉 (red) together with
interval of one standard deviation (black dashed) in ESEL simulation for parameters
of ASDEX Upgrade. Right: Scatter plot of rate of parallel temperature losses in the
simulation in many randomly chosen times at far SOL (blue), in wall shadow (red) and
on the boundary of both regions (green). 1/(τTωci) estimated by Eq. 5.13 from local mean
temperature and mean density at LCFS (grey) or local mean density (black) is plotted
for parallel connection lengths at given radius - L‖ = 10 m (dashed), L‖ = 0.55 m
(dash-dotted) and L‖ = 1 m (solid). Note that 1/(τTωci) ∼ 1/L2

‖.
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The parallel connection length changes its value between SOL and wall shadow
region in the considered ASDEX Upgrade discharge by factor L‖,SOL/L‖,w.s. ≈ 10
[74]. For blobs with velocity vr and temperature T moving over background plasma
with small constant temperature Tbg, the e-folding length can be estimated as

λT ≈ 〈T + Tbg〉〈
(
dT
dr

)−1

‖
〉 =
〈T + Tbg〉

vr
〈
(
dT
dt

)−1

‖
〉. (6.2)

Then, from expression (5.13) for characteristic energy parallel loss time, τT ∼
1/L2, one could expect that shortening of connection length L2

‖,SOL/L
2
‖,w.s. ≈

100 will change radial e-folding length λT in the ESEL model by similar fac-
tor, λT,SOL/λT,w.s. ≈ 100. However, the parallel losses are of diffusive nature and
thus strongly nonlinear function of temperature τT ∼ T 5/2/n. As a consequence,
large temperature fluctuations are quickly damped, while rate of change of bac-
kground (as well as mean) plasma temperature is slower. After shortening of L‖,
blobs are rapidly cooled down by parallel losses as can be seen in Fig. 6.3(right)
and in right part of Fig. 6.4. This creates the largest drop in λT in Fig. 6.3(left)
observed at position ρ ≈ 1. After that, the parallel temperature losses drop down
faster then Te and λT slowly increases. Fig. 6.4(left) shows that due to nonli-
near nature of τT the average change of temperature in time by parallel losses,
〈(dT/dt)‖〉 = −〈T/τT 〉, increases only by factor of 10 between far SOL and wall
shadow (left part of the figure), while for fixed temperature the damping term
1/τT increases as L2

‖,SOL/L
2
‖,w.s. by factor of 100 (right part of the figure where

black and gray lines scale with connection length as 1/L2
‖). Then, the change of

〈(dT/dt)‖〉 by factor of 10 explains similar change of λT . Note that data in Fig.
6.4 include also decrease of density by its parallel outflow, that further increases
τT .

There are several factors that may further influence the found agreement of λT
between simulation and BPP measurement in the wall shadow region, such as more
complicated geometry of plasma facing components than modelled by constant
connection length, atomic processes missing in the model may play significant role
at the low temperatures, the diffusive model of parallel energy transport may not
be fully appropriate near the wall or the probes may be affected by proximity to the
wall along magnetic field lines. Nevertheless, our simulation shows that increased
temperature gradient should be present at the boundary of far SOL and wall
shadow region and in this sense the model clearly prefers the experimental results
obtained by technique based on utilization of ball-pen probe over temperature
obtained from swept I-V characteristics.

Method similar to Eq. (6.1) was previously used for evaluation of electron
temperature Te,emiss. by difference of potentials of floating Langmuir probe and
emissive probe. The results were compared with temperature obtained from swept
Langmuir probe technique Te,swept [94] and the paper shows that the measurement
may be influenced by secondary processes (such as secondary electron emission or
difference in probe collecting areas of electron and ions) that change the value of
αVfl and result in constant ratio Te,swept/Te,emiss ≈ 1.5− 2 [94, 141]. Similar effects
may also influence the value of temperature computed from Eq. (6.1), however
experimental measurement of (6.1) on ASDEX Upgrade is supported by the fact,
that it follows temperature profile obtained by Thomson scattering diagnostic (Fig.
6.2) reasonably well. Moreover, [94] shows that radial gradient remains the same for
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Te,swept and Te,emiss and therefore these effects probably do not explain discrepancy
observed in wall shadow of ASDEX Upgrade between temperature measured by
ball-pen probe and swept Langmuir probe methods (Fig. 6.2).

To conclude this section, we have shown that measurement of radial tempe-
rature profile in SOL of ASDEX Upgrade by combination of BPP and floating
Langmuir probe is well consistent with ESEL modelling and with analytical es-
timation (5.13) describing diffusive energy transport along field lines. Reasons,
why swept Langmuir probe technique overestimates temperature in the wall sha-
dow is not yet clear. Our hypothesis is that possible source of error may come
from the fact that the temperature is not constant during sweeping period and,
moreover, PDF of its fluctuations exhibits long tail (Fig. 6.3(right)). Therefore,
if the sweeping is slower than time scale of the fluctuations, the distribution of
electron energies effectively seen by the probe during sweeping is distorted and it
appears non-Maxwellian, which is in contradiction with assumption of Maxwellian
distribution used in the standard method for temperature estimation from I-V cha-
racteristics. This would be somewhat similar to the case presented in [121] where
it is shown that if electron energy distribution is bi-Maxwellian with two different
temperatures, the standard method for temperature estimation from I-V characte-
ristics returns the higher temperature only, even if density of the high-temperature
electrons is an order of magnitude lower than density of the main low-temperature
part. Then, if high-temperature blob shortly appears during sweeping period, the
fitting of I-V characteristic will tend to return temperature of the blob and not
average temperature during the whole sweeping period. If our hypothesis is correct
and temperature obtained by fitting of I-V characteristics is overestimated due to
intermittent temperature fluctuations, the result should be dependent on frequency
of the sweeping. This can be experimentally tested.

6.3 Difference in plasma potential and floating po-
tential power spectra

Langmuir probes routinely used for measurement of edge plasma properties do
not allow direct fast measurement of plasma potential. Instead, its combination
with temperature, the floating potential Vfl (3.19), is typically measured and used
instead of plasma potential (e.g. [33]). However, in general case one must be very
careful when substituting plasma potential by Vfl. The different nature of both
potential types can be demonstrated by comparing their power spectral density
(PSD) - Fig. 6.5. This can be naturally measured by BPP diagnostics. When
collector of the probe is pulled up, floating potential is obtained. Due to basic
theory of BPP, retracting the collector inside the shielding should reduce coefficient
α and thus reduce the influence of temperature fluctuations on the result. PSD
for different positions of the collector was measured in [20] and is reprinted in Fig.
6.5(left). As the collector was retracted, the amplitude of PSD of the measured
potential strongly dropped down. Moreover, an unexplained peak appeared in the
PSD for the most retracted position of the collector (Fig. 6.5(right), [1, 2]). Since
measurement of the potential using BPP is a novel technique, there appeared
doubts whether these two properties of the PSD are physical or whether they are
a consequence of the BPP filtering high frequencies due to geometrical effects when
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the collector is retracted bellow surface of the probe.

Figure 6.5: Power spectra S(f) of the potential measured by BPP on the tokamak CAS-
TOR [20] (left) and ASDEX Upgrade [2] (right). Position of the collector tip is denoted
by h, with negative values under the surface level of the probe. On the data from ASDEX
Upgrade a peak in PSD of the potential measured with fully retracted collector (denoted
by label BPP) can be clearly identified while in the case of h > 0 (denoted by label LP)
it is not present. In the BPP regime the probe measures potential close to the plasma
potential φ while in the LP regime the floating potential Vfl is measured. Reproduced
from [20] and [2].

We have made numerical experiment and compared PSD of the two types of
potential, φ and Vfl, measured in one point in space in ESEL simulation. We
aim just at the qualitative comparison and thus even though the experimental
data were obtained on ASDEX Upgrade tokamak, in the simulation we have used
parameters of the TCV edge plasma. This is because properties of such simulation
are much better understood and under control than properties of a new simulation
with ASDEX parameters that we would otherwise use. Moreover, we argue by
universality of basic edge turbulence properties among many tokamaks [31]. All
PSD in this chapter were computed using Welch method [148] that splits the signal
into several overlapping intervals, applies Hamming windowing function, computes
PSD from each interval and averages the results.

The results of the simulation shown in Fig. 6.6(left) are very similar to those
obtained by BPP measurement [1, 2]. The PSD of plasma potential drops with
frequency significantly faster then PSD of the floating potential. Moreover, PSD
of the floating potential is almost identical with PSD of temperature fluctuations,
which shows that PSD of the floating potential is dominated by fluctuations of
temperature and not by fluctuations of the plasma potential. Note that similar
problem of parasitic influence of temperature on floating potential will appear
again in Sec. 6.5 dealing with measurement of vorticity using grid of Langmuir
probes.

Since ( ∂2

∂r2 + ∂2

∂p2 )φ ∼ Ω, potential structures are generally smoother than those
of vorticity, density and temperature - the spatial spectrum φ̃(kr, kp) quickly decays
as ∼ −Ω̃(kr, kp)/(k

2
r+k2

p). When poloidal velocity is dominant and turbulence does
not evolve on time scales of its transit over the probe, the poloidal wave number kp
is transformed to time frequency, kp ∼ f/vp, as turbulent structures pass over the
fixed probe. Then, the observed difference in PSD of temperature (or vorticity) and
of plasma potential measured by fixed probe reflects differences in their poloidal
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spectra.

Figure 6.6: Left: PSD of point measurements inside ESEL simulation #116. PSD of
floating potential is clearly dominated by temperature fluctuations (red line is plotted
over the green one) and cannot be directly related to the PSD of plasma potential.
Vorticity and temperature spectra exhibit similar decay with f . Right: Ratio of power
spectral density of floating and plasma potentials measured by BPP on ASDEX Upgrade
during H-mode in inter-ELM periods (blue line) and modelled using ESEL code for
parameters of TCV (green line) [2]. Result of fit of analytical model (6.5) with δt = 0
and kp,φ∆ = 2 is plotted by black line.

PSD of plasma potential obtained from the numerical simulation shown in
Fig. 6.6(left) exhibits similar peak around 220 kHz as the PSD measured by BPP
(right part of Fig. 6.5). To compare the results, we compute ratio of amplitudes
of floating and plasma potential PSDs, PSD(Vfl)/PSD(φ) for both cases. Since
the experimental measurement is naturally burdened by some level of noise, white
noise is added to the simulation data with amplitude at the level of saturation
of experimental plasma potential power spectrum (at frequency 5 · 105 Hz and
above). Both results are qualitatively in agreement as shown in right part of Fig.
6.6 i.e., location of the peaks in PSD (drops in the figure) is similar and both
have similar amplitude [1, 2]. We did not compare the plasma potential PSD
directly because its shape, influenced by behavior of the background plasma, may
differ between simulation and the experiment even though both exhibit comparable
convective structures and similar differencies between floating and plasma potential
fluctuations.

Appearance of the peak in PSD(φ) can be explained by the following analytical
model. Conditionally averaged profile of plasma potential in the blob (Fig. 6.7)
measured by virtual probe at fixed position in the simulation shows that its shape
is approximately sinusoidal. This indicates that poloidal velocity vp is larger than
radial E ×B velocity vr of the structure, otherwise the signal would not see both
poles of the blob’s bipolar structure. Based on the conditionally averaged profile,
we make assumption that each blob appears in the signal of the probe in a form
of sinusoid damped at its edges to zero,

φblob(t) = φ0 sin

(
t− ti
∆t,φ

)
e
− (t−ti−δt)

2

2∆2
t (6.3)
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Figure 6.7: Conditionally averaged profile of plasma potential from ESEL simulation
(TCV parameters) with the condition set on temperature, T̃ ≥ 2σT (blue line). t = 0
corresponds to the time of maximal temperature. Black dashed line shows fit of function
(6.3).

where ti is time of appearance of the blob, t is time from the beginning of the
measurement, ∆t,φ is temporal scale of the signal which is related to the poloidal
wavenumber of the potential kp,φ as ∆t,φ = (kp,φvp)

−1. Shift of the envelope δt
models potential asymmetry that is present due to tilt of the blob (one potential
lobe is stronger than the other, as experimentally measured also in [74]). Fig. 6.7
confirms that the model (6.3) agrees with average blob potential in the simulation.
The exponential form of the envelope was chosen arbitrarily with the advantage
that simple analytical expression for Fourier transform (φ → φ̃, t → ω) of (6.3)
exists,

φ̃blob(ω) = −i
√

2πφ0∆t sinh

(
ω∆2

t + iδt
∆t,φ

)
e
− 1

2

∆2
t

∆2
t,φ

(1+ω2∆2
t,φ)−iω(ti+δt)

. (6.4)

Expressing squared amplitude of (6.4) in terms of kp,φ, vp and spatial scale of the
envelope ∆ = vp∆t gives

(φ̃blob · φ̃blob)(ω) = φ2
02π

∆2

v2
p

(
sin2 (δtkp,φvp) + sinh2

(
ω∆2kp,φ
vp

))
e
−∆2k2

p,φ(1+ ω2

k2
p,φ

v2
p

)

.

(6.5)
Here the bar means complex conjugation. Indeed, the result is not dependent on
the time ti when the blob appears and contributions to the PSD from all individual
blobs sum up. Eq. (6.4) has local maximum at ω = cvpkp,φ, where c is coefficient
depending on the chosen values of product kp,φ∆ and sin(δtkp,φvp). For symmetric
case with δt = 0, kp,φ∆ = 1 gives c ≈ 1.2 and kp,φ∆ ≥ 2 gives c ≈ 1. Therefore,
maximum of the measured peak should be found around frequency f = ω/(2π)

fpeak ≈
kp,φvp

2π
=

vp
Lp,φ

. (6.6)

Typical poloidal velocity in the SOL is in the order vp ≈ 103 m · s−1 and size of
the blob Lp,φ = (2π)/kp,φ ≈ 10−2 m, which gives estimate fpeak ≈ 105 Hz that is
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in agreement with the experimental observation fpeak,exp. = 2.2 × 105 Hz. In our
simulation as well as in the BPP measurement the ratio vp/Lp,φ was approximately
the same, which results in good agreement of position of the drop observed in right
part of Fig. 6.6, even though both cases bind to edge plasma of different tokamaks.

