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Praha 2013
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Introduction

Due to the population ageing phenomenon, which occurs almost everywhere
around the world, the social insurance systems in many economically developed
countries are predicted to face serious sustainability problems in a short time.
Most likely, the future retirees will have to (at least partially) rely on their own
lifetime savings in the issue of providing a sufficient income stream to finance
their retirement consumption.

In essence, there are two distinct ways to cope with the problem of trans-
forming one’s retirement savings into a periodic income stream. The most natu-
ral strategy is to buy a life annuity and thus secure a life-contingent cash flow.
However, as the relatively low worldwide demand for annuities indicates, many
individuals actually decide for an alternative strategy, namely to replicate a syn-
thetic life annuity. We refer to the later approach as the self-annuitization. This
strategy comprises a discretionary management of pension assets and periodic
withdrawals for the purposes of consumption. The retirees who decide for the
self-annuitization strategy will likely share a common dilemma: How large portion
of one’s retirement savings can annually be spent without an excessive exposure
to the risk that the savings run out prior to death of the individual? To answer
this question, one needs to link the three essential factors of retirement planning:
mortality considerations, investment returns and spending rates.

In order to simulate financial life-cycles, many financial planners have resorted
to Monte Carlo simulations. However, the Monte-Carlo-based studies have their
own drawbacks. They provide only little insight into the dynamics of the trade-off
between risk and return during retirement and, most importantly, the number of
simulations required for convergence tends to be very large, which makes these
and similar methods quite time-consuming.

In this text, we approach the problem of sustainable retirement spending from
a different perspective. By deriving an analytic relationship between the three
essential variables of retirement planning, we present an intuitive and consistent
model. Since both the length of human life and the future investment returns
are stochastic, the event of the retirement savings complete depletion prior to
one’s death can be viewed as a realization of random variable. Similarly to the
classical ruin theory in insurance, we are interested in the probability of ruin of
the individual, i.e. we investigate the probability that the retirement savings run
out prior to death of the individual.

In order to solve this problem, we introduce the concept of stochastic present
value and demonstrate that the probability of ruin can be represented as the
probability that the stochastic present value of future consumption is greater
than the initial capital (retirement savings) of the individual. Our approach is
strictly analytic, without depending on Monte Carlo simulations or historical
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studies.
In the limit case of perpetual consumption it turns out that, under certain as-

sumptions on investment returns and mortality dynamics, the stochastic present
value follows the reciprocal gamma distribution, as was first shown by Milevsky
(1997). Unfortunately, in the case of (finite) random remaining lifetime, there
is no closed-form density function for the stochastic present value. However, as
shown by Milevsky & Robinson (2000), the true probability density function can
be approximated by matching the first two moments of the stochastic present
value to the first two moments of the reciprocal gamma distribution. We refer to
this approach as the reciprocal gamma approximation.

In this thesis, we start from scratch and gradually build the model for the
two key stochastic variables of our analysis: length of human life and investment
returns. We continue with the main analytic part, i.e. the derivation of the
reciprocal gamma approximation for the probability of ruin. Afterwards, using
extensive Monte Carlo simulations, the accuracy of the reciprocal gamma approxi-
mation is verified. The discrepancy between the reciprocal gamma approximation
results and the Monte Carlo values is analysed in dependency on the investment
volatility, for various values of retiring age, spending rate and expected rate of
return. Last but not least, we provide a numeric case study using Czech data. In
particular, we present values for the lifetime probability of ruin and sustainable
spending rate under various combinations of wealth-to-consumption ratios and
investment portfolio characteristics.

The contribution of this thesis can be viewed from several different perspec-
tives. In the main analytic part of this text, we draw extensively from the afore-
mentioned articles by M. A. Milevsky. More specifically, all the concepts re-
garding the reciprocal gamma approximation originate in his work. In Milevsky
(2006) and Milevsky & Robinson (2000), the author derived the reciprocal gamma
approximation formula under the assumption of the exponential law of mortality
and the Gompertz law of mortality, respectively. We extend his theoretical result
by deriving the corresponding reciprocal gamma formula also for the Gompertz-
Makeham law of mortality. As another part of our analytic contribution we pro-
vide a non-trivial step-by-step derivation of the second moment of the stochastic
present value, which, to our best knowledge, has not been published yet.

The quantitative contribution of our work can be understood in the enclosed
results for the probability of ruin and the sustainable spending rate in the Czech
environment, as well as in the verification of the reciprocal gamma approximation
accuracy. We believe our approach to be valuable in the sense that the poten-
tial reader will not only find numeric results and recommendations suitable for
his individual circumstances, but he will also get a notion of how precise the
corresponding values are.

Finally, we see the qualitative contribution of this text in a comprehensive
presentation and explanation of all the concepts required to understand the main
theoretic result, which is the reciprocal gamma formula. The reader does not nec-
essarily need to be familiar with the results of actuarial mathematics or stochastic
calculus prior to reading the text.

The remainder of the text is organized as follows.
In Chapter 1 we start with a demonstration of the population ageing phe-

nomenon size and a discussion of its consequences. The key concepts of self-
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annuitization and ruin in retirement are introduced. We also discuss the benefits
and drawbacks of the classical annuitization approach and review the theoretic
result by Yaari (1965), which concerns the demand for life annuities.

Chapter 2 presents the actuarial models for description of human mortality,
including the remaining lifetime random variable, the instantaneous force of mor-
tality and life tables. Two various analytic mortality laws are introduced and
their respective characteristics are discussed.

Chapter 3 deals with the problem of modelling a risky financial investment
with a stochastic rate of return. The key concept of this chapter is the geo-
metric Brownian motion for the portfolio price with the underlying log-normal
distribution of returns.

In Chapter 4 we derive the theoretic results for the probability of retirement
ruin under the assumptions of the Gompertz-Makeham law of mortality and the
market prices driven by the geometric Brownian motion. First, we present the
exact result of Milevsky (1997) for the eventual probability of ruin. Afterwards,
we derive the reciprocal gamma approximation for the lifetime probability of ruin.

In Chapter 5 we analyse the accuracy of the reciprocal gamma approximation
via comparison with the results obtained from Monte Carlo simulations.

Chapter 6 provides the numerical case study. First, we fit the Gompertz law
of mortality to the Czech life table and calibrate the financial model. Afterwards,
the results for the lifetime probability of ruin and the sustainable spending rate
are presented and discussed.
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Chapter 1

The Retirement Planning
Problem

To motivate the reader and demonstrate the importance of the topic discussed
in the following text, we start this chapter with a short description of the late
demographic development across chosen European countries. In particular, we
focus on the ageing of European population. To illustrate the size of the problem,
we present data compiled by Eurostat1. Naturally, the demographic situation in
the Czech Republic is of the highest importance for us. However, we see fit to
describe the problem in the European context, because the analysis we carry
out later can be (with a slight change of assumptions) applied universally across
different countries.

Later we explain how the population ageing problem influences the social in-
surance system and thus concerns the pension planning of future retirees. We
also introduce the fundamental concepts of self-annuitization, sustainable spend-
ing rate and probability of ruin.

1.1 The Demographic Picture

For the entire recorded human history the world population has never been
as old as nowadays. Over the last couple of years the ageing of the population
has become an often discussed world phenomenon. According to the World Pop-
ulation Ageing: 1950-2050 2 record elaborated by the United Nations, the rate
of global ageing in the 21st century is predicted to be larger than in the previ-
ous century. The ageing of the population is caused mainly by two demographic
effects: increasing longevity and declining fertility.

Thanks to the progress of medical care, the average length of human life
has been steadily on the rise during the last centuries. A common demographic
indicator used among other things for longevity measurement is the life expectancy
at birth3, defined as the mean number of years that a newborn child can expect
to live. Table 6.5 in the Appendix shows an overview of the life expectancy

1Data available for download at
http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home.

2The record is available at www.un.org.
3See Section 2.1 for an exact definition of the life expectancy at birth in the context of

actuarial mathematics.
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development in selected European countries. Observe that in every country the
life expectancy at birth has increased over the last ten years. In the Czech
Republic, for instance, the life expectancy has grown by 2.7 years for males and
by 2.5 years for females. Similarly, the average increase over all countries (males
and females combined) is approximately 2.5 years, which is a substantial number,
given the period over which the change is measured.

However important the increasing longevity nowadays might appear, accord-
ing to the aforementioned United Nations report, the contribution of the low
fertility to the ageing of world population is even larger. A substantial decline in
fertility rate in the most developed countries has been evident especially in the
second half of the 20th century. Table 6.6 in the Appendix shows the total fertil-
ity rate4, i.e. number of children per woman, across the same group of European
countries. For example, the fertility rate in the Czech Republic started at 1.86
children per woman in 1991, then dropped over ten years to the critical value of
1.14 in 2001 and rose again to 1.43 until 2011. In general, the decrease in fertility
is not as evident as the increase in life expectancy shown in the previous table.
The values vary significantly amongst different countries and in many cases the
total fertility rate has even grown during the last twenty years, since the stage
of the demographic transition towards lower fertility and mortality is different
for every country. Still, most of the recent figures are far bellow the replacement
level fertility rate5, which is considered to be 2.1 in highly developed countries.

Without taking the migration into account, a long-term sub-replacement fer-
tility rate generally leads to a gradual population decline in the given region and
thus (possibly combined with the increasing longevity effect) the population is
ageing, since the number of born babies is declining with time. An illustrative
indicator of the population ageing suitable for our purpose is the old-age depen-
dency ratio. This indicator is defined as the ratio between the total number of
elderly persons of an age when they are generally economically inactive (aged 65
and over) and the number of persons of working age (from 15 to 64). Table 1.1
shows the development of old-age dependency ratio in selected European coun-
tries (the same countries as in the previous case), along with estimated future
values up to the year 2060. While the average ratio hovered somewhere around
20% in 1991 (19.1% for the Czech Republic), it has jumped over twenty years to
an average value of 25% in 2011 (22.3% in the Czech Republic) and the average
value in the year 2060 is estimated to be about 50% (55% in the Czech Repub-
lic). Stated differently, on average, the European population is estimated to age
so fast that by the year 2060 there will be only two persons of working age for
every retiree. Observe that despite the variations, the old-age dependency ratio
is estimated to increase significantly in every country.

4The mean number of children that would be born alive to a woman during her lifetime if
she were to pass through her childbearing years conforming to the fertility rates by age of a
given year. This rate is therefore the completed fertility of a hypothetical generation, computed
by adding the fertility rates by age for women in a given year (the number of women at each
age is assumed to be the same).

5Replacement fertility is the total fertility rate at which newborn girls would have an average
of exactly one daughter over their lifetimes. That is, women have just enough female babies to
replace themselves (or, equivalently, adults have just enough total babies to replace themselves).
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Year
Country 1991 2001 2011 2020 2040 2060

Austria 22.2 22.8 26.0 29.8 46.8 50.7
Belgium 22.5 25.7 26.0 30.3 41.0 43.8
Czech Republic 19.1 19.8 22.3 30.4 40.1 55.0
Denmark 23.1 22.2 25.7 31.4 41.9 43.5
Finland 20.0 22.4 26.5 36.2 43.5 47.4
France 21.2 24.5 25.8 32.7 44.4 46.6
Germany 21.7 24.5 31.2 35.8 56.4 59.9
Greece 20.6 24.7 29.0 32.6 47.8 56.7
Iceland 16.6 17.8 18.4 25.1 34.5 33.5
Ireland 18.5 16.6 17.2 22.8 33.1 36.7
Italy 22.0 27.4 30.9 34.8 51.7 56.7
Lithuania 16.6 21.3 26.6 26.6 41.8 56.7
Netherlands 18.7 20.1 23.3 30.8 47.3 47.5
Norway 25.2 23.2 22.8 27.4 38.5 43.0
Poland 15.7 18.0 18.9 26.9 39.9 64.6
Romania 15.9 19.6 21.3 25.7 40.7 64.8
Spain 20.7 24.7 25.2 28.9 46.7 56.4
Sweden 27.7 26.8 28.4 33.5 40.5 46.2
Switzerland 21.3 22.9 24.9 29.5 45.7 54.4
United Kingdom 24.2 24.3 25.3 29.6 38.9 42.1

Note: Figures for years 2020, 2040 and 2060 are projections.

Source: Eurostat.

Table 1.1: Old-age-dependency ratio [in %] across selected European countries.
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1.2 Unsustainable Social Security System

In the previous part we have shown the potential magnitude of the European
population ageing problem. In this section we aim to discuss one of the most
serious socio-economic consequences of this demographic effect: an unsustainable
social security system.

The social insurance systems in most countries (including the Czech Republic)
are based on the pay-as-you-go principle, meaning in essence that the current
generation of working people pays to meet the living costs of those who are
currently in retirement. This makes the older people within the society directly
dependent on the current younger generation in terms of financial support.

The increasing longevity leads to an extended retirement period of human life6,
while the length of the active labour period remains unchanged. Along with the
decreasing fertility, this leads to a higher replacement ratio and thus the burden
for the younger generation becomes larger. Consequently, the social security
systems in many countries (including the Czech Republic) begin to experience
sustainability problems.

In the last decade, many countries have adopted policies to strengthen the
financial sustainability of their pension systems, but the pace of population ageing
is so fast that the problem usually remains more or less unresolved. The result
for most of the European future retirees remains the same: most likely they will
have to generate a substantial part of their retirement income from their own
pension savings, as the income stream generated by the social insurance system
will not be sufficient to maintain a dignified standard of living.

1.3 Self-Annuitization

Clearly, the aforementioned problem should motivate people to put aside
money during their active labour years for the purpose of creating a sufficiently
large nest egg (initial corpus of investment). Once an individual retires, this cap-
ital should be used to generate an income stream, which should, along with the
benefits from the social insurance system, provide enough money to maintain the
desired standard of living in retirement.

So far the financial services industry has focused mainly on the problems
connected with the phase of savings accumulation. However, in this text we are
not interested in answering the question of how much money should be put aside
every year, how large the nest egg at the age of retirement should be or how the
funds should be invested. We aim to analyse the second part of the problem,
regarding the strategy of creating a suitable income stream from the nest egg
once an individual retires.

Assume an individual just entered the retiring age and so far he has accumu-
lated certain amount of savings. There are two reasonable choices regarding the
transformation of his pension capital into a retirement income stream: classical
annuitization and self-annuitization.

6See Table 6.7 in the Appendix for a demonstration of the change in life expectancy at age 65
over the last twenty years. This value might be considered as a rough estimate of the average
time spent in retirement by a single retiree in given country.
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By the classical annuitization we mean buying a life annuity from an insurance
company. An obvious advantage of this choice is the fact that such an income
stream cannot be outlived. On the other hand, by buying an annuity the retiree
gives up the liquidity of his pension funds. Moreover, he implicitly foregoes the
chance of leaving a bequest in case of an early death, since the unconsumed
capital remains with the insurance company.

Being the second possible choice, the self-annuitization strategy means a dis-
cretionary management of pension funds with systematic withdrawals for con-
sumption purposes. The benefits and drawbacks of the self-annuitization ap-
proach are the exact opposite to those accompanying the purchase of a life annu-
ity. The consumer preserves both the flexibility and the possibility of leaving a
bequest, but on the expense of a substantial risk that his pension capital might
run out while he is still alive.

In general, life annuities offered by insurance companies are priced to cover
operating costs and costs of adverse selection7 along with the basic longevity
risk. Consequently, the self-annuitization might be a favourable choice, assuming
one can reasonably quantify the probability that the money will run out prior to
death of the individual, also known as the probability of ruin (PoR).

