
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Marek Novotný

Model-driven Pretty Printer for Xtext
Framework

Department of Distributed and Dependable Systems

Supervisor: RNDr. Michal Malohlava, Ph.D.

Study program: Computer Science
Specialization: Software Systems

2012

I would like to thank the thesis supervisor RNDr. Michal Malohlava, Ph.D.
for his valuable comments and suggestions. His experience with Xtext frame-
work and overall with model-driven development have proved to be of high
importance for me. Finally, I want to thank my family for their support.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım
zveřejňováńım.

I declare that I have elaborated this master thesis on my own and listed all
used references. I agree with lending and publishing of this thesis.

In Prague on 4th December 2012 Marek Novotný

2

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Goals . 9
1.3 Structure of the Thesis . 9

2 Overview of Xtext Framework 10
2.1 Domain of Use . 10
2.2 Workflow . 10

2.2.1 Runtime Concepts . 11
2.2.2 IDE Concepts . 12
2.2.3 Configuration . 13

2.3 The Grammar Language . 15
2.3.1 Common Declarations 16
2.3.2 Grammar Rules . 17
2.3.3 Defining Elements of the Parser Rule 18

2.4 Code Formatting . 21
2.5 Syntax Highlighting . 26

2.5.1 Text Styles . 26
2.5.2 Lexical Highlighting 28
2.5.3 Semantic Highlighting 29

3 Pretty Printers using Box Models 31
3.1 Pretty Printer . 31
3.2 Box Representation . 33

3.2.1 Box . 33
3.2.2 Box Language . 35

3.3 Existing Box Meta-models . 35
3.3.1 Stratego/XT . 36
3.3.2 PPML . 37
3.3.3 Brand-Visser . 39
3.3.4 DeJonge . 42

3

3.3.5 Format Module for OCaml 44
3.3.6 Summary . 46

4 Goals Revisited 49
4.1 Summary . 50

5 Language for Defining Box Meta-models 52
5.1 Design . 52

5.1.1 Files of Stored Code 52
5.1.2 Constants and Enumerations 53
5.1.3 Basic Operators . 54
5.1.4 Alias Operators . 55

5.2 Realization . 55
5.2.1 Inheritance of Basic Operators 56
5.2.2 Scoping . 56

6 Language for Defining Box Models 58
6.1 Design . 58

6.1.1 Continuity with the Language of Box Meta-models . . 58
6.1.2 Continuity with the Language of the grammar of the

Xtext framework . 59
6.2 Realization . 62

6.2.1 Linking . 63
6.2.2 Identifying Elements Defining a Formatting Rule . . . 64
6.2.3 Identifying Elements Defining a Parser Rule 64

7 Language for Defining Heuristics of the Initial Box Model 66
7.1 Design . 66

7.1.1 Heuristic Rules for Nonterminals 67
7.1.2 Heuristic Rules for Terminals 69

7.2 Realization . 70
7.2.1 Model Traversal . 70
7.2.2 Model Transformation into a Text Representation . . . 71

8 Integrating the Box Model into the Xtext framework 73
8.1 Syntax Highlighting . 73

8.1.1 Behavioral Implementation of Operators 73
8.1.2 Highlighting Configuration 74
8.1.3 Lexical Highlighting 75
8.1.4 Semantic Highlighting 75

8.2 Code Formatting . 76

4

8.2.1 Implementing Concept 78
8.2.2 Behavioral Implementation of Operators 79

8.3 Workflow . 80
8.3.1 Starting Generation of the Initial Box Model 81
8.3.2 Mediation of a Box Model 82

9 Evaluation 83
9.1 Comparison of the Designed Generic Pretty Printer against the

Original Pretty Printer . 83
9.1.1 Discussion . 85
9.1.2 Summary . 87

9.2 The Generic Pretty Printer Formatting Code from the Real
World . 87

9.3 Unimplemented Operators . 88
9.4 Suggestions Improving Prototype Development 89

9.4.1 Debugger for the Xtend2 Language 89
9.4.2 Actions Affecting a Meta-Model Generation from a

Grammar . 89
9.4.3 Meta-Model Generation Bounded to Design Patterns . 90
9.4.4 Code Generation Based on a Grammar 90

10 Related Work 91
10.1 Graphical Domain-specific Languages 91
10.2 EMFText . 92
10.3 Meta Programming System 92

11 Conclusion and Future Work 94
11.1 Summary . 94
11.2 Future Work . 95

11.2.1 Implementing The WD and ALT operator 95
11.2.2 Implementing Concepts Improving an Integration of

Generic Pretty-printer into Eclipse 95
11.2.3 Pretty-printing Incorrect Code 95
11.2.4 Pretty-printing Individual Segments of Code 96
11.2.5 More Complex Heuristic Rules 96
11.2.6 Macro Operators . 96

Bibliography 97

Appendices 101

A Content of Attached CD-ROM 101

5

Název práce: Modelem ř́ızený formátovač kódu pro Xtext framework
Autor: Marek Novotný
Katedra (ústav): Katedra distribuovaných a spolehlivých systémů
Vedoućı diplomové práce: RNDr. Michal Malohlava, Ph.D.
E-mail vedoućıho: michal.malohlava@d3s.mff.cuni.cz

Abstrakt: Doménově specifický jazyk slouž́ı k popisu problémů v doméně, pro
ńıž byl vytvořen. Tento fakt implikuje, existenci velkého množstv́ı jazyk̊u to-
hoto druhu. Použ́ıváńı doménově specifických jazyk̊u přináš́ı s sebou potřebu
tyto jazyky formátovat a zvýrazňovat jejich syntaxi. Jedńım z nástroj̊u, které
umožňuj́ı tvorbu doménově specifických jazyk̊u, je prostřed́ı Xtext, který
nab́ıźı pouze omezenou paletu nástroj̊u umožňuj́ıćı nadefinovat formátováńı
kódu a jeho zvýrazněńı. Nav́ıc jsou tyto nástroje pro uživatele těžko pocho-
pitelné, jelikož jsou nepřehledné a vyžaduj́ı znalosti vnitřńıch záležitost́ı
prostřed́ı Xtext. Proto tato práce představuje nový zp̊usob formátovańı a
zvýrazňováńı kódu pro prostřed́ı Xtext, který je založen na deklarativńı
definici formátovaćıch pravidel. Kromě toho tato práce pomáhá uživateli s
tvorbou formátovaćıch pravidel na základě netriviálńıch heuristik.

Kĺıčová slova: eclipse, xtext, formátovač kódu, modelem ř́ızený vývoj,
doménově specifický jazyk

Title: Model-driven Pretty Printer for Xtext Framework
Author: Marek Novotný
Department: Department of Distributed and Dependable Systems
Supervisor: RNDr. Michal Malohlava, Ph.D.
Supervisor’s e-mail address: michal.malohlava@d3s.mff.cuni.cz

Abstract: The domain-specific language allows for describing problems of a
concrete domain, for which the language is created. This fact implies that
a number of languages of this kind grows with a number of problem do-
mains. The use of domain-specific languages brings a necessity to pretty-print
these languages, where the concept of pretty-printing consists of code format-
ting and syntax highlighting. One of tools that allow for creating domain-
specific languages is the Xtext framework, which offers only a limited range
of tools that are able to define a configuration for pretty-printing. Moreover,
these tools are hardly understandable because they are confusing and requires
knowledge of Xtext’s internals. Thus this thesis introduces a new way of
pretty-printing domain-specific languages. The way is based on declarative
definition of formatting rules. Furthermore, this thesis helps a user to create

6

formatting rules by utilizing nontrivial heuristics.

Keywords: eclipse, xtext, pretty printer, model-driven development, domain-
specific language

7

Chapter 1

Introduction

1.1 Motivation

Writing code is a craft which requires mature tools, conventions, and sys-
tematic approaches. One of crucial part of writing code is its representation
which needs to be readable. The requirement can be solved by automatic code
formatting, which represents the way to enforce coding conventions. A con-
figuration of a code formatter represents coding conventions for a particular
language used in a software project. The next mechanism improving the read-
ability of code is syntax highlighting which allows for distinguishing different
code parts by color, font, style, etc. Code formatting and syntax highlighting
are basic elements of the concept called pretty-printing.

In these days most of development environments or language editors in-
clude a pretty printer designed for a particular language. These ad-hoc pretty
printers tend to be hardly configurable and are mostly dedicated for only one
language. Thus another crucial problem is to define a pretty printer for a gen-
eral domain-specific language. Domain-specific language is a programming or
specification language dedicated to a particular problem domain such as SQL,
HTML, AWK, SED etc. Furthermore, this kind of languages can be created
by utilizing the Xtext framework. A DSL often serves to describe a real
life scenario with domain specific terms. But it means that each DSL closely
related to its problem requires creation of ad-hoc pretty printer from scratch
which takes a lot of time.

Code of DSLs can be often reflected into a model which facilitates code
manipulation and creation of tools serving for work with DSLs. This ap-
proach of software development is called model-driven development. The core
structure of final code can be generated from a model which reflects the pro-
cess of design. This fact allows for reducing time-consuming and error-prone

8

handwritten code. Although, the concept simplifies software development, the
models of ad-hoc pretty printers contain many similarities. Therefore it would
be beneficial to have a model-driven pretty printer that would be language
independent and an implementation of differences derived from language fea-
tures should be represented by an extension of the pretty-printer.

1.2 Goals

The aim of this thesis is to design a concept of a model-driven pretty-
printer for the Xtext framework [1] dealing with creation of domain-specific
languages. The concept should be confirmed by an appropriately incorporated
implementation into the environment of the Xtext framework. Code of im-
perative languages contains much syntax ballast, thus pretty-printer settings
for particular language features and formatting settings should be configured
with the best declaratively.

1.3 Structure of the Thesis

The thesis is separated into eleven chapters. The current Chapter 1 in-
troduces the topic of this thesis. The following two chapters describe state of
art of formatting concepts located in the Xtext framework and other con-
cepts important for a design of the model-driven pretty printer. Especially,
the Chapter 2 deals with the formatting concepts of the Xtext framework
and the Chapter 3 deals with the other concepts. The Chapter 4 revisits goals
of the thesis and analyzes them in more detail. The analysis contained in this
chapter implies creating three new domain-specific languages. A design and
realization steps of the first language that allows for specifying a formatting
tool of the pretty printer are contained in the Chapter 5. The design and re-
alization steps of the second language that allows for specifying a formatting
configuration for a particular language are contained in the Chapter 6. The
design and realization steps of the third language that allows for specifying
some heuristic rules dedicated for generating an initial formatting configura-
tion are contained in the Chapter 7. A possible way how to integrate these
languages into the Xtext framework and interconnect them with existing
formatting concepts of the Xtext framework is described in the Chapter 8.
Evaluation of the prototype implementing proposed solution can be founded
in the Chapter 9. The Chapter 10 discusses related work and the last Chapter
11 concludes the thesis and contains ideas for future work.

9

Chapter 2

Overview of Xtext Framework

This chapter describes the Xtext framework [1], which is a plug-in for
Eclipse IDE [2], from user’s point of view. Xtext is being developed by Itemis
AG company and is freely available under the Eclipse Public License
(EPL) [3].

2.1 Domain of Use

The Xtext framework is primarily intended for the development of small
textual domain-specific or full-blown general purpose programming languages.
A great advantage of the Xtext framework is its continuity with Eclipse
Modeling Framework (EMF) [4] that enables conversion of code written
in a particular language to a model, which can be further modified, trans-
formed to another model or serialized to code of any language. The only
matter which is necessary to establish a link between code and a model is to
have a meta-model and refer to it in the rules of the given language grammar.
The meta-model is essentially the description what the model structure should
look like. If the structure of the final model is not important, a meta-model
does not have to be defined by a user but can be generated from the grammar.
The main ideas expressed in this paragraph are depicted in the Figure 2.1.

2.2 Workflow

Before a user starts to write a grammar it is good to have an idea of what
the given language syntax should look like and what claims are imposed on it.
A good approach is to first create code examples of the language, which will be
later useful for grammar testing. After the user has written a correct grammar
containing all necessary references to meta-models and other requisites, code

10

Figure 2.1: A diagram expressing how a model, a meta-model, a grammar and
DSL code are interconnected. The diagram utilizes a simple example with animals
in a zoo.

Zoo

+name: EString

Animal

+name: EString

+legs: EInt

+kind: EString

+age: EInt

0..*

0..1

zoo:Zoo

name="Prague Troja"

kama:Animal

name="Kama"
kind = "monkey"
age = 4	
legs = 4

ligu:Animal

name="Ligu"
kind = "snake"
age = 2
legs = 0

meta-model

model

world of models

grammar
Zoo:

 ´zoo´ name=STRING

 animals+=Animal*

;

Animal:

 ´animal´ name=STRING ´:´

 ((´legs´ ´=´ legs=INT) &

 (´kind´ ´=´ kind=STRING) &

 (´age´ ´=´ age=INT)) ´;´

;

code
zoo ¨Prague Troja¨

animal ¨Kama¨:

 age = 4

 kind = ¨monkey¨

 legs = 4

;

animal ¨Ligu¨:

 age = 2

 legs = 0

 kind = ¨snake¨

;

world of code

template of template of

can be generated

converted

linking

of a plug-in integrating the designed language into Eclipse IDE can be gen-
erated. The plug-in contains many runtime and IDE concepts, whose default
behavior can be mostly changed by addition of standardly named methods
into the prepared class. In this text, only the most important ones will be
listed.

2.2.1 Runtime Concepts

These concepts deal with the Eclipse plug-in back-end and especially
with the affairs of model generation from a code and code of a DSL as such.

11

Code Formatting

As it was mentioned in the introduction, the code formatting concept
deals with the organization of code elements in such way that the code is
more legible.

Linking

The concept serves to creating cross-references related to already existing
model elements. The cross-reference is essentially a link to another grammar
rule specifying a nonterminal. When a language is given that allows for declar-
ing variables and subsequently use them, declaration of a variable can serve as
a target of a cross-reference and an usage of the variable is the cross-reference.

Scoping

The concept defines visibility boundaries of reference targets for a partic-
ular cross-reference. The boundaries can be defined not only inside the file
where the cross-reference is present but also over multiple files.

Validation

The concept serves to check whether the model, which is a result of the
input code, fulfill given features that can not be defined through grammar
rules such as the definition of a specific number of elements in the model, an
order of elements in the model, etc.

2.2.2 IDE Concepts

These concepts integrate a newly created language into the Eclipse IDE
and provide convenience for a language developer working with a language.
The main goal of the concepts is to speed up code writing.

Content Assist

The content assist serves to suggest and complete a code according to
the possibilities specified by context which is determined by the cursor in the
code.

12

Outline View

The outline view is a tool that helps developers navigate through cre-
ated models. It enables to view model elements hierarchically and sort them
alphabetically.

Labeling

This concept allows for associating a model element with the label or the
icon that are exploited by other IDE concepts. For example these presentation
elements can be found in the suggest window of content assist or in the window
of outline view.

Quick Fixes

This concept provides a possibility possibility of fixing code errors reported
by explicitly defined validation rules as well as validation rules are derived
from a grammar. The main principle of the concept is to produce the list of
suggestions on the basis of an error type. Then it is up to the developer to
choose one of the suggestions.

Template Proposals

Consider well-known ”while” statement from ordinary imperative lan-
guages. The only two things which can be written differently regardless of
the code formatting is the loop condition and the loop body. Everything else
is a matter of a particular language syntax which is always the same. This
fact led authors of the Xtext framework to create the concept of templates.
The developer of a created language can define templates for various state-
ments or other language constructs. The user can use the template according
to context and fill a new code into variable parts of the template.

Syntax Coloring

This concept serves the same purpose as syntax highlighting mentioned in
the Chapter 1, in which different types of code are associated with fonts, font
colors, backgrounds, etc.

2.2.3 Configuration

The Xtext framework offers a number of ways to change a standard
behavior of the plug-in corresponding to a developed language. One of them
is a possibility to configure the Modeling Workflow Engine.

13

Modeling Workflow Engine

The currently used Modeling Workflow Engine 2 (MWE2) is responsible
for hierarchical startup of every action which is necessary for the generation of
a language plug-in. The engine is basically the component model, whose de-
sign is based on the POJO [5]. By default, the runnable configuration file con-
tains application of two component types. The first is the DirectoryCleaner,
whose main purpose is to clean a directory from the code of the generated
plug-in, which was created by the previous run of the engine. The second is the
Generator being responsible for the language plug-in generation. This type of
component further consists of fragments that represents used concepts, which
were mentioned in the previous sections. The implementation of a fragment
is represented by the class having access to some resources provided by the
Generator component such as the grammar of a given language, the mecha-
nism for code generation, etc. As the fragments are able to generate the code,
it is necessary to register the code somewhere in order to be used by plug-in.
For this reason the Xtext framework heavily exploits dependency injections
realized by Google Guice [6].

Google Guice

Consider the situation when some code contained in a class A calls a
method of some interface or abstract class B. It is well-known that an in-
stance of the super type B must exist before the method is called. Thus the
return value of the method is tied with the type of the instance and the status
of its global variables. Instead of the instance to be intricately passed through
the call stack by parameters in order to make the code of the class A more
generic, the concept of dependency injection solves this issue more elegantly.
The code of class A with dependency injections contains no instantiations of
the super type B. The separated configuration determines which concrete class
inheriting from the super type B will be injected into the class A by reflection.
This concept is implemented in a diffuse way in Google Guice [6]. The
injected variables are marked by Java annotations. Configuration of the used
concrete classes for injection are realized by a Java declarative class whose
methods return a type of a concrete class and standardized method’s name
contains the name of super type. The Generator component of the Xtext
framework generates this configuration classes whose name ends with suffix
”Module” thus a language developer can mostly rewrite and use any class of
a Xtext concept to modify its standard behavior.

14

2.3 The Grammar Language

The Grammar Language is a language intended to define grammar of
new languages. The language is self-describing which means that the grammar
of the Grammar Language is written in the Grammar Language.

Listing 2.1: A grammar of a simplified object oriented language which allows for
defining the class, inheritance, inner classes of the class, torsos of methods (methods
without bodies), package and import name spaces.

// 1 - Declaration of a grammar

grammar cz.gpp.Example with org.eclipse.xtext.common.Terminals

hidden(WS, ML_COMMENT, SL_COMMENT) // Hidden terminals.

// 2 - Declaration of a output meta-model

generate example "http://www.gpp.cz/Example"

// 3 - Definition of input meta-models

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

// 6 - Root parser rule

Model:

package = Package // 10 - Ordered group

((imports += Import)* & class = Class) // 11 - Unordered group

;

// 4 - Terminal rule

terminal ID: ’ˆ’?(’A’..’Z’|’_’) (’A’..’Z’|’_’|’0’..’9’)*;

// 5 - Enum

enum Modifier : public | protected | private;

// Other parser rules

// 7 - Usage of input meta-model elements

QualifiedName returns ecore::EString:

ID (’,’ ID)* // 14 - Frequency of occurrence

;

Package: ’package’ name=QualifiedName; // 13 - Assignment

Import: ’import’ className=QualifiedName;

Class:

(abstract?=’abstract’)? ’class’ name=ID

(’extends’ superClass=[Class|ID])?