Assuming that background fluctuations of temperature scale as ≈ f−γT , diffe-
rently from background fluctuations of plasma potential ≈ f−γφ where γφ > γT ,
the analytical model is able to reproduce also the shape of measured ratio of tem-
perature and potential PSD (right part of Fig. 6.6). As ESEL model shows, the
temperature is highly correlated with density and its structures have exponential
shape that does not generate any significant peak in the PSD. Therefore we use
following forms of PSDs:

PSD(φ) ≈ cblobs

(
sin2 (δtkp,φvp) + sinh2

(
ω∆2kp,φ
vp

))
e
−∆2k2

p,φ(1+ ω2

k2
p,φ

v2
p

)

+

+cφf
−γφ + cnoise, (6.7)

PSD(Te) ≈ cTf
−γT , (6.8)

PSD(Vfl) ≈ PSD(φ) + 2.8PSD(Te). (6.9)

Fit of the PSD(Vfl)/PSD(φ) ratio described by these relations to the experimental
data is plotted in Fig. 6.6(right). The slope of the curve is in its left part dependent
on difference of both exponents and our fit gives γT − γφ ≈ 1.3. If the noise
is present, PSD of the plasma potential saturates for higher frequencies at the
noise level and the slope of the PSD ratio in the high-frequency range is given
by −γT . The width of the drop (or peak) agrees well with the experimental data,
but it is wider in the analytical model than in the numerical simulation. This is
consequence of simplified form of the typical blob potential (6.3). More accurate
form of potential profiles of individual blobs could be used, together with PDF
describing variation of the potential amplitude and width among different blobs,
to obtain better agreement with ESEL data. However we consider the presented
model sufficient to explain origin of the peak in the experimentally observed spectra
of the plasma potential.

Both, experiment and simulation, have comparable slope of the ratio
PSD(Vfl)/PSD(φ) for frequencies in the range 104 − 105Hz, but with smaller
values for the simulation. This means that difference γT − γφ is similar for both
cases, but they differ by multiplicative constant c ≈ 2.8cT/cφ in

PSD(Vfl)/PSD(φ) ≈ cfγφ−γT . (6.10)

This disagreement is a topic of our further study and is probably related to different
parallel collisionality between the real and modelled case and to the choice of ∇J‖
closure in the turbulence model.

To conclude this section, we have shown in support of correctness of ball-pen
probe measurement, that in the plasma interchange turbulence the PSD of floating
potential is dominated by temperature fluctuations. For higher frequencies the PSD
of plasma potential is significantly smaller with respect to the PSD of floating
potential and temperature. Experimentally observed peak in the potential spectra
measured by BPP was reproduced in the numerical simulation and explained by
model assuming bipolar character of blobs with some characteristic size and by
domination of poloidal component of its velocity over radial.
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6.4 Estimation of poloidal phase velocity
When two poloidally spaced Langmuir probes, both in the same regime (Isat or
floating) are used in the experiment, poloidal phase velocity can be estimated
using cross-correlation technique [21, 22, 151]. First, cross-correlation of the signal
from the probes is computed. Position of its maximum tcc,max then corresponds to
average time interval in which plasma structures travel from one probe to another.
Average poloidal velocity vp,cc can be estimated using mutual distance of the probes
d as

vp,cc =
d

tcc,max
. (6.11)

The distance of the probes is a key issue for this technique. The probes have
to be close enough to measure similar signal, as will be discussed later, and at
the same time their mutual distance is limited by frequency of data acquisition.
E.g., to be able to measure velocities up to 5× 103 ms−1 with sampling frequency
106 Hz, their distance must be at least 5×103/106 = 5×10−3 m. In principle, vp,cc
estimates velocity of coherent structures only, but measurements in [137] as well
as our simulations (see Fig. 6.9) indicate that this velocity is reasonably close to
the total E ×B velocity of the plasma.

The cross-correlation technique is based on the assumption that poloidal ve-
locity of blobs vp is much larger then their radial velocity vr, |vp| � |vr|. If this
condition is not fulfilled, both poloidally spaced probes get different signal and the
position of the maximum cross-correlation tcc,max can be significantly influenced by
spatial correlations inside turbulent structures. While |vp| � |vr| is usually fulfilled
in the middle of SOL, the condition may break in two cases: near the wall where
poloidal velocity is small and in the vicinity of LCFS where the velocity shear layer
(VSL) forms transport barrier and the poloidal velocity usually changes sign (see
e.g. [137]). To describe the influence of finite vr, we will consider turbulent structu-
re of Gaussian shape (in Isat) passing over the probe. Each probe then measures
signal

Isat = Isat,0 exp

(
−
(
ri − vrt

∆r

)2

−
(
pi − vpt

∆p

)2
)

(6.12)

where ∆r and ∆p is radial and poloidal size of the blob and ri and pi is radial
and poloidal position of the i-th probe. After some algebra, we find that cross-
correlation

C(I1, I2) =

∫ ∞
−∞

I1(t)I2(t+ τ)dτ (6.13)

of signal of two probes separated purely poloidally, r1 = r2 and p2 = p1 + d, has
maximum in a time

tcc,max =
vpd

v2
p + v2

r

(
∆p

∆r

)2 . (6.14)

This expression is independent on mutual position of the pair of probes and the
structure, and thus structures with the same velocity but different position will
give the same time tcc,max. The ratio of vp,cc estimated from (6.11) and of the real
poloidal velocity vp of the structure is

vp,cc
vp

= 1 +

(
vr
vp

∆p

∆r

)2

. (6.15)
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This relation shows that when |vp∆r| � |vr∆p|, simple cross-correlation method
in Eq. (6.11) gives correct results. This is more precise version of the originally
introduced assumption |vp| � |vr| (note that typically ∆p/∆r ≈ 1 − 2 in SOL).
For other cases, the difference between real and estimated velocity is shown in left
part of Fig. 6.8. Eq. (6.15) shows that the absolute value of estimated velocity
vp,cc cannot be less then |vr∆p/∆r| and every curve in Fig. 6.8(left) has two bran-
ches i.e., two real poloidal velocities, vp,1 > vr and vp,2 < vr, are projected on a
single estimated velocity vp,cc. One must be especially careful when interpreting
estimation vp,cc in the vicinity of LCFS because, as Fig. 6.8(left) shows, for vp close
to zero the estimated velocity diverges. This could be incorrectly interpreted as an
increased velocity shear inside VSL.

Figure 6.8: Left: Dependence of poloidal velocity vp,cc estimated by relation (6.11) on
the real velocity vp for several values of product R = vr∆p/∆r. Black line shows ide-
al situation vp,cc = vp. Right: Velocities vp,cc estimated by cross-correlation technique
applied on Isat data from double rake probe measurements on tokamak CASTOR [22]
(blue triangles) and correction using relation (6.15): high-velocity branch is plotted with
magenta crosses and low-velocity branch with green diamonds. E×B velocity estimated
from radial electric field (orange line), electron part of diamagnetic velocity (violet line)
and their sum (cyan line) are shown for comparison. Black vertical line at r = 70.5 mm
marks position of LCFS.

The situation is demonstrated in right part of Fig. 6.8 on data measured in
CASTOR tokamak using double rake probe [22]. Estimation of poloidal velocity
using relation (6.11) clearly diverges in the region where vp ≈ 0 (r = 70.5 mm).
Comparison with the discussed model (6.15) for estimated value R = vr∆p/∆r ≈
1.5× 103 m · s−1 shows that near the velocity shear layer the low-velocity branch
is meaningful while deeper in the SOL the high-velocity branch should be used.
Scattering of the data near the VSL comes from insufficient temporal resolution
of the diagnostics with poloidal distance of probes d = 2.5 mm and sampling
frequency 1 MHz. To allow measurement of vp,cc up to 15 km · s−1 the cross-
correlation data had to be interpolated (see [22, 23] for more details).

Data from numerical simulation using ESEL code with TCV parameters are
plotted in Fig. 6.9. Different potential boudary conditions than described in Sec.
5.3 were used, φ(r = rmax) = −4;φ(r = rmin) = 0. This change does not affect
dynamics of turbulent structures, but shifts mean poloidal velocity such that it
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Figure 6.9: Left: Radial profile of 〈vp〉 from ESEL simulation #116 (green) with double
Dirichlet boundary conditions imposed on potential, φ(r = rmax) = −4;φ(r = rmin) = 0.
Its estimation (6.11) from cross-correlation of two virtual probes in poloidal distance
dp = 5 mm (blue) diverges at ρ = −0.095 where 〈vp〉 ≈ 0. Correction of vp,cc by (6.15) is
shown in cyan (high-velocity branch) and red (low-velocity branch). Resulting corrected
profile of poloidal velocity is given by solid parts of cyan and red lines. Value of parameter
R (Rright = 2.33 × 103 m · s−1 outwards from the VSL and Rleft = 2.9 × 103 m · s−1

inwards from the VSL) was determined by condition of continuity of the vp profile. Right:
Zoom of the left figure.

changes sign near the LCFS as is typically observed in experiment. Comparison of
the mean poloidal velocity (that is known in the simulation) with its estimate from
the cross-correlation technique shows that the correction (6.15) can successfully
reconstruct vp profile even in the VSL region. The difference in probe signals
located in the simulation in poloidal distance d = 5 mm is plotted in Fig. 6.10.
While probe signals for |vp| ≈ 4 km ·s−1 are highly correlated but shifted, signal for
|vp| ≈ 0.1 km · s−1 is influenced by spatial correlations inside turbulent structures,
resulting in drop of maximum of the cross-correlation and the time lag tcc,max ≈ 0
(Fig. 6.11).

The main limitation of the method for a case of two-point measurements is
the product R = vr∆p/∆r which is unknown and may vary radially inside the
shear layer. To determine the value of R we use the fact that the velocity profile
is continuous. Then the value of R can be estimated from the condition that high-
velocity and low-velocity branches must touch each other as implemented in Fig.
6.9. The estimated value of R can be different on the outward and inward side
of the VSL because the velocity shear changes properties of turbulent structures
passing through it.

Third probe placed in small radial distance cannot provide additional infor-
mation if the whole signal is taken into account, because it will register both blobs
moving outwards (tcc,max,rad > 0) as well as holes moving inwards (tcc,max,rad < 0)
and the total estimated time shift of cross-correlation maxima of two radially sepa-
rated probes, tcc,max,rad, will therefore be close to zero. This is principally different
from the discussed case of two probes separated poloidally because vp of both blob
and holes has the same sign (while the sign of their vr is opposite). This problem
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Figure 6.10: Time trace of two virtual probes in poloidal distance dp = 5 mm in ESEL
TCV simulation. Position inward from the VSL (top), in the VSL (middle) and outward
from the VSL (bottom) is shown.

Figure 6.11: Cross-correlation of two probes placed poloidally in distance dp = 5 mm in
three positions around VSL.
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can be avoided by separating positive perturbations (moving outwards due to their
interchange nature) by conditionally averaging the signal. Then, the conditional
average consists of signal of same type of structures moving in the same radial di-
rection. Equations that could be used to obtain blob velocity and size from signal
of more then two probes are derived in Appendix A.

We propose to use the fact that estimate vp,cc diverges in the region where
vp ≈ 0 as a basis of algorithm for detection of the VSL. It is clearly seen on
data from ESEL simulation in Fig. 6.9(left) that for tcc,max computed for several
probe pairs on different radii (or from different time-intervals of signal from reci-
procating probe), the quantity 1/tcc,max ∼ vp,cc shows sharp transition in the VSL
region. On tokamak COMPASS, measurements with reciprocating probe entering
H-mode pedestal are envisaged [75]. Detection of the VSL location may during such
experiments provide important information concerning propagation of turbulent
structures through the transport barrier.

6.5 U-probe
Recently, complex probe called U-probe designed for measurement of electromag-
netic properties of plasma filaments in SOL was developed on reversed field pinch
RFX [143, 144, 99]. To our best knowledge, it is the first time when an attempt
to experimentally determine vorticity structure of edge turbulent structures was
made. U-probe consists of two spatially separated 2D arrays of Langmuir probes
with each row of the arrays allowing to simultaneously measure density, electron
temperature and floating potential at the same radial position [144]. This allows
to determine electron pressure, temperature, density, floating potential and E×B
velocity simultaneously. The authors of [144] use measured floating potential Vfl
as an approximation for plasma potential φ and estimate plasma vorticity as

Ω =
1

B
~∇2
⊥φ ≈

1

B
~∇2
⊥Vfl. (6.16)

Measured pressure and vorticity waveforms of the conditionally averaged blob are
shown in Fig. 6.12(left). Maximum values of both, pressure as well as of vorticity,
are located very close to each other at the center of the blob and perturbations
of pressure and (floating) potential are found to be in phase [99]. The authors use
this fact, among others, to support their conclusion that observed turbulence is
of drift-Alfvén type. However, in this chapter we will show that the zero phase
shift between derived vorticity and pressure cannot be unambiguously assigned
to the drift-type turbulence. When floating potential is used instead of plasma
potential, similar relations between the floating potential, derived vorticity and
pressure (or density), are observed in simulation also for interchange turbulence,
whose structures clearly possess π/2 shift between both quantities (see Fig. 6.7).

Presently, new U-probe is being developed for tokamak COMPASS [84]. Its
schematic design is shown in Fig. 6.13. It consists of two identical towers with 3D
magnetic coils inside. Each tower has three Langmuir probes on top and radial row
of Langmuir probes on its side. The U-probe is planned to be used for measurement
of electromagnetic features of turbulent structures in the SOL, where interchange
turbulence is expected to be dominant. One of the goals of the new probe originally
was to carry on similar measurements of vorticity as were made on RFX. In order
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Figure 6.12: Left: Profile of pressure and estimated vorticity in an average filament on
RFX. Time t = 0 corresponds to maximum pressure. Reproduced from [144]. Right:
U-probe layout in ESEL simulation.

to investigate feasibility of such measurement, we have made numerical simulation
of the interchange turbulence with ESEL code and used an array of virtual probes
similar to U-probe layout to estimate error made by experimental determination
of vorticity from floating potential. Layout of the probes used in the simulation
is shown in right part of Fig. 6.12(right). Signal of each probe is averaged over
its estimated area projected into the simulation plane (2 × 1 mm). Similarly to
the previous chapters, we use ESEL simulation #116 for TCV parameters as the
best candidate to obtain realistic blob characteristics. All conditional averages that
will be further discussed were obtained with triggering condition ñ > 2σn used at
position of probe either 2 or 5 (see probe layout in Fig. 6.12(right))

Vorticity is composed from second derivatives of plasma potential in two per-
pendicular directions,

Ω = Ωp + Ωr =
1

B

[
∂2φ

∂p2
+
∂2φ

∂r2

]
. (6.17)

The simulation shows that if plasma potential φ would be measured directly and
the CA triggered locally (by density at position of probe 5 for Ωp and probe
2 for Ωr), the proposed distance and size of the probes in the U-probe design
allows estimation of local Ωp and Ωr waveforms with reasonable accuracy (compare
green and dark blue lines in Fig. 6.14). One of the weak sides of the U-probe
design is, however, that places of measurement of Ωp and Ωr are not at the same
place but in distance of approximately 16 mm, which is comparable to the size of
turbulent structures. In order to obtain estimate of conditionally averaged quantity
Ω = Ωp + Ωr, both parts, Ωp and Ωr, have to be averaged at the same time. They
are, however, not measured at the same place and at given time they may be
located in different parts of blob. Then it is not clear which signal (probe 2 or 5)
should be used as a trigger for the determination of the total vorticity Ω. Motivated
by this, we investigated the case when the conditional average of Ωp or Ωr is not
triggered locally, as was done in Fig. 6.14, but by the middle probe of the other
segment (Ωp triggered by probe 2, Ωr triggered by probe 5). In such case the
nonlocality brings distortion to the resulting estimate of Ωp and Ωr as shown in
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Figure 6.13: Schematic drawing of U-probe design made for COMPASS tokamak and its
expected position inside the tokamak [84].