1.4 Ruin in Retirement

Suppose that a retiring individual with an initial capital (nest egg) w wants
to consume an amount of c real (inflation-free) Czech crowns (CZK) per annum
for the rest of his life. Let’s say that he lives in a fully deterministic world, where
the time of his death T and the fixed real future interest rate r are known. In
this simple case, the value of his future consumption would be

c āT = c

∫ T

0

e−rt dt. (1.1)

In this situation, there is no need for quantifying the probability of ruin. More
precisely, the PoR is trivially either one or zero, depending on the size of w relative
to c āT . If the initial wealth w is lower than the expression in Equation (1.1),
the individual does not have enough capital to finance the desired consumption
stream and the probability that the ruin occurs is equal to one.

Now, we want to extend this concept to a stochastic world where both the
rate of investment return and the time of death are random. We need to link
both these sources of uncertainty and provide a quantification of the individual
probability of retirement ruin8. Stated differently, given an initial nest egg and
other individual circumstances, we want to find a sustainable spending rate, under
which the PoR is reasonably small.

7Generally, the people buying life annuities tend to have above-average life expectancy. This
forces the insurance providers to set higher prices, which makes annuities expensive for people
with average or below-average life expectancy.

8It might be worth pointing out that our problem of quantifying the PoR is tied to the clas-
sical ruin theory in insurance, which was first introduced in 1903 by the Swedish actuary Filip
Lundberg. However, in contrast to the classical model, we are interested in a ruin probability
from a personal perspective. Specifically, in our case deterministic premiums are substituted
by the stochastic investment returns and random claims are replaced by the deterministic con-
sumption stream.
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In order to proceed with the analysis we need to make some assumptions
concerning the two random factors: human mortality and random investment
returns. We therefore devote the next two chapters of this text to the description
of these factors and in both cases we suggest a possible way to cope with the
underlying uncertainty.

1.5 Further Reading

Let us close this chapter with a reference to a couple of interesting articles
dealing with a problem linked to ours.

In the first and classical one, Yaari (1965) takes a more theoretic approach
to the general problem of finding an optimal consumption plan over a random
time horizon. In particular, the author shows that, under the assumptions of
actuarially fairly priced annuities and intertemporally separable utility function,
a consumer without bequest motives always annuitizes (in the classical sense) all
his savings. More specifically, Yaari takes the chance-constrained programming
approach to the problem of maximizing the expected value of the Fisher utility
function, subject to the probabilistic constraint that the consumer’s net assets at
time of death must almost surely be non-negative. The fact that the consumer
will always annuitize all his savings follows from the argument that fairly priced
actuarial notes always bring a higher return than regular notes, as long as the
consumer lives. The only drawback tied to the annuitization of all assets is that
the consumer’s bequest becomes automatically equal to zero, independently on
the time of death. But since there are no bequest motives, the consumer is not
concerned with his posthumous asset position, as long as the bequest remains
non-negative, so that the constraint is fulfilled. Thus, the consumer will hold all
his assets in the form of a life annuity.

However, in stark contrast to Yaari’s result, the actual worldwide demand for
life annuities is rather low. The discrepancy between the theoretical result and
the observed state of annuity market is often referred to as the annuity puzzle.
For example, Cipra (2012) offers several explanations for this phenomenon (e.g.,
uneven distribution of retirement consumption, impact of social security benefits,
adverse selection, etc.). The author also presents a graphic explanation of Yaari’s
result (see Cipra, 2012, Section 11.1).

In addition to the literature dealing with the demand for life annuities, we also
like to refer to Schmeiser & Post (2005), where the authors suggest an interesting
”family strategy” the retiree and his heirs might adopt in order to reduce the risk
connected with self-annuitization.

Finally, in another master’s thesis dealing with the problem of pension plan-
ning for Czech retirees, Langová (2011) describes the so-called ”do-it-yourself-
and-then-switch” strategy, which is a third possible solution to the retirement
wealth annuitization decision problem. Being introduced by Milevsky (1998),
this approach is based on the idea that the retiring individual can defer the an-
nuitization of his pension wealth until the mortality adjusted rate of return from
life annuity outgrows the benefits of self-annuitization.
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Chapter 2

Models of Human Mortality

As mentioned in the introductory section, there are two sources of uncertainty
the retirement consumption planners should be concerned with, one of them being
the random length of human life. The main goal of this chapter is therefore
to introduce the basic concepts of the human mortality modelling. We start
with the idea of the remaining lifetime random variable and its connection to
mortality tables. Later we introduce two different models for the instantaneous
force of mortality, known as the exponential- and Gompertz(-Makeham) laws of
mortality.

Since it is impossible here to cover all the relevant aspects of actuarial mor-
tality models, this chapter should perhaps be perceived rather as an overview of
actuarial formulas and notation, which shall be used through the rest of the text.
For more information on the topic and more detailed explanation of the underly-
ing mathematics, we refer an interested reader to a classical (and comprehensive)
actuarial textbook Bowers et al. (1997).

2.1 Remaining Lifetime Random Variable

When trying to formulate the uncertainty of death in probability concepts, we
believe it is a good idea to start off with the remaining lifetime random variable.
Let us consider an individual aged x and suppose we want to describe the proba-
bility distribution governing the time till the event of his ore her death. In what
follows we will denote Tx a (continuous-type) random variable representing the
remaining lifetime of an individual aged x. We shall write Fx for the cumulative
distribution function (CDF) of Tx, i.e.

Fx(t) = P[Tx ≤ t], t ≥ 0.

We will assume that there exists a corresponding probability density function
(PDF) such that

Fx(t) =

∫ t

0

fx(s)ds.

In order to receive further results, we shall assume that for t ≥ 0 the probabil-
ity distribution of random variable Tx+t is the same as the conditional distribution
of Tx − t | Tx > t. The interpretation of this assumption is, that the additional
information about the life of an individual available at age x+ t does not change
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the remaining lifetime distribution we would otherwise a person of age x expected
to have after surviving t more years. Note that this distribution equality can be
written as

P[Tx+t ≤ z] = P[Tx − t ≤ z | Tx > t], t ≥ 0. (2.1)

Now, since we will try to follow the standard actuarial notation1 whenever
possible in the rest of the text, let us introduce symbols tpx and tqx as the condi-
tional probability of survival and death, respectively. That is: a living individual
aged (exactly) x has the probability tpx of surviving t more years and, on the
other hand, the probability that he will die prior to reaching age x + t is the
complementary tqx := 1 − tpx. In the context of our remaining lifetime random
variable this means nothing else than that for t ≥ 0 :

tqx = P[Tx ≤ t] = Fx(t) (2.2)

and

tpx = P[Tx > t] = 1− Fx(t). (2.3)

In order to be conform with the notation of other authors we shall write px and
qx instead of 1px and 1qx.

An overview of estimated values qx (along with other characteristics) for the
age spectrum x = 0, . . . , ω is called the life table. The ultimate age ω of a
mortality table is defined as the lowest age x for which qx = 1 occurs. For
instance, in the life table for the Czech Republic (annually published by the
Czech Statistical Office (CZSO)) the ultimate age is set to be ω = 105 (since
2010). In general, mortality tables play a fundamental part in an evaluation of
every life-contingent asset. See Table 6.8 in the Appendix for an example of a
life table. There are many different types of mortality tables in practice and once
again we refer to the aforementioned literature for more details.

The last concept that remains to be introduced in this section is the life
expectancy for given age x. It is defined simply as the mean of Tx. Recall from
probability theory that the expected value of a non-negative continuous random
variable Tx with PDF and CDF denoted by fx(t) and Fx(t), respectively, can be
expressed as

E[Tx] =

∫ ∞

0

tfx(t) dt (2.4)

=

∫ ∞

0

(1− Fx(t)) dt. (2.5)

In addition, due to (2.3), in the case of remaining lifetime r.v. the last formula
can be rewritten as

E[Tx] =

∫ ∞

0
tpx dt. (2.6)

It is worth mentioning that an estimate of the value E[Tx] for the complete
spectrum of ages x is one of the characteristics that are usually presented in
mortality tables. In particular, the estimate of E[T0] is a very useful demographic
development indicator of the underlying population.

1See Bowers et al. (1997, Appendix 4) for an overview of general rules for symbols of actuarial
functions.
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2.2 Instantaneous Force of Mortality

Let us now for a moment consider an individual aged x+t and the probability
of his or her death in a very near future. In terms of our model this is represented
by the expression P[0 < Tx+t ≤ ∆t], where ∆t → 0+. Using standard rules for
conditional probability and assumption (2.1), we obtain

P[0 < Tx+t ≤ ∆t[= P[t < Tx ≤ t+∆t | Tx > t] =
Fx(t +∆t)− Fx(t)

1− Fx(t)
.

Now, denoting λ(x+t) := lim∆t→0+
P[t<Tx≤t+∆t|Tx>t]

∆t
and assuming F ′

x(t
+) = F ′

x(t),
we can write:

λ(x+ t) =
F ′
x(t)

1− Fx(t)
, t ≥ 0. (2.7)

The function λ(x+ t) is known as the instantaneous force of mortality (IFM) and
it can be thought of as the instantaneous rate of death at age x+ t. Observe that,
thanks to the assumed existence of fx(t), the IFM can be also represented as

λ(x+ t) =
fx(t)

1− Fx(t)
(2.8)

= − d

dt
ln(1− Fx(t)). (2.9)

A couple of things should be noticed. Firstly, examining (2.8) and taking
properties of fx(t) and Fx(t) into account yields λ(x + t) ≥ 0, which means
that the instantaneous rate of death at any age is non-negative. In addition, by
substituting (2.3) into (2.8) we receive a useful equation

fx(t) = tpx λ(x+ t). (2.10)

Last but not least, integrating both sides of (2.9) and applying once again (2.3)
leads to

tpx = exp

{
−
∫ t

0

λ(x+ s) ds

}
, (2.11)

or, by a simple change of variables

tpx = exp

{
−
∫ x+t

x

λ(s) ds

}
. (2.12)

Altogether, the relationships (2.8), (2.10) and (2.11) allow us to switch com-
fortably from λ(x+t) to Fx(t) or fx(t) and back without having to use complicated
calculus.

Now, let us step back for a moment from general results and introduce two
particular ways to model the behaviour of human mortality.

2.3 Exponential Law of Mortality

The easiest case is when the assumption is made, that the IFM curve is con-
stant over all ages, i.e. λ(x+t) ≡ λ. Notice that this means that the instantaneous
probability of death is the same at every age. Of course, this assumption is rather
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unrealistic, at least for modelling human mortality2, but it is very convenient to
work with and in some cases the obtained results are remarkably similar to the
outcomes derived from more complicated models (see e.g. Milevsky, 2006, Chap-
ter 9).

Using the relationship (2.12), the distribution function of Tx under constant
IFM curve can easily be derived, since

Fx(t) = 1− tpx = 1− exp

{
−
∫ x+t

x

λ ds

}
= 1− e−λt. (2.13)

Thus, under the assumption λ(x + t) ≡ λ, the remaining lifetime random
variable Tx follows an exponential distribution3 with the rate parameter λ. We
therefore say that such a model follows the exponential law of mortality.

2.4 Gompertz-Makeham Law of Mortality

The second human mortality model we would like to introduce overcomes the
problem of too unrealistic constant IFM. Similarly to the exponential one, it can
be defined by a particular shape of the IFM curve, namely

λ(x) = λ+
1

b
exp

{
x−m

b

}
, x ≥ 0, (2.14)

where λ ≥ 0, m > 0 and b > 0 are non-negative parameters. The value m > 0
can be interpreted as the modal length of human life, while b > 0 is the dispersion
coefficient. We will show later why this is true. For now, observe that the IFM
in (2.14) is a sum of an age-independent component λ and an exponential term
increasing with age. The constant λ represents the component of the death rate
that is attributable to accidental deaths, whereas the exponential curve captures
the natural death causes. We will refer to model (2.14) as to the Gompertz-
Makeham law when λ > 0 and call it simply the Gompertz law4 when λ = 0.
Since the value of λ tends to be negligible in practice, assuming λ = 0 and thus
working only with the Gompertz version does not cause a large inaccuracy.

Since the Gompertz-Makeham law of mortality will be essential to our later
analysis, let us investigate some of its properties. What does, for instance, the
conditional probability of survival look like? Using the previously derived formula

2However, it is known that, for example, the mortality of lobsters follows a model with
constant IFM curve.

3Recall that the exponential distribution with a rate parameter λ corresponds to the CDF
F (t) = 1 − e−λt, t ≥ 0. This leads to the PDF f(t) = λe−λt , t ≥ 0 and the expected value is
then 1/λ.

4This model was first introduced by a British mathematician Benjamin Gompertz (see Gom-
pertz, 1825), although he used a different parametrization

λ(x) = B cx, x ≥ 0, B > 0, c ≥ 0.

Equivalence of this parametrization with (2.14) for λ = 0 can be easily verified by setting
c = e1/b and B = b−1e−m/b.
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(2.12) and integrating by substitution, we find that

tpx = exp

{
−
∫ x+t

x

λ+
1

b
e(s−m)/b ds

}

= exp
{
−λt + e(x−m)/b

(
1− et/b

)}
. (2.15)

Of course, the conditional probability of survival under the Gompertz law can be
easily obtained from the last formula by setting λ = 0.

Plugging the result for tpx into (2.10) leaves us with

fx(t) = exp
{
−λt + e(x−m)/b

(
1− et/b

)}(
λ+

1

b
exp

{
x−m

b

})
(2.16)

as the PDF of the remaining lifetime Tx under the Gompertz-Makeham law. In
the case of λ = 0 the density simplifies to

fx(t) =
1

b
exp

{
x−m+ t

b
+ e(x−m)/b − e(x−m+t)/b

}
. (2.17)

We are now in a position to demonstrate the aforementioned interpretation
of parameters m > 0 and b > 0 in the Gompertz IFM expression (2.14). The
following analysis draws from Carriere (1992) and assumes λ = 0.

The first of both Gompertz parameters represents the modal length of human
life because it is the mode of the density f0(t). Under the Gompertz law we have

f0(t) =
1

b
exp

{
t−m

b
+ e−m/b − e(t−m)/b

}
. (2.18)

Using the inequality ey ≥ 1 + y, ∀y ∈ R, one can show that

e−m/b − 1 ≥ e−m/b − e(t−m)/b +
t−m

b

and therefore conclude

f0(m) ≥ f0(t), ∀t > 0,

which demonstrates that m is the mode.
Moreover, observe that for an arbitrary ε > 0 it holds

lim
b→0+

[m−εp0 − m+εp0] = lim
b→0+

exp
{
e−m/b

} [
exp

{
−e−ε/b

}
− exp

{
−eε/b

}]
= 1.

Since the last result can be rewritten as

lim
b→0+

[F0(m+ ε)− F0(m− ε)] = 1, ∀ε > 0,

this means that all the probability mass concentrates around m when b is small.
Thus we have just shown that b measures the dispersion of f0(t) around the
location parameter m.

Now, let us remark that since the Gompertz law of mortality is a relatively
simple model, it usually does not fit the mortality table well when the complete
age spectrum data is used. However, it is well known that the Gompertz model
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is an excellent description of the mortality pattern at the older ages. This means
that one usually applies the Gompertz curve to describe the mortality dynamics
only for ages x = x0, . . . , ω, where x0 ≥ 40.