’{’

15

// 12 - Alternatives

(methods += Method | internalClasses += Class)*

’}’

;

Method:

visibility=Modifier returnValue=[Class|ID] name=ID

’(’ (parameters+=Parameter (’,’ parameters+=Parameter)*)? ’)’

’{’ body=INT* ’}’

;

Parameter: SpecificParameter name=ID;

SpecificParameter returns Parameter:

IntParameter | StringParameter | ObjectParameter;

// 8 - Cross reference

ObjectParameter: {ObjectParameter} type=[Class|ID];

// 9 - Action

IntParameter: {IntParameter} ’int’;

StringParameter: {StringParameter} ’string’;

The grammar written in the Xtext framework should contain following
appurtenances.

2.3.1 Common Declarations

Declaration of the Grammar

The declaration (see the Listing 2.1-1) should contain a qualified name of
the grammar. Then it is possible to import the grammar rules from another
grammar by definition of the grammar’s name after the ”with” keyword. Al-
though, the grammar of the Grammar Language allows for defining an
import of grammar rules from more grammars, this possibility is explicitly
disabled.

Further,hidden rules can be defined, whose parsed result is not intended
to be a part of the final model, in this part of the grammar. This feature
serves primarily for definition of comments or terminal separators, such as a
tab, a white space, etc.

Output Meta-model

When the meta-model of the final model is not available and a language
developer wants to generate the given meta-model from the grammar, the

16

generated meta-model should be declared. The grammar’s name and URI [7]
with the HTTP schema, under which the meta-model will be registered for the
later import from another grammar specification, follows after the ”generate”
keyword (see the Listing 2.1-2).

Input Meta-models

When it is necessary for the result of the meta-model to contain elements
of other meta-models, the meta-models have to be imported. This action can
be executed by the following declaration (see the Listing 2.1-3). The URI
with HTTP schema of the imported meta-model follows after the ”import”
keyword and further the alias of meta-model, which is useful for referencing
meta-model’s elements from the grammar, follows after the ”as” terminal.

2.3.2 Grammar Rules

Although, it is possible to convert some code to the model, the template
of code have to be defined as well as the model template is represented by the
meta-model. The grammar performs the role of the code template. As it is well
known that the definition of the grammar consists of a number of rules defining
nonterminals on the basis of terminals and nonterminals. However, the Xtext
framework fulfills this concept, the Grammar Language is designed with
respect to the relationship between the grammar and the generated model.

Terminal Rules

As it is common in the world of parsers, the terminal has to be defined
before it is used in a grammar rule. Definitions of terminal rules represents the
lexical analysis of the parser, which is usually realized by regular expressions.
The terminal rules of the Grammar Language (see the Listing 2.1-4),
which serve to defining terminals, do not represent any exception. After the
”terminal” keyword follows the terminal’s name and the given regular expres-
sion that are separated by a colon. If the ”returns” keyword does not follow
after the terminal’s name then the sample parsed by the regular expression will
be represented by ecore::EString in the final model, otherwise the name
of any type from the Ecore meta-model should follow after the mentioned
keyword.

Enums

Even though the regular expressions provide opportunity to define textual
enumerations, the Xtext framework offers special enumeration rules (see the

17

Listing 2.1-5). The name of the rule and the textual enumeration follow after
the ”enum” terminal. The situation of the final types for generated model is
similar to the terminal rules. When the developer wants to use a type from
the Ecore model different than ecore::EString, he has to put the ”returns”
terminal with the name of the type after rule’s name.

Parser Rules

Parser rules are essentially grammar rules specifying nonterminals, which
were mentioned in the previous text. Parser rules fullfill the role of syntax
analysis of the parser. Each rule begins with the nonterminal’s name (see
the Listing 2.1-6). If it is necessary, the ”returns” keyword and the name of
a type, which could be from any imported meta-model or it does not have
to be anywhere specified, follows after the nonterminal’s name (see the List-
ing 2.1-7). The type will be subsequently a part of the generated meta-model.
Furthermore, the rule contains the colon followed by a given definition of the
rule, whose possible details will be described later. As it is well-known that
the grammar has to contain one initial rule in order to specify the root of the
Abstract Syntax Tree (AST) [8], the Grammar Language denotes this rule
by the first position among all rules (see the Listing 2.1-6).

2.3.3 Defining Elements of the Parser Rule

As it was mentioned earlier, the definition of the nonterminal depends on
usage of other terminals and nonterminals. The following text describes how
to use defined terminals and nonterminals in the Grammar Language.

Essential Elements

These grammar elements are essential undivided building blocks for the
definition of a nonterminal. The set of possible elements includes the following.

Keyword
The keyword is an arbitrary string enclosed in quotation marks or apos-
trophes in terms of the grammar definition. This means that the code
has to contain the string of the keyword on a given position.

Rule Call
The rule call is essentially any usage of a terminal, enumeration or parser
rule. If the language developer wants to use some rule, then the name
of the rule should be typed.

18

Cross Reference
If the Grammar Language contained only rule calls, the final model
would be every time a tree structure. Cross references bring the oppor-
tunity to integrate cycles to the final model. As a parser rule produces
a model element which is equivalent to some part of the parsed code,
the cross reference enables to refer to the model element (see the List-
ing 2.1-8). The element which corresponds to a parser rule containing
a cross reference will include the reference to the element specified by
the cross reference from the model’s point of view. On the other hand,
the code with cross references has to meet certain appurtenances. Cross
references are strings enclosed in square brackets where the string is a
type of the referenced element. Moreover, the referenced element has to
contain the ”name” feature whose value serves to rapport with a token
belonging to a cross reference.

Action
Although, the Xtext framework does not support actions that are re-
sponsible for the semantic analysis and that are well-known from com-
mon languages for compiler development, a certain sort of actions are
contained in the Grammar Language (see the Listing 2.1-9). Actions
are defined into curly brackets and are important due to two reasons.
One of them serves to creation of model elements. Consider the situ-
ation when it is necessary to create the element from the parser rule
which has no defining elements or contain only defining elements that
do not cause an instantiation of the element such as keywords, then
the name of instantiated type enclosed in curly brackets represents the
action which instantiate the element. Furthermore, the actions can be
used for an assignment of a final model element to a collection owned by
another model element. For more details see the Xtext documentation
[1].

Composite Elements

This kind of defining elements of the parser rule assembles essential or
other composite elements together. The main difference among types of the
composite element is what the relation is among the individual sub elements.

Ordered Group
This assembly of defining elements is the most natural. The sub elements
are separated by a sequence of white characters (see the Listing 2.1-10)
and it must hold that the parts of code corresponding to the given sub
elements have to be sorted by the order of the sub elements. For example

19

in some code it must hold that a rule call follows after a certain keyword
from some position in the code.

Unordered Group
This assembly has the opposite approach to code ordering. When two
or more defining elements are the sub elements of an unordered group
then the parts of code corresponding to the given sub elements can be
sorted arbitrarily. Furthermore, the sub elements are separated by the
ampersand (see the Listing 2.1-11).

Alternative
Alternatives (see the Listing 2.1-12) allow for the sub elements that
their possible parts of code can occur on the same place elsewhere. In
other words, some part of code has to correspond one of the sub elements
of the alternative. The sub elements are separated by the vertical bar.

Assignment
Assignments (see the Listing 2.1-13) are special composite elements en-
capsulating only one sub element. The assignment exploits alternatives
for encapsulation of more sub elements so that the alternative is used as
a sub element of an assignment. Assignments are intended to associate
the results of defining sub elements with the features of the final model
element of the parent parser rule. The definition of an assignment has
the following format. The assignment operator follows after feature’s
name and further it follows a keyword, a rule call, a cross reference or
an alternative. The assignment operator has three variants. The first is
”=” that stores the result of sub element to a given feature. The second
is ”+=” that adds the result of sub element to a given feature, which has
to be a collection. And the last is ”?=” that transforms an occurrence
of sub element to boolean sign which will be stored to a given feature.

Definition of Occurrence

Although, it has been mentioned how to define elements of the parser rule,
it has not been told yet how to define occurrence multiplicity of a defining
element. The authors of the Xtext framework were inspired by common
regular expressions (see the Listing 2.1-14). The Grammar Language use
the question mark for one possible occurrence, the plus character for the
sure occurrence that can be multiple, the asterisk for the possible multiple
occurrence and one sure occurrence is defined by no character which represents
default behavior.

20

2.4 Code Formatting

The following text describes what are current resources for code formatting
in theXtext framework. All of the code formatters, which are available for
use, work over the token stream. Each formatter reads tokens from an input
stream, recognizes them and accordingly inserts formatting characters such
as a white space, a tab, a new line, etc. between consecutive tokens which
serves as a whole to fulfill an output token stream. The Xtext framework
standardly serves two following code formatters.

OneWhitespaceFormatter

The formatter writes one white space between all tokens. Since the code
formatted into one line is poorly legible, this formatter is practically useless
for a coder of a particular language. On the other hand, the formatter can find
its application in code storing because the token separator is minimalistic and
the code formatted in this way is free from additional formatting characters.

AbstractDeclarativeFormatter

The formatter is more sophisticated than the previous. It is supposed that
the behavior of the formatter will be configured by the language developer.
The language developer can do this by creating a new class which inherits
from the AbstractDeclarativeFormatter class and contains overridden the
configureFormatting method. The method has one parameter whose type
is the FormatterConfig class.

The body of the configureFormattingmethod should contain commands
which set the parameter. When the body is empty, the formatter behaves
exactly like the OneWhitespaceFormatter. The mentioned commands are
essentially method callings on the parameter. The following list contains de-
scription of these methods.

• setAutoLineWrap(int lineSize) - The method sets the maximum
line size in the entire file. The size can be exceeded only when the line is
represented by one token whose length is greater than the defined size.

• setIndentationIncrement() - The method increases by one unit the
indentation. The unit is one tab by default. In other words, the inden-
tation is the number of units before the first token on the line.

• setIndentationDecrement() - The method decreases by one unit the
indentation. All details are similar to the details of the previous method.

21

• setLinewrap(int count) - The method sets a defined count of line-
wraps at a given position.

• setNoLinewrap() - The method suppresses automatic line wrap, which
may occur when the line size exceeds the defined limit.

• setSpace(String space) - The method inserts the defined string
space into the given position.

• setNoSpace() - The method suppresses white spaces between tokens
at the given position.

Although, the methods, which allow for setting the parameter of the
configureFormatting method, were described, some of them perform an
action at the position which is not yet known how to specify. Each method
which is related to some position returns an object fulfilling the function of
a locator. So as the parameter of the configureFormatting method can be
adjusted by method calling on itself as well as the position can be set by
calling the given method, on the locator. The parameters of these methods
are parser rules (see the Section 2.3.2) as well as grammar elements used to
define some parser rule (see the Section 2.3.3). The following list contains
description of methods that specifies a position.

• after(element) - The method sets the locator to specify a position lo-
cated immediately after a token which is related to the defined element.

• before(element) - The method sets the locator to specify a position
located immediately before a token which is related to the defined ele-
ment.

• around(element) - The method sets the locator to specify positions
located immediately before and after a token which is related to the
defined element.

• between(left, right) - The method sets the locator to specify a po-
sition located between two tokens where the related right element im-
mediately follows after the left one.

• bounds(left, right) - The method sets the locator to specify po-
sitions located immediately after the token which is related to the left
element and immediately before the token which is related to the defined
right element.

22

• range(start, end) - The method sets the locator to specify positions
located between tokens bounded by tokens whose related elements are
the defined start and the defined end. The position immediately after
the token related to the start element and the position immediately
before the token related to the end element are parts of the locator
configuration.

Since the elements are needed as parameters for the described methods,
the formatter serves the getGrammarAccess method returning a data struc-
ture which allows for accessing the elements of the grammar. The elements
are accessible through the generated methods whose names are derived from
names of grammar elements (see the Listing 2.2).

Although, this approach makes it possible to define all grammar elements
contained in the data structure, each of the mentioned methods represents
only one grammar element. However, this means that the formatting config-
uration for the keyword which is contained in more parser rule specifications
(see the Section 2.3.2) has to be defined separately for every occurrence of
the keyword in the grammar and even when the formatting configurations
of particular occurrences do not differ. For this issue, the parameter of the
configureFormatting method allows for calling the following methods on
itself.

• findKeywords(String... keywords) - The method returns all occur-
rences of the keyword just when the keyword is a parameter of the
method.

• findKeywordPairs(String left, String right) - The method re-
turns couples formed from occurrences of left and right keyword from
the same specification of the parser rule (see the Section 2.3.2). Pairs
are matched nested and sequentially, therefore it is impossible that the
particular occurrence of the keyword was contained in more couples.

The following two listings demonstrate what the formatter based on the
AbstractDeclarativeFormatter may look like in practice.

Listing 2.2: A code formatter based on the AbstractDeclarativeFormatter
which can format the code written in the language whose grammar is specified
in the Listing 2.1.

public class ExampleFormatter extends AbstractDeclarativeFormatter

{

@Override

protected void configureFormatting(FormattingConfig c){

ExampleGrammarAccess f = (ExampleGrammarAccess)getGrammarAccess();

23

// set a maximum size of lines

c.setAutoLinewrap(160);

// set a line wrap after each import of a name space

c.setLinewrap().after(f.getImportRule());

// set an empty line between a package declaration

// and a set of name space imports

c.setLinewrap(2).between(

f.getModelAccess().getPackageAssignment_0(),

f.getModelAccess().getImportsAssignment_1_0()

);

// set an empty line between a package declaration and a class

c.setLinewrap(2).between(

f.getModelAccess().getPackageAssignment_0(),

f.getModelAccess().getClassAssignment_1_1()

);

// set an empty line between a set of name space imports

// and a class

c.setLinewrap(2).between(

f.getModelAccess().getImportsAssignment_1_0(),

f.getModelAccess().getClassAssignment_1_1()

);

// set an empty line between a class

// and a set of name space imports

c.setLinewrap(2).between(

f.getClassRule(),

f.getImportRule()

);

// set no space around all parentheses

for(Pair<Keyword, Keyword> p : f.findKeywordPairs("(", ")")){

c.setNoSpace().around(p.getFirst());

c.setNoSpace().around(p.getSecond());

}

// set no space before all commas

for(Keyword comma : f.findKeywords(",")){

c.setNoSpace().before(comma);

}

// set indentation inside all curly brackets

// set line wrap after each left curly bracket

// set line wrap around each right curly bracket

24

for(Pair<Keyword, Keyword> p : f.findKeywordPairs("{", "}")){

c.setIndentationIncrement().after(p.getFirst());

c.setIndentationDecrement().before(p.getSecond());

c.setLinewrap().after(p.getFirst());

c.setLinewrap().around(p.getSecond());

}

// set line wrap before left curly bracket

// which is contained in Class rule

c.setLinewrap().before(

f.getClassAccess().getLeftCurlyBracketKeyword_4()

);

// set empty line between two inner elements

// of class (inner class or method)

c.setLinewrap(2).between(

f.getClassAccess().getAlternatives_5(),

f.getClassAccess().getAlternatives_5()

);

}

}

Listing 2.3: A code written in the language whose grammar is specified in the
Listing 2.1. The code is formated by the formatter from the Listing 2.2.

package CZ.GPP.TESTS.EXAMPLES

import NAMESPACE1
import NAMESPACE2

class CLASS1 extends SUPER_CLASS
{

abstract class INTERNAL_CLASS
{

private SUPER_CLASS FOO(string PAR1, int PAR2){
1 2 3

}

protected SUPER_CLASS BAR(CLASS1 PAR){
4 5

}
}

public CLASS1 CREATE_OBJECT(string NAME){
6 7

}
}

25

2.5 Syntax Highlighting

The Chapter 1 discusses that syntax highlighting is a concept where dif-
ferent parts of code are distinguished by various font types, font widths, font
shapes, font colors, background colors, etc. The following text describes how
to create and configure a syntax highlighter for the newly created language in
the Xtext framework.

2.5.1 Text Styles

Before any font type, font width, font shape, font color or background
color is associated with a part of code, it a text style has to be created that
comprises all attributes needed for differentiation of the part of the code. By
default, the Xtext framework offers several predefined text styles named
such as comments, numbers, keywords, etc. which can be modified by a coder
of a particular language through editor preferences in GUI.

Now the question arises how to create new text styles. One possible solu-
tion is to implement the IHighlightingConfiguration interface and register
it with a usage of the Google Guice. Implement the mentioned interface
involves overriding the method named configure. The method has only one
parameter whose type is the IHighlightingConfigurationAcceptor. The
implementation of the configure method should contain method calls related
to the acceptDefaultHighlighting method of the parameter. The method
serves to register a text style under some identifier and further the method has
three parameters. The first one is identifier that should be unique. The second
one is the name of the style that will be used in GUI for style’s representation.
And the last one is the text style by itself that contains information about a
font type, a font style, a font color, a background color, etc. The listing below
demonstrates what an implementation of the IHighlightingConfiguration
interface may look like .

Listing 2.4: A highlighting configuration containing four font styles dedicated for
numbers, keywords, methods and other text kinds.

public class ExampleHighlightingConfiguration

implements IHighlightingConfiguration

{

public static final String DEFAULT_ID = "default";

public static final String KEYWORD_ID = "keyword";

public static final String METHOD_ID = "method";

public static final String NUMBER_ID = "number";

@Override

26

public void configure(IHighlightingConfigurationAcceptor acceptor){

acceptor.acceptDefaultHighlighting(

DEFAULT_ID,

"Default",

defaultTextStyle()

);

acceptor.acceptDefaultHighlighting(

KEYWORD_ID,

"Keyword",

keywordTextStyle()

);

acceptor.acceptDefaultHighlighting(

METHOD_ID,

"Method",

methodTextStyle()

);

acceptor.acceptDefaultHighlighting(

NUMBER_ID,

"Number",

numberTextStyle()

);

}

protected TextStyle defaultTextStyle(){

TextStyle textStyle = new TextStyle();

textStyle.setColor(new RGB(0, 0, 0));

return textStyle;

}

protected TextStyle keywordTextStyle(){

TextStyle textStyle = defaultTextStyle().copy();

textStyle.setColor(new RGB(127, 0, 85));

textStyle.setStyle(SWT.BOLD);

return textStyle;

}

protected TextStyle methodTextStyle(){

TextStyle textStyle = defaultTextStyle().copy();

textStyle.setColor(new RGB(85, 0, 127));

textStyle.setStyle(SWT.ITALIC);

return textStyle;

}

protected TextStyle numberTextStyle(){

TextStyle textStyle = defaultTextStyle().copy();

textStyle.setColor(new RGB(127, 127, 127));

return textStyle;

}

27

}

Although, the implementation of the IHighlightingConfiguration in-
terface is a good possibility how to add new text styles, all default text styles
are lost with this option. The possible solution how to preserve the default
styles is to extend the DefaultHighlightingConfiguration class already
implementing the interface and override the configure method to add new text
styles. In order not to lose all default text styles, method’s implementation
has to contain call of the ancestor’s implementation.