Fig. 6.15(right). This figure shows that smaller error is introduced when the CA of
total vorticity Ω = Ωp+Ωr is triggered at position of probe 2 (i.e. trigger Ωr locally
and Ωp non-locally) because CA profile of Ωr is more sensitive to the problem of
non-local triggering and it has also higher amplitude (higher weight in the sum
(6.17)).

In cases when the poloidal flow is dominant, |vp| � |vr|, one possible solution
could be to use hypothesis of frozen turbulence [36] and replace poloidal derivative
∂2/∂p2 in (6.17) by time derivative (∂2/∂t2)/v2

p with E×B drift vp estimated from
difference of Vfl measured on neighbouring probes. This method largely depends
on accuracy of vp estimation and detailed error analysis would be necessary for
particular SOL conditions.

Another, even more important issue is the parasitic influence of temperature on
Langmuir probe measurements. In section 6.3 we have shown that fluctuations of
Vfl are dominated by fluctuations of Te instead of fluctuations of φ. In Figs. 6.14,
6.15(left) and 6.16 one can compare estimates of vorticity from the floating poten-
tial as used in Eq. 6.16 with its real value. The conditionally averaged waveform of
such estimates is clearly dominated by influence of ~∇2

⊥Te term that shifts maximum
of estimated vorticity to the position of density maximum (t = 0). This result is
clearly in contradiction with used model of convective interchange structures who-
se radial motion is dependent on π/2 phase shift between density and vorticity (or
potential) and the vorticity maximum at t = 0 could be incorrectly interpreted as
an indication of presence of drift-waves. Conditionally averaged waveforms of vor-
ticity obtained from Langmuir probe measurements must be therefore interpreted
with extreme caution and observed zero time lag between density and vorticity
maximum cannot distinguish between drift-type and interchange-type turbulence
by itself. We especially point out surprising similarity between vorticity waveform
obtained from the interchange simulation with vorticity estimate based on Vfl sig-
nal (red line in Fig. 6.15(left)) and that observed in RFX and claimed to be of
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Figure 6.14: Conditionally averaged profile of poloidal (left) and radial (right) contribu-
tion to vorticity in ESEL simulation. Condition was set as ñ ≥ 2σn. Ωp = (∂2φ/∂p2)/B
and Ωr = (∂2φ/∂r2)/B are real local values in the simulation (blue) and (δ2φ/δp2)/B
and (δ2φ/δr2)/B is their estimation from plasma potential obtained at the position of
probes 4-6 and 1-3 (see Fig. 6.12(right)), respectively (green). Waveforms of Ωp and Ωr

are further compared with their estimation based on floating potential (red) and poten-
tial of ball-pen probe (cyan) obtained at probes 4-6 and 1-3. Estimation from floating
potential is clearly dominated by parasitic influence of temperature (magenta dashed
line) that shifts maximum of the profile to the position of maximum density (t = 0).

drift-wave type (Fig. 6.12(left)).
Even in the case that temperature fluctuations would be lower then predicted

by ESEL simulation (fluctuations of Te in ESEL are on the upper boundary of
experimentally observed range stated in [18]), spatial structure of temperature will
significantly influence the vorticity estimation. This may be seen in Figs. 6.14 and
6.15, where cyan line represents vorticity estimated from simulated BPP signal,
i.e. with 4.7× reduced factor α in definition of Vfl (3.19).

In this section we have shown that if the temperature fluctuations are not neg-
ligible, their parasitic influence in floating potential prevents correct estimation
of vorticity for structures of interchange turbulence. Due to this reason, use of
ball-pen probes replacing Langmuir probes is considered for the second version of
U-probe. Moreover, we recommend to accompany future U-probe vorticity mea-
surements with turbulence simulations focused on the particular SOL conditions.
The simulation results could be compared with other diagnostics and should serve
as a basis for error estimation for the U-probe vorticity measurement.
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Figure 6.15: Left: Conditionally averaged profile of vorticity estimated by relation (6.17).
Ω2 (blue) and Ω5 (green) show real vorticity in the simulation at position of probe 2 and
5, respectively. Their difference is given by different radial position of the probes. For
comparison, estimation of CA vorticity in U-probe geometry (Fig. 6.12(right); triggered
by density signal on probe 2) with floating potential (red) and ball-pen probe potential
(cyan) substituted in (6.17) instead of φ is plotted. Right: Comparison of CA signal of
Ωp and Ωr trigged locally (solid line) and non-locally from the other segment of probes
(dashed line).

Figure 6.16: Time trace of real vorticity signal at positions of probes nr. 2 (blue) and
5 (green) compared to the signal of vorticity estimated in U-probe geometry (Fig.
6.12(right)) from floating Langmuir probe potential (red) and BPP potential (cyan).
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7. Statistics of particle transport in
turbulent potential

7.1 Motivation

Fluid approximation used for modelling of plasma turbulence in Sec. 5 is a fast
method how to resolve collective motion of particles under several assumptions
used during its derivation. However, not all these assumptions are valid in SOL
for all types of particles. Namely, it was assumed that particle undergoing its
cyclotron orbit does not feel neither spatial inhomogeneity nor time evolution of
the underlying electric field,

rL � 1/k⊥; ωc � ω, (7.1)

where rL = (mv⊥)/(qB) is Larmor radius of particle with mass m, charge q and
cross-field velocity v⊥, ωc = (qB)/m is cyclotron frequency of the particle and
k⊥ and ω are characteristic spatial and time frequency of the turbulence. If (7.1)
does not hold and spatial and temporal scales are comparable, there can arise
complicated nonlinear interaction between turbulence and the particle. For typical
parameters of SOL turbulence i.e., B ≈ 1 T, ω ≈ 10 MHz and 1/k⊥ ≈ 10−3 −
10−2 m, the condition is well satisfied for thermal electrons, rL,e−(T = 30 eV) ≈
10−5 m and ωc,e− ≈ 105 MHz. Thermal hydrogen ions are already on the boundary
of validity of the fluid approach, rL,H+(T = 30 eV) ≈ 10−4 m, ωc,H+ ≈ 102 MHz,
and therefore gyrofluid approximation [129] may be needed for edge plasma with
hot ions. For plasma impurities with higher m/q ratio assumption (7.1) does not
hold at all, e.g. rL,C+(T = 30 eV) ≈ 10−3 m, ωc,C+ ≈ 10 MHz.

When the density nimp of such particles is low compared to the density of main
plasma, n,

nimp � n (7.2)

a possible approach to estimation of their behaviour in turbulent field is to tre-
at them as test particles that are influenced by the turbulent environment but
that do not influence the turbulence back. This approach is valid provided the
density of impurities is low enough such that local impurity charge does not enter
quasineutrality equation, which translates for edge turbulence as [111],

Zimpnimp �
ρs
cs
~∇ · ~J (7.3)

where ~∇ · ~J is divergence of plasma currents acting with characteristic time ρs/cs.
This condition places strict constraints on nimp that are often violated in a real
plasma and self-consistent back-reaction of turbulence on presence of impurities
becomes non-negligible. Nevertheless, investigation of particle transport in test-
particle approach can reveal the most important and still realistic tendencies [111].
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7.2 Random walk, classical and anomalous diffusi-
on

If trajectory of particle moving in turbulent environment can be divided into se-
ries of steps, it is often useful to describe its transport in the frame of theory
of random walks. For simplicity, we will now assume that the transport process
is one dimensional. If there is a stationary distribution Px(δx) of lengths δx of
statistically independent steps and this distribution conforms with assumptions of
central limit theorem (mainly that its variance σ2 and mean value µ are finite), the
transport process can be in the limit of large number of steps, N � 1, described
as a diffusive process [25]. Then, the probability P (∆x,N) to find particle after N
steps in distance ∆x from its initial position is independent on actual shape of the
distribution Px and it is given solely by its first two moments, µ and σ2, as [25]

P (∆x,N) =
1√

2πµ2N
e−

(∆x−Nµ)2

2σ2N . (7.4)

Definition of the step can vary for different applications and one must be aware
that its choice influences subsequent interpretation of the results. One possible
approach is to take one component of particle velocity and define each time when
it changes its sign as a boundary between two steps as used e.g. in [159, 132, 60].

Typically, there is some characteristic time t0 associated with the steps. Then,
the dependence of probability P on time t can be expressed substituting Nt0 → t:

P (∆x, t) =
1√

4πDt
e−

(∆x−v̄t)2
4Dt (7.5)

where diffusion coefficient D and mean velocity v̄ are defined as

D =
1

2

σ2

t0
; v̄ =

µ

t0
. (7.6)

Transport process described by equation (7.5) is reffered as classical diffusion.
There exists second class of diffusive processes that is referred as anomalous

diffusion. Note that the word anomalous can have different meanings. From the
statistical point of view it is ’not covered by classical diffusion’ but from the point
of view of magnetic plasma confinement (as was used in previous sections) it means
’higher then neoclassical collisional diffusion’. In this chapter these two meanings
will be distinguished mainly by their context.

Foundations of the theory of anomalous diffusion were laid in 1920s and 1930s
by Paul Lévy who studied summation of random variables with infinite moments
(σ2 = ∞, or even µ = ∞). He found generalisation of the central limit theorem
and the diffusion process for long-tailed distributions,

Px(δx) ∼ 1/x1+α, (7.7)

such that in the Fourier space (x→ k) the probability P (k,N) has form [138, 10]

P (k,N) ∼ econst.×N |k|
α

; 0 < α ≤ 2. (7.8)

For simplicity, we present here only two-parameteric (N and α) family of sy-
mmetric distributions centred around x = 0 but they are member of broader
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four-parametric class with additional skewness β and shift µ parameters. Random
walk with such heavy-tailed step distribution is called Lévy flight. Note that the
anomalous diffusion describes classical diffusion as its subclass with α = 2, β = 0.

In the theory of anomalous diffusion, the concept of diffusion coefficient cannot
be used directly since infinite variance of step lengths implicates infinite diffusion
coefficient if the definition (7.6) is used. Instead, its dependence on number of steps
N (or time t = Nt0) is introduced,

D(t) =
1

2

(x(t)− x(t = 0))2

t
∼ tγ−1. (7.9)

The value of coefficient γ then describes character of the transport. The transport
is described by classical diffusion when γ = 1, and it is in superdiffusive regime
for γ > 1 [10]. If duration of the steps is not considered independent on step
lengths and infinite variance or mean value of the step duration (or of waiting
times between steps) is allowed, third, subdiffusive regime with γ < 1 can appear
[10].

Since variance of the step lengths is infinite, Lévy flights do not posses any
characteristic scale and the parameter α describes fractal dimension of set of visited
points [138]. A physically motivated example of such process will be shown in Fig.
7.2(right).

In Hamiltonian systems, the presence of long jumps that generate Lévy flights
is closely connected with stochastisation of phase space. This can be visualised by
Poincare’s section that shows intersection of particle orbits in the phase space with
its two-dimensional subspace. An example is shown in Fig. 7.1. In this example,
three typical structures can be observed. First, the closed lines are created by trap-
ped particles whose motion is regular. Such particles are bound to these orbits and
cannot escape. Second, the dotted regions create so called ’stochastic sea’ in which
the particles are moving freely. The stochastic see is typical for classical diffusion.
The last type of structure is called ’cantori’ and they are typically present on the
boundary between regions of regular motion and the stochastic see. Cantori form
layers that form a sort of transport barrier. If some particle appears in between
two cantori, probability of its escape back to the stochastic see is very low. The
particle is trapped for a long time in this narrow region of phase space and it
can exhibit a long spatial jump (or large waiting time) whose length is limited by
probability of penetration of the barrier formed by the cantori.

7.3 Equations of motion of particle in electrostatic
turbulent potential

Movement of charged particle in electromagnetic field given in terms of vector
potential ~A and scalar potential φ as

~B = ~∇× ~A (7.10)

~E = −~∇φ− ∂ ~A

∂t
(7.11)

can be described in Cartesian coordinates by Hamiltonian

H =
1

2m

(
~p− q ~A(~x, t)

)2

+ qφ(~x, t). (7.12)
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Figure 7.1: Part of Poincare’s section of phase space in which three types of motion can
be distinguished. Regular quasiperiodic motion along closed curves called islands (B1-B4
and closed curves inside the stochastic see), stochastic see of random motion (dotted
area between points A2, A3, A4) and sticky layers (manifesting presence of cantori) on
the boundary of stochastic see and islands (e.g. densely populated area between A1-A5).
Reproduced from [138].

Here q and m is charge and mass of the particle and ~p is momentum canonically
conjugated to the coordinate ~x. Components of the equations of motion then have
form

dxj
dt

= ∂H
∂pj

=
1

m
(pj − qAj( ~x, t)); vj ≡

dxj
dt
, (7.13)

dpj
dt

= − ∂H
∂xj

=
q

m

∑
i∈{1,2,3}

(
(pi − qAi(~x, t))

∂Ai(~x, t)

∂xj

)
− q∂φ(~x, t)

∂xj
. (7.14)

In following chapters we will analyse movement of charged particles in turbulent
plasma potential that was modelled in 2D slab coordinates (see Sec. 4.4.1). There-
fore, we will assume that particle velocity vz perpendicular to the radial-poloidal
plane is in all times small enough such that the particle does not feel potential
variations in this direction on time scales of its radial transport. Therefore, on top
of standard assumption of drift-interchange turbulence, k‖ � k⊥, we require also
vzk‖ � v⊥k⊥. Similarly in the SOL where the field lines are open with connection
length L‖ from midplane to target, we must assume that vz/L‖ � v⊥k⊥.