Suppose we are given a mortality table with crude probabilities q̂x, x =
x0, . . . , ω and the total amount of death claims Dx associated with each of the
crude rates. We want to find such (positive) parameter values m̂ and b̂ that the
corresponding Gompertz curve

qx(m̂, b̂) := 1− exp
{
e(x−m̂)/b̂

(
1− e1/b̂

)}
(2.19)

”fits” the table when evaluated at x = x0, . . . , ω. A useful and simple method of
the Gompertz parameters estimation applicable in this situation was presented
in Carriere (1994). We will now describe this estimation technique and apply it
later in our numerical study (see Chapter 6). The idea of this technique is to
define the robust loss function

L (m, b) :=

ω∑

x=x0

√
Dx

∣∣∣∣1−
qx(m, b)

q̂x

∣∣∣∣ (2.20)

and set
(m̂, b̂) := arg min

m>0, b>0
L (m, b) . (2.21)

Observe that the loss function is a sum of weighted relative differences between
the crude rate q̂x and the Gompertz curve evaluated at age x. Every element
of the sum is weighted by a square root of the total amount of death claims
associated with the corresponding crude rate and thus lower weights are assigned
to the more volatile rates q̂x based on a small number of observations.

Carriere (1994) applied this estimation method using the male and female
ultimate mortality rates from the 1975–80 Basic Tables of the Society of Actuaries
for ages x = 40, . . . , 100. Using the male data, he found values m̂M = 82, 153
and b̂M = 10, 304, while the results for the female data were m̂F = 87, 281 and
b̂F = 10, 478.Observe that while the values of scaling parameters are quite similar,
the modal lifetimes of men and women differ considerably. The author concludes
that the Gompertz model fits the data well.

An interesting justification for the Gompertz law as a model of the human mor-
tality was presented in Brillinger (1961). Suppose that the human body can be
represented as a series system of independent5 identically distributed components
where the whole system will fail with the first failure of one of its components.
Due to the Fisher-Tippett theorem from the extreme value theory (see Haan &
Ferreira, 2006, Theorem 1.1.3), it holds that the time of failure of such a system
attains in the limit an extreme value distribution, namely one of the three dif-
ferent classes of extreme value distributions: Fréchet, Gumbel or Weibull. Since
the Gompertz distribution is equivalent to the truncated Gumbel distribution for
minima, the Gompertz law is a suitable tool for modelling the time to failure of
the described system.

Finally, to demonstrate another key property of the Gompertz-Makeham
model – its connection to the incomplete Gamma function – let us conclude

5As Brillinger (1961) states, the condition of independence can be relaxed in a sense that
only components ”sufficiently far apart” must be independent.
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this section with a derivation of the formula for life expectancy. According to
(2.6) we have

E[Tx] =

∫ ∞

0

exp
{
−λt + e(x−m)/b

(
1− et/b

)}
dt

= exp
{
e(x−m)/b

}∫ ∞

0

exp
{
−λt− e(x−m+t)/b

}
dt

= b exp
{
e(x−m)/b + λ(x−m)

}∫ ∞

exp{x−m

b
}
e−uu−λb−1 du

= b exp
{
e(x−m)/b + λ(x−m)

}
Γ
(
−λb, e(x−m)/b

)
, (2.22)

where

Γ (a, c) =

∫ ∞

c

e−tta−1 dt (2.23)

is the (upper) incomplete Gamma function mentioned above. In general, it turns
out that under the Gompertz-Makeham law many actuarial functions can be
expressed in terms of this function. Once again, we refer to Carriere (1994) for
more information about the Gompertz law of mortality and also for a method of
numerical approximation to the incomplete Gamma function.
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Chapter 3

Models of Risky Financial
Investments

Recall that we aim to link three key factors of retirement planning: mortality,
investment returns and spending rates towards the end of the life cycle. While
in the previous chapter we described a possible way to deal with the uncertainty
accompanying the length of human life, this part of the text is devoted to the
models of random investment returns.

The chapter is organized as follows. The first section presents the continuously
compounded investment growth rate and an important assumption concerning
its distribution. In Section 3.2 we define the standard Brownian motion and
summarize its basic properties. Section 3.3 introduces the geometric Brownian
motion model of market prices and in the last section we conclude the chapter
with the stochastic differential equation representation of our model.

3.1 Continuously Compounded Growth Rate

Since we want to develop our financial model in continuous time, we will
use the continuously compounded interest. Recall that the idea of continuous
compounding is based on the equality

lim
n→∞

(
1 +

r

n

)n

= er,

which can be easily proved with the help of l’Hôspital’s rule from calculus. Hence,
the relationship between the continuously compounded interest rate r and the
effective annual rate i is

1 + i = er.

Our focus in the later analysis will be on investments in a stock portfolio. Due
to the relatively higher volatility of stock markets, such an investment is more
risky than investing in, say, bonds with fixed yield to maturity i. To emphasize
this difference, we introduce a different notation for a portfolio growth rate. Sup-
pose the value of our portfolio with the initial value S0 (at time 0) has grown
to

St = S0e
g̃t (3.1)

at time t. In this case we say that the realized (continuously compounded) an-
nualized growth rate of the portfolio over the past t years is g̃. It follows from
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(3.1) that the growth rate g̃ can be expressed as a time-scaled logarithmic ratio
of portfolio prices St and S0 (LogRatio).

It is worth mentioning that the annualized growth rate g̃ over t years computed
from (3.1) is always less than or equal to the average annual return (computed
as an arithmetic mean). This is a consequence of the AM-GM inequality1, which
states that the arithmetic mean (AM) of a series of non-negative real numbers is
always greater than or equal to the geometric mean (GM) of the same series. We
will encounter another consequences of this inequality later.

In our context, we will approach the future growth rate g̃ of a portfolio as a
random variable because we obviously never know its realized value in advance.
Different examples from the stock market history show that the possible range
for realized values of g̃ is large towards both positive and negative values, which
is, of course, what makes the investment risky.

Now, in order to quantify the risk, we have to accept some assumptions about
the probability distribution of g̃. We will adopt a relatively convenient approach
and assume that g̃ is normally distributed with a mean of ν and a variance of
σ2/t, i.e.

g̃ ∼ N

(
ν,

σ2

t

)
, (3.2)

where t denotes the length of period (in years) over which the growth rate is
being analysed, ν is the expected growth rate and σ > 0 is volatility.

Put differently, we can write

g̃t ∼ N(νt, σ2t). (3.3)

Note that while the variance of the annualized growth rate g̃ decreases with the
length of the investment horizon, the variance of the cumulative growth rate g̃t
increases. To model the development of the cumulative growth rate g̃t in time,
one needs to define a suitable stochastic process. In the next section we therefore
introduce a crucial concept of this chapter - the Brownian motion.

3.2 Brownian Motion

The standard Brownian motion (also called Wiener process) is one of the best
known stochastic processes and besides probability theory it plays a fundamental
role also in some areas of physics and biology.

Formally, we say that a continuous-time stochastic process {Bt, t ≥ 0} is a
standard Brownian motion (SBM) if the following conditions are met:

(i) P[B0 = 0] = 1;

(ii) the function t 7→ Bt is almost surely everywhere continuous;

(iii) for arbitrary 0 ≤ t0 < t1 < · · · < tn the increments

Bt1 −Bt0 , Bt2 − Bt1 , . . . , Btn − Btn−1

are independent;

1See Steele (2004, Problem 2.1) for the proof and additional information on the AM-GM
inequality.
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(iv) for arbitrary 0 ≤ s < t :

Bt − Bs ∼ N(0, t− s).

Since we are looking for a proper stochastic process to model the cumulative
growth rate of an investment, the condition Bt ∼ N(0, t) seems to be too restric-
tive for our purpose. A more complex version of the SBM is the non-standard
Brownian motion with a drift rate of ν and a volatility of σ > 0, which is defined
by

B
(ν,σ)
t = νt + σBt. (3.4)

This means that the non-standard Brownian motion is just the SMB scaled with
parameter σ > 0 and added to a deterministic linear trend. The SBM is obviously
a special case of B

(ν,σ)
t with ν = 0 and σ = 1.

It follows from (3.4) that E[B
(ν,σ)
t ] = νt and var[B

(ν,σ)
t ] = σ2t. In addition, since

a linear function of a normally distributed random variable remains normal, we
may conclude

B
(ν,σ)
t ∼ N

(
νt, σ2t

)
. (3.5)

This makes {B(ν,σ)
t , t ≥ 0} a suitable candidate for modelling the development of

the investment cumulative growth rate g̃t from (3.3) because its assumed distri-
bution is exactly the same.

The Brownian motion has many remarkable properties, most of which go,
however, beyond the scope of this thesis. Fortunately, due to the importance of
this concept across different fields of mathematical science, a plenty of literature
has been written on this topic. See for instance Karatzas & Shreve (1991, Section
2.9) for the derivation of some sample path properties of the SBM, which are scale
invariance, quadratic variation, non-differentiability and others. Finally, let us
remark that the Brownian motion can be also intuitively obtained as the limit of
a scaled random walk (see Shreve, 2004, Chapter 3).

3.3 Geometric Brownian Motion

When the cumulative growth rate of a stock portfolio in time is governed by
the (non-standard) Brownian motion B

(ν,σ)
t , the according portfolio price follows

a related stochastic process - the geometric Brownian motion2 (GBM). Denoting
the GBM by {St, t ≥ 0}, we can define it as

St = S0e
νt+σBt , (3.6)

where {Bt, t ≥ 0} is the standard Brownian motion introduced in the previous
section.

2The geometric Brownian motion (also referred to as the exponential Wiener process) was
first implemented in the late 1960s by an American Nobel laureate in Economics Robert C.
Merton. See Merton (1990) for an extensive collection of his work on continuous-time finance.
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Note that, since νt + σBt ∼ N(νt, σ2t), the price ratio St/S0 follows a log-
normal distribution3, i.e.

St

S0
∼ LN(νt, σ2t). (3.7)

Recall that the PDF corresponding to the log-normal distribution LN(a, b2) is

f(z) =
1

z
√
2πb

e−(ln z−a)2/2b2 , z > 0.

It follows from (3.7) that the conditional distribution of the portfolio price at
time t is

St | S0 ∼ LN(lnS0 + νt, σ2t).

Let us now point out an important property of the log-normal distribution
concerning the difference between its median and expected value.

First, observe that the (conditional) median value of the portfolio price at
time t is

M[St | S0] = S0e
νt. (3.8)

To verify this, note that for an arbitrary u > 0 we can write

P[St ≤ u | S0] = P [lnS0 + νt + σBt ≤ ln u | S0]

= P

[
Bt√
t
≤ ln (u/S0)− νt

σ
√
t

∣∣∣∣ S0

]

=

∫ w(u)

−∞

1√
2π

e−z2/2 dz, (3.9)

where

w(u) :=
ln (u/S0)− νt

σ
√
t

. (3.10)

In (3.9) we have used the fact that Bt is normally distributed. Recall that the
CDF of a normal distribution with zero mean is point symmetric. Consequently,
a value um > 0 for which w(um) = 0 holds4, also satisfies P[St ≤ um | S0] = 1/2
and therefore M[St | S0] = um. The result then follows directly from (3.10).

In contrast, the (conditional) expected value of St is

E [St | S0] =

∫ ∞

−∞

S0e
νt+σz 1√

2πt
e−z2/2t dz

= S0e
(ν+σ2/2)t

∫ ∞

−∞

1√
2πt

e−(z−σt)2/2t dz

= S0e
µt, (3.11)

where we define

µ := ν +
σ2

2
. (3.12)

3Log-normal distribution LN(a, b2) is defined as the distribution of the random variable
Z = eX , where X ∼ N(a, b2). The support of a log-normally distributed r.v. is (0,∞). On a
logarithmic scale, a and b > 0 can be interpreted as a location parameter and a scale parameter,
respectively.

4Since we condition on S0, the function w(·) is deterministic.
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Altogether, we have obtained the relationship between the median and the
expected value of the log-normally distributed portfolio price:

M[St | S0] = e−tσ2/2
E[St | S0].

The factor e−tσ2/2 can be interpreted as a convexity correction5 and is tied to the
difference between the arithmetic and the geometric mean. We shall therefore
carefully distinguish between the arithmetic and the geometric average of annual
returns, denoted by µ and ν, respectively. Note also that (3.12) corresponds with
the aforementioned AM-GM inequality.

3.4 The SDE Representation

In this section we introduce a more general representation of the geometric
Brownian motion. In general, the stochastic differential equation (SDE) approach
requires a theoretical background from stochastic calculus. However, for purposes
of the following text we only need certain basic results of this discipline, namely
Ito’s lemma (see Theorem 1). Still, we shall omit some technical details and
we refer to the aforementioned literature (e.g. Shreve, 2004) for more detailed
information.

To begin with, let us introduce a general type of stochastic processes, which
can be defined as a solution to a specific stochastic differential equation. We say
that {Yt, t ≥ 0} is a diffusion process (Itô process) with a drift of µ(Yt, t) and a
diffusion of σ(Yt, t), if it is a solution of the SDE

dYt = µ(Yt, t) dt+ σ(Yt, t) dBt, t ≥ 0, (3.13)

where {Bt, t ≥ 0} is the SBM.
Note that, in general, both the drift and the diffusion in (3.13) depend on time

t and value of Yt. A special example of a diffusion process is the (non-standard)

Brownian motion B
(ν,σ)
t . Besides the formula (3.4), the Brownian motion can be

alternatively characterized as a diffusion process with a constant drift of ν and a
constant diffusion (volatility) of σ. That is, B

(ν,σ)
t satisfies the SDE

dYt = ν dt+ σ dBt, t ≥ 0, (3.14)

with the initial condition Y0 = 0.
Indeed, integrating both sides of (3.14) yields

Yt − Y0 = νt + σ(Bt − B0)

and due to the initial condition we receive

Yt = νt + σBt.

5Recall that the log-normal distribution is defined as an exponential transformation of the
normal distribution. In general, the median of a normally distributed r.v. is equal to its
expected value. However, as we have just shown, this is not true for the log-normal distribution.
Because the exponential transformation is non-linear, the term e−tσ2/2 may be interpreted as
the convexity correction.
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Now, which is the SDE representation of the geometric Brownian motion
defined in (3.6)? In order to find this out, we need a theoretical result from
the stochastic calculus called the Ito’s lemma, which concerns the concept of a
stochastic differentiation.

Theorem 1 (Ito’s lemma). Let {Yt, t ≥ 0} be a diffusion process defined by
Equation (3.13) and let f(t, y) be a function for which the partial derivatives
∂f/∂t, ∂f/∂y and ∂2f/∂y2 are defined and continuous. Then

df(t, Yt) =

(
∂f

∂t
+ µ(Yt, t)

∂f

∂y
+

1

2
σ2(Yt, t)

∂2f

∂y2

)
dt+ σ(Yt, t)

∂f

∂y
dBt, t ≥ 0.

Proof. The proof is described in Shreve (2004, Section 4.4.2).

k

In case of the GBM, let us take f(t, y) := S0e
y so that we have St = f(t, B

(ν,σ)
t ).

Then the partial derivatives are ∂f/∂t = 0, ∂f/∂y = f(t, y) and ∂2f/∂y2 =
f(t, y) and a straightforward application of Theorem 1 leads to

dSt = µSt dt+ σSt dBt, t ≥ 0. (3.15)

The differential formula for the GBM we have just derived, is very suitable
for our purposes and we will therefore use it in the following chapters rather than
the original relationship (3.6). Note that the arithmetic average of returns µ is
used instead of the geometric average ν used in (3.14).
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Chapter 4

Computing the Probability of
Ruin

Suppose a retiring individual at a given age, with a certain initial capital
(nest egg) at his disposal, decides to finance his constant retirement consumption
stream via the self-annuitization approach. What is the probability of retirement
ruin in his case? In this chapter, we try to give an answer to this problem...