2.5.2 Lexical Highlighting

Now the situation concerning the text styles is defined. The meth-
ods of how to use text styles and therefore associate them with parts
of code are two. One of them is the lexical method. Essence of the
method is to associate text styles with tokens that are the result of
the lexical analysis. A mere association is being performed by extending
the AbstractAntlrTokenToAttributeIdMapper class and overriding the
calculateId method. The method is called from the outside for a concrete
token, whose name is passed by the parameter. Thus it is up to the language
developer to design the procedure making decisions what identifier of a text
style will be returned by the method. The name of a token can take the fol-
lowing values. In such a case that the token represents a rule call referencing
a terminal rule, then the name has the format ”RULE ” plus the name of
the terminal rule. In other cases the name of the token is its value. Therefore
the language developer can use regular expressions, whose strength is on the
lexical level. The following listing outlines what the described situation might
look like in practice.

Listing 2.5: An extension of the AbstractAntlrTokenToAttributeIdMapper class
which associates numbers, keywords and other tokens with relevant text styles.

public class ExampleAntlrTokenToAttributeIdMapper

extends AbstractAntlrTokenToAttributeIdMapper

{

private static final Pattern QUOTED = Pattern.compile(

"(?:ˆ’(\\w[ˆ’]*)’$)|(?:ˆ\"(\\w[ˆ\"]*)\")$",

Pattern.MULTILINE

);

@Override

protected String calculateId(String tokenName, int tokenType){

if(tokenName.equals("RULE_INT"))

{

28

return ExampleHighlightingConfiguration.NUMBER_ID;

}

else if(QUOTED.matcher(tokenName).matches())

{

return ExampleHighlightingConfiguration.KEYWORD_ID;

}

return ExampleHighlightingConfiguration.DEFAULT_ID;

}

}

2.5.3 Semantic Highlighting

It was mentioned that two methods exist allowing for associating text
styles with parts of a code. The semantic method is the second one. The
method has an access to the grammar and therefore it can make decisions
based on the grammar’s semantics unlike the lexical method arbitrating by the
type or the format of the token. The semantic method can be realized by im-
plementing the ISemanticHighlightingCalculator interface and overrid-
ing the provideHighlightingFor method. The method has two parameters.
The first one is a resource representing a code file and the second one is an ac-
ceptor on which the addPositionmethod should be called. The addPosition
method associates a text style with a code fragment and has three parameters.
The first one is an offset of a code fragment. The second one is a length of a
code fragment. And the last one is an identifier of a text style. However, the
addPosition method allows for specifying a code fragment by a certain offset
and a certain length, it is not yet known how to find out these values. For this
case there is a node model which is AST-based structure of the code consisting
of elements called node. The node holds information about the offset and the
length of a code fragment which are related to the node and further informa-
tion about a corresponding grammar element that are necessary for creation
of decisions whether to associate the code fragment with the text style or not.
The node model can be obtained from the mentioned resource. The whole el-
ement is represented by one root node and it is possible to get to descendants
by given getters. Although, the node model may at first glance look like a
typical AST, but it is not due to some details, which are not important in
this situation. The following listing represents possible implementation of the
ISemanticHighlightingCalculator interface.

Listing 2.6: An implementation of the ISemanticHighlightingCalculator inter-
face that associates a text style dedicated for keywords with names of all methods.

public class ExampleSemanticHighlightingCalculator implements

ISemanticHighlightingCalculator

29

{

@Override

public void provideHighlightingFor(XtextResource resource,

IHighlightedPositionAcceptor acceptor){

// It gets a node model.

INode root = resource.getParseResult().getRootNode();

for (INode node : root.getAsTreeIterable()){

EObject grammarElement = node.getGrammarElement();

if(grammarElement instanceof RuleCall)

{

RuleCall rc = (RuleCall)grammarElement;

AbstractRule r = rc.getRule();

EObject c = grammarElement.eContainer();

// It tests whether the node represents

// a name of an element (class, method, parameter).

if(r.getName().equals("ID")

&& c instanceof Assignment

&& ((Assignment)c).getFeature().equals("name")

){

INode p = node.getParent();

if(p != null

&& p.getGrammarElement() instanceof RuleCall

){

rc = (RuleCall)p.getGrammarElement();

AbstractRule r = rc.getRule();

// It tests whether the parent node

// represents a method.

if(r.getName().equals("Method"))

{

acceptor.addPosition(

node.getOffset(),

node.getLength(),

ExampleHighlightingConfiguration.METHOD_ID

);

}

}

}

}

}

}

}

30

Chapter 3

Pretty Printers using Box
Models

This chapter presents principles and concepts of pretty-printing. Espe-
cially the chapter deals with the concept of box models in more detail, which
represents possibility how to express settings of a pretty printer declaratively.
There are descriptions of existing box meta-models in the chapter. Finally, an
outline of what an ideal box meta-model for generic pretty-printer could look
like is present.

3.1 Pretty Printer

The Chapter 1 discusses that the pretty printer ensures functionalities of
code formatting and syntax highlighting. As the parser for some specific lan-
guage transforms code written in the language to the AST, which is free from
formatting information, so the pretty printer is the opposite from the perspec-
tive of code parsing. The pretty printer conversely transforms the AST to the
code and enriches it with formatting characters. The Figure 3.1 demonstrates
the main purpose of the pretty printer.

Ad-hoc Pretty Printer

This kind of pretty printers is the best-known and the most widespread.
These pretty printers are located in most current code editors or development
environments intended for concrete imperative languages like C, C++, Java,
Pascal, etc. Each of them allows for formatting only the language to which
the pretty printer is dedicated. The result of pretty-printing can be affected
only by limited configurability. Settings of the pretty printer mostly offers

31

Figure 3.1: A diagram depicting the transformation cycle of a code when a pretty-
printer is used.

pretty-printer for L parser for L

AST of a code
written in L

code editor

code
written in L

formated code
with respect to
configuration

configuration

only certain places with limited domain to change such as the definition of
the character sequence for indenting, setting whether the left brace identifying
the start of the method should be on the new line or be preceded by one
whitespace, etc.

Generic Pretty Printer

This concept is the opposite of ad-hoc pretty printers. The correct generic
pretty printer should be able to format an arbitrary number of languages and
the options how to configure the formatting of a given language should be
very wide. Nowadays, it is difficult to find some commercial projects, where
this type of pretty printers were used. This concept is rather a matter of
theoretical sphere and its realizations are mostly contained in research projects
as a byproduct [9, 11, 12, 13, 14].

In order to ensure that the generic pretty printer is able to format more
languages which differ not only in details, the formatting rules determining a
code appearance of a certain language have to be linked to some specification
of a given language which is a grammar. The interconnection is performed
in generic pretty printers through pretty-print tables that contain formatting
rules linked to rules of a grammar. This fact extends the possibilities to set up
a code appearance in comparison with possibilities of ad-hoc pretty printers
because the formatting rules can be easily changed, deleted or added. The
pretty-print tables together with the AST of a given code further represent
an input for the generic pretty-printer (see [13] for details). The mentioned

32

formatting rules may be obtained manually as well as may be generated from
annotated grammar rules with the help of some heuristics (see [13] for details).
The following listing outlines what a pretty-print table can look like.

Listing 3.1: A sample of a pretty-print table published in [13]. The table represents
a mapping of grammar rules to corresponding formatting rules. Grammar rules
written in the Syntax Definition Formalism (SDF) [15] are located on the left
side of dashes and further formatting rules are located on the right side.

"package" Name ";" → PackagedDeclaration −
H [KW["package"] H hs=0 [1 ";"]],

"import" Name ";" → ImportDeclaration −
H [KW["import"] H hs=0 [1 ";"]],

"import" Name "." "*" ";" → ImportDeclaration −
H [KW["import"] H hs=0 [1 "." "*" ";"]]

The generic pretty printer brings advantages in high formatting configura-
bility and possibilities to format more languages. Some generic pretty printers
allow for formatting code into more formats specifying the same appearance
of the code as for example plain text, Latex format or HTML. This feature
is usually realized by division of the pretty-printer into a front-end and a
back-end. The front-end of the pretty-printer is responsible for transforming
pretty-print tables and AST into the intermediate language expressing a code
formatting. Then the beck-end transforms the intermediate language into a
given format specifying the appearance of a given code. Since the back-end
of the pretty-printer in itself is not generic, a back-end has to exist for each
format. A schema on the Figure 3.2 reflects information contained in this
paragraph.

3.2 Box Representation

The concept using an intermediate language was mentioned in the previous
paragraph. This intermediate language tends to be the box representation
which is a data structure formed from elements called boxes.

3.2.1 Box

The box is a construction element of the box representation. This element
can be either a string token related to some terminal rule of the grammar
or a group of other elements among which vertical and horizontal relative
positions or an indentation are defined as it can be seen in the Figure 3.3.
This means that the box representation is also a composite box because the

33

Figure 3.2: A schema of a generic pretty-printer with three back-ends.

front-end of pretty-printer

pretty-print tables for L
AST of a code

written in L

BOX representation of
 a code written in L

(itermediate language)

backend of pretty-printer
transforming BOX

 represenation to text

backend of pretty-printer
transforming BOX

 represenation to Latex

backend of pretty-printer
transforming BOX

 represenation to HTML

textual representation of
a code written in L

Latex representation of
a code written in L

HTML representation of
a code written in L

box representation is essentially a tree structure with regard to composing
boxes.

Figure 3.3: An example of the box representation defining the appearance of the
if statement from a C-based language.

{

}

- - i ;++

if - ()i = 0

34

3.2.2 Box Language

Even though the box representation enables to define the appearance of a
code written in some language, it is necessary to define what types of boxes
will be used and how they will be assembled together. Therefore the box lan-
guage serves for this purpose. The box language consists of operators that
define creating of composite boxes. Each operator is related to a particular
composite box type like a horizontal box, a vertical box or indenting box.
The operators can be further configured using parameters which are reflected
into corresponding composite boxes for example where it is possible to change
spacing between inner boxes, a spacing character, etc. The mentioned oper-
ators are applied in formatting rules in pretty-print tables where usages of
operators encapsulates keywords, calls of grammar rules and other usages of
operators. The composition of operator’s usages form a tree structure simi-
larly like boxes in the box representation. The usages of operators can be seen
in formatting rules on right sides in the Listing 3.1.

Since the concept of operators and their usages will be often mentioned in
the remaining text, the following terminology is introduced.

Box Model

Since usages of operators of a box language serves as a pattern for the re-
sulting box representation, a collection of formatting rules related to grammar
rules of a particular language will be called a box model.

Box Meta-model

Since the types of operators and their parameters may be much more as
well as the count of box languages, a set of operators and relevant parameters
which can be used will be called a box meta-model. In other words, the box
language will be referred to as a box meta-model.

3.3 Existing Box Meta-models

This section contains a description of box meta-models that was published
in papers or whose implementations are located in realized research projects.
The concrete names and references of the mentioned papers and projects are
mentioned bellow. The describing meta-models will be called by the name of
a relevant project or by surnames of relevant paper’s autors.

35

3.3.1 Stratego/XT

The first describing meta-model is part of the Stratego/XT project [9]
of which the XT is a toolset for program transformation from one language to
another and for other issues related to the meta-programming [10]. Further-
more, the Stratego is a language providing rewriting rules for expressing
basic transformations.

Box Meta-model Description

The source of the meta-model specifies the format of a textual usage as
follows. The name of the operator stands at the first place and a usage of
corresponding parameters follows after it. Finally, the boxes that are intended
for formatting are placed at the end of this section and are enclosed in square
brackets. This box meta-model is composed only from the following list of
operators.

• H - The operator aligns boxes horizontally and also inserts spac-
ing defined by the hs parameter between boxes. The hs param-
eter expresses a count of given characters which will be inserted.

Box Box Box] H hs=x [= Box Box
hs

Box
hs

• V - The operator aligns boxes vertically and inserts spacing defined
by the vs parameter between boxes. The vs parameter expresses a
count of new lines which will be inserted. The operator has also the
second parameter is that allows for setting indentation between the
first box and the others. The is parameter expresses a count of in-
serted characters as well as the hs parameter of the H operator.

Box Box Box] V vs=x is=y [= Box

Box
is

vs

Box
is

vs

• A - The operator aligns boxes into a table and further two nu-
meric parameters hs and vs, which are equivalent to parameters of
the operators H and V, belong to it. Although, the A operator de-
fines that a particular group of boxes will be encased into a table,

36

it is necessary to define in which columns and rows boxes will be
placed. Therefore the subsidiary operator R serves for this purpose.

Box Box Box] R [
=

Box Box
hs

Box
hs

Box Box
hs

Box
hs

vs vs vs
Box Box Box] R [

A hs=x vs=y [

]

• R - This subsidiary operator allows for defining rows of a table. Boxes
that are inside of the same operator are on the same row of a table and
also boxes that are at the same position inside of the operators R are
in the same column of a table.

3.3.2 PPML

The next meta-model is integrated into the PPML [11] formalism, whose
full name is Pretty Printer Meta Language. The PPML has been used
in the Centaur system [16] to write pretty printers for various programming
languages.

Box Meta-model Description

The PPML formalism encloses the textual usage of a meta-model into
square brackets. Furthermore, the name of a used operator and a usage of
corresponding operators are enclosed in angle brackets. The boxes waiting for
be formatting follows after the definition in angle brackets. The box meta-
model is comprised of four following operators.

• H - The operator aligns boxes horizontally and inserts spacing
defined by the dx parameter between boxes. The dx parame-
ter expresses a count of given characters which will be inserted.

Box Box Box] [<h dx> = Box Box
dx

Box
dx

• V - The operator aligns boxes vertically and inserts spacing defined
by the dy parameter between boxes. The dy parameter expresses a
count of new lines which will be inserted. The operator has also the
second parameter i that allows for setting indentation of the second
box. Although, the source of the meta-model does not mention inden-
tation of other lines, it results from descriptions of following operators.

37

Box Box Box] [<v i, dy> = Box

Box
i

dy

Box

dy

i

• HV - The operator aligns boxes as follows. The result formatting de-
pends on whether the total length of boxes including horizontal spacing
exceeds the maximal length of line, which is fixed. When the length
of all boxes including horizontal spacing is smaller than the maxi-
mum length of line, then the boxes are aligned horizontally with spac-
ing defined in the dx parameter. Otherwise, the first line is filled as
much as possible and the second one is indented of count of spac-
ing character, which is defined in the i parameter. The operator fills
the second line like for the first and the following lines are verti-
cally aligned with the second line. Two consecutive lines are sepa-
rated by blank lines, whose count is defined in the dy parameter.

Box Box Box] [<hv dx, i, dy> = Box Box
dx

Box
dx

Box

Box
i

dy

Box
dx

or or Box

Box
i

dy

Box

dy

i

• HOV - The operator behaves like the operator H when the
total length of boxes including horizontal spacing does not ex-
ceed the maximal line length. Otherwise, the operator be-
haves like the operator V. The parameters of the opera-
tor have the same significance as with the previous operators.

38

Box Box Box] [<hov dx, i, dy> = Box Box
dx

Box
dx

or Box

Box
i

dy

Box

dy

i

3.3.3 Brand-Visser

The next meta-model was published in the ”Generation of Formatters
for Context Free Languages” paper [12] written by Mark van den Brand and
Eelco Visser. The paper deals with the theory of generic pretty printers. The
purpose of pretty printers and theirs relationship with a grammar is formally
explained in the paper. The paper also includes considerations on the division
of generic pretty printers into front-ends and back-ends with use of the box
representation as an intermediate language.

Box Meta-model Description

The paper defines the same syntax for textual usages of operators as was
introduced with the Stratego/XT box meta-model and also there are some
same operators with the same corresponding parameters. The operators were
mentioned that defines relative positions between boxes in previous box meta-
models. This box meta-model brings another kind of operators, where oper-
ators do not define positions but determine what font and font parameters
will be associated with the text of input boxes. The meta-model contains the
following list of positional and non-positional operators.

Positional Operators

• H - The operator aligns inner boxes horizontally exactly like the H
operator from the Stratego/XT box meta-model. The hs parameter
also belongs to the operator with the same functionality.

• V - The operator aligns inner boxes vertically exactly like the V oper-
ator from the Stratego/XT box meta-model with an exception that
the operator does not indent the second and other boxes against the

39

first. The parameter vs belongs to the operator with the same function-
ality.

• HV - The operator aligns boxes as follows. The result formatting de-
pends on whether the total length of boxes including horizontal spacing
exceeds the maximal length of line, which is fixed. When the length
of all boxes including horizontal spacing is smaller than the maximum
length of line, then the boxes are aligned horizontally with spacing de-
fined in the hs parameter. Otherwise, the first line is filled as much
as possible and the rest of the boxes is filled into the second line ap-
pying the same rule as for the first line. Two consecutive lines are
separated by blank lines, whose count is defined in the vs parameter.

Box Box Box] HV hs=x,vs=y [=

Box Box
hs

Box
hs

Box

Box

vs

Box
hs

or or Box

Box

vs

Box

vs

• HOV - The operator behaves like the operator H when the total length
of boxes including horizontal spacing does not exceed the maximal line
length. Otherwise, the operator behaves like the V operator. The pa-
rameters of the operator have the same significance as with the previous
operators.

• I - The parameter increases the indentation of inner boxes by
the value defined in the is parameter. The indentation is ap-
plied when the box is vertically aligned against some other boxes.
In other words, the operator has its effect when it is contained
in another operator with vertical alignment as an inner box.

Box Box Box] V [= Box

Box
is

Box

] I is=x [

Box Box Box] H [= Box] I is=x [Box Box

40

• WD - The operator translates inner boxes into an empty
boxes with dimensions equal to those of inner boxes.

] V [
Box 1

] Box 1 Box 2] =Box 1 Box 1

Box 2

WD [

• A - The operator aligns inner boxes into a table exactly like the A
operator from the Stratego/XT box meta-model. The operator also
exploits the operator R in order to define rows of the table and it is
also tied with the parameters hs, vs and is, which perform the same
function like in the Stratego/XT box meta-model. This version of the
operators A additionally provides possibility to align columns to left,
center or right by signs l, c, r enclosed in parentheses. The parentheses
should enclose the same number of signs as is the number of columns. In
other words, each column should have a sign expressing its alignment.

• R - This operator serves as subsidiary operator for the A operator. The
operator R defines rows of a table exactly like in the Stratego/XT box
meta-model.

