
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Bc. Kristián Kacz

Context Aware Android Application
Trace Analysis

Department of Distributed and Dependable Systems

Supervisor of the master thesis: RNDr. Tomáš Pop

Study programme: Computer Science

Specialization: Software Systems

Prague 2013

I would like to thank my supervisor Tomáš Pop for his time and valuable sugges-
tions. I also thank to my family for their support and patience during my studies
and to my friends for supporting me with test devices.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, July 30, 2013 Kristián Kacz

Název práce: Context Aware Android Application Trace Analysis

Autor: Bc. Kristián Kacz

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı diplomové práce: RNDr. Tomáš Pop, Katedra distribuovaných a
spolehlivých systémů

Abstrakt: Diplomová práce prozkoumává podporu context-aware aplikaćı v
současných mobilńıch operačńıch systémech a vyšetřuje možnosti debugováńı
mobilńıch aplikaćı. Práce poukazuje na problémy vyskytuj́ıćı se při debugováńı
context-aware aplikaćı. Hlavńım ćılem práce je nejdř́ıve navrhnout debugovaćı
metodu, která bere do úvahy kontextové informace, a pak tuto metodu naimple-
mentovat. Součást́ı práce je i př́ıklad použit́ı z reálného světa, která demonstruje
navrhnutou metodu.

Kĺıčová slova: Android, Vývoj mobilńıch aplikaćı, Debugováńı mobilńıch aplikaćı,
Context-awareness

Title: Context Aware Android Application Trace Analysis

Author: Bc. Kristián Kacz

Department: Department of Distributed and Dependable Systems

Supervisor: RNDr. Tomáš Pop, Department of Distributed and Dependable
Systems

Abstract: The thesis examines how current mobile operating systems support
context-aware applications and investigates the methods of mobile application
debugging. The thesis points out what kind of problems need to be solved during
debugging of context-aware applications. The primary goal of the thesis is to
propose a debugging method which takes context information into account and to
implement this method. The thesis contains a real world use case to demosnstrate
the proposed method.

Keywords: Android, Mobile application development, Mobile application debug-
ging, Context-awareness

Contents

1 Introduction 1

1.1 Structure of the thesis . 2

2 Background 3

2.1 Context-awareness . 3
2.2 Android . 4
2.3 Context-awareness in Android . 6

2.3.1 User context on Android 7
2.4 Context-awareness on Windows Phone 10
2.5 Context-awareness on iPhone . 12

3 Debugging and tracing 14

3.1 Android . 14
3.2 Windows Phone . 17
3.3 iOS . 18

4 Problem statement and goals of the thesis 19

5 Analysis 20

5.1 Platform . 20
5.2 Collecting trace information . 20
5.3 Covered context-data . 21
5.4 Output of logging . 21
5.5 Synchronisation of logged data . 21
5.6 Timestamp accuracy . 25
5.7 Processing logged data . 25
5.8 Defining problems . 27
5.9 Hints on context . 28

6 Implementation 29

6.1 ContextLogger architecture . 29
6.2 Background process components 30
6.3 Log file format . 32
6.4 Covered context . 35
6.5 Extensibility . 42
6.6 Traceview . 43

7 Use cases and Evaluation 47

7.1 Demo application . 47
7.2 Firefox . 49

i

8 Conclusion 52

8.1 Future work . 53

Bibliography 54

List of Abbreviations 57

A Content of the Attached CD 58

B Build instructions 59

B.1 Building the ContextLogger library 59
B.1.1 Prerequisites . 59
B.1.2 Build steps . 59
B.1.3 Building CLDemo . 59

B.2 Building Traceview . 59
B.2.1 Prerequisites . 59
B.2.2 Build steps . 60

B.3 Building Firefox . 60
B.3.1 Prerequisites . 60
B.3.2 Import of ContextLogger 61
B.3.3 Change the code . 62

ii

1. Introduction

Mobile devices are one of the fastest developing segments of the computer industry

nowadays. Since the introduction of the first iPhone in 2007 and the release of the

Android operating system in 2008, the market of smartphones has been steadily

expanding. To illustrate this the number of mobile devices sold over time and

the market share of mobile operating systems are shown in Table 1.1.

The continuing spread of smartphones and tablets has been a big step towards

the world of ubiquitous computing [1]. The human-computer interface has moved

from the classical desktop model towards the interaction with ‘things that think’.

Software for these devices has become an everyday part of almost everyone‘s

life. As the number of mobile devices has grown, it has created a huge market

for mobile applications. The official application distribution platforms of major

mobile operating systems are always reporting an even more rapidly growing

software base and download numbers, which are shown in Figure 1.1.

Besides of the large user base, mobile applications have brought into focus one

more exciting perspective: context-awareness. The software used on mobile de-

vices can behave differently in various situations, for example: a public transport

journey planner application can suggest a source station based on the phone’s

current geographical location. If no such information is available due to service

unavailability, suggestions can be made based on previous user behaviour - recent

searches, searches made at a similar time of day, etc. Most of this information is

available through the device’s sensors such as: location, proximity, orientation,

Year Total
devices
sold (mil-
lions)

Symbian Android RIM iOS Microsoft Others

2008 139.2 52.4% N/A 16.6% 8.2% 11.8% 10.5%
2009 172.3 46.9% 3.9% 19.9% 14.4% 8.7% 6.1%
2010 296.6 37.6% 22.7% 16.0% 15.7% 4.2% 3.8%
2011 494.5 16.5% 49.2% 10.3% 18.8% 1.8% 3.3%
2012 722.4 3.3% 68.8% 4.5% 18.8% 2.5% 2.1%
1Q13 210.0 0.6% 74.4% 3.0% 18.2% 2.9% 1.0%

Table 1.1: Number of mobile devices sold over time and the market share of
mobile operating systems (sources: [2],[3],[4],[5],[6])

1

etc. Other pieces of context can describe the availability of services, such as net-

work connectivity, or the telephony signal. In comparison to desktop systems the

context in which the software is executed significantly less stable.

Context-aware applications drive their control flow based on this type of in-

formation. This means that apps can contain bugs which are dependent on a

specific context. Furthermore these bugs can be also hard to reproduce, since we

need to know the context in which or by which they were caused.

In this thesis, we will investigate the potential of context dependent debugging:

a promising method allowing analysis and debugging of mobile device software

to find bugs in execution use cases reached only under a particular context.

Figure 1.1: Number of downloaded applications in Google Play (blue) and Apple
App Store (red) (source:[7], [8])

1.1 Structure of the thesis

Chapter 2 provides a background to context-awareness and examines how mobile

platforms deal with context. Chapter 3 examines the mobile operating systems’

support for debugging applications. Chapter 4 defines the goals of this thesis

and then Chapter 5 discusses the design decisions I have made in completing this

thesis. Chapter 6 describes in depth the important parts of the implementation.

Chapter 7 demonstrates the the project in use. Chapter 8 draws some conclusions

and outlines possible future work.

2

2. Background

In this chapter we describe the term context-awareness and we show how current

mobile operating systems deal with context.

2.1 Context-awareness

Computer software by itself is a set of machine-readable instructions and operates

algorithmically based on mathematical rules. It can process input, return output

and interact with other entities. As computing has weaved into our society by

the spread of smart devices, our expectations placed on the behaviour of software

running on these gadgets have changed. An example of such expectation is that

devices should be aware of the environment surrounding them and adapt to it [9],

in other words to be context-aware. By ‘adaptation’ we mean selecting, processing

and presenting relevant information according to the given situation.

Context for a mobile application is the set of information describing its envi-

ronment. Dey and Abowd in [10] defined it as

“Context is any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves.”

This definition, however, restricts context to describing only relevant entities

that are in interaction with the application. But non-interactive applications can

also be dependent on context. A more universal definition is formalized by Wei

and Chan in [11]:

“Context is application specific, and context of an application is any external

information which can be utilized to adapt the data, behavior or structure of this

application.”

This definition points out that contexts are application specific - information

relevant to one application does not have to be relevant to another. Another

important thing is that context is external to an application. Information coming

from within the application can be dependent on parts of the context, but the

3

information itself is not a part of the context. According to Wei and Chan, context

can be divided into three categories, these are physical context, computing context

and user context.

Physical context describes physical properties of the device’s environment.

They can be obtained by specially designed physical sensors such as accelerome-

ter, gyroscope, etc. Most modern mobile devices are equipped with many sensors.

Measured data is usually available to the software through the API of the oper-

ating system.

Computing context consists of runtime information about the device hard-

ware. Operating systems usually provide primitives to monitor CPU, memory

usage and network conditions; however, the coverage of all these data varies a

great deal between different systems.

User context describes the actual state of the user of the device from a higher-

level perspective, such as location (at work, at home, etc.), activity (e.g. working,

driving or travelling). These are not directly measurable; instead they are defined

as a composition of previously described contexts.

2.2 Android

Android is an open source operating system originally released for touchscreen

mobile devices, now available on a wide range of electronics. It was released in

September 2008 by Open Handset Alliance, a consortium of 84 hardware, software

and telecommunication companies with the aim to develop open standards for

mobile devices. The source code was released under the Apache public licence

and is maintained by the Android Open Source Project community.

Android consists of a Linux based kernel, middleware, libraries and APIs.

The architecture of the system is shown in Figure 2.1. Applications written

in Java language are compiled into bytecode which is then translated into .dex

(Dalvik executable) files. These run in the Dalvik virtual machine, Google’s

implementation of Java runtime. Applications can also call native code written

in C/C++, which is compiled with the Android NDK. All these files are packaged

together into an .apk Android package file. The package also contains a manifest

4

file with a description of the application for the system. It defines, among other

things, the permissions needed by the application, entry points to the application,

etc.

Figure 2.1: Architecture of the Android operating system (source:[32])

Security sandboxing of running applications applied by the Android system

implements the principle of least privilege. Each application lives in a separate

virtual machine, running in its own Linux process. By default every application

has a unique Linux user ID and has permission to access only the files assigned

to this ID.

The building blocks of Android applications are components. Each of them

is a different entry point to the application. The four types of components are

activities, services, content providers and broadcast receivers.

An activity represents a single screen of the user interface. In applications

having more screens, activities call one another. They can also be called from

other applications if they are registered as providing some feature. For example,

a directory listing activity of a file browser application can be used in other

5

applications requiring file selection dialogs. These entry points are described in

the manifest file of the application.