We proceed to derive an analytic formula and demonstrate that the probability
of ruin can be expressed as the probability that the stochastic present value (SPV)
of future consumption is greater than the ratio of the initial wealth and the desired
annual consumption. In the special (limiting) case of a perpetual consumption, we
provide an exact analytic solution because the stochastic present value is known
to obey a reciprocal gamma distribution. In the case of a lifetime consumption,
we use the technique of moment matching to approximate the true probability
distribution of the SPV under various types of mortality dynamics.

Most parts of the analysis carried out in this chapter come from Milevsky &
Robinson (2000). The first of the two authors originally applied these concepts
in the context of option pricing (see Milevsky & Posner, 1998).

4.1 Model for Mortality and Investment Returns

In order to receive further results, we need to make assumptions about both
random elements concerning the individual probability of ruin: investment re-
turns and human mortality. Using the concepts developed in the previous two
chapters, from now on we shall assume that:

• The length of human life follows the Gompertz-Makeham law of mortality
(described in Section 2.4), i.e. the instantaneous force of mortality is

λ(x) = λ+
1

b
exp

{
x−m

b

}
, x ≥ 0, (4.1)

where the parameters m > 0 and b > 0 are the modal length of human life
and the dispersion coefficient, respectively.

• The market prices are driven by the geometric Brownian motion (introduced
in Section 3.3), i.e. the real (inflation-free) price of the investment portfolio
obeys the stochastic differential equation

dSt = µSt dt+ σSt dBt, S0 = 1, (4.2)
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where {Bt, t ≥ 0} is the standard Brownian motion (defined in Section 3.2).
• The average real rate of return µ and the volatility σ in (4.2) satisfy the
portfolio growth restriction1

µ− σ2

2
> 0 (4.3)

and also
µ− 2σ2 6= 0. (4.4)

• The remaining lifetime random variable Tx is independent of the standard
Brownian motion driving the portfolio price St from Equation (4.2).

4.2 Net Wealth Process

Let’s say that a retiree at the age of x invests his initial wealth w to a stock
portfolio and plans to withdraw a constant stream of k real CZK per annum for
the rest of his life.

Due to the assumptions about the portfolio returns made in the previous
section, the net wealth process (NWP) of the retiree, denoted by {Wt, t ≥ 0},
must obey the SDE

dWt = (µWt − k) dt+ σWt dBt, W0 = w. (4.5)

Note that, while the diffusion of the net wealth process remains the same as the
portfolio volatility σ, the drift has changed to µWt − k. Consequently, depending
on the size of k relative to µWt, the drift might become negative over time, hence
the value of the (real) net wealth Wt might eventually attain zero.

In the next step we want to solve the linear stochastic differential equation
(LSDE) (4.5) and thus receive an explicit formula for the NWP. We will use the
stochastic analogy to the method of variation of coefficients, which we present in
the form of a lemma.

Lemma 2 (Karatzas & Shreve, 1991, formula (6.32)). Consider a one-dimensional
LSDE

dXt = [A(t)Xt + a(t)] dt+ [S(t)Xt + σ(t)] dBt, (4.6)

where {Bt, t ≥ 0} is a one-dimensional standard Brownian motion with a filtration
{Ft} and the coefficients A, a, S, σ are measurable, {Ft}-adapted 2, almost surely
locally bounded processes. Define

Zt := exp

{∫ t

0

A(u) du+

∫ t

0

S(u) dBu −
1

2

∫ t

0

S2(u)

}
du, t ≥ 0.

Then there exists a unique solution to (4.6) and this solution is given by the
formula

Xt = Zt

[
X0 +

∫ t

0

1

Zu

{a(u)− S(u)σ(u)} du+

∫ t

0

σ(u)

Zu

dBu

]
, t ≥ 0.

1Recall the difference between arithmetic and geometric mean mentioned in Section 3.3.
Using Equation (3.12), the inequality (4.3) can be rewritten as ν > 0. Thus, appealing to the
implicitly made assumption (3.2), the imposed parameter restriction (4.3) actually says that
the expected value of the real annualized portfolio growth rate g̃ has to be positive.

2See e.g. Karatzas & Shreve (1991, Chapter 1) for the definition of a filtration and an
adapted process.
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Thanks to this theoretical result, we may formulate the following theorem:

Theorem 3 (Milevsky & Robinson, 2000, Theorem 1). The net wealth process
{Wt, t ≥ 0} defined by (4.5) can be solved explicitly to yield

Wt = St

[
w − k

∫ t

0

1

Su

du

]
, t ≥ 0, (4.7)

where

Ss = exp

{(
µ− σ2

2

)
s+ σBs

}
, s ≥ 0

is the GBM solution to (4.2).

Proof. Using the notation from the previous lemma, we set Xt := Wt, A(t) :=
µ, a(t) := −k, S(t) := σ, σ(t) := 0. After applying the stochastic method of
variation of coefficients, we get

Zt = exp

{(
µ− σ2

2

)
t+ σBt

}

and thus

Wt = Zt

[
W0 +

∫ t

0

1

Zu
{−k} du

]

= exp

{(
µ− σ2

2

)
t + σBt

}[
w − k

∫ t

0

1

Su
du

]
.

k

Note that another way to prove the previous theorem is applying Ito’s Lemma
(Theorem 1) to (4.7) and then arguing by the uniqueness of the solution of LSDE
from Lemma 2.

Observe that by the definition of our problem, the ruin of the retiree occurs
when the net wealth process hits or breaches a value of zero at some point prior
to the (stochastic) time of death Tx. This means the probability of ruin can be
expressed as

PoR (w) = P

[
inf

0≤t≤Tx

Wt ≤ 0

∣∣∣∣W0 = w

]
. (4.8)

The PoR is an explicit function of the initial capital size w and an implicit func-
tion of the NWP parameters µ, σ, k as well as the parameters x, m, b governing
mortality.

We can now use the explicit NWP formula (4.7) to prove an important prop-
erty of the net wealth process: it never breaches zero more than once. In other
words, once the NWP enters the negative region, it stays there.

Theorem 4 (Milevsky & Robinson, 2000, Theorem 2). For all T ∈ (0,∞] it
holds that

P

[
inf

0≤t≤T
Wt ≤ 0

∣∣∣∣W0 = w

]
= P [WT ≤ 0|W0 = w] . (4.9)
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Proof. The NWP in Equation (4.7) consists of an exponential function St mul-
tiplied by the term in brackets. Since an exponential function is always positive,
the process {Wt, t ≥ 0} attains a non-positive value at time t if and only if

w

k
≤

∫ t

0

1

Su
du.

Note that the integral on the right-hand side is monotonically increasing in the
upper bound t of integration. Thus once the value of the integral exceeds w/k,
it stays greater than w/k. Consequently, both probabilities in (4.9) are equal.

k

4.3 The Eventual Probability of Ruin

Let us now for a while assume that the death of the individual never occurs.
Then we would be interested in the so-called eventual probability of ruin (EPoR)
defined as

EPoR (w) := P

[
inf

0≤t≤∞
Wt ≤ 0

∣∣∣∣W0 = w

]
. (4.10)

Although taking Tx = ∞might seem like a step aside from our initial goal because
obviously no one can live forever, we will see that this special case leads to a very
important analytical result, which will be very useful to us later.

First of all, note that Theorem 4 also covers the eventual case, since it was
formulated for all T ∈ (0,∞]. The EPoR in Equation (4.10) can be therefore
expressed as

EPoR (w) = P [W∞ ≤ 0|W0 = w]

= P

[
w

k
≤

∫ ∞

0

1

Su
du

]

= P

[
w

k
≤

∫ ∞

0

e−(µ−σ2/2)u−σBu du

]
. (4.11)

The integral in the last equation can be interpreted as the present value of a
stochastic perpetuity (PVSP). This perpetuity pays continuously one real CZK
per annum and is subjected to a stochastic Brownian real rate of interest. Equa-
tion (4.11) says that the eventual probability of ruin is equal to the probability
that the PVSP is greater than or equal to the ratio w/k. This means that we have
reduced our problem to finding a probability distribution for the PVSP random
variable

Z :=

∫ ∞

0

1

Su
du. (4.12)

Before we proceed, let us briefly review an important probability distribution
that will play a critical role in the rest of this chapter. First, recall that a random
variable X follows the gamma distribution with a shape parameter α > 0 and a
rate parameter3 β > 0, denoted by X ∼ Gamma(α, β), if the corresponding PDF

3A rate parameter of a probability distribution is defined simply as the reciprocal of its scale
parameter. Another common parametrization of the gamma distribution is the shape-scale
parametrization, which uses the scale parameter θ = 1/β.
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is

g (x; α, β) =
βα

Γ(α)
xα−1e−βx, x ≥ 0.

Now in addition, we say that a random variable Y obeys the reciprocal gamma
(RG) distribution4 with a shape parameter α > 0 and a scale parameter β > 0,
denoted by Y ∼ RG(α, β), if

Y =
1

X
,

where X ∼ Gamma(α, β). Consequently, the PDF of an RG random variable
must satisfy

gR (y; α, β) =
g (1/y; α, β)

y2

= exp

{
− 1

yβ

}
y−(α+1)

Γ(α)βα
, y > 0.

Note that we changed the role of β and it now represents the scale parameter.
Writing G(x; α, β) and GR(x; α, β) for the CDF of the gamma distribution and
RG distribution respectively, we have for any x > 0 :

G(x; α, β) = P [X ≤ x] = P [Y ≥ 1/x] = 1−GR(1/x; α, β).

The first two (non-central) moments of the RG distribution are

E[Y ] =
1

β(α− 1)
, (4.13)

E[Y 2] =
1

β2(α− 1)(α− 2)
. (4.14)

A picture of the probability density functions of an RG random variable under
various parameter values is provided by Figure 6.6 and Figure 6.7 in the Ap-
pendix.

We are now in a position to present the main result for the eventual probability
of ruin.

Theorem 5 (Milevsky & Robinson, 2000, Theorem 3). The PVSP random vari-
able

Z =

∫ ∞

0

e−(µ−σ2/2)u−σBu du

obeys a reciprocal gamma distribution with parameters α = 2µ
σ2 − 1 and β = σ2

2
.

Proof. The proof relies on non-trivial martingale techniques from the theory of
stochastic calculus and goes beyond the scope of this text. We refer the interested
reader to Milevsky (1997) where the detailed steps are described.

k

4Sometimes also referred to as the inverse gamma distribution.
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Thus, using the formula (4.11) together with the last theorem, we receive our
final expression for the eventual probability of ruin:

EPoR (w) = P

[w
k

≤ Z
]

= 1−GR

(
w

k
;
2µ

σ2
− 1,

σ2

2

)
= G

(
k

w
;
2µ

σ2
− 1,

σ2

2

)
. (4.15)

To sum up, we have shown that the eventual probability of ruin is equal to
the probability that the present value of a stochastic perpetuity is greater than
or equal to the ratio of the initial capital w and the desired annual consumption
k. Since the PVSP follows a reciprocal gamma distribution with parameters
depending on the characteristics µ and σ of the underlying Brownian motion,
we conclude that the EPoR can be computed as the CDF of the corresponding
gamma distribution evaluated at k/w.

4.4 The Lifetime Probability of Ruin

In order to separate our main problem from the special case discussed in
Section 4.3, let us introduce a new notation for the lifetime probability of ruin
(LPoR), where the random time of death Tx (i.e. the remaining lifetime of an
individual aged x) takes only finite values. In accordance with Equation (4.8),
we define the lifetime probability of ruin as

LPoR (w) = P

[
inf

0≤t≤Tx

Wt ≤ 0

∣∣∣∣W0 = w

]
. (4.16)

Similarly as in the previous section, we can apply Theorem 4 to receive

LPoR (w) = P [WTx
≤ 0|W0 = w]

= P

[
w

k
≤

∫ Tx

0

1

Su
du

]
(4.17)

= P

[
w

k
≤

∫ Tx

0

e−(µ−σ2/2)u−σBu du

]
. (4.18)

In other words, the lifetime probability of ruin can be expressed as the probability
that the stochastic present value (SPV) of a life annuity paying continuously one
CZK per annum is greater than or equal to the ratio of initial capital w and
the desired (real) annual consumption k. Hence, denoting the SPV for a fixed
maturity by

Zt :=

∫ t

0

e−(µ−σ2/2)s−σBs ds, (4.19)

we have transformed our problem to the one to find a suitable probability distri-
bution for ZTx

, which is the SPV of lifetime consumption.
Unfortunately, according to Milevsky & Robinson (2000), there is no probabil-

ity density function for ZTx
, which could be expressed in a closed form. However,

several approximation techniques have been proposed in this case.
For instance, the authors of the aforementioned article have noticed a re-

markable connection between the SPV random variable and a financial derivative
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called the Arithmetic Asian option (AAO)5. Recall that the payoff from a plain
vanilla call option is max[ŜT −K, 0], where K is the strike price and ŜT denotes
the price of the underlying at the time of maturity T . On the other hand, the
payoff from the Arithmetic Asian call option is

max

[
1

n

n∑

i=1

Ŝti −K, 0

]
, (4.20)

where {t1, . . . , tn} is the set of predetermined observation dates. In addition, in
the limiting case for a large number of observation dates compared to the lifetime
of the option we can define the payoff from a ”continuous” AAO as

max

[
1

T

∫ T

0

Ŝt dt−K, 0

]
,

where {Ŝt, 0 ≤ t ≤ T} is the price process of the underlying. Consequently, the
(real-world) probability that an AAO expires in-the-money can be expressed as

P

[∫ T

0

Ŝt dt ≥ TK

]
.

Therefore, if we define a new price process Ŝt := 1/St, we can conclude that the
lifetime probability of ruin (see (4.17)) is equal to the (real-world) probability
that a certain Arithmetic Asian option will expire in-the-money.

The last result led the authors of Milevsky & Robinson (2000) to the idea
of approximating the distribution of the lifetime SPV random variable ZTx

via
techniques that had been successfully used in the AAO pricing literature6 to
approximate the distribution of

∫ T

0
Ŝt dt.

4.5 Reciprocal Gamma Approximation

In this section we will present a convenient method of the SPV random vari-
able distribution approximation, which was also used e.g. by Milevsky & Posner
(1998) in the Arithmetic Asian option pricing context.

First, recall the definition of the lifetime SPV r.v.

ZTx
:=

∫ Tx

0

e−(µ−σ2/2)s−σBs ds. (4.21)

In Section 4.3 we have shown that the present value of a stochastic perpetuity
follows the reciprocal gamma distribution. In some sense, the PVSP random
variable Z is the limiting case for the SPV r.v. defined by Equation (4.21). The

5The AAOs are one of the basic forms of exotic options. Unlike in the case of a plain
vanilla option, the payoff from the AAO is path-dependant. More specifically, the value of
AAO is determined by the arithmetic average of prices of the underlying asset, measured over
some predetermined set of observation dates. In general, Asian options are typically cheaper
than (European or American) vanilla options, since the averaging feature reduces the volatility
inherent in the option.

6See for example Milevsky & Posner (1998).
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RG distribution therefore becomes a natural candidate for our approximation of
ZTx

. In particular, we will use the moment matching technique. Since the RG
distribution has two degrees of freedom, we match the first two moments.

