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1. Overview of the thesis

1.1 Introduction

Standard Model is a very successful theory in describing elementary particles
and their interaction. Over the last decades it has passed incredible number of
experimental checks and there is no evidence that the theory is wrong. Moreover,
the discovery of the Higgs boson in July 2012 completed the experimental search
for all particles contained in this model. However, it is clear that this is not an
ultimate theory of the universe but rather just a low energy approximation of
the final theory. It is known for long time that the Standard model suffers from
several problems where the most important role play: the hierarchy problem
which is the large split between electroweak scale and unification/Planck scale
and the incorporation of gravity. These are fundamental problems that will be
definitely the biggest challenges of theoretical physics in 21th century.

The important part of the Standard model is the sector of strong interactions
which is described by Quantum Chromodynamics. The fundamental degrees of
freedom are gluons and quarks which are asymptotically free at high energies. At
low energies the theory is strongly coupled and gluons and quarks are confined
into hadrons. This means that at low energies there are other degrees of freedom -
pions and other pseudoscalar mesons that arise from spontaneous chiral symmetry
breaking. These particles are not present in the original QCD Lagrangian and
their description requires the effective field theory approach provided by the chiral
Lagrangian, ie. SU(3) non-linear sigma model. The extension beyond the leading
order is captured by the Chiral Perturbation Theory which provides a consistent
momentum expansion. This theory has been very successful in describing the
dynamics of the low energy sector of QCD.

This thesis focuses on two big open questions in this direction:

1. Extension of the effective field theory for QCD approach beyond the lowest
energies.

2. Theoretical studies of the effective field Lagrangians using computations of
scattering amplitudes.

1.1.1 Effective field theory for resonances

Chiral Perturbation Theory is an effective field theory for pseudoscalar mesons
which is the lowest multiplet in the spectrum of hadrons. The effect of all higher
resonances is effectively included in the coupling constants. Therefore, this effec-
tive theory breaks down when dynamics of resonances become important. This
happens at the scale Λ = Mρ where Mρ is the mass of the rho meson which is
the lightest resonance. For energies E ≥ 1 GeV we need a new theory that also
includes resonances as dynamical degrees of freedom, Resonance Chiral Theory.
In the simplest approximation we consider only lowest multiplets of vector, axial
vector, scalar and pseudoscalar resonances but in principle we could consider the
infinite tower of them.
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Resonance Chiral Theory is an effective field theory that describes interactions
of pseudoscalar mesons and higher resonances. Because we are in intermediate
energetic region there is no good expansion parameter. At lower energies we
expand in small momenta while at high energies we can use 1/NC expansion.
In the resonance sector we have to combine both expansion parameters in order
to get phenomenologically relevant results. The approach is to write a gener-
al Lagrangian compatible with the symmetries (chiral building blocks coupled
to resonance fields). Then we calculate correlation functions in this theory and
compare it with correlation functions computed at low energies (in Chiral Pertur-
bation Theory) and at high energies with Operator Product Expansion (OPE).
We require that our result matches both of them which gives consistency con-
straints on the coupling constants of our effective Lagrangian.

This thesis addresses this problem in two chapters. In chapter 2 we follow
the approach outlined above by calculating SS − PP correlator at one-loop.
We match the result at low and high energies and provide set of conditions on
coupling constants together with the saturation of low-energy constants in the
chiral Lagrangians. In chapter 3 we study more conceptual point of validity of the
resonance approach for loops. We find that in certain cases non-physical degrees
of freedom can appear in the loop calculations and discuss the implications.

1.1.2 Amplitudes in the non-linear sigma model

In the low energy sector of QCD the dynamics of pseudoscalar mesons (pions,
kaons) can be described by the SU(3) non-linear sigma model. This theory plays
an extremely important role in particle physics. It describes the dynamics of
the octet of pseudo-Goldstone bosons that arise in the spontaneous symmetry
breaking SU(3)× SU(3)→ SU(3). The Lagrangian is given by

L =
F 2

4
∂µe

i
F
φ∂µe−

i
F
φ where φ = φaT a (1.1)

There is infinite tower of terms in this Lagrangian but all of them have two
derivatives only. To study the properties of this Lagrangian it is suggestive to
calculate the most basic physical observables which are scattering amplitudes.
There are many interesting results in the literature but they are mostly from
1970’s and 1980’s: and none of them make any connection with the discoveries
made in the context of Yang-Mills theory.

In last decade many new and powerful methods have been used to calculate
scattering amplitudes in Yang-Mills theory. The most prominent role play the
BCFW recursion relations that use the analytic properties of the S-matrix and
reconstructs arbitrary scattering amplitude recursively from three point ampli-
tudes. More recently, new amazing mathematical structures have been uncovered
for supersymmetric Yang-Mills theories making close connections with active re-
search in number of mathematical disciplines, from algebraic geometry to number
theory.

However, most of the activity has been limited to Yang-Mills theory (and
gravity) and there is a very little application to any other theories, especially
not to effective field theories where these methods were believed to fail due. The
non-linear sigma model here serves as a very good test case because it is a simple
but still effective field theory.
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In chapter 4 we construct BCFW-like recursion relations for all tree-level
amplitudes of pseudo-Goldstone bosons in the non-linear sigma model. This
shows that the modern methods developed in the context of Yang-Mills theory
can be used more generally. We also discuss some further implications like the
presence of Adler zero for color stripped amplitudes.

Before discussing these projects in details in chapter 2-4 we review main results
in following three sections.

1.2 SS-PP correlator in the resonance region

Within the large–NC approach the mesons will be classified within U(3) multi-
plets. The chiral Goldstone bosons are introduced by means of the basic building
block,

u(φ) = exp

(
i
φ√
2F

)
(1.2)

where φ = 1√
2
λaφa and

φ(x) =




1√
2
π0 + 1√

6
η8 + 1√

3
η1 π+ K+

π− − 1√
2
π0 + 1√

6
η8 + 1√

3
η1 K0

K− K
0 − 2√

6
η8 + 1√

3
η1


 .

(1.3)
The Goldstone bosons couple to massive U(3) multiplets of the type V (1−−),

A(1++), S(0++) and P (0−+). The vector multiplet, for instance, is given by

Vµν =




1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω1 ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω1 K∗ 0

K∗− K
∗ 0 − 2√

6
ω8 + 1√

3
ω1



µν

,

(1.4)
where we use the antisymmetric tensor formalism for spin–1 fields to describe the
vector and axial-vector resonances [8, 9, 13].

The resonance fields R are chosen to transform covariantly under the chiral
group as in Eq. (2.5) [8]. The interaction terms which are linear in the resonance
fields can be obtained from the seminal work [8]:

LR = cd〈Suµuµ〉+ cm〈Sχ+〉+ idm〈Pχ−〉 (1.5)

+
FV

2
√

2
〈Vµνfµν+ 〉+

iGV

2
√

2
〈Vµν [uµ, uν ]〉+

FA

2
√

2
〈Aµνfµν− 〉.

1.2.1 One-loop renormalization

For our analysis of the SS−PP correlator, the relevant bilinear terms will be [15]

LRR′ = iλPV1 〈 [∇µP, Vµν ]u
ν 〉 + λSA1 〈 {∇µS,Aµν}uν 〉 + λSP1 〈 {∇µS, P}uµ 〉 .

(1.6)
Only single flavor–trace operators are considered for the construction of the

large–NC lagrangian. At tree-level, the octet SS − PP correlator only gets con-
tributions from this kind of terms, even at subleading orders in 1/NC . Operators
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with two or more traces might appear in the vertices of one loop diagrams but,
since these multi-trace terms are 1/NC–suppressed, these contributions would go
to next-to-next-to-leading order and they will be neglected in the present work.

If one now uses the perturbative calculation, the SS − PP octet correlator
takes up to NLO in 1/NC the form,

1

B2
0

Π(p2) =
1

M2
S − p2

(
16c2

m − 32cmλ
S
18p

2 +
16c2

mXSp
4

M2
S − p2

)

− 16c2
m

(M2
S − p2)2 Σr

S(p2)1` − 8cm

M2
S − p2

1

B0

Φr
sS(p2)1`

− 1

M2
P − p2

(
16d2

m − 32dmλ
P
13p

2 +
16d2

mXPp
4

M2
P − p2

)

+
16d2

m

(M2
P − p2)2 Σr

P (p2)1` +
8dm

M2
P − p2

1

B0

Φr
pP (p2)1`

+
2F 2

p2

(
1− 8L̃11p

2

F 2 − 4L̃12p
2

F 2

)
+

2F 2

p4 Σr
φ(p2)1` +

2F

p2

√
2

B0

Φr
pφ(p2)1`

+32L̃8 + 16L̃11 + 8L̃12 + Πr
ss−pp(p

2)1` . (1.7)

The couplings shown here are the renormalized ones even if the superscript “r”
is not explicitly present. The first two lines are the contribution from the scalar
exchanges. The third and fourth ones come from the pseudoscalar resonance
exchanges, whereas the fifth one is produced by the Goldstone exchanges. The
last line is given by the 1PI diagrams in the SS − PP correlator.

The NLO expression for the correlator contains plenty of resonance parameters
that are not fully well known. A typical procedure to improve the determination
of these couplings is the use of the short-distance conditions [9].

The operator product expansion tells us that the SS−PP correlator vanishes
like 1/p4 for the large Euclidean momentum. Indeed, due to the smallness of its
dimension–four condensate ( 1

B2
0
〈OSS−PP4 〉 ' 12παSF

4 ∼ 3 · 10−4 GeV4 [49]), it is

a good approximation to consider that it vanishes like 1/p6 when p2 → −∞ [49].
The correlator does not follow this short-distance behaviour for arbitrary val-

ues of its couplings. This imposes severe constraints on the coefficients of the
high-energy expansion of our NLO correlator,

1

B2
0

Π(p2) =
∑

n=0,1,2...

1

(p2)k

(
α

(p)
2n + α

(`)
2n ln

−p2

µ2

)
. (1.8)

The proper OPE short-distance behaviour is therefore recovered by demand-
ing [47]

α
(`)
k = α

(p)
k = 0 , for k = 0, 2, 4 . (1.9)

At large NC , there are no logarithmic terms (α
(`)
k = 0) and for the remaining

coefficients one has α
(p)
0 = 0 (no L̃8 or higher local couplings at large NC) and

the two Weinberg sum-rules (WSR),

α
(p)
2 = 2F 2 + 16d2

m − 16c2
m = 0 ,

α
(p)
4 = 16d2

mM
2
P − 16c2

mM
2
S = 0 . (1.10)
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At NLO, in the case when the interactions only contain operators LR with
at most one resonance field [8], the high-energy expansion log–term coefficients
result

8π2F 2

3
α

(`)
0 = 8c2

m − 8d2
m − 4cdcm + 2c2

d +G2
V −

8c2
dc

2
m

F 2
− F 2

2
,

8π2F 2

3
α

(`)
2 = 8d2

mM
2
P − 8c2

mM
2
S −

16M2
Sc

2
dc

2
m

F 2
+ 20cdcmM

2
S − 6c2

dM
2
S − 3G2

VM
2
V ,

8π2F 2

3
α

(`)
4 = −24c2

dc
2
mM

4
S

F 2
− 4cdcmM

4
S + 6c2

dM
4
S + 3G2

VM
4
V , (1.11)

and the high-energy coefficients α
(p)
0,2,4 are given by

α
(p)
0 = −α(l)

0 + 32 L̃8 ,

α
(p)
2 = 2F 2 + 16d2

m − 16c2
m + A(µ) ,

α
(p)
4 = 16d2

mM
2
P − 16c2

mM
2
S + B(µ) , (1.12)

with the NLO corrections that depend on the renormalization scale µ through
functions A(µ) and B(µ).

1.2.2 Phenomenology

First, we will extract the value of the LECs at largeNC within the single resonance
approximation. We will use the formerly referred MS = 980±20 MeV and MP =
1300±50 MeV, F = 90±2 MeV and the standard reference χPT renormalization
scale µ0 = 770 MeV. The short-distance constraints determine cm and dm in terms
of the scalar and pseudo-scalar masses, producing

L8 = (0.83± 0.05) · 10−3 , C38 = (8.4± 1.0) · 10−6 . (1.13)

Naively, if the uncertainty on the saturation scale is estimated by observing the
variation with µ in the range 0.5–1 GeV, one would expect the former values to
be deviated from the actual ones at the order of ∆L8 ∼ 0.3 ·10−3, ∆C38 ∼ 5 ·10−6.

In order to go beyond the naive estimate of the subleading 1/NC uncertain-
ty, we consider now the one-loop contributions computed in previous sections.
The analysis needs the detailed discussion of parameters and different schemes.
Finally, it leads to our final LEC estimates,

L8(µ0) = (1.0± 0.4) · 10−3 , C38(µ0) = (8± 5) · 10−6 . (1.14)

These numbers are compared to previous determinations in Fig. 2.14. Although
there is still a clear dispersion between the various measurements, at the present
error level we remain essentially compatible. Further efforts should be focused
on the extraction of the scalar and pseudo-scalar pole masses in order to sizably
reduce the uncertainties in the resonance calculations.

1.3 Renormalization in the effective theory for

spin-1 resonances

In this chapter we discuss the issue of the additional degrees of freedom in all
three formalisms for the description of spin-one resonances (vector, antisymmetric
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Figure 1.1: Comparison of the LEC predictions in this work with previous results in

the bibliography.

tensor and combined). We use the path integral formulation where the protective
symmetry analogous to the Rarita-Schwinger case is manifest. We formulate a for-
mal self-consistent organization of the counterterms and one-particle irreducible
graphs, which sorts the operators in the Lagrangian according to the number of
derivatives as well as number of the resonance fields and which is useful for the
proof of renormalizability of the Resonance chiral theory as an effective theory.
This is used to explicitly calculate self-energies and give a list of counterterms
and briefly discuss the renormalization prescription. Finally, we construct their
propagators and discuss the pole structure. In this review, we focus just on the
case of vector field description, discussion for other two formalisms is analogous.

1.3.1 Vector field formalism

The full propagator for the spin-1 field is

∆µν(p) = − 1

p2 −M2 − ΣT (p2)
P T
µν +

1

M2 + ΣL(p2)
PL
µν . (1.15)

where

PL
µν =

pµpν
p2

(1.16)

P T
µν = gµν −

pµpν
p2

(1.17)

are the usual longitudinal and transverse projectors and ΣT,L are the correspond-
ing transverse and longitudinal self-energies, which vanish in the free field limit.
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The possible (generally complex) poles of such a propagator are of two types;
either at p2 = sV , where sV is given by the solutions of

sV −M2 − ΣT (sV ) = 0, (1.18)

or at p2 = sS where sS is the solution of

M2 + ΣL(sS) = 0. (1.19)

Let us first discuss the poles of the first type. Assuming that (3.8) is satisfied for
sV = M2

V > 0, then for p2 → M2
V

∆µν(p) =
ZV

p2 −M2
V

(
−gµν +

pµpν
M2

)
+O(1)

=
ZV

p2 −M2
V

∑

λ

ε(λ)
µ (p)ε(λ)∗

ν (p) +O(1) (1.20)

where

ZV =
1

1− Σ′T (M2
V )

(1.21)

and where ε
(λ)
µ (p) are the usual spin-one polarization vectors. Under the condition

ZV > 0 the poles of this type correspond to spin-one one particle states |p, λ, V 〉
which couple to the Proca field as

〈0|Vµ(0)|p, λ, V 〉 = ZV
1/2ε(λ)

µ (p). (1.22)

At least one of these states is expected to be perturbative in the sense that its
mass and coupling to Vµ can be written as

M2
V = M2 + δM2

V (1.23)

ZV = 1 + δZV , (1.24)

where δM2
V and δZV are small corrections vanishing in the free field limit. This

solution corresponds to the original degree of freedom described by the free part
of the Lagrangian L0. The additional one particle states corresponding to the
other possible (non-perturbative) solutions of (3.8) decouple in the free field limit.

The second type of poles is given by (intrinsically nonperturbative) solutions
of (3.9). Suppose that this condition is satisfied by sS = M2

S > 0. For p2 → M2
S

∆µν(p) =
ZS

p2 −M2
S

pµpν
M2

S

+O(1) (1.25)

where

ZS =
1

Σ′L(M2
S)
. (1.26)

Assuming ZS > 0 this pole corresponds to the spin-zero one particle state |p, S〉
which couples to Vµ as

〈0|Vµ(0)|p, S〉 = ipµ
ZS

1/2

MS

. (1.27)

For the free field this scalar mode is frozen and does not propagate according
to the special form of the vector field Lagrangian. Therefore, in the limit of
vanishing interaction the extra scalar state decouples. Without any additional
assumptions on the symmetries of the interaction Lagrangian we can therefore
expect the appearance of additional dynamically generated degrees of freedom.

10



1.3.2 Organization of counterterms

In the process of the loop calculation we are lead to the problem of performing a
classification of the countertems, which have to be introduced in order to renor-
malize infinities. For this purpose, it is convenient to have a scheme, which allows
us to assign to each operator in the Lagrangian and to each Feynman graph an
appropriate expansion index. Indices of the counterterms, which are necessary
in order to cancel the divergences of the given Feynman graph, should be then
correlated with the indices of the vertices of the graph as well as with the number
of the loops. When we restrict ourselves to the (one-particle irreducible) graphs
with a given index, the number of the allowed operators contributing to the graph
as well as that of necessary counterterms should be finite. There are several pos-
sibilities how to do it, some of them being quite efficient but purely formal and
unphysical, some of them having good physical meaning, but not very useful in
practise.

The problem is obvious: we are trying to build the effective theory in the
intermediate energy region which is hard because we do not have useful expansion
parameters. Therefore, in the standard cases one uses either small momentum or
large NC expansion which always leads to problems. Our approach combines the
advantages of both approaches and it classifies all graphs based on the combined
expansion. Let us start with the familiar formula for the degree of superficial
divergence dΓ of a given one particle irreducible graph Γ, which provides us with
the upper bound on the number of derivatives dOct in a counterterm Oct needed
for the renormalization of Γ. Because in the vector field formalism the spin 1
resonance propagator behaves as O(1) for p→∞, we get

dOct ≤ dΓ = 4L− 2IGB +
∑

O
dO (1.28)

where dO means the number of derivatives of the vertex V derived from the
operator O. We can derive the analog of the Weinberg formula, now in the form
of an upper bound

iOct ≤ iΓ = 2L+
∑

O
iO. (1.29)

The counting rules can be summarized as follows

Rµν , Vµ = O(p), M = O(1) (1.30)

and for the external sources as usual

vµ, aµ = O(p), χ, χ+ = O(p2). (1.31)

Note also that, the index iO can be rewritten as

iO = DO − 2

(
1− nOR

2

)
(1.32)

and in the last bracket we recognize the exponent controlling the leading large NC

behavior of the coupling constant in front of the operatorO. Remember, however,
that the loop induced counterterms have an additional 1/NC suppression for each
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loop (cf. (3.121)). Therefore it is natural to modify the index iO and iΓ as follows
(the coefficient 1/2 is a matter of convenience, see bellow)

îO =
1

2
DO −

(
1− nOR

2
− sO

)
îΓ = 2L+

∑

O
îO

With such a modified indices îO, îΓ the formula (3.126) has the form

îOct ≤ îΓ = 2L+
∑

O
îO (1.33)

The content of this redefinition of iO is evident: the operators are now classified
according to the combined derivative and large NC expansion according to the
counting rules (for pure χPT introduced in [82], [83])

p = O(δ1/2), v, a = O(δ1/2), χ, χ+ = O(δ),
1

NC

= O(δ) (1.34)

In what follows we shall use for the classification of the counterterms and for
the organization of our calculation the index iO given by (3.125) and (3.126).
Note however, that these formulae similarly to the previous cases, do not have
much of physical content and serve only as a formal tool for the proof of the
renormalizability and for the ordering of the counterterms. Namely, the index iΓ
which is by construction related to the superficial degree of the divergence (and
which applies to one-particle irreducible graphs only) does not reflect the infrared
behavior of the (one-particle irreducible) graph Γ, rather it refers to its ultraviolet
properties.