Services are components without a user interface, running in the background.

They are usually performing long-running computations. Other components can

either start a service or bind to it. Started services are running in the background

performing a single operation. When the operation is finished the service should

stop itself. Bound services are working on a client-server basis. Other application

components can communicate with them by sending requests and getting back

results. They can even run in separate processes and communicate by inter-

process communication. A bound service is destroyed when all the components

are unbound from it.

Content providers are the application’s main access points to structured data.

They provide an interface for storing data on persistent locations such as an

SQLite database, a file in the filesystem or on the web. If the content provider

allows, other applications can also access and modify stored data.

Broadcast receivers are components for accessing system-wide announcements,

for example, context changes. Announcements have the form of an Intent ob-

ject. Broadcasted Intents are sent to all receivers registered for the given type of

intent.

2.3 Context-awareness in Android

The Android system has a rich support for context-awareness. Part of the applica-

tion context is represented in the system by the class android.content.Context,

which is the interface to global information about the environment. It has meth-

ods to access system services through which we can query the device’s hardware

for sensor data and external service availability. Activities and Services are in-

herited from this class. Other classes need a reference to be passed to access the

context.

Most of the information available through this interface is part of the physical

context. SensorManager obtained from the Context class is the main access

point to the Android sensor framework. The available sensor list depends on the

6

version of the system. According to [12] on Android 4.0 the following sensors are

supported: accelerometer, ambient thermometer, gravimeter, gyroscope, linear

accelerometer, magnetometer, orientation sensor, barometer, proximity meter,

relative humidity meter, rotation sensor and thermometer. Most smartphones are

equipped with the majority of these sensors; however, some sensors are present

only in very specialized devices.

Among the physical context some parts of the computing context is also avail-

able through the Context interface.

ConnectivityManager answers queries about the state of data network con-

nectivity. The data network can work over various physical network layers such as

Wi-Fi, GPRS, or Bluetooth. For querying about these we can use WifiManager

and TelephonyManager.

DisplayManager and AudioManager provide access to a query for the audio-

visual state of the device.

LocationManager provides access to the location services of the system. Lo-

cation information can be derived from more than one sources. GPS, Wi-Fi and

cell data can each provide information on location. Each of them, however, has

different accuracy, speed and battery usage.

Other parts of the computing context can be obtained by querying the settings

API of Android or accessing the underlying Linux operating system.

Setting.System class provides access to various system preferences such as

ringer volume, screen brightness and so on. Similarly Settings.Secure and

Settings.Global contain read-only and system wide preferences.

Computing context information which are not available through Android APIs

can be obtained from the Linux interface; for instance, /proc contains information

about the running processes.

2.3.1 User context on Android

User context itself is not supported in Android but there are frameworks and

libraries that add this feature to the system.

7

AWARE

AWARE is a framework for Android systems dedicated to instrument, infer, log

and share mobile context information [13]. It is available as an Android library

to empower rich context-aware applications for users. Its main building blocks

are Context Sensors and Context Plugins. Context Sensors collect physical and

computing context data from the hardware and software sensors. They can also

reuse data from other Context Sensors to provide higher-level context data like

user context. Context Plugins are used for presenting data to the user. The archi-

tecture of the framework is designed keeping extensibility in mind; therefore all

these components are implementing an add-on interface. The collected context

information is accessible for applications through Context Broadcasts, Context

Providers and Context Observers. Context Broadcasts are notifications used in-

ternally by the framework to update other sensors and plugins. They can also

be captured by other applications. This is the ‘lightest’ way to receive data from

AWARE. Context Providers are extensions to Android’s ContentProvider, and

therefore can be used to store context data on the device. Stored data can be ac-

cessed by an application with Android’s Cursor. This access method is passive,

since applications need to actively query for information. Conversely, Content

Observers, which are extensions to ContentObservers, provide an active and

event-driven access method to context data. They can be registered to Providers

in order to get automatically notified when new data is available.

Funf framework

The Funf Open Sensing Framework is an open source tool for collecting and

processing context information [14]. It is developed by the Behavio team from

MIT which is now part of Google.

The framework consists of a set of Probes which are objects collecting data

from the device’s sensors and GPS, but also data about call logs, application usage

and browsing information. The framework can be extended by adding third party

probes. Logged data can be exported to the SD card, or the framework can be

connected with Dropbox to automate the upload of log files. The framework can

also be installed as a standalone application running in the background. This

8

application also allows the user to change the enabled probes during runtime.

Morphone.OS

Morphone.OS is a context-aware Android-based mobile operating system [15]. It

is based on the idea of a self-aware computing system, which means systems that

can observe their runtime behaviour, learn and take actions to meet desired goals.

These three steps (observing, decision making and acting) are realized in the core

of the system [16]. Observation is based on the Heartbeats API. Applications at

key moments issue a heartbeat by a simple function call. The performance of the

application is therefore its heart rate. Applications can also register their desired

performance: this will be the goal to achieve. Acting is done by services, which

can perform changes in applications or in the whole system. Such services are, for

example, the core allocator, frequency manager or adaptive scheduler. Decision

making is done by the service coordinator. It collects data about the application

and system performance and starts or stops acting services in order to get closer

to the desired goal.

The system has services included to monitor the context. All three defined

context categories are covered. Captured physical and computing context data

include sensor data, location, CPU usage, process status, etc. Covered user

context data include, for example, frequent user actions and common situations.

Morphone applications can also access these pieces of information and use them

for decision making.

Gimbal

Gimbal is a context-aware platform for Android and iOS [17]. Its main feature

is Geofence which allows software developers to create digital boundaries around

physical spaces. This makes it easier to develop rich geographically aware appli-

cations. When the user enters an area specified by the developer, the application

can request news about the places nearby and notify the user, or just simply

remember their entrance to refine their personal preferences. This requires Gim-

bal’s next important feature, namely, Interest Sensing. Based on finely tuned

heuristics, Interest Sensing is able to create a user profile that helps the appli-

9

cation to best match a customer’s specific preferences and display information

when they are most interested.

2.4 Context-awareness on Windows Phone

Windows Phone 8 is the current version of Microsoft’s mobile operating system.

Its architecture is based on the Windows NT kernel, the same as the desktop

operating system Windows 8. This makes it possible to easily port applications

between the desktop and the mobile platform.

Context-awareness is supported on Windows Phone by system APIs. Loca-

tion API gives applications access to the geographical locations of the device.

Apps can make one-time location requests with specified accuracy and maximal

waiting time or can subscribe to receive location updates after a given interval or

after the device has moved a given distance from the last known location. Sen-

sor API provides access to physical sensors of the device. Supported sensors in

WP8 are accelerometer, gyrometer, compass, inclinometer and orientation sen-

sor. Applications can access raw data from the first two of them. Data from

the other sensors are combined together by sensor fusion applying mathematical

calculations to correct sensor limitations and reduce noise (see Figure 2.2).

Figure 2.2: Windows Phone 8 sensor fusion system (source:[33])

Computing context is only partially covered in the Windows Phone plat-

form. Stats about memory usage and power source are available through the

DeviceStatus class from the Microsoft.Phone.Info namespace. Network avail-

ability can be queried via the NetworkInformation class from the

10

Windows.Networking.Connectivity namespace. Battery information can be ac-

cessed with the Battery class from Windows.Phone.Devices.Power namespace.

CPU usage statistics, however, can not be acquired through the SDK.

Microsoft aims to increase the support of context-awareness in their mobile

operating systems. They introduced the idea of Contextual Data Units (CDUs)

which are an abstract data type representing a meaningful unit of context for

applications instead of raw sensor data [18]. An example CDU is user motion

state with possible values as sitting, standing, walking, running, etc. According

to the definition this can be viewed as a part of user context. Their proposed

Context Dataflow Operating System (CondOS) incorporates CDU generation in

the kernel of the system. This makes it possible not only for applications but

also for system services to respond on context changes. Thanks to this, memory

management, scheduling, energy management, security can be context-aware too.

• Context-aware memory management lets the system to choose which ap-

plications to preload. For example, if the system determines user’s motion

state as ‘driving’, it should preload navigation and maps applications. In-

stead, if the motion state is ‘running’, preloaded apps should be a music

player and workout app. Similarly, memory eviction can also use context

data. The decision as to which background apps to unload when there is

not enough memory for starting applications is usually based on a LRU

algorithm. However, during ‘driving’ state games will unlikely be used, so

they should be probably unloaded.

• Security management can also benefit from using context information. If

the device notices that the user’s current location is ‘home’, security man-

ager can relax the security level by switching off password protection and

enabling content sharing between devices. On the other hand, biometric

context can help to recognise whether the device is held by its owner or is

used by someone else in which case applications containing sensitive per-

sonal data, such as a contact list, or call and message log, can be disabled.

• Modern mobile operating systems schedulers usually use a priority-based

preemptive scheduler. High priority is often assigned to the foreground

11

process while other processes are starved. Context-awareness can improve

this method by letting apps specify the priority level for each context they

want to run in. This makes possible for background processes to get higher

priority in situations they are associated with.

• Context-aware energy management can use location information to predict

time-to-recharge. This helps to save the battery by disabling energy con-

suming background tasks when the user is out and about.

CondOS by default contains a set of CDUs. The applications, however, may

need additional pieces of context. For this reason developers can implement their

own CDU Generators and install them into the kernel of the system. Generators

are directed acyclic graphs of processing components. Components are sandboxed

pieces of code and communicate only through producer-consumer interfaces. The

first component takes raw sensor data as input and the last produces CDUs as

output. The design of generators is shown in Figure 2.3. Applications can make

one-time CDU requests or subscribe to some CDUs.

2.5 Context-awareness on iPhone

iPhone is a series of smartphones developed by Apple. The innovations introduced

in the first generation, such as the big touchscreen with multi-touch, or the set of

sensors have become the de facto standard on smartphones. Its current version,

iPhone 5 was released in September 2012 and is running the iOS 6 operating

system.

Applications on iOS are written in Objective-C.

iPhone applications can obtain location information from the CLLocationManager

class from the Core Location framework. It can also report changes in the de-

vice’s heading. Data from other sensors are available through the Core Motion

framework. CMMotionManager provides access to raw accelerometer, gyroscope

and magnetometer data and computed device motion information, derived from

the three mentioned sources. UIDevice class provides some parts of the physical

context, like proximity sensor data and device orientation. It gives access also

to parts of computing context, namely battery status and information about the

12

Figure 2.3: CondOS dataflow example (source:[18])

operating system. Other parts of computing context are not covered by pub-

lic APIs; however, there are low-level functions defined in the Mach API, which

can return such information [24]. host processor info() returns the number of

CPUs and their utilization, and task info() returns information about memory

usage of current task.