We will now proceed to obtain the first moment of ZTx
. First of all, recall that

for a random variable X the moment-generating function evaluated at t ∈ R is
defined as MX(t) := E[etX ], providing that this expectation exists. In particular,
for a normally distributed r.v. Y ∼ N(µ, σ2) we receive

MY (t) = exp {µt+ 1

2
σ2t2}, t ∈ R. (4.22)

Consequently, since the standard Brownian motion fulfils Bs ∼ N(0, s), we may
write

MBs
(−σ) = E

[
e−σBs

]
= esσ

2/2. (4.23)

Thus, the first moment of the SPV r.v. can be calculated as

E [ZTx
] = E

[
E

[∫ t

0

e−(µ−σ2/2)s−σBs ds

∣∣∣∣Tx = t

]]
(4.24)

= E

[∫ t

0

e−(µ−σ2/2)s
E
[
e−σBs

]
ds

∣∣∣∣Tx = t

]

= E

[∫ t

0

e−(µ−σ2)s ds

∣∣∣∣Tx = t

]
, (4.25)

where in (4.24) we used the law of iterated expectations, i.e.

E[ZTx
] = E[E[ZTx

|Tx = t]].

Denoting the PDF of the remaining lifetime r.v. Tx by fx(t), we can change the
order of integration in (4.25) to obtain

E [ZTx
] =

∫ ∞

0

∫ t

0

e−(µ−σ2)s dsfx(t) dt

=

∫ ∞

0

e−(µ−σ2)s

∫ ∞

s

fx(t) dt ds

=

∫ ∞

0

e−(µ−σ2)s
spx ds. (4.26)

The last equality in (4.26) follows from formula (2.3).
Let us now, for the sake of convenience, define the following present value

operator:

A (ξ|·) :=
∫ ∞

0

exp {−ξs}spx ds. (4.27)

This expression can be interpreted as the price of a continuous life annuity under
a continuously compounded interest rate ξ. Rewriting the result (4.26), we can
now conclude that the first moment of the SPV random variable is

M̃1 = E [ZTx
] = A(µ− σ2|·). (4.28)

Note that we have derived this result without using any specific information
about the remaining lifetime random variable Tx (except for the assumption that
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the PDF of Tx exists). The last formula is therefore universally applicable for
an arbitrary mortality law. The imposed mortality dynamics then determine the
shape of A(ξ|·) with the corresponding parameters instead of the dot.

Let us now use our assumption that Tx follows the Gompertz-Makeham law
of mortality. In Section 2.4 we have shown that in this case the conditional
probability of survival is

tpx = exp
{
−λt + e(x−m)/b

(
1− et/b

)}
. (4.29)

Substituting (4.29) into (4.27) and performing the change of variables z :=
e(x−m+s)/b then gives

A (ξ|λ,m, b, x) = exp
{
e(x−m)/b

}∫ ∞

0

exp
{
−(ξ + λ)s− e(x−m+s)/b

}
ds

= b exp
{
e(x−m)/b + (ξ + λ)(x−m)

}∫ ∞

exp {x−m

b
}

z−(ξ+λ)b−1e−z dz

= b exp {e(x−m)/b + (ξ + λ)(x−m)}Γ(−(ξ + λ)b, e(x−m)/b).
(4.30)

Recall that the last expression in (4.30) stands for the (upper) incomplete Gamma
function defined by (2.23). Also observe that if we assumed Tx to follow just the
Gompertz law of mortality instead of the Gompertz-Makeham model, it would
suffice to set λ = 0 in (4.30) to yield

A (ξ|0, m, b, x) = b exp {e(x−m)/b + ξ(x−m)}Γ(−ξb, e(x−m)/b). (4.31)

We will now proceed to obtain the second moment of the SPV random vari-
able. The technique is similar to the previous case. We have

E
[
Z2

Tx

]
=E

[
E
[
Z2

t

∣∣Tx = t
]]

=E

[
E

[(∫ t

0

1

Ss
ds

)2
∣∣∣∣∣Tx = t

]]

=E

[
E

[
2

∫ t

0

∫ s

0

1

Ss

1

Sz

dz ds

∣∣∣∣Tx = t

]]
(4.32)

=E

[
2

∫ t

0

∫ s

0

e−(µ−σ2/2)(s+z)
E
[
e−σBse−σBz

]
dz ds

∣∣∣∣Tx = t

]
. (4.33)

In (4.32) we have used a generally applicable formula
(∫ t

0

h(s) ds

)2

= 2

∫ t

0

∫ s

0

h(s)h(z) dz ds,

which can be validated via integration by parts (providing that the integrals on
the both sides exist).

We now require the covariance term E[e−σBse−σBz ], where z < s. Recall the
definition of the standard Brownian motion from Section 3.2. Using the properties
(iii) and (iv) together with the moment-generating function for a normal random
variable, we have

E
[
e−σBse−σBz

]
= E

[
e−σ(Bs−Bz)

]
E
[
e−2σBz

]

= e(s−z)σ2/2e2zσ
2

= e(s+3z)σ2/2. (4.34)
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Thanks to the assumption (4.4), substituting (4.34) into (4.33) now yields

E
[
Z2

Tx

]
= E

[
2

∫ t

0

e−(µ−σ2)s

∫ s

0

e−(µ−2σ2)z dz ds

∣∣∣∣Tx = t

]

=
2

µ− 2σ2
E

[∫ t

0

e−(µ−σ2)s − e−(2µ−3σ2)s ds

∣∣∣∣Tx = t

]

=
2

µ− 2σ2

∫ ∞

0

∫ t

0

(
e−(µ−σ2)s − e−(2µ−3σ2)s

)
dsfx(t) dt

=
2

µ− 2σ2

∫ ∞

0

(
e−(µ−σ2)s − e−(2µ−3σ2)s

)∫ ∞

s

fx(t) dt ds

=
2

µ− 2σ2

∫ ∞

0

(
e−(µ−σ2)s − e−(2µ−3σ2)s

)
spx ds. (4.35)

Finally, using the notation introduced in Equation (4.27), we conclude that
the second moment of the SPV random variable is

M̃2 = E
[
Z2

Tx

]
=

2

µ− 2σ2

[
A(µ− σ2|·)− A(2µ− 3σ2|·)

]
. (4.36)

Now, recall that according to (4.13) and (4.14) the first two moments of the
RG distribution with (positive) parameters α and β are

M1 =
1

β(α− 1)
(4.37)

M2 =
1

β2(α− 1)(α− 2)
. (4.38)

The last two equations can be easily solved for α and β to yield

α =
2M2 −M2

1

M2 −M2
1

, β =
M2 −M2

1

M2M1
.

Hence, the fitted parameter values are

α̂ =
2M̃2 − M̃2

1

M̃2 − M̃2
1

, β̂ =
M̃2 − M̃2

1

M̃2M̃1

, (4.39)

where M̃1 and M̃2 are defined by (4.28) and (4.36), respectively. We conclude
that the approximate distribution of the SPV random variable is

ZTx

·∼· RG(α̂, β̂). (4.40)

Thus, going all the way back to the formula (4.18), we can summarize that

LPoR(w) = P

[w
k

≤ ZTx

]

∼= 1−GR

(w
k
; α̂, β̂

)
= G

(
k

w
; α̂, β̂

)
, (4.41)

where α̂ and β̂ are defined by (4.39). In other words, the lifetime probability
of ruin is approximately equal to the CDF of a suitable gamma distribution
evaluated at the ratio of the desired consumption k to the initial wealth w.
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Figure 4.1: The RG approximation of the LPoR as a function of the investment volatil-
ity σ, for various values of the expected real rate of return µ. A 65-year-old individual
with an initial wealth w = 12 CZK, who plans to consume k = 1 real CZK per year
was assumed. The parameters of the Gompertz distribution were set to m = 85 and
b = 9.

Figure 4.1 shows the LPoR approximated by the RG formula (4.41). In this
case the mortality was assumed to follow the Gompertz law. The LPoR is dis-
played as a function of the investment volatility σ for various values of the ex-
pected real rate of return µ. The retiree was assumed to be aged x = 65. Note that
although the initial capital and the annual consumption rate were set to w = 12
CZK and k = 1 CZK, respectively, only the ratio of k and w matters. In different
words, as long as the ratio k/w does not change, the both values can be scaled
arbitrarily without affecting the LPoR. Figure 4.1 evidently corresponds with the
intuitive idea that (all other things being equal) the LPoR should be decreasing in
µ and increasing in σ. Thus, a natural investment strategy minimizing the LPoR
would be to invest the initial capital to a portfolio with the highest possible µ and
the lowest possible σ. However, in an efficient financial market only a shift of the
both µ and σ in the same direction can be accomplished, making the portfolio
either riskier (higher values of µ and σ) or more conservative (lower values of
µ and σ). The difference in the LPoR corresponding to diversely conservative
portfolios will be examined in Section 6.5.

Some additional facts regarding the reciprocal gamma approximation should
be mentioned. First of all, let us once again point out that the RG approximation
procedure is quite universal with respect to the mortality assumptions. If we had
imposed different mortality dynamics, our results would remain the same except
for the shape ofA(ξ|·). In (4.30) we have derived the shape of this expression under
the Gompertz-Makeham law. What would the result, for instance, in the case of
the Exponential law of mortality look like? Recall from Section 2.3 that in this
case the IFM curve is constant across all ages, i.e. λ(x) ≡ λ. The corresponding
conditional probability of survival is then tpx = e−λt, as we have shown in (2.13).
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Substituting into (4.27) then gives7

A (ξ|λ) =
∫ ∞

0

e−ξse−λs ds =
1

ξ + λ
. (4.42)

Observe how simple the result looks compared to the formula for A(ξ|λ,m, b, x)
we have received under the Gompertz-Makeham law. In fact, in this case it makes
sense to substitute A(ξ|λ) into (4.28) and (4.36) to obtain

M̃1,E =
1

µ− σ2 + λ
, M̃2,E =

2

(µ− σ2 + λ)(2µ− 3σ2 + λ)
.

Plugging the exponential SPV moments into (4.39) leads to

α̂E =
2µ+ 4λ

σ2 + λ
− 1, β̂E =

σ2 + λ

2
. (4.43)

Since the gamma distribution is usually available in spreadsheet calculators, this
actually means that, if one is willing to simplify the situation somewhat by as-
suming the Exponential law of mortality, the approximate lifetime probability of
ruin can be easily calculated, for example, in MS Excel. It is also worth noticing
that the results obtained under the Exponential law are in line with the statement
we made about the perpetual case. Indeed, after setting λ = 0 in (4.43), which
means that the mortality decrement is ignored, we arrive at the parameter values
presented in Theorem 5.

Finally, let us remark that there is a number of ways in which the RG formula
can be manipulated. Perhaps the most useful one is calculating the so-called
sustainable spending rate (SSR) by inverting (4.41) to yield

k ∼= w ·G−1
(
LPoR(w); α̂, β̂

)
. (4.44)

This means, one can use (4.44) to calculate the maximum annual spending rate
for a fixed initial capital w, so that the corresponding consumption plan results
in a given tolerated lifetime probability of ruin. A numerical application of (4.44)
is presented in Section 6.4.

7Observe that in this case, since both values add up in the denominator, additive changes in ξ
and λ have exactly the same effect on A(ξ|λ) in (4.42). Taking the aforementioned interpretation
of A(ξ|·) into account, this means that for the value of a lifetime annuity under the Exponential
law of mortality only the sum of the interest rate ξ and the IFM λ is relevant.
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Chapter 5

Accuracy of Reciprocal Gamma
Approximation

In this chapter we verify the accuracy of the reciprocal gamma approximation
for the lifetime probability of ruin. Being the key theoretical result of this text,
the RG approximation formula (4.41) was obtained via matching of the first two
moments of the stochastic present value random variable. Since the exact value
of the LPoR is not known, we compare the results of the RG approximation with
the results obtained by the Monte Carlo (MC) simulations approximation of the
true LPoR.

5.1 The Monte Carlo Simulation Technique

The term Monte Carlo methods (Monte Carlo experiments, Monte Carlo sim-
ulations) refers to a broad class of computational algorithms sharing a common
feature: they rely on a repeated random sampling to obtain numerical results.
Although several attempts were made, there is no general consensus on how ex-
actly the Monte Carlo should be defined. In this text, we use this term to refer
to our technique of the LPoR approximation based on stochastic simulations.

Relying on the assumptions made in Section 4.1, one can simulate the event of
retirement ruin by generating the time of death (i.e. sampling from the Gompertz
distribution with the PDF (2.16)) and then simulating the path of the net wealth
process (independently on the time of death). In a given trial, the ruin of the
retiree occurs if the NWP path crosses zero prior to the simulated time of death.
Thinking of the result of a given trial as a Bernoulli distributed r.v., the LPoR
can be viewed as the probability of success, and hence also as the mean of the
corresponding Bernoulli distribution. Thanks to the Weak Law of Large Numbers
(WLLN), one can claim that, after repeating this trial many times (under the
same conditions but independently), the LPoR can be approximated by the ratio
of observed ruins and the total number of trials.

The number of trials one needs to carry out to obtain a reasonably precise
MC approximation of the LPoR depends on the speed of convergence (assured
by the WLLN) to the true expected value. Figure 5.1 displays the MC LPoR
curve as a function of the investment volatility σ for various number of MC
simulations. Obviously, the more trials carried out, the closer approaches the
MC approximation to the true LPoR, and thus the MC LPoR curve in the figure
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Figure 5.1: The speed of convergence of the Monte Carlo LPoR approximation. The
figure displays the MC approximation of the LPoR as a function of the investment
volatility σ, for various number of simulations n. A 65-year-old individual with an
initial wealth w = 10 CZK, who plans to consume k = 1 real CZK per year was
assumed. The parameters of the Gompertz distribution were set to m = 85 and b = 9.
The assumed expected real rate of investment return is µ = 0.1.

becomes smoother. On the other hand, since the amount of (pseudo)random
numbers to be generated for every simulation is not negligible1 and the time
complexity of the MC approximation is increasing linearly with the number of
simulations n, the possible amount of trials is significantly limited. Based on a
graphical analysis of the MC LPoR results, we have decided to set n = 10 000 as
a reasonable compromise solution to this trade-off between time complexity and
precision. The following section provides a comparison of the RG LPoR with the
results of the MC LPoR approximation obtained for n = 10 000.

5.2 Measuring the RG LPoR Accuracy

Recall Figure 4.1, which showed the reciprocal gamma approximation of the
LPoR as a function of the investment volatility σ, for various values of the ex-
pected real rate of return µ. In the same manner, Figure 5.2 displays the results
of the Monte Carlo LPoR approximation. The assumed parameter values are the
same as in Figure 4.1. Observe that, similarly to the RG LPoR, the MC LPoR
is increasing in σ and decreasing in µ. However, for high levels of volatility the
MC values are significantly lower than the RG values in Figure 4.1. Actually,
since the LPoR curves in Figure 5.2 seem fairly smooth, one can assume that the
MC values are not far from the true LPoR. Thus, in this situation, one can use

1The simulation of the net wealth process path was constructed by discretizing time in
increments of 1/250 years (one increment per trading day). This means that one (random)
increment of the NWP has to be generated for every trading day of the individual’s remaining
lifetime.
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Figure 5.2: The MC approximation of the LPoR as a function of the investment volatil-
ity σ, for various values of the expected real rate of return µ. A 65-year-old individual
with an initial wealth w = 12 CZK, who plans to consume k = 1 real CZK per year
was assumed. The parameters of the Gompertz distribution were set to m = 85 and
b = 9.

the difference between the RG LPoR and the MC LPoR as a measure of the RG
approximation accuracy.