1.3.3 The self-energy at one loop

Our starting point is the following Lagrangian for 1−− resonances [85] (see also
[86])

LV = −1

4
〈V̂µνV̂ µν〉+

1

2
M2〈VµV µ〉

− i

2
√

2
gV 〈V̂ µν [uµ, uν ]〉+

1

2
σV εαβµν〈{V α, V̂ µν}uβ〉+ . . . (1.35)

where we have written down explicitly only the terms contributing to the self-
energy. In order to cancel the infinite part of the loops we have therefore to
introduce a set of counterterms with two resonance fields and indices1 iO ≤ 6,
namely

LctV =
1

2
M2ZM〈VµV µ〉+ZV

4
〈V̂µνV̂ µν〉 − YV

2
〈(DµV

µ)2〉

+
XV 1

4
〈{Dα, Dβ}Vµ{Dα, Dβ}V µ〉+

XV 2

4
〈{Dα, Dβ}Vµ{Dα, Dµ}V β〉

+
XV 3

4
〈{Dα, Dβ}V β{Dα, Dµ}Vµ〉+

XV 4

2
〈D2Vµ{Dµ, Dβ}Vβ〉+XV 5〈D2VµD

2V µ〉

+Lct(6)
V . (1.36)

1Note that, for these counterterms the index iO coincides with the usual chiral order DO.
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Here the last term accumulates the operators with six derivatives (iO = 6),
which we do not write down explicitly. The bare couplings are split into a finite
part renormalized at a scale µ and a divergent part. The result for self-energies
can be written in the form (in the following formulae x = s/M2)

Σr
T (s) = M2

(
M

4πF

)2
[

3∑

i=0

αix
i − 1

2
g2
V

(
M

F

)2

x3B̂(x)− 40

9
σ2
V (x− 1)2xĴ(x)

]

Σr
L(s) = M2

(
M

4πF

)2 3∑

i=0

βix
i

In the above formulae αi and βi can be expressed in terms of the renormalization
scale independent combinations of the counterterm couplings and χlogs.

It is easy to show that these results lead to the generation of new poles in
the propagators that for some reasonable values of coupling constants are inside
the region of applicability of this theory. The detailed discussion together with
numerical analysis is provided in chapter 3 of the thesis. As a result, the concept
of renormalization for the effective theory for resonances must be studied in more
details taking into account this phenomenon.

1.4 Amplitudes in the Non-linear sigma model

The focus of this chapter is on scattering amplitudes of Goldstone bosons within
the SU(N) nonlinear sigma model described by the leading order Lagrangian. In
principle, the standard Feynman diagram approach allows us to calculate arbi-
trary amplitude. Because the model is effective, and the Lagrangian contains an
infinite tower of terms the calculation becomes very complicated for amplitudes of
many external Goldstone bosons even at tree-level. It would be therefore desirable
to find alternative non-diagrammatic methods which could save the computation-
al effort and provide us with a tool to get the amplitudes more efficiently.

We find the new recursion relations for all on-shell tree-level amplitudes of
Goldstone bosons within SU(N) nonlinear sigma model. This shows that on-
shell methods can be applied also for effective field theories and it gives new
computational tool in this model. Using these recursion relations we are also
able to prove more properties of tree-level amplitudes that are invisible in the
Feynman diagram approach.

1.4.1 Color stripped amplitudes

The most general chiral invariant leading order effective Lagrangian in general
number d of space-time dimensions describing the dynamics of the Goldstone
bosons corresponding to the spontaneous symmetry breaking GL ×GR → GV as

L(2) =
F 2

4
〈∂µU∂µU−1〉 = −F

2

4
〈(U−1∂µU)(U−1∂µU)〉, (1.37)

where F is a constant2 with the canonical dimension d/2− 1. Here and in what
follows we use the notation 〈·〉 = Tr(·) and the trace is taken in the defining

2The decay constant of the Goldstone bosons.

13



representation of G. The overall normalization factor is dictated by the form of
the parametrization of the matrix U in terms of the Goldstone boson fields φa

which we write for the purposes of this subsection3 as

U = exp

(√
2

i

F
φ

)
(1.38)

where φ = φata and ta, a = 1, . . . , dimG are generators of G satisfying

〈tatb〉 = δab (1.39)

[ta, tb] = i
√

2fabctc. (1.40)

Here fabc are totally antisymmetric structure constants of the group G. According
to (4.2), the fields φa transform linearly under the little group GV as the vector
in the adjoint representation of G while the general chiral transformations of φa

are nonlinear.
The Lagrangian L(2) can be rewritten in terms of the Goldstone boson fields

as follows. We have

U−1∂µU = −exp
(
−
√

2 i
F

Ad(φ)
)
− 1

Ad(φ)
∂µφ = − 1√

2
t · exp

(
−2i
F
Dφ

)
− 1

Dφ

· ∂φ (1.41)

where
Ad(φ)∂µφ = [φ, ∂µφ] =

√
2taDab

φ ∂µφ
b ≡
√

2t ·Dφ · ∂φ, (1.42)

the matrix Dab
φ is given as

Dab
φ = −if cabφc (1.43)

and the dot means contraction of the indices in the adjoint representation. In-
serting this in (4.3) we get finally

L(2) =
F 2

4
∂φT · 1− cos

(
2
F
Dφ

)

D2
φ

· ∂φ = −∂φT ·
( ∞∑

n=1

(−1)n

(2n)!

(
2

F

)2n−2

D2n−2
φ

)
· ∂φ.

(1.44)
Note that, the only group factors which enter the interaction vertices are the

structure constants fabc. In any tree Feynman diagram each fabc is contracted
either with another structure constant within the same vertex or via propagator
factor δab with some structure constant entering next vertex. Therefore, using
the standard argumentation for a general tree graph [105], i.e. expressing any
fabc as a trace fabc = −〈i[ta, tb]tc〉/

√
2 and then successively using the relations

like f cdetc = −i[td, te]/
√

2 in order to replace the contracted structure constants
with the commutators of the generators inside the single trace, we can prove that
any tree level on-shell amplitude has a simple group structure, namely

Ma1a2...an(p1, p2, . . . , pn) =
∑

σ∈Sn/Zn

〈taσ(1)taσ(2) . . . taσ(n)〉Mσ(p1, . . . , pn). (1.45)

Here all the momenta treated as incoming and the sum is taken over the permu-
tation of the n indices 1, 2, . . . , n modulo cyclic permutations.

3In what follows we will use also more general parametrization of U .
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1.4.2 Semi-on-shell amplitudes and Berends-Giele rela-
tions

The semi-on-shell amplitudes Ja1a2...an
n (p1, p2, . . . , pn) (or currents in the termi-

nology of the original paper [131], where they were introduced for QCD and more
generally for the SU(N) Yang-Mills theory) can be defined in our case as the
matrix elements of the Goldstone boson field φa(0) between vacuum and the n
Goldstone boson states |πa1(p1) . . . πan(pn)〉

Ja,a1a2...an
n (p1, p2, . . . , pn) = 〈0|φa(0)|πa1(p1) . . . πan(pn)〉. (1.46)

Here the momentum pn+1 attached to φa(0)

pn+1 = −
n∑

j=1

pj. (1.47)

is off-shell. Note that Ja,a1a2...an
n (p1, p2, . . . , pn) has a pole for p2

n+1 = 0.
In complete analogy with the on-shell amplitudes, at the tree level the right

hand side of (4.52) can be expressed in terms of the flavor-stripped semi-on-shell
amplitudes Jn(p1, p2, . . . , pn) in the form

〈0|φa(0)|πa1(p1) . . . πan(pn)〉|tree =
∑

σ∈Sn
Tr(tataσ(1) . . . taσ(n))Jn(pσ(1), pσ(2), . . . , pσ(n)).

(1.48)
Let us note that, at higher orders in the loop expansion the group structure
contains also multiple trace terms. We normalize the one particle states according
to

J1(p) = 1. (1.49)

In this section the above semi-on-shell flavor-stripped amplitudes Jn(p1, p2, . . . , pn)
will be the main subject of our interest. The on-shell stripped amplitudes
M(p1, p2, . . . , pn+1) can be extracted from them by means of the Lehmann-Symanzik-
Zimmermann (LSZ) formulas

M(p1, p2, . . . , pn+1) = − lim
p2
n+1→0

p2
n+1Jn(p1, p2, . . . , pn). (1.50)

The main advantage of the semi-on-shell amplitudes Jn(p1, p2, . . . , pn) (in what
follows we also use short-hand notation J(1, 2, . . . , n)) is that they allow to aban-
don the Feynman diagram approach using appropriate recursive relation. The
latter has been first formulated by Berends and Giele in the context of QCD [131]
and proved to be very efficient for the calculation of the tree-level multi-gluon am-
plitudes. For the U(N) nonlinear sigma model the generalized recurrent relations
of Berends-Giele type can be written in the form (see Fig.4.3)

J(1, 2, . . . , n) =
i

p2
1,n

n∑

m=2

∑

{jk}
iVm+1(p1,j1 , pj1+1,j2 , . . . pjm−1+1,n,−p1,n)

m∏

k=1

J(jk−1+1, . . . , jk)

(1.51)
where the sum is over all splittings of the ordered set {1, 2, . . . , n} into m non-
empty ordered subsets {jk−1 + 1, jk−1 + 2, . . . , jk}, (here j0 = 0 and jm = n),
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Figure 1.2: Graphical representation of the Berends-Giele recursive relations

Vm+1 is the flavor-stripped Feynman rule for vertices with m + 1 external legs
and pi,k =

∑k
j=i pj as above.

Using Cayley parametrization we show in the thesis that semi-on-shell currents
have interesting behavior under the scaling of external momenta, t→ 0

J2n+1(tp1, p2, tp3, p4, . . . , p2r, tp2r+1, p2r+2, . . . , p2n, tp2n+1) = O(t2) (1.52)

and

lim
t→0

J2n+1(p1, tp2, p3, tp4, . . . , tp2r, p2r+1, tp2r+2, . . . , tp2n, p2n+1) =
1

(2F 2)n
. (1.53)

This will allow us to construct recursion relations for the on-shell amplitudes.

1.4.3 BCFW-like recursion relations

The standard BCFW-like deformation [111,112] of the external momenta pi yields
deformed amplitudes which behave as a non-negative power of z for z →∞. As a
result, for the reconstruction of the amplitude from its pole structure we need to
use the general reconstruction formula (4.49) for which additional information on
the on-shell amplitude (its values at several points) is necessary. However, such
an information is not at our disposal. We solve this problems by the following
trick: we relax some demands placed on the usual BCFW-like deformation and
allow more general ones for which either the reconstruction formula without sub-
tractions can be applied or additional information on the deformed amplitudes is
accessible. The momentum conservation cannot be evidently avoided, what re-
mains is the on-shell condition of all the external momenta. It seems therefore to
be natural to relax this constraint and instead of the on-shell amplitudesM2n+2

to use the semi-on-shell amplitudes J2n+1, or the cut semi-on-shell amplitudes
M2n+1 defined as

M2n+1 (p1, . . . , p2n+1) = p2
1,2n+1J2n+1 (p1, . . . , p2n+1) . (1.54)

Motivated by the results of the previous section let us assume the following
deformation of the semi-on-shell amplitude M2n+1 in the Cayley parametrization

M2n+1(z) ≡M2n+1(p1, zp2, p3, zp4, . . . , zp2r, p2r+1, zp2r+2, . . . , zp2n, p2n+1) (1.55)
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±
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Figure 1.3: Graphical representation of the right hand side of the relation (4.95).

i.e. all even momenta are scaled by the complex parameter z and the odd mo-
menta are not deformed

p2k(z) = zp2k, p2k+1(z) = p2k+1 (1.56)

Note that in contrast to the standard BCFW shift this deformation is possible for
general number of space-time dimensions d. The physical amplitude corresponds
to z = 1. For n = 1 we get explicitly

M3(z) =
1

F 2
(p1 · p3) (1.57)

For general n let us denote the sums of all odd (even) momenta as

p =
n∑

k=0

p2k+1, p+ =
n∑

k=1

p2k . (1.58)

Then in general case the function M2n+1(z) has the following important proper-
ties:

1. With generic fixed pi it is a meromorphic function of z with simple poles.

2. The asymptotics of M2n+1(z) can be deduced form the known properties
of J2n+1, namely for n > 1 we get as a consequence of (4.79)

M2n+1(z) = (p+z + p−)2J2n+1(p1, zp2, . . . , zp2n, p2n+1) = O(z0). (1.59)

3. For n ≥ 1 we have according to known scaling property (4.68) of J2n+1

lim
z→0

M2n+1(z) =
1

(2F 2)n
p2
− (1.60)

The first two properties allows us to write for M2n+1(z) the reconstruction
formula with one subtraction, i.e. the relation (4.49) with k = 0. The third
property is the key one for the complete reconstruction and determines both
the “subtraction point“ a1 = 0 and the “subtraction constant“ M2n+1(a1) =
p2
−/(2F

2)n.
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As a final result we get then using (4.95), (4.98), (4.91), (4.93) and (4.94)

M2n+1(p1, . . . , p2n+1) =
1

(2F 2)n
p2
− +

∑

P

M
(P )
L (zP )

RP

p2
P

M
(P )
R (zP ). (1.61)

Note that there is an extra function RP in contrast to the standard BCFW
formula (4.44), namely

RP =





z−2
P for zP = z2j,2j+2

z−1
P for zP = z2j−1,2j+1

1
z±i,j−z

∓
i,j

1−z∓i,j
z±i,j

for zP = z±i,j

(1.62)

The on-shell amplitude is then

M2n(1, 2, . . . , 2n− 1; 2n) = − lim
p2

1,2n−1→0
M2n−1(1). (1.63)
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2. High energy constraints in the
octet SS − PP correlator

2.1 Introduction

The effective field theory (EFT) approach is a very powerful tool for the investiga-
tion of Quantum Chromodynamics (QCD) at long distances. Chiral Perturbation
theory (χPT) [1–3] is the EFT for the description of the chiral (pseudo) Gold-
stones in the low energy domain p2 � Λ2

H ∼ 1 GeV2, with ΛH typically the scale
of the lowest resonance masses. The calculation of the QCD matrix elements is
then organized at long distances in growing powers of the external momenta and
light quark masses. Recent progress has allowed to carry χPT up to O(p6), i.e.,
up to the two-loop level [4–7].

In the intermediate resonance region, ΛH
<∼ E <∼ 2 GeV, χPT stops being

valid and one must explicitly include the resonance fields in the Lagrangian de-
scription. Unfortunately, this is not a straightforward process because there is
no natural expansion parameter in this region as several relevant mass scales ap-
pear in this range (resonance masses, momenta, widths, the characteristic χPT
loop scale Λχ ∼ 4πF ...). Resonance Chiral Theory (RχT) describes the in-
teraction of resonance and pseudo-Goldstones within a general chiral invariant
framework [8, 9]. Alternatively to the chiral counting, it uses the 1/NC expan-
sion of QCD in the limit of large number of colours [10] as a guideline to orga-
nize the perturbative expansion. At leading order (LO), just tree-level diagrams
contribute while loop diagrams yield higher order effects. Integrating out the
heavy resonance states leaves at low energies the corresponding chiral invari-
ant effective theory, χPT. Many works have investigated various aspects of RχT:
equivalence of formalisms [9,11–13]; Green functions [14–20]; applications to phe-
nomenology [14, 21–27]; determination of chiral low-energy constants (LECs) at
NLO in 1/NC [21, 29–32]; determination of the one-loop ultraviolet divergence
structures in the generating functional [33]; implications about the renormaliz-
ability [34, 35]; possible issues with extra degrees of freedom in the renormalized
propagator [36,37]; renormalization group studies [38].

The infinite tower of mesons contained in large–NC QCD is often truncated
to the lowest states in each channel, usually named as single resonance approxi-
mation (SRA). This approximation has led to successful predictions of O(p4) and
O(p6) low-energy constants (LECs) [8,9,21,28,39]. However, the study of Regge
models with an infinite number of mesons has shown that if one keeps just the
lightest states with exactly the same couplings and masses of the full model then
one finds problems in the short-distance matching and wrong values are obtained
for the LECs [40]. Thus, in a high-energy matching with the operator product
expansion (OPE) [41] the parameters of the truncated theory will be shifted in
order to accommodate the right short-distance dependence. Chiral symmetry en-
sures the proper low-momentum structure of the RχT amplitudes around p2 = 0
but their high energy behaviour is not fixed by symmetry alone. In that sense,
the matched amplitude can be understood with the help of Padé approximants as
an rational interpolator between the deep Euclidean p2 = −∞ and p2 = 0 [43,44].
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The Weinberg sum-rules (WSR) [42] yield the most convenient parameters for the
interpolation rather than the accurate determinations of the resonance couplings.
Furthermore, the RχT couplings for the lightest mesons are expected to be in
better agreement, whereas the parameters from the highest excitations may lie
far from their right values [43].

The connection of the RχT amplitudes with the operator product expan-
sion (OPE) at high energies seems a priori a useful procedure to include extra
information from QCD in the resonance theory. It allows to fix combinations of
couplings (e.g., through WSR), decreasing the number of unknown parameters
in the analysis. However, large–NC QCD has an infinite number of hadrons and
in order to reproduce the full large–NC theory one must consider the tree-level
exchanges of heavier and heavier resonances. In the hadronical ansatz approach,
one adds more and more poles to the rational approximant [43,44]. Equivalently,
this can be realized within the quantum field theory framework as a generating
functional with a lagrangian including interaction operators J − Rj that couple
the external current source J and heavier and heavier resonances Rj (e.g. of the
form cm,j〈Sjχ+ 〉 for the SS correlator).

The extension of RχT beyond the tree level approximation still needs to be
worked out in detail. Although some theoretical issues on the renormalizability
of RχT still need further clarification [34, 35, 45], several chiral LECs have been
already computed up to NLO in 1/NC through quantum field theory (QFT) one-
loop calculations [29, 30] and dispersion relations [31, 32]. In this article we will
focus our attention on the chiral octet SS − PP correlator (for instance, with
I = 1), which in the chiral limit is determined at low energies by the O(p4) and
O(p6) LECs, respectively, by L8 [3] and C38 [4]. The correlator is computed up
to next-to-leading order in 1/NC (NLO) and the chiral limit will be assumed all
along the article.

At the one-loop level –NLO in 1/NC–, one needs also to devise a procedure
to reach the infinite resonance limit of large–NC QCD. In the case of two–point
Green-functions, the imaginary part of the one-loop diagrams is given through
the optical theorem by the square of two-meson form-factors computed at tree-
level. Thus, based on a dispersive approach, one may add the contribution to
the spectral function from higher and higher two-meson absorptive cuts by pro-
viding the corresponding form-factors [31,32]. This would be, in some sense, the
natural extension of the minimal hadronical ansatz [44] to the one-loop situa-
tion. In a previous computation of the octet SS − PP correlator up to NLO
in 1/NC , the intermediate two-meson channels were analyzed individually [31].
The corresponding tree-level form-factors were made to vanish appropriately at
high energies [32, 46]. This allowed to recover the correlator from its spectral
function through an unsubtracted dispersion relation. However, in general, it is
not always possible to fulfill the high-energy constraints for all the form-factors
at once 1. Only the two-meson absorptive cuts with at most one resonance (ππ
and Rπ) were considered in Ref. [31], as the RR′ channels have their thresh-

1In the case of the scalar and pseudo-scalar form-factors, it is still possible to impose the
right high-energy behaviour to all the form-factors if one considers operators with two and
three resonance fields LRR′ and LRR′R′′ [32, 46]. Nonetheless, there is no consistent set of
constraints for all the vector and axial-vector form-factors if only a finite number of resonances
is considered [32, 46]. A similar kind of inconsistences was found in the study of three–point
Green-functions at large NC [19].
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olds at (MR + MR′) ∼ 2 GeV and are suppressed at low energies. Likewise, the
short-distance constraints from V V −AA Weinberg sum-rules and the ππ vector
and the scalar form-factor were used there in order to fix some of the couplings
appearing in the analysis.

In the quantum field theory approach proposed in this work, one has a mesonic
lagrangian which at the classical level generates the large–NC amplitudes and
whose quadratic fluctuations around the classical field configuration provide the
one-loop corrections [33]. The complete QCD generating functional is approached
as one adds more and more hadronic operators to the action. Eventually, one
should add the infinite number of possible terms of the given 1/NC order under
consideration. For instance, the Sππ interaction (provided by cd〈Suµuµ 〉 [8]) is
of the same order as in 1/NC as the SPπ vertex (given by the λSP1 〈 {∇µS, P}uµ 〉
operator [15, 32, 46]). Notice that one never has a complete description with a
finite number of operators. The basic lagrangian LG + LR with at most one
resonance field in each term [8] provides an incomplete description of the Rπ
channels, as the possible diagrams with R′ resonances exchanged in the s–channel
are missing [31, 32]. This requires the incorporation of operators LRR′ with two
resonance fields [15, 32, 46]. In the same way, the RR′ absorptive cuts are now
badly described without the LRR′R′′ terms with three resonance fields.