Non-positional Operators

• F - The operator is dedicated to specify a font configuration. and as-
sociate it with the text of inner boxes. The font configuration can be
defined by the operator fn specifying a font name, fm specifying a font
family, se specifying font series, sh specifying a font shape, sz specifying
a font size and cl specifying a font color.

• KW - The operator associates a font indicating keywords with the text
of inner boxes.

• VAR - The operator associates a font indicating variables with the text
of inner boxes.

• NUM - The operator associates a font indicating numbers with the text
of inner boxes.

• MATH - The operator associates a font indicating mathematical sym-
bols with the text of inner boxes.

• COMM - The operator associates a font indicating comments with the
text of inner boxes.

41

• ESC - The operator represents an escape mechanism to obtain special
symbols in the formatted text.

3.3.4 DeJonge

Firstly, the next box meta-model was published in the ”A Pretty Printer
for Every Occasion” paper [13] written by Merijn de Jonge and after its
definition was refined in author’s doctoral thesis [17]. The paper and doctoral
thesis deal with the theory of generic pretty printers similarly like the source
of the previous box meta-model. The paper also deals with an application of
the theory where the subject is to nicely pretty-print input data stored in
XML.

Box Meta-model Description

As M. de Jonge refers to the Stratego/XT project and the paper writ-
ten by M. van den Brand and E. Visser, which were mentioned above, some
similarities with the Stratego/XT and Brand-Visser box meta-models
can be found. The syntax of a textual usage of a box meta-model is the same
like in the other two box meta-models. Several of the same operators and its
parameters are contained in this meta-model.

Positional Operators

• H - The operator aligns inner boxes horizontally exactly like the H op-
erator from the Stratego/XT and Brand-Visser box meta-model.
The hs parameter also belongs to the operator with the same function-
ality.

• V - The operator aligns inner boxes vertically exactly like the V op-
erator from the Stratego/XT and Brand-Visser box meta-model.
The parameters vs and is also belongs to the operator with the same
functionality.

• HV - The operator aligns boxes as the same operator from
the Brand-Visser box meta-model. The parameters hs and vs
also belong to the operator with the same functionality. The op-
erator has one extra parameter is for indentation of the sec-
ond and next lines against the first as with the V operator.

42

Box Box Box] HV hs=x,vs=y,is=z [=

Box Box
hs

Box
hs

Box

Box
is

vs

Box
hs

or or Box

Box
is

vs

Box

vs

is

• A - The operator aligns inner boxes into a table exactly like the A
operator from the Stratego/XT box meta-model. The operator also
exploits the R operator in order to define rows of the table and it is
also tied with the parameters hs, vs and is, which perform the same
function like in the Stratego/XT box meta-model.

• R - This operator serves as subsidiary operator for the A operator. The
R operator defines rows of a table exactly like in the Stratego/XT
box meta-model.

• ALT - The operator represents a generalization of the operator HOV
known from the Brand-Visser box meta-model. The HOV operator
aligns boxes horizontally or vertically according to whether the hori-
zontally alignment does not exceed the maximum line size; the ALT
operator uses the first inner box as a result when the first inner box
does not exceed the maximum line size, otherwise the operator simi-
larly uses a next inner box under the same condition. If the box is last
in a sequence of inner boxes, the box does not have to satisfy the con-
dition in order to be used. Thus the identical behavior of the HOV
operator can be replaced by using the ALT operator and by using the
operators H and V that represent the first and the second inner boxes.
Furthermore, the inner operators have to have the same inner boxes.

Box 1] ALT [=Box 2 Box 1 Box 2or

Non-positional Operators

• F - The operator is dedicated to specify a font configuration. The spec-
ified font configuration are further associated with the text of inner
boxes.

43

• KW - The operator associates a font indicating keywords with the text
of inner boxes.

• VAR - The operator associates a font indicating variables with the text
of inner boxes.

• NUM - The operator associates a font indicating numbers with the text
of inner boxes.

• MATH - The operator associates a font indicating mathematical sym-
bols with the text of inner boxes.

• LBL - The operator serves to define a label for inner boxes.

• REF - The operator serves to refer to a labeled box.

• C - The operator serves to represent lines of code and format them.

3.3.5 Format Module for OCaml

The last meta-model is present in a pretty-printing engine provided by
the Format module of standard libraries of the OCaml system which is the
main implementation of the general-purpose programming language Caml
supporting functional, imperative, and object-oriented programming styles.

Box Meta-model Description

Since the source of this box meta-model conceives operator as a function
of a programming language transforming one character sequence to another,
the box meta-model does not have any textual usage of operators known from
the previous descriptions of box meta-models. The source also defines overall
formatting differently. The elementary inner boxes are represented by cor-
responding text directly and further they are separated by a special break.
All texts of boxes together with special breaks represent an input character
sequence for an operator which subsequently transforms. After the charac-
ter sequence is transformed by all necessary operators, the special breaks are
replaced by white characters ensuring indentation, horizontal or vertical spac-
ing. The function performing this action knows exactly whether to indent or
make same spacing gaps on the position of a special break in the input charac-
ter sequence. Since indentation and spacing are solved globally, the operators
do not hold any parameters. The following list of operators is part of this box
meta-model. Just to clarify, the ”-” means an arbitrary character and the ”b”
represents a special break in the following description.

44

• H - The operator aligns inner boxes horizontally similarly like
the H operators from the previous box meta-models. The opera-
tor preserves the input character sequence and does not wrap it.

----b----b---- ----b----b----

• V - The operator aligns inner boxes horizontally similarly like the
V operators from the previous box meta-models. The operator wraps
the input character sequence after each occurrence of a special break.

----b----b---- ----b

----b

• HOV - The operator aligns inner boxes like the HV operators
from the previous box meta-models. The functionalities of the
operators HV and HOV are swapped in this box meta-model.
The operator fills the first line gradually by the inner boxes from
the character sequence until an additional box together with a
following special break fit into the line. In case it does not fit,
the box together with a special break is added into the next line.

----b----b---- ----b----b---- ----b

----b

or----b----b

or

• HV - The operator aligns inner boxes like the HOV operators from the
previous box meta-models. The functionalities of the operators HV and
HOV are swapped in this box meta-model. The operator formats the
character sequence like the H operator when the length of the sequence
does not exceed maximum line size. Otherwise, it works like the V
operator.

45

----b----b---- ----b----b---- ----b

----b

or

3.3.6 Summary

Five already existing box meta-models were introduced and described in
the text above. This is enough information to design box meta-model that
meets all requirements for code formatting. Definitely, it would be good to
keep the syntax of a textual usages of operators that was used for opera-
tors of most box meta-models, specially the Stratego/XT, DeJonge and
Brand-Visser box meta-model because this may act as informal standard.

Even though common positional operators will meet all requirements for
defining relative positions among inner boxes, it would be beneficial to include
also non-positional operators in this box meta-model. The operators that
associate font configurations with text of inner boxes could be a good tool
for defining syntax highlighting for a particular language and will be called
highlight operators in the following text. The question is how to deal with
comments. When the comments are realized by special tokens in the Xtext
framework, highlight operators can be used for differentiation of this text
kind because the token can be expressed by some box from the perspective of
the box representation as it was realized in the DeJonge or Brand-Visser
box meta-model. Still another problem to be solved is how how to wrap or
variously format these comments that are represented by one elementary box.
One way may be to introduce new kind of operators that would be able to
modify text of inner boxes. This kind will be called transforming operators in
the following text.

In general, it is not difficult to invent many operators that have different
formatting effects, but a box meta-model with high amount of operators would
lose clarity and easy usability. Therefore the operators should be as general
as possible. The following list of operators suggests what the mentioned box
meta-model may look like.

Positional Operators

• I - Since this operator known from the Brand-Visser box meta-model
allows for indenting a box individually in comparison with the indent
parameter of vertical operators so this operator is a more general variant

46

of indentation. The parameters is and ic would suit the operator. The
is parameter expresses a number of characters needed to indentation
and the ic parameter specifies indenting character.

• H - The operator, which was contained in all mentioned box meta-
models, aligns inner boxes horizontally and the parameters hs and hc
are related to it. The hs parameter defines a number of characters form-
ing a spacing gap and the hc parameter specifies a spacing character.

• V - The operator, which was contained in all mentioned box meta-
models, aligns inner boxes vertically and the vs parameter defining a
number of blank spacing lines is related to it.

• HV- The operator known from the DeJonge and Brand-Visser box
meta-model fills the first line by inner boxes and if there is no space
left, it fills the next line. The parameters hs, hc, and vs are related
to the operator and have the same functionalities like with the H and
V operators. Newly, the rs parameter specifying maximum line size is
present.

• ALT - Since this operator is more general than the HOV operator, only
this operator is present in the box meta-model. Reasons why is the ALT
operator more general are discussed in the description of the DeJonge
box meta-model, from which the ALT operator comes. The operator
uses the first inner box as a result when the length of the box does not
exceed maximum line size specified by the rs parameter. Otherwise, the
operator uses the next inner box.

• A - The operator known from the Stratego/XT, Brand-Visser
and DeJonge box meta-models aligns inner boxes into a table. The
parameters hs, hc, and vs are related to the operator and have the same
functionalities like with the H and V operators. Newly, the ca parameter
specifying alignment of columns is present as it was mentioned in the
description of the Brand-Visser box meta-model.

• R - The operator defines a row of a table specified by the A operator.

• WD - The operator coming from the Brand-Visser box meta-model
that translates inner boxes into an empty boxes with the same size.

Highlight Operators

• F - The operator known from the Brand-Visser and DeJonge box
meta-models associates the text of inner boxes with a font configuration.

47

The font configuration can be defined by the operator f specifying a font
name, w specifying a font width, i specifying a font shape, h specifying
a font size, c specifying a font color and b specifying a font background
color. Since the operator is the most general from all highlight operators
of both mentioned box meta-models and can supply them, it is not
necessary to involve another highlight operators to this box meta-model.

Transforming Operators

• SL - The operator formats single line comments. If the maximum line
size specified by the rs parameter is exceeded by the length of the com-
ment, the comment is properly splitted. Furthermore, the bs parameter
specifying a character sequence that denotes the begin of the comment
belongs to the operator.

• ML - The operator formats multi line comments. If the maximum line
size specified by the rs parameter is exceeded by the length of a line
containing the comment, than the comment is properly splitted. The
following parameters belong to the operator. The parameters bs and es
specify character sequences that denotes the begin and the end of the
comment. And further the is parameter defines a character sequence
serving for indentation of inner lines together with the last line of the
comment.

48

Chapter 4

Goals Revisited

Contemporary concepts of code formatting and syntax highlighting for the
Xtext framework is introduced in the Section 2.4 and the Section 2.5. Based
on the previous text, it is obvious that the ways allowing for realizing these
concepts are too user-demanding. The user has to know a part of the Xtext
framework’s internals and write a lot of Java code from scratch. Furthermore,
for other users is difficult to distinguish how a given code exactly works at
first glance.

The possibility to make code specifying a configuration of the pretty
printer more readable and reduce quantity of code is to express a configuration
of the pretty printer declaratively. The suitable candidate for this purpose is
a configuration expressed as a box model. This expression tool discussed in
the previous chapter is tried and tested on existing projects and it is a typi-
cal example of DSL. In essence, the pretty printer exploiting this expression
mechanism is driven by a model parsed from the mentioned DSL. Moreover,
the box meta-model allowing for defining diverse requirements on code for-
matting and syntax highlighting is designed in the Section 3.3.6. Hence the
meta-model should serve as a template for directing models.

The previous chapter discusses that formatting rules (usages of operators)
are linked to elements specifying the grammar rules, the DSL has to be de-
signed so that its formatting rules are able to link to elements of rules of the
Xtext’s grammar. Furthermore, it would be beneficial that the DSL has a
similar syntax like the syntax designed for usage of operators contained in the
ideal box meta-models because the syntax is often used with box meta-models
of existing generic pretty-printers.

Although, the ideal box meta-model is designed with respect to widest
formatting possibilities and generality of operators, each user has own habits
and requirements on the ideal meta-model. Thus the meta-model should be
extensible in order for the user to be allowed to add another operator into

49

the box meta-model. As the declarative way is more comfortable compared
to many lines of code in a common imperative programming language,a DSL
allowing for specifying a box meta-model should be created. The language
should allow for defining operators with corresponding parameters and inter-
connect operators with specifications of behavior that have to be specified in
an imperative language due to the complexity.

The DSL should be able to capture the requirements on code formatting
and syntax highlighting by formatting rules. The formatting rules have to be
somehow reflected to internals of the Xtext framework dealing with these
two concepts. Two solutions are offered at the first glance. The first one is to
generate a code of the internals from the directing model and the second one
is to make an interpreter of a model that would be connected to the internals.
The next goal will be to consider which solution would be better and make a
prototype of the better one.

Although, the formatting configuration of generic pretty printer expressed
through a DSL makes work easier but still the user has to create a formatting
configuration from scratch. Thus the next goal is to examine whether it is
possible to create some heuristics allowing for generating an initial formatting
configuration based on the knowledge of a particular grammar. Subsequently,
the user would be allowed to transform the initial formatting configuration
according to himself.

4.1 Summary

Various aspects has been discussed in the previous text that should im-
prove the pretty-printing concept in the environment of the Xtext frame-
work. The following points must be met to realize improvements.

• G1 - Design of a DSL allowing for defining a box meta-model.

• G2 - Realization of operators contained in the ideal meta-model intro-
duced in the Section 3.3.6.

• G3 - Design of a DSL allowing for defining a box model i.e., to use
some defined meta-model through formatting rules that are linked to
corresponding rules of a grammar.

• G4 - Proposal of a concept that is able to define heuristics for generation
of an initial formatting configuration i.e., an initial box model from
grammar rules.

50

• G5 - Design and implementation of a prototype representing a gen-
erator or an interpreter that enables to integrate box models into the
environment of the Xtext framework in order to the box models be
linked to the concepts of code formatting and syntax highlighting.

• G6 - Evaluation of realized improvements against the current status of
pretty-printing in the environment of the Xtext framework.

51

Chapter 5

Language for Defining Box
Meta-models

This chapter describes a language that is able to define operators of the
box meta-model used for the environment of the Xtext framework. The
language is able define not only operators but also corresponding parame-
ters which should be associated with some reasonable default values. Some of
these default values are used when a value of the parameter is not defined in
a usage of some operator. Furthermore, a code written in the language should
be understandable and the meta-model generated from the language should
have a reasonable structure. These two requirements are sometimes opposi-
tional because the grammar contained in the Xtext framework has some
restrictions. This language is called as the MetaModLang in the remaining
text.

5.1 Design

The following text describes what a language satisfying the requirements
from the previous paragraph could look like.

5.1.1 Files of Stored Code

Nowadays, it is usual that each file has an extension identifying a kind
of the content. Since the language is a part of the Pretty Printer and it is
able to define Operators so the extension .ppo looks as a good candidate for
this language. Further, it would be beneficial if a code specifying a box meta-
model could be separated into more files in order to possibility to extend old
box meta-models and preserve them at the same time. One possible solution

52

is to place the import statement, which would include other box meta-models
into the current one by an URI, into this language.

5.1.2 Constants and Enumerations

One way to make the language more comfortable for a user are constants
that are well-known from common imperative languages. This language con-
struct assigns some name to a value. Then the essence of the name is to express
a significance of a value in the context of code. Since the only place for usage
of values are parameters of operators (see the Section 3.3.6), where constants
could be used for naming certain spacings, indentations, colors, fonts, etc., so
it is reasonable to allow for defining constants of two the types namely string
constants and integer constants. Furthermore, because a multiple application
of particular constant is improbable, the definition of operator’s local constant
makes no sense. Thus the constants should be defined globally.

Listing 5.1: Definitions of constants in two possible types namely string and inte-
ger. The constants can also defined with a long version of keywords defining type.

int MAX_ROW_SIZE = 80

str DEFAULT_FONT = "Arial"

It also exists similar language construct to constants. This construct is
called enumerations. In essence, this data type represents a named set of
constants grouped by similar meaning. But the question is whether this lan-
guage construct obtains own application within this language. The enumer-
ation could be used for example for the definition of all colors, but it could
be also realized by several constants. Moreover, the specification of a usage
of a color would require not only the name of a color but also the name of
enumeration in comparison with the definition via constants. Nevertheless,
there is one application when the enumeration will represent a set of iden-
tifiers without values. This version of enumerations can be used for naming
some special values with similar meaning that would be specified not in code
of this language but later in the implementation of the operator written in
some imperative language. Since the identifier is tool intended to reference a
particular value so the local version of this language construct intended for
single usage makes sense as well as the global version.

Listing 5.2: Definitions of enumerations in both versions. The first one is defined
globally and some its item is assigned to a parameter. The second one is defined
locally at the assignment of its item into a parameter.

// global enumeration

enum blanks = {TAB,WS}

53

{[blanks]} hc = WS

// local enumeration

{normal, bold} w = normal

5.1.3 Basic Operators

This kind of operators should involve all general operators whose behavior
is described by a code written in common imperative language. The correct
specification of a operator of this kind should contain operator’s name, a link
to operator’s implementation describing its behavior and further definitions
of corresponding operators with their default values. Since the name and the
link is the most important items so they should be placed into a header of the
specification and definitions of operators into the body. This division should
clarify the specification of operators. The body could be enclosed into the curly
brackets and individual items terminated with a semicolon as with statements
in C-based language but more common form in the field of domain-specific
languages is to separate the header and the body by a colon and terminate
the whole body by semicolon while each item of the body has a own line.

As it is clear from the Section 2.4 and the Section 2.5 that code for-
matting and syntax highlighting are two concepts of the Xtext framework
implemented separately, so implementations of behavior of highlight operators
would have different interfaces in comparison of the implementation of posi-
tional operators. It can be expected the similar situation with transforming
operators. Thus a generated meta-model from the grammar of this language
should contain a class for each kind of operators. It means from the perspec-
tive of this language that the specifications of different operator kinds have
to be somehow differed. The suitable way is to put a various keyword at the
begin of each specification.

So far the body of the specification was mentioned in general. These specifi-
cations should contain parameters name, a default value and also parameter’s
type. It makes sense to consider only three types of parameters. The first one
is a integer parameter for defining some spacings, indentations, sizes, etc. The
second one is string parameter for defining some fonts, colors, etc. And the last
one should be able to retain an item of enumeration (see the Section 5.1.2)
ie an identifier serving for naming the value defined in the implementation of
the operator.