Figure 5.3 displays the discrepancy between the RG LPoR and the MC LPoR
as a function of the investment volatility σ in the same setting as in Figure 4.1 and
Figure 5.2. Observe that in all cases the discrepancy remains reasonably small as
long as σ does not increase beyond a certain level at which the RG approximation
starts to overestimate the LPoR significantly. The higher the expected rate of
return µ, the later (in terms of σ) starts the RG approximation to deteriorate.
To explain this effect, recall the formula (4.35) for the second moment of the
stochastic present value random variable:

E
[
Z2

Tx

]
=

2

µ− 2σ2

∫ ∞

0

(
e−(µ−σ2)s − e−(2µ−3σ2)s

)
spx ds. (5.1)

First, note that the integrand in (5.1) is a sum of two exponentials multiplied
by a probability of survival. Regardless of µ and σ, the equality

spx = 0, s > ω − x

ensures that the value of the integral always remains finite. Thus, thanks to the
assumption (4.4)

µ− 2σ2 6= 0,

the second moment of the SPV always exists. The relationship between µ and
σ, in particular the sign of µ − 2σ2, determines which of the exponentials in
the integrand outweighs the other for s → ∞. In the case of high volatility
relative to the expected rate of return, the second moment (5.1) becomes very
large due to the second exponential term in the integrand and hence the moment
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Figure 5.3: The discrepancy between the RG and the MC approximations of the LPoR
as a function of the investment volatility σ, for various values of the expected real rate
of return µ. A 65-year-old individual with an initial wealth w = 12 CZK, who plans
to consume k = 1 real CZK per year was assumed. The parameters of the Gompertz
distribution were set to m = 85 and b = 9.

matching approximation deteriorates. The discrepancy in Figure 5.3 starts to
grow significantly approximately when σ increases beyond

√
2µ/3, which is when

the sign of the second exponent in (5.1) becomes positive. Due to the spx factor
in the integrand, the exact threshold at which the RG approximation noticeably
deteriorates also depends on the Gompertz parameters m and b, as well as on the
initial age x of the individual.

So far, we have illustrated the behaviour of the both LPoR approximations in
dependency on the expected real rate of investment return µ. In the same manner,
one can analyse the behaviour of the LPoR in dependency on the ratio of the
initial capital w and the real annual spending rate k. Figure 6.8 and Figure 6.9 in
the Appendix show the RG LPoR and the MC LPoR, respectively, as a functions
of the investment volatility σ, for various amounts of the initial capital w. The
assumed spending rate is set to k = 1 real CZK per year. The both figures
confirm the intuitive idea that the LPoR decreases in w when the consumption
rate k and all other parameters are fixed.

The discrepancy between the RG LPoR and the MC LPoR is displayed in
Figure 5.4. Similarly to the previous case, the RG approximation overestimates
the LPoR at higher levels of volatility. However, observe that unlike in Figure 5.3,
the threshold at which the RG approximation starts to deteriorate appears to be
roughly the same for every curve, which corresponds with the fact that the second
moment of the SPV does not depend on w.

Since for a given population the Gompertz parameters m and b are usually
fixed, the last factor influencing the accuracy of the RG LPoR approximation
we are interested in, is the initial age x of the retiree. Similarly to the previous
two cases, the RG LPoR and the MC LPoR for various values of x are shown in
Figure 6.10 and Figure 6.11 in the Appendix. It is apparent from the figures that
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Figure 5.4: The discrepancy between the RG and the MC approximations of the LPoR
as a function of the investment volatility σ, for various values of the initial wealth w. A
65-year-old individual, who plans to consume k = 1 real CZK per year was assumed.
The parameters of the Gompertz distribution were set to m = 85 and b = 9. The
expected real rate of investment return was set to µ = 0.1.

both the RG LPoR and MC LPoR are decreasing in x when all other variables
are held constant. The later the individual retires, the smaller is the probability
that a given consumption plan will lead to the retirement ruin.

Figure 5.5 displays the discrepancy between the RG LPoR and the MC LPoR
as a function of σ. Again, at first the RG values seem to stay reasonably close
to the MC LPoR, but with higher levels of volatility they overgrow the MC
values significantly. Since the value of (5.1) depends on x via the conditional
probability of survival spx, the level of volatility at which the RG approximation
begins to deteriorate is different for every x. Namely, the higher the initial age x,
the sooner attains the spx factor in (5.1) zero, keeping the second moment of the
SPV smaller. Thus, with all else held constant, the higher the initial age x, the
higher is the volatility level at which the RG approximation starts to deteriorate
noticeably, as confirmed by Figure 5.5.

The fact that at high levels of volatility the RG approximation becomes more
precise with an older initial age actually might appear rather peculiar at first.
Recall that, in the case of the eventual probability of ruin, the PVSP random
variable (4.12) follows exactly the reciprocal gamma distribution, as stated in
Theorem 5. Being the limit case for the LPoR as the death rate decreases towards
zero, the EPoR is the upper bound for the true LPoR, and the younger the
individual is, the closer the true LPoR and the EPoR are. Hence, one would
expect that for younger ages it should be possible to approximate the true LPoR
more precisely by the RG procedure. Nevertheless, this fact does not affect the
problem of the SPV second moment growth when σ increases, the consequences of
which become noticeable already at a slightly lower level of volatility for younger
ages.

To sum up, as shown by the previous figures, the reciprocal gamma LPoR
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Figure 5.5: The discrepancy between the RG and the MC approximations of the LPoR
as a function of the investment volatility σ, for various values of the age x of the retiree.
An individual with the initial wealth of w = 12 CZK, who plans to consume k = 1 real
CZK per year was assumed. The parameters of the Gompertz distribution were set to
m = 85 and b = 9. The expected real rate of investment return was set to µ = 0.1.

approximation usually provides values that are reasonably close to the Monte
Carlo LPoR values. However, at high levels of volatility the RG approximation
significantly overestimates the real LPoR and thus becomes unusable. The exact
level of volatility at which the RG approximation starts to deteriorate depends
primarily on the expected real rate of return, but also on the initial age of the
retiree and on the used mortality dynamics (Gompertz parameters).

5.3 Benefits of the RG Approximation

Bearing the results from the previous section in mind, one might wonder
what the benefits of the reciprocal gamma LPoR approximation are, given that
the Monte Carlo procedure usually provides a more precise value and most im-
portantly, it does not break at high levels volatility. In this section we therefore
briefly discuss the possible advantages of the RG approach over the MC method.

There are two reasons why the RG approximation might be preferred over
the MC method in some situations. Firstly, while the RG LPoR can be eas-
ily computed in any spreadsheet calculator (including for example MS Excel),
one needs to use a relatively advanced (and ergo expensive) software tool2 for
a successful implementation of the MC procedure. Thus the RG formula (4.41)
implemented in a simple spreadsheet calculator might be the right tool for an
interested retirement planner or a beginning financial advisor.

The second advantage of the RG approximation over the MC method is the
lower time complexity. While evaluating the CDF of the gamma distribution

2The MC procedure for the LPoR approximation was implemented in Wolfram Mathematica
8.0. See http://www.wolfram.com/mathematica/.
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is a relatively fast and straightforward procedure, sampling from the Gompertz
distribution and, above all, generating a path of the net wealth process, takes
some time. Moreover, we have mentioned that the MC simulation has to be
repeated at least ten thousand times to yield a reasonably precise approximation
of the LPoR.

To illustrate the difference in the time complexity of the both procedures, let
us once again take a look at Figure 6.10 and Figure 6.11 in the Appendix. For
example, the evaluation of the RG LPoR for one set of parameter values (i.e.
the calculation of a single point in Figure 6.10) took3 less than 7 seconds. On
the other hand, for a similar procedure in the case of the MC method (i.e. the
evaluation of a single point in Figure 6.11) almost 8 minutes were needed. Put
differently, while the evaluation of a single curve in Figure 6.10 takes no more than
5 minutes, the same calculation requires almost 6 hours using the MC method.

We conclude that although the inaccuracy at higher levels of volatility is
a significant drawback, thanks to the aforementioned advantages over the MC
method, the reciprocal gamma approximation can certainly be useful in practice.

3To ensure comparability of results, both the RG LPoR approximation and the MC LPoR
procedure (with n = 10 000) were implemented in Wolfram Mathematica 8.0 and the results
were calculated on the same computer.
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Chapter 6

Sustainable Spending Rate: The
Czech Case

This chapter provides a numerical case study for the lifetime probability of
ruin using the Czech life table and historical investment return estimates. First,
we describe the both mortality dynamics and capital market parameters estima-
tion techniques and discuss their possible shortcomings. We continue with the
presentation of numerical results for the LPoR and the sustainable spending rate.
The chapter ends with a numerical analysis of an investment strategy influence
on the LPoR.

6.1 Estimating the Gompertz Parameters for the

Czech Population

Recall the assumption from Chapter 4 that the length of human life follows
the Gompertz-Makeham law of mortality, which was defined in Section 2.4 by the
IFM curve

λ(x) = λ+
1

b
exp

{
x−m

b

}
, x ≥ 0. (6.1)

We have shown that the parameters m > 0 and b > 0 represent the modal length
of human life and the dispersion coefficient, respectively. The parameter λ ∈ R

stands for the component of the death rate that is attributable to accidental
deaths. Since the value of λ tends to be negligible in practice, assuming λ = 0
and thus working only with the Gompertz law does not lead to a substantial
inaccuracy.

We now use the technique presented in Section 2.4 to fit the Gompertz curve to
the Czech life table (2011) prepared by the CZSO (see Table 6.8 in the Appendix).
Since we are interested only in description of the retirement ages mortality pat-
tern, we set the lower border age for the estimation to x0 = 60. We estimate
the both male and female Gompertz parameters separately because the male and
female mortality differ significantly from each other.

Running the minimization procedure (2.21) for x = 60, . . . , 105 yielded the
male Gompertz parameters m̂M = 82.51 and b̂M = 10.54. Similarly, the female
parameters were estimated as m̂F = 87.87 and b̂F = 7.64.
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Figure 6.1: An illustration of the Gompertz law fit to the male life table (Czech Re-
public, 2011). The estimated parameter values are m̂M = 82.51 and b̂M = 10.54.

Figure 6.1 illustrates the achieved fit of the Gompertz curve (2.19) with pa-
rameters m̂M and b̂M to the Czech male life table. Observe that our model fits
the male life table rather accurately1 at the ”lower” ages, while starting at x = 89
it begins to underestimate the actual death rate. This goodness of fit imbalance
is caused by the fact that the estimation technique (2.21) implicitly (by assigning
higher weights) gives preference to the achievement of a tight fit at the ages, at
which the most of people tend to die. Stated differently, the (Czech male life
table) conditional probability of survival 89p60 = 0.149 indicates that, if all males
retired exactly at the age of 60, the slight imprecision in our model would af-
fect only 15% of them. Hence, one does not have to be much concerned about
the deviation from the actual life table values at the older ages. Moreover, this
underestimation can be accepted as longevity risk margin by pension providers.

Similarly, the estimated Gompertz curve for the Czech female population is
shown by Figure 6.2. Observe that the result resembles the male case. However,
due to the higher female modal age of death, the distinguishable underestimation
of the actual death rate does not start until x = 95. Thus, the distribution of
the fit accuracy is more even. For the sake of completeness, the female (table)
conditional probability of survival is 95p60 = 0.053. The fact that the death rate
underestimation at the older ages is not as significant as in the male case will
actually lead to a minor curiosity in a part of our results. We attend to this
problem in Section 6.4.

1The tightness of the fit is actually not that surprising, since a part of the crude death rates
smoothing procedure used by the Czech Statistical Office involves smoothing by the Gompertz-
Makeham curve. More information on the CZSO life table preparation methodology available
at http://www.czso.cz/csu/redakce.nsf/i/umrtnostni tabulky metodika.
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Figure 6.2: An illustration of the Gompertz law fit to the female life table (Czech
Republic, 2011). The estimated parameter values are m̂F = 87.87 and b̂F = 7.64.

6.2 Calibrating the Financial Model

The second key assumption we made in Chapter 4 is that the market prices
are driven by the geometric Brownian motion, i.e. the real price of the investment
portfolio follows the equation

St = S0e
(µ−σ2/2)t+σBt , t ≥ 0. (6.2)

For the purpose of our numerical study, we have chosen the PX index 2 traded
at the Prague Stock Exchange (PSE) as a representative of a simple stock portfolio
easily available in the Czech financial environment. From now on, we shall assume
that at the first day of retirement the individual invests his or her initial capital
w to the PX index. The desired yearly income stream of k real CZK is to be
created via a systematic withdrawal plan, which regularly3 sells off the required
number of the PX index units4.

To calibrate our financial model, we now need to estimate the GBM param-
eters µ and σ. We will use a technique based on historical prices presented in
Cipra (2008). Suppose we have the historical index prices {Pti}ni=0 at our dis-
posal, where the set of observation dates is {ti = i∆, i = 0, . . . , n}, so that ∆ > 0
is the time difference between any two adjacent price observations. For instance,
in the case of daily index prices, we would have ∆ = 1/250 since we measure time
in years and there is approximately 250 trading days in a year.

2The official index of the Prague Stock Exchange. The PX index was first calculated in
March, 2006, when it replaced the PX 50 and PX-D indices. The PX index took over the
historical values of the PX 50 and continues in its development. The PX index is a price index
and dividend yields are not considered in its calculation.

3In the real world it is obviously not possible to make continuous withdrawals from a portfo-
lio. We can only approach the limiting continuous case by making regular discrete withdrawals
on e.g. monthly, weekly or daily basis.

4All numbers are prior to any income taxes.
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Recall from Section 3.1 that we assume the corresponding (annualized) rates
of return

g̃ti =
1

∆
ln

Pti

Pti−1

, i = 1, . . . , n

to be normally distributed:

g̃ti ∼ N

(
µ− σ2

2
,
σ2

∆

)
, i = 1, . . . , n.

Hence, for every i = 1, . . . , n we have

E[g̃ti ] = µ− σ2

2
, var[g̃ti ] =

σ2

∆
. (6.3)

On the other hand, the sample mean and the sample variance of the observed
rates of return are

m(g̃) =
1

n

n∑

i=1

g̃ti , s2(g̃) =
1

n− 1

n∑

i=1

(g̃ti −m(g̃))2 . (6.4)

Putting the empirical moments (6.4) equal to the theoretical moments (6.3) and
solving the system of two equations for µ and σ then yields the GBM parameters
estimators:

µ̂ = m(g̃) +
∆s2(g̃)

2
, σ̂ =

√
∆s(g̃). (6.5)

It follows from the properties of sample mean and sample variance that the both
estimators in (6.5) are consistent and (asymptotically) unbiased.

Going back to our situation, we have decided to apply this estimation tech-
nique on the PX index historical daily prices observed in the last 10 years5. Since
we are interested in the real (inflation-free) price parameters, we have recon-
structed the real PX index historical prices by subtracting the inflation rate6

from the nominal prices. The development of the both nominal and real price of
the PX index over the last ten years is shown by Figure 6.3.

In conclusion, using the real daily PX index prices observed between 2.1.2003
and 28.12.2012, setting ∆ = 1/250 and performing the aforementioned estimation
technique yielded the values µ̂PX = 0.087867 and σ̂PX = 0.244746. Thus, we
assume the real PX index price to follow the GBM equation

Pt = P0e
(µ̂PX−σ̂2

PX
/2)t+σ̂PXBt , t ≥ 0.