The chiral structure of the lagrangian ensures the right structure at long
distances. On the other hand, we will impose that the correlator follows the
short-distance behaviour prescribed by the OPE. The one-loop RχT amplitude
will be used as an improved interpolator between low and high energies. The
resonance couplings become then interpolating parameters that must approach
their actual values in the full QCD as more and more operators are added to the
RχT action. On the contrary to what was done in former works [31,32], the short-
distance matching will be carried out in the present article for the total correlator
and spectral function [47], rather than for individual channels. Likewise, we will
not use the short-distance constraints from other amplitudes to fix the couplings
in the one-loop correlator. We will work within the SRA, including just the chiral
Goldstones and the lightest multiplets of scalar, pseudo-scalar, vector and axial-
vector resonances. In a first step, the SS − PP correlator will be computed at
NLO in 1/NC with the simplest RχT lagrangian, with operators with at most
one resonance field (GV , cm, dm...) [8]. This provides the proper structure for the
intermediate tree-level exchanges (π, S, P one-particle channels) and the two-
Goldstone cut ππ. However, this simple lagrangian fails to describe the Rπ
and RR′ channels as the lagrangian [8] makes their form-factors behave like a
constant or like a growing power of the momentum at high energies [30–32, 46,
48]. This will be partly cured by the consideration of λRR

′
operators with two

resonance fields [15, 32, 46, 48], which now allow an appropriate description of
the Rπ channels, though the RR′ ones still behave badly. Although these cuts
with two resonances were neglected in the dispersive approach [31], removing
part of the one-loop diagrams is not theoretically well defined and may lead to
inconsistences in the renormalization of the QFT. Furthermore, it is not trivial
that the effect of the RR′ cuts in the short-distance matching is fully negligible.
Hence, all the possible diagrams contributing to the correlator up to NLO will be
kept in our study.

The amplitude is first computed within the usual subtraction scheme of χPT [2]
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(denoted for simplicity as M̃S all along the article). However, though equivalent
at low energies, some appropriate schemes will be found more convenient: pole
masses and other schemes that minimize the uncertainties derived from the short-
distance constraints. This will help us to determine the O(p4) and O(p6) LECs,
respectively L8(µ) and C38(µ). The high-energy constraints and their meaning
will be discussed and the convergence to full large–NC QCD will be tested as more
and more hadronic operators are added to the RχT action. This work is thought
as a complementary and an alternative approach to the dispersive analysis in
Ref. [31].

The article is organized as follows. Resonance chiral theory is introduced in
detail in Sec. 2.2. The octet SS − PP correlator is defined in Sec. 2.3 and its
one-loop RχT computation is provided in Sec. 2.4. The high-energy constraints
and low energy expansions are respectively given in Secs. 2.5 and 2.6. The con-
tributions from operators LRR′ with two resonance fields have been singled out in
Sec. 2.7 to ease the main argumentation of the article. Finally, the phenomeno-
logical analysis is given in Sec. 2.8 and the conclusions are provided in Sec. 2.9.
Some technical results are relegated to the Appendices.

2.2 Resonance chiral theory lagrangian

Within the large–NC approach the mesons will be classified within U(3) multi-
plets. The chiral Goldstone bosons are introduced by means of the basic building
block,

u(φ) = exp

(
i
φ√
2F

)
(2.1)

where φ = 1√
2
λaφa and

φ(x) =




1√
2
π0 + 1√

6
η8 + 1√

3
η1 π+ K+

π− − 1√
2
π0 + 1√

6
η8 + 1√

3
η1 K0

K− K
0 − 2√

6
η8 + 1√

3
η1


 .

(2.2)
This forms the basic covariant tensors,

uµ = i {u†(∂µ − irµ)u − u (∂µ − i`µ)u†} ,
χ± = u† χu† ± uχ† u , (2.3)

fµν± = uF µν
L u† ± u† F µν

R u ,

with χ = 2B0(s+ ip) containing the scalar and pseudo-scalar external sources, s
and p respectively, the right and left sources rµ and `µ providing the vector and
axial-vector external sources, vµ = 1

2
(rµ + `µ) and aµ = 1

2
(rµ − `µ) respectively,

and F µν
L,R the corresponding left and right field-strength tensors.

The Goldstone bosons are parametrized by the elements u(φ) of the coset
space U(3)L × U(3)R/U(3)V , transforming as

u(φ) 7→ VRu(φ)h(g, φ)−1 = h(g, φ)u(φ)VR (2.4)

under a general chiral rotation g = (VL, VR) ⊂ G in terms of the U(3)V com-
pensator field h(g, φ). This makes the tensors X = uµ, χ±, f

µν
± to transform
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covariantly in the form,

X 7→ h(g, φ)X h(g, φ)−1 . (2.5)

2.2.1 Leading order lagrangian

For the classification of the vertices entering in the tree-level and one-loop ampli-
tudes it will be useful to organize the operators of the RχT lagrangian according
to the number of resonance fields:

L = LG + LR + LRR′ + ... (2.6)

where LG only contains Goldstone bosons and external sources, LR also includes
one resonance, etc. Although in principle one should consider all the terms com-
patible with symmetry, most of the large–NC phenomenological calculations con-
sider operators with the minimal number of derivatives [39]. This is usually
justified through the argument that higher derivative operators tend to violate
the asymptotic high energy QCD behaviour [9,39]. Likewise, its has been proven
in several cases that higher derivative resonance operators can be removed from
the hadronic action through meson field redefinitions in the generating function-
al [30,33–35,46,48]. In the present article, the leading lagrangian will only contain
operators at most O(p2), with the external sources counted as vµ, aµ ∼ O(p) and
χ ∼ O(p2) [46, 47].

The Lagrangian with only Goldstones has the same form as in χPT but the
coupling constants are different. In χPT we have the leading order Lagrangian

L(2)
χPT =

F 2

4
〈uµuµ + χ+〉 . (2.7)

In RχT beyond leading order the constants standing in front of the operators
〈uµuµ 〉 and 〈χ+ 〉 may not be the same as in χPT. Therefore, generally we can
write

LG =
F̃ 2

4
〈uµuµ〉+

F̂ 2

4
〈χ+〉 (2.8)

where we explicitly distinguish between F̃ and F̂ . These can be split in the way,

F̃ = F + δF̃ , F̂ = F + δF̂ (2.9)

where at large NC one has the matching condition F̃ = F̂ = F and, hence, δF̃
and δF̂ are NLO in 1/NC . On the contrary to what happens in χPT, where the
parameters (F and B0) which characterize the terms 〈uµuµ 〉 and 〈χ+ 〉 do not
become renormalized, in RχT the couplings of these two operators are needed
to make the physical amplitude finite. For simplicity, we choose to keep the
definitions of the chiral tensors unchanged and to renormalize instead F̃ and F̂ ,
as it was done in Refs. [33,46] with the notation α1 = F̃ 2/4 and α2 = F̂ 2/4.

The Goldstone bosons couple to massive U(3) multiplets of the type V (1−−),
A(1++), S(0++) and P (0−+). The vector multiplet, for instance, is given by

Vµν =




1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω1 ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

6
ω8 + 1√

3
ω1 K∗ 0

K∗− K
∗ 0 − 2√

6
ω8 + 1√

3
ω1



µν

,

(2.10)
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where we use the antisymmetric tensor formalism for spin–1 fields to describe the
vector and axial-vector resonances [8, 9, 13].

The resonance fields R are chosen to transform covariantly under the chiral
group as in Eq. (2.5) [8]. The free-field kinetic term is given by the operators

LKin
RR = −1

2
〈∇µRµν∇αR

αν〉+
1

4
M2

R〈RµνR
µν〉+

1

2
〈∇αR′∇αR

′〉 − 1

2
M2

R′〈R′R′〉 .
(2.11)

where R = V,A are vector and axial vector resonances and R′ = S, P are scalar
and pseudoscalar resonances.

The interaction terms which are linear in the resonance fields can be obtained
from the seminal work [8]:

LR = cd〈Suµuµ〉+ cm〈Sχ+〉+ idm〈Pχ−〉 (2.12)

+
FV

2
√

2
〈Vµνfµν+ 〉+

iGV

2
√

2
〈Vµν [uµ, uν ]〉+

FA

2
√

2
〈Aµνfµν− 〉.

For our analysis of the SS − PP correlator, the relevant bilinear terms will
be [15, 46,48]

LRR′ = iλPV1 〈 [∇µP, Vµν ]u
ν 〉 + λSA1 〈 {∇µS,Aµν}uν 〉 + λSP1 〈 {∇µS, P}uµ 〉 .

(2.13)
Only single flavor–trace operators are considered for the construction of the

large–NC lagrangian. At tree-level, the octet SS − PP correlator only gets con-
tributions from this kind of terms, even at subleading orders in 1/NC . Operators
with two or more traces might appear in the vertices of one loop diagrams but,
since these multi-trace terms are 1/NC–suppressed, these contributions would go
to next-to-next-to-leading order and they will be neglected in the present work.

The previous operators provide an appropriate description of the form factors
with two Goldstones or one resonance and one Goldstone in the final state. We
will perform our most elaborate analysis with the lagrangian LG + LR + LRR′ ,
with at most two resonance fields. As we will see in next sections, the RχT de-
scription will progressively approach the actual QCD amplitude as more and more
complicated operators are added. However, although we expect the contributions
from the operators with three resonance fields to the LECs to be negligible at our
level of accuracy, a further refinement is eventually possible by considering these
operators LRR′R′′ .

2.2.2 Subleading Lagrangian

At the loop level, one needs to introduce new subleading operators in order to
cancel the ultraviolet divergences, to renormalize RχT and to make the ampli-
tudes finite. As the leading order lagrangian operators are O(p2), the naive
dimensional analysis tells us that at one loop one expects to find O(p4) ultravi-
olet divergences, requiring the introduction of NLO counter-terms with a higher
number of derivatives.

The new operators with just Goldstone bosons required at NLO are, for the
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SS − PP correlator under consideration,

LNLOGB =
L̃8

2
〈χ2
− + χ2

+〉+ iL̃11〈χ−(∇µu
µ − i

2
χ−)〉 (2.14)

−L̃12〈(∇µu
µ − i

2
χ−)2〉+

H̃2

4
〈χ2

+ − χ2
−〉 .

Though we use the same structure of terms as in χPT, the RχT couplings L̃i
are not the same as the chiral LECs Li. The L̃i will contribute at low energies
to O(p4) chiral couplings Li. The latter are dominantly saturated by resonances

exchanges, so L̃i are considered to be suppressed and subleading in the 1/NC

expansion.
In order to make the resonance propagator finite, one needs to renormalize the

mass and wave functions (M
(B) 2
R = M r 2

R + δM2
R, R(B) = Z

1
2
RR

r) and to introduce
at NLO in 1/NC the kinetic operator

LNLOKin =
XR

2
〈R∇4R〉 , (2.15)

with R = S, P . No terms with vector or axial-vectors are needed for the present
NLO analysis of the SS − PP correlator.

Likewise, the renormalization of the vertex functions s(x)→ S and p(x)→ P
at NLO in 1/NC will require of the linear terms,

LNLOR = λS18〈S∇2χ+〉 + iλP13〈P∇2χ−〉 . (2.16)

At NLO in 1/NC , all these subleading counter-terms can only contribute
through tree-level diagrams.

2.2.3 Equations of motion and redundant operators

The equations of motion (EOM) of the leading lagrangian are given by [33,46],

∇µuµ =
i

2
χ− +

icm

F 2 {χ−, S} −
dm

F 2{χ+, P} + ... (2.17)

∇2S = −M2
SS + cduµu

µ + cmχ+ + ... (2.18)

∇2P = −M2
PP + idmχ− + ... (2.19)

where the dots stand for terms with vector or axial-vector resonances or sources,
two-meson fields or with one scalar-pseudoscalar external source and one meson
field.

Since most of the subleading resonance operators are proportional to the
EOM, it is possible to simplify our new NLO resonance operators by means
of appropriate meson field redefinitions,:

LNLOKin −→ LNLO, effKin = −λS18M
2
S〈SS〉+ cmλ

S
18〈χ2

+〉 − iλP13M
2
P 〈PP 〉 − dmλP13〈χ2

−〉+ . . .

LNLOR −→ LNLO, effR =
XSM

4
S

2
〈SS〉+

c2
mXS

2
〈χ2

+〉 − cmXSM
2
S〈Sχ+〉

+
XPM

4
P

2
〈PP 〉 − d2

mXP

2
〈χ2
−〉 − idmXPM

2
P 〈Pχ−〉+ . . . (2.20)
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where the dots stand for operators that do not contribute to the SS − PP cor-
relator at NLO. After the field redefinition the resonance operators LNLOKin and
LNLOR disappear and the surviving terms in the RχT lagrangian carry in front
the effective combinations,

L̃eff8 = L̃8 +
1

2
c2
mXS −

1

2
d2
mXP + cmλ

S
18 − dmλP13,

H̃eff
2 = H̃2 + c2

mXS + d2
mXP + 2cmλ

S
18 + 2dmλ

P
13,

(M2
S)eff = M2

S −XSM
4
S,

(M2
P )eff = M2

P −XPM
4
P ,

ceffm = cm − cmXSM
2
S −M2

Sλ
S
18,

deffm = dm − dmXPM
2
P −M2

Pλ
P
13. (2.21)

The L̃11 and L̃12 operators do not contribute to terms which can be relevant to
our amplitude up to NLO and we will see that they are not present in the final
result.

2.3 Chiral octet SS − PP correlator

In the case of SU(3)–octet quark bilinears, the two-point Green function SS−PP
is defined as

Πab
S−P (p) = i

∫
d4xeip·x〈0|T [Sa(x)Sb(0)− P a(x)P b(0)]|0〉 = δabΠ(p2) , (2.22)

with Sa = q̄ λa√
2
q and P a = iq̄ λa√

2
γ5q, being λa the Gellmann matrices (a = 1, . . . 8).

In the chiral limit, assumed all along the article, the low-energy expansion of
the octet correlators is determined by χPT in the form [5],

Π(p2)χPT = B2
0

{
2F 2

p2
+

[
32Lr8(µχ) +

Γ8

π2

(
1− ln

−p2

µ2
χ

)]
(2.23)

+
p2

F 2

[
32Cr

38(µχ)− Γ
(L)
38

π2

(
1− ln

−p2

µ2
χ

)
+O(N0

C)

]
+O(p4)

}

where in Γ8 = 5/48 [3/16] and ΓL38 = −5L5/6 [−3L5/2] in SU(3)–χPT [U(3)–
χPT]. Notice that in χPT the correlator is exactly independent of the renormal-
ization scale µχ, being its choice completely arbitrary.

In the resonance region, one obtains at leading order in 1/NC ,

Π(p2)LO =
2B2

0F
2

p2
+ 16B2

0

∑

i

(
c2
m,i

M2
S,i − p2

− d2
m,i

M2
P,i − p2

)
, (2.24)

where one sums over the different resonance multiplets. The subscript ,i in
MR,i, cm,i and dm,i refers to the coupling of the i–th resonance multiplet of
the corresponding kind. The requirement of the high energy OPE behaviour
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Π(p2)
p2→∞∼ 1/p6 produces the short-distance conditions 2 [39]

∑

i

(c2
m,i − d2

m,i) =
F 2

8
,

∑

i

c2
m,iM

2
S,i − d2

m,iM
2
P,i = 0 . (2.25)

In the single resonance approximation (SRA), it is then possible to express cm
and dm in terms of F and resonance masses,

c2
m =

F 2

8

M2
P

M2
P −M2

S

d2
m =

F 2

8

M2
S

M2
P −M2

S

. (2.26)

At low energies, we can match the large–NC expression (2.24) with the χPT ex-
pression (2.23), obtaining the LO prediction for the low energy coupling constants
L8 and C38,

L8 =
c2
m

2M2
S

− d2
m

2M2
P

=
F 2

16

(
1

M2
P

+
1

M2
S

)
, (2.27)

C38 =
c2
mF

2

2M4
S

− d2
mF

2

2M4
P

=
F 4

16M2
PM

2
S

(
1 +

M2
P

M2
S

+
M2

S

M2
P

)
(2.28)

For the inputs MS = MP/
√

2 ' 1 GeV, one obtains L8 ≈ 0.7 ·10−3, C38 ≈ 7 ·10−6

for MS = 1 GeV. However, one does not know to what renormalization scale µχ
these numerical predictions correspond. In order to pin down this µ–dependence,
one must carry the calculation up to the loop level.

2.4 One-loop computation in resonance chiral

theory

We follow the renormalization procedure presented in [30]. In general, we will use
dimensional regularization and the MS−1 subtraction scheme, usually employed
in χPT calculations [2, 3]. This means we will absorb in the coupling counter-
terms the ultraviolet divergent piece from the loops, counter-terms,

λ∞(µ) = µd−4

[
2

d− 4
+ γE − ln 4π − 1

]
. (2.29)

Still, the Goldstone propagator and the Goldstone decay amplitudes will be
renormalized in the on-shell scheme, as it is done in χPT, in order to ease the low-
energy matching of RχT and χPT at O(p2). Everything else will be renormalized
in this section in MS − 1. For simplicity, we will denote this set of schemes as
M̃S from now on. Afterwards, we will study alternative renormalization schemes
for the RχT couplings and their relation with the M̃S parameters.

In this section, together with the general structure of the amplitudes, we will
provide in this Section just the explicit results for the case when the lagrangian
contains the operators LG + LR with at most one resonance field, derived by
Ecker et al. [8]. The contributions from operators LRR′ with two resonance fields
are provided separately later in Sec. 2.7. For clarity, we provide the individual
contributions from each absorptive cut (e.g. ππ, V π...). The precise definitions
for the corresponding Feynman integrals are given in Appendix 2.10.3.

2The tiny dimension four condensate 1
B2

0
〈OSS−PP

(4) 〉 ' −12παSF
4 will be neglected in this

work [39,49].
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= +
p

V,S δ F, L12, δ ZΦ

Figure 2.1: Contributions to the Goldstone boson self-energy. The single line repre-
sents the Goldstone boson while the double line represents the resonance. The type of
resonance is written above it.

2.4.1 Goldstone boson renormalizations

Goldstone self-energy

The general form of the renormalized Goldstone propagator is given by

i∆−1
φ =

F̃ 2 Zφ
F 2

p2 − 4L̃12p
4

F 2
− Σφ(p2) , (2.30)

with Zφ the wave function renormalization of the bare Goldstone field, φ(B) =

Z
1
2
φ φ

r. In order to make the propagator finite, one needs to perform the shifts

Zφ = 1 + δZφ, F̃ = F + δF̃ , L̃12 = L̃r12 + δL̃12 , (2.31)

where δZφ and δF̃ are NLO in 1/NC . The NLO coupling L̃12 is split into a finite

renormalized part L̃r12 and an infinite counter-term δL̃12.
Considering the on-shell renormalization scheme for the Goldstone propaga-

tor, i.e. such that i∆−1
φ = p2 +O(p4), leads to the renormalization condition

2δF̃

F
+ δZφ − Σ

′

φ(0) = 0 , (2.32)

with Σ
′

φ(0) =
dΣφ

dp2

∣∣∣∣
p2=0

. The O(p4) ultraviolet divergence in Σφ is absorbed into

δL̃12 in the M̃S scheme. The renormalized Goldstone propagator is then provided
by

i∆−1
φ = p2 − 4L̃r12p

4

F 2 − Σr
φ(p2) , (2.33)

with its perturbative expansion,

∆r
φ =

i

p2
+

i

p4

[
4L̃r12p

4

F 2 + Σr
φ(p2)

]
+ ... (2.34)

where the dots stand for the next-to-next-to-leading order corrections
(NNLO) and Σr

φ(p2) = Σφ(p2)− p2Σ′φ(0)− Σφ(p2)|λ∞O(p4) behaving like O(p4)
when p2 → 0.

If one considers just the contributions LR from interactions linear in the res-
onance fields [8], the one loop Goldstone self-energy Σφ is given by the diagrams
shown in Fig. 2.1. A priori, tadpole diagrams might appear, either with a Gold-
stone or a resonance running within the loop. However, they happen to be zero
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+
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Figure 2.2: Contribution to the vertex pφ. The crossed circle stands for a pseudo-scalar
density insertion.

in the chiral limit. All this yields the renormalizations and the renormalized
self-energy,

2δF̃

F
+ δZφ +

1

8F 4π2

[
9G2

VM
2
V

2

(
λ∞ + ln

M2
V

µ2
+

1

6

)
− 3c2

dM
2
S

(
λ∞ + ln

M2
S

µ2
− 1

2

)]
= 0 ,

δL̃12 = −3(2c2
d +G2

V )

64π2F 2
λ∞ , (2.35)

Σr
φ(p2)|Sφ =

3c2
dp

4

8π2F 4

[
ln
M2

S

µ2
+ φ

(
p2

M2
S

)]
,

Σr
φ(p2)|V φ =

3G2
V p

4

16π2F 4

[
ln
M2

V

µ2
+ φ

(
p2

M2
V

)]
, (2.36)

with

φ(x) =

(
1− 1

x

)3

ln(1− x)− (x− 2)
(
x− 1

2

)

x2
. (2.37)

Vertex pφ

The vertex function has the form

Φpφ(p2) =
√

2
Z

1
2
φ F̂

2B0

F
− 4
√

2B0p
2

F
(L̃11 + L̃12) + Φpφ(p2)1` (2.38)

where Φpφ(p2)1` represents the one-particle-irreducible (1PI) contribution from
meson loops.