Listing 5.3: A specification of a highlight operator. The specifications begins with
an assigned keyword ”hloperator”. The short version ”hlop” also exist. Keywords
”pop”, ”poperator” are chosen for the positional operators and further keywords
”top”, ”toperator” belong to transforming operators. Further, the header contain

54

operators name and a qualified name of class specifying the behavior of the operator,
which is enclosed into square brackets. The body is formed form five specifications
of parameters. The first two parameters are typed by local enumeration. The as-
sociation of the parameter with a global enumeration is shown in the Listing 5.2.
The specification of other types of parameters is the same as a specification of a
constant shown in the Listing 5.1.

hloperator F [gpp.highlighting.DefaultHighlightOperatorImplementation]:

{normal, bold} w = normal
{normal, italic} i = normal
str c = "#000000"

str b = "#ffffff"

str f = "Consolas"

int h = 10

;

5.1.4 Alias Operators

As the method of defining basic operators was designed so the value of a
parameter has to be redefined at operator’s usage when the default value is not
suitable. This situation may occur quite often while the required value is the
same. the user should be allowed to change default values of parameters. One
possible solution is to introduce alias operators that would have own default
values of the same types for parameters related to the referenced operator.
The alias operator should then supply the referenced operators. This kind
of operators could be used for example for another highlight operator not
included into the ideal box meta-model such as the highlight operator for
keywords, numbers, etc. presented in the box models Brand-Visser and
DeJonge.

Listing 5.4: A specification of an alias operator specifying a formatting configura-
tion dedicated for keywords. The operator references the F highlight operator, at
which it redefines two default values. Other default values are preserved.

alias KW [F]:

w = bold

c = "#000088"

;

5.2 Realization

The realization consists of a number of sub-steps and therefore it will be
mentioned the most important.

55

5.2.1 Inheritance of Basic Operators

These realization steps relate to a specification of this language by utiliz-
ing the grammar of the Xtext framework and a subsequent generation of
language’s meta-model. The Section 5.1.3 discusses that each kind of basic
operator should have own class in the generated meta-model. Specifications
of operators of different kinds are similar and have the same structure so it is
right to presume that the generated classes of meta-model will have the vast
majority of the same attributes. Thus it would be beneficial if there was a
common ancestor of these classes, which would include common attributes.

A suitable solution is to define a general grammar rule that contain all
necessary definitions to define all common attributes. Moreover, the grammar
rule have to contain an alternative of rule calls linked to grammar rules speci-
fying a concrete kind. Further, these grammar rules have to contain an action
for creation of a specific class into the generated meta-model and keywords
identifying the concrete kind. The Section 2.3.3 discusses that it is good
to remember actions which are enclosed into curly brackets and this type
of actions is defined by a name of the created class. The following example
embodies this solution.

Listing 5.5: A demonstration of the solution defining the inheritance in the gen-
erated meta-model.

BasicOperatorDefinition:

(PositionalOperatorDefinition | TransformingOperatorDefinition | ...)

name=ID

...

;

PositionalOperatorDefinition:

{PositionalOperatorDefinition}
(’pop’ | ’poperator’)

;

...

5.2.2 Scoping

A code written in the designed language will contain a lot of links to al-
ready the defined code such as a referenced operator in the alias operator
specification, a referenced parameter when the default value is redefined or
some usage of a constant. These links are called cross-references in the termi-
nology of the Xtext framework and inserts cycles into a model of the code. if
the code did not contain any link, the model would be a tree structure. Since
the framework creates these cycles by utilizing link’s name and code can con-

56

tain many names that are equal to link’s name, it have to be defined scope of
names that could be used for making the cycle. For example a constant, an
operator and its parameter could have the same name but an alias operator
need to reference only the operator.

Scopes can be defined by creation a class extending the
AbstractDeclarativeScopeProvider class and subsequent registra-
tion by utilizing the Google Guice. This class should contain definitions
of scopes for particular cross references. The definition is being realized by
methods whose name is formed by the prefix ”scope ” plus a name of the
generated class plus ” ” and plus a name of the attribute where should be
linked object stored. The method has to have two parameters and return the
IScope interface. The first one has the type of the generated class and the
second is object of the EReference type that represents a description of the
link. Since the first parameter is the member of the model of some code, so it
can be obtained an arbitrary scope by a transversal of the model and calling
suitable methods of the Xtext framework. More specifically, constants of a
particular type will represent a scope for the usage of some constant, a set
of operators will represent a scope for some alias operator and parameters
of some specific operator will represent a scope for a redefinition of some
parameter of a alias operator referencing the specific operator.

Listing 5.6: This listing contains a grammar rule with one cross reference enclosed
in square brackets and a scope provider including a method dedicated for obtaining
scopes related to this cross reference.

// Grammar rule

ParameterApplication:

referencedParameter = [ParameterDefinition]

’=’

value = ParameterApplicationValue

;

// Scoping

public class ScopeProvider extends AbstractDeclarativeScopeProvider {

IScope scope_ParameterApplication_referencedParameter(

ParameterApplication ctx,

EReference ref)

{
return getReferencedParameterScope(ctx); // model transversal

}
}

57

Chapter 6

Language for Defining Box
Models

This chapter discusses what a language allowing for defining formatting
rules that are linked to rules of grammar look like. This formatting rules
consists from usages of operators defined by a code written in the Meta-
ModLang language. Further, it is possible to set a value of some parameter
if a default value does not meet. The final solution is inspired by the syntax
selected for the usage of operators of the ideal box meta-model. This language
is called as the ModelLang in the remaining text.

6.1 Design

The following text describes what a language satisfying the requirements
from the previous paragraph could look like. As the MetaModLang lan-
guage was associated with a concrete extension, so the extension .ppf ex-
pressing a term Pretty Printer’s Formatting will belongs to files storing a
code of this language.

6.1.1 Continuity with the Language of Box Meta-
models

The user should be allowed to choose a box meta-model for a subsequent
usage. Moreover, he should have a chance to define ad-hoc alias rules and con-
stants for a definition of formatting. These both requirements can be solved
at once so that the grammar of this language would be an extension of the
grammar of the MetaModLang language. This is possible because the lan-
guage dedicated for a definition of a grammar allows for inheriting a grammar

58

from one another. The slot for an ancestor is by default occupied by the de-
fault grammar containing specifications of terminals. Since the inheritance of
grammar is transitive and the grammar of previous language extends the de-
fault grammar of terminals, the slot can be occupied by the grammar of the
previous language.

6.1.2 Continuity with the Language of the grammar of
the Xtext framework

As it is shown in the Listing 3.1 what an interconnection of formatting
rules with rules of a SDF grammar can look like, thus it have to be designed
formatting rules linked to Xtext’s grammar. The listing considers only the
formatting rules for non-terminals but because it will be used operators trans-
forming text described by a terminal and the Xtext framework contains a
concept of syntax highlighting on the lexical level, it has to be also defined for-
matting rules for terminals. This fact implies that should be designed suitable
keywords indicating a formatting rule. Any keyword with the suffix ”BOX”
looks as a reasonable variant because the formatting rule is essentially a box
adding an appearance and a shape to abstract thing.

Furthermore, a file contained some grammar should be somehow referenced
by this language in order to grammar rules be accessible for formatting rules.
Since this language references meta-models and meta-models are referenced
among themselves by utilizing imports with an URI, this imports will be also
used for this case in order to preserve the convention.

Formatting rules for Nonterminals

A definition of nonterminal rule consists of rule’s name and definition
elements as it can be seen in the Listing 2.1. Firstly, the formatting rule should
reference a qualified name of the grammar rule in order to be clear with which
one is it associated as well as the alias operator references an another operator.
Further, it can follow a body containing usages of operators that encapsulate
references to defining elements of the grammar rule as well as redefinitions of
default values of an alias operator reference corresponding parameters. Unlike
a definition of parameters of some operator which structurally flat, definition
elements form a tree structure as it can be seen in the Listing 2.1.

The Section 2.3.3 discusses in detail that the language for defining a gram-
mar contains not only essential defining elements such as keywords, rule calls
and cross references but also composite defining elements such as ordered
and unordered groups, alternatives and assignments for which the body of

59

grammar rule is a tree structure. It is good to realize that composite defin-
ing elements can not be referenced in any way because they do not contain
any name or any other identifier. The exception is an assignment but there is
still a problem how to reference these composite defining elements and how
to knit them them with usages of some operators. The solution could be to
reference only essential defining elements and references to composite defining
rules supply by organization of references to essential defining elements into a
similar tree structure such the elements are organized. The references will be
grouped by composite elements of formatting rule as well as composite defin-
ing elements group essential defining elements of a grammar rule. It means
that composite elements of a formatting rule will use the same delimiters (” ”,
”
∣∣”, ”&”) for a separation of sub-elements as composite defining elements of

a grammar rule. The exception is also an assignment because it does not sep-
arate sub-elements but it encapsulates one sub-element. Since priorities are
defined among composite defining elements and it is possible to adjust the
priorities by utilizing parentheses, composite elements of a formatting rule
should be enriched with this feature. Now it can be created a formatting rule
whose structure reflects a structure of grammar rule and further it can be used
operators used at any level of structure. Usages of operators can used as its
body references to essential defining but also composite elements of format-
ting rules. Hence the structure of formatting rule is the same as a structure
of grammar rule with the exception of interleaving formatting structure by
usage of operators. This solution is typified in the following figure.

Figure 6.1: Linking of a structure of formatting rule (right) to a rule of Xtext’s
grammar (left) is depicted . The grammar rule called Greeting enables to the user
write two greetings. The first ”good morning” consists form two keywords. The
second ”hello” is represented by only one keyword. The formatting rule defines
that all greetings will be aligned horizontally but this information will be reflected
only with the first greeting. Moreover, the formatting rule defines a various font
color for each greeting.

´good´ ´morning´ ´hello´

ordered group

alternative

Greeeting:

ref ref ref

composition ´ ´

composition ´|´

H

F c=¨#ff0000¨F c=¨#00ff00¨

ref

60

Usages of the operator that surrounds references or compositions have
been typified but it should be possible to be usages of operators surrounded
by themselves. This will require some changes in the syntax of a usage of the
ideal meta-model because operator’s name and a rule call is represented by an
identifier it would not be clear which object should be created since Xtext’s
parser works with a view to only one token. The solution could be to try to
extend parser’s outlook but it can be a bit slower than the default variant.
A more elegant solution could be enclose the usage of a operator by some
keywords. Since angle brackets have not been used so they look like a good
choice.

This problem with usages of operators has been solved. Now it has to be
decided which kinds of operators should be allowed to use for these formatting
rules. Definitely, it should be enabled positional operators because they give
to grammar rule an shape. Further, it should be enabled highlight operators
because the Xtext framework contains a concept of semantic highlighting at
the semantic level (see the Section 2.5) and these formatting rules is a good
place for an integration of the concept into the configuration of the pretty
printer. Since the transforming operators were designed in order to format
comments and comments do not exist at this level, they will be disabled.

Listing 6.1: This example of a grammar rule and its corresponding formatting rule
are related to the Figure 6.1. The same operators are used. The formatting rule is
identified by the PBOX keyword because grammar rule for nonterminals are also
called parser rules (see the Section 2.3.2).

// Grammar rule

Greetings:

’good’ ’morning’ | ’hello’

;

// Formatting rule

PBOX[Greetings]:

<H>[<F c="#00ff00">[’good’ ’morning’] | <F c="#ff0000">[’hello’]]

;

Formatting rules for Terminals

The situation with defining formatting rules is more easier in comparison
with formatting rules for nonterminals. The grammar rule of a terminal does
not contain any defining elements like in a grammar rule of a nonterminal.
Thus the formatting rule should contain only usages of operators. It also
follows that positional operators can not be used in any way. Conversely,
transforming operators could be used for formatting comments and highlight
operators would serve to define a configuration of syntax highlighting at the

61

lexical level. Furthermore, it makes sense to use maximally one transforming
operator and one highlight operator.

Although, terminals defined by terminal rules (see the Section 2.3.2) exist
in the Xtext framework, which can be referenced similarly like nonterminals,
the keywords used as a defining element has a terminal character and it would
be beneficial to resolve them by various fonts. Since they have no own for-
matting rule, they should be referenced alternatively. The possible solution is
to categorize keywords by regular expression that work on the wanted lexical
level. The similar situation is how to define a default font for terminals which
do not have any corresponding formatting rule defining a font. The whole
solution is typified in the following listing.

Listing 6.2: This listing describes possibilities how to define formatting rules for
terminals. The first one formats multi line comments. The second one makes all
keywords beginning with a letter bold and blue. And the last one makes all other
terminals gray.

// Formatting rule referencing a terminal defined by grammar rule.

TBOX[ML_COMMENT]: <MC>, <F c="#00ff00">;

// Formatting rule with a regular expression

TBOX[Keyword, "ˆ\\w.*$"]: <F c="#0000aa", w=bold>;

// Formatting rule for terminals that have no

// formatting rule of two previous categories.

TBOX[default]: <F c="#222222">;

6.2 Realization

All realization steps seem to be straightforward with one exception. The
Section 5.2.2 discusses that it has to be defined some mechanism allowing
for creating suitable scopes that are important for referencing parameters of
some operator, there are exist a problem how to reference essential defining
elements so that it would be possible to reference elements that are on a
equivalent position in the tree structure like an identifier of a corresponding
cross reference. This problem can not be solved like referencing parameters
of operators because connection between a cross reference and its referenced
object is created on the base of existence of cross reference’s identifier in a
scope which is a set of descriptions of possible objects. The object description
contain information about its identifier. It means that the scoping in this
form does not guarantee any restriction regard to order of elements. Moreover,
because composite defining elements are defined by a language developer and

62

hence are defined dynamically, the scopes have to contain identifiers of all
defining elements of grammar rule. Thus it can not be captured any restriction
regard to nesting in the tree structure.

One possible solution is to change a method identifying cross references
and corresponding defining elements internally for scoping so that an identifier
be able to capture the exact position of a cross reference or defining element
in the tree structure. The newly created identifier for the essential defining
element and its reference should contain elements name, a number expressing
its order in a parent element and parent’s identifier where the parent could
be an composite element, a grammar rule or a formatting rule. The iden-
tifier of a composite element consists of its delimiter, position and parent’s
identifier. Moreover, grammar rules and formatting rules will be identified by
its names, which will allowing for identifying references and defining elements
uniquely. Thus the scopes of defining elements do not have to be define within
a grammar rule.

Listing 6.3: Newly proposed identifiers for the essential defining elements from
the Listing 6.1.

Greetings.|.0. .0.good

Greetings.|.0. .1.morning

Greetings.|.1.hello

The system of creating identifiers is designed and it remains to solve how
to implement this change into the code of the Xtext framework.

6.2.1 Linking

The linking cross references to referenced objects is realized in the Xtext
framework by a class implementing the ILinkingService interface specially
its method getLinkedObjects. The method has tree parameters. The first
one called context represents a model element containing a given cross refer-
ence. The second one called reference represents a description of a given cross
reference. And the last one called node is an element of a node model which
is an AST-based structure. The node represents a position of a given cross
reference in this structure. The default implementation of the interface gets a
required type of from the reference description and it passes the type together
with the context to some default scope provider thereby giving a scope. Fur-
ther, it get an identifier of a given reference from the node which it then uses
for getting an object description from the scope. The object description then
allows for getting a given object that the method returns.

This behavior of the method is inappropriate with use of newly designed
version of identifiers. In this case, the user has to enter these long identifiers

63

manually. It follows that it has to be written a new implementation of the
interface where the method would contain translating simple identifiers into
a new version. Furthermore, it has to be solved how to get the new version of
identifiers into object descriptions located in a scope.

6.2.2 Identifying Elements Defining a Formatting Rule

Identifiers are represented in the Xtext framework by the
QualifiedName class, which is essentially a name formed from sev-
eral hierarchical segments. These identifiers can be obtained from the
getFullyQualifiedName method, whose only parameter represents ob-
ject for who is an identifier wanted. This method is specified in the
IQualifiedNameProvider interface. Therefore the task how to transform
simple identifiers into a new version can be solved by inserting the Reference
grammar rule containing only cross reference to a type of essential defining
elements into a grammar of this language. Because of this step the instances
of the Reference will be located at the same place in the tree structure like
essential defining elements. The next step is to write a new implementation of
the IQualifiedNameProvider interface that would involve the new version
of identifiers for the model generated from a code written in this language
where each instance of the Reference would have a blank name. Moreover,
the implementation has to be registered by utilizing Google Guice in order
to be the implementation active. The name from this new implementation
would be concatenated with a simple identifier obtained from a node in order
to get a whole identifier of the new version.

6.2.3 Identifying Elements Defining a Parser Rule

As the previous problem was solved by creating the new implementation
of the IQualifiedNameProvider interface, a change of identifiers contained in
descriptions of defining elements forming scopes into the new version can be
realized similarly. Moreover, there is no need to concatenate an identifier from
more parts because essential defining elements has name or other attributes
that can serve as a simple identifier. Now it has to be decided how to integrate
identifiers of the new version into descriptions The mere registration of the
new implementation of the interface by utilizing Google Guice in order to
change a default implementation, which is used by a code creating concrete
descriptions, is not sufficient because each language has own Google Guice
configuration and the default implementation is registered into configuration
of the language defining Xtext’s grammar.

64

Thus it has to be rewritten a code that is registered under the con-
figuration of this language and serves to obtaining descriptions from an-
other languages. The descriptions are obtained together as a pack rep-
resented by the IResourceDescription interface. The place for obtain-
ing descriptions is located in the getResourceDescription method of
the LoadOnDemandResourceDescriptions class, where the method finds
out a manager of resource descriptions for a particular language on
the base of a URI of resource descriptions forwarded as an only pa-
rameter. Further, a selected manager returns a needed resource descrip-
tion. Thus it has to be the method rewritten so as the methods se-
lects newly created manager for descriptions of the language of Xtext’s
grammar. The creation of a new manager involves not only to implement
IResourceDescription.Manager interface representing a manager but also
implement the IDefaultResourceDescriptionStrategy interface that is re-
sponsible for creating descriptions and it is exploited by manager. Thus the
strategy is the right place for getting a new version of identifiers into object
descriptions.

65

Chapter 7

Language for Defining
Heuristics of the Initial Box
Model

The Chapter 4 discusses that an imperative or declarative specification of
a formatting configuration of a generic pretty printer is time-consuming. Thus
this language is able to define some heuristic rules serving to determine how
an initial box model for a particular language described by Xtext’s grammar
look like. In other words, this language introduces new formatting rules that
are independent on a grammar and serve to as an input for a transformation
into formatting rules of the ModelLang language. This language is called
as the HeurLang in the remaining text.

7.1 Design

The following text describes what could look like a language defining for-
matting rules that are independent on a grammar of a language. Firstly, it
should be selected an extension for files containing a code of this language.
The extension should express the essence of this language like the exten-
sions for two previous languages. This language essentially allows for defin-
ing Pretty-Printer’s Default formatting configuration, so the extension .ppd
will be a good choice. Further, because this language will be able to define
some formatting rules, it will have to use the operators defined by utilizing
the MetaModLang language. Since it would be beneficial to use constants
defined by that language and the grammar of that language contains gram-
mar rules allowing for defining usages of these constants, the grammar of
this language should be inherited from the grammar of the MetaModLang

66

language. Moreover, it would be good to reference a file containing a box
meta-model via URI imports in order to be consistent. The heuristic rules
will be transformed into formatting rules referencing terminal rules defining
terminals and parser rules defining nonterminals so the heuristic rules should
be separated into a group dedicated for terminals and a group dedicated for
nonterminals in order to make a specification more comprehensible.