Higher level context information is not supported directly in the operating

system; however, third-party libraries exist to provide this feature. Gimbal is an

example mentioned earlier.

13

3. Debugging and tracing

We will now show what tools can help developers to debug their applications on

various platforms.

3.1 Android

The Android SDK contains a set of tools for debugging [19].

Android Debug Bridge (adb) is a command line tool responsible for communi-

cation between the device and the development environment. It consists of three

parts:

• a server process running in the background on the development machine.

It sets up a connection to the devices and passes commands to them.

• clients running on the development machine sending requests through the

adb server to the devices. Clients can be created by the developer by calling

adb from the shell or by tools like the ADT plugin of the IDE or the DDMS.

• a daemon running on the mobile device, accepting a connection from the

adb server and responding to the requests.

Figure 3.1 shows how these parts work together.

Dalvik Debug Monitor Server (DDMS) is a debugging tool providing features

such as port-forwarding, screen capture, thread and process information moni-

toring, incoming call, SMS and location data spoofing. It uses adb to connect to

the debugging port of the VM running on the device. When connected, a JDWP

compatible debugger can be attached to debug the application on the device.

Android Developer Tools (ADT) is a plugin for the Eclipse IDE, integrating

a set of tools into the development environment, such as DDMS and Logcat. Ap-

plications can be easily compiled, packaged and deployed to a device or emulator

by clicking Eclipse’s run button. The IDE’s debugger can be attached to running

applications to stop them on breakpoints.

LogCat is an adb command to access the system debug output. The Android

logging system provides a mechanism to write messages to the system log using

14

Figure 3.1: Cooperation of Android SDK debugging tools (source:[19])

the Log class from the android.util package. Each log message has priority

level and tag defined. Priority can have one of the following values (in ascending

order): verbose, debug, info, warning, error, fatal. Tag describes the source of

the message. Messages are written into different circular buffers. Three main

buffers are radio for telephony related messages, events for event-related ones

and main for all messages. When LogCat is connected to the device, it can read

messages in real time. Messages can be also filtered by tag and minimum priority

level.

The drawback of the above-described methods is that the development ma-

chine needs to be connected to the device to collect debug information. How-

ever, offline data collection is also supported on Android. Debug class from the

android.os package contains the function startMethodTracing() which trig-

gers the virtual machine to start logging every entry and exit from every func-

tion. Since it is implemented on the VM level, the application code does not need

to be instrumented. However, native code running outside of the VM can not

be logged directly. The trace will only contain calls of the Java function with a

15

native keyword.

Calling the stopMethodTracing() method on Debug class will stop the tracing

and save the results.

The output of the tracing is a binary file containing records of every function

call during the tracing period. The file follows the format described on address

[20]. It is built up from two parts: the key part and the data part. The key part

contains three sections. The first section describes the version of the trace file and

the clock mechanism used in trace records. The next section contains information

about the threads of the application. Finally, the third section describes the

methods by its containing class, name and signature.

The data part of the trace file contains a header, describing its version and

start time of tracing as a value coming from the gettimeofday() function. After

the header a list of records follows. Each record contains a thread ID, a method

ID, a method action and a timestamp. Method action can be one of entry, exit

and exception thrown. Timestamp represents delta time in microseconds since

the start of tracing.

The trace file can be processed by many ways. Android SDK contains two

applications for this purpose.

dmtracedump is a tool for generating tree diagrams from the trace file as shown

in Figure 3.2. Each node represents a call, with method name, inclusive/exclusive

times and number of calls displayed.

The other application for processing the trace log is Traceview shown in

Figure 3.3. It has two main panels. The timeline panel shows the execution

of each thread in the app’s process. Each method has a different colour. If a

method is selected, then lines appear under the row showing the extent of all the

calls of the selected method. This panel can be useful during the debugging of

an application. The profile panel shows a summary of all the time spent in each

method. This can be useful during profiling of the application.

16

Figure 3.2: Screenshot of dmtracedump (source:[20])

Figure 3.3: Screenshot of Traceview

3.2 Windows Phone

Similar to Android, the Windows Phone SDK has debugging tools integrated into

the development environment.

Debug and Trace classes from the System.Diagnostics namespace provide

methods to log messages in debug/release modes, respectively [21]. Messages are

17

received by objects from the Listeners collection, implementing the TraceListener

interface. These objects emit the messages to the Win32 OutputDebugString

function and to the Debugger.Log method and therefore will appear in the con-

nected debuggers console.

The drawback of this solution is that application code needs to be manually

instrumented to log function calls and that the device needs to be connected to

the development machine running Visual Studio.

To overcome the need for manual instrumentation, IntelliTrace could be used

[22]; however, it’s current version does not support tracing Windows Phone apps.

It is a tool for recording code execution, integrated into Visual Studio. With a

recorded trace, debugger can be used without executing the application again.

The second drawback can also be resolved by using commercial software such

as DevTracer [23], which can send the log messages through a web service to

its own trace monitor for further analysis. This eliminates the need of being

connected to the development machine.

System.Diagnostics contains also the StackTrace class which represents in-

formation about the current stack trace of the calling thread. However, use of this

class for collecting trace information would also require manual instrumentation.

3.3 iOS

NSLog function from FoundationKit provides basically the same functionality

as the classes mentioned earlier: code can be instrumented by it to write log

messages to the console. NSLogToFile immediately forwards these logs to a file.

Using this function, however, again needs instrumentation of the application code.

18

4. Problem statement and goals

of the thesis

As we have already shown, mobile operating systems support applications to use

contextual data. Since the higher level context, such as parts of the user context,

is usually not covered by default in these systems, applications need to process the

physical and computing context themselves in order to generate the higher level

information they need. However, if this generation of higher information contains

a bug, it can lead the application to behave as it should in a different context.

On the other hand, if a bug is hidden in some other piece of code which only runs

in a specific context, it can be difficult to reproduce the error. This makes it hard

to investigate the erroneous behaviour of buggy context-aware applications.

We have already examined how mobile platforms currently support debugging.

Most of the techniques require the device to be connected to the development

machine. This can be a narrow constraint during the development of context-

aware applications since some erroneous behaviour can appear in situations when

the development machine is not available. Saving a trace of the code execution can

solve this problem; however, it usually needs some instrumentation of code to log

every function call. None of the debugging tools, however, take into consideration

context data.

The thesis has two main research goals:

1. To propose a debugging method that takes context data into account. We

will design and implement a library for mobile applications to log context

data and trace code execution during the execution of the software. The

library should be easily linked to existing Android projects, without heavy

instrumentation of the application’s code. It should cover the most fre-

quently used context information and also should be easily extendible to

log user defined context.

2. To implement a debugging tool to process logged data. The tool should be

able to visually combine the logged execution trace and the context data. It

should also give hints about which contexts could have caused the erroneous

behaviour.

19

5. Analysis

In this chapter we will discuss design decisions made during the preparation of

the project.

5.1 Platform

The first and also the most important decision during the development was the

choice of platform. Three platforms were considered: Android, Windows Phone

and iOS. All of them have similar support for context-aware applications: they

give access to sensor data, and the application needs to process them in order to

get context information.

From the debugging point of view, Android provides the best features. It

makes it possible to log the execution trace to a file on the SD card without the

need of permanently being connected to the development machine. Saving such

a trace also does not need heavy instrumentation in the code of the application,

since it’s logging can be started with a single function call.

Another big advantage of Android is that the whole system and the SDK are

released under an open source license. This makes it possible to integrate our

solution to an existing debugging tool.

After summarizing these facts we came to the decision to select the Android

platform for our project.

5.2 Collecting trace information

As mentioned earlier, Android has built-in support for logging the execution trace

of an application. It can be started simply by calling the function

startMethodTracing() of android.os.Debug class and stopped by calling

stopMethodTracing() function of the same class.

While tracing is enabled, the instance of the virtual machine hosting the ap-

plication process logs every function call and function exit of the hosted processes.

Therefore, if we want to trace only the application code itself and not to trace

20

the code of our library collecting the context information, it needs to be executed

in a separate process running in a different virtual machine instance. The ideal

solution for collecting context data would be the use of a background service run-

ning in a new process. By default, all components of an application are running

in the same process. This can, however, be overridden in the manifest file of the

application [25].

5.3 Covered context-data

We wanted the context logging mechanism to be adjustable to the needs of a

specific application. Our aim, therefore, was to cover a comprehensive range

of loggable context information but at the same time let the developer choose

what exact pieces of context he wants to log. We split up all loggable context

information into categories and implemented each category as a separate listener.

The categories should contain pieces of context that often change together, such

as Wi-Fi connection status and SSID. We also realized that some applications

can request special pieces of context that are not covered by us. Therefore we

designed an interface that makes it possible for developers to implement their

own listeners and use them with our library.

Implementation will be described in depth in the next chapter.

5.4 Output of logging

The output of the logging process will be a pair of log files. The first of these is the

output generated by the startMethodTracing() function. The second file will

contain the logged context information. The structure of the file will be similar

to the trace file structure for easing the processing of the two files together. The

exact structure will be described in the next chapter.

5.5 Synchronisation of logged data

Since the data in the two files will be processed together, they need to be syn-

chronizable.

21

The trace file contains the timestamp of the start of the tracing. It’s value

comes from the gettimeofday() function. Every record in the file also contains

a timestamp. The source of this time information depends on the version of

the system. According to the trace file documentation [20] the current version

of the system supports only the global clock and per-thread CPU times will be

implemented in future versions. However, this page is outdated. The source

code of the proper trace file generating function contains a preprocessor directive

enabling per-thread clock usage since the earliest available versions.