Being equipped with the estimations of the both GBM and Gompertz param-
eters, we are now in a position to introduce the numerical results for the lifetime

5The choice of the length of the historical prices reference period is an important decision.
Obviously, we need to use a relatively large number of observations to receive reasonable es-
timates of µ and σ. On the other hand, too old historical prices might be irrelevant for our
purposes, for instance, because of possible changes in the market factors driving the index price
over time. After several trials we settled for a 10 years long reference period as a reasonable
compromise. Thus, the total number of used price observations was n = 2515. Altogether,
employing more complex techniques for estimation (or prediction) of µ and σ is an area for a
possible further research on this topic.

6Table 6.9 in the Appendix displays the estimates of the monthly inflation rate in the Czech
Republic. The estimates were prepared by the CZSO.
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Source of the data: PSE (www.bcpp.cz), CZSO (www.czso.cz).

Figure 6.3: Development of the daily PX index price over the last ten years (2.1.2003 -
28.12.2012). The real price was calculated by subtracting the (monthly) inflation from
the nominal price.

probability of ruin obtained via the reciprocal gamma formula (4.41). Before we
do so in the next section, let us briefly attend to the expected precision of our
results. Recall from Chapter 5 that the main factor influencing the accuracy of
the RG LPoR approximation is the relationship between the investment param-
eters µ and σ. Since we have µ̂PX

.
= 0.09 and σ̂PX

.
= 0.24, our situation roughly

corresponds to the σ = 0.24 point of the µ = 0.09 curve in Figure 5.3. Judging by
the fact that the discrepancy for this combination of the GBM parameters values
is rather small, we can expect our numerical results to be relatively precise with
respect to the Monte Carlo LPoR.

6.3 The Czech Lifetime Probability of Ruin

In this section we present numerical results for the LPoR obtained via the
RG approximation method. All the results were calculated using the Gompertz
parameters estimated in Section 6.1 and the GBM parameters estimated in Sec-
tion 6.2. Since the implementation of the RG formula in a spreadsheet calculator
is not difficult at all, the range of presented results is intentionally not as ex-
tensive as it could be. The purpose of the following tables is rather to provide
an insight on the impact of various parameter changes (such as increase in the
consumption rate or decrease in the retirement age) on the LPoR in the Czech
environment.

Table 6.1 displays a brief overview of the Czech male lifetime probability of
ruin results using the both reciprocal gamma and Monte Carlo approximation
methods. The first column of the table displays the retirement age x and the
second column provides the corresponding assumed expected age at death, cal-
culated as x+E[Tx], using the formula (2.22) with the parameter values m̂M , b̂M
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Retire- Expected
ment age at Spending rate (per 100 CZK)
age death 2 CZK 4 CZK 6 CZK 8 CZK 10 CZK

RG 2.0% 11.1% 25.7% 41.9% 56.9%
60 79.9 MC 2.2% 11.8% 27.9% 42.8% 56.0%

D -0.2% -0.7% -2.2% -0.9% 0.9%

RG 1.2% 7.5% 18.8% 32.5% 46.4%
65 81.1 MC 1.3% 8.5% 20.9% 34.0% 47.9%

D -0.1% -1.0% -2.1% -1.5% -1.5%

RG 0.7% 4.6% 12.4% 23.0% 34.7%
70 82.8 MC 0.6% 5.2% 14.6% 26.9% 37.5%

D 0.1% -0.6% -2.2% -3.9% -2.8%

RG 0.3% 2.5% 7.3% 14.4% 23.1%
75 84.8 MC 0.3% 2.9% 9.0% 17.5% 27.0%

D 0.1% -0.3% -1.7% -3.1% -3.9%

RG 0.2% 1.2% 3.8% 7.9% 13.5%
80 87.4 MC 0.1% 1.3% 4.5% 10.6% 17.8%

D 0.1% -0.1% -0.7% -2.6% -4.3%

Note: RG = reciprocal gamma, MC = Monte Carlo, D = RG - MC.

Table 6.1: Overview of the lifetime probability of retirement ruin for Czech males.

and λ = 0. Every entry in the table then shows the LPoR of a Czech male,
who retires at age x, invests his initial capital of the size w = 100 CZK to the
PX index and decides to withdraw the given amount of k real CZK per year
for the rest of his life. Once again, we stress that the probabilities in the table
are universally applicable, since only the ratio of k and w matters. Thus, for
instance, the RG LPoR 12.4% from Table 6.1 holds as well for a retiree aged 70
years with the initial capital of w = 1 million CZK and the real annual spending
rate k = 60 thousand CZK. Also observe that, as predicted by Figure 5.3, the
differences between the RG LPoR and the MC LPoR are relatively small, which
inspires additional confidence in the RG approximation procedure.

A similar overview of the RG and the MC LPoR values, this time for Czech
females, is provided by Table 6.10 in the Appendix. Observe that in this case the
both RG and MC LPoR values are slightly higher, which corresponds with the
fact that females live on average longer than males and hence they need a more
conservative withdrawal plan to reach the same level of sustainability. Also note
that the differences between the RG and the MC female LPoR values are more or
less similar to those in Table 6.1, meaning that the small change in the Gompertz
parameter values from m̂M and b̂M to m̂F and b̂F , respectively, does not have a
substantial influence on the discrepancy between the both results.
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Tolerated lifetime probability of ruin
Age at 1% 5% 10% 20%

retirement M F M F M F M F

60 1.56 1.35 2.87 2.45 3.82 3.26 5.27 4.48
61 1.62 1.40 2.96 2.53 3.95 3.36 5.43 4.60
62 1.68 1.45 3.06 2.61 4.07 3.46 5.60 4.74
63 1.74 1.50 3.16 2.70 4.21 3.57 5.79 4.88
64 1.80 1.56 3.28 2.79 4.36 3.69 5.98 5.03
65 1.87 1.62 3.40 2.90 4.51 3.82 6.19 5.20
66 1.95 1.69 3.53 3.00 4.68 3.96 6.41 5.38
67 2.03 1.76 3.66 3.12 4.86 4.11 6.65 5.58
68 2.11 1.84 3.81 3.25 5.05 4.27 6.91 5.79
69 2.20 1.92 3.97 3.39 5.25 4.44 7.18 6.02
70 2.30 2.01 4.13 3.53 5.47 4.63 7.47 6.27
71 2.40 2.11 4.31 3.69 5.70 4.84 7.79 6.54
72 2.51 2.21 4.50 3.87 5.95 5.06 8.13 6.83
73 2.63 2.32 4.71 4.06 6.22 5.30 8.49 7.15
74 2.75 2.44 4.93 4.26 6.51 5.57 8.89 7.50
75 2.89 2.57 5.17 4.49 6.83 5.86 9.31 7.89
76 3.03 2.72 5.42 4.73 7.16 6.17 9.77 8.31
77 3.18 2.87 5.70 5.00 7.53 6.52 10.26 8.77
78 3.35 3.04 6.00 5.29 7.92 6.89 10.79 9.28
79 3.53 3.22 6.32 5.61 8.34 7.31 11.37 9.84

Note: M = male, F = female. The values are in CZK.

Table 6.2: The sustainable spending rate in the Czech Republic. The table displays
the maximal real annual spending (k) [in CZK] per 100 CZK of initial wealth (w) for
a given tolerated lifetime probability of ruin.

6.4 The Czech Sustainable Spending Rate

Recall that by inverting the RG formula, one can calculate the (maximal)
sustainable spending rate (4.44) for a given tolerated lifetime probability of ruin.
Let’s say that a Czech retiree with a certain initial pension capital is willing to
tolerate a probability of 5% that his or her funds will run out before he or she
dies. In other words, the retiree desires a consumption plan with a 95% chance
of sustainability. What is the maximal affordable spending rate, so that the
requirement is met? How would the affordable spending rate change if the retiree
was willing to tolerate only a 1% probability of ruin?

Table 6.2 displays the sustainable spending rate (SSR) for a Czech retiree
who invests his or her pension funds to the PX index. The values in the table
represent the SSR in real CZK per 100 CZK of initial capital. Similarly to the
previous table, the values can be multiplied arbitrarily, provided that the ratio
of k and w remains unchanged.

A number of things are apparent from Table 6.2. The numbers fully confirm
the intuition that the higher the retirement age, the more can the individual
consume. Naturally, the sustainable consumption rate also increases with greater
tolerance for probability of ruin. For example, a 65-year-old male who desires
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Note: The values are in real CZK, per 100 CZK of initial capital.

Figure 6.4: The sustainable spending rate for Czech males as a function of retirement
age x, for various lifetime probability of ruin tolerance. The SSR values are in real
CZK per 100 CZK of initial capital.

a 95% chance of sustainability can afford to consume 3.40 real CZK per 100
CZK of his initial capital every year. Doubling his LPoR tolerance to 10% would
allow him to spend 4.51 real CZK (per 100 CZK of his initial capital) every year.
Approximately the same amount (4.50 real CZK) could be consumed in case he
would defer retirement to age 72, provided the (real) size of his initial capital
would remain unchanged. Of course, it also holds that the male SSR is higher
than the female SSR because, on average, in the female case the savings will have
to last longer.

For various values of the tolerated LPoR, the sustainable spending rate for
Czech males in dependency on the retirement age x is graphically illustrated by
Figure 6.4. Observe that all the curves are convex, meaning that, with all else
held constant, the higher the retirement age x, the greater is the increase in the
SSR caused by deferring the retirement to the next year.

Figure 6.5 shows the difference between the male SSR (shown in Figure 6.4)
and the female SSR. Observe that an interesting fact is revealed, since the figure
indicates that the male SSR at very old ages is lower than the female SSR. Indeed,
according to Table 6.8 in the Appendix, the female death rate at ages older than
94 is higher than the male one. The exact age at which the female SSR overgrows
the male SSR depends on the tolerated LPoR. The lower the tolerated probability
of ruin, the sooner exceeds the female SSR the male one. The negative difference
in SSR shown in the right bottom part of Figure 6.5 is amplified by the fact that
the Gompertz model estimated in Section 6.1 underestimates the actual male
death rate at very old ages stronger than it underestimates the female one (see
Figure 6.1 and Figure 6.2). However, as indicated by the death rates in Table 6.8,
the female SSR would eventually exceed the male SSR anyway, even without this
minor flaw of our model. Nonetheless, since almost no one retires later than at
the age of 85 and only a small part of Czech retirees lives to their nineties, this
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Note: The values are in real CZK, per 100 CZK of initial capital.

Figure 6.5: Difference between the male and the female sustainable spending rate in
the Czech Republic as a function of retirement age x, for various lifetime probability
of ruin tolerance. The values are in real CZK per 100 CZK of initial capital.

curiosity is of little importance.

6.5 Impact of an Investment Strategy

So far we have considered only the case when the individual invests the whole
initial capital to a stock index. However, in practice, most retirees would probably
choose to diversify their portfolio and thus adjust the investment parameters
to their liking. We already know that, with all else held constant, the LPoR
decreases with a higher expected return or a lower volatility. However, in an
efficient financial market we rather expect both µ and σ to change in the same
direction. A more conservative investor preferring low volatility must deal with
the disadvantage of low expected returns. On the other hand, an investor with
a low risk aversion prefers a more volatile portfolio, which naturally brings the
benefit of higher expected returns.

In this section we provide numerical results for the impact of a simple portfolio
diversification strategy on the lifetime probability of ruin approximated by the
RG formula (4.41). In particular, we focus on two different asset classes: stock
index and government bonds. We assume that the individual can allocate his or
her initial capital investment arbitrarily between these two assets. While a stock
index is usually a relatively risky investment, the government bonds represent the
conservative component of the portfolio. Hence, by mixing these two components,
a relatively wide range of resulting portfolio characteristics can be achieved. An
important assumption we are making, is that the real rate of return on the bonds
is not correlated with the real rate of return on the stock index.

Recall that in Section 6.2 we have estimated the GBM parameters of the PX
index as µ̂PX = 0.087867 and σ̂PX = 0.244746.Our task remains to find a suitable
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Allocation µ σ
to bonds (drift) (volatility)

0% 0.08787 0.24475
20% 0.07244 0.19580
40% 0.05702 0.14685
60% 0.04159 0.09790
80% 0.02616 0.04895
100% 0.01074 0.00000

Note: The residual is allocated to the PX index.

Table 6.3: Expected real rate of return and volatility of portfolios corresponding to
various investment allocations between the PX index and the retail government savings
bonds.

representative for the ”bond class” of our financial portfolio. The Ministry of
Finance of the Czech Republic regularly issues saving government bonds. The
latest tranche of the Retail Savings Bonds7 was issued in May, 2013. Since we aim
for a long-term investment, we have chosen the Reinvestment Savings Government
Bond of the Czech Republic8 with a maturity of 5 years as a representative of the
bonds asset class of our portfolio. In order to motivate the investor to hold
the bond to maturity, the annual returns of this bond (paid at the end of each
respective year) were increasing: 0.5%, 1%, 3%, 4% and 7%. This is equivalent
to a fixed annual yield of 3.074%. According to the Czech National Bank 9, the
long-term expectation of the annual inflation rate in the Czech Republic is 2%.
Subtracting the inflation rate leads to the real rate of return µB = 1.074%. Note
that – just as in the case of the stock index returns – we do not take the income
tax10 into account. The reason for not taking the income tax into consideration
is that the investment income taxation rules in the Czech Republic are currently
subject to changes. Thus, imposing an income taxation rule would expose the
results to the risk of becoming outdated in a short time.

Table 6.3 displays the portfolio parameters µ and σ for various investment
allocations between the PX index and the Czech government savings bonds. The
investment allocations are varied by increments of 20%. For example, a 40%
allocation to the government bonds and a 60% allocation to the PX index re-
sults in the expected real rate of return of µ = 0.05702 and in the volatility of
σ = 0.14685. Naturally, the portfolio with a 100% allocation to the PX index
corresponds to µ̂PX and σ̂PX , while the portfolio with a 100% allocation to the
government bonds results in µB and σB = 0. Once again, we stress the key as-
sumption that the real rates of return on the government bond and the PX index
are uncorrelated.

Now, consider a Czech male retiring at the age of 65. Table 6.4 displays the
RG approximation of the LPoR in this case, for various spending rates and invest-

7More information available at http://www.sporicidluhopisycr.cz/.
8ISIN Number: CZ0001004006. Issue Number/Tranche: 82/1.
9See http://www.cnb.cz/en/monetary policy/forecast/index.html.

10The yields of the retail saving bonds in the Czech Republic are currently subject to a
taxation of 15%. The stock sell-off taxation in the Czech Republic currently depends on how
long the stock was held by the investor.
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Spending rate Initial portfolio allocation to bonds
per 100 CZK (the residual is allocated to the stock index)

[in CZK] 0% 20% 40% 60% 80% 100%

2.00 1.20% 0.59% 0.28% 0.15% 0.14% 0.32%
3.00 3.63% 2.27% 1.43% 1.04% 1.12% 2.17%
4.00 7.50% 5.47% 4.11% 3.54% 4.13% 7.09%
5.00 12.65% 10.24% 8.66% 8.29% 10.01% 15.66%
6.00 18.76% 16.34% 15.00% 15.37% 18.79% 27.15%
7.00 25.49% 23.42% 22.75% 24.33% 29.68% 40.07%
8.00 32.52% 31.07% 31.38% 34.41% 41.50% 52.88%
9.00 39.57% 38.91% 40.34% 44.79% 53.12% 64.43%
10.00 46.44% 46.61% 49.14% 54.77% 63.70% 74.10%

Note: The spending rate is in real CZK per 100 CZK of initial capital.