In Hasegawa-Wakatani model of tokamak edge turbulence (see Sec. 7.6.1) the
magnetic field strength, B0, is assumed to be constant, heading only in the z
direction. Similar assumption will be used in Sec. 7.5 when modelling particle
transport in an experimentally measured potential field. With constant magnetic
field the magnetic potential can be expressed as ~A = 1

2
(−B0y,B0x, 0) and the

122



Hamiltonian (7.12) becomes

H =
1

2m
(px +

qB0

2
y)2 +

1

2m
(py −

qB0

2
x)2 +

1

2m
p2
z + eφ(x, y, z, t). (7.15)

Then the equations of motion (7.13) and (7.14) get form
dx

dt
=

1

m
(px +

qB0

2
y), (7.16)

dy

dt
=

1

m
(py −

qB0

2
x), (7.17)

dz

dt
=

1

m
pz, (7.18)

dpx
dt

=
qB0

2m
(py −

qB0

2
x)− q∂φ(~x, t)

∂x
, (7.19)

dpy
dt

= −qB0

2m
(px +

qB0

2
y)− q∂φ(~x, t)

∂y
, (7.20)

dpz
dt

= −q∂φ(~x, t)

∂z
. (7.21)

The potential that we will use is given by numerical modelling that is often
made in dimensionless variables (φ′, x′, y′, t′),

φ(x, y, t) = φ0φ
′(x/x0, y/y0, t/t0) (7.22)

where φ0, x0, y0, t0 are coefficients of the normalization. We will transform the
equations of motion into these dimensionless coordinates and to simplify their
form we will use together with previously mentioned

x′ =
x

x0

; y′ =
y

y0

; t′ =
t

t0
(7.23)

also
px =

qB0

2
y0p
′
x; py =

qB0

2
x0p

′
y. (7.24)

Then the equations of motion (7.16), (7.17), (7.19) and (7.20) take simple form

dx′

dt′
= Tx(p

′
x + y′) (7.25)

dy′

dt′
= Ty(p

′
y − x′) (7.26)

dp′x
dt′

= Ty(p
′
y − x′)−Rx

∂φ′

∂x′
(x′, y′, t′) (7.27)

dp′y
dt′

= Tx(p
′
x + y′)−Ry

∂φ′

∂y′
(x′, y′, t′) (7.28)

with four coefficients

Tx =
qB0

2m

t0y0

x0

=
ωc
2

t0y0

x0

(7.29)

Ty =
qB0

2m

t0x0

y0

=
ωc
2

t0x0

y0

(7.30)

Rx =
2φ0t0
B0x2

0

(7.31)

Ry =
2φ0t0
B0y2

0

. (7.32)
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Often the normalization of spatial scales is the same, x0 = y0, and then there are
only two parameters (R, T ) in the equations of motion,

T = t0
qB0

2m
= t0

ωc
2

(7.33)

R =
2φ0t0
B0x2

0

. (7.34)

We note that R does not depend on the species of traced particles and changes only
with change of normalization of the potential. In addition, if the potential is time-
independent, we can choose t0 freely and thus set e.g. T = 1. Then there is only
single parameter R|t0=2/ωc that fully determines character of the motion. The form
of parameters T and R for types of turbulent potential under consideration will be
computed in the corresponding sections. We should also note that the parameters T
and R are not sufficient for determining trajectory of individual particle. Indeed,
the trajectory is dependent also on initial conditions of the particle - its initial
position and momentum.

Transport of test particles in a turbulent potential was often studied with
particle velocity reduced to basic guiding center drifts (e.g.[95, 109, 11, 111, 60]),
eventually with effect of finite Larmor radius described by averaging over the circle
of single cyclotron gyration [95, 60]. In [116] trajectories of C+ ions in experimen-
tally measured potential obtained by E × B drift approximation and by tracing
of full particle orbits were compared and difference in transport regime (classical
diffusion for E × B drift and anomalous Lévy walk diffusion for full orbits) was
found. In [122, 111] it was shown that ideal tracers moving with E × B only are
insufficient for description for particles with finite mass and also polarization drift
should be taken into account. In Secs. 7.6 and 7.7.2 we will show that adding the
polarization drift is in some cases still insufficient and results obtained by more
precise tracing of full particle orbits described by Eqs. (7.25)-(7.28) differ.

7.4 Particle motion in parabolic and egg-crate po-
tential

Turbulent potential structures generated in the edge plasma can have quite com-
plex time-evolving structure, as can be seen in Figs. 3.5 and 7.20. In order to allow
analytical investigation of particle transport induced by the structures, one can
approximate their form with simple time-independent parabolic shape [12]

φpar(r) = φ0

(
1− 4k2

⊥r
2

π2

)
(7.35)

or, alternatively, with so called egg-crate potential [89, 90]

φegg(x, y) = φ0 (1 + cos(kx) + cos(ky)) . (7.36)

Very important property of the parabolic form of potential (7.35) is its azi-
muthal symmetry, which results in conservation of angular momentum and thus
significantly simplifies analysis of particle movement. Writing Hamiltonian of par-
ticle in homogeneous magnetic field in polar coordinates r, ϕ,

H =
1

m
P 2
r +

(Pϕ − qBr2

2
)2

2mr2
+ qφpar(r), (7.37)
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where Pr and Pϕ are canonical radial and angular momentum, respectively, and
reminding that due to symmetry Pϕ = const., particle motion can be described as
1D radial motion in one-dimensional effective potential [12]

V (r) =
P 2
ϕ

2mr2
+
qB2

8m
r2(1− αB

32

π2
). (7.38)

The dimensionless parameter

αB =
mk2
⊥φ0

qB2
. (7.39)

determines character of the dynamics. Note, that αB is exactly the dimensionless
parameter R (7.34) with appropriate choice of time normalization t0 = 2/ωc that
sets T = const.. When αB < π2/32 ≈ 0.31, the effective potential has a minimum,
particles are trapped and circumnavigate the potential hill with oscillation in r
due to its cyclotron motion. In the other case, when αB > π2/32, the effective
potential monotonically decreases and all particles start to descend the potential
hill, gaining its energy. We will reffer to this instability as Bellan instability, as
was done in [90]. αB ∼ m/q and therefore the character of the dynamics depends
on the particle species. Heavy particles with low charge are more likely to get
untrapped from the hill and therefore dynamics of the main plasma particles may
qualitatively differ from the dynamics of heavier plasma impurities.

Egg-crate potential (7.36) is a step towards somewhat more realistic analyti-
cal model of turbulent potential, because it consists of potential hills as well as
valleys,resembling potential relief of drift wave turbulence (see Fig. 3.5).In [89, 90],
infinite plane of such alternating hills and valleys was used. The results of nume-
rical simulations in these two papers show that results derived for parabolic form
of potential hill (7.35) hold similarly for particle behaviour in an infinite egg-crate
potential. This comes from the fact, that leading term in Taylor series of (7.36) is
quadratic.

Provided that particle Larmor radius is substantially smaller then the wave-
length of the potential, rL � k, there exist three types of motion (see Fig. 7.2)
governed by dimensionless parameter R ≡ αB, now with k⊥ replaced with wave-
length k. Numerical simulations show [89] that when R < 0.25, particles initially
positioned on a hill remain trapped, while for R ≥ 0.25 the previously discus-
sed instability appears and particles descend down the hill. Most of the particles
initially positioned in the potential valley remains trapped.

As R grows above R ≥ 0.25, particle movement in a region adjacent to the
potential separatrix (φegg = 1) becomes stochastized. Particle trajectory is irre-
gular and particle may, with nonzero probability, cross the separatrix and enter
neighbouring cell. Particle behaviour in the separatrix region is dependent on the
value of R. When 0.25 . R . 1, particles crossing the separatrix are trapped by
the neighbouring structure and released again after some mean time τ . The whole
process repeats and from the statistical point of view it can be described as diffusi-
ve or random-walk process with length of the step l = 1/k and diffusion coefficient
D = k−2τ−1. When R approaches R ≈ 1, sticky layer appears in the phase space
in the separatrix region [123] and there exists growing number of trajectories that
follow the separatrix over multiples of structure length scales before being trapped
again. This can be interpreted as a transition from classical diffusion to anoma-
lous Lévy-type diffusion. The study of dependence of the scaling of the variance
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of particle position with time, x2(t) ∼ tγ, on parameters of the model and initial
particle conditions can be found in [90, 117].

The mechanism of generation of long jumps in the egg-crate potential was
studied in detail in [123]. When R is sufficiently high, with increasing energy
structure of Poincare’s section undergoes bifurcations and sticky layer, called also
"quasitrap"is formed. The boundary of the layer is formed by a chain of cantori in
phase space that form a barrier, strongly reducing probability of particle passing
through. The layer is located near potential separatrix and particle that gets into
this region can remain trapped for a long time, traveling along the separatrix,
before finding its way out through the quasitrap.

Figure 7.2: Three different types of particle motion in egg-crate potential embedded in
a uniform magnetic field. Particles with R ≤ 0.25 remain trapped with regular motion
of their gyrocenter (left). Particles with 0.25 < R < 1 can escape from potential hill and
they have a high probability to be trapped in a neighbouring cell, resulting in classical
random-walk (middle). When R > 1, particle may intermittently travel long distances
along separatrices undergoing Léwy-walk process (right). Figure reproduced from [116].

7.5 Particle motion in experimentally measured po-
tential field

In this section, diffusion of particles in a time-evolving experimentally measured
turbulent potential will be investigated. We use potential experimentally measured
at CASTOR tokamak by two-dimensional array of 8x8 Langmuir probes. CASTOR
(now renovated and renamed to GOLEM) was a small tokamak with major radius
R = 0.4 m, minor radius a = 0.1 m and poloidal ring limiter at radius r = 0.085 m.
Typical toroidal magnetic field was B = 1 T. The arrangement of array of probes
measuring floating potential Vfl is shown in Fig. 7.3. The probes had diameter of 2
mm and their mutual distance was 6 mm in poloidal direction and 4 mm in radial
direction, covering total area of 42×31.5 mm2. The regular grid of the probes can
be, if machine curvature is neglected, considered aligned with radial and poloidal
direction. The area of the probe system is not negligible compared to the total
poloidal section, but it was shown [98] that its perturbing effect is smaller than
could be expected and the probe array can even penetrate the separatrix without
shifting the plasma column downwards.
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Figure 7.3: Schematic picture of 2D array of Langmuir probes used for measurement of
floating potential in CASTOR tokamak. [132]

7.5.1 Potential used in the simulation

The characteristics of the measured data are similar to those described in [98]. The
potential structures present in the data have average extension about 1-2 cm and
move with poloidal velocity 2-5 km·s−1. An example of potential landscape is shown
in Fig. 7.4(left). Some of the structures can survive several poloidal revolutions
with period τ ≈ 200 µs. This is confirmed by autocorrelation function plotted in
Fig. 7.4(right) that exhibits secondary maximum at this time shift.

With sampling rate of the original data 1 MHz, time distance between potential
samples was larger then time step necessary to precisely resolve cyclotron motion
of the particles. Therefore, the data was resampled using sinc-interpolation

V ′fl(t) =
N∑
n=0

Vfl(nT )sinc
[π
T

(t− nT )
]

(7.40)

where Vfl(nT ) represents original floating potential at time nT , N is number of
samples and V ′fl(t) is interpolated potential at arbitrary time 0 ≤ t ≤ NT . The
advantage of sinc-interpolation is that it keeps continuous frequency spectra, in
contrast to the discrete Fourier interpolation that uses only discrete frequencies.
The discrete Fourier interpolation was used for interpolation of data of different
probes in space and the potential used in the simulation thus represents 8×8 lowest
spatial harmonics of the real potential. In this sense our work extends previous
studies of particle movement in egg-crate potential [89, 90, 91], that represents
only the single most dominant harmonic.

In the simulation, plasma potential φ in equations of motion (7.16)-(7.17) and
(7.19)-(7.20) was substituted by measured floating potential V ′fl. The dynamics
does not depend on absolute value of the potential used in equations of motion,
but on its derivations. Therefore, replacing φ by Vfl is equivalent to introducing
isothermal approximation Te =const. Indeed, turbulent structures carry some per-
turbation of Te that is reflected in Vfl and increases its gradients. This effect can
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lead to overestimation of the overall transport rate, similarly to the estimations
made in [133]. As no data on Te were available, the isothermal approximation,
however, cannot be avoided.

Figure 7.4: Left: Example of profile of experimentally measured potential after Fourier
interpolation. Right: Autocorrelation function of signal measured at the most inserted
and most upstream probe. Secondary maxima appear at t ≈ ±0.2 ms.

7.5.2 Results of numerical simulations

The experimentally measured approximation of plasma potential field was used as
a background for modelling of particle transport in the edge tokamak region. We
assumed low density together with low density gradients of the studied particles
and treated the particles as passive tracers that are convected by the potential
field but do not influence it back.

Full cyclotron gyration of the particles was taken into account and equations
of motion (7.16)-(7.17) and (7.19)-(7.20) were advanced in time by explicit fourth-
order Runge-Kutta method with time step of 1/1000 of cyclotron period. For
each species, 5× 104 individual particles were traced which is sufficient to obtain
good quality of the statistics. At the beginning of the simulation all particles were
distributed randomly in space with zero total velocity v0 = 0 m · s−1. This largely
simplifies discussion of initial conditions and since the potential is time dependent,
the particles get energy from potential fluctuations. After some time, a steady-
state is established with almost-Maxwellian distribution of particle velocities (with
kurtosis slightly lower - 2.82 instead of expected 3). The temperature of the tracers
(28 eV for C+ ions) corresponds well to the ion temperatures (≈ 30 eV) measured
in the SOL of CASTOR [147].

The particle dynamics was traced by two types of diffusion coefficient, sepa-
rately for each direction and each species. The running diffusion coefficient [109]
represents long-term overall dynamics of particles and is defined as

Dx =
σ2
x

2t
=

1

2t

〈
[x(t)− x(t = 0)]2

〉
(7.41)
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where x stands for poloidal (p) or radial (r) direction, σx is mean square displa-
cement of particles in this direction and 〈·〉 averages over all particles of given
species. On the other hand, the ’instantaneous’ diffusion coefficient

Di,x =
d
dt
σ2
x(t)

2
=

1

2

d
dt
〈
[x(t)− x(t = 0)]2

〉
(7.42)

represents short-term dynamics of particles affected by actual changes of the bac-
kground potential.

Time evolution of both types of diffusion coefficient for the case of C+ ions is
shown in Fig. 7.5. The sharp initial increase of the diffusion coefficient is given
by motion of particles from their initial positions and does not have any further
physical meaning. After this initial increase, running radial diffusion coefficient is
almost constant, Dr ≈ 1 m2 · s−1, which represents regime of classical diffusion.
On the other hand, the running version of poloidal diffusion coefficient is slowly
growing in time, mainly in short periods of enhanced diffusion accompanied by
simultaneous increase of instantaneous diffusion coefficient. The growth of Dp in-
dicates anomalous Lévy-type diffusion. These findings agree with similar results
found in [116].