Notice that it is convenient to choose the renormalization scheme for δF̂ such
that the on-shell decay amplitude coincides with the pion decay constant, which
by construction we denote as F . Thus, for the renormalizations

F̂ = F + δF̂ , L̃11 = L̃r11(µ) + δL̃11(µ) , (2.39)

one has

2δF̂

F
+

1

2
δZφ +

1√
2B0F

Φpφ(0)1` = 0 , (2.40)

and the counter-term δL̃11(µ) is chosen to cancel the O(p2) divergent terms in

Φpφ(p2)1` in the M̃S–scheme. The renormalized vertex function is then equal to

Φpφ(p2) =
√

2B0F

{
1 − 4L̃r11p

2

F 2
− 4L̃r12p

2

F 2
+

1√
2B0F

Φr
pφ(p2)1`

}
, (2.41)
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Figure 2.3: Contribution to the vertex pφ. The crossed circle stands for a axial-vector
current insertion.

with Φr
pφ(p2)1` being O(p2) when p2 → 0.

In the case with only LR interactions, linear in the resonance fields [8], one
has the diagrams shown in Fig. 2.2. These lead to the renormalizations and
renormalized one-loop contributions,

2δF̂

F
+

1

2
δZφ = 0, (2.42)

δL̃11(µ) + δL̃12(µ) = − 3cdcm
16π2F 2

λ∞ , (2.43)

1√
2B0F

Φr
pφ(p2)1`|Sφ =

3cdcmp
2

4π2F 4

[
1− ln

M2
S

µ2
+ ψ

(
p2

M2
S

)]
, (2.44)

with

ψ(x) = −1

x
−
(

1− 1

x

)2

ln(1− x) . (2.45)

Vertex aφ

Although it is not required for the correlator calculation in this article, we will
compute the aφ vertex function for sake of completeness. From previous calcula-
tions we obtained two equations for three unknown objects δF̃ , δF̂ and δZφ. The
third equation can be found by analyzing the aµ → φ vertex, which, abusing of
the notation, has the form

Φaφ(p)µ = Φaφ · pµ (2.46)

where

Φaφ =
√

2
F̃ 2 Z

1
2
φ

F
− 4
√

2L̃12p
2

F
+ Φaφ(p2)1` . (2.47)

As it happened before with δF̂ , it is convenient to choose for δF̃ (as we
did here) the scheme that recovers the pion decay constant F when the decay
amplitude is set on-shell (p2 → 0):

2δF̃

F
+

1

2
δZφ +

1√
2F

Φaφ(0)1` = 0 . (2.48)

The coupling δL̃12(µ) is chosen to cancel theO(p2) UV divergent term in Φaφ(p2)1`

in the M̃S scheme.
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Figure 2.4: Contributions to the scalar resonance self-energy

When only LR interactions are taken into account [8], the diagrams shown in
Fig. 2.3 yield the renormalizations

2δF̃

F
+

1

2
δZφ+

1

8π2F 4

[
9G2

VM
2
V

2

(
λ∞ + ln

M2
V

µ2
+

1

6

)
− 3c2

dM
2
S

(
λ∞ + ln

M2
S

µ2
− 1

2

)]}
= 0

(2.49)

δL̃12(µ) = −3(2c2
d +G2

V )

64π2F 2
λ∞ . (2.50)

In this case, it is possible to see explicitly that the renormalization for L̃12 is in
an agreement with its former result from the Goldstone propagator.

Renormalization of F̂ , F̃ and δZφ

Comparing the three equations for δF̂ , δF̃ and δZφ, one is finally able to extract
each of them separately:

δZφ = 2Σ
′

φ(0)1` +

√
2

F
Φaφ(0)1` ,

δF̂

F
= −Σ

′

φ(0)1` − 1√
2B0F

Φpφ(0)1` − 1√
2F

Φaφ(0)1` ,

δF̃

F
= −1

2
Σ
′

φ(0)1` − 1√
2F

Φaφ(0)1` . (2.51)

Thus, in the case when only interactions LR, linear in the resonance fields, are
considered [8], one gets δZφ = 0, δF̂ = 0 and

δF̃ = − 1

16π2F 4

[
9G2

VM
2
V

2

(
λ∞ + ln

M2
V

µ2
+

1

6

)
− 3c2

dM
2
S

(
λ∞ + ln

M2
S

µ2
− 1

2

)]}
.

(2.52)

This confirms the results from Ref. [33], where F̃ was renormalized but F̂ was

not. On the other hand, the renormalizations of F̂ and F̃ were not considered in
Ref. [30] and, consequently, a nonzero δZφ was found.

2.4.2 Scalar resonance renormalization

Scalar resonance self-energy

The renormalized propagator has the form

i∆−1
S = ZS (p2 − M2

S) + XSp
4 − ΣS(p2) , (2.53)
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Figure 2.5: Contributions to the vertex sS. The crossed circle stands for a scalar
density insertion.

where we have performed the scalar resonance wave-function renormalization

S(B) = Z
1
2
S S

r. In order to cancel the λ∞ divergent terms of the one-loop self-
energy ΣS(p2), we make the shifts

M2
S = M r 2

S + δM2
S, ZS = 1 + δZS, XS = Xr

S(µ) + δXS(µ). (2.54)

The renormalized propagator is then given by,

i∆−1
S = p2 − M r 2

S + Xr
S(µ)p4 − Σr

S(p2) , (2.55)

with its perturbative expansion,

∆S =
i

p2 −M r 2
S

+
i

(p2 −M r 2
S )2

{
− Xr

S(µ)p4 + Σr
S(p2)

}
+ . . . (2.56)

In the case where only the LR interactions are considered, one obtains

δMS = 0, δZS = 0, δXS(µ) =
3c2
d

16π2F 4
λ∞ .

Σr
S(p2)|φφ = − 3c2

dp
4

16π2F 4

[
1− ln

(−p2

µ2

)]
. (2.57)

Vertex sS

The vertex function s(x)→ S has the form

ΦsS(p2) = − 4B0

{
Z

1
2
S cm − λS18p

2 − 1

4B0

ΦsS(p2)1`

}
. (2.58)

The renormalizations of the scalar wave-function ZS = 1 + δZS, the LO constant
cm = crm(µ) + δcm(µ) and the NLO coupling λS18 = λS18(µ) + δλS18(µ) make the
amplitude finite:

ΦsS(p2) = − 4B0

{
crm − λS18(µ)p2 − 1

4B0

Φr
sS(p2)1`

}
. (2.59)

In the case with only LR interactions [8], we had δZS = 0. The cancelation of

divergences in the M̃S scheme leads to the shift and the renormalized one-loop
contributions,

δcm = 0 , δλS18(µ) = − 3cd
64π2F 2

λ∞ (2.60)

− 1

4B0

Φr
sS(p2)1`|φφ =

3cdp
2

64π2F 2

(
1− ln

−p2

µ2

)
. (2.61)
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Figure 2.6: Contribution to the pseudoscalar resonance self-energy

=
p

pa Pb

δ dm, λP
13

Figure 2.7: Contribution to the renormalization of vertex pP

2.4.3 Pseudo-scalar resonance renormalization

Pseudoscalar resonance self-energy

The renormalized pseudoscalar propagator has the form

i∆−1
P = ZP (p2 − M2

P ) + XPp
4 − ΣP (p2) , (2.62)

with P (B) = Z
1
2
PP

r. The cancelation of the λ∞ UV divergent terms in the one-loop
self-energy ΣP (p2) needs the shifts

M2
P = M r 2

P + δM2
P , ZP = 1 + δZP , XP = Xr

P (µ) + δXP (µ), (2.63)

leading to the renormalized propagator,

i∆−1
P = p2 − M r 2

P + Xr
P (µ)p4 − Σr

P (p2) , (2.64)

and its perturbative expansion,

∆P =
i

p2 −M r 2
P

+
i

(p2 −M r 2
P )2

{
− Xr

P (µ)p4 + Σr
P (p2)

}
+ . . . (2.65)

In the case where only the LR interactions are considered [8], there is no
one-loop diagrams contributing and, therefore, δZP = δM2

P = δXP = 0.

Vertex pP

The vertex function p(x)→ P has the form

ΦpP (p2) = − 4B0

{
Z

1
2
P dm − λP13p

2 − 1

4B0

ΦpP (p2)1`

}
. (2.66)

The renormalizations of the scalar wave-function ZP = 1 + δZP , the LO constant
dm = drm(µ) + δdm(µ) and the NLO coupling λP13 = λP13(µ) + δλP13(µ) make the
amplitude finite:

ΦpP (p2) = − 4B0

{
drm − λP13(µ)p2 − 1

4B0

Φr
pP (p2)1`

}
. (2.67)

In the case with only LR interactions [8], δZP = 0 and there is no loop diagram
contributing to this vertex, so we have δdm = δλP13 = 0 and the renormalized
vertex function results

ΦpP (p2) = −4B0

{
drm − λP13(µ) p2

}
. (2.68)
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Figure 2.8: Contribution to the 1PI vertex ss

= +
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S
L8, L11, L12, H2

Figure 2.9: Contribution to the 1PI vertex pp

2.4.4 1PI contributions

1PI diagram ss

Now, we analyze 1PI diagrams that appear in the ss–correlator:

Π1PI
ss (p2) = 16B2

0L̃8 + 8B2
0H̃2 + Π1PI

ss (p2)1` . (2.69)

The shifts L̃8 = L̃r8(µ) + δL̃8(µ) and H̃2 = H̃r
2(µ) + δH̃2(µ) render the amplitude

finite by canceling the UV divergences in the M̃S–scheme, which becomes

Π1PI
ss (p2) = 16B2

0L̃
r
8(µ) + 8B2

0H̃
r
2(µ) + Π1PI, r

ss (p2)1` . (2.70)

In the case with only interactions LR linear in the resonance fields [8], the 1PI
diagrams contributing to the SS–correlator are shown in Fig. 2.8. Thus, one gets
for the shifts and the renormalized amplitude the expressions

2δL̃8(µ) + δH̃2(µ) =
3(F 2 + 16d2

m)

128π2F 2
λ∞ , (2.71)

Π1PI, r
ss (p2)1`|φφ = B2

0

3

16π2

[
1 − ln

−p2

µ2

]
,

Π1PI, r
ss (p2)1`|Pφ = B2

0

3d2
m

π2F 2

[
1 − ln

M2
P

µ2
−
(

1− M2
P

p2

)
ln

(
1− p2

M2
P

)]
.(2.72)

1PI diagram pp

Similarly, for pp–amplitude one has the structure,

Π1PI
pp (p2) = − 16B2

0L̃8 − 16B2
0L̃11 − 8B2

0L̃12 + 8B2
0H̃2 + Π1PI

pp (p2)1` . (2.73)

The UV divergences are absorbed through the renormalization of L̃8, L̃11, L̃12

and H̃12, rendering the amplitude finite:

Π1PI
pp (p2) = − 16B2

0L̃
r
8(µ)− 16B2

0L̃
r
11(µ)− 8B2

0L̃
r
12(µ) + 8B2

0H̃
r
2(µ) + Π1PI, r

pp (p2)1` .
(2.74)
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In the case where only the contributions from LR operators are considered [8],
the divergences are absorbed by the shift

2δL̃8(µ) + 2δL̃11(µ) + δL̃12(µ)− δH̃2 = − 3c2
m

8π2F 2
λ∞ , (2.75)

leaving the finite one-loop contribution,

Π1PI, r
pp (p2)1`|Sφ = B2

0

3c2
m

π2F 2

[
1 − ln

M2
S

µ2
−
(

1− p2

M2
S

)
ln

(
1 +

p2

M2
S

)]
.

(2.76)

2.4.5 Correlator at NLO

At NLO we can write the general 1PI decomposition of the SS − PP correlator
in terms of renormalized correlators and vertex functions,

Πss−pp(p
2) = i∆S(p2)

{
ΦsS(p2)

}2 − i∆P (p2)
{

ΦpP (p2)
}2 − i∆φ(p2)

{
Φpφ(p2)

}2

+ Π1PI
ss (p2)− Π1PI

pp (p2) , (2.77)

where we made use of the relation between the vertex functions for incoming and
outgoing mesons, ΦsS = ΦSs, ΦpP = ΦPp, Φpφ = Φφp.

If one now uses the previous perturbative calculation, the SS − PP octet
correlator takes up to NLO in 1/NC the form,

1

B2
0

Π(p2) =
1

M2
S − p2

(
16c2

m − 32cmλ
S
18p

2 +
16c2

mXSp
4

M2
S − p2

)

− 16c2
m

(M2
S − p2)2 Σr

S(p2)1` − 8cm

M2
S − p2

1

B0

Φr
sS(p2)1`

− 1

M2
P − p2

(
16d2

m − 32dmλ
P
13p

2 +
16d2

mXPp
4

M2
P − p2

)

+
16d2

m

(M2
P − p2)2 Σr

P (p2)1` +
8dm

M2
P − p2

1

B0

Φr
pP (p2)1`

+
2F 2

p2

(
1− 8L̃11p

2

F 2 − 4L̃12p
2

F 2

)
+

2F 2

p4 Σr
φ(p2)1` +

2F

p2

√
2

B0

Φr
pφ(p2)1`

+32L̃8 + 16L̃11 + 8L̃12 + Πr
ss−pp(p

2)1` . (2.78)

The couplings shown here (and from now on) are the renormalized ones even
if the superscript “r” is not explicitly present. The first two lines are the contri-
bution from the scalar exchanges. The third and fourth ones come from the pseu-
doscalar resonance exchanges, whereas the fifth one is produced by the Goldstone
exchanges. The last line is given by the 1PI diagrams in the SS−PP correlator.

Notice that the correlator results independent of L̃11 and L̃12 due to the cance-
lation between the Goldstone exchanges and the 1PI terms in (2.78). Likewise, it
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is possible to check that the correlator only depends on the effective combinations
ceff
m , deff

m , M eff
S , M eff

P L̃eff
8 from Eq. (2.21):

1

B2
0

Π(p2) =
16ceff 2

m

M eff 2
S − p2

− 16c2
m

(M2
S − p2)2 Σr

S(p2)1` − 8cm

M2
S − p2

1

B0

Φr
sS(p2)1`

− 16deff 2
m

M eff 2
P − p2

+
16d2

m

(M2
P − p2)2 Σr

P (p2)1` +
8dm

M2
P − p2

1

B0

Φr
pP (p2)1`

+
2F 2

p2 +
2F 2

p4 Σr
φ(p2)1` +

2F

p2

√
2

B0

Φr
pφ(p2)1`

+32L̃eff 2
8 + Πr

ss−pp(p
2)1` . (2.79)

The couplings XS, XP , λS18 and λP13 disappear from our NLO calculation and

cm, dm, MR and L̃8 are replaced everywhere by ceff
m , deff

m , M eff
R and L̃eff

8 . The
replacement in the subleading terms leaves the expression unaltered up to the
order in 1/NC considered in our computation.

This elimination of the renormalized couplings XS, XP , λS18 and λP13 can be un-
derstood in an equivalent way by means of the EOM of the theory and the meson
field redefinitions. The effective couplings that are left in front of the operators
after the meson field transformations coincide exactly with the combinations that
determine the correlator up to NLO.

In the subleading terms in Eq. (2.79), a priori one can use indistinct the
original couplings, e.g. cm, or the effective ones, this is, ceff

m , as the difference goes
to NNLO. However, for sake of consistence, one should always consider the same
renormalized coupling everywhere in the amplitude. Hence, after performing the
field redefinition that removes XS, XP , λS18 and λP13, all the remaining couplings
appearing in Π(p2) are the effective ones. From now on, we will consider that the
RχT action has been simplified through meson field redefinitions in the previous
way and the superscript “eff” will be implicitly assumed in the couplings in order
to make the notation simpler.

2.5 High energy constraints

The NLO expression for the correlator contains plenty of resonance parameters
that are not fully well known. A typical procedure to improve the determination
of these couplings is the use of the short-distance conditions [9].

The operator product expansion tells us that the SS−PP correlator vanishes
like 1/p4 for the large Euclidean momentum. Indeed, due to the smallness of its
dimension–four condensate ( 1

B2
0
〈OSS−PP4 〉 ' 12παSF

4 ∼ 3·10−4 GeV4 [49]), it is a

good approximation to consider that it vanishes like 1/p6 when p2 → −∞ [39,49].
The RχT correlator does not follow this short-distance behaviour for arbitrary

values of its couplings. This imposes severe constraints on the coefficients of the
high-energy expansion of our NLO correlator,

1

B2
0

Π(p2) =
∑

n=0,1,2...

1

(p2)k

(
α

(p)
2n + α

(`)
2n ln

−p2

µ2

)
. (2.80)
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The proper OPE short-distance behaviour is therefore recovered by demand-
ing [47]

α
(`)
k = α

(p)
k = 0 , for k = 0, 2, 4 . (2.81)

At large NC , there are no logarithmic terms (α
(`)
k = 0) and for the remaining

coefficients one has α
(p)
0 = 0 (no L̃8 or higher local couplings at large NC) and

the two Weinberg sum-rules (WSR) [39],

α
(p)
2 = 2F 2 + 16d2

m − 16c2
m = 0 ,

α
(p)
4 = 16d2

mM
2
P − 16c2

mM
2
S = 0 . (2.82)

At NLO, in the case when the interactions only contain operators LR with
at most one resonance field [8], the high-energy expansion log–term coefficients
result

8π2F 2

3
α

(`)
0 = 8c2

m − 8d2
m − 4cdcm + 2c2

d +G2
V −

8c2
dc

2
m

F 2
− F 2

2
,

8π2F 2

3
α

(`)
2 = 8d2

mM
2
P − 8c2

mM
2
S −

16M2
Sc

2
dc

2
m

F 2
+ 20cdcmM

2
S − 6c2

dM
2
S − 3G2

VM
2
V ,

8π2F 2

3
α

(`)
4 = −24c2

dc
2
mM

4
S

F 2
− 4cdcmM

4
S + 6c2

dM
4
S + 3G2

VM
4
V , (2.83)

and the high-energy coefficients α
(p)
0,2,4 are given by

α
(p)
0 = −α(l)

0 + 32 L̃8 ,

α
(p)
2 = 2F 2 + 16d2

m − 16c2
m + A(µ) ,

α
(p)
4 = 16d2

mM
2
P − 16c2

mM
2
S + B(µ) , (2.84)

with the NLO corrections

A(µ) = −3d2
mM

2
P

π2F 2

(
ln
M2

P

µ2
− 1

)
+

3c2
mM

2
S

π2F 2

(
ln
M2

S

µ2
− 1

)
+

6c2
dc

2
mM

2
S

π2F 4

−6cdcmM
2
S

π2F 2

(
ln
M2

S

µ2
+

1

4

)
+

9c2
dM

2
S

4π2F 2

(
ln
M2

S

µ2
+

1

2

)
+

9G2
VM

2
V

8π2F 2

(
ln
M2

V

µ2
+

1

2

)
,

B(µ) = −3d2
mM

4
P

2F 2π2
+

9c2
dc

2
mM

4
S

F 4π2
+

3c2
mM

4
S

2F 2π2
− 6cdcmM

4
S

π2F 2
− 9c2

dM
4
S

4π2F 2

(
ln
M2

S

µ2
− 1

2

)

+
3cdcmM

4
S

π2F 2
ln
M2

S

µ2
− 9G2

VM
4
V

8π2F 2

(
ln
M2

V

µ2
− 1

2

)
. (2.85)

The large–NC WSR (2.25) gain the subleading contributions in 1/NC , yielding

for α
(p)
2 = α

(p)
4 = 0 the solution 3 [31],

c2
m =

F 2

8

M2
P

M2
P −M2

S

(
1 +

A(µ)

2F 2
− B(µ)

2F 2M2
P

)
,

d2
m =

F 2

8

M2
S

M2
P −M2

S

(
1 +

A(µ)

2F 2
− B(µ)

2F 2M2
S

)
. (2.86)

3 The notation A(µ) = 2F 2δ
(1)
NLO, 2F 2M2

Sδ
(2)
NLO = B(µ) was used in Ref. [31]
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The couplings MS, MP , cm and dm may also depend on µ. Nonetheless, unless
necessary, this dependence will not be explicitly shown. Also, as stated at the end
of the previous section, one must keep in mind that these are the results after the
meson field redefinition that removes the redundant couplings XS, XP , λ

S
18, λ

P
13,

so the surviving couplings carry the superscript “eff” implicit.
The α

(`)
0 = 0 constraint implies that L̃8 = 0 also at NLO in 1/NC (for

any renormalization scale µ). We will see that for all the possible interactions
considered in this chapter, now here and later on, there is the same constraint
α

(p)
0 = −α(`)

0 + 32L̃8 and, therefore, in general we find L̃8 = 0. The constants

α
(`)
k , A(µ) and B(µ) only arise at NLO or higher. Hence, when they are used

for the computation of the correlator up to NLO, one can indistinctly use for
their calculation either renormalized couplings or their large–NC values, as the
difference goes to NNLO.