• Android 1.6 (Donut) - 2.2 (Froyo):

the choice of the time source is made at compile time of the Dalvik virtual

machine with a preprocessor directive HAVE POSIX CLOCKS (see Code snip-

pet 5.1). If it is defined, the system will use the clock gettime() function

with CLOCK THREAD CPUTIME ID as the clock id parameter to get per-thread

CPU time. Otherwise, if the directive is not defined, gettimeofday() will

be used as the time source for the records too. The definition of the direc-

tive is contained in the architecture-specific AndroidConfig.h file. For the

ARM architecture the directive is defined in all versions of the system, so

devices with these versions use clock gettime() as the time source.

static inline u8 getClock()

{

#if defined(HAVE_POSIX_CLOCKS)

struct timespec tm;

clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tm);

//assert(tm.tv_nsec >= 0 && tm.tv_nsec < 1*1000*1000*1000);

if (!(tm.tv_nsec >= 0 && tm.tv_nsec < 1*1000*1000*1000)) {

LOGE("bad nsec: %ld\n", tm.tv_nsec);

dvmAbort();

}

return tm.tv_sec * 1000000LL + tm.tv_nsec / 1000;

#else

struct timeval tv;

gettimeofday(&tv, NULL);

return tv.tv_sec * 1000000LL + tv.tv_usec;

#endif

}

Code snippet 5.1: Time source choice in Android 2.2 and earlier (source:[34])

22

• Android 2.3-2.3.6 (Gingerbread):

Systems without posix clocks still use gettimeofday() as the time source.

Systems with HAVE POSIX CLOCKS defined have a boot time choice of time

source. The default option is to use per-thread clocks. However, if Dalvik

runtime is started with option -Xprofile:wallclock, profiling routines

will use gettimeofday() too (see Code snippet 5.2). Parameters can be

set through the adb command setprop. This method requires a restart of

the Android runtime and in addition parameters are reset when the device

restarts. The same result can be achieved if the line “dalvik.vm.extra-opts

= -Xprofile:wallclock” is attached to the file /data/local.prop [26].

To use setprop or modify the file root privileges are required.

static inline u8 getClock()

{

#if defined(HAVE_POSIX_CLOCKS)

if (!gDvm.profilerWallClock) {

struct timespec tm;

clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tm);

if (!(tm.tv_nsec >= 0 && tm.tv_nsec < 1*1000*1000*1000)) {

LOGE("bad nsec: %ld\n", tm.tv_nsec);

dvmAbort();

}

return tm.tv_sec * 1000000LL + tm.tv_nsec / 1000;

} else

#endif

{

struct timeval tv;

gettimeofday(&tv, NULL);

return tv.tv_sec * 1000000LL + tv.tv_usec;

}

}

Code snippet 5.2: Time source choice in Gingerbread (source:[35])

• Android 3 (Honeycomb):

since the code of this version was not published and this feature is not well

documented, we have no information about the behaviour on this system.

23

• Android 4.0 (Ice Cream Sandwich) and newer:

Systems without thread-specific clock support still use gettimeofday(). If

a system supports per-thread clocks, it can use both sources in logs (see

Code snippet 5.3). The choice is made again at the initialization of the

system, but the default value is the option is to use dual clock (both wall

and per-thread).

#if defined(HAVE_POSIX_CLOCKS)

if (useThreadCpuClock())

{

u4 cpuClockDiff = (u4) (getThreadCpuTimeInUsec()

- self->cpuClockBase);

*ptr++ = (u1) cpuClockDiff;

*ptr++ = (u1) (cpuClockDiff >> 8);

*ptr++ = (u1) (cpuClockDiff >> 16);

*ptr++ = (u1) (cpuClockDiff >> 24);

}

#endif

if (useWallClock()) {

u4 wallClockDiff = (u4) (getWallTimeInUsec()

- state->startWhen);

*ptr++ = (u1) wallClockDiff;

*ptr++ = (u1) (wallClockDiff >> 8);

*ptr++ = (u1) (wallClockDiff >> 16);

*ptr++ = (u1) (wallClockDiff >> 24);

}

Code snippet 5.3: Time source choice in Ice Cream Sandwich and newer
(source:[36])

Thread-specific clocks are useful when profiling, since they give precise infor-

mation on how much CPU-time was needed to run a given piece of code. We

need, however, timestamps for synchronisation of logged trace and context infor-

mation. For that purpose the wall clock time is more suitable. Therefore our

library will need global clock enabled on Gingerbread and older systems and dual

clock on Ice Cream Sandwich and newer.

We want to process the trace logs and the context logs together, so we will

need to save a timestamp for each record in the context log file too. To be sure

that the records from the two files are in sync, we should use the same time

24

source in both files. Therefore our library will use the gettimeofday() function

for getting timestamps for context logs.

5.6 Timestamp accuracy

Timestamping of trace records is done by the system at the VM level. When

tracing is enabled, every method call and method exit triggers a function of

Dalvik, which adds a record to the log file. Therefore, from the perspective of

the application, the timestamp in the record represents the exact time, when the

call or exit actually happened.

During context logging we aim to minimize the delay between the context

change event and the actual timestamp taken for the log record.

One way how our library can be notified of context changes is by receiving

system broadcasts. These usually contain information about the new context, but

no information about the exact time, when the change happened. Other sources

of information about context change are SensorEvents. These objects contain a

timestamp of the event; however, its value has a different meaning depending on

the version of the system. It is either the time since boot or the unix time, both

in nanoseconds. This can be used for relative time measurements, but for our use

in this case it is not suitable.

Therefore time sampling needs to be done inside our library and ideally with

the smallest possible overhead. To achieve this, we will run each listener’s code

in a separate thread. Threads will be blocked until the proper piece of context is

changed. When resumed, the first step of the handler method will be the lookup

of current time. This ensures that the timestamp will be as close as possible to

the event occurrence.

5.7 Processing logged data

For processing the output of logging we decided to implement a tool based on

the existing tools included in the Android SDK. This choice has two advantages:

first of all, developers who have already used these tools will be able to easily

get familiar with our extended version. Secondly, these tools already implement

25

methods for processing the trace log. This code will be useful for us, and if we

follow the structure of the trace file during the design of the context log file, it

will help us implement the processing code.

The two tools for trace file processing in the SDK are Traceview and

dmtracedump. Both of them give us a different perspective on the logged trace.

dmtracedump visualizes the trace file as a tree graph. Nodes representing func-

tions are connected if they call one another. This type of visualization can be

extended with context information: by specifying conditions on some context val-

ues, the software could highlight the paths in the tree that were executed while

the given conditions were met.

Traceview shows the trace logs in a linear manner over a timeline. Methods

can be selected by name, or by clicking on them on the graph. Selected methods

get highlighted on the timeline and additional information is shown about them.

This type of visualization can be meaningfully extended with context data. Each

piece of context should be displayed in a separate row, similar to that of a trace

from one thread. Rows should contain visual representation of context data. For

each type of logged context data we should choose a proper visualization method:

• floating point data (float and double) - For this kind of data we should use

a classical line chart. Records from the log file will represent points with

known values. They will be connected with a straight line. Values of the

intervening points will be computed with interpolation of values from the

two neighbouring records.

• integer data (int and long) - Similarly as for floating point data, logged

records will represent points with known values. However, since this type

is used to represent discrete data, we cannot connect points with a straight

line.

Thanks to our effort to minimize the delay between the context change

event and the taking of the timestamp for the log record, we can assume

that our library detects a change in context as soon as possible. Until that

time we can presuppose that the value remains unchanged.

Points representing two adjacent records will be connected with a horizontal

line starting from the left point, and ending above or under the right point.

26

The end point of the line is then connected with a vertical line to the

right point. This method assumes, that value of the given piece of context

remains the same until the next record is taken. This method will generate

a stairs-graph.

• string data - Visualization of this type will focus on the change of value.

Besides visualization of context data we will make it possible to define prob-

lems and highlight them on the timeline. We will also make hints on what context

values implied the problem.

5.8 Defining problems

A problem can be any unexpected behaviour occurring in an application. Proba-

bly the most obvious example is if an application crashing. The problem, however,

can also be the wrong reaction on a context change: for example, querying for

GPS location data even after the GPS location provider has been disabled.

Erroneous behaviour can be detected either by the user of the application or

by the developer during an analysis of the logged data. If a user notices that the

application works differently to that as it should be, he should somehow report

it. For that very same purpose we will implement a Big-red-button feature into

the library. It is basically an empty function which can be quickly called by an

easy interaction on the UI. This function call can be found in the trace file and

it represents an event when a problem has occurred.

Developers being aware of possible erroneous behaviour can define the prob-

lems describing such behaviour. When the application reacts incorrectly to a

context change, the problem definition should contain the new value of the rel-

evant pieces of context, and the name of the method that describes the wrong

reaction.

The problematic value of the piece of context should be defined by a simple

condition: a relation to a concrete value. Depending on the datatype of the

context, the following relational operators should be used:

• floating point data can be greater than or less than the specified value

27

• integer data can also be compared compared with an equality, so besides

greater than and less than operators there can also be used equals, not

equals, greater than or equal and less than or equal

• string data is not comparable, since lexicographic comparison is irrelevant

for us. Therefore a string can be checked for equality or inequality with a

specified value.

The modified Traceview will be able to highlight the defined problems. Big-

red-button events and function calls from defined problems will be shown and the

value of a piece of context will define the intervals, which will also be highlighted.

5.9 Hints on context

When the problem is defined, its every occurrence is highlighted in the modified

traceview application. Since the timestamp of every occurrence is known, the

actual values of logged pieces of context can be easily looked up at these moments.

From these values we can then presume values of the other pieces of context that

may have caused the problem.

28

6. Implementation

In this chapter we will describe some important parts of the implementation.

6.1 ContextLogger architecture

As discussed in the previous chapter, logging context information needs to be done

in a process separate from the application. Communication with this background

process is hidden from the application developer inside the ContextLogger proxy

class. Since every application can have at most one context logger process at-

tached, the proxy class can implement the singleton pattern. Once the class is in-

stantiated and initiated, it is bound to the background service. When started, the

service process waits for commands from the application process. Inter-process

communication between the proxy class and background service is realized using

a Messenger class.

The public interface of the ContextLogger class contains the following meth-

ods:

public static ContextLogger getInstance()

returns a reference to the singleton proxy object. It needs to be initialized

before it can be used.

public boolean init(Context)

initializes the library: starts the background process and binds it to the

context of the application.

public void addListener(ContextListener)

adds the parameter to the list of listeners that will be used during the

logging. The parameter can be a predefined listener from our library, or

any user-defined class that extends the DefaultContextListener class.

public void clearListeners()

clears the list of listeners.