Figure 7.5: Running (red) and instantaneous (green) diffusion coefficient in poloidal (left)
and radial (right) direction for C+ ions with zero initial velocities.

The instantaneous diffusion coefficients oscillate most of the time slightly bellow
the level of their running counterparts, however short bursts of increased diffusion
can be observed. The width of these peaks δt ≈ 10 − 18 µs approximately corre-
sponds to the time tpass necessary for turbulent structures convected by poloidal
plasma flow to move from upstream to downstream edge of the measured region.
We estimate this transit time from cross-correlation of signal at the middle of the
region and middle of the downstream poloidal boundary, tpass ≈ 2tcorr = 12 µs. If
this enhanced diffusion is caused by presence of turbulent structures, the instan-
taneous diffusion coefficient should exhibit increased autocorrelation with shift
of ≈ 200 µs, corresponding to reappearance of the structures after one poloidal
revolution. This is confirmed for Dp,i in Fig. 7.6(left) where the position of the
secondary maxima is similar as for the autocorrelation of the potential signal in
Fig. 7.4(right). Autocorrelation of Dr,i (Fig. 7.6(right)) does not show such long-
time correlation and its oscillations with period 32 µs are caused by alternating of
positive (enhanced diffusion) and negative (suppressed diffusion) parts of potential
structures.
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Figure 7.6: Autocorrelation function of instantaneous diffusion coefficient in poloidal
(Di,p; left) and radial (Di,r; right) direction. The autocorrelation of Di,p is compared
with autocorrelation of signal received from innermost probe that was shown in Fig.
7.4(right)

In our next set of simulations we have compared diffusion rate for particles with
different m/q ratio. We chose the ratio such that it represents some of the more
common impurities released by plasma-wall interaction from tokamak material
components. Particles of the last category labelled as ’drift’ represented the limit
m → 0 and their velocity was given by E × B drift. Time evolution of running
diffusion coefficient for all the species is shown in Fig. 7.7. The rate of diffusion
is almost the same for the drift particles and H+ ions, decreasing with m/q ratio
in poloidal direction and increasing in the radial one. While Dr shows classical
behaviour and saturates, Dp is growing in time, showing that the diffusion is of
Lévy type for all modelled particle species.

Figure 7.7: Diffusion coefficient computed for different particle species in poloidal (left)
and radial (right) direction.

The opposite behaviour of diffusion coefficient with m/q ratio for poloidal and
radial direction can be explained as follows. Particles with small m/q ratio are
bound tu equipotentials and they are easily convected together with turbulent
structures moving predominantly in poloidal direction. Moreover, the structures
are poloidally elongated and also the equipotentials outside of the structures are
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oriented predominantly in poloidal direction, which enhances poloidal movement of
untrapped particles. The larger the ratio m/q, the larger Larmor radius and larger
probability that: a) trapped particle becomes untrapped which reduces its poloi-
dal convection together with potential structures; b) particle can jump radially
between equipotentials which increases its radial diffusion.

In order to confirm that the poloidal diffusion can be described in the frame
of Lévy walks, we have traced trajectories of all individual particles and recon-
structed probability distribution function (PDF) P (dp) of lengths dp of jumps that
particles undergo in the poloidal direction. First, each trajectory has been gyro-
averaged in order to remove cyclotron rotation of particles. Then each jump was
defined as a part of the trajectory in which corresponding poloidal velocity does
not change its sign. The PDF of step lengths is shown in Fig. 7.8 and it consists
of two parts - Gaussian distribution generated by particles wandering only short
distances and the long tail that was expected from behaviour of Dp. The long
tail is asymmetric with respect to direction of the jumps and long jumps in the
direction of the poloidal flow have higher probability than those going against the
flow. This is due to particle dragging by potential structures that supports positive
jumps and disrupts the negative ones. Since particles with larger Larmor radius fe-
el the dragging weaker (they have higher probability of untrapping from potential
structures), their PDF decays faster in the direction of the flow and on the other
hand jump lenghts against the flow are slightly increased. The assymetry of the
PDF is further supported by the particles trapped on positive potential structures
and further released due to Bellan instability. They circulate in such direction that
when they become untrapped, their poloidal velocity is on average heading in the
direction of the flow.
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Figure 7.8: PDF of step lengths of particles in time-dependent turbulent potential in
poloidal direction in semilogarithmic (left) and logarithmic (right) scale. Branch with
higher probability of long jumps heads in the direction of mean poloidal plasma flow.
[132]

Making power-law fit to the PDF of jumps in direction of the flow, P (dp) ∼ dαp ,
we find αH+ = −2.55 and αC+ = −2.93. Both exponents fall into range −3 < α <
−1 which implies Lévy distribution (7.7). The tail of PDF of jumps against directi-
on of the plasma flow decays exponentially and the distribution is bi-Gaussian.
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7.5.3 Conclusion

Based on our results, the following conclusions can be drawn [132]. The presen-
ce of poloidally rotating turbulent structures in tokamak edge enhances poloidal
transport of all types of particles. Asymmetry in distribution of poloidal particle
step lengths dp was detected, with Lévy walk distribution of dp in the direction
of poloidal flow. The overall poloidal transport is anomalous with running poloi-
dal diffusion coefficient Dp growing in time. Particles with larger m/q ratio exhibit
smaller poloidal diffusion since their larger Larmor radius rL implicates higher pro-
bability of particle untrapping from poloidally moving potential fluctuations. The
radial particle diffusion is classical, with diffusion coefficient Dr generally lower
then Dp. The dependence on m/q ratio is reversed in radial direction, compared
to the poloidal one, and particles with larger m/q ratio exhibit stronger radial
diffusion. In the radial direction particles have to overcome larger local poten-
tial gradients which is more simple for particles with larger m/q ratio and larger
rL, that enhances their transport. Impurities are typically generated at the edge
where plasma interacts with material components. Our study reveals that heavier
particles will penetrate into the plasma easier than those with small m/q, since
their Larmor radius is able to ’bridge’ equipotentials in radial direction and limit
the effect of particle trapping in poloidally moving potential structures. As more
electrons become stripped from the impurity ions, the m/q ratio drops and their
radial transport becomes supressed in favour of anomalous poloidal dragging by
turbulent structures.

There are two main limitations of the used form of potential. First, the con-
vective structures are poloidally rotating and therefore they are present in the
simulation for a limited time only. The effect of particle trapping in the structures
is therefore underestimated and the transport in direction of structure movement
(which has both large poloidal and small radial component) is underestimated as
well. Second, we have used isothermal approximation. Indeed, turbulent structu-
res typically exhibit some fluctuation of electron temperature, however, if this
fluctuation is in phase with fluctuation of potential (either by drift-wave origin of
the structures or by sheath-dissipative coupling), the substitution of plasma po-
tential φ by the measured floating potential Vfl overestimates its fluctuations, but
does not generally change its structure. As neither Te nor φ were measured, this
assumption cannot be verified.

7.6 Clustering and radial pinch of impurities in
Hasegawa-Wakatani potential

In this section we will focus on some specific properties of particle transport in mo-
delled Hasegawa-Wakatani potential. Specifically, we will discuss effects of particle
clustering in turbulent vortexes and their inward radial pinch that were found in
fluid simulations of impurities with finite mass but zero Larmor radius in [122]. We
will test validity of these effects for particles with non-negligible Larmor radius.
First, our code for modelling drift wave turbulence is described in Secs. 7.6.1-7.6.2.
Previous findings on effects of particle clustering and radial impurity pinch can be
found in Sec. 7.6.4 and we present our results in Sec. 7.6.5.
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7.6.1 Hasegawa-Wakatani equations

Hasegawa-Wakatani model is a basic model for description of drift waves in 2D drift
plane perpendicular to magnetic field lines. 2D slab coordinates x and y represent
radial and poloidal direction, respectively. The model is very simple, yet it still
contains important parts of the drift-wave physics. It is based on fluid continuity
(4.53) and vorticity (4.78) equations with momentum equation (4.45) reduced to
E × B, ~vE, and polarization, ~vP , drifts. Similarly to the ESEL model, the effect
of second-order ~vP is neglected in the continuity equation and it plays a role only
through its compressibility in the vorticity equation. The standard version of the
model is isothermal, Te = const., even though its advanced variants with non-
constant Te were developed [140, 158, 83]. Magnetic field B is taken as constant.
The fluid equations are simplified by assumption of constant radial e-folding length
Ln of background density n0,

n0 ≈ N0 exp

(
− x

Ln

)
. (7.43)

This allows to separate total density n(t) to the fluctuating part ñ(t) = n(t)− n0

and the background n0. Then, assuming ñ/n0 � 1, term dn/dt in the continuity
equation can be approximated as

1

n

dn
dt

=
d lnn

dt
=

d ln(n0 + ñ)

dt
=

d lnn0

dt
d ln(1 + ñ/n0)

dt
= (7.44)

=
1

LnB0

∂φ

∂y
+

d ln(1 + ñ/n0)

dt
≈ 1

LnB0

∂φ

∂y
+

1

n0

dñ
dt

(7.45)

where it was used

d lnn0

dt
= (

∂

∂t
+ ~vE · ~∇) lnn0 = (

∂

∂t
+
−~∇φ×~b

B0

· ~∇)(− x

Ln
) =

1

LnB0

∂φ

∂y
. (7.46)

Note that such separation of scales was not possible in the ESEL model because in
the SOL, in contrast to the edge region, the relative fluctuations are of the order
of background density ñ/n0 ≈ 1.

To close the vorticity equation, form of ~∇‖ · ~J‖ term must be specified. In the
edge region where magnetic field lines are closed, small but still finite 1/L‖ ≡
k‖ � k⊥ is consistent with magnetic geometry [127]. A single dominant parallel
mode is considered in H-W model and appropriate closure (4.95) of the ~∇‖ · ~J‖ was
presented in Sec. 4.4.2.

From now on we will omit the tilde and understand symbols n and φ as ñ and
φ̃, respectively, and we will use normalization

~x

ρs
→ ~x; tωci

ρs
Ln
→ t;

eφ̃

Te

Ln
ρs
→ φ;

ñ

n0

Ln
ρs
→ n (7.47)

where ρs is hybrid ion gyroradius, ωci ion gyrofrequency and Te electron tempera-
ture.
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After substitution of the drifts into (4.53) and (4.78), the final form of Hasegawa-
Wakatani equations is(

∂

∂t
−
~∇⊥φ×~b
B0

· ~∇⊥

)
n+

∂φ

∂y
= α(φ− n) + (−1)d+1 ν ~∇2d

⊥ n (7.48)(
∂

∂t
−
~∇⊥φ×~b
B0

· ~∇⊥

)(
~∇2
⊥φ
)

= α(φ− n) + (−1)d+1 ν ~∇2d+2
⊥ φ (7.49)

The factor (−1)d+1 in front of dissipative terms in both equations guarantees that
the dissipation acts as a sink of energy and enstrophy and not as a source.

The system is dependent on single adiabaticity parameter α

α =
TeLn

n0ωciρsL2
‖η‖

(7.50)

and has two basic limits [24]. For α� 1 (adiabatic regime) the system reduces to
more simple Hasegawa-Mima [62] system and for α � 1 (hydrodynamic regime)
it reduces to Navier-Stokes equations.

7.6.2 Numerical algorithm for solving Hasegawa-Wakatani
equations

In order to solve system of coupled partial differential equations (7.48) and (7.49)
we developed fully dealiased spectral numerical code. This is made possible by the
fact that we use double-periodic boundary conditions that allow to make Fourier
transform in both direction. Substituting Laplacian of the potential with vorticity
Ω in accordance with Eq. (4.71),

Ω = ~∇2
⊥φ, (7.51)

and transforming all three equations (7.48), (7.49) and (7.51) into Fourier space,
the code solves three coupled equations

φ̃ = − 1

k2
x + k2

y

Ω̃, (7.52)

∂

∂t
ñ− (kyφ̃) ∗ (kxñ) + (kxφ̃) ∗ (kyñ) + ikyφ̃ = α(ñ− φ̃)− ν(k2

x + k2
y)
dñ,

(7.53)
∂

∂t
Ω̃− (kyφ̃) ∗ (kxΩ̃) + (kxφ̃) ∗ (kyΩ̃) = α(ñ− φ̃)− ν(k2

x + k2
y)
dΩ̃.

(7.54)

The tilde ∼ denotes fourier image of the original real-space quantities. Note that
hyperviscosity terms are now always negative because the factors (−1)d+1 used
in real space compensate with the sign of Fourier transform of a derivation. All
terms can be easily enumerated except the convective term that in the Fourier
space has a form of convolution (∗). It would be costly to compute the convolution
directly. Therefore we use fast Fourier transform (FFT) algorithm to transform
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both involved fields back to the real space where they can be directly multiplied.
The second FFT then brings the result back into Fourier space.

The computational grid is discretized equidistantly and to perform fast Fourier
transform we use well-known open source library FFTW (Fastest Fourier Trans-
form in the West) 1.

Chosen time stepping algorithm is a 3rd order explicit linear multistep method.
It computes value ~qn of vector of field quantities ~q = (n,Ω) at given point in time
tn based on its values and derivations ∂~q

∂t
= ~f(t, ~q) in three previous steps with

constant time step ∆t as

~qn =
6

11

(
3~qn−1 −

3

2
~qn−2 +

1

3
~qn−3 + ∆t

[
3~f(tn−1, ~qn−1)− 3~f(tn−2, ~qn−2) + ~f(tn−3, ~qn−3)

])
.

(7.55)
There are four dynamical invariants of H-W equations (7.48) and (7.49) that

can be combined into two quantities with simple physical interpretation [24]. It
is the total energy density E composed from kinetic energy Ekin and potential
energy Epot

E = Ekin + Epot =
1

2

∫ ∫ (
~∇⊥φ

)2

dxdy +
1

2

∫ ∫
n2dxdy (7.56)

and potential (or generalised) enstrophy

W =
1

2

∫ ∫ (
n− ~∇2

⊥φ
)2

dxdy. (7.57)

Time evolution of these quantities is given by (7.48) and (7.49) as [24]

∂E

∂t
= Γn − Γα −DE (7.58)

∂W

∂t
= Γn −DW (7.59)

where only radial density flux Γn

Γn = −
∫ ∫

n

(
∂φ

∂y

)
dxdy (7.60)

can work as a source of energy and potential enstrophy, extracting free energy
from the background density gradient (see origin of the term ∂φ

∂y
in Eq. (7.46)). Γα

defined as
Γα = α

∫ ∫
(n− φ)2dxdy (7.61)

is always positive and thus constitutes a sink of fluctuation energy being resistively
dissipated. The remaining diffusion terms

DE = ν

∫ ∫ [(
~∇d
⊥n
)2

+
(
~∇d+1
⊥ φ

)2
]
dxdy (7.62)

DW = ν

∫ ∫ (
~∇d
⊥(n− ~∇2

⊥φ)
)2

dxdy (7.63)

1http://www.fftw.org
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are also sink terms. The factor (−1)d+1 in front of the diffusive terms in (7.48) and
(7.49) was chosen such that terms (7.62) and (7.63) are always positive.