7.1.1 Heuristic Rules for Nonterminals

Although, this language will be able to use operators of a referenced box
meta-model, any defining elements of any grammar rule will not be available.
Now has to be decided how to specify places inside definitions of grammar
rules that that should be enclosed by an usage of an operator. The one solution
could be to define an usage of an operator and specify where this usage will be
applied. The specification of locations can be realized only by some pattern
determining whether the usage can be placed at a given locations or not
similarly like regular expressions determine whether a piece of text is suitable
or not.

Now it is necessary to design what these patterns should look like and how
should work its evaluation. Firstly, it is good to realize that pieces forming
these patterns has to reflect defining elements and also a code described by a
grammar rule in order to the patterns be comprehensible. The keyword is only
defining element occurring in a specification of a grammar rule whilst also in
a code parsed by the grammar rule. Thus the patterns will contain keywords.
Rule calls, cross references and composite defining elements do not directly
reflects a code parsed by the grammar rule, so they will be represented in pat-
terns by numbers and intervals expressing the multiplicity of their occurrence
in the node of a tree structure defining a grammar rule.

Listing 7.1: A possible section of rules for nonterminals in a file defining a heuristic
for generating an initial box model. The first rule has a special significance because
its usage of an operator serving to enclose the root of a formatting rule. If the
question mark is present, the usage could be rewritten by another one which is
defined by another rule. The second rule encloses a node of the tree structure by its
usage of operator when the first and the last child of the node are parenthesis. The
third rule encloses a node by its usages of operators if the node has tree children
and the second is an equal character. The last rule encloses a node by its usage of
a operator if the node has at least two children and the last is a colon.

Non-terminals:

root? : <V>

[’(’,*,’)’]: <H>

67

[1,’=’,1]: <I>,<H>

[1-*,’:’]: <H>

Some proposal has been typified what the section of heuristic rules dedi-
cated for non-terminals should look like. Now it should be designed how this
section be transformed into language-depended formatting rules. The most
feasible solution is to transform a model generated from grammar rules of a
given language into a box model representing formatting rules without usages
of operators firstly. A part of the box model without usages of operators re-
lated to nonterminals has a similar structure like an equivalent part of the
grammar model, so patterns of heuristic rules expresses the same thing in a
box model as well as in a grammar model. Thus it can be searched places
inside a box model that subsequently serve for injecting usages of operators
into the box model.

The searching places and injecting usages of operator could work simulta-
neously by utilizing the DFS algorithm [18] with some following modifications.
The traversal of tree structure of a formatting rule begins at the root. If the
node is an ordered group, the first heuristic rule is taken and it is tested
whether some sub-sequence of node’s children satisfies its pattern. If such a
sequence exists, it is subsequently enclosed by usages of parameters defined
in the heuristic rule. It causes a division of ordered group into tree pieces.
The first one is formed by a sequence of children that are in front of matched
sequence. The second is the matched sequence. And the last represents a
sequence of children following after the matched sequence. Now the current
node has this tree children. These new tree ordered groups can be reflected
into the identifiers of its in order to not change a path which identifiers ex-
press. Further, the traversal continues with these new nodes, where the usages
of operators are skipped at the second node and the traversal must be careful
to not use the same rule on the whole second node. If the matched sequence
does not exists, this process is repeated with the next heuristic rule. Further,
if there is no heuristic rule left, the traversal continues with node’s children
with all heuristic rules. if the node is another type of composite element, it
can be matched sequences with only one child because the order of its chil-
dren does not reflect a parsed code. When the node is a leaf or the algorithm
has already visit all node’s children, the matching can not take place and the
algorithm backtracks.

Listing 7.2: The listing describes two grammar rules of a language allowing for
defining some objects and its attributes. The object references some box in which
is contained. There are also formatting rules generated from these grammar rules
by utilizing heuristic rules defined in the Listing 7.5.

68

// Grammar rules

Object:

’obj’ name=ID ’(’ box=[Box] ’)’ ’:’

attributes+=Attribute*

’;’

;

Attribute:

name=ID ’=’ value=Value

;

// Generated formatting rules

PBOX[Object]:

<V>[

<H>[’obj’ name:ID <H>[’(’ box:[Box] ’)’] ’:’]

attributes:Attribute

’;’

]

;

PBOX[Attribute]:

<I>[<H>[name:ID ’=’ value:Value]]

;

7.1.2 Heuristic Rules for Terminals

However, nonterminal heuristic rules have to be independent on grammar
rules because parser rules are unknown until an user defines them, a situation
with terminals is inverse. In most cases a language developer uses default
terminal rules so heuristic rules should defines default usages of operators for
these terminals. Of course, a developer can add new terminals or use only
terminals with only different names but there is the default formatting rule
in each definition of formatting rules. The transformation from heuristic rules
into formatting rules must only test whether a terminal defined in a heuristic
rule exists in a grammar. If the terminal does not exist, the formatting rule
is not generated.

Listing 7.3: A possible section of rules for terminals in a file defining a heuristic
for generating an initial box model. The first three heuristic rules define usages of
operators for formatting rules that will reference terminals defined before colons.
The fourth rule defines an usage of an operator for a formatting rule of the keyword
whose regular expression is enclosed in square brackets. The last rule defines an
usage of an operator for a default formatting rule.

Terminals:

INT: <F w=bold>

69

ML_COMMENT: <F i=italic, c="#00FF00">, <MC>

SL_COMMENT: <F i=italic, c="#00FF00">, <SC>

Keyword["ˆ\\w.*$"]: <F c="#FF0000">
default: <F>

7.2 Realization

The steps to implement the language designed in the previous section
are straight-forward or similar to realization steps described in the previous
two chapters but there are some questions concerning what implementation
resources should be used for the realization.

7.2.1 Model Traversal

When it is needed to transform a model into an another model, the model
has to be somehow traversed. The traversal is formed from many steps where
the step represents to perform certain actions and choose a next element of
model. It requires to know a type of a currently visited element and find
actions competent for the type. The action searching can be realized in Java
only by if statements or a switch statement deciding by element’s type thus
requiring to write a lot of code. The facilitation could be to write the model
traversal in the Xtend2 language [19]. This language contains a concept
called dispatch methods. These methods behave polymorphically based on
types of method’s parameters. In other words, When the method has more
overloads and it is called with a parameter that have got a specific type and it
is somehow retyped, it is chosen a variant of the method with a specific type.
Moreover, the types of parameters of method’s overloads do not have to be in
the inheritance hierarchy. The Xtend2 language can easily call a Java code
because a code written in Xtend2 is transformed into Java.

Listing 7.4: A comparison of behavior of overloaded Java methods and dispatch
methods of the Xtend2 language.

class A {}
class B extends A {}

// Java code

class Main

{
public static void main(String[] args)

{
Main main = new Main();

B obj = new B();

70

main.foo((A)obj);

}

void foo(A par)

{
System.out.println("A");

}

void foo(B par)

{
System.out.println("B");

}
}

// Result: A

// Xtend 2 code

class Main

{
def static void main(String[] args)

{
Main main = new Main();

B obj = new B();

main.foo((A)obj);

}

def dispatch void foo(A par)

{
System.out.println("A");

}

def dispatch void foo(B par)

{
System.out.println("B");

}
}

// Result: B

7.2.2 Model Transformation into a Text Representa-
tion

A tool for traversing models and translate them into another models were
introduced. It can be obtained an initial box model from heuristic and gram-
mar rules by this way. Because of a language developer be allowed to change
the box model, it has to be transformed into a corresponding domain-specific
language. Standardly, the XPand languages [20] and the Acceleo lan-

71

guage [21] serve for this purpose. The languages allow for defining templates
representing the mapping of a certain model into a certain language. An an-
other option is to use the Xtend2 language [19] that contains a similar con-
cept of templates. Moreover, the language is able to work as a classical im-
perative and object-oriented language. Since the Xtend2 language is used
for traversing models and these two parts of realization are related between
themselves, it should be the Xtend2 used again.

Listing 7.5: An listing of a method that works as a template. The method trans-
forms imports of a box model into their text declarations. The templates are in-
dicated in the Xtend2 language by the sequence of three apostrophes and the
template can reference an outside variables by a code enclosed in ”�” and ”�”.

def placeImports(BoxModel boxModel)’’’
�FOR imp:boxModel.operatorsSection.imports�

import "�imp.importURI�"
�ENDFOR�

’’’

72

Chapter 8

Integrating the Box Model into
the Xtext framework

So far resources allowing for defining box models were introduced but it
has not been mentioned how to interconnect box models with pretty-printing
concepts contained in the Xtext framework (see the Section 2.4 and the
Section 2.5) yet. The purpose of this chapter is to design a solution of this
problem. In other words, it has to be designed behavioral implementations of
operators so that be able to cooperate with a code of the Xtext framework
realizing code formatting (see the Section 2.4) and syntax highlighting (see
the Section 2.5).

8.1 Syntax Highlighting

The Section 2.5 discusses that this concept is essentially an associating
defined text styles with individual parts of code. Moreover, the process of as-
sociation can be realized lexically or semantically. These two ways correspond
to usages of highlight operators in terminal formatting rules (the lexical way)
and parser formatting rules (the semantic way).

8.1.1 Behavioral Implementation of Operators

The definition of a highlight operator written in the corresponding DSL
is formed from parameters whose current values together specify a particular
text style (see the Section 5.1.3) and text styles are realized in the Xtext
framework by the TextStyle class (see the Listing 8.1.2). Thus the behav-
ioral implementation of an operator should translate a text style expressed by
values of parameters into the TextStyle class. Moreover, it should be only

73

one implementation enough because highlight operators and its usages differ
only in values of parameters.

8.1.2 Highlighting Configuration

Before text styles be able to associated with parts of some code, they have
to be registered (see the Section 2.5.1). The text styles specified by usages of
highlight operators can be registered by creating a new implementation of the
IHighlightingConfiguration interface (see the Listing 8.1.2) that would
have an access to a box model describing a formatting configuration for a
given language. The implementation would override the configure method
so that the method get all usages of highlight operators from all formatting
rules and instantiate a behavior implementation related to each usage. A given
behavior implementation translates values of usages into the TextStyle class
and the method registers it under a specific identifier.

The task how to choose a suitable identifier for text styles related to usages
from formatting rules dedicated for terminals is simple. If the formatting
rule is the default, the identifier will be the string ”default”. Further, if the
formatting rule references a terminal rule, the identifier will be a name of
the terminal rule. But also if the formatting rule specifies an appearance
of keywords matching to a certain regular expression. Since identifying text
styles by regular expressions is confusing, the corresponding formatting rule
will be enriched with name, which will serve as an identifier for the text style,
such as depicted in the Listing 6.2.

The situation of identifying text styles defined by usages contained in
formatting rules referencing formatting rules is not so easy because the usage
has not unique identifier and this kind of formatting rule can contain more
usages of operators. Thus it has to be created a new concept of identifying
these text styles. One possible solution is to create identifiers from a name of
the parser rule and a suffix expressing hierarchical position of an usage of an
operator among other usages contained in the formatting rule. The following
listing typifies a format of identifiers for these usages of operators.

Listing 8.1: The listing shows what identifiers for usages of operators presented
in the Listing 6.1 look like.

<H> : Greetings.1

<F c="#00ff00"> : Greetings.1.1

<F c="#ff0000"> : Greetings.1.2

74

8.1.3 Lexical Highlighting

The Section 2.5.2 discusses that associating text styles to parts of
code lexically can be realized in the Xtext framework by extending
the AbstractAntlrTokenToAttributeIdMapper class and overriding its
calculateIdmethod. Since lexical highlighting is a only matter of formatting
rules dedicated for terminals, the calculateId method of a new extension
having an access to the box model will work as follows. If a value of the
tokenName parameter will have the ”RULE ” prefix, the token is parsed by
utilizing a terminal rule, it will be searched a corresponding formatting rule
for terminal rule by the token name without the prefix in the box model. If
the formatting rule exists and contains an usage of a highlight operator, it will
be returned an identifier of a corresponding text style. If a value of the token
name is enclosed in apostrophes or quotation marks, the token is a keyword
and subsequently will be tried whether the keyword matches to pattern of any
keyword formatting rule. If the formatting rule exists and contains an usage
of a highlight operator, it will be returned an identifier of a corresponding text
style. In case it is not returned any identifier based on the previous conditions,
it will be returned the identifier of the default text style.

8.1.4 Semantic Highlighting

The Section 2.5.3 discusses that associating text styles to parts of code
in a semantic way can be realized in the Xtext framework by imple-
menting the ISemanticHighlightingCalculator interface and overriding
its provideHighlightingFor method that should contain callings of the
addPosition method on the second parameter which it associates some seg-
ment of code with some text style. Bounds of individual segments of a code
reflecting semantics can be obtained from the first parameter because the pa-
rameter allows for getting a node model, which is an AST-based structure,
and elements of the node model have informations about bounds of segments.
Although, an element of the node model is linked to corresponding defining
element of a grammar rules, it has not clear yet how to get a corresponding
text style defined by an usage of an operator. Each defining element has a
composite element or reference in a formatting rule and also it shares the
same qualified name with the element of formatting rule as it is shown in the
Listing 6.3. Moreover, it is unknown which text style belongs to the element
of formatting rule.

A solution solving the whole problem could be to create an initialization
of a new implementation of the interface. The initialization would involve a
traversal of formatting rules referencing parser rules. The traversal will serve

75

to clarify which usage of some highlight operator is a closest ancestor of a
certain element of a formatting rule. The result of the traversal will be a map
containing associations between qualified names of elements of formatting
rules and identifiers of text styles related to usages of highlight operators that
are closest ancestors of given elements. Since the qualified name contained
in the map can also belong to a defining element of a grammar rule, the
provideHighlightingFor method of the new implementation will exploit
the map to obtain an identifier of text style for a given segment of code. It
may become the situation that an element of formatting rule has no ancestor
that is an usage of a highlight operator and thus its identifier is not in the
map. In this case, the method will use the identifier of the default text style.
Moreover, the map do not have to contain identifiers of composite defining
elements because elements of the node model reference only essential defining
elements.

Listing 8.2: The listing depicts what a map for grammar that contains one rule
presented should look like in the Listing 6.1. Identifiers of defining elements are
obtained from the Listing 6.3 and identifiers of text styles from the Listing 9.1.

Greetings.|.0. .0.good -> Greetings.1.1 // <F c="#00ff00">

Greetings.|.0. .1.morning -> Greetings.1.1 // <F c="#00ff00">

Greetings.|.1.hello -> Greetings.1.2 // <F c="#ff0000">

It might seem that some conflicts exist in associating text styles with a
concrete segment of code because a node having some children covers the same
code like its children together. But if the method will traverse a node model
so that the parent node will be visited firstly and the its children, there will
be no conflict because the Xtext framework allows a developer to redefine a
text style for an arbitrary segment of code.

8.2 Code Formatting

The Section 2.4 discusses that code formatting can be realized in the
Xtext framework by extending the AbstractDeclarativeFormatter class
and overriding the configureFormatting method, which has only one pa-
rameter. Calling methods on the parameter serves to creating a formatting
configurations for a particular grammar. Since rules of this formatter only
allows a developer to statically define mutual positions of tokens by utilizing
defining elements of grammar rules and have no information about formatted
tokens, it can not be expressed behavior of horizontal-vertical operators for-
matting tokens on the base of the total length of tokens by this way. Thus spec-
ifying code formatting by utilizing a box model can not be realized through

76

the original method of specification as well as specifying syntax highlighting
is realized.

After thoroughly reading trough the code of the Xtext framework it is
possible to find out that higher layers of Xtext’s code exploits some im-
plementation of the INodeModelFormatter interface to format code. Any
implementation of this interface has to contain an overriding of the for-
mat method. The method has three parameters where the first one is a
node model of formated code, the other parameters are offset and length
of a code dedicated to be formated. Moreover, the method has to return
an instance of the IFormattedRegion interface containing a string of al-
ready formatted code, an offset and length. The default implementation
of this interface uses the OneWhitespaceFormatter class or extension of
the AbstractDeclarativeFormatter class to know how code should be
formatted. Thus the interconnection between Xtext’s code dealing with
code formatting and a box model can be realized by creating a new imple-
mentation of the INodeModelFormatter interface that would exploit some
box model as well as the default implementation uses mentioned format-
ters. Further, it would be better if the implementation did not inherit
from the interface directly but the implementation was extended from the
AbstractNodeModelFormatter class containing the default implementation
of the IFormattedRegion interface as an inner class.

Positional Operators

Since behavior implementations of positional operators will represent in-
ner nodes of the formatting tree structure, they should contain references to
children. Some implementations have to know how a code formated by its chil-
dren will be length in order to select a variant of behavior. This is the case of
behavior implementations of horizontal-vertical operators. But also behavior
of a parent in the formatting tree structure can affect behavior of its chil-
dren such as a indenting operators only if its parent formats vertically. Thus
it has to be firstly calculated how the parent should work. Since obtaining
information about length from formatted code from children, which may be
recalculated several times, is slow, implementations should contain dedicated
methods for obtaining length of the first row, length of the last row, length
of the largest row and count of rows of a potential formatted code.

Although, behavior implementations of most of positional operators will
assemble formated code of their children as well as some inner node of a node
model expresses whole code represented by its children, it can be found some
positional operators whose behavior implementation will not assemble for-
mated code of their children but will add some spacing characters to formated

77

code of each child and will leave assembling to its parent. A good example is
the indenting operator. Thus behavior implementations of this kind will be
cloned so many times that each child will have own behavior implementation
of this kind as a parent in order to behavior implementations be consist.

8.2.1 Implementing Concept

The next step is to describe how the format method of the new imple-
mentation of the INodeModelFormatter interface should work. The method
can utilize the node model of a formatted code and a box model expressing
how the code should be formatted. Since leafs of the node model represent
particular tokens and character sequences of an original code formatting and
other nodes are related to rule calls, the solution could be to transform the
node model into an another tree structure expressing the code formatted by
a box model. The new tree structure should also contain tokens as leafs or
if a token corresponds to a terminal rule for which a usage of transforming
operator exists, the token would be replaced by the behavior implementation
of the transforming operator that encapsulates the token. Other nodes of the
tree structure would be represented by behavior implementations of positional
operators thus ensuring relative positioning between tokens.