29

public void enableTracing(boolean)

sets whether method tracing should be started. If tracing is disabled, the

library saves only context log.

public void startLogging()

starts the logging. If tracing is enabled, startMethodTracing() is called in

the application’s process. Also, sends a message to the background process

to start logging.

public void stopLogging()

stops the method tracing, if it was started, and sends a message to the

background process to stop context logging and save the log file.

public void stopService()

stops the background service.

public void setTraceName(String)

sets the base filename for trace and log files. Files will be saved in the

Downloads folder and the current date-time will be appended to the speci-

fied value.

public void useIntentTarget(boolean)

sets whether the IntentDataTarget should be used.

public void useTextFileTarget(boolean)

sets whether the TextFileDataTarget should be used.

public void brb()

an empty function, used for Big-red-button functionality.

6.2 Background process components

The background process of ContextLogger contains three main parts: the

ContextLoggerService class wrapping around the other parts and responsible

for the inter-process communication; the ContextListeners capturing the con-

text information; and the DataManager responsible for processing the captured

information. The architecture of the library is shown in Figure 6.1.

30

Figure 6.1: Architecture of ContextLogger library

As mentioned in the previous chapter, ContextLogger library needs to take

timestamps for log records itself. To make these timestamps as accurate as possi-

ble we try to minimize the delay between the context change event and the time

sampling. We want to run the event handling code in the listener object as soon

as possible after the event actually happened. We achieved this by running each

listener in a separate thread and by keeping the code of the listeners’ handler

function as short as possible.

By using separate threads we make sure that the handler function gets called

as soon as the operating system switches to its thread, and no other function

blocks his execution. The drawback of having many threads is the overhead of

context switching when many of them want to run at the same time. However, if

we try to keep the functions short then this overhead will be negligible. Handling

functions will only create the timestamp, read the required context values, put

all this information into a LogEntry object and append it to a queue for further

processing. This processing usually consists of expensive I/O operations that

would block the calling thread: therefore it is done outside of the listener’s thread.

LogEntry is a simple object representing a captured piece of context. It con-

tains a timestamp, a label and the captured context value. LogEntries are pro-

31

duced by the context listeners that insert them into the DataManager’s queue.

Entries are then consumed by the DataManager’s processing method, which

again runs in a separate thread. It takes the first entry from the queue and

passes it to the registered DataTargets. The queue of entries is an instance

of LinkedBlockingQueue, which supports blocking operations for inserting and

removing elements; therefore, it is ideal for that kind of producer-consumer prob-

lem. It blocks the producer if the queue contains the maximum allowed number

of elements. In our case the maximum is not specified, it is only bounded by

the amount of available memory. When the queue is empty the consumer gets

blocked until a new element is inserted.

DataTargets are objects representing the output of the ContextLogger library.

The main output is the context log file described in the next section. It is created

by the FileDataTarget. However, for debugging purposes we have implement-

ed two additional classes. TextFileDataTarget generates a similar output as

FileDataTarget but instead of binary coding of the values in the file everything

is saved as plain text. This can be useful during the implementation of additional

context listeners. IntentDataTarget, instead of saving logs into a file, broad-

casts them back to the system. It can be useful if we want to visualise the logs

in an application right on the device. Our demo application CLDemo uses this

method.

6.3 Log file format

Our library will log the code execution trace of the application and the requested

context information. For the trace logging we will use the system’s built-in func-

tionality: the startMethodTracing() function in the android.os.Debug class.

It generates a log file with a well-defined structure described at [20].

Context data logs will be saved in a separate file. This will also make it

possible to process the trace file with the existing debugging tools. The context

log file structure will follow a similar structure as the trace logs.

The context log file will be built up from two parts: the key part and the data

part. Both of them are created as a separate file at the start of logging. When

32

log-type value represented data type
1 int
2 long
3 float
4 double
5 string

Table 6.1: Description of log types

logging stops, the two files are concatenated.

The key part is a plain text file containing two sections. Each section starts

with a keyword on a new line, prefixed with a ‘*’. The two sections are:

version section

contains one line, describing the file version number, currently 1.

logs section

one line for each loggable piece of context. A line consists of three parts,

separated by a space: log-ID [space] log-type [space] log-name.

log-ID is an integer used to identify the piece of context in the data part. Ids

in this section do not need to be sorted; however, must form a continuous

series, starting with 0.

log-type is an integer value, enumerating the type of the related log records.

Possible values are described in Table 6.1

log-name is a string description of the piece of context. It will be used in

the user interface.

A key part of an example log file is shown in Code snippet 6.4.

The data part is a binary file created as output from a DataOutputStream.

It starts with a header section followed by a list of records. The format of the

header section is described in the Code snippet 6.5. Version is currently 1. Start

date/time is the output from gettimeofday() function call. It is used to syn-

chronize the records of the log file with the records of the trace file.

The format of records is described in the Code snippet 6.6. LogID is the

identifier of the piece of context, defined in the key part. Timestamp is the delta

time since the start of the logging. Value contains the actual value after the

context change. Its type is defined in the Key part.

33

*version

1

*logs

0 3 CPU

1 1 Screen state

2 1 Screen orientation

3 1 Last screen orientation

4 4 Time since orientation change

5 2 Total sent traffic

6 2 Total received traffic

7 2 My sent traffic

8 2 My received traffic

9 5 Wifi connection state

10 1 Wifi strength

11 1 Wifi state

*end

Code snippet 6.4: Example key part of the context log file

int magic 0x574f4c53 (’SLOW’)

byte version

long start date/time in usec

Code snippet 6.5: Example header section

int logID

long timestamp

logType value

Code snippet 6.6: Description of the record structure

34

6.4 Covered context

ContextLogger library comes with a set of implemented context listeners that

captures most of the basic context data. These listeners are the following:

Acceleration listener

SensorEvent-based listener, reads acceleration applied to the device, includ-

ing the gravity. Logged values are:

• three floats, indicating acceleration applied to the device on the three

physical axes relative to the device.

• float, indicating the overall acceleration applied to the device.

The unit of values is m/s2.

Barometer listener

SensorEvent-based listener, reads from the barometer. Logged value is float,

representing the atmospheric pressure in millibars.

Battery listener

BroadcastReceiver-based listener, reads battery stats. Logged values are:

• integer, representing the health of the battery. Value 2 means good

health, 3 is for overheating battery, 7 for cold, 4 indicates dead battery,

5 means overcharged, 6 is for unspecified error. If the battery health

can not be specified, the logged value is 1.

• integer, representing the level of the battery in percents.

• integer, representing the plugged status of the device: 1 means the

device is plugged on an AC charger, 2 is for USB charger, 4 means

wireless charger. If the device is unplugged, the logged value is 0.

• integer, indicating whether the battery is present in the device: 1

means the battery is present, 0 indicates no battery.

• integer, representing the battery status: 2 means that the battery

is currently charging, 3 means discharging, 4 means not charging, 5

indicates full battery. If the status is unknown, the logged value is 1.

35

• integer, representing the temperature of the battery.

• integer representing the voltage of the battery.

CPU listener

Periodic listener, reads global CPU usage information from the /proc/stat

file. The length of the period between reads is 1 second. Returned value is

the current CPU usage proportion.

GPS location listener

reads location data from the GPS provider. Logged values are:

• provider status,

• latitude, longitude, altitude,

• bearing,

• speed in m/s, speed in km/h

• number of used satellites.

Minimum distance and minimum elapsed time between updates can be set

in the constructor. Default values are 0 meters for distance and 3 seconds

for time.

GPS status listener

reads status information of the GPS location provider. Logged value is

integer indicating whether the provider is enabled or not, and a string value,

containing the enumeration of currently available GPS satellites.

Gyroscope listener

SensorEvent-based listener, reads the rate of rotation of the device. Logged

values are:

• three floats, indicating angular speed of the device around the three

physical axes, same as used in the acceleration listener. Rotation is

considered to be positive, if an observer sitting on the positive infinity

on the given axis sees counter-clockwise rotation.

• float, indicating the overall angular speed of the device.

36

The unit of values is radians/second.

Linear acceleration listener

SensorEvent-based listener, similarly as the acceleration listener, reads ac-

celeration applied to the device, but gravity is subtracted from the values.

Logged values are:

• three floats, indicating acceleration applied to the device on the three

physical axes relative to the device.

• float, indicating the overall acceleration applied to the device.

The unit of values is m/s2.

Magnetic field listener

SensorEvent-based listener. The three logged values are floats, representing

the force of the ambient magnetic field in the direction of the three axes,

same as in the acceleration listener. The unit of the values is microTesla.

Network traffic listener

Reads current network traffic usage. Logged values are integers, represent-

ing information such as: the number of sent/received bytes by the system,

number of sent/received bytes by the application, number of sent/received

packets by the system/application.

Network speed listener

Similarly as the traffic listener, network speed listener logs network traffic

information. Instead of saving overall values since the system/application

start, the it logs differences between values.

Passive location listener

reads location data from the passive location provider. Logged values are

latitude, longitude and the name of the provider the data comes from.

Proximity listener

SensorEvent-based listener. Logged value is float, representing the distance

37

in centimeters of the device from other objects, measured by the proxim-

ity sensor. On some devices the sensor returns only a binary ‘near ’/’far ’

representation of distance.

RAM listener

Periodic listener for logging information about the memory usage of the

application. Logged values are:

• long, representing the available free memory in the system. The unit

of the value is byte.

• integer, indicating whether the system considers itself in low memory

situation and has started killing background processes. The value is 1

if the situation applies, 0 otherwise.

• long, representing the threshold level of free memory under which the

system switches to low memory state. The unit of the value is byte.

• six integers, representing the memory usage of the application process:

proportional set size and private heap size on all of dalvik/native/other

levels. The units of all values are kilobytes.

• if debug mode is on, six additional integers are logged. These are repre-

senting the same information as the previous values, but instead of the

application process they describe memory usage of the ContextLogger

process. The units of all values are again kilobytes.

Constructor can take two parameters: the first parameter is mandatory,

containing the process ID of the application process. It is needed during the

memory information lookup. The second parameter is an optional boolean,

indicating whether the listener should be run in debug mode. Default value

is false.

Rotation listener

SensorEvent-based listener. The four logged values are floats, representing

the components of the unit quaternion. Logged values are floats, represent-

ing the components of the unit quaternion.