The code computes these quantities and checks that evolution laws (7.58) and
(7.63) are satisfied. Since only Fourier coefficients of the fields are stored in every
time step and all these terms have a quadratic or generally multiplicative form,
we use Parseval’s theorem2 to evaluate the integrals directly in Fourier space.

Fig. 7.9(left) shows time evolution of integral quantities E, Ekin, Epot and W
for a simulation that will be used in the following sections as a background for
particle tracing. For better comparison with results presented in [122] we have
chosen parameters such that α = 1, d = 1, Dn = DΩ = 10−2. The simulation was
made with 512 × 512 Fourier nodes (after dealiasing) and normalized time step
dt = 10−4. Fig. 7.9(right) presents evolution of corresponding fluxes Γn, Γα and
diffusive sinks DE and DW in this simulation. Time evolution of enstrophy is given
by balancing Γn with diffusive sink DW and since Γn is nonzero in the saturated
state theDW cannot disappear. Different behaviour works forDE, because here the
fluxes due to background density gradient Γn are balanced by Γα and in principle,
by increasing degree of hyperviscosity d and by lowering diffusivities Dn and DΩ

(and eventually refining computational grid), the effect of diffusive energy sink
could be suppressed [24].

Figure 7.9: Time evolution of total energy and enstrophy (left) and corresponding fluxes
and diffusive sinks (right) in the H-W model. Coupling parameter α = 1 and order of
diffusive terms d = 1.

7.6.3 Dimensionless parameter governing particle motion in
the Hasegawa-Wakatani potential

In the following sections motion of individual particles in potential field of resistive
drift waves given by solution of Hasegawa-Wakatani fluid equations (7.48)-(7.49)
will be investigated. We will describe motion of the particles by equations of motion
(7.25)-(7.28) derived in Sec. 7.3.

To express values of parameters T and R (Eqs. (7.33) and (7.34)) in terms
of plasma parameters, we will substitute the normalization (7.47) of the H-W

2If g(x) and h(x) are 2π-periodic integrable complex functions and g̃n, h̃n coefficients of their
Fourier series, then

∫ π
−π g(x)h(x)dx = 2π

∑∞
n=−∞ g̃nh̃n. Here the bar means complex conjugation.
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equations. Then, one have

T =
ωc,imp
ωci

Ln
2ρs

=
ωc,imp
ωci

Ln
2

eB0√
Temi

∼ q

m
(7.64)

R =
2Te

eB0ρ2
sωci

= 2. (7.65)

We remind that Ln is a radial length-scale of background density, ρs is hybrid
gyroradius (5.7) of plasma ions, Te electron temperature, B0 background magnetic
field and mi mass of plasma ions. We further distinguish gyrofrequency of traced
particles ωc,imp from gyrofrequency of ion component of the plasma ωci. As we can
see, the parameter R reduces to a constant and the whole dynamics is thus given
by parameter T which is combination of all plasma parameters and is proportional
to charge/mass ratio of the traced particle. Indeed, the form of potential itself
depends also on choice of adiabaticity parameter α, which is the second parameter
of the problem. In the following we will use α = 1

In [122], a different form of the dimensionless parameter describing character
of particle motion was used,

ξ =
1

2

1

T
∼ m/q. (7.66)

In order to be consistent with the cited work, we will mostly describe the type
of traced particles using ξ instead of T . The physical meaning of ξ as a ratio of
characteristic frequency of turbulent fluctuations to the particle’s gyrofrequency
can be seen from the definition of T in Eq. (7.33). Particles with ξ � 1 (i.e.
ω−1
c,imp � t0) feel the potential as constant during one gyro-period while in the case
ξ � 1 the potential is changing on faster scale than particles gyro-period. Another
interpretation of ξ arises when we combine (7.33), (7.34), (7.65) and (7.66) and
get

ξ =
φ0m

qB2
0x

2
0

(7.67)

which agrees with the parameter αB in (7.39) that describes particle untrapping
due to Bellan instability.

For use in the following simulations it will be useful to evaluate reasonable
values of the parameters T and ξ. For values of radial background density length-
scale in the tokamak edge region Ln ≈ 10−2−10−1 m, magnetic field B0 ≈ 0.5−3 T,
electron temperature Te ≈ 10− 500 eV [145] we get (for deuterium plasma) range
of parameters T ≈ (1.5 − 66) q

m
. The dependence of T on plasma parameters is

shown in Fig. 7.10.

7.6.4 Inertial impurities, their clustering and radial pinch

In [122, 111] fluid model of passive transport of particles with finite mass (called
inertial impurities) in H-W potential was developed and studied. Advection of
impurity density nimp by two fluid drifts was considered - the dominant E × B
drift ~vE and polarization drift ~vP . Even though ~vP is a second order drift, it was
shown that its compressibility brings important effects that generate inward radial
particle pinch.

The papers have shown that there is an approximate Lagrangian invariant

IL = lnnimp − ξΩ (7.68)
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Ln [cm] B0 [T] Te [eV] TH+ - Eq. (7.64) ξH+ - Eq. (7.66)
1 0.5 10 10.98 4.55 ×10−2

1 0.5 500 1.55 3.22 ×10−1

1 3 10 65.89 7.59 ×10−3

1 3 500 9.32 5.37 ×10−2

Figure 7.10: Values of parameter T (for deuterium plasma) governing character of par-
ticle motion in Hasegawa-Wakatani potential and their dependence on plasma electron
temperature Te and the strength of magnetic field B0. In order to obtain value of T for
any specific case, the values in the figure need to be multiplied by Ln (in centimetres)
and by A/Z ratio of the traced particle species. Several values of T and ξ evaluated for
H+ ions with A = Z = 1 are stated in the table.

that is approximately conserved during the E×B motion of inertial impurities. He-
re ξ is a dimensionless parameter from Eq. (7.66) that parametrizes the dynamics.
Due to turbulent mixing of particle trajectories the invariant becomes soon homo-
genized over the whole simulation, IL(x, y) = const. When the impurity density
is split into its mean and fluctuating part, 〈nimp〉 and ñimp, respectively, and the
logarithm is linearised, the conservation of the Lagrangian invariant shows that
relative fluctuations of impurity density are correlated with local vorticity Ω,

ñimp
〈nimp〉

≈ 1 + ξΩ. (7.69)

The positively charged particles are accumulated (clustered) in areas with positi-
ve vorticity (negative potential) and expelled from regions with negative vorticity
(positive potential). We note that in the constant magnetic field that is considered
in H-W model, the E × B drift is incompressible and the fluctuating part ñimp
arises solely from compressibility of the polarization drift, i.e. it is an effect of finite
particle mass. Since IL is only approximate invariant (changed only by impurity
advection by polarization drift and by collisional diffusion) and its spatial homo-
genization is dependent on turbulent mixing of particle trajectories, the relation
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between nimp and Ω found in simulations in [122, 111] is not ideal,

ñimp
〈nimp〉

= 1 +KΩ (7.70)

with K = 0.82ξ.
In the double periodic domain used in H-W model the total E × B drift is

equal to zero. Therefore, if there would be no fluctuations of impurity density, the
total E × B impurity flux would be zero as well. However, the compressibility of
the impurity flow causes redistribution of nimp such that the total radial flux due
to E × B drift becomes negative and the impurities experience net inward radial
velocity (inward radial pinch)

v̄imp,x =

∫
nimpvE,xdxdy∫
nimpdxdy

≈ −0.09ξ. (7.71)

The amplitude of the inward velocity grows with ξ i.e., with particles’ m/q ratio.
The fluid model, however, neglects Larmor radius, which may bring, especially
for the case of large m/q ratio, new effects competing with the inertial effects
described. This topic will be investigated in the next section.

7.6.5 Effect of finite Larmor radius on the radial velocity
pinch

The situation that will be modelled in this section is very similar to that examined
in [122, 111] and discussed in Sec. 7.6.4. We use H-W model with α = 1, d = 1
and Dn = Dω = 10−2 and follow transport of particles with finite mass in the
turbulent potential. In contrast to [122, 111] we do not neglect particle cyclotron
gyration and follow full particle orbits described by Eqs. (7.25)-(7.28). We solve
H-W equations for 512×512 dealiased Fourier modes and since particle trajectory
is resolved on much finer spatial scale, the value of potential at particles’ positi-
ons is obtained by Fourier interpolation. In order to model particle transport in
test-particle approximation, we assume that both, particle density and density gra-
dients, are much smaller than those of the main plasma so that the impurities do
not enter the quasineutrality equation [111]. The same numerical scheme (fourth-
order explicit Runge-Kutta) was used as for the particle tracing in experimentally
measured potential in Sec. 7.5. The time step was chosen as either 1/1000 of par-
ticle cyclotron period or 1/10000 of characteristic time of turbulent fluctuations t0,
what was smaller. Again, all particles were initialized with zero initial velocity and
gained energy from their interaction with the fluctuating turbulent potential. The
particles were added into the H-W simulation after its initial phase when state of
saturated turbulence was established.

First, we focus on the effect of impurity clustering in turbulent vortexes. Fig.
7.11(left) shows relative impurity density (nimp/〈nimp〉 − 1) as a function of local
turbulent vorticity for three different values of ξ. We can observe that the relation-
ship is approximately linear, except the case ξ ≈ 0.1 in which negative vortices (or
positive potential hills) are less populated than predicted by linear relation (7.70).
Nevertheless, the linear relation holds around nimp/〈nimp〉 ≈ 1 for all cases and we
estimate the regression coefficient K in the region 0.75 < nimp/〈nimp〉 < 1.25.
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Dependence of K on particle species expressed in terms of ξ is shown in Fig.
7.11(right). Up to value ξ = 0.1 the estimated value ofK/ξ is constant,K/ξ = 0.94
and for higher ξ it quickly drops. This value is closer to the ideal clustering de-
scribed in Eq. (7.69) with K = ξ than estimation made in [122, 111] for inertial
impurities with neglected Larmor radius (K = 0.82ξ). We attribute this to the
difference in particle collisions that change IL in time and that were taken into
account in the cited works but not in our simulation. When ξ ≈ 0.1, particles start
to escape from positive potential structures (negative vortexes) due to Bellan in-
stability described in Sec. 7.4, while their accumulation in potential valleys further
grows. Therefore, for 0.1 < ξ < 0.5 the correlation between impurity density and
vorticity in Fig. 7.11(right) grows, but dependence of K on ξ is sublinear. When
ξ ≈ 1, particles start to escape from potential valleys and function K(ξ) has a
maximum at ξ ≈ 0.5.

Figure 7.11: Left: Average value of relative particle density (nimp/〈nimp〉−1) at place with
local turbulent vorticity Ω. Particle density is not readily available from the simulation
and we compute it from average number of particles N(Ω) found at surroundings of
turbulent vorticity Ω. For better statistics, the relation was averaged over interval of
length 50t0. The oscillations at the ends of lines are caused by poor vorticity statistics
at these values. Right: Regression coefficient K of the relation (7.70) as a function of ξ
(solid blue line). Linear relation K = 0.94ξ is plotted as blue dashed line, K = 0.82ξ as
red dashed line.

The effect of particle trapping by potential structures is shown in Fig. 7.12
from two different points of view. Fig. 7.12(right) shows fraction of particles that
are located in places with positive vorticity (or negative potential) as a function
of ξ. For ξ < 1, accumulation of particles in positive vortexes (potential valleys)
due to compressibility of ~vP grows with ξ. However, the relative frequency of
turbulent fluctuations increases with ξ as well and it increases the probability that
particles located at the edges of potential valley become untrapped. This balances
the clustering effect at ξ ≈ 0.5− 1 and for ξ > 1 the effect of particle trapping by
potential valleys weakens as the characteristic frequency of turbulent fluctuations
rises over particles’ gyrofrequency. Since all particles were initialized with zero
velocity, the effect of finite Larmor radius can be seen also when time evolution of
the regression coefficient K is plotted (Fig. 7.12(left)). For ξ = 0.01, the effect of
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Figure 7.12: Left: Time evolution of the regression coefficient K for three different values
of ξ. Right: Fraction of particles found in the places with negative potential (green) and
positive vorticity (blue).

Larmor radius is negligible and K grows due to compressibility of ~vP drift until it
reaches its steady-state value. On the other hand, particles with ξ = 5.0 at first
exhibit sharp increase of K. At this initial phase the particles remain cold with
small Larmor radius and effect of the ~vP compressibility dominates. During time
the particles gain energy from turbulent fluctuations and as their Larmor radius
grows, Bellan instability starts to release particles trapped in potential structures
(preferentially from potential hills) which is reflected in a decrease of K. Saturated
value of K is then given by a balance between these two mechanisms.

Fig. 7.13 shows that for small values of ξ the inward radial pinch, originally
identified for inertial impurities in [122, 111], is present as well for particles with
finite Larmor radius. In this regime the impurity density is redistributed such that
regions with negative sign of radial part of E × B drift are more populated than
the others. For ξ > 0.01 the inward radial velocity weakens and it changes its sign
at ξ = 0.1. This reversal of radial velocity is qualitatively new behaviour brought
by finite Larmor radius effects and therefore it could not be found in the fluid
model of inertial impurities examined in [122, 111].