Although these expressions will be used later in other renormalization schemes,
A(µ) and B(µ) will always refer to their former definitions in the M̃S scheme,
like, for instance, the results provided in Eq. (2.85).

2.5.1 Alternative renormalization schemes

During the renormalization procedure we considered the M̃S–subtraction-scheme
for all the resonance couplings. However, in some situations one may get large
contributions from A(µ) and B(µ). The NLO prediction for cm and dm derived
from Eq. (2.86) may then become very different from the large–NC WSR deter-

minations c2
m = F 2

8

M2
P

M2
P−M2

S
, d2

m = F 2

8

M2
S

M2
P−M2

S
.

A way out to minimize possible large radiative corrections to the WSR is
the choice of convenient renormalization schemes for couplings (cm and dm) and
masses (MS and MP ). In the renormalization procedure we originally chose to
cancel the λ∞ from the one-loop diagrams, but we could have chosen to cancel
the λ∞ term plus an arbitrary subleading constant. This change makes that
instead of having in the amplitudes the renormalized coupling λr#1 in the first
scheme, one now has the renormalized coupling in the second scheme plus a
constant, λr#2 +C

#1→#2
. Thus, effectively one can account for a change from the

M̃S–subtraction-scheme (with renormalized couplings κ = cm, dm,M
2
S,M

2
P ) to

another (with parameters κ̂ = ĉm, d̂m, M̂
2
S, M̂

2
P ) through the shifts,

κ = κ̂ + ∆κ . (2.87)

The difference ∆κ will be, of course, subleading in the 1/NC counting with respect
to κ and κ̂. This will affect the parts of the calculation where these couplings
contribute at LO in 1/NC . In the contributions that start at NLO (e.g. α

(`)
k ,

A(µ) and B(µ)), the variations due to ∆κ go to NNLO and they are therefore
neglected. If one applies this change of scheme to Eq. (2.86), one gets for the
NLO extension of the WSR,

α
(p)
2 = 2F 2 + 16 d̂2

m − 16 ĉ2
m +

(
32 d̂m∆dm − 32 ĉm∆cm + A(µ)

)
,

α
(p)
4 = 16 d̂2

mM̂
2
P − 16 ĉ2

mM̂
2
S (2.88)

+
(

32 M̂2
P d̂m∆dm + 16 d̂2

m∆M2
P − 32 M̂2

S ĉm∆cm − 16 ĉ2
m∆M2

S + B(µ)
)
.

38



The terms within the brackets, (· · · ), would be the finite contributions from the
one-loop diagrams in the new scheme.

Pole mass scheme for MS and MP

In addition to the M̃S–scheme for the scalar and pseudo-scalar masses (∆M2
R =

0), we will also study the pole–mass scheme. The problem with the M̃S mass is
the difficulty to give a direct physical meaning to the µ–dependent mass MR(µ),
specially when more and more operators are added to the RχT action. On the
other hand, the resonance pole mass is a universal property which does not rely
on any particular lagrangian realization. Thus, instead of considering the µ–
dependent renormalized masses MR(µ), we will switch to the renormalization
scale independent pole masses M̂R = M

pole

R , defined by the pole positions (M
pole

R −
iΓ

pole

R /2)2 of the renormalized propagators. Up to NLO in 1/NC , one has

M
pole 2
R = M2

R + ReΣr
R(M2

R) , M
pole

R Γ
pole

R = − ImΣr
R(M2

R) , (2.89)

and therefore,
∆M2

R = M2
R − M̂2

R = −ReΣr
R(M2

R) , (2.90)

Since ∆M2
R is NLO in 1/NC , the difference between using theM2

R (M̃S–subtraction-
scheme) within Σ(M2

R) or its value M̂R in another scheme goes to NNLO. There-
fore, it is negligible at the perturbative order we are working at.

If only interactions LR given by operators linear in the resonance fields are
taken into account [8], one has for the pole scheme

∆M2
S =

3c2
dM

4
S

16π2F 4

[
1− ln

M2
R

µ2

]
, ∆M2

P = 0 , (2.91)

where only the two–Goldstone loop ΣS(p2)|φφ contributes to ∆M2
S and ΣP (p2) = 0

if only the LR interactions are taken into account [8].

WSR–scheme for cm and dm

Since the value of the spin–0 parameters is very poorly known at the experimental
level, one finds important uncertainties and variations in the determination of cm
and dm through the NLO sum-rules (2.86). The choice of a shift that minimizes
the finite part of the loop contributions is not straight-forward. For instance,
within the M̃S–subtraction-scheme itself, it is not easy to find a value of µ that
minimizes both A(µ) and B(µ) at once unless the resonance couplings are appro-
priately fine-tuned. This makes the short-distance matching rather cumbersome
and the extraction of the necessary resonance parameters problematic.

Alternatively, the selection of a shift ∆κ that exactly cancels the one-loop
contributions to Eq. (2.86) (provided in the M̃S–scheme by the constants A(µ)
and B(µ)) seems to be a better option. This converts Eq. (2.86) into

α
(p)
2 = 2F 2 + 16 d̂2

m − 16 ĉ2
m = 0 , α

(p)
4 = 16 d̂2

mM̂
2
P − 16 ĉ2

mM̂
2
S = 0 ,

(2.92)
with the solutions

ĉ2
m =

F 2

8

M̂2
P

M̂2
P − M̂2

S

, d̂2
m =

F 2

8

M̂2
S

M̂2
P − M̂2

S

(2.93)
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Though this has the same structure as the LO prediction (2.26) of the large–
NC WSR in Eq. (2.82), the couplings appearing here are the renormalized ones.
Nonetheless, this result ensures that the difference between ĉm/F and d̂m/F at
NLO and their large–NC limits remains small provided M̂R ≈MNC→∞

R . In order
to achieve this minimization, the shifts ∆κ must be tuned in such a way that
they obey

32d̂m∆dm − 32ĉm∆cm + A(µ) = 0 ,

32M̂2
P d̂m∆dm + 16d̂2

m∆M2
P − 32M̂2

S ĉm∆cm − 16ĉ2
m∆M2

S + B(µ) = 0 . (2.94)

If one fixes ∆M2
R (for instance, through the pole scheme) the solutions for ∆cm

and ∆dm are then given by

32ĉm∆cm =
M̂2

PA(µ)−B(µ) + 16 ĉ2
m∆M2

S − 16 d̂2
m∆M2

P

M̂2
P − M̂2

S

32d̂m∆dm =
M̂2

SA(µ)−B(µ) + 16 ĉ2
m∆M2

S − 16 d̂2
m∆M2

P

M̂2
P − M̂2

S

. (2.95)

In the change of scheme we will make the replacement κ = κ̂ + ∆κ in the
tree-level LO diagrams, whereas in the subleading contributions we will just
consider κ ≈ κ̂, as the difference goes to NNLO in 1/NC . Thus, we will end
up with a matrix element expressed in terms of just renormalized couplings in
the new scheme (κ̂). We will denote the cm and dm renormalization scheme
prescribed by Eq. (2.95) as WSR–scheme.

2.6 Low-energy expansion

2.6.1 M̃S–subtraction scheme

At low energies, the expansion of our one-loop RχT correlator yields the structure,

Πss−pp(p
2) = B2

0

{
2F 2

p2
+

[
16c2

m

M2
S

− 16d2
m

M2
P

+ 32L̃8 +
G8

π2

(
1− ln

−p2

µ2

)
+ 32 ξL8

]

+
p2

F 2

[
16F 2c2

m

M4
S

− 16F 2d2
m

M4
P

− GL
38

π2

(
1− ln

−p2

µ2

)
+ 32 ξC38 + O(N0

C)

]
+O(p4)

}
,

(2.96)

where in the U(3) case we obtain G8 = 3
16

= Γ8 and GL
38 = −3cdcm/2M

2
S, with

GL
38 = ΓL38 after using the LO matching relation L5 = cdcm/M

2
S [8]. The log-

arithm from the ππ loop in RχT has been singled out in the ln(−q2) terms.
These RχT logarithms exactly reproduce those in the low-energy χPT expres-
sion (2.23), ensuring the possibility of matching both theories [47]. The one-loop
contributions from the remaining channels generate only polynomial terms at this
chiral order and they are provided here by ξL8 and ξC38 , defined within the M̃S–
renormalization-scheme. The predictions for the low-energy constants at NLO in
1/NC then turn out to be

L8(µχ) =
c2
m

2M2
S

− d2
m

2M2
P

+ L̃8 + ξL8 +
Γ8

π2 ln
µ2

µ2
χ

,

C38(µχ) =
F 2c2

m

2M4
S

− F 2d2
m

2M4
P

+ ξC38 − ΓL38

π2 ln
µ2

µ2
χ

. (2.97)
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The dependence of the terms on the right-hand side of the equations (r.h.s.)
on the RχT renormalization scale µ have been left partially implicit. Only the
last term shows µ explicitly. It comes from the two–Goldstone loop in RχT
(Eq. (2.96)) and matches exactly the log from the two–Goldstone loop in χPT
(Eq. (2.23), with the chiral renormalization scale µχ), producing the ln(µ2/µ2

χ)
term. This ensures the right low-energy running with µχ for the χPT low-energy
constants [47]. On the other hand, the r.h.s. is independent of the RχT scale
µ at the given order in 1/NC . There can still be some residual µ dependence
at NNLO, which would allow the use of renormalization group technics in order
to improve the perturbative expansion and to remove possible large radiative
corrections [38]. Nonetheless, this is beyond the scope of this article, where we
will take the usual prescription µ = µχ [30, 46,47].

If we use the cm and dm predictions from the high-energy OPE constraints in
Eq. (2.86), the low-energy predictions result [31]

L8(µ) =
F 2

16

(
1

M2
S

+
1

M2
P

) [
1 +

A(µ)

2F 2 −
B(µ)

2F 2(M2
S +M2

P )

]
+ ξL8 ,

C38(µ) =
F 4 (M4

S +M2
SM

2
P +M4

P )

16M4
SM

4
P

[
1 +

A(µ)

2F 2 −
B(µ)(M2

S +M2
P )

2F 2(M4
S +M2

SM
2
P +M4

P )

]

+ ξC38 . (2.98)

In the case, where we only have interactions LR in the lagrangian, linear in
the resonance fields [8], the low-energy contributions from the one-loop diagrams
are given by

ξL8 = − 3cdcm
32π2F 2

(
ln
M2

S

µ2
+

1

2

)
+

3c2
d

128π2F 2

(
ln
M2

S

µ2
+

5

6

)

+
3G2

V

256π2F 2

(
ln
M2

V

µ2
+

5

6

)
+

3c2
m

32π2F 2
ln
M2

S

µ2
− 3d2

m

32π2F 2
ln
M2

P

µ2
,

ξC38 =
3d2

m

64π2M2
P

− 3c2
d

512π2M2
S

− 3G2
V

1024π2M2
V

− 3c2
m

64π2M2
S

+
3cdcm

96π2M2
S

. (2.99)

The results (2.98) correspond to the predictions for the U(3) chiral pertur-
bation theory couplings, where the η1 is identified as the ninth chiral Goldstone.
In order to recover the traditional SU(3) couplings one needs to make use of the
matching equations [31,50],

L
SU(3)
8 (µ) = L

U(3)
8 +

Γ
SU(3)
8 − Γ

U(3)
8

32π2 ln
m2

0

µ2 , (2.100)

C
SU(3)
38 (µ) = C

U(3)
38 − Γ

(L)SU(3)
38 − Γ

(L)U(3)
38

32π2

(
ln
m2

0

µ2 +
1

2

)
− Γ

SU(3)
8 − Γ

U(3)
8

32π2

F 2

2m2
0

.

These outcomes will be used later in the alternative renormalization schemes
and the constants ξL8(µ), ξC38(µ), A(µ) and B(µ) will always refer to their former

expressions in the M̃S scheme.
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2.6.2 Pole masses and WSR–scheme for cm and dm

In this case, the renormalization scheme of cm and dm is chosen such that the
one-loop contributions to the NLO relations in Eq. (2.86) are exactly canceled,

yielding ĉ2
m = F 2

8

M̂2
P

M̂2
P−M̂2

S

and d̂2
m = F 2

8

M̂2
S

M̂2
P−M̂2

S

. The low energy limit of the RχT

correlator in the new scheme leads to the LEC determination,

L8(µ) =
F 2

16

(
1

M̂2
S

+
1

M̂2
P

) [
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A(µ)

2F 2 −
B(µ)

2F 2(M̂2
S + M̂2

P )

]

− F 2

16

(
∆M2

S

M̂4
S

+
∆M2

P

M̂4
P

)
+ ξL8 ,

C38(µ) =
F 4 (M̂4

S + M̂2
SM̂

2
P + M̂4

P )

16 M̂4
SM̂

4
P

[
1 +

A(µ)

2F 2 −
B(µ)(M̂2

S + M̂2
P )

2F 2(M̂4
S + M̂2

SM̂
2
P + M̂4

P )

]

− F 4

16 M̂2
SM̂

2
P

(
∆M2

S(M̂2
S + 2M̂2

P )

M̂4
S

+
∆M2

P (2M̂2
S + M̂2

P )

M̂4
P

)
+ ξC38 ,

(2.101)

where ξL8,C38 are the same one-loop contributions to the LECs computed before

in the M̃S–subtraction scheme. The same applies to A(µ) and B(µ), which were
defined as the one-loop contributions to the high-energy expansion coefficients
in the M̃S–scheme. In ξL8 , ξC38 , A(µ) and B(µ) we will use the couplings and

masses in the new scheme (ĉm, d̂m, M̂R) instead of the original ones in the M̃S–
scheme (cm, dm,MR), as the difference goes to NNLO in 1/NC . The constants

∆M2
R = M2

R−M̂2
R provide the difference between the mass MR in the M̃S–scheme

and its value M̂R in another scheme. In this chapter it will refer in particular to
the mass pole, although it accepts further generalizations.

Notice that these expressions are similar to those in the M̃S–scheme (2.98),
up to the ∆M2

R terms that arise due to the change of mass prescription. The
WSR–scheme does not modify the low-energy prediction, it just serves to reduce
the uncertainties in the NLO Weinberg sum-rules.

Finally, in order to obtain the traditional SU(3)–χPT LECs, one should use
again the matching Eq. (2.100).

2.7 Correlator with the extended RχT lagrangian

Ecker et al.’s lagrangian [8] has been found to be very successful for the description
of amplitudes with few-Goldstones (ππ form-factors, scatterings...). However, it
fails to describe processes with multi-Goldstones states or with a higher number
of resonances. The LO meson lagrangian must be then enlarged to improve
the description of the new channels. In the case of our observable, the relevant
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operators with two resonance fields are [15, 32,33,46],

LRR′ = iλPV1 〈 [∇µP, Vµν ]u
ν 〉 + λSA1 〈 {∇µS,Aµν}uν 〉 + λSP1 〈 {∇µS, P}uµ 〉 .

(2.102)
The λPV1 and λSP1 terms induce a one-loop mixing between the Goldstone and

the pseudoscalar resonance. These loops bring ultraviolet divergences which need
the presence of the subleading counter-terms,

∆LP = d′m〈P∇µu
µ 〉 + d′′m〈 (∇2P )∇µu

µ 〉 , (2.103)

to make the amplitude finite. At LO, in the free field case, the meson kinetic terms
are assumed to be defined in the canonical way, i.e., without mixing between
particles. This was indeed the case in Ecker et al.’s lagrangian [8]. In addition,
although these P–φ operators may arise at NLO, they happen to be proportional
to the EOM. They can be removed from the action through a convenient meson
field redefinition, leaving for the relevant couplings in our problem the effective
combinations

L̃eff8 = L̃8 +
1

2
c2
mXS −

1

2
d2
mXP + cmλ

S
18 − dmλP13 −

1

2
dmd

′′
m ,
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2 = H̃2 + c2

mXS + d2
mXP + 2cmλ

S
18 + 2dmλ

P
13 + dmd

′′
m ,

(M2
S)eff = M2

S −XSM
4
S,

(M2
P )eff = M2

P −XPM
4
P ,

ceffm = cm − cmXSM
2
S −M2

Sλ
S
18,

deffm = dm − dmXPM
2
P −M2

Pλ
P
13 +

1

2
d′m −

1

2
M2

Pd
′′
m . (2.104)

2.7.1 Meson self-energies

These operators do not modify the previous loop contributions. However, new
channels are now open in the different vertex-functions. Thus, the Goldstone
self-energy gains the contributions (Fig. 2.10),

Σr
φ(p2)|PV = −3(λPV1 )2

F 2

{
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,
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(2.105)
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=

PV, SA, SP

Figure 2.10: Contribution from LRR′ operators to the Goldstone boson self-energy.

=

P,A
Sa Sb

=

S,V
Pa Pb

Figure 2.11: Contribution from LRR′ operators to the scalar and the pseudo-scalar

resonance self-energies.

in addition to the former V φ and Sφ cuts from Eq. (2.36). The functions
J̄(p2,M2

a ,M
2
b ) is the subtracted two-propagator Feynman integral (J̄(0,M2

a ,M
2
b ) =

0), given in App. 2.10.3.
The scalar propagators contains now Aφ and Pφ cuts (besides the φφ–one

from Eq. (2.57)) (Fig. 2.11):
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.

Ecker et al.’s lagrangian LR did not modified the pseudoscalar resonance prop-
agator. However, the new operators LRR′ yield (Fig. 2.11),
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(2.108)

The renormalized resonance self-energies provide at this order the pole masses
through Eq. (2.89), giving the corresponding shifts ∆M2

R = −ReΣr
R(M2

R).
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=

V,S

P

Figure 2.12: Contribution from LRR′ operators to the mixing term between the Gold-

stone and the pseudo-scalar resonance.

2.7.2 P–φ mixing

In addition, these operators λPV1 and λSP1 also generate a P–φ mixing (Fig. 2.12),
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(2.109)

leading to an extra perturbative contribution to the PP–correlator that has to
be added to the former ones in (2.77):

Πpp(p
2)P−φ mixing =

8
√

2Fdm

p2 (p2 −M2
P )

[
−
√

2 d′m
F

p2 +

√
2 d′′m
F

p4 + Σr
P−φ(p2)1`

]
.

(2.110)

After a convenient field redefinition d′m and d′′m disappear from Eq. (2.110), being

their information encoded in deff
m , L̃eff

8 and H̃eff
2 .

It is important to remark that at the NLO under consideration, the mixing
does not modify the pseudoscalar resonance mass renormalization. The Goldstone
remains massless –as expected– and the resonance pole mass is still provided at
this order by ∆M2

P = −ReΣr
P (M2

P ) through Eq. (2.89).

2.7.3 New s→ S and p→ P vertex functions

A new Pφ channel is opened in the s → S vertex function in addition to the
φφ–cut from Eq. (2.61):
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On the other hand, one has now the Sφ–absorptive cut in the p → P vertex-
function, which did not get any contribution from LR alone:
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Figure 2.13: One-loop diagrams with LRR′ operators in the s(x) → S and p(x) → P

vertex functions.

2.8 Phenomenology

The RχT lagrangian developed by Ecker et al. [8], L = LG +LR, only contained
operators with at most one resonance field. This approach has been proven to
be very successful at the phenomenological level for the last two decades [39].
Nevertheless, in the few last years it has become clear that the description of
more complicated QCD matrix elements (e.g. 3–point Green functions [14–17,19])
demands the introduction of operators with more than one resonance field [15].

Since the MR(µ) masses in the M̃S—scheme are µ dependent, they are dif-
ficult to relate with the physical masses provided, for instance, by the Particle
Data Group (PDG) [51]. This relation is even more cumbersome when one adds

more general kinds of vertices (e.g. λSP1 ) within the loops: in the M̃S–scheme
the value of MR(µ) will depend on the content of the theory and its lagrangian.
Thus, it seems more convenient to use universal properties such as the pole mass-
es, denoted here as M̂R. The octet of the lightest scalar and the pseudoscalar
resonances are then related, to the a0(980) and the π(1300), and we will consider
from now on the inputs M̂S = 980± 20 MeV and M̂P = 1300± 50 MeV [28,51].

The procedure that we will follow in order to extract the LECs with higher and
higher accuracy is to progressively add more and more physical information to
the RχT correlator, starting from lower energies. Since the resonance parameters
will be used to accommodate the short-distance OPE behaviour, in general the
two-meson thresholds (Sπ, V π, Pπ...) may not be at the right place. Likewise,
one may find that individual intermediate two-meson channels have a clearly
erroneous momentum dependence at high energies (e.g. constant or growing
behaviour).