38

Screen brightness listener

Periodic listener, reads the screen and the soft-key brightness from the

/sys/class/ library. Accurate location of the file containing the context

value is heavily dependent on the model of the device and the version of the

operating system [27]. Our implementation supports all the test devices.

Logged values are integers: screen brightness is represented with a value

between 0 and 255. Soft-key brightness can be assigned with values 0 or 1,

indicating whether the LEDs are enabled.

Screen orientation listener

Periodic listener, reads current orientation and rotation of the screen of the

device. Orientation is represented with an integer value between 0 and 3:

0 stands for landscape orientation, 1 for portrait, 3 for undefined. Value 2

is deprecated. Rotation is also represented with an integer value between

0 and 3, each value stands for a rotation to one edge of the screen. The

listener logs also the elapsed time since the last orientation change. This

logged value is double.

Screen state listener

BroadcastReceiver-based listener, reads the current power state of the screen.

Logged value is an integer: 0 indicates that the screen is turned OFF, 1 for

ON.

Telephony Listener

Reads information related to the cell service state of the device. Logged

values are:

• integer representing the overall state of the telephony service. Possible

values are: 0 for available service (registered to the home operator or

roaming), 1 for unavailable service (not registered or currently register-

ing to an operator, registration denied or no signal), 2 for emergency

calls available only (registered to an operator, but locked), 3 for turned

off radio.

• integer representing whether the device is currently roaming (1 for

roaming, 0 otherwise)

39

• string containing the short name of current registered operator

• string containing the numeric id of the current registered operator

• integer representing whether the device is using GSM (1), CDMA (2),

SIP (3) for voice calls, or if there is no radio (0).

• integers, representing the CDMA received signal strength in dBm and

Ec/Io value in 10 dB, if the device is using a CDMA radio.

• integers, representing the EVDO received signal strength in dBm,

Ec/Io value in 10 dB and signal noise rate, if the device is using a

EVDO radio for data transmission.

• integers, representing the GSM signal strength and error bit rate, if

the device is using a GSM radio.

• integer representing the current cell data activity: 1 for incoming data,

2 for outgoing, 3 for both directions, 0 for no current activity. Value

4 represents state, when data connection is active, but the underlying

physical link is down.

• integer representing the current data connection state: 0 for no connec-

tion, 1 for setting up connection, 2 for connected and 3 for suspended

state.

• integer representing the call state of the device: 1 for off-hook state, 2

for ringing and 0 for idle.

• integer representing the current data network type. The possible values

are listed in Table 6.2.

Temperature listener

SensorEvent-based listener, reads value from the ambient temperature sen-

sor. Logged value is float, representing the temperature around the device

in Celsius.

Light listener

1 SensorEvent-based listener, reads the value from the light sensor. Logged

value is float representing the ambient light level in lux.

40

network type value represented network type
0 UNKNOWN
1 GPRS
2 EDGE
3 UMTS
4 CDMA
5 EVDO 0
6 EVDO A
7 1xRTT
8 HSDPA
9 HSUPA
10 HSPA
11 IDEN
12 EVDO B
13 LTE
14 EHRPD
15 HSPAP

Table 6.2: Description of network type values

Wi-Fi listener

BroadcastReceiver-based listener, activated when the Wi-Fi connectivity

state was changed. Logged values are:

• string representing the current Wi-Fi state. Possible values are: IDLE,

SCANNING, CONNECTING, AUTHENTICATING, CONNECTED,

DISCONNECTING, DISCONNECTED, UNAVAILABLE, FAILED.

The following values are available, if the Wi-Fi state is CONNECTED:

• string, containing the BSSID of the currently connected access point,

or empty string if no network connected.

• string, containing the SSID of the currently connected network, or

empty string if no network connected.

• string containing the IP address.

• integer containing the link speed of the current connection.

Wi-Fi state listener

BroadcastReceiver-based listener, activated when the Wi-Fi option of the

device was changed. Logged value is integer, indicating the new state: 1

for disabled state, 2 if the Wi-Fi is currently being enabled, 3 for enabled,

41

0 for being disabled. Value 4 indicates unknown state which occurs if some

error happened during the enabling or disabling.

Wi-Fi RSSI listener

BroadcastReceiver-based listener, activated when the Wi-Fi signal strength

has changed. Logged value is integer, representing the new RSSI of the

signal in dBm.

6.5 Extensibility

A key objective of the project was extensibility. Since every application can have

its own needs of context information, we made it possible for developers to imple-

ment their own context listeners. Every class can be used as a context listener,

if it extends the abstract DefaultContextListener class. Methods which are

needed to be overridden are:

public boolean checkPermissions()

a function to check whether the application has the correct permissions to

access data required by this listener. If every permission is granted, the

function should return true, otherwise false. If the listener does not need

any special permissions, default implementation can be used, which returns

true.

public abstract void initLogTypes()

a method for registering the listener. It should call addLogType(String

label, int type) of DefaultContextListener for every piece of context

that the listener is about to cover. The label should contain a simple de-

scription of the given piece of context. It will be used for identification

during the logging, therefore it should be unique among all the captured

pieces. Type describes the type of value we want to save. It needs to be one

of DataManager’s members: INT, LONG, FLOAT, DOUBLE, STRING. If

a piece of context is not registered in this function, it will not be saved in

the DataTargets.

42

public abstract void startListening()

a method for starting the listening. It should register the event listeners or

BroadcastReceivers that capture the given piece of context from the system.

It should also start a new thread that will run the handler method of these

objects.

public abstract void stopListening()

a method to stop the listening. It should unregister event listeners and

BroadcastReceivers used during the logging.

Listeners are instantiated in the application process, then serialized and trans-

ported to the background process. Thanks to that, users do not have to change

the sources of the library when adding their own listeners.

6.6 Traceview

The original Traceview from the Android SDK is a java application which takes

one parameter from the command line: the name of the trace file. If the file is

accessible, it creates a DmTraceReader instance which is responsible for parsing

the trace file and building up the internal data structure from the read records.

This reader instance is then passed to the GUI components which need to access

the data.

Our modification takes the same parameter and uses it to open both files:

trace file with extension .trace added and the context log file with extension

.clog. If the trace file is not accessible, the application exits with an error since

without it we cannot continue with the analysis. On the other hand, if the log

file is missing, we can’t do context aware analysis either, but instead of returning

with an error, we run Traceview with the original functionality. This makes it

possible to use our extended version as a replacement of the original one.

If the log file can be opened, a ContextLogReader instance is created, which is

the analog of the trace reader: it parses the log file and makes the data available

to the GUI components.

The main components of the Traceview interface are the TimeLineView, the

ProfileView and the ProblemView.

43

TimeLineView in the original Traceview was a highly interactive GUI compo-

nent visualizing the collected trace data. Records from the trace file were arranged

into rows according to the thread they belong to and sorted by the start time.

When the mouse moves over the TimeLineView, extra information are displayed

about the currently hovered trace record. If the user selects an interval on the

timeline, Traceview zooms to the selected interval.

Our modification extends TimeLineView with the ability to visualize trace

data (see Figure 6.2) and also achieve the same level of interactivity.

Figure 6.2: TimelineView with context log visualisation

Mouse-move events convert the mouse position to a corresponding timestamp

on the timeline. TimeLineView then checks the value of the actual piece of context

at that specific moment. The value of an integer or string type piece of context

at a given moment equals the value of the last record before that moment. If

the mouse position represents an earlier moment than the timestamp of the first

record, the value at that specific time is undefined.

The value of a floating point type piece of context at a specific time is comput-

ed from the value of the two adjacent records by interpolation using the following

equation:

value = prevV alue +
time − prevT ime

nextT ime− prevT ime
∗ (nextV alue− prevV alue)

where prevV alue and prevT ime refers to the last record before the given moment,

nextV alue and nextT ime refers to the first record after it. Again, if the mouse

44

position represents an earlier moment than the timestamp of the first record, or

a later moment than the timestamp of the last record, the value at that time is

undefined.

On every redraw event the component checks which records fall into the cur-

rently visible time interval. For each record the actual coordinates relative to the

window coordinate-system are then computed. When all this information is avail-

able, the component gradually draws the problem intervals and the highlighted

function call, defined in the ProblemView, the visible records and the selected

function in the trace panel and the visible part of the graphs on the log panel.

ProfileView component of Traceview remains the same as in the base appli-

cation, since it is not used during the context analysis.

ProblemView is a new component implemented by us (see Figure 6.3). It

consists of two panels: the problem definition panel and the statistics panel.

The problem definition panel allows the user to specify ‘problems’, i.e. unex-

pected behaviour of the application. In the scope of this thesis we have imple-

mented two types of problems:

BRB

by selecting this option the Big-red-button signals get instantly highlighted

on the timeline and the statistics panel get filled with the computed stats

Context condition + function call

by selecting this option the function definition field and the context condi-

tion field become available. By entering a function name we instantly get

the function calls highlighted on the timeline. When we also enter a con-

dition for one of the collected piece of context, the timeline highlights the

intervals where the condition is met. In this case the highlighted function

calls are divided into two groups - the ones which fall into the intervals and

the others. The statistics are computed only for the first group.

Computed statistic values depend on the type of the logged piece of context.

In every case, the computation is based on the values at the time of occurrences

of the defined problem. For discrete and categorical data types (integers, longs

and strings) the statistics contain the five most frequent values together with

45

the proportion of their occurrence in the set. For floating point types (floats

and doubles) the statistics describe the interval containing 90% of the values by

removing the top and bottom 5% of them to exclude outliers.

Figure 6.3: Screenshot of ProblemView

46

7. Use cases and Evaluation

To present the capabilities of our library we have implemented a simple demo

application. It has the library connected to it and is able to configure the logging

and visualize the collected data.

To show our solution in real situations we wanted to connect our library to

an existing application and use it to detect context-aware bugs. We were looking

for open source applications with public issue tracking lists. Our goal was to

find context-specific bugs on the list, reproduce them and use ContextLogger to

identify the actual context responsible for the errors. In the end we have chosen

the android version of Firefox web browser.

7.1 Demo application

CLDemo is a simple application consisting of one activity. After the startup the

screen contains one button labeled Start.

To configure the logging process you can open the Settings screen by pressing

the Menu button (on Android 3.0 and higher by tapping the action overflow icon

in the action bar) and selecting the Settings icon.