The net outward drift of heavier particles is connected with their unstable mo-
tion at potential hills. Due to asymmetric shape of the potential structures, the
particles are released only at several spatially localized points and velocity of es-
caping particles is not isotropic, but it gains some preferential direction. First, we
have tested whether the shape of turbulent structures present in H-W potential is
favourable for the Bellan instability. An example of a structure frozen in time and
motion of particles with four different values of ξ is shown in Fig. 7.14. The typical
threshold above which we found that particles on potential hills experience Bellan
instability is in the range ξthr ≈ 0.05−0.1, the actual number is, however, strongly
dependent on shape of each individual potential structure. Nevertheless, the thre-
shold is generally lower than the threshold found in the case of fully symmetric
quadratic structures (ξthr,Bellan ≈ 0.31 in [12]) and in case of nearly symmetric
egg-crate potential (ξthr,egg ≈ 0.25 in [89, 90]). The value ξthr is well consistent
with departure from ideal clustering (K ≈ ξ) shown in Fig. 7.11(right). Figs. 7.14
and 7.15 demonstrate that particles escape from potential hills typically on their
corners, in the places with high curvature of equipotentials. If the spatial region
favourable for particle escape is narrow, only particles with certain phase of their
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Figure 7.13: Dependence of net radial velocity of particles on ξ. The radial velocity was
averaged over time interval of 50t0 to remove influence of turbulent potential oscillations.
Dependence v̄r = −0.09ξ found for inertial impurities neglecting Larmor radius [122] is
plotted for comparison (green).

gyro-orbit can escape and particles gain a preferential sign of their velocity. From
the point of view of stochastisation of phase space, this can be viewed as asymmet-
ric stochastisation, where stochastic see of escaping particles is not symmetric in
velocity component that represents the gyro-orbit. An example of Poincare’s secti-
on of particle movement on potential hill in two different moments of its evolution
is shown in Fig. 7.16. The left part of the figure shows asymmetrically stochastised
phase space in which particle with negative sign of their radial velocity vr are trap-
ped while those having positive sign of vr move in the stochastic see and are able
to escape from the structure. Through this mechanism the potential hill quickly
expels particles from half of its phase space. However, not all structures in all times
generate such asymmetric stochastisation. Fig. 7.16(left) show the stochastisation
of phase space of the same structure as shown in right, but in later time of its
evolution. Here, the structure of phase space is almost symmetric with respect to
vr.

We have verified that even though the net radial velocity v̄r fluctuates in ti-
me as the particles react on temporal changes of the potential, the mean value
〈v̄r〉 (averaged over several periods of the fluctuations) that was shown in Fig.
7.11(right) is stable in time.We note, that in the next step the model will be aug-
mented by particle collisions in form of stochastic Langevin equation that may
partially suppress the effect of the outward impurity outflux.

In this section we have evaluated limits of a model of inertial impurities [122]
given by effects of finite Larmor radius (FLR). We have found that impurity clus-
tering and net inward radial velocity of impurity particles predicted by the fluid
model hold up to ξ ≈ 5 × 10−2. For higher values of ξ the FLR effects become
important. In such case the phase space is stochastised and motion of particles on
positive potential structures is unstable, generating reversal of sign of the net ra-
dial drift and at ξ ≈ 0.1. The clustering of impurities inside turbulent vortex drops
down for ξ > 0.5. In the future, further effects are expected to be brought into
the model by including collisions with the main plasma and taking into account
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Figure 7.14: Trajectories of impurity particles (black bold solid lines) with identical star-
ting positions and zero initial kinetic energy moving in frozen snapshot of H-W potential
for different values of ξ [91]. Positive equipotentials are plotted with thin solid line, the
neagtive ones with dashed line. ξ = 5·10−2 (a), ξ = 10−1 (b), ξ = 1.5·10−1 (c), ξ = 3·10−1

(d). With growing ξ, particles are repelled from the potential structure gaining energy.
Due to asymmetry of turbulent structures the escape direction is not isotropic. Motion
of ideal massless particle described by E ×B drift is plotted in red.

Figure 7.15: Trajectories of 30 particles (each color represents one trajectory) moving in
frozen snapshot of H-W potential. All particles were initialized with zero kinetic energy,
randomly distributed on a potential hill from Fig. 7.14. Two different values of ξ vere
used: ξ = 1.5× 10−1 (left) and ξ = 3 · 10−1 (right).
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Figure 7.16: Poincare’s sections of particle motion on positive potential structure in two
different times of its evolution separated by ∆t = 0.75. Particles with ξ = 0.1 and the
same total energy H = 40 were tracked. During generation of the Poincare’s section the
structure was frozen in time. Spatial asymmetry of the structure may result in asymmetric
stochastisation of the phase space (top). Plotted quantities are in dimensionless units with
normalization (7.47).

inhomogeneous magnetic field. The latter will, however, require modification of the
underlying turbulent model, because currently used H-W model assumes magnetic
field homogeneity.

7.7 Particle motion in structures of interchange
turbulence

The Hasegawa-Wakatani model of drift-wave turbulence presented in Sec. 7.6.1 is
relevant mainly in the inner vicinity of LCFS where closed magnetic field lines
allow presence of nonzero k‖. According to recent understanding of tokamak edge
turbulence [88, 31], in the SOL the turbulence should be dominated by interchange
modes. In this section we will present two initial considerations about impurity
behaviour in the interchange convective structures modelled by ESEL model (see
Sec. 5.1).

7.7.1 Generation of asymmetric impurity flux by interaction
with interchange structures

First, we have used our previous ESEL simulation #116 and used the blob-tracking
algorithm to detect all turbulent structures with density fluctuation ñ/〈n〉 > σn.
Then, by detecting amplitudes of positive and negative potential parts of each blob
and their mutual distance, it was possible to estimate value of parameter R ≡ αB
according to (7.39). Radial profile of its mean and maximum value evaluated from
the set of all blobs appearing in simulation is shown in Fig.7.17. In the SOL, mean
value of R occurs in a close vicinity of stochasticity threshold for C+, while its
maximum value can be almost 10 times higher. This indicates that not all blobs
are capable of exhibiting Bellan instability, but on the other hand there exists
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a group of blobs that are capable of destabilizing motion even of very light or
multiply charged particles.

Figure 7.17: Mean (left) and maximum (right) value of stochasticity parameter R esti-
mated from properties of potential turbulent structures in ESEL simulation (blue curve).
Red line marks stochasticity threshold for C+ ions, cyan line for Fe+.

It is necessary to note that such estimation of R is limited by the fact that the
stochasticity threshold was derived assuming symmetric shape of potential with
leading quadratic term and slow motion of potential structures. These assumptions
may be violated in the turbulent potential and the stochasticity threshold may be
lower, similarly as was observed for particle motion in H-W potential in Sec. 7.6.5.

ESEL model shows that interchange structures are rare in the sense that in one
time there are typically only one or two structures present in the SOL, surrounded
by background plasma (see e.g. Fig. 5.6.) Such situation could be well described
by egg-crate potential (7.36), but restricted to only one bipolar structure corre-
sponding to a single blob bounded by separatrix φ = 1. Such structure is divided
into two parts, potential hill and valley, with significantly different type of mo-
tion. While the positive part can release and accelerate particles whenever the
stochasticity threshold is reached, the negative part will some of them temporarily
trap back. In a result, the potential valley can effectively screen out outflow of
particles from the hill and total particle flux caused by Bellan instability will be
predominantly heading in the opposite direction, away from the valley. Therefore,
if the blob axes are aligned with radial and poloidal axes, the largest flux is in the
poloidal direction. However, as can be seen in Fig. 7.18(left) taken from ESEL si-
mulation, blobs in SOL are usually tilted due to shear of poloidal velocities, which
rotates also the direction of maximum particle outflow to head more into inside.
Therefore, this mechanism may enhance impurity transport from the wall region
into the main plasma [133], causing negative effects such as diluting fuel or cooling
the plasma down.

The situation is schematically depicted in Fig. 7.18 and the dependence of asy-
mmetry strength on scaling of parameter R and particle kinetic energy Ek is shown
in Fig.7.19. For particles with low initial energy and low value of R, the asymme-
try between number of particles escaping through parts of separatrix labelled in
Fig. 7.18 as 1 and 2 and those labelled as 3 and 4 can go up to N1+2/N3+4 ≈ 3.
The asymmetry of particle outflux drops down with growing R and Ek, because
high-energy particles more-likely avoid being trapped when passing through the
potential valley. These results indicate that the proposed mechanism of generation
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of asymmetric impurity flows in SOL by interchange structures may be realis-
tic and simulation with full time evolving potential generated by ESEL model is
planned.

Figure 7.18: Snapshot of turbulent potential from the ESEL model (left part) showing
that typical blobs in SOL are tilted, which leads to asymmetric outflow of particles due to
Bellan instability (schematic picture on the right). Dashed line connects local minimum
and maximum of blob’s potential. [133]

Figure 7.19: Asymmetry of particle outflow from a single blob structure. Harmonic po-
tential profile (7.36) is assumed. Nin is number of particles arriving at 1st and 2nd part of
potential separatrix (see Fig. 7.18) and Nout is number of particles reaching 3rd and 4th
part of potential separatrix. Initial positions of particles in blob are distributed randomly
with given kinetic energy Ek. [133]

7.7.2 Transport of particles by a single moving interchange
structure

As a next step, we have used ESEL model to generate single radially moving
interchange structure. We used so called seeded-blob approach and imposed small
Gaussian perturbation on exponentially decaying pressure profile. Parallel plasma
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losses have been neglected in this simulation. The time evolution of the generated
structure is plotted in Fig. 7.20.

To investigate the difference between drift approximation and full particle mo-
tion we use the time evolution of blob shown in Fig. 7.20 as a background potential
for tracing of C+ ions. Assuming that nC+ � n and also nC+ � ñ we assume that
impurities do not enter into quasineutrality condition and we neglect their influ-
ence on the turbulence itself and treat them as test particles. For the simplicity
we also use constant magnetic field B = 1 T. At the beginning all particles were
distributed randomly in space with initial energy 100 eV. The simulation was made
for three different approximations of particle motion - massless particles advected
by ~vE only, particles advected by combination of E × B and polarization drift,
~vE + ~vP , and particles with full orbits governed by 2D Hamiltonian equations of
motion (7.25)-(7.28).

Fig. 7.21 shows that the density significantly differs for all three cases. The
density of particles moving only with ~vE remains almost homogeneous (Fig. 7.21a).
In other words, E × B drift motion is incompressible under these conditions
(B =const.). Nevertheless, mixing of the particles can be observed (see Fig. 7.23).
Taking into account also polarization drift ~vP , the generic effect of flow compres-
sibility in turbulent vortexes discussed in Sec. 7.6.4 takes place and particles are
concentrated in the potential valley while repelled from potential hill (Fig. 7.21b).
In the case of Hamiltonian particles this effect is even stronger because they fe-
el in addition also the Bellan instability given by their finite Larmor radius and
consequently they escape the potential hill much faster and become concentrated
in the valley. Also particle mixing is larger than in the both drift cases, as can be
seen in Fig. 7.23.

The results of our simulation provide somewhat unusual picture of particle
transport in SOL. In contrast to fluid simulations of the plasma, where the positive
density perturbation is covering symmetrically both lobes of the blob (see Fig.
7.20), the finite Larmor radius effects of particles with higher m/q ratio together
with polarization effects cause the impurity density distribution to by asymmetric,
correlated with the plasma vorticity [134]. If we would take into account particle
drifts ~vE and ~vP only, as is often done, the fluctuation of impurity density would be
localized in smaller region and its amplitude underestimated in the negative part
and overestimated in the positive one. This will overestimate local radial particle
flux in the central region of the blob as shown in Fig. 7.22. On the other hand, in
the SOL region where strong radial gradients of all quantities are typically present,
the lower rate of mixing (Fig. 7.23) will result in underestimated radial transport
of these gradients.

During our computation we have assumed that concentration of impurities
is low and therefore they do not enter quasineutrality condition. However, this
assumption may not be always fulfilled in tokamak plasmas. In such case the
correlation of impurity concentration with plasma vorticity will lead to generation
of inhomogeneous electric field capable of changing dynamics of the background
turbulence. Since vorticity of the plasma flow is related to the electric potential,
inhomogeneity of impurity density will affect rotation of the lobes of the blob and
this may be transfered through Reynolds stress to poloidal plasma flows. These
effects, however, need to be evaluated with self-consistent electric field influenced
by both, the bulk plasma as well as impurities.
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Figure 7.20: Isolated structure produced by interchange instability in ESEL model from
small Gaussian perturbation imposed on exponentially decreasing pressure equilibrium
p(r). The structure is accelerated by electric drift resulting from its bipolar nature. Two
holes protruding into high density areas can be clearly seen.

Figure 7.21: Relative fluctuation of particle density at t = 57.8 µs during transit of fast
blob from Fig. 7.20 through spatially homogeneous cloud of C+ ions with energy 100 eV.
The density is homogeneous for particles advected by E ×B drift only (left). Compres-
sibility of polarization drift gives rise to density perturbation (middle) correlated with
the plasma vorticity (see Fig. 7.20) with maximum max(ñ/n0)drift = 0.64 and minimum
max(ñ/n0)drift = −0.46. Full tracking of particle orbits (right) shows even larger pertu-
rbation due to Bellan instability with max(ñ/n0)full = 0.55 and max(ñ/n0)full = −0.75.
[134]
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Figure 7.22: Radial part of instantaneous impurity flux Γr at t = 57.8 µs normalized to
initial density of particles n0 for particles advected by E × B drift (left), E × B and
polarization drift (middle) for particles with fully resolved cyclotron orbits (right). [134]

Figure 7.23: Mixing of C+ tracers after 57.8 µs of blob evolution. Initial particle positions
are marked by different colors (left). Particles moving by E × B drift (middle left) and
by E ×B and polarization drift (middle right) exhibit lower mixing (and smaller radial
transport) than particles with their cyclotron orbits fully resolved (right). [134]
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Summary
Numerical turbulence modelling is an important part of efforts devoted to un-
derstanding of transport processes in tokamak edge region. On one side it allows
investigation of non-linear models, providing results hardly reachable by purely
analytical treatment, on the other side their comparison with experimental me-
asurements is mutually beneficial. Experiment can serve as a rule of thumb for
various approximations made during derivation of analytical models, while at the
same time results of numerical models can provide interpretation of experimental
observations.

In the frame of this thesis we have touched plasma turbulence in tokamak edge
from three different points of view. In the first part, we have adopted and further
developed fluid code ESEL, generously provided to us by researchers from Danish
Technical University (DTU). The code allows modelling of turbulence driven by
interchange instability that is considered main source of enhanced transport throu-
gh tokamak scrape-off layer region. Parallelisation of the code allowed significant
reduction of its running time, which could otherwise pose an issue in modelling of
low collisionality conditions that require very fine spatial and temporal resolution
of the simulations. Developed blob tracking algorithm allows characterisation of
properties of turbulent structures in environment of fully developed turbulence in
the SOL. Testing of the results by comparison with experimental measurements
with Langmuir probes or gas puff imaging on tokamak COMPASS is envisaged
and expected to provide feedback on assumptions of the model.