The introduction of the new operators λV P1 , λSP1 and λSA1 will allow us to
improve the momentum dependence of the Rπ absorptive channels with one res-
onance and one Goldstone. However, since these new couplings will be tuned to
implement the short-distance OPE constraints, the Rπ channel description may
still differ slightly from that provided by the physical values of λSP , λPV , λSA, cd,
GV ... Likewise, the two-resonance RR′ absorptive cuts will still remain wrong-
ly described until operators with three resonance fields are taken into account.
Nonetheless, we will see that the RχT description progressively approaches the
actual QCD amplitude as the hadronic action is completed with more and more
complicated operators, bringing along a better and better description of the lower
channels.
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2.8.1 Phenomenology with Ecker et al.’s lagrangian LG+LR
First, we will extract the value of the LECs at largeNC within the single resonance
approximation. We will use the formerly referred M̂S = 980 ± 20 MeV and
M̂P = 1300±50 MeV [51], F = 90±2 MeV [28,50] and the standard reference χPT
renormalization scale µ0 = 770 MeV. The short-distance constraints determine
cm and dm in terms of the scalar and pseudo-scalar masses, producing

L8 = (0.83± 0.05) · 10−3 , C38 = (8.4± 1.0) · 10−6 . (2.113)

Naively, if the uncertainty on the saturation scale is estimated by observing the
variation with µ in the range 0.5–1 GeV, one would expect the former values to
be deviated from the actual ones at the order of ∆L8 ∼ 0.3 ·10−3, ∆C38 ∼ 5 ·10−6.

In order to go beyond the naive estimate of the subleading 1/NC uncertainty,
we consider now the one-loop contributions computed in previous sections. In
a first approach, we consider just operators in the lagrangian with at most one
resonance field [8]. At one-loop, in addition to the tree-level exchanges, one
has the two-meson absorptive channels ππ, V π, Sπ and Pπ, determined by the
scalar parameters cm and cd, the pseudo-scalar coupling dm and the vector ones
GV and MV . If we work in the WSR–renormalization-scheme for cm and dm,
the short-distance constraints produce at NLO the same structure found from

the large–NC WSR, ĉ2
m = F 2

8

M̂2
P

M̂2
P−M̂2

S

and d̂2
m = F 2

8

M̂2
S

M̂2
P−M̂2

S

. The other three

resonance parameters (cd, GV ,MV ) are fixed by means of the logarithmic OPE

constraints (2.83), α
(`)
0 = α

(`)
2 = α

(`)
4 = 0, giving

cd = 60 ± 4 MeV , GV = 93 ± 5 MeV , MV = 853 ± 28 MeV .
(2.114)

These numbers are found to be quite off the physical ones, cd ≈ 30 MeV, GV ≈
60 MeV, MV ≈ 770 MeV [8, 9, 23, 24, 26–28, 51]. The LEC prediction for the
standard comparison scale µ0 = 770 MeV then result,

L8(µ0) = (2.28 ± 0.19) · 10−3 , C38(µ0) = (26 ± 4) · 10−6 . (2.115)

In order to get these SU(3) χPT couplings, we employed in the U(3)–SU(3)
matching Eq. (2.100) the chiral singlet pseudoscalar mass m0 = 850±50 MeV [50].
These estimates are still far from former values in the bibliography for µ0 =
770 MeV: L8 = 0.9 · 10−3 and C38 = 10 · 10−6 from O(p6) χPT and resonance
estimates [5], later refined into L8 = (0.61± 0.20) · 10−3 [6] and recently updated
into L8 = (0.37± 0.17) · 10−3 [7]; L8 = (0.6± 0.4) · 10−3 and C38 = (2± 6) · 10−6

from a previous NLO calculation in RχT [31]; L8 = (1.02 ± 0.06) · 10−3 and
C38 = (3.3 ± 0.6) · 10−6 from Dyson-Schwinger equation analysis [52]; L8 =
(0.36± 0.05± 0.07) · 10−3 from Lattice simulations [53].

Although the calculation with just the LR operators is able produce an ap-
propriate description of the ππ channel (thanks to the cd〈Suµuµ 〉 operator), its
coupling cd gets a extremely shifted value as this parameter has been used to
accommodate the OPE at short distances. This does not represent by itself an
important drawback in our analysis, where the goals are the LECs and RχT is
devised as a convenient interpolator between high and low energies. However,
the problem in our case is the erroneous description that one obtains for the Rπ
channels with only the LR operators [32,46]: The Sπ contribution to the spectral
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function behaves like a constant and the V π one grows with the energy. more-
over, as MV is also determined from the OPE matching, the position of the first
two-meson threshold after the ππ one (i.e., the V π channel) is shifted from its
physical place.

2.8.2 Improving one Rπ channel: extending the lagrangian

The straight forward procedure to ameliorate our one-loop amplitude is the inclu-
sion of the required operators for the proper description of the lowest absorptive
cuts, this is, ππ and V π. The first one is ruled by the already included cd oper-
ator but the latter demands the λPV1 term from Eq. (2.102), which now induces
PV π interactions and allows to cure the infinitely growing behaviour of the V π
contribution to the spectral function.

Now we use the former inputs M̂S, M̂P , F , m0 and the physical coupling
cd = 30 ± 10 MeV [8, 26–28, 39]. The remaining parameters (GV ,MV , λ

PV
1 ) are

extracted from the three logarithmic OPE constraints α
(`)
0 = α

(`)
2 = α

(`)
4 = 0.

Indeed, this system only has real solutions in the very corner of the parameter
space, for low pseudo-scalar mass (M̂P ≈ 1.25 GeV) and high cd and scalar
mass (cd ≈ 40 MeV, M̂S ≈ 1.00 GeV). This does not improve the value of
the vector coupling and mass with respect to the former section, which become
GV ≈ 120 MeV and MV ≈ 400 MeV. The LEC predictions result,

L8(µ0) ≈ 0.5 · 10−3 , C38(µ0) ≈ −8 · 10−6 , (2.116)

where L8 may look acceptable but the presence of such a low distorted V π thresh-
old is reflected in a value of C38 which looks still a bit off. Nonetheless, these
values are closer to those formerly obtained in the bibliography [5–7,31,52,53].

The problem is that the V π is not the only relevant channel that appears after
the ππ one. The Sπ channel opens up at an energy not far from the V π threshold.
Thus, even if the V π channel can be now correctly described, the Sπ contribution
to the spectral function still shows a wrong constant behaviour [32,46]. The λSP1

operator in (2.102) is then crucial to cure that behaviour. Furthermore, this
operator mends as well the similar bad short-distance behaviour found in the Pπ
cut contribution to the SS spectral function.

Nonetheless, the presence of λPV1 in the lagrangian is still essential. If one
repeats the NLO computation adding only the λSP1 operator (but not λPV1 ) the
vector parameters become of the order of GV ∼ 20 MeV and MV ∼ 2 GeV.
On the other hand, the LEC predictions L8 ∼ 1.3 · 10−3 and C38 ∼ 12 · 10−6

seem to improve with respect to the case with only LR operators in the RχT
lagrangian [8], with at most one resonance field.

The inclusion of the λSA1 operator alone seems to move the results also in the
right direction. Although it does not affect the previous channels, it opens the Aπ
absorptive cut. Even if its effect at low energies is small, it helps to fulfill the OPE
constraints. Taking now the extra needed input MV = 770 ± 20 MeV together
with the former ones, it is possible to extract the remaining ones (λSA1 , GV ,MA)
through the three log OPE conditions. The value for the vector coupling turns
out to be now more natural (GV = 67 ± 18 MeV) but the a1(1230) mass falls
down to very low values (MA = 610 ± 50 MeV). The predictions for the chiral
couplings show a clear improvement, L8 = (0.7± 0.4) · 10−3, C38 = (4± 5) · 10−6.
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Figure 2.14: Comparison of the LEC predictions in this work with previous results in

the bibliography.

2.8.3 Improving the V π, Sπ, Aπ and Pπ channels

In order to have a proper description of all the Rπ absorptive cuts, the λSA1 , λPV1

and λSP1 operators from Eq. (2.102) are now included in the RχT action. We
take the same inputs as before, M̂S = 980 ± 20 MeV, M̂P = 1300 ± 50 MeV,
F = 90±2 MeV, m0 = 850±50 MeV, cd = 30±10 MeV, MA = 1230±200 MeV,
MV = 770±20 MeV andGV = 60±20 MeV. Both cd andGV have been taken with
a naive 33% error, as they appear only in the NLO part of the correlator. This will
account for the possible NNLO variations in the one-loop correlator depending
on whether it is evaluated with these physical couplings or their large–NC values.
The remaining unknown parameters (λPV1 , λSP1 , λSA1 ) are extracted from the three
logarithmic OPE constraints, leading to our final LEC estimates,

L8(µ0) = (1.0± 0.4) · 10−3 , C38(µ0) = (8± 5) · 10−6 . (2.117)

These numbers are compared to previous determinations in Fig. 2.14. Although
there is still a clear dispersion between the various measurements, at the present
error level we remain essentially compatible. Further efforts should be focused
on the extraction of the scalar and pseudo-scalar pole masses in order to sizably
reduce the uncertainties in the RχT calculations.

In general, the three logarithmic OPE constraints α
(`)
0 = α

(`)
2 = α

(`)
4 = 0

produce complex solutions for the λSP1 , λPV1 , λSA1 . In order to remain within the
quantum field theory description, only the real values are kept. The regions with
at least one real solution are shown in Fig. 2.15. There, we plot the allowed ranges
for cd and GV , with the other inputs taken at their central values. Indeed, there
is no real solution for the central values cd = 30 MeV and GV = 60 MeV. On the
contrary to other phenomenological analysis which seem to prefer a cd coupling
below 30 MeV [23,27,28], the log OPE constraints require slightly larger values,

49



0.02 0.03 0.04 0.05 0.06 0.07
0.00

0.02

0.04

0.06

0.08

cd HGeVL

G
V
HG

eV
L
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the logarithmic OPE constraints α
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provided by the ranges cd = 30± 10 MeV, GV = 60± 20 MeV.

cd >∼ 30 MeV. However, in general for cd around 30 MeV is always impossible to
have real solutions for the value of the coupling GV ' 64 MeV obtained from
V decays [8, 9, 28]. Actually, if one demanded the ππ scalar form-factor (and
the corresponding ππ contribution to the SS spectral function) to vanish at high
energies one would obtain cd = F 2/4cm ' 42 MeV. However, in this work we do
not perform a channel by channel analysis as in Ref. [31]. Indeed, in our field
theory approach one could fix separately the short-distance behaviour of the ππ
and all the Rπ channels through the λRR

′
operators, but the latter also generate

RR′ absorptive cuts with the wrong properties at high momentum. The only
option is the global adjustment of parameters considered in this work, where the
lowest channels arrange the short-distance behaviour of the highest cuts at the
price of slight modifications on their couplings.

The allowed (cd, GV ) region of Fig. 2.15 actually changes if one varies the other
inputs. Thus, we observed the whole range of the LECs allowed for the possible
variations of the inputs and used this interval as our estimate of the central
value and error. The maximum (minimum) value of the LECs was obtained at
the largest (smallest) cd and GV . Likewise, the most extreme LEC values were
obtain when M̂P and MA became smaller and M̂S larger. These three parameters
are responsible for most of the uncertainties. The impact of the MV , F and m0

errors in the global precision is negligible.
The RχT computation progressively approaches the physical value as one

incorporates more and more physical information. This is quite non-trivial, as
the introduction of a new chiral invariant operator leads to the opening of the
new absorptive cuts in addition to those channels we are in principle interested
in. For instance, the cm〈Sχ+ 〉 rules the decay into one scalar resonance and also
contributes to the S-meson exchange in the ππ channel. But at the same time it
also induces the decay into Sπ (though other operators like λSP1 are also relevant).
Thus, the LRR′ terms were used in our calculation to improve the description of
the Rπ channels, which were incompletely described by the linear lagrangian
LR [8]. The price to pay was that new RR′ channels with two intermediate
resonances showed up in our NLO computation of the correlator. Although the
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impact of these higher thresholds is suppressed at low energies if one chooses
a convenient renormalization scheme [32, 46], their impact in the high-energy
matching and OPE constraints is a priori non-trivial. In this chapter we find
that, indeed, the most relevant information in order to extract the low energy
chiral couplings seems to be provided by the lightest cuts. On the other hand,
one realizes that the values of the couplings differ from those in the full large–NC

theory [40] and that the description of the heaviest absorptive channels may be
very distorted [43]. Indeed, we obtain the resonance couplings λSP1 = −0.22±0.08,
λPV1 = 0.14 ± 0.07 and |λSA1 | = 0.16 ± 0.14. Even though these numbers have
the right signs and order of the magnitude as the theoretical expectations λSP1 =
−dm
cm

= cd−2cm
2dm

∼ −0.7, λPV1 = GV
2
√

2dm
∼ 0.7 and λSA1 = 0 (in our analysis, for

convention, we have took cm, dm and GV as positive), their values are still far
from being accurate determinations of these parameters.

2.8.4 Impact of the RR′ channels

In this section we will make a digression on the importance of the RR′ intermedi-
ate cuts that are opened after including the LRR′ operators in the LO action. We
will remove by hand the contributions with two–resonance cuts. Although this
procedure is not well justified from the QFT point of view, we will perform this
exercise in order make a rough comparison with the previous dispersive calcula-
tion of the octet SS−PP correlator [31]. The RR′ channels were neglected there,
as their contribution in the dispersive integral was suppressed at low energies by
inverse powers of (MR +MR′)

2.
Thus, we redid the calculation and removed by hand the diagrams with two–

resonance cuts. This expression was then matched to the OPE at short distances,
producing finally the low–energy constants,

L8(µ0) = (0.1 ± 0.7) · 10−3 , C38(µ0) = (−3 ± 9) · 10−6 , (2.118)

where we used the same inputs as in the previous subsection. The errors are
now found to be larger and, though compatible with our final result (2.117), the
elimination of the RR′ cuts decreases slightly the range for the LEC determina-
tions, approaching them to the lower values preferred by recent O(p6) analysis [7]
and lattice simulations [53]. However, discarding these heavier channels from the
one-loop computation in this way does not seem very sound from the theoretical
point of view and it is shown here just as an exercise.

2.9 Conclusions

In this chapter, we have performed the one loop QFT calculation of the two-point
SS − PP correlator within RχT. We started with Ecker et al.’s lagrangian [8],
containing only operators with at most one resonance field, and renormalized step
by step all the relevant vertex-functions and propagators. Then we imposed OPE
constraints on the full one-loop correlator, not on separate individual channels as
it was performed in a previous NLO calculation [31]. Likewise, no short-distance
constraint from other observables [39] was used in the present article.

After fixing part of our RχT couplings through these high-energy conditions,
we expanded our result at low energies. Due to the chiral invariant structure
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of RχT, we were able to match the chiral logarithms and found predictions for
the χPT coupling constants L8(µ) and C38(µ). The large discrepancy of these
first numerical determinations with respect to the numbers found in the litera-
ture indicated that the simple Lagrangian LR (with operators with at most one
resonance field [8]) pointed out the need for a more complicated structure of the
RχT action. The LR terms could not fully describe the dynamics of all the two-
meson intermediate channels: just the ππ channel description was adequately
provided by the operators with at most one resonance field; all other channels
(V π, Sπ. . . ) did not have the right short-distance behavior. Thus, beyond any
numerical discrepancy in the LECs, the absence of operators with two an three
resonance fields produces a severe theoretical issue at high energies [30].

In order to arrange the Rπ cuts with one resonance and one Goldstone we
add all the operators LRR′ with two resonance fields relevant for the SS − PP
correlator to the leading RχT lagrangian. These are the λSP1 , λPV1 and λSA1 terms
given in Eq. (2.102). The introduction of these operators produce a dramatic
improvement. When only one of them is added to the action, the LEC predictions
move in the right direction, i.e., towards the range of values found in previous
studies. After considering all the three LRR′ operators, we obtain the final values
for µ0 = 770 MeV,

L8(µ0) = (1.0 ± 0.4) · 10−3 , C38(µ0) = (8 ± 5) · 10−6 , (2.119)

in reasonable agreement with the values obtained through other approaches [5–7,
31,52,53]. We want to remark, that this result is progressively approached as more
and more complicated operators are added to the hadronic action. The terms
of the lagrangian that rule the lightest channels result crucial and, thus, those
determining heavier cuts not included in the analysis are expected to produce
little influence.

The essential difference with the previous dispersive calculation of the SS−PP
correlator at NLO [31] is the presence of RR′ cuts in the present work. These
intermediate channels automatically show up at the very moment we place the
LRR′ operators in the RχT action. Although it is possible to demonstrate that
the contribution from these heavy RR′ cuts is suppressed at low energies [32,46],
their impact in high-energy conditions such as the NLO Weinber sum-rules is
pretty non-trivial. The difference between the present article and Ref. [31] could
be taken as a crude estimate of the impact of neglecting those higher channels.

In addition to the estimation of LECs, we also discussed some general issues
about renormalization schemes within RχT. The use of the running M̃S masses
MR(µ) was not very convenient as their meaning changed as one added new
operators to the RχT action. Thus, they were reexpressed in terms of pole
masses M̂R. Likewise, we found that, with respect to the large–NC WSR, the
NLO Weinberg sum-rules (2.86) led to large uncertainties and variations for the

values of cm and dm derived from them in the M̃S–scheme. A more convenient
subtraction scheme was found to minimize these uncertainties that stemmed from
the high-energy matching whereas, on the other hand, it was found to leave the
low energy prediction (2.98) unchanged (except for the improved accuracy in the
resonance coupling determination from short-distance constraints).
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2.10 Appendix

2.10.1 Running of the renormalized parameters with LG+
LR

When only operators with at most one resonance fields are considered in the RχT
action [8], one finds before performing the meson field redefinition the running,

∂L̃8

∂ lnµ2 =
3

512π2F 2

[
16(c2

m − d2
m)− F 2 − 16cdcm + 4c2

d + 2G2
V

]
,

∂M2
S

∂ lnµ2 =
∂M2

P

∂ lnµ2 =
∂cm

∂ lnµ2 =
∂dm

∂ lnµ2 = 0 ,

∂XS

∂ lnµ2 = − 3c2
d

16π2F 4
,

∂XP

∂ lnµ2 = 0 ,

∂λS18

∂ lnµ2 =
3cd

64π2F 2
,

∂λP13

∂ lnµ2 = 0 . (2.120)

After the renormalization one may then consider a convenient field redefinition
that removes precisely the renormalized XS,P , λP13 and λS18. They (and their
running) seem to disappear from the theory although their information is actually
encoded in the renormalized effective couplings that remain in the action. Their
running turns out to be then

∂L̃eff
8

∂ lnµ2 =
3

512π2F 2

[
16 c2

m − 16 d2
m − F 2 − 8 cdcm + 2 c2

d + 2G2
V − 16 c2

dc
2
m

]
,

∂M eff 2
S

∂ lnµ2 =
3c2
dM

4
S

16π2F 4
,

∂M eff 2
P

∂ lnµ2 = 0 ,

∂ceff
m

∂ lnµ2 =
3cdM

2
S

64π2F 4
(4cdcm − F 2) ,

∂deff
m

∂ lnµ2 = 0 . (2.121)

2.10.2 On-shell scheme for cm and dm

This would be a continuation of the pole-mass scheme. In addition to this, the
renormalized on-shell couplings ĉm and d̂m are prescribed, respectively, by the real
part of the residue of the correlator at the scalar and the pseudoscalar resonance
poles [31, 32]. This was the scheme considered in the dispersive approach from

Refs. [31, 32]. The shift ∆κ with respect to the M̃S–subtraction prescription is
given up to NLO in 1/NC by

2 cm∆cm = c2
m − ĉ2

m =
cm
2B0

ReΦr
sS(M2

S)1` − c2
m ReΣr ′

S (M2
S)1` ,

2 dm∆dm = d2
m − d̂2

m =
dm
2B0

ReΦr
pP (M2

P )1` − d2
m ReΣr ′

P (M2
P )1` .(2.122)

In the case where only LR interactions are considered, one has

2 cm∆cm =
4 cdcm

F 2

3M2
S

128π2

[
−1 +

(
1− 4 cdcm

F 2

)
ln
M2

S

µ2

]
,

2 dm∆dm = 0 . (2.123)
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2.10.3 Feynman integrals

The scalar integrals are

A0(M2) =

∫
dkd

i(2π)d
1

k2 −M2 + iε
,

B0(p2,M2
a ,M

2
b ) =

∫
dkd

i(2π)d
1

(k2 −M2
a + iε)[(p− k)2 −M2

b + iε]
(2.124)

Using the formula in [30] we use the following expansions
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}
,
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(2.125)
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a ,M

2
b ) =

1

32π2

{
2 +

[
M2

a −M2
b

p2 − M2
a +M2

b

M2
a −M2

b

]
ln
M2

b

M2
a

− λ
1/2(p2,M2

a ,M
2
b )

p2 ln

([
p2 + λ1/2(p2,M2

a ,M
2
b )
]2 − (M2

a −M2
b )2

[
p2 − λ1/2(p2,M2

a ,M
2
b )
]2 − (M2

a −M2
b )2

)}
,

where σM =
√

1− 4M2/p2 and λ(x, y, z) = (x− y − z)2 − 4yz.