The Settings screen (shown in Figure 7.1) contains a list of checkboxes for tog-

gling particular features. The first checkbox enables the method tracing. Without

this option enabled the library will save only the context log file, and the trace will

be not logged. By the next two checkboxes you can configure the used DataTar-

gets. FileDataTarget is always used, as it generates the default output of the

logging. Text file checkbox will enable TextFileDataTarget to generate a human

readable version of the logs. Display checkbox enables the IntentDataTarget to

broadcast logged context information. This broadcast is captured by the main

activity of the application and is then displayed.

Each of the remaining checkboxes represent one contextlistener. By selecting

a checkbox you can tell the application to use the given listener during the next

logging session.

To start the logging you can to tap the Start button on the main activity.

47

Figure 7.1: Screenshot of the Settings screen

Since an application with an already designed GUI can be hardly modified to

contain another button on the interface, logging should be started without the

need of adding a GUI element. As a demonstration of this, logging can be started

also by pressing the volume up button of the device.

After you start the logging session by either way, a Toast message will inform

you whether the start was successful or if an error occurred.

After a successful start, if the Display checkbox was selected in the settings

menu, the context information will appear on the screen (see Figure 7.2). Each

piece of context will be represented by one line containing the label defined in the

context listener and the most recently captured value. If a new value is captured,

the activity will automatically overwrite the value on the existing line.

The Big-red-button functionality is wired to the volume down button of the

device. When you press it a Toast message will appear with the text ‘BRB ’. You

can press it several times during the logging.

You can stop the logging by tapping on the Stop button or by pressing the

volume up button again. After the logging is stopped, the log files are saved

48

Figure 7.2: Screenshot of CLDemo during a logging session

in the download directory of the system. They can be then transferred to the

development machine for analysis.

7.2 Firefox

Mozilla Firefox is an open source web browser developed by the Mozilla Founda-

tion, initially released in 2002. The mobile version, codenamed Fennec, was first

released in 2010 for the Maemo operating system and since 2011 the Android

system has also been supported. It uses the same Gecko layout engine as the

desktop version.

The source code of the browser is stored in a Mercurial repository at address

[28]. To build the mobile version, Android SDK and NDK are required.

Firefox project uses Bugzilla as its issue tracker system and the list of known

issues is publicly available at address [29]. We have searched through the list

for context-aware bugs. We were looking for bugs related to network reliabili-

ty since as a browser, Firefox requires a stable network connection for correct

49

running. We were also searching general context-aware bugs, related to physi-

cal and computing context information, such as screen orientation, battery level,

memory usage. Finally we have chosen the bug 739177 [30] to reproduce. To

achieve that, first we needed to get a snapshot of the source code from March

25, 2012, the date when the bug was submitted. We have switched to revision

[31]. After that we modified the sources by adding code to instantiate our li-

brary. We have enabled ContextListeners, which capture relevant context data

about the network connectivity and the device in general. The chosen listeners

were: WifiListener, WifiRSSIListener, WifiStateListener, TrafficListener, Traffic-

SpeedListener, BatteryListener, CpuListener, PassiveLocationListener, RamLis-

tener, ScreenStateListener, ScreenOrientationListener.

Mozilla has no project in Eclipse, it uses it’s own build engine, so we had

to also add ContextLogger to the build process. The whole build procedure is

described in detail in Appendix B.

We deployed the prepared package to a Nexus 7 device running Android 4.2.2.

After running the application for a while we have successfully reproduced the

issue. We started the logging and continued with the browsing. When we noticed

the expected bad behaviour, we used the BRB function of the library. We ran

the logging session for about 90 seconds while browsing. When we stopped the

logging, we copied the log files to the development machine in order to analyse

them with the extended Traceview.

When opened in Traceview, we could see the trace data and the logged context

information visualized. Since we used the BRB function during the logging, we

can navigate to the problem definition panel and select the BRB option. This

instantly highlights the occurrences of this function call over the timeline, as

shown in Figure 7.3. The statistics panel of the ProblemView is also filled with the

computed statistics . Most of the values are irrelevant in this case, either because

the given piece of context has not changed during the logging and therefore the

statistics contain only one value, or because the piece of context is unrelated to the

error and therefore many different values occur in the statistics. We can, however,

see that at the time of signals the screen orientation was always ‘portrait’ and

90% of the captured values of the elapsed time since the last orientation change

50

is in the interval (1.096s-1.808s), so the problem always occurred shortly after

the orientation changed to portrait. From this information we can conclude that

the problem is caused by the portrait screen orientation context. This conclusion

corresponds with the issue description.

Figure 7.3: Traceview highlighting defined problem

51

8. Conclusion

The goals of the thesis were to propose a debugging method which takes context

information into account by implement a library for collecting such information,

and to implement a debug tool for processing the collected information.

The first point was achieved by creating the ContextLogger library. It com-

bines the trace logging supported by the system with a highly extensible context

logging, implemented by the library.

The output of the logging is a pair of log files: the trace log and the context

log. The trace log file contains records about every method call in the application

process. Its structure is defined by the system.

The context log file contains records about the changes in selected pieces of

context. The file follows a similar structure to that of the trace file to make the

processing easier.

The library has a simple interface which makes it easy to be added on to

applications. We have created a simple demo application to demonstrate the

functions of the library. We have also added ContextLogger to the mobile version

of the Firefox browser and started it while reproducing a context-aware bug. The

logged data was then analyzed.

The second goal was achieved by extending the Traceview application from

Android SDK. We have added the functionality to visualize logged context in-

formation together with the trace data. We have also implemented a problem

definition method, where the user can define a problematic combination of a con-

text value and a function call. The defined problem is again visualized and a

statistical hint is computed on the context values causing the problem.

We used the extended Traceview application to analyze the logs captured from

a real-life application. In particular, we have used for evaluation well known and

complex web browser (Firefox for Android) and we have shown on this nontrivial

example, how the presented method can be applied to find context dependent

bugs.

52

8.1 Future work

The project should be enhanced in various aspects. First of all, the library should

be tried out on more Android applications: in order to learn what further pieces

of context are needed and ought to be covered.

Secondly, more comprehensive statistics should be computed from the logged

data in order to give more accurate hints on the causing context. One possibility

to achieve this is to use log files from several logging sessions instead of only one.

Another way to improve the project is to integrate the context processing

with other debugging tools from SDK, such as dmtracedump and the DDMS.

This would make it possible to gather new information from the logs and analyze

them from a new viewpoint.

53

Bibliography

[1] Wikipedia: Ubiquitous computing
http://en.wikipedia.org/wiki/Ubiquitous computing

[2] Gartner: Gartner Says Worldwide Smartphone Sales Reached Its Low-
est Growth Rate With 3.7 Per Cent Increase in Fourth Quarter of 2008
http://www.gartner.com/newsroom/id/910112

[3] Gartner: Gartner Says Worldwide Mobile Phone Sales to End Users Grew
8 Per Cent in Fourth Quarter 2009; Market Remained Flat in 2009
http://www.gartner.com/newsroom/id/1306513

[4] Gartner: Gartner Says Worldwide Mobile Device Sales to End Users Reached
1.6 Billion Units in 2010; Smartphone Sales Grew 72 Percent in 2010
http://www.gartner.com/newsroom/id/1543014

[5] IDC: Press release
http://www.idc.com/getdoc.jsp?containerId=prUS23946013

[6] Gartner: Gartner Says Asia/Pacific Led Worldwide Mo-
bile Phone Sales to Growth in First Quarter of 2013
http://www.gartner.com/newsroom/id/2482816

[7] Wikipedia: App Store (iOS)
https://en.wikipedia.org/wiki/App Store (iOS)

[8] Wikipedia: Google Play
http://en.wikipedia.org/wiki/Google Play

[9] Weiser, M.: The Computer for the Twenty-First Century
Scientific American, 1991

[10] Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and
Context-Awareness
In: CHI 2000 Workshop on the What, Who, Where, When, and How of
Context-Awareness, 2000

[11] Wei, Edwin JY, and Alvin TS Chan.: Towards context-awareness in ubiqui-
tous computing
In: Embedded and Ubiquitous Computing, pp. 706-717. Springer Berlin Hei-
delberg, 2007.

[12] Android: Sensors Overview
http://developer.android.com/guide/topics/sensors/sensors overview.html

[13] AWARE: What is AWARE?
http://www.awareframework.com/home/

[14] FUNF: Funf Open Sensing Framework
http://www.funf.org/

54

[15] Morphone: A Context-Aware Android-Based Mobile Operating System
http://morphone.elet.polimi.it/

[16] A. Bonetto, M. Maggio, A. Nacci, D. Sciuto, M. D. Santambrogio: A
Context-Aware Android-Based Mobile Operating System: morphone.os
http://www.changegrp.org/doc/morphone talk taipei.pdf

[17] Qualcomm Retail Solutions, Inc.: Gimbal
https://www.gimbal.com/

[18] David Chu, Aman Kansal, Jie Liu, Feng Zhao: Mobile Apps: It’s Time to
Move Up to CondOS
http://research.microsoft.com/apps/pubs/default.aspx?id=147238

[19] Android: Debugging
http://developer.android.com/tools/debugging/index.html

[20] Android: Profiling with Traceview and dmtracedump
http://developer.android.com/tools/debugging/debugging-tracing.html

[21] MSDN: Trace Class
http://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=vs.100).aspx

[22] MSDN: IntelliTrace
http://msdn.microsoft.com/en-us/library/vstudio/dd264915.aspx

[23] Norbert Ruessmann: DevTracer – Trace Monitor for Microsoft Windows
Phone 7
http://www.devtracer.com/trace-monitor/windowsphone.aspx

[24] Jonathan Levin: Mac OS X and iOS Internals: To the Apple’s Core Hobo-
ken, N.J. : Wiley, 2012

[25] Android Reference: <service>
http://developer.android.com/guide/topics/manifest/service-element.html

[26] The Android Open Source Project: Controlling the Embedded VM
http://www.netmite.com/android/mydroid/dalvik/docs/embedded-vm-
control.html

[27] NoDock community: Input Device and Backlight
https://sites.google.com/site/androidnothize/no-dock/input-device-and-
backlight

[28] Mozilla contributors: Mozilla-central repository
http://hg.mozilla.org/mozilla-central/

[29] Mozilla contributors: Bugzilla@Mozilla – Components for Firefox for
Android
https://bugzilla.mozilla.org/describecomponents.cgi?
product=Firefox%20for%20Android