Character of parallel electric currents generated by bipolar nature of the blobs
has been identified as a key factor influencing fluctuation statics in the scrap-off
layer. The modelling of scrape-off layer plasmas in tokamak TCV was performed
and mechanism of generation of parallel electric currents by field line bending by
moving blobs was ruled out for these conditions. The drain of plasma vorticity by
emitted Alfvén waves appears to be too strong, inhibiting poloidal flows and limi-
ting blob motion through the SOL. On the other hand, assumption on presence of
sheath dissipation, even in highly collisional plasmas, gives very promising results.
In this regime, a new free parameter appears in the ESEL model which allows
evaluation of influence of radial electric field around last closed flux surface on
density fluctuation statistics observed in the SOL. With increasing radial electric
field around LCFS the profiles steepen in a way that is consistent with experimen-
tal measurements, however agreement in density fluctuations worsens compared to
the regime of subsonic vorticity advection. In order to unify both regimes, we pro-
pose a model in which response of sheath dissipation is delayed behind potential
perturbations carried by blobs due to finite time necessary for the information to
travel from the outer midplane to the divertor targets. In cooperation with resear-
chers from DTU, corresponding terms are currently being implemented and tested
in the ESEL code. Moreover, analysis of experimental data of electron temperature
and plasma potential fluctuations measured on ASDEX Upgrade has started, with
preliminary results confirming effects of the sheath-dissipative coupling of plasma
potential and electron temperature. Detailed analysis of its impact, however, has
yet to be assessed.

ESEL is 2D model with plasma transport along field lines simplified to sim-
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ple analytical expressions. This may introduce significant error in estimation of
parallel plasma losses. Comparison of the analytical model of parallel losses with
predictions of code SOLF1D shows that density losses may be underestimated by
an order of magnitude, while temperature losses are on average of the correct or-
der. Based on this results, coupling of ESEL with 1D fluid code SOLF1D has been
performed and tested. First physical results are expected soon. Moreover, enhance-
ment of SOLF1D with full form of generalized Ohm’s law is planned, which would
make a large contribution to resolving the question on nature of parallel currents
generated by turbulent structures.

In the second part, we have used fluctuation statistics modelled by the ESEL
code to interpret several experimental results obtained by electrostatic probes in
the SOL. In the wall shadow region on ASDEX Upgrade two different e-folding
lengths of mean temperature profile has been measured simultaneously by swept
Langmuir probe and by technique based on combination of floating Langmuir and
ball-pen probes. We show that e-folding length measured by the latter is consistent
with our turbulence modelling and provide physical arguments to explain steeping
of the temperature profile in this region as a result of shortening of connection
length from midplane to the nearest material surface. Moreover, we explain pre-
sence of a ’bump’ in power spectra of plasma potential measured by the ball-pen
probe as a result of appearance of blobs with some characteristic size and veloci-
ty. This confirms capability of the ball-pen probe to measure fast fluctuations of
plasma potential in the range around 105 Hz that is crucial for investigation of
properties of turbulent structures in the SOL. We also show that power spectra of
floating potential are dominated by fluctuations of electron temperature and not
fluctuations of plasma potential, as could be expected.

On COMPASS, a probe head called U-probe is currently being installed. The
U-probe is mounted with such combination of Langmuir probes that should evalua-
te plasma vorticity from simultaneous spatially separated measurement of floating
potential. Based on the results of our simulations we document that interpretation
of such measurement in the presence of interchange turbulence is ambiguous, dis-
torted by possibly large fluctuations of temperature part of the floating potential.

As a last result of the second section we interpret divergence of cross-correlation
of density signal measured by two spatially separated Langmuir probes inside
velocity shear layer in the vicinity of last closed flux surface on tokamak CASTOR.
We show that this divergence appears in the region where poloidal plasma velocity
is comparable or smaller than radial velocity of the structures and we derive a
formula for estimation of poloidal velocity from the cross-correlation even in this
region.

In the last, third, section we handle the topic of transport of plasma impurities
by their interaction with turbulent structures of the main plasma. It is convenient
to describe this problem as a movement of test particles in background turbulent
potential. This allows, compared to the common approach of tracking particle
gyrocenters, to include important effects of finite size of Larmor radius. As a result,
we find significant differences in transport of typical tokamak plasma impurities
(such as C+ ions) when the size of Larmor radius is/is not taken into account and
we stress out that transport of heavier/less charged particles in the edge cannot
be correctly evaluated by the drift approximation. The results show that character
of particle transport changes with mass-to-charge ratio m/q of the particle. The
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particle tracing in experimentally measured potential allowed estimation of basic
character of the transport in realistic shape of the potential, with limitation given
mainly by short-term appearance of poloidally rotating turbulent structures in the
field of view of the probe array. The study reveals that impurity particles with
large m/q that are generated by plasma-wall interaction will penetrate into the
plasma easier than those with small m/q, since their Larmor radius is able to
’bridge’ equipotentials in radial direction and limit the effect of particle trapping
in poloidally moving potential structures. Then, with ionisation of the impurities
increasing with the time spent in the plasma, the effect of radial diffusion will
become suppressed.

Taking into account particle mass through polarization drift, the drift appro-
ximation predicts inward particle pinch of impurities moving in potential field of
drift waves described by Hasegawa-Wakatani model. Strength of the pinch grows
with the m/q ratio. We have investigated limits of this mechanism and found thre-
shold, described by dimensionless parameter ξ (7.66), after which the direction of
the pinch is reversed and particles are expelled radially outwards. Further simu-
lations are being prepared to include effects of particle collisions and, if possible,
also of inhomogeneous magnetic field.

Concluding the third section, several anomalous effects given by finite Larmor
radius of the particles were found, especially enhanced particle diffusion in poloidal
direction, reversal of direction of net radial particle flux in potential of drift waves
from inward (particles with small m/q ratio) to outward (particles with large
m/q ratio) or mechanism for generation of asymmetric impurity flux by bipolar
interchange structures. In all three studied cases the comparison of transport in
drift approximation and transport of particles with fully resolved cyclotron orbits
shows significant differences for parameters of typical impurities.

Research made in the frame of this thesis was published as a part of papers in
impacted scientific journals [132, 22, 2, 74, 65, 66], a book chapter [91], conference
proceedings [133, 1, 37, 38, 134, 112, 84, 102] and it was presented on several other
conferences that do not publish proceedings. Two papers covering results on influ-
ence of sheath dissipation term on interchange turbulence [115] and transport of
heavy particles in Hasegawa-Wakatani potential [135] are currently in preparation.
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Appendix A

Blob speed and size estimation from three-
point probe measurements

Here we will derive equations for determination of speed and size of turbulent
structures from time trace of three Langmuir probes. We will assume that the
probes are in ion saturation mode and that typical waveform of blobs and holes
can be in poloidal plane described as 2D Gaussian

Isat(x, y) = Isat,0e
− r2

dr2
− p2

dp2 (7.72)

where dr and dp are radial and poloidal size, respectively, and amplitude of the
structure Isat,0 is positive for blobs and negative for holes. This may be understood
either as a waveform of individual or an average structure.

Geometry of the problem is illustrated in fig. 7.24, where x − y coordinates
are aligned with axis of the structure, the structure is tilted with respect to the
direction of its movement by angle π − α and the angle between its velocity and
poloidal axis is ε. The trajectory of the probe in the reference frame of the blob is
then

xT (t) = xd + vxt = d sin(α) + v cos(α)t, (7.73)
yT (t) = yd + vyt = − d cos(α) + v sin(α)t. (7.74)

This gives signal on the triggering probe generated by the structure (7.72)

Isat,T (t) = Isat,0e
− (d sin(α)+vt cos(α))2

dr2
− (−d cos(α)+vt sin(α))2

dp2 . (7.75)

Maximum of the triggering signal

Isat,T,max = Isat,0e
− d2

cos2(α)dy2+sin2(α)dx2 (7.76)

is found at time

tmax =
d

v

sin(α) cos(α)(dx2 − dy2)

cos2(α)dy2 + sin2(α)dx2
=
d

v
τ. (7.77)

It is convinient to shift time origin by tmax, t′ = t− tmax, to have maximum signal
on the trigger at t′ = 0,

Isat,T (t′) = Isat,0e
− (d sin(α)+(vt′+dτ) cos(α))2

dr2
− (−d cos(α)+(vt′+dτ) sin(α))2

dp2 . (7.78)

Position of the secondary probe is related to the postion of the trigering probe
as

xS(t′) = xT (t′) + r cos(α + β − ε) = xT (t′) + r cos(α + δ) (7.79)
yS(t′) = yT (t′) + r sin(α + β − ε) = yT (t′) + r sin(α + δ) (7.80)
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Figure 7.24: Geometry of Gaussian turbulent structure passing over pair of Langmuir
probes - triggering probe T and secondary probe S in coordinates x, y alligned with
structure axis. d is distance of center of the structure from triggering probe, π − α is
tilt of the blob with respect to the direction of its velocity v and ε = tan(vr/vp) is angle
between v and poloidal direction p. Probes are located in mutual distance r in angle
β = ε + δ from the poloidal axis and δ from the direction of v, respectively. dx and dy
are dimensions of the structure.

which gives signal of the probe S

Isat,S(t′) = Isat,0e
− (d sin(α)+(vt′+dτ) cos(α)+r cos(α+δ))2

dr2
− (−d cos(α)+(vt′+dτ) sin(α)+r sin(α+δ))2

dp2 . (7.81)

Conditional average

In conditional average, only blobs with maximum of the signal larger then so-
me threshold, Isat,T,max ≤ Ithr are considered. We find the range of d in which the
condition is fullfiled:

|dthr| ≤

√
− ln

(
Ithr
Isat,0

)
(cos2(α)dy2 + sin2(α)dx2). (7.82)

Each structure will pass the probes in different distance d. We will therefore
consider d as uniformly distributed and conditionally averaged signal will be given
by integration of (7.78) or (7.81), respectively, over the distance d in the limits
given by (7.82) normalized to the number of blobs given by length of the interval
of dthr

Isat,CA(t′) =
1

dthr,+ − dthr,−

∫ dthr,+

dthr,−

Isat(t
′, d)dd. (7.83)
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It is

Isat,CA,T (t′) =
Isat,0
√
π

2

erf (L)

L
e
− v2t′2
dx2dy2 ∆2

, (7.84)

∆2 = dy2 cos2 α + dx2 sin2 α, (7.85)

L =

√
ln

(
Isat,0
Ithr

)
, (7.86)

for the triggering probe and

Isat,CA,S(t′) =
Isat,0
√
π

4L
e
−
v2∆2(t′−t′max,S)2

dx2dy2 × (7.87)

×
(
erf
( r

∆
sin(δ) + L

)
− erf

( r
∆

sin(δ)− L
))

(7.88)

for the secondary probe. If the secondary probes are close enough to the triger
compared to the size of the structure, sin(δ)r/∆ � 1, factor in (7.87) simplifies,
because

1

2

(
erf(

r

∆
sin(δ) + x)− erf(

r

∆
sin(δ)− x)

)
≈ erf(x) + (O)((r/∆ sin(δ))2). (7.89)

and ratio of signals on seconary and triggering probe in t′ = 0 is

Isat,CA,S
Isat,CA,T

(t′ = 0) = e
−
v2∆2t′2max,S
dx2dy2 . (7.90)

Maximum of Isat,CA,S is found at time

t′max,S = − r

v∆2
(dy2 cos(α) cos(α + δ) + dx2 sin(α) sin(α + δ)). (7.91)

Radially and poloidally aligned probes

Here we will simplify the situation for the case of two secondary probes, one placed
poloidally and one radially from the triggering probe. Such probe layout was used
e.g. for reciprocating probe measurements on TCV [72]. This layout is described
by relations

βSp = 0 (7.92)

βSr =
π

2
(7.93)

where subscripts Sp and Sr denote secondary probes placed poloidally and radially
from the trigering probe. In the following, rr and rp will denote distance of Sr and
Sp probe, respectively, from the trigger and angle −ξ = ε−α is tilt of the structure
with respect to r − p axes.

Time lag t′max,S in this geometry is

t′max,Sp = − rp
v∆2

(dy2 cos(α) cos(ξ) + dx2 sin(α) sin(ξ)) = (7.94)

= −rp
v

(
cos(ε) + sin(ε)

[
1

2

sin(2α)(dy2 − dx2)

∆2

])
,

t′max,Sr =
rr
v∆2

(dy2 cos(α) sin(ξ)− dx2 sin(α) cos(ξ)) = (7.95)

=
rr
v

(
sin(ε) + cos(ε)

[
1

2

sin(2α)(dy2 − dx2)

∆2

])
.
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If we use relation α = atan(vr/vp) + ξ, the ratio of estimated and real velocity is

(7.96)
vp,CA
vp

= rp
t′max,Sp

1
vp

= − dx2(vp tan(ξ) + vr)
2 + dy2(vp − vr tan(ξ))2

dx2 tan(ξ)(vp tan(ξ) + vr) + dy2(vp − vr tan(ξ))

(7.97)
vr,CA
vr

= rr
t′max,Sr

1
vr

= − dx2(vp tan(ξ) + vr)
2 + dy2(vp − vr tan(ξ))2

dy2 tan(ξ)(vr tan(ξ)− vp) + dx2(vr + vp tan(ξ))

This reduces for the blob without tilt (ξ = 0) to relations

vp,CA
vp

= 1 +
v2
r

v2
p

dx2

dy2
(7.98)

vr,CA
vr

= 1 +
v2
p

v2
r

dy2

dx2
(7.99)

used in Sec. 6.4.
Solving equations (7.95) and (7.96) allows to determine ε and vp/vr, respective-

ly, as a function of sin(2α)(dy2 − dx2)/(2∆2). Then, assumption that blobs moves
in direction of one of its axes α = 0 will close the set of equations and both com-
ponents of blob velocity can be determined from three-point probe measurements.
Adding further probes will not provide any aditional information in this model,
because equation (7.91) with new angle β would provide only linear combination
of information provided by the two previous probes. Obtaining additional infor-
mation would be possible only if non-Gaussian waveform of the blob is considered.
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List of used abbreviations
BPP ball-pen probe Advanced concept of electrostatic probe

specialized on measurement of plasma
potential (see Sec. 6.1).

CA conditional average See Eq. (3.22).

ELM edge localized mode Large transport event occurring in tokamak.
edge due to collapse of pedestal.

H-W model Hasegawa-Wakatani model Basic model of drift-wave turbulence.
Introduced in Sec. 7.6.1.

LCFS last closed flux surface Magnetic surface separating regions of
closed and open field lines.

PDF probability distribution
function

PSD power spectral density

RFP reversed field pinch

SOL scrape-off layer Region of open field lines at the boundary
of tokamak plasmas. From region of close
field lines it is separated by magnetic
separatrix (last closed flux surface).

VSL velocity shear layer
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