2.10.4 Useful expansions

Using expansions for x→∞

φ(x) = ln(−x)− 1− 3 ln(−x)

x
+

3

2x
+

3 ln(−x)

x2
+

3

2x2
+ . . . ,

ψ(x) = − ln(−x) +
2 ln(−x)

x
− ln(−x)

x2
− 3

2x2
+ . . . ,

(1− 1

x
) ln(1− x) = ln(−x)− ln(−x)

x
− 1

x
+

1

2x2
+ . . .
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3. Renormalization in the
effective theory for spin-1
resonances

3.1 Introduction

As is well known, in the low energy region the dynamical degrees of freedom
of QCD are not quarks and gluons but the low lying hadronic states and, as a
consequence, a non-perturbative description of the their dynamics is inevitable.
An approach using effective Lagrangians appears to be very efficient for this
purpose and it has made a considerable progress recently. In the very low en-
ergy region (E � ΛH ∼ 1GeV), the octet of the lightest pseudoscalar mesons
(π, K, η) represents the only relevant part of the QCD spectrum. The Chi-
ral Perturbation Theory (χPT) [1–3] based on the spontaneously broken chiral
symmetry SU(3)L × SU(3)R grew into a very successful model-independent tool
for the description of the Green functions (GF) of the quark currents and relat-
ed low-energy phenomenology. The pseudoscalar octet is treated as the octet of
pseudo-Goldstone bosons (PGB) and χPT is organized according to the Weinberg
power-counting formula [1] as a rigorously defined simultaneous perturbative ex-
pansion in small momenta and the light quark masses. Recently, the calculations
are performed at the next-to-next-to-leading order O(p6) (for a comprehensive
review and further references see [54]).

In the intermediate energy region (ΛH ≤ E < 2GeV), where the set of rele-
vant degrees of freedom includes also the low lying resonances, the situation is
less satisfactory. This region is not separated by a mass gap from the rest of
the spectrum and, as a consequence, there is no appropriate scale playing the
role analogous to that of ΛH in χPT . Therefore, the effective theory in this re-
gion cannot be constructed as a straightforward extension of the χPT low energy
expansion by means of introducing resonances e.g. as homogenously (but non-
linearly) transformed matter fields in the sense of [55], [56] and pushing the scale
ΛH to 2GeV.

In order to introduce another type of effective Lagrangian description, the
considerations based on the large NC expansion together with the high-energy
constraints derived from perturbative QCD and OPE appear to be particularly
useful. In the limit NC →∞, the chiral symmetry is enlarged to U(3)L × U(3)R
and the spectrum relevant for the correlators of the quark bilinears consists of an
infinite tower of free stable mesonic resonaces exchanged in each channel and clas-
sified according to the symmetry group U(3)V . An appropriate description should
therefore require an infinite number of resonance fields entering the U(3)L×U(3)R
symmetric effective Lagrangian. Because the quasi-classical expansion is corre-
lated with the large NC expansion, the interaction vertices are suppressed by an
appropriate power of N

−1/2
C according to the number of the meson legs. At the

leading order only the tree graphs have to be taken into account . An approxima-
tion to this general picture where we limit the number of the resonance fields to
one in each channel and matching the resulting theory in the high energy region
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with OPE is known as the Resonance Chiral Theory (RχT) (it was introduced in
seminal papers [8, 9]). Integrating out the resonance fields from the Lagrangian
of RχT in the low energy region and the subsequent matching with χPT has
become very successful tool for the estimates of the resonance contribution to the
values of the O(p4) [8] and O(p6) [57,58] low energy constants (LEC) entering the
χPT Lagrangian. Therefore, studying RχT can help us to understand not only
the dynamics of resonances but also the origin of LECs in χPT.

However, even when restricting to the case of the matter field formalism, it
is known from the very beginning [9] that the form of the RχT Lagrangian is
not determined uniquely. The reason is that the resonances with a given spin
can be described in many ways using fields with different Lorentz structure. For
example, for the spin-one resonances one can use i.a. the Proca vector field or
the antisymmetric tensor field or both (within the first order formalism [59,60]).
Though the theories based on different types of fields with Lagrangians which
contain only finite number of operators are not strictly equivalent already on the
tree level (in general, it is necessary to include nonlocal interaction or infinite
number of operators and contact terms to ensure the complete equivalence, see
[60]), we can always ensure a weak equivalence of all three formalisms up to a
given fixed chiral order (this was established to O(p4) in [9] and enlarged to O(p6)
in [60]).

As we have mentioned above, the lack of the mass gap (which could pro-
vide us with a scale playing the role analogous to ΛH) prevents us from using
a straightforward extension of the Weinberg power-counting formula [1] taking
the resonance masses and momenta of the order O(p) on the same footing as for
PGB. Also the usual chiral power counting which takes the resonance masses as
an additional heavy scale (which is counted as O(1)) fails within the RχT in a
way analogous to the χPT with baryons [61]. Nevertheless, it seems to be fully
legitimate to go beyond the tree level RχT and calculate the loops [62–70].

Being suppressed by one power of 1/NC , the loops allow to encompass such
NLO effects in the 1/NC expansion as resonance widths, resonance cuts and the
final state interaction and (by means matching with χPT) to determine the NLO
resonance contribution to LEC (and their running with renormalization scale).

However, we can expect both technical and conceptual complications connect-
ed with the renormalization of the effective theory for which no natural organiza-
tion of the expansion (other than the 1/NC counting) exists. Especially, because
there is no natural analog of the Weinberg power counting in RχT, we can expect
mixing of the naive chiral orders in the process of the renormalization (e.g the
loops renormalize the O(p2) LEC and also counterterms of unusually high chiral
orders are needed). Also a straightforward construction of the propagator from
the self-energy using the Dyson re-summation can bring about the appearance
of new poles in the GF. Because the spin-one particles are described using fields
transforming under the reducible representation of the rotation group and due to
the lack of an appropriate protective symmetry, some of these additional poles
can correspond to new degrees of freedom, which are frozen at the tree level.
The latter might be felt as a pathological artefact of the not carefully enough
formulated theory, particularly because these extra poles might be negative norm
ghosts or tachyons [71]. On the other hand, however, we could also try to take
an advantage of this feature and to adjust the poles in such a way that they
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correspond to the well established resonance states [72].
Let us note, that similar problems are generic for the description of the higher

spin particles in terms of quantum field theory. As an example we can mention
e.g. the problem with the renormalization of quantum gravity which is trying to
be cured by imposing additional symmetry or by introducing a non-perturbative
quantization believing that UV divergences are only artefact of a perturbative
theory. In the context of the extensions of the χPT , this has been studied in
connection with introducing of the spin-3/2 isospin-3/2 ∆(1232) resonance in
the baryonic sector (for a review see [73] and references therein). The Rarita-
Schwinger field commonly used for its description contains along with the spin-3/2
sector also spin-1/2 sector, which is frozen at the tree level due to the form of the
free equations of motion. These provides the necessary constraints reducing the
number of propagating spin degrees of freedom to four corresponding to spin 3/2
particles. However, these constraints are generally not present in the interacting
theory and negative norm ghost [74] and/or tachyonic [75] poles might appear
beyond the tree level. The appearance of these extra unphysical degrees of free-
dom can be avoided by means of the requirement of additional protective gauge
symmetry under which the interaction Lagrangian has to be invariant. Such a
symmetry, which is also a symmetry of the kinetic term (but not of the mass
term), is an analog of the U(1) gauge symmetry of the electromagnetic field and
its role is also similar. As it has been shown by means of path integral formal-
ism, it leads to the same constraints as in the noninteracting theory and prevent
therefore the extra spin-1/2 states from propagating.

On the other hand, it has been proved, that the most general interaction
Lagrangian at most bilinear in Rarita-Schwinger field (i.e. without the protective
gauge symmetry) is on shell equivalent to the gauge invariant one [76] . The latter
is, however, nonlocal (or equivalently it contains an infinite number of terms).
Also the above protective gauge symmetry is, as a rule, in a conflict with chiral
symmetry, and has therefore to be implemented with a care. Though there are
efficient methods how to handle this obstacles in concrete loop calculations [73],
[76], the problem still has not been solved completely.

In the following, we would like to discuss these problems in more detail. As
an explicit example we use the one-loop renormalization of the propagator corre-
sponding to the fields which originally describe 1−− vector resonance (ρ meson)
at the tree level within the Proca field, the antisymmetric tensor field and within
the first order formalism in the chiral limit. The situation here is quite similar to
the case of spin-3/2 resonances discussed above. In addition, to the spin-1 degrees
of freedom, there are extra sectors that are frozen at the tree level. There exists
a protective gauge symmetry which prevents these modes from propagation. The
kinetic term is invariant with respect to this symmetry while the mass term is
not.

By means of an explicit calculation we will show that (unlike the ordinary
χPT ) the one-loop corrections to the self-energy need counterterms with a num-
ber of derivatives ranging from zero up to six and also that a new kinetic countert-
erm with two derivatives (which was not present in the tree level Lagrangian) is
necessary. We will also demonstrate that the corresponding propagator obtained
by means of Dyson re-summation of the one-particle irreducible self-energy inser-
tions has unavoidably additional poles. Due to the unusual higher order growth
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of the self-energy in the UV region some of them are inevitably pathological (with
a negative norm or a negative mass squared). Though these additional poles are
decoupled in the limit NC → ∞, for reasonable concrete values of the parame-
ters of the Lagrangian they might appear near or even inside the region for which
RχT was originally designed. We also discuss briefly within the antisymmetric
tensor formalism a possible interpretation of some of the non-pathological poles
as a manifestation of the dynamical generation of various types of additional 1+-
states. We will also show that the appropriate adjustment of coupling constants
in the antisymmetric tensor case allows us (at least in principle) to generate in
this way the one which could be identified e.g. with the b1(1235) meson [72].
Such a mechanism is analogous to the model [77] for the dynamical generation
of the scalar resonances from the bare quark-antiquark ”seed”, the propagator of
which develops (after dressing with pseudoscalar meson loops) additional poles
identified e.g. as a0(980) (cf. also [78], [79]).

The chapter organized as follows. In Section 3.2 we remind the basic facts
about the propagators and briefly discuss the issue of the additional degrees of
freedom in all three formalisms for the description of spin-one resonances. We
use the path integral formulation where the protective symmetry analogous to the
Rarita-Schwinger case is manifest. In Section 3.3 we discuss the power counting.
We try to formulate here a formal self-consistent organization of the counterterms
and one-particle irreducible graphs, which sorts the operators in the Lagrangian
according to the number of derivatives as well as number of the resonance fields
and which is useful for the proof of renormalizability of the RχT as an effec-
tive theory. In Section 3.4 we present the results of the explicit calculation of the
self-energies. Then we give a list of counterterms and briefly discuss the renormal-
ization prescription. Section 3.5 is devoted to the construction of the propagators
and to the discussion of their poles. Because the basic ideas are similar within all
three formalisms, we concentrate here on the antisymmetric tensor case. Section
3.6 contains summary and conclusions. Some of the long formulae are postponed
to the appendices: the explicit form of the renormalization scale independent
parameters of the self-energies are collected in Appendix 3.7.4, namely for the
Proca field in 3.7.4, for the antisymmetric tensor field in 3.7.4 and for the first
order formalism in 3.7.4. In Appendix 3.7.5 we give a proof of the positivity of
the spectral functions for the antisymmetric tensor propagator.

3.2 Propagators and poles

In this section, we collect the basic properties of the propagators and the corre-
sponding self-energies within the Proca field, the antisymmetric tensor field and
the first order formalisms. The discussion will be as general as possible without
explicit references to RχT , which can be assumed as the special example of the
general case.
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3.2.1 Proca formalism

General properties of the propagator

We start our discussion with a standard textbook example of the interacting
Proca field. Let us write the Lagrangian in the form

L = L0 + Lint, (3.1)

where the free part of the Lagrangian is

L0 = −1

4
V̂µνV̂

µν +
1

2
M2VµV

µ (3.2)

with
V̂µν = ∂µVν − ∂νVµ. (3.3)

Without any additional assumptions on the form and symmetries of the interac-
tion part of the Lagrangian Lint, we can expect the following general structure of
the full two-point one-particle irreducible (1PI) Green function

Γ(2)
µν (p) = (M2 − p2 + ΣT (p2))P T

µν + (M2 + ΣL(p2))PL
µν . (3.4)

Here

PL
µν =

pµpν
p2

(3.5)

P T
µν = gµν −

pµpν
p2

(3.6)

are the usual longitudinal and transverse projectors and ΣT,L are the correspond-
ing transverse and longitudinal self-energies, which vanish in the free field limit.
Inverting (3.4) we get for the full propagator

∆µν(p) = − 1

p2 −M2 − ΣT (p2)
P T
µν +

1

M2 + ΣL(p2)
PL
µν . (3.7)

The possible (generally complex) poles of such a propagator are of two types;
either at p2 = sV , where sV is given by the solutions of

sV −M2 − ΣT (sV ) = 0, (3.8)

or at p2 = sS where sS is the solution of

M2 + ΣL(sS) = 0. (3.9)

Let us first discuss the poles of the first type. Assuming that (3.8) is satisfied
for sV = M2

V > 0, then for p2 → M2
V

∆µν(p) =
ZV

p2 −M2
V

(
−gµν +

pµpν
M2

)
+O(1)

=
ZV

p2 −M2
V

∑

λ

ε(λ)
µ (p)ε(λ)∗

ν (p) +O(1) (3.10)
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where

ZV =
1

1− Σ′T (M2
V )

(3.11)

and where ε
(λ)
µ (p) are the usual spin-one polarization vectors. Under the condition

ZV > 0 the poles of this type correspond to spin-one one particle states |p, λ, V 〉
which couple to the Proca field as

〈0|Vµ(0)|p, λ, V 〉 = ZV
1/2ε(λ)

µ (p). (3.12)

At least one of these states is expected to be perturbative in the sense that its
mass and coupling to Vµ can be written as

M2
V = M2 + δM2

V (3.13)

ZV = 1 + δZV , (3.14)

where δM2
V and δZV are small corrections vanishing in the free field limit. This

solution corresponds to the original degree of freedom described by the free part
of the Lagrangian L0. The additional one particle states corresponding to the
other possible (non-perturbative) solutions of (3.8) decouple in the free field limit.

The second type of poles is given by (intrinsically nonperturbative) solutions
of (3.9). Suppose that this condition is satisfied by sS = M2

S > 0. For p2 → M2
S

∆µν(p) =
ZS

p2 −M2
S

pµpν
M2

S

+O(1) (3.15)

where

ZS =
1

Σ′L(M2
S)
. (3.16)

Assuming ZS > 0 this pole corresponds to the spin-zero one particle state |p, S〉
which couples to Vµ as

〈0|Vµ(0)|p, S〉 = ipµ
ZS

1/2

MS

. (3.17)

For the free field this scalar mode is frozen and does not propagate according to
the special form of the Proca field Lagrangian. Therefore, in the limit of vanishing
interaction the extra scalar state decouples.

Without any additional assumptions on the symmetries of the interaction
Lagrangian we can therefore expect the appearance of additional dynamically
generated degrees of freedom.

The general picture is, however, more subtle. Note that, the interpretation of
the above additional spin-one and spin-zero poles as physical one-particle asymp-
totic states depends on the proper positive sign of the corresponding residues
ZV , ZS > 0, otherwise the norm of these states is negative and the poles corre-
spond to the negative norm ghosts. Similarly, also poles with M2

V,S < 0 can be
generated, which correspond to the tachyonic states. Let us illustrate this feature
using a toy example. Suppose, that the only interaction terms are of the form

Lint ≡ Lct = −α
4
V̂µνV̂

µν−β
2

(∂µV
µ)2+

γ

2M2
(∂µV̂

µν)(∂ρV̂ρν)+
δ

2M2
(∂µ∂ρV

ρ)(∂µ∂σV
σ).

(3.18)
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Such a Lagrangian can be typically produced by radiative corrections in an ef-
fective field theory with Proca field, which does not couple to other fields in a
U(1) gauge invariant way, and can provide us with counterterms necessary to
renormalize the loops contributing to the V field self-energy. Lct gives rise to the
following contributions to ΣT (p2) and ΣL(p2)

ΣT (p2) = −αp2 + γ
p4

M2
(3.19)

ΣL(p2) = −βp2 + δ
p4

M2
. (3.20)

As a result, we have two spin-one and two spin-zero one-particle states. The
masses and residue of the spin-one states are then

M2
V± = M2

(
1 +

1 + α− 2γ ∓
√

(1 + α)2 − 4γ

2γ

)
(3.21)

1− Σ
′T (M2

V±) = ±
√

(1 + α)2 − 4γ, (3.22)

which are real for for (1 + α)2 − 4γ > 0. In the limit α, γ → 0, α/γ = const we
get either the perturbative solution with mass MV+ or (for γ > 0) an additional
spin-one ghost with mass MV− (for 1 + α > 0 and γ < 0 this pole is tachyonic).
Similarly for the spin-zero states

M2
S± = M2

(
β ∓

√
β2 − 4δ

2δ

)
(3.23)

Σ
′L(M2

S±) = ∓
√
β2 − 4δ. (3.24)

The poles are real for β2 > 4δ and e.g. for β, δ > 0 one of the poles is spin-zero
ghost. In both cases for appropriate values of the parameters we can get also
two tachyons or even the complex Lee-Wick pair of ghosts. These features are of
course well known in the connection with the higher derivative regularization (as
well as with the properties of the gauge-fixing term).

Additional degrees of freedom in the path integral formalism

The additional degrees of freedom discussed in the previous subsection can be
made manifest in the path integral formalism. Let us start with the generating
functional for the interacting Proca field

Z[J ] =

∫
DV exp (3.25)

(
i

∫
d4x

(
−1

4
V̂µνV̂

µν +
1

2
M2VµV

µ + Lint(V, J, . . .)
))

,

where the external sources are denoted collectively by J . In order to separate
the transverse and longitudinal degrees of freedom of the field Vµ within the path
integral we can use the standard Faddeev-Popov trick with respect to the U(1)
gauge transformation of the field Vµ

Vµ → Vµ + ∂µΛ. (3.26)
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As a result, we get the generating functional in the form

Z[J ] =

∫
DV⊥DΛ exp

(
i

∫
d4x

(
1

2
V µ
⊥�V⊥µ +

1

2
M2V µ

⊥V⊥µ +
1

2
M2∂µΛ∂µΛ + Lint

))
.

(3.27)
where Lint = Lint(V⊥ − ∂Λ, J, . . .). Here DV⊥ = DV δ(∂µV µ) and

V µ
⊥ =

(
gµν − ∂µ∂ν

�

)
Vν

is the transverse part of the vector field V µ, the longitudinal part of which corre-
sponds to the scalar field Λ, i.e.

V µ = V µ
⊥ + ∂µΛ. (3.28)

The free propagators of the fields V µ
⊥ and Λ are

∆µν
⊥ (p) = − P T µν

p2 −M2
(3.29)

∆Λ(p) =
1

M2

1

p2
. (3.30)

Both these propagators have spurious poles at p2 = 0, however, the only necessary
combination which matters in the Feynman graphs is

∆µν
0 (p) = ∆µν

⊥ (p) + pµpν∆Λ(p), (3.31)

which coincides with the original free propagator of the field V µ and the spurious
poles cancel each other.

Note that, provided the interaction Lagrangian Lint is symmetric under the
U(1) gauge transformation (3.26), the spin-zero field Λ completely decouples and
can be integrated out . The theory can then be formulated solely in terms of
the field V µ

⊥ . The U(1) invariant form of the interaction allows to simplify the
propagator ∆µν

⊥ (p)

∆µν
⊥ (p)→ − gµν

p2 −M2
(3.32)

within the Feynman graphs and the spurious pole p2 = 0 in (3.29) becomes harm-
less. In this case, the scalar one-particle states cannot be dynamically generated.
On the other hand, in the case when Lint is not invariant with respect to (3.26),
we cannot forget the longitudinal component of V µ which has now nontrivial
interactions and, as a result, contributions to ΣL can be generated.

Let us now return to the illustrative example discussed in the previous sub-
section. Suppose that the interaction Lagrangian has the form

Lint = Lct + L′int (3.33)

where Lct is the toy interaction Lagrangian (3.18) and we assume α > −1 and
δ > 0 in what follows. Then it is possible to transform Z[J ] to the form of the
path integral with all the additional degrees of freedom represented explicitly
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in the Lagrangian and the integration measure. In terms of the transverse and
longitudinal degrees of freedom we get

Lint(V⊥ − ∂Λ, J, . . .) = Lct(V⊥ − ∂Λ, J, . . .) + L′int(V⊥ − ∂Λ, J, . . .)