Table 6.4: The RG LPoR for a 65-year-old Czech male corresponding to various (real)
consumption rates and investment allocations. The top of the table shows the propor-
tion allocated to the retail government savings bonds with expected real rate of return
µB , while the residual of the portfolio is allocated to the PX index with parameters
µ̂PX and σ̂PX .

ment allocations. The top of the table shows the proportion of initial investment
allocated to the reinvestment savings government bond, while the remainder of
the investment is allocated to the PX index. Down the vertical axis the assumed
annual spending rate (per 100 CZK of initial capital) is shown.

The results in Table 6.4 are quite remarkable. Note that the investment allo-
cation at which the lowest LPoR occurs depends strongly on the desired spending
rate. In general, for low spending rates a conservative portfolio composed mainly
of the government bonds seems to be optimal. However, the differences in the
LPoR are negligible in this case, at least relatively to the imprecision of the RG
approximation. On the other hand, with increasing spending rate, the ruin prob-
ability tends to attain minimal values with a higher-risk/higher-return portfolio,
where the majority of the investment is allocated to the PX index. Nevertheless,
if the retiree desires a spending rate higher than 8 CZK even the 100% PX index
portfolio does not provide a satisfactory low value of the LPoR. In general, as-
suming that most retirees are willing to tolerate a LPoR around 1% - 5%, a well
balanced portfolio with roughly a 60% allocation to bonds can be advised.

Last of all, let us remark that generating the same table as Table 6.4, this
time for females, yields uniformly higher ruin probabilities for all spending rates
and investment allocations. The behaviour of the female LPoR is identical to the
male case and hence roughly the same portfolio composition is advised.
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Conclusion

Thanks to the late demographic development, the issue of maintaining an ac-
ceptable standard of living towards the end of the human life cycle has developed
a new urgency. More and more future retirees are becoming aware of the fact
that they will need their own retirement savings to complete the payouts from
the social security system. However, as the low demand for life annuities indi-
cates, a substantial part of retirees will not be willing to annuitize their pension
assets, probably because of reluctance to give up the benefits of liquidity and the
possibility of leaving a bequest in case of early death. The retirees who decide
for discretionary management of their pension assets will need a guidance on how
much money can annually be spent without an excessive exposure to the risk of
retirement ruin.

In this thesis we have presented a useful method for sustainability testing
of retirement plans with a constant consumption stream. Our model was built
on the assumptions of log-normal investment returns and Gompertz-Makeham
law of mortality. We have shown that the individual’s probability of retirement
ruin can be expressed as the probability that the stochastic present value of his
or her future consumption is greater than the initial size of retirement savings.
Since there is no closed-form density function, the stochastic present value has
been approximated via a moment matching technique by the reciprocal gamma
distribution.

We have tested the accuracy of the reciprocal gamma approximation for the
probability of ruin by comparing with the results obtained from extensive Monte
Carlo simulations. The discrepancy between the results of the both methods has
been analysed in dependency on the investment volatility and for various values
of spending rate, retiring age and expected rate of return. We have found out that
the main factor driving the accuracy of the reciprocal gamma approximation is
the relationship between expected rate of return and volatility of the investment
portfolio. As a rule of thumb, the reciprocal gamma approximation seems to be
reasonably accurate when σ <

√
2µ/3.

In the numerical case study we have calculated values for the probability of
ruin in the Czech environment. We have also calculated the maximal sustainable
spending rates under various combinations of wealth-to-consumption ratios and
investment portfolio characteristics. Based on these results, we can conclude e.g.
that a 65-year-old Czech retiree might want to allocate roughly a 60% of his
retirement savings to the government savings bonds, while the rest of the savings
should be invested to the PX index.

We have given arguments that despite the significant inaccuracy for high levels
of volatility, the reciprocal gamma formula can be useful in practice. Although the
key role in the field of retirement planning rightfully belongs to Monte Carlo based

59



studies, the reciprocal gamma formula can at least serve as a calibration point for
more complicated simulations. It also helps to explain the connection between the
three fundamental factors affecting retirement planning: uncertain investment
returns, uncertain length of human life and spending rates. Similarly to the
Black-Scholes formula in the context of option prizing, although the underlying
assumptions may be questionable, it can coexist with more sophisticated models
based on simulations. It also enables a deeper understanding of the risk and
return trade-offs.

There are several directions for a possible further research on the problem at
hand. Firstly, all the numeric results presented in Chapter 6 are strongly depen-
dent on the estimated values of expected return and volatility. However, we have
used only a relatively simple estimation technique based on empiric moments of
the historical prices observations. Thus, employing more complex techniques for
forecasting long-term investment returns and volatility can significantly enhance
the accuracy of our results.

In addition, according to Milevsky & Robinson (2000), apart from the recip-
rocal gamma distribution there is a second possible candidate for approximation
of the stochastic present value - the Type II Johnson distribution. The Johnson
family of distributions was first described in Johnson (1949). Since the Type II
Johnson distribution has four degrees of freedom, one will have to match the first
four moments of the stochastic present value (4.19).
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Appendix

Year
2001 2006 2011

Country Male Female Male Female Male Female

Austria 75.6 81.7 77.1 82.8 78.3 83.9
Belgium 74.9 81.2 76.6 82.3 77.8 83.2
Czech Republic 72.1 78.6 73.5 79.9 74.8 81.1
Denmark 74.7 79.3 76.1 80.7 77.8 81.9
Finland 74.6 81.7 75.9 83.1 77.3 83.8
France 75.5 83.0 77.3 84.5 78.7 85.7
Germany 75.6 81.4 77.2 82.4 78.4 83.2
Greece 75.9 81.0 77.2 81.9 78.5 83.1
Iceland 78.3 83.2 79.5 82.9 80.7 84.1
Ireland 74.5 79.9 77.3 82.1 78.3 82.8
Italy 77.1 83.1 78.5 84.2 80.1 85.3
Lithuania 65.9 77.6 65.3 77.0 68.1 79.3
Netherlands 75.8 80.8 77.7 82.0 79.4 83.1
Norway 76.2 81.6 78.2 82.9 79.1 83.6
Poland 70.0 78.4 70.9 79.7 72.6 81.1
Romania 67.5 74.9 69.2 76.2 71.0 78.2
Spain 76.4 83.3 77.9 84.5 79.4 85.4
Sweden 77.6 82.2 78.8 83.1 79.9 83.8
Switzerland 77.5 83.2 79.2 84.2 80.5 85.0
United Kingdom 75.8 80.5 77.3 81.7 79.1 83.1

Source: Eurostat.

Table 6.5: Life expectancy at birth across selected European countries.
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Year
Country 1991 2001 2011

Austria 1.51 1.33 1.42
Belgium 1.66 1.67 1.81
Czech Republic 1.86 1.14 1.43
Denmark 1.68 1.74 1.75
Finland 1.79 1.73 1.83
France * 1.90 2.01
Germany * 1.35 1.36
Greece 1.38 1.25 1.42
Iceland 2.18 1.95 2.02
Ireland 2.08 1.94 2.05
Italy 1.30 1.25 1.40
Lithuania 2.01 1.30 1.76
Netherlands 1.61 1.71 1.76
Norway 1.92 1.78 1.88
Poland 2.07 1.31 1.30
Romania 1.59 1.27 1.25
Spain 1.33 1.24 1.36
Sweden 2.11 1.57 1.90
Switzerland 1.58 1.38 1.52
United Kingdom 1.82 1.63 1.96

* - value not available.

Source: Eurostat.

Table 6.6: Total fertility rate (number of children per woman) across selected European
countries.
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Year
1991 2001 2011

Country Male Female Male Female Male Female

Austria 14.5 18.1 16.3 20.0 18.1 21.7
Belgium 14.5 18.8 15.9 19.9 17.8 21.5
Czech Republic 12.0 15.7 14.0 17.3 15.6 19.2
Denmark 14.3 18.1 15.2 18.3 17.3 20.1
Finland 14.0 18.2 15.7 19.8 17.7 21.7
France * * 17.0 21.5 19.3 23.8
Germany 14.2 17.9 16.1 19.8 18.2 21.2
Greece 15.8 17.9 16.5 18.7 18.5 20.6
Iceland 15.5 19.9 17.5 21.2 18.9 21.5
Ireland 13.5 17.0 15.0 18.5 17.9 20.7
Italy 15.2 19.1 16.9 21.0 18.8 22.6
Lithuania 13.5 17.2 13.5 17.9 14.0 19.2
Netherlands 14.5 19.2 15.6 19.4 18.1 21.2
Norway 14.9 19.0 16.2 19.9 18.2 21.4
Poland 12.3 16.0 13.7 17.7 15.4 19.9
Romania 13.0 15.2 13.3 16.0 14.3 17.5
Spain 15.7 19.4 16.9 21.1 18.7 22.8
Sweden 15.5 19.4 16.9 20.2 18.5 21.3
Switzerland 15.6 20.1 17.3 21.3 19.2 22.6
United Kingdom * * 16.1 19.2 18.6 21.2

* - value not available.

Source: Eurostat.

Table 6.7: Life expectancy at age 65 across selected European countries.
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Male Female

Age Dx qx Dx qx

60 1088 0.014795 485 0.006394
61 1144 0.016130 546 0.006857
62 1207 0.017528 576 0.007472
63 1430 0.019345 649 0.008341
64 1471 0.021072 731 0.009246
65 1432 0.022911 754 0.010244
66 1329 0.024569 725 0.011122
67 1450 0.026522 780 0.012234
68 1400 0.027894 794 0.013662
69 1329 0.029905 855 0.015261
70 1305 0.032429 901 0.016829
71 1347 0.035249 874 0.018358
72 1296 0.037506 882 0.019757
73 1231 0.040798 922 0.022046
74 1194 0.043760 981 0.025073
75 1347 0.048429 1132 0.028289
76 1368 0.053291 1233 0.031497
77 1496 0.059087 1337 0.035690
78 1523 0.064875 1499 0.040594
79 1693 0.072086 1795 0.046779
80 1696 0.079714 1974 0.053862
81 1727 0.087811 2147 0.061754
82 1643 0.096681 2253 0.070191
83 1529 0.107070 2374 0.079582
84 1526 0.118332 2402 0.090250
85 1494 0.130875 2424 0.102550
86 1346 0.144746 2483 0.116635
87 1195 0.160059 2461 0.132579
88 1087 0.176928 2340 0.150582
89 917 0.195466 2153 0.170847
90 728 0.215786 1803 0.193584
91 594 0.237992 1429 0.218991
92 295 0.262178 727 0.247256
93 150 0.288424 517 0.278536
94 121 0.316784 406 0.312946
95 110 0.347285 397 0.350538
96 133 0.379915 434 0.391282
97 110 0.414615 327 0.435039
98 59 0.451271 219 0.481541
99 27 0.489704 132 0.530362
100 17 0.529661 87 0.580909
101 15 0.570812 60 0.632409
102 5 0.612745 28 0.683919
103 2 0.654969 11 0.734353
104 4 0.696920 13 0.782539
105 1 1.000000 10 1.000000

Source: Czech Statistical Office.

Table 6.8: Life table (Czech Republic, 2011) for ages x = 60, . . . , 105.
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Figure 6.6: The PDF of a reciprocal Gamma random variable with a scale parameter
β = 2 and various values of the shape parameter α.
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Figure 6.7: The PDF of a reciprocal Gamma random variable with a shape parameter
α = 2 and various values of the scale parameter β.
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Figure 6.8: The RG approximation of the LPoR as a function of the investment volatil-
ity σ, for various values of the initial wealth w. A 65-year-old individual, who plans
to consume k = 1 real CZK per year was assumed. The parameters of the Gompertz
distribution were set to m = 85 and b = 9. The expected real rate of investment return
was set to µ = 0.1.

Figure 6.9: The MC approximation of the LPoR as a function of the investment volatil-
ity σ, for various values of the initial wealth w. A 65-year-old individual, who plans
to consume k = 1 real CZK per year was assumed. The parameters of the Gompertz
distribution were set to m = 85 and b = 9. The expected real rate of investment return
was set to µ = 0.1.
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Figure 6.10: The RG approximation of the LPoR as a function of the investment
volatility σ, for various values of the age x of the retiree. An individual with the initial
wealth of w = 12 CZK, who plans to consume k = 1 real CZK per year was assumed.
The parameters of the Gompertz distribution were set to m = 85 and b = 9. The
expected real rate of investment return was set to µ = 0.1.

Figure 6.11: The MC approximation of the LPoR as a function of the investment
volatility σ, for various values of the age x of the retiree. An individual with the initial
wealth of w = 12 CZK, who plans to consume k = 1 real CZK per year was assumed.
The parameters of the Gompertz distribution were set to m = 85 and b = 9. The
expected real rate of investment return was set to µ = 0.1.
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Month
Year 1 2 3 4 5 6 7 8 9 10 11 12

2003 0.6 0.2 -0.1 0.2 0.0 0.0 0.1 -0.2 -0.5 0.1 0.5 0.2
2004 1.8 0.2 0.1 0.0 0.4 0.2 0.4 0.0 -0.8 0.5 -0.1 0.1
2005 0.7 0.2 -0.1 0.1 0.2 0.6 0.3 0.0 -0.3 0.9 -0.3 -0.1
2006 1.4 0.1 -0.1 0.1 0.5 0.3 0.4 0.2 -0.7 -0.5 -0.1 0.2
2007 1.0 0.3 0.3 0.7 0.4 0.3 0.4 0.3 -0.3 0.6 0.9 0.5
2008 3.0 0.3 -0.1 0.4 0.5 0.2 0.5 -0.1 -0.2 0.0 -0.5 -0.3
2009 1.5 0.1 0.2 -0.1 0.0 0.0 -0.4 -0.2 -0.4 -0.2 0.2 0.2
2010 1.2 0.0 0.3 0.3 0.1 0.0 0.3 -0.3 -0.3 -0.2 0.2 0.5
2011 0.7 0.1 0.1 0.3 0.5 -0.2 0.3 -0.3 -0.2 0.3 0.4 0.4
2012 1.8 0.2 0.2 0.0 0.2 0.2 -0.1 -0.1 -0.1 0.2 -0.2 0.1

Source: Czech Statistical Office.

Table 6.9: Inflation rate [in %] in the Czech Republic. Every value represents the
relative percentage increase in the Consumer Price Index (CPI) between the reference
month and the preceding month.

Retire- Expected
ment age at Spending rate (per 100 CZK)
age death 2 CZK 4 CZK 6 CZK 8 CZK 10 CZK

RG 3.0% 15.8% 34.5% 53.2% 68.5%
60 84.3 MC 3.2% 16.7% 35.0% 52.3% 64.8%

D -0.2% -0.9% -0.4% 0.9% 3.7%

RG 1.8% 11.2% 26.6% 43.8% 59.4%
65 84.8 MC 2.4% 12.3% 28.8% 45.0% 58.4%

D -0.6% -1.1% -2.1% -1.3% 1.0%

RG 1.0% 6.9% 18.2% 32.4% 46.9%
70 85.6 MC 1.1% 7.4% 20.4% 33.2% 47.9%

D -0.1% -0.5% -2.1% -0.8% -0.9%

RG 0.5% 3.6% 10.6% 20.6% 32.2%
75 86.8 MC 0.5% 4.2% 12.4% 23.5% 35.9%

D 0.0% -0.5% -1.7% -2.8% -3.7%

RG 0.2% 1.6% 5.1% 10.8% 18.1%
80 88.5 MC 0.1% 1.5% 5.8% 13.5% 21.3%

D 0.1% 0.1% -0.7% -2.8% -3.2%

Note: RG = reciprocal gamma, MC = Monte Carlo, D = RG - MC.

Table 6.10: Overview of the lifetime probability of retirement ruin for Czech females.
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