The transformation of the node model to the new tree structure should be
carried so that leafs are transformed at first and other nodes are subsequently
transformed from lower to higher layers. Since the inner node of the node
model represent a rule call of a parser rule, the inner node will be transformed
into a tree structure of the behavior implementations that corresponds to
usages of positional operators from a formatting rule dedicated for the given
parser rule. In order to this concept make sense, behavior implementations
have to be initialized by values of usages of positional operators. Moreover,
the formatting rules related to a parser rule have to contain an usage of a
positional operator as root of the definition of the formatting rule and each
parser rule of a given grammar has to have one formatting rule in the box
model.

The transformation of a node model into formatting tree structure might
seem straightforward. But a node model differs from the classical AST in some
cases. These distinctions are a consequence of integrating actions defined in
a grammar (see the Listing 2.3.3) into the node model and they have to be
eliminated during the transformation.

The next step of the formatting procedure would be to serialize the new
tree structure into text so that the implementations will recursively apply its
behavior from leafs to root.

78

Figure 8.1: A schema depicts a partial node model of some code whose some
grammar rules are presented in the Listing 7.2. There are some gray nodes express-
ing sequences of blank characters from the original formatting. The node model is
transformed into a formatting tree structure of behavior implementations, which is
inspired by formatting rules from the same listing.

´box1´ : Ref´obj´

Object : Root rule

´shoe´ : ID ´(´ ´)´ ´:´ Attribute : Rule callAttribute : Rule call ´;´

´color´ : ID ´=´ Value : Rule call´size´ : ID ´=´ Value : Rule call

´box1´ : Ref´obj´ ´shoe´ : ID ´(´ ´)´ ´:´ ´;´

´color´ : ID ´=´´size´ : ID ´=´

I impl

H impl

I impl

H impl

V impl

H impl

H impl

Node model

Formatting tree structure

transformation

8.2.2 Behavioral Implementation of Operators

It has already been roughly mentioned what behavior implementations of
transforming and positional operators should look like. Now behavior imple-
mentations will be considered in greater detail.

Since behavior implementations of both kinds of operators have to work
according to values of usages of operators, behavior implementations should
contain a method that initializes a given implementation by values of usages

79

Figure 8.2: A schema depicts a segment of a node model of some code whose
some grammar rules are presented in the Listing 2.1 and expresses how the node
model might differ from a classical AST when the grammar contains some rules
with actions.

SpecificParameter : Rule call

{IntParameter} : Action

´int´IntParameter : Rule call

Node model

SpecificParameter : Rule call

´int´

IntParameter : Rule call

AST

of operators.

Transforming Operators

Since behavior implementations of transforming operators will serve as
leafs in the formatting tree structure, they should allow for storing original
tokens in themselves. But they also should be able to transform these tokens
into a required format by a new dedicated method.

8.3 Workflow

Languages allowing a user to manage a generic pretty printer and real-
ization concepts of a generic pretty printer following the original code of the
Xtext framework were designed in the previous text. It occurs one prob-
lem how to propagate these innovations into the Xtext framework so that
a language developer can use the generic pretty printer designed by this way
and do not have to register all partial changes of a implementation of syn-
tax highlighting and code formatting for developed language in a Google
Guice configuration manually. Moreover, it has to be somehow solved how
to activate generation of an initial box model from heuristic rules.

The Section 2.2.3 discusses that the behavior of the Xtext framework can
be customized so that a workflow configuration file dedicated for a developed
language allows for choosing which and how concepts of the framework (see
the Section 2.2) will be used for the language. The workflow configuration
file consists of declarations of used components. These components serves
to erase old generated code and other useful task, but the most important
component is called Generator serving for generating a meta-model from a

80

grammar, generating code of frameworks concept for developed language and
register it into a Google Guice configuration. This component delegates its
tasks to some subcomponents called fragments. The fragment is an arbitrary
class extending the AbstractGeneratorFragment class. A developer of a
new fragment can override the method for checking fragment’s parameters
defined in the workflow configuration file, methods allowing for adding some
binding rules into a Google Guice configuration and not least methods
that generate code into dedicated directories for framework’s concept and
have access to a grammar of a developed language.

The previous paragraph indicates that the workflow configuration file
seems like a good way how the language developer could set the designed
generic pretty printer as a pretty printer for a developed language. Utilization
of this concept would require creating a fragment that would add bindings
for new implementation of syntax highlighting, a fragment that would add
bindings for new implementation of code formatting, a fragment that would
obtain a box model from a corresponding DSL file and would mediate it to
implementation of pretty printing concepts, but also a fragment allowing for
starting generating an initial box model from heuristic rules. Realizations of
the first two fragments is straight-forward as resulting from the previous so
the following text will discuss only realizations of the last two.

8.3.1 Starting Generation of the Initial Box Model

The main purpose of this fragment would be to generate a DSL file contain-
ing an initial box model. Therefore a model of heuristic rules has be obtained
from a corresponding DSL file, transformed to a box model which will be
subsequently stored in the textual form. Standardly, the Xtext framework
generates an model provider obtaining models from a DSL file together with
generation of a meta-model. Further, because generating methods of frag-
ments have an access to grammar, the transformation can be done according
to the design from the Chapter 7. The Section 7.2.2 discusses that obtaining
an initial box model from heuristic rules and its serialization into DSL code
should be realized by utilizing the Xtend2 language. But the Generator
component contains a concept of code generation dedicated for its fragments
realized by utilizing templates of the Xpand. This problem can be solved by
utilizing extensions of templates written in the Xtext1 language [22] which
is completely different from Xtend2. Since extensions allow for calling Java
code, it can be used the design from the Chapter 7. All these facts will allow
a user to start up generating an initial box model when Xtext’s workflow
will be running.

81

8.3.2 Mediation of a Box Model

This fragment should mediate a box model for concepts of the generic
pretty printer, which will subsequently use it. Obtaining a box model can
be realized by utilizing a corresponding provider as it was mentioned in the
previous section. Since the Section 8.1.2 designs usages of operators that will
have own qualified names, the box model should be post-processed and given
names be calculated in order to qualified names do not have to be calculated
from scratch at each request to obtain them. Therefore the one solution how
to mediate a box model in a rational form could be that this fragment creates
an provider that obtains a model from a DSL file, post-processes it, offers
it to concepts of generic pretty printer. Another solution could be that the
fragment obtains a box model from a DSL file, post-processes it, stores it into
a XMI file [23] and creates a provider that loads a box model from the XMI
file and offers it to concepts of generic pretty printer. This solution moves the
time requirements associated with calculation of qualified names from the run
time of pretty printer into the run time of the code generation, where speed
is not so important.

82

Chapter 9

Evaluation

This chapter evaluates the proposal presented in previous four chapters.
The evaluation is based on behavior of a prototype, in which the proposal is
implemented. The prototype is available as an appendix of this thesis.

9.1 Comparison of the Designed Generic

Pretty Printer against the Original Pretty

Printer

The proposal may has advantages but also disadvantages against the orig-
inal solution of pretty-printing concept in the Xtext framework. The tested
basis in the form of a grammar should be not to extensive in order to be clear
and understandable but it also should capture most of options of a grammar.
The grammar was introduced that serves to the descriptive demonstration of
options of Xtext’s grammar in the Listing 2.1. Thus this grammar looks like
as a good choice. Moreover, it has already exist the formatting configuration
of the original solution in the Listing 2.2 dealing with code formatting and the
Listing 2.4, the Listing 2.5, the Listing 2.6 dealing with syntax highlighting.
The pretty-printing effect of the mentioned instance of the original solution
can be seen in the Listing 2.3. Now it just remains to create an alternative
instance of the new solution having the same pretty-printing effect. Such an
instance is presented in the following listing.

Listing 9.1: A box model related to grammar from the Listing 2.1, whose pretty-
printing effect is reflected in the Listing 2.3.

xtext "platform:/resource/cz.gpp/src/cz/gpp/Example.xtext"

import "platform:/resource/gpp/settings/operators.ppo"

83

TBOX[Default]: <F>;

TBOX[INT]: <F c="#7F7F7F">;

TBOX[ML_COMMENT]: <F i=italic,c="#00FF00">, <MC>;

TBOX[SL_COMMENT]: <F i=italic,c="#00FF00">, <SC>;

TBOX[Keyword, ["ˆ\\w.*$"]: <F w=bold,c="#7F0055">;

PBOX[Model]:

<V vs=2>[

package:Package

(<V>[imports:Import] & class:Class)

]

;

PBOX[QualifiedName]: <H hs=0>[ID (’.’ ID)];

PBOX[Package]: <H>[’package’ name:QualifiedName];

PBOX[Import]: <H>[’import’ className:QualifiedName];

PBOX[Class]:

<V>[

<H>[

abstract:’abstract’ ’class’ name:ID

(’extends’ superClass:[Class|ID])

]

’{’
<I>[<V vs=2>[(methods:Method | internalClasses:Class)]]

’}’
]

;

PBOX[Method]:

<V>[

<H>[

visibility:Modifier returnValue:[Class|ID]

<H hs=0>[

<F i=italic,c="#55007F">[name:ID] ’(’

(parameters:Parameter <H>[(’,’ parameters:Parameter)])

’)’ ’{’
]

]

<I>[<H>[body:INT]]

’}’
]

;

PBOX[Parameter]: <H>[SpecificParameter name:ID];

PBOX[SpecificParameter]:

<V>[IntParameter | StringParameter | ObjectParameter]

;

PBOX[ObjectParameter]: <V>[type:[Class|ID]];

PBOX[IntParameter]: <V>[’int’];

PBOX[StringParameter]: <V>[’string’];

84

9.1.1 Discussion

Both solutions pretty-print the code from the Listing 2.3 with the same
result. The comparison of both formatting configurations gives following facts.

• F1 - Entire code without comments of the formatting configuration of
the original solution takes 6250 bytes of space whilst the box model of
the new solution in the textual form takes 1267 bytes. Thus the new
solution brings not only space saving but also saving of time required
for defining some formatting configuration.

• F2 - Although, somebody can admit that space saving do not have
to imply time saving because writing a formatting configuration of the
original solution is supported by code completion and the content assist
for Java in the Eclipse IDE, the prototype of the new solution offers
equivalent features for the ModelLang language.

• F3 - The next possibility how to reduce code of formatting con-
figuration is to use some initial code and modify it. The origi-
nal solution allows for generating only a skeleton class that extends
the AbstractDeclarativeFormatter class, with tree lines of for-
matting rules, which are mostly replaced by whole core of format-
ting rule. Thus the only code which will be contained in the re-
sult formatting configuration is a prototype of a class that extends
the AbstractDeclarativeFormatter class and a prototype of the
configureFormatting method, which it represents 172 bytes of space
when the class named ExampleFormatter. The opposite situation oc-
curs with the new solution. A language developer can generate an initial
box model by utilizing some prepared heuristic rules capturing similar-
ities of languages that the developer met and subsequently modify the
model into a required form. Otherwise, the developer can create some
heuristic rules dedicated for a given language and generate an initial
box model. This kind of heuristic rules dedicated for the grammar form
the Listing 2.1 is located in the following listing and takes 425 bytes of
space. Subsequently generated textual form of a initial box model takes
1311 bytes and the final box model, which has the same pretty-printing
effect like the box model created from scratch, takes 1392 bytes, where
the box model was created by adding except few modifications. The
difference in the size of this box model and the box model created from
scratch is formed by code formatting and some extra usages of operators
that has been generated into the initial box model and have no effect in
theirs context such as an usage of the horizontal operator that is encap-
sulated by an another usage of the horizontal operator. The prototype

85

of the new solution also offers the content assist for the HeurLang
language. Thus a creation of heuristic rules would be faster.

Listing 9.2: Some heuristic rules dedicated for generating an initial box
model for the grammar from the Listing 2.1.

operators "platform:/resource/gpp/settings/operators.ppo"

Terminals:

INT: <F c="#7F7F7F">

ML_COMMENT: <F i=italic, c="#00FF00">,<MC>

SL_COMMENT: <F i=italic, c="#00FF00">,<SC>

Keyword["ˆ\\w.*$"]: <F w=bold,c="#7F0055">
default: <F>

Non-terminals:

root? : <V>

[’package’|’import’,1-*] : <H>

[1-*,’)’,’{’] : <H>
[’{’,*,’}’] : <V>
[*,’class’,*] : <H>

[’,’,1] : <H>

• F4 - However, a formatting configuration of the original solution fulfills
its purpose, the formatting configuration is confusing because a language
developer has no direct reference to the grammar and he has to hold
a structure of the grammar in his mind. Moreover, this solution deals
with internals of the Xtext language, which a language developer has
to more or less know. The new solution is the exact opposite from this
perspective.

• F5 - When an user wants to use some software, he often requires soft-
ware’s reliability. The original solution has been developed for many
years and it has been tested on many projects. Thus it can be expected
that this solution is quite reliable. On the contrary, the new solution
is realized by the prototype that has been tested on few projects and
therefore it may contain some potential malfunctions.

• F6 - However, both solutions are able to format code matching a given
grammar, the situation around formatting code containing some errors
is not unambiguous. Since it suffices the original solution that a type of
token occurs in the input stream and an formatting sequence together
with the token is inserted into the output stream without respect to
correctness of previous and following tokens, the original solution is at
least a bit able to format incorrect code. Whereas incorrectness of code

86

may break the construction of operator tree because given elements
of the node model do not have corresponding grammar rules that are
supposed by a box model (see the Section 8.2).

9.1.2 Summary

The comparison of the original solution and the new solution were dis-
cussed in the previous section. Now the advantages and disadvantages derived
from the comparison are formed into an organized table, which is located in
the following figure.

Figure 9.1: A table concludes evaluation of the original and the new solution.
When a solution receives more stars in a given aspect, the solution is better.

The original solution The new solution
F1 - Amount of Code F FFF
F2 - Content Assist FFF FFF
F3 - Initial Configuration F FFF
F4 - Comprehensibility FFF
F5 - Potential Reliability FFF FF
F6 - Incorrect Code FF

As it can be seen in the previous figure the new solution has most of advan-
tages against the original solution. Moreover, the one from two disadvantages
can be removed by longer-term testing and development.

9.2 The Generic Pretty Printer Formatting

Code from the Real World

As it results from the previous section that the prototype of the new solu-
tion can pretty-print the code from the Listing 2.3 that matches the grammar
having rather illustrative character. Thus the prototype was being tested the
grammar of the MetaModLang language and it pretty-printed definitions
of operators. Further, three projects were selected, which contain grammars
with reasonable size and corresponding code examples, in a database [24] of
grammars written by utilizing the Xtext framework, specifically the Proto-
buf4e project [25], the Xtext-typesystem project [26] and the XTypeS
project [27]. In order to the projects be well arranged and deprive of theirs
malfunction, they were trimmed of code unrelated to grammar. Moreover, the
Protobuf4e project had to be transformed into a new project utilizing the

87

second version of the Xtext framework, because the original project exploits
the first version and the modeling workflow engine (see the Section 2.2.3) is
incompatible beetween the versions of the Xtext framework. Further, the
grammars contained the projects had to be a little changed. Names of assign-
ments (see the Section 2.3.3) were not allowed to be the same like keywords
contained in the MetaModLang and the ModelLang language, because
these names were parsed as keywords by lexical analysis of the parser in a file
of a box model. Nothing else had to be changed and box models were written
for the grammars that allowed for pretty-printing code examples.

9.3 Unimplemented Operators

The goal G2 was introduced in order to realize operators of the ideal
box meta-model in the Chapter 4. All operators except the ALT and the
WD operator has been successfully implemented. The realization of the two
operators has not been compatible with the steps contained in the Chapter 6
and the Section 8.2. As it results from the Section 3.3 that these two operators
are not being used because the first one is contained only in the DeJonge box
meta-model and the second one is contained only in the Brand-Visser box
meta-model, so they are not too important. Moreover, two extra operators
were realized that are not contained in the ideal box meta-model. The first
one is the HOV operator introduced in many box meta-models that works
exactly as <ALT>[[<H>[boxes], <V>[boxes]]. The second one is the new
VI operator that vertically indents its inner sub-boxes. In the other words,
the operator inserts a count of new lines specified in the tc parameter before
the first sub-box and a count of new lines specified in the bc parameter after
the last sub-box.

The ALT Operator

This operator can not be realized because it requires that the inner sub-
boxes were composed from the same defining elements. Thus this fact implies
that these clones of defining elements would have the same identifier (the Sec-
tion 6.2) which would make interconnection of a box model with a grammar
impossible.

The WD Operator

The situation with this operator is similar. Although, its inner sub-boxes
do not have to composed from the same defining elements, the inner boxes

88

may occur somewhere in the box model because this operator serves to intent
about the size of the inner sub-boxes.

9.4 Suggestions Improving Prototype Devel-

opment

The author of this thesis met most of capabilities of the Xtext framework
and other tools needed for creating the prototype of the new solution. The
following text contains proposals extending capabilities of these tools.

9.4.1 Debugger for the Xtend2 Language

The Xtend2 language has been used in order to realize steps discussed in
the Section 7.2 and the Section 8.3.1. Code written in this language is being
transformed into Java code. It is very often that a developer makes mistakes
in his code. In these days, a debugger for the Xtend2 language does not exist.
Thus, when a developer wants to debug code written in the Xtend2 language,
he has to use a debugger for Java, look for errors over generated code and fix
them in original code. Since generated code is confusing and a human resolves
with difficulties which code segment corresponds to a command of original,
it should be created a debugger for the Xtend2 language. A one possible
solution could be that the debugger for the Xtend2 language would exploit
a debugger for Java as its kernel.

9.4.2 Actions Affecting a Meta-Model Generation from
a Grammar

The Figure 2.1 depicts that it has to exist a grammar and a meta-model in
order to be possible to generate a model from code. Further, it has been men-
tioned in the Section 2.1 that a meta-model can be generate from a grammar.
But when a developer has requirements on the structure of the meta-model, he
has to create the meta-model from scratch and reference it inside the grammar
because any possibility does not exist how to affect a meta-model generation.
Of course, a possibility to post-process the meta-model [28] exists but it is
dedicated to trivial changes such as defining default values of variables and
adding method prototypes. Although, the Xtext’s grammar contains actions
(see the Section 2.3.3) influencing model element creation, they allows a de-
veloper to not much change structure of the meta-model and also a generated

89

model. Thus it should be added more actions allowing for changing relations
contained in the meta-model such as inheritance, aggregation, etc.

9.4.3 Meta-Model Generation Bounded to Design Pat-
terns

The meta-model is only a structure of interdependent classes without be-
havioral specification. Further, there are generated factories and helpers work-
ing with elements of the meta-model. When a developer wants to add behavior
to elements of the meta-model, he has to create new classes extending or en-
capsulating original classes because modification of original elements would
be lost after meta-model regeneration. Moreover, it has to be manually writ-
ten supportive classes. Although, this problem is known and there is an effort
to solve it [29], the EMF does not contain any feature allowing a user to
automatically interconnect a meta-model with a behavioral specification on
the base of the chosen design pattern (the original element extended by a
new class, the original element encapsulated by a new class, the new methods
injected into the original element).