[30] Mozilla contributors: Mozilla – Bug 739177
https://bugzilla.mozilla.org/show bug.cgi?id=739177

55

[31] Mozilla contributors: Mozilla – Revision 20a01901480f
http://hg.mozilla.org/mozilla-central/rev/20a01901480f

[32] Wikipedia: Android System Architecture
http://en.wikipedia.org/wiki/File:Android-System-Architecture.svg

[33] Steven Sinofsky: Supporting sensors in Windows 8
http://blogs.msdn.com/b/b8/archive/2012/01/24/supporting-sensors-in-
windows-8.aspx

[34] The Android Open Source Project: Android 1.6 - Profile.c
https://android.googlesource.com/platform/dalvik/+/android-
1.6 r1/vm/Profile.c

[35] The Android Open Source Project: Android 2.3 - Profile.c
https://android.googlesource.com/platform/dalvik/+/android-
2.3 r1/vm/Profile.c

[36] The Android Open Source Project: Android 4.0.1 - Profile.cpp
https://android.googlesource.com/platform/dalvik/+/android-
4.0.1 r1.1/vm/Profile.cpp

56

List of Abbreviations

1xRTT Single-carrier Radio Transmission Technology
adb Android Debug Bridge
AC alternating current
ADT Android Developer Tools
API application programming interface
app mobile application
BRB Big-red-burron
BSSID Basic service set identification
CDMA Code division multiple access
CDU Contextual Data Units
CondOS Context Dataflow Operating System
CPU central processing unit
DDMS Dalvik Debug Monitor Server
Ec/Io measure of evaluation and decisions of CDMA and UMTS
EDGE Enhanced Data rates for GSM Evolution
EHRPD Enhanced High Rate Packet Data
EVDO Evolution-Data Optimized
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile Communications
GUI graphical user interface
HSDPA High-Speed Downlink Packet Access
HSUPA High-Speed Uplink Packet Access
HSPA High-Speed Packet Access
HSPAP High-Speed Packet Access Plus
IDE integrated development environment
IDEN Integrated Digital Enhanced Network
JDWP Java Debug Wire Protocol
LED light-emitting diode
LRU least recently used
LTE Long Term Evolution
MIT Massachusetts Institute of Technology
NDK Native Development Kit
RSSI received signal strength indicator
SD card Secure Digital card
SDK Software Development Kit
SIP Session Initiation Protocol
SMS Short Message Service
SSID Service set identification
UI user interface
UMTS Universal Mobile Telecommunications System
USB Universal Serial Bus
VM virtual machine
WP8 Windows Phone 8

57

A. Content of the Attached CD

The attached CD contains the following data:

• bin/ - Compiled packages of

– the ContextLogger library

– the CLDemo application

– the patched Firefox

– the extended Traceview

• doc/ - Javadoc generated for the ContextLogger library

• log/ - log files captured from Firefox

• src/ - Source files of

– the ContextLogger library

– the CLDemo application

– the Firefox browser at revision 20a01901480f, patched with Context-
Logger

– a patch file, containing the changes made on Firefox

– the extended Traceview

• thesis.pdf - This document

58

B. Build instructions

In this chapter we will describe how to build each part of the project. The
instructions target the Ubuntu platform. On other distributions they should be
very similar.

B.1 Building the ContextLogger library

B.1.1 Prerequisites

In order to build the ContextLogger Library, you need to install Eclipse IDE,
Android SDK with API level 14 enabled and Android NDK revision r5c.

B.1.2 Build steps

Extract the contents of the src/contextlogger.zip archive from the CD into a
empty directory <sources>.

To successfully build the project, first you need to compile the native part of
the library. You can do that by executing the ndk-build script from the Android
NDK in the ContextLogger project library:

<sources>/contextlogger$ <ndk-lib>/ndk-build

You can now import the ContextLogger project into your Eclipse workspace
by choosing File>Import... menu and selecting the “General/Existing projects
into Workspace” option. Then you need to browse the root directory of the
project and select OK then Finish. To create a JAR archive from the library,
select the project in the Package Explorer, then choose File>Export... menu and
select JAVA/JAR file option. Click Next then Finish.

B.1.3 Building CLDemo

If you want to build the demo application, extract the contents of the src/demo.zip
archive from the CD into the <sources> directory and import the CLDemo
project into your workspace. If you have connected your device, click Run to
execute immediately the application.

B.2 Building Traceview

B.2.1 Prerequisites

In order to successfully build the extended Traceview application you need to
download the sources of three projects from the Android SDK. Create an empty
directory <sdk-dir>. You can download the sources by running commands:

<sdk-dir>$ git clone \

https://android.googlesource.com/platform/tools/swt tools/swt

<sdk-dir>$ git clone \

59

https://android.googlesource.com/platform/prebuilts/tools \

prebuilts/tools

<sdk-dir>$ git clone \

https://android.googlesource.com/platform/tools/base tools/base

B.2.2 Build steps

1. Import project to your Eclipse workspace from <sdk-dir>/tools/base/common

directory.

2. Add variable to the classpath: select the common project in the Package Ex-
plorer then choose File>Properties. On the left side select Java Build Path
and open the Libraries tab. Click the Add variable... button. In the new
window click Configure variables... and then New.... Enter ANDROID SRC to
the name field and <sdk-dir> into the Path. Click OK to exit the dialogs.

3. Import project from the <sdk-dir>/tools/swt/sdkstats directory.

4. Add classpath variable ANDROID OUT FRAMEWORK with value
<sdk-dir>/prebuilts/tools/<platform>/swt.

5. Import the ContextLogger project from <sources>/contextlogger direc-
tory.

6. Extract the contents of the src/traceview.zip archive into the <sources>
directory and import the traceview project into the workspace.

7. Select Traceview in the Package Explorer and click File >Export.... Choose
Runnable JAR file and navigate through the wizzard.

To run Traceview use the following command:

<export-dir>$ java -Xmx1600M -jar traceview.jar <trace-name>

B.3 Building Firefox

B.3.1 Prerequisites

To successfully build the chosen revision of Firefox you need to complete the
following prerequisites:

1. Install JDK version 6 or newer

2. Install Gecko Requirements by running the following commands:

sudo apt-get install mercurial ccache

sudo apt-get build-dep firefox

3. Install Android NDK revision 4 or newer, except revision 7, which is not
working

60

wget http://dl.google.com/android/ndk/android-ndk-r5c-linux-x86.tar.bz2

tar -xjf android-ndk-r5c-linux-x86.tar.bz2

4. Install Android SDK

wget http://dl.google.com/android/android-sdk_r22.0.1-linux.tgz

tar -xzf android-sdk_r22.0.1-linux.tgz

./android-sdk-linux_x86/tools/android update sdk -f -u

./android-sdk-linux_x86/tools/android update adb

If all the prerequisites are completed, you can get the Firefox source code. You
can either clone the mozilla-central repository into <moz-dir> and then switch
to revision 20a01901480f:

hg clone http://hg.mozilla.org/mozilla-central/ <moz-dir>

hg update -r 20a01901480f

or immediately download the sources of the given revision from address [31].
When you have the sources, first you need to configure the build process. To

do that, create a text file mozconfig in your <moz-dir> directory and add the
following lines to it with the correct values inserted:

Add the correct paths here:

ac_add_options --with-android-ndk="<ndk-dir>"

ac_add_options --with-android-sdk="<sdk-dir>/platforms/android-16"

ac_add_options --with-android-version=5

android options

ac_add_options --enable-application=mobile/android

ac_add_options --target=arm-linux-androideabi

ac_add_options --with-ccache

ac_add_options --enable-tests

mk_add_options MOZ_OBJDIR=./objdir-droid

mk_add_options MOZ_MAKE_FLAGS="-j9 -s"

After the file is created, export an environment variable containing its path:

export MOZCONFIG=<moz-dir>/mozconfig

At this point you are ready to build the selected revision of Firefox by following
commands:

<moz-dir>$ make -f client.mk

<moz-dir>$ make -C objdir-droid package

B.3.2 Import of ContextLogger

To add ContextLogger to Firefox, you need to copy the ContextLogger.jar file
into the <moz-dir>/libs directory.

61

B.3.3 Change the code

When the jar file is added, the following changes are required to use the library
in the application:

1. Add instantiation of the ContextLogger class to the GeckoApp.java file:

(a) Create private variables in the GeckoApp class to hold the reference
to the ContextLogger instance.

(b) Instantiate the library in the onCreate() function of GeckoApp.

(c) Add key event handler function for volume keys to start/stop the log-
ging.

(d) Stop the library in the onDestroy() function of GeckoApp.

(e) Add the required imports to the beginning of the file.

2. Change the manifest file of the application, AndroidManifest.xml.in:

(a) Add user permission required by the listeners.

(b) Add entry point for the background service with option to run in a
separate process.

3. Add ContextLogger.jar to the classpath and to the input of the dx tool in
android/base/Makefile.in file.

4. Tell the packager to include libtimesource.so from the ContextLogger.jar
into the package.

All these changes are included in the patch file on the attached media. The
sources of Firefox with the patch applied is also available on the CD.

When the changes are made, you can build the commands mentioned above.
Result Fennec-14.0a1.en-US.android-arm.apk package can be found in
<moz-dir>/objdir-driod/dist directory. You can copy it to your device to
install.

62

	Introduction
	Structure of the thesis

	Background
	Context-awareness
	Android
	Context-awareness in Android
	User context on Android

	Context-awareness on Windows Phone
	Context-awareness on iPhone

	Debugging and tracing
	Android
	Windows Phone
	iOS

	Problem statement and goals of the thesis
	Analysis
	Platform
	Collecting trace information
	Covered context-data
	Output of logging
	Synchronisation of logged data
	Timestamp accuracy
	Processing logged data
	Defining problems
	Hints on context

	Implementation
	ContextLogger architecture
	Background process components
	Log file format
	Covered context
	Extensibility
	Traceview

	Use cases and Evaluation
	Demo application
	Firefox

	Conclusion
	Future work

	Bibliography
	List of Abbreviations
	Content of the Attached CD
	Build instructions
	Building the ContextLogger library
	Prerequisites
	Build steps
	Building CLDemo

	Building Traceview
	Prerequisites
	Build steps

	Building Firefox
	Prerequisites
	Import of ContextLogger
	Change the code