9.4.4 Code Generation Based on a Grammar

When a developer creates a nontrivial grammar, he has no concrete idea
about a domain of code matching the grammar. Moreover, he has to write code
examples when he wants to test concepts (see the Section 2.2) of the Xtext
framework dedicated for the developed language. Thus the next proposal is
to create a generator that would generate code capturing all features of a
grammar.

90

Chapter 10

Related Work

This chapter discusses approaches to the concept of pretty-printing in
other projects dealing with creating domain-specific languages. Since the
pretty-printing concept is an only supportive and not main aspect of lan-
guage development and many experimental projects allowing a user to create
a DSL (see [30]) exist, greater projects with a nontrivial history should be
chosen in order to be more probable that the pretty-printing concept would
be realized in the project.

10.1 Graphical Domain-specific Languages

Textual domain-specific languages allows a user to textually express var-
ious models therefore they presents models to a user. But modeling projects
such as GMP[31], MetaEdit+ [32], Obeo Designer [33], Microsoft
DSL Tools [34] allow a user to create graphical DSLs. An instance cre-
ated with this language kind may look like a digram, a table or an another
graphical representation. So as a textual DSL has its grammar, which de-
scribes the language, a graphical DSL has also an own kind of specification.
This kind of specification associates meta-model elements, relations between
elements with graphical entities that subsequently form the final representa-
tion of a model. Although, syntax highlighting and code formatting as such
do not make sense with this kind of DSLs, there are some analogies. Text
of attributes of model elements such as element’s name can be decorated
by font configuration specified in a specification of graphical representation
for a meta-model element. Further, a user can align elements of a graphical
representation manually and he can align marked elements horizontally or
vertically at once in some projects.

91

10.2 EMFText

This project [35] is an alternative to the Xtext project. It allows for defin-
ing textual DSLs and interconnect them with meta-models of the Eclipse
Modeling Framework. Although, a principle of a language creation is
similar to the Xtext framework, this project does not offer any possibility
to create a code formatter for a developed language. This language only sup-
ports the concept of lexical highlighting, where formatting configuration are
associated with token types directly in a grammar specification.

10.3 Meta Programming System

This project [36] has been developed by the JetBrains company and it
is better known under the acronym MPS. This project is a projection editor,
which it a little conceptually differs from the couple Xtext and EMF. The
EMF allows a user to define models by creating meta-models and further
transform them among themselves and generate them into code with assis-
tance of another instruments. The Xtext framework subsequently allows a
user to get given models from textual DSLs. Whereas the MPS exploits a
definition of abstract syntax tree instead of a meta-model definition. This
kind of AST is free from concrete syntax elements such as keywords, concrete
textual tokens, etc. It essentially represents a abstract tree of logical nodes,
which can be imagined as nonterminals. The instance of this kind of AST can
be created and edited by a projection. It means that the AST is projected
into a textual representation that can be modified by an editor, which does
not make operations over the projected text but directly over the AST. The
textual representation serves only as a virtual appearance of AST. The MPS
will be able to project the AST into a graphical representation in the near
future.

The question is how the MPS defines a projection of the AST into a tex-
tual representation and therefore the appearance of textual representation. It
solves this requirement so that a developer has to define a editor for each kind
of node contained in AST. The editor definition contains an appearance tem-
ple, which is essentially a box model. These box models exploits the horizontal,
vertical and indenting operator which have no parameters because spacing is
represented by special sub-boxes of an usage of a operator. Further, the box
models do not contains any usage of a highlight operator because the editor
for a box model allows a user to markup an individual elements of a given box
model with a font configuration that is subsequently used for a correspond-
ing textual representation of a element. The concept of syntax highlighting

92

is realized in this way. On the contrary, the concept of code formatting by
itself are missing because the project textual representation always satisfies
templates of node editor and a user has no chance how to break a formatting.
It is a consequence that the textual representation do not exist physically in
the form of text.

93

Chapter 11

Conclusion and Future Work

This last chapter concludes the thesis and discusses possible improvements
following the solution of this thesis.

11.1 Summary

Goals of this thesis has been introduced in the Chapter 4. Although, the
documentation of the Xtext framework [1] is very brief and the author of this
thesis has to get needed information from uncommented code of the Xtext,
all established goals have been fulfilled. In order to verify theoretical steps
introduced in the Chapter 5, 6, 7, 8, the prototype of generic pretty printer
has been created.

The goal G1 has been met by introducing the MetaModLang language
in the Chapter 5. This language has been used for specifying most of opera-
tors of the ideal box meta-model which together with corresponding behavior
specifications are contained in the prototype. Hereby the goal G2 has been
accomplished. Moreover, the prototype contains specifications of more oper-
ators introduced in the Section 9.3. Furthermore, the goal G3 has been met
by introducing the ModelLang language in the Chapter 6. A number of
heuristic rules that can be written in the HeurLang (see the Chapter 7)
serve for the generation the initial box model whereby the goal G4 has been
met. Furthermore, the prototype of the generic pretty printer, which can be
easily integrated into the Xtext framework make the goal G5 fulfilled. The
new solution of this thesis has been evaluated in the Chapter 9 in comparison
to the original solution of pretty-printing thereby the goal G6 has been met
too.

To summarize, a concept of model-driven pretty printer has been intro-
duced. It allows for pretty-printing DSLs developed by utilizing the Xtext

94

framework in easier way. Furthermore, the concept has been realized by uti-
lizing the working prototype.

11.2 Future Work

The thesis has shown that pretty-formatters for DSL still bring many
open challenges which can improve DSL usability. However, the thesis has not
solved them all, there are still many open questions and possible development
directions. For example, the proposals to extent or to improve the solution of
this thesis is discussed.

11.2.1 Implementing The WD and ALT operator

The Section 9.3 focused on the WD and ALT. The result showed that
the above-mentioned operators can not be implemented because of current
identifying grammar elements and defining elements. Alternative solution is
to design a solution integrating these two operators of the ideal meta-model.

11.2.2 Implementing Concepts Improving an Integra-
tion of Generic Pretty-printer into Eclipse

Although, the prototype contains realization of concepts (see the Sec-
tion 2.2) facilitating code writing for each from three languages such as
Content Assist, Validation, some of possible concepts were not implemented.
Hence it should be implemented the Outline View, Labeling, Template Pro-
posals, etc. for each language contained in the prototype.

Furthermore, since the behavioral specification of operator determines op-
erator’s behavior, the specification should be expanded by definitions vali-
dating a box model from operator’s point of view. These definitions would
serve for example for validating that an usage of the R operator has to be
encapsulated by an usage of the A operator.

11.2.3 Pretty-printing Incorrect Code

The Section 9.1 discussed the solution of the thesis is not able to format
incorrect code. The next proposal is to design a solution for this issue.

95

11.2.4 Pretty-printing Individual Segments of Code

Although, the prototype is able to format entire files of code, it is not
sufficiently debugged to format individual code segments specified by an user.

11.2.5 More Complex Heuristic Rules

The current version of heuristic rules encapsulates the whole matched se-
quence of elements by defined usages of operators. The proposal is to improve
heuristic rules so that it would be possible to specify a subsequence of the
matched sequence, where the subsequence would be encapsulated by defined
usages of operators.

11.2.6 Macro Operators

When a developer wants to format a number of boxes by the first operator
and some subset of boxes by the second operator, he has to enclose subset
of boxes with the usage of the second operator. Thus he obtains a new box
formed by the usage of the second operator. Further, he has to enclose the
new box and other boxes of the set with an usage of the first operator. The
composition of concrete usages of operators may occur very often. Thus macro
operators expressing a concrete composition of usages of operators should be
introduced.

Figure 11.1: The figure depicts a macro operator composed from an usage of the
V operator and an usage of the H operator.

Box Box Box] <CMP>[= Box Box Box] <V>[<H>[]

96

Bibliography

[1] Itemis AG: Xtext Framework, [online], 2012 [cit. 2012-07-15]. <http:
//www.eclipse.org/Xtext/>

[2] The Eclipse Foundation: Eclipse IDE, [online], 2012 [cit. 2012-07-15].
<http://www.eclipse.org/>

[3] Wikipedia: Eclipse Public License, [online], 2012 [cit. 2012-07-15].
<http://en.wikipedia.org/wiki/Eclipse_Public_License>

[4] The Eclipse Foundation: The Eclipse Modeling Framework Project
(EMF), [online], 2012 [cit. 2012-07-15]. <http://www.eclipse.org/
modeling/emf/>

[5] Wikipedia: Plain Old Java Object, [online], 2012 [cit. 2012-07-15].
<http://en.wikipedia.org/wiki/Plain_Old_Java_Object>

[6] Google: Google Guice, [online], 2012 [cit. 2012-07-15]. <http://code.
google.com/p/google-guice/>

[7] Wikipedia: Uniform Resource Identifier, [online], 2012 [cit. 2012-
07-15]. <http://en.wikipedia.org/wiki/Uniform_resource_
identifier>

[8] Wikipedia: Abstract Syntax Tree, [online], 2012 [cit. 2012-07-15]. <http:
//en.wikipedia.org/wiki/Abstract_syntax_tree>

[9] Eelco Visser: Stratego/XT Tutorial Chapter 9., [online], 2008 [cit. 2012-
09-03]. <http://releases.strategoxt.org/strategoxt-manual/
unstable/manual/chunk-chapter/generic-pretty-printing.

html#pp-table>

[10] Wikipedia: Metaprogramming, [online], 2012 [cit. 2012-09-03]. <http:
//en.wikipedia.org/wiki/Metaprogramming>

97

[11] INRIA Sophia Antipolis: The CtCoq System, [online], 2012 [cit. 2012-
09-03]. <http://www-sop.inria.fr/croap/ctcoq/help/notations.
html>

[12] Eelco Visser , Mark van den Brand: Generation of Formatters for
Context-free Languages, [PDF file, online], 1999 [cit. 2012-09-03].
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
47.4257>

[13] Merijn de Jonge: A PrettyPrinter for Every Occasion, [PDF file, online],
2000 [cit. 2012-09-03]. <http://reference.kfupm.edu.sa/content/
p/r/a_pretty_printer_for_every_occasion__188340.pdf>

[14] Pierre Weis: How to Pretty-print (to Use “format” ?) ?l, [online], 1996
[cit. 2012-09-03]. <http://caml.inria.fr/pub/old_caml_site/FAQ/
format-eng.html>

[15] J. Heering, P. R. H. Hendriks, P. Klint, J. Rekers: The Syntax
Definition Formalism SDF - Reference Manual, [PDF file, online],
1989 [cit. 2012-09-03]. <http://pdf.aminer.org/001/067/569/the_
syntax_definition_formalism_sdf_reference_manual.pdf>

[16] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
V. Pascual: CENTAUR: The System, [PDF file, online], 1988 [cit. 2012-
09-03]. <http://dl.acm.org/citation.cfm?id=65005>

[17] Merijn de Jonge: To Reuse or To Be Reused, Amsterdam: University of
Amsterdam, Faculty of Science, FNWI: Informatics Institute (II), Su-
pervisor: P. Klint. Co-promotor: A. van Deursen, 2003. [cit. 2012-09-03],
page 51-72

[18] Wikipedia: Depth-first Search, [online], 2012 [cit. 2012-09-03]. <http:
//en.wikipedia.org/wiki/Depth-first_search>

[19] Itemis AG: Xtend 2, [online], 2012 [cit. 2012-09-03]. <http://www.
eclipse.org/Xtend/>

[20] The Eclipse Foundation: XPand2, [online], 2012 [cit. 2012-09-
03]. <http://help.eclipse.org/galileo/index.jsp?topic=/org.
eclipse.xpand.doc/help/ch01s06.html>

[21] The Eclipse Foundation: Acceleo, [online], 2012 [cit. 2012-09-03]. <http:
//wiki.eclipse.org/Acceleo>

98

[22] openarchitectureware.org: Xtend, [online], 2012 [cit. 2012-09-03].
<http://www.openarchitectureware.org/pub/documentation/4.
3.1/html/contents/core_reference.html#Xtend_language>

[23] Object Management Group: OMG MOF 2 XMI Mapping Specification,
[PDF file, online], August 2011 [cit. 2012-09-03]. <http://www.omg.
org/spec/XMI/2.4.1/PDF/>

[24] Itemis AG: What Others Have Built with Xtext, [online], 2012 [cit. 2012-
09-03]. <http://www.eclipse.org/Xtext/community.html>

[25] Cedric Vidal: Protobuf4e, [online], 2012 [cit. 2012-09-03]. <http://
code.google.com/p/protobuf4e/>

[26] Markus Voelter: Xtext-typesystem, [online], 2012 [cit. 2012-
09-03]. <http://code.google.com/a/eclipselabs.org/p/
xtext-typesystem/>

[27] Lorenzo Bettini: XTypeS, [online], 2012 [cit. 2012-09-03]. <http://
xtypes.sourceforge.net/>

[28] The Eclipse Foundation: How Can I Control the Xtext Meta-model In-
ference, [online], 2012 [cit. 2012-09-03]. <http://wiki.eclipse.
org/Xtext/FAQ#How_can_I_control_the_Xtext_meta_model_

inference.C2.A0.3F>

[29] Lake Thoreau: Generation Gap, [online], 2012 [cit. 2012-09-03]. <http:
//www.eclipsecon.org/2012/category/tags/generation-gap>

[30] languageworkbenches.net: LWC2011 Comparison Matrix, [online], 2012
[cit. 2012-09-03]. <http://www.languageworkbenches.net/index.
php?title=LWC2011_Comparison_Matrix>

[31] The Eclipse Foundation: Graphical Modeling Project (GMP), [online],
2012 [cit. 2012-09-03]. <http://www.eclipse.org/modeling/gmp/>

[32] MetaCase: MetaEdit+ Domain-specific Modeling (DSM) environment,
[online], 2012 [cit. 2012-09-03]. <http://www.eclipse.org/modeling/
gmp/>

[33] Obeo: Obeo Designer, [online], 2012 [cit. 2012-09-03]. <http://www.
obeodesigner.com/>

[34] Microsoft: DSL Tools Home on Code Gallery, [online], 2012 [cit. 2012-
09-03]. <http://archive.msdn.microsoft.com/DslTools>

99

[35] DevBoost: EMFText, [online], 2012 [cit. 2012-09-03]. <http://www.
emftext.org/index.php/EMFText>

[36] JetBrains: Meta Programming System, [online], 2012 [cit. 2012-09-03].
<http://www.jetbrains.com/mps/>

100

Appendix A

Content of Attached CD-ROM

This thesis is accomponied by the CD-ROM containing source code of
the prototype implementation and another affairs related to this thesis. The
structure of CD-ROM’s content is organized as follows.:

/README.txt

A brief description of the content of the CD-ROM.

/Code/

The directory contains source codes of prototype’s implementation. Fur-
ther,a workflow for the Eclipse is present that allows for browsing fol-
lowing prototype’s projects comfortably.

gpp

The project contains an implementation of behavior of operators,
fragments dedicated for MWE, the generic code formatter, the
generic syntax highlighter and another mentioned functionalites
unrelated to the creation of some language.

gpp.boxmodel

The project contains the grammar of the ModelLang language
and an implementation of runtime concepts for this language.

gpp.boxmodel.ui

The project realizes IDE concepts for the ModelLang language.

gpp.boxmodel.operators

The project contains the grammar of the MetaModLang lan-
guage and an implementation of runtime concepts for this lan-
guage.

gpp.boxmodel.operators.ui

The project realizes IDE concepts for the MetaModLang lan-
guage.

101

gpp.boxmodel.defaultboxmodel

The project contains the grammar of the HeurLang language and
an implementation of runtime concepts for this language.

gpp.boxmodel.defaultboxmodel.ui

The project realizes IDE concepts for the HeurLang language.

/Evaluation/

The directory contains projects serving as a subject for testing and
evaluating the prototype.

/Evaluation/Workflow/

The directory contains projects defining languages dedicated for testing
and a workflow for the Eclipse that allows for using the prototype and
browse following projects comfortably.

cz.gpp

The project contains the grammar intorduced in the Section 2.1
and an implementation of runtime concepts for the corresponding
language.

cz.gpp.ui

The project realizes IDE concepts for the language whose grammar
was introduced in the Section 2.1.

cz.gpp.zoo

The project contains the grammar intorduced in the Figure 2.1
and an implementation of runtime concepts for the corresponding
language.

cz.gpp.zoo.ui

The project realizes IDE concepts for the language whose grammar
was introduced in the Figure 2.1.

gpp.tests.operators

The project contains the grammar of the MetaModLang lan-
guage and an implementation of runtime concepts for this lan-
guage.

gpp.tests.operators.ui

The project realizes IDE concepts for the MetaModLang lan-
guage.

biz.vidal.protobuf4e.dsl

The project contains the grammar from the Protobuf4e project
[25] and an implementation of runtime concepts for the correspond-
ing language.

biz.vidal.protobuf4e.dsl.ui

102

The project realizes IDE concepts for a language containted in the
Protobuf4e project [25].

expr

The project contains the grammar from the Xtext-typesystem
project [26] and an implementation of runtime concepts for the
corresponding language.

expr.ui

The project realizes IDE concepts for a language containted in the
Xtext-typesystem project [26].

it.xtypes

The project contains the grammar from the XTypeS project [27]
and an implementation of runtime concepts for the corresponding
language.

it.xtypes.ui

The project realizes IDE concepts for a language containted in the
XTypeS project [27].

/Evaluation/Testing/

The directory contains code dedicated to be pretty-printed by the pro-
totype and a workflow for the Eclipse that allows for pretty-printing
code by the prototype and browse following projects comfortably.

cz.gpp.tests

The project contains code that is dedicated to be pretty-printed
by the protope and matches the grammar intorduced in the Sec-
tion 2.1.

cz.gpp.zoo.tests

The project contains code that is dedicated to be pretty-printed by
the protope and matches the grammar intorduced in the Figure 2.1.

gpp.tests.operators.tests

The project contains code that is dedicated to be pretty-printed
by the protope and matches the grammar of the MetaModLang
language.

biz.vidal.protobuf4e.dsl.tests

The project contains code that is dedicated to be pretty-printed
by the protope and matches the grammar contained in the Pro-
tobuf4e project [25].

expr.xample

The project contains code that is dedicated to be pretty-printed by
the protope and matches the grammar contained in the Xtext-

103

typesystem project [26].

it.xtypes.examples

The project contains code that is dedicated to be pretty-printed by
the protope and matches the grammar contained in the XTypeS
project [27].

/Document/

The directory contains an electronic version of this thesis.

/Prerequisities/

The directory contains a description of software items for the Eclipse
Indigo that are neccessary for running the prototype suchas the
Eclipse Modeling Tools, the Xpand SDK, the Xtext SDK. This
description can be imported into the Eclipse, which will run the in-
stallation of the software items.

104