=
α

2
V µ
⊥�V⊥µ −

β

2
(�Λ)2 +

γ

2M2
(�V µ

⊥ )(�V⊥µ) +
δ

2M2
(∂µ�Λ)(∂µ�Λ)

+L′int(V⊥ − ∂Λ, J . . .). (3.34)

In order to lower the number of derivatives in the kinetic terms we integrate in
auxiliary scalar fields χ, ρ, π, σ and auxiliary transverse vector field B⊥µ writing
e.g.

exp

(
−i
∫

d4x
β

2
(�Λ)2

)
=

∫
Dχ exp

(
i

∫
d4x

(
1

2β
χ2 − ∂µχ∂µΛ

))
(3.35)

and similarly for other higher derivative terms. After the superfluous degrees of
freedom are identified and integrated out, the fields are re-scaled and then the
resulting mass matrix can be diagonalized by means of two symplectic rotations
with angles θV and θS (the technical details are postponed to the Appendix 3.7.1).
Finally we get (under the conditions (1 + α)2 > 4γ and β2 > 4δ)

Z[J ] =

∫
DV⊥DB⊥DΛDχDσ exp

(
i

∫
d4xL(V⊥, B⊥,Λ, χ, σ, J, . . .)

)
(3.36)

where

L(V⊥, B⊥,Λ, χ, σ, J, . . .) =
1

2
V µ
⊥�V⊥µ +

1

2
M2

V+V
µ
⊥V⊥µ −

1

2
Bµ
⊥�B

µ
⊥ +

1

2
M2

V−B
µ
⊥B⊥µ

+
1

2
∂µσ∂

µσ − 1

2
M2

S+σ
2 − 1

2
∂µχ∂

µχ− 1

2
M2

S−χ
2 +

1

2
M2∂µΛ∂µΛ

+L′int(V
(θ)
, J, . . .).

(3.37)

and

V
(θ)

=
exp θV

(1 + α)1/2
(V⊥ +B⊥)− ∂χ cosh θS − ∂σ sinh θS − ∂Λ (3.38)

and where M2
V±, M2

S± are the mass eigenvalues (3.21) and (3.23). The theory
is now formulated in terms of two spin one and two spin zero fields, whereas
two of them, namely Bµ

⊥ and χ have a wrong sign of the kinetic terms and are
therefore negative norm ghosts. As above, the field Λ does not correspond to any
dynamical degree of freedom, its role is merely to cancel the spurious poles of the
free propagators of the transverse fields V⊥ and B⊥ at p2 = 0.

3.2.2 Antisymmetric tensor formalism

For the antisymmetric tensor field in the formalism [8, 9] the situation is quite
analogous to the Proca field case so our discussion will be parallel to the previous
subsection. Let us write the Lagrangian in the form

L = L0 + Lint. (3.39)
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where the free part is

L0 = −1

2
(∂µR

µν)(∂ρRρν) +
1

4
M2RµνR

µν , (3.40)

and introduce the transverse and longitudinal projectors

ΠT
µναβ =

1

2

(
P T
µαP

T
νβ − P T

ναP
T
µβ

)
(3.41)

ΠL
µναβ =

1

2
(gµαgνβ − gναgµβ)− ΠT

µναβ (3.42)

with P T
µα given by (3.6). Again, in analogy with (3.4), for completely general Lint

we can expect the following general form of the full two-point 1PI Green function

Γ
(2)
µναβ(p) =

1

2
(M2 + ΣT (p2))ΠT

µναβ +
1

2
(M2 − p2 + ΣL(p2))ΠL

µναβ (3.43)

where ΣT,L are the corresponding self-energies. The full propagator is then ob-
tained by means of the inversion of Γ

(2)
µναβ in the form

∆µναβ(p) = − 2

p2 −M2 − ΣL(p2)
ΠL
µναβ +

2

M2 + ΣT (p2)
ΠT
µναβ. (3.44)

This propagator has two types of poles analogous to (3.8) and (3.9), either at
p2 = sV , satisfying

sV −M2 − ΣL(sV ) = 0, (3.45)

or at p2 = sṼ where
M2 + ΣT (sṼ ) = 0. (3.46)

Assuming that the solution of (3.45) satisfies sV = M2
V > 0, the propagator

behaves at this pole as

∆µναβ(p) =
ZV

p2 −M2
V

pµgναpβ − pνgµαpβ − (α↔ β)

M2
V

+O(1)

=
ZV

p2 −M2
V

∑

λ

u(λ)
µν (p)u

(λ)
αβ (p)∗ +O(1) (3.47)

where

ZV =
1

1− Σ′L(M2
V )

(3.48)

and the wave function u
(λ)
µν (p) can be expressed in terms of the spin-one polariza-

tion vectors ε
(λ)
ν (p) as

u(λ)
µν (p) =

i

MV

(
pµε

(λ)
ν (p)− pνε(λ)

µ (p)
)
. (3.49)

For ZV > 0 the pole of this type corresponds therefore to the spin-one state
|p, λ, V 〉 which couples to Rµν as

〈0|Rµν(0)|p, λ, V 〉 = ZV
1/2u(λ)

µν (p). (3.50)
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Analogously to the Proca case, at least one of these poles is expected to be
perturbative and corresponds to the original degree of freedom described by the
free Lagrangian L0. This means

M2
V = M2 + δM2

V (3.51)

ZV = 1 + δZV (3.52)

with small corrections δM2
V and δZV vanishing in the free field limit. The other

possible nonperturbative solutions of (3.45) decouple in this limit.
Provided there exists a solution of (3.46) for which sṼ = M2

Ṽ
> 0, we get at

this pole

∆µναβ(p) =
ZṼ

p2 −M2
Ṽ

(
gµαgνβ +

pµgναpβ − pµgνβpα
M2

A

− (µ↔ ν)

)
+O(1)

=
ZṼ

p2 −M2
Ṽ

∑

λ

w(λ)
µν (p)w

(λ)
αβ (p)∗ +O(1) (3.53)

where

ZṼ =
1

Σ′T (M2
Ṽ

)
(3.54)

and the wave function is dual to the wave function (3.49)

w(λ)
µν (p) = ũ(λ)

µν (p) =
1

2
εµναβu

(λ)αβ(p). (3.55)

Provided ZṼ > 0, the poles of this type correspond to the spin-one particle states

|p, λ, Ṽ 〉 with the opposite intrinsic parity in comparison with |p, λ, V 〉, which
couple to the antisymmetric tensor field as

〈0|Rµν(0)|p, λ, Ṽ 〉 = ZṼ
1/2w(λ)

µν (p). (3.56)

This degree of freedom is frozen in the free propagator due to the specific form
of the free Lagrangian and it decouples in the limit of the vanishing interaction.

As in the Proca field case, we can therefore generally expect dynamically
generated additional degrees of freedom, which can be either regular asymptot-
ic states (M2

V,Ṽ
, ZV,Ṽ > 0) or negative norm ghosts (M2

V,Ṽ
> 0, ZV,Ṽ < 0) or

tachyons (M2
V,Ṽ

< 0). Complex poles on the unphysical sheets can be then inter-

preted as resonances.
As the toy illustration of these possibilities, let us take the interaction La-

grangian similar to (3.18) in the Proca field case e.g. in the form

Lint ≡ Lct = −α− β
2

(∂µR
µν)(∂ρRρν)−

β

4
(∂µR

αβ)(∂µRαβ)

+
γ − δ
2M2

(∂α∂µR
µν)(∂α∂ρRρν) +

δ

4M2
(∂ρ∂µR

αβ)(∂ρ∂µRαβ). (3.57)

We get then the following contributions to the longitudinal and transverse self-
energies

ΣL(p2) = −αp2 + γ
p4

M2
(3.58)

ΣT (p2) = −βp2 + δ
p4

M2
. (3.59)
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These are exactly the same as (3.20) and (3.19) (with the identification ΣT,L ↔
ΣL,T ). Therefore, provided we further identify M2

S± ↔M2
Ṽ±, the properties of the

poles and residues are the same as in the previous subsection (see the discussion
after (3.20) and (3.19)), with the only exception that instead of the extra spin-
zero states with the mass (3.23) we have now extra spin-one states with the same
mass (3.23) but with the opposite parity in comparison with the original degrees
of freedom described by the free lagrangian L0.

Path integral formulation

We can again made the additional degrees of freedom manifest within the path
integral approach in the way parallel to subsection 3.2.1. An analog of the U(1)
gauge symmetry used in the case of the Proca field formalism in order to separate
the transverse and longitudinal components of the field Vµ is here the following
transformation with a pseudovector1 parameter Λα

Rµν → Rµν +
1

2
εµναβΛ̂αβ, (3.60)

where
Λ̂αβ = ∂αΛβ − ∂βΛα. (3.61)

This leaves the kinetic term invariant, while the mass term is changed. Note,
that the transformation with the parameters Λα and Λλ

α where

Λλ
α = Λα + ∂αλ (3.62)

are the same. This residual gauge invariance has to be taken into account when
using the Faddeev-Popov trick in order to isolate the longitudinal and transverse
degrees of freedom of the field Rµν . Analog of the formula (3.28) is now

Rµν = Rµν
‖ +

1

2
εµναβΛ̂αβ (3.63)

where Rµν
‖ is the longitudinal component of Rµν . Its transverse component is

described with the transverse component Λµ
⊥ of the field Λµ where

Λµ = Λµ
⊥ + ∂µλ. (3.64)

Starting with the path integral representation of the generating functional2

Z[J ] =

∫
DR exp

(
i

∫
d4x

(
−1

2
(∂µR

µν)(∂ρRρν) +
1

4
M2RµνR

µν + Lint(Rµν , J, . . .)

))

(3.65)
and using the Faddeev-Popov trick twice with respect to the transformations
(3.60) and (3.62) we finally find for Z[J ] the following representation

Z[J ] =

∫
DR‖DΛ⊥ exp

(
i

∫
d4xL(Rµν

‖ ,Λ
µ
⊥, . . .)

)
(3.66)

1This is of course true only in the case of the proper tensor field Rµν . Provided Rµν is a
pseudotensor, the parameter of the transformation is vectorial.

2Here J are the external sources, cf. previous subsecrion.
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where the integral measure is

DR‖DΛ⊥ = DRDΛδ(∂αRµν + ∂νRαµ + ∂µRνα)δ(∂µΛµ) (3.67)

and

Rµν
‖ = − 1

2�
(∂µgνα∂β + ∂νgµβ∂α − (µ↔ ν))Rαβ (3.68)

Λµ
⊥ =

(
gµν − ∂µ∂ν

�

)
Λν . (3.69)

are the longitudinal part of the tensor field Rµνand the transverse part of the vec-
tor field Λµ (describing the transverse part of the tensor field Rµν) respectively3.
The Lagrangian expressed in these variables reads

L(Rµν
‖ ,Λ

µ
⊥, J, . . .) = (3.70)

1

4
Rµν
‖ �R‖µν +

1

4
M2Rµν

‖ R‖µν +
1

2
M2Λµ

⊥�Λ⊥µ + Lint(Rµν
‖ −

1

2
εµναβΛ̂αβ, J, . . .).

The free propagators of the fields Rµν
‖ and Λµ

⊥ are therefore

∆µναβ
‖ (p) = − 2

p2 −M2
ΠLµναβ (3.71)

∆µν
⊥ (p) = − 1

M2

1

p2
P T µν (3.72)

and, similarly to the case of the Proca field, they have spurious poles at p2 = 0.
Due to the form of the interaction, however, only the combination

∆µναβ
0 (p) = ∆µναβ

‖ (p) + εµνρσεαβκλpρpκ∆⊥σλ(p)

= − 2

p2 −M2
ΠLµναβ +

2

M2
ΠT µναβ (3.73)

corresponding to the free propagator of the original tensor field Rµν is relevant
within the Feynman graphs and the spurious poles cancel. By analogy with the
Proca field case, for the interaction Lagrangian invariant with respect to the
transformation (3.60) the field Λµ

⊥ completely decouples and can be integrated

out. Such a form of the interaction also allows to modify the propagator ∆µναβ
‖ (p)

within the Feynman graphs

∆µναβ
‖ (p)→ −gµαgνβ − gµβgνα

p2 −M2
(3.74)

and no spurious pole at p2 = 0 effectively appears. In this case the opposite
parity spin-one states discussed in the previous subsection cannot be dynamically
generated.

In order to illustrate the appearance of the additional degrees of freedom con-
nected with the interaction Lagrangian (3.57) within the path integral formalism,
we can make the same exercise with the interaction Lagrangian (3.57) as we did

3Note again that, the field Λµ has opposite parity than the field Rµν (being pseudovector
for proper tensor field Rµν and vice versa).
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in the previous subsection with (3.18). Our aim is again to make the additional
degrees of freedom explicit in the path integral representation of Z[J ]. The pro-
cedure is almost one-to-one to the case of the Proca fields so that we will be more
concise. The technical details can be found in the Appendix 3.7.2.

We assume the interaction Lagrangian to be of the form

Lint = Lct + L′int, (3.75)

where Lct is given by (3.57) and we assume α > −1 and δ > 0 as above. Lint can
be then re-express it in terms of the longitudinal and transverse components of
the original field Rµν

Lint(Rµν
‖ −

1

2
εµναβΛ̂αβ, J, . . .) = Lct(Rµν

‖ −
1

2
εµναβΛ̂αβ, J, . . .)+L

′

int(R
µν
‖ −

1

2
εµναβΛ̂αβ, J, . . .)

(3.76)
where

Lct(Rµν − 1

2
εµναβΛ̂αβJ, . . .) =

α

4
Rµν
‖ �R‖µν +

γ

4M2
(�Rµν

‖ )(�R‖µν)

+
β

2
(�Λµ

⊥)(�Λ⊥µ)− δ

2M2
(∂α�Λµ

⊥)(∂α�Λ⊥µ).(3.77)

We then introduce the auxiliary (longitudinal) antisymmetric tensor field Bµν
‖

and (transverse) vector fields χµ⊥, ρµ⊥, σµ⊥ and πµ⊥ in order to avoid the higher
derivative terms in a complete analogy with the Proca field case. Again, not
all the fields correspond to propagating degrees of freedom and such redundant
fields can be integrated out. After rescaling the fields and diagonalization of the
resulting mass terms by means of two symplectic rotations with angles θV and
θṼ exactly as in the case of the Proca fields (see the Appendix 3.7.2 for details)
we end up with

Z[J ] =

∫
DR‖DB‖DΛ⊥Dχ⊥Dρ⊥Dσ⊥Dπ⊥ exp (3.78)

(
i

∫
d4xL(R‖, B‖,Λ⊥, χ⊥, ρ⊥, σ⊥, π⊥, J, . . .)

)

with (cf. (3.191))

L =
1

4
Rµν
‖ �R‖µν +

1

4
M2

V+R
µν
‖ R‖µν

−1

4
Bµν
‖ �B‖µν +

1

4
M2

V−B
µν
‖ B‖µν

+
1

2
M2Λµ

⊥�Λ⊥µ

−1

2
χµ⊥�χ⊥µ +

1

2
M2

Ṽ−χ
µ
⊥χ⊥µ +

1

2
σµ⊥�σ⊥µ +

1

2
M2

Ṽ+
σµ⊥σ⊥µ

+Lint(R(θ)
, J, . . .) (3.79)

where

R
(θ)µν

=
exp θV

(1 + α)1/2
(Rµν
‖ +Bµν

‖ )− 1

2
εµναβ

(
Λ̂αβ + σ̂⊥αβ sinh θṼ + χ̂⊥αβ cosh θṼ

)
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and with the diagonal mass terms corresponding to the eigenvalues (3.21, 3.23)
(with identification M2

Ṽ± → M2
S±). Again we have two pairs of fields with the

opposite signs of the kinetic terms, namely (Rµν
‖ , B

µν
‖ ) and (χµ⊥, σ

µ
⊥) respectively.

As a result we have found four spin-one states, two of them being negative norm
ghosts, namely Bµν

‖ and σµ⊥ and two of them with the opposite parity, namely

χµ⊥ and σµ⊥. As in the Proca field case, the field Λµ
⊥ effectively compensates

the spurious p2 = 0 poles in the Rµν
‖ and Bµν

‖ propagators within Feynman
graphs.

3.2.3 First order formalism

The first order formalism is a natural alternative to the previous two (for the
motivation and details of the quantization see [60], cf. also [59]). It introduces
both vector and antisymmetric tensor fields into the Lagrangian, therefore the
analysis is a little bit more complex in comparison with previous two cases. In
this case, the Lagrangian is of the form

L = L0 + Lint (3.80)

where now the free part is

L0 = MVν∂µR
µν +

1

2
M2VµV

µ +
1

4
M2RµνR

µν . (3.81)

Instead of just one one-particle irreducible two point Green function we have a
matrix

Γ(2)(p) =

(
Γ

(2)
V V (p)µν Γ

(2)
V R(p)αµν

Γ
(2)
RV (p)µνα Γ

(2)
RR(p)µναβ

)
(3.82)

where (without any additional assumptions on the form of Lint) the matrix ele-
ments have the following general form (cf. (3.4) and (3.43))

Γ
(2)
RR(p)µναβ =

1

2
(M2 + ΣT

RR(p2))ΠT
µναβ +

1

2
(M2 + ΣL

RR(p2))ΠL
µναβ (3.83)

Γ
(2)
V V (p)µν = (M2 + ΣT

V V (p2))P T
µν + (M2 + ΣL

V V (p2))PL
µν (3.84)

Γ
(2)
RV (p)µνα =

i

2

(
M + ΣRV (p2)

)
Λµνα (3.85)

Γ
(2)
V R(p)αµν =

i

2

(
M + ΣV R(p2)

)
Λt
αµν . (3.86)

Here ΣT,L
RR (p2), ΣT,L

V V (p2) and ΣRV (p2) = ΣV R(p2) are corresponding self-energies
and the off-diagonal tensor structures are

Λµνα = −Λt
αµν = pµgνα − pνgµα. (3.87)

This matrix of propagators

∆(p) =

(
∆V V (p)µν ∆V R(p)αµν
∆RV (p)µνα ∆RR(p)µναβ

)
(3.88)
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can be obtained by means of the inversion of the matrix (3.82) with the result

∆RR(p)µναβ =
2

M2 + ΣT
RR(p2)

ΠT
µναβ + 2

M2 + ΣT
V V (p2)

D(p2)
ΠL
µναβ (3.89)

∆V V (p)µν =
1

M2 + ΣL
V V (p2)

PL
µν +

M2 + ΣL
RR(p2)

D(p2)
P T
µν (3.90)

∆RV (p)µνα = −i
M + ΣRV (p2)

D(p2)
Λµνα (3.91)

∆V R(p)αµν = −i
M + ΣV R(p2)

D(p2)
Λt
αµν , (3.92)

where

D(p2) = (M2+ΣL
RR(p2))(M2+ΣT

V V (p2))−p2(M+ΣRV (p2))(M+ΣV R(p2)). (3.93)

Let us now discuss the structure of the poles, which is now richer than in previous
two cases. We have three possible types of poles, namely sV , sṼ and sS, being
solutions of

D(sV ) = 0

M2 + ΣT
RR(sṼ ) = 0

M2 + ΣL
V V (sS) = 0 (3.94)

respectively. As far as the pole sV is concerned, let us assume sV = M2
V > 0. We

get then at this pole (see also previous two subsections)

∆RR(p)µναβ =
ZRR

p2 −M2
V

∑

λ

u(λ)
µν (p)u

(λ)
αβ (p)∗ +O(1) (3.95)

∆V V (p)µν =
ZV V

p2 −M2
V

∑

λ

ε(λ)
µ (p)ε(λ)∗

ν (p) +O(1) (3.96)

∆RV (p)µνα =
ZRV

p2 −M2
V

∑

λ

u(λ)
µν (p)ε(λ)

α (p)∗ +O(1) (3.97)

∆V R(p)αµν =
ZV R

p2 −M2
V

∑

λ

ε(λ)
α (p)u(λ)∗

µν (p) +O(1) (3.98)

where u
(λ)
µν (p) is given by (3.49) and the residue are

ZRR =
M2 + ΣT

V V (M2
V )

D′(M2
V )

(3.99)

ZV V =
M2 + ΣL

RR(M2
V )

D′(M2
V )

(3.100)

ZRV =
M + ΣRV (M2

V )

D′(M2
V )

MV = ZV R =
M + ΣV R(M2

V )

D′(M2
V )

MV . (3.101)

Note that, as a consequence of (3.94) we get the following relation

ZRRZV V = Z2
RV = Z2

V R, (3.102)
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(remember ΣRV (p2) = ΣV R(p2)), therefore assuming ZRR, ZV V > 0 the pole p2 =
M2

V > 0 corresponds to the spin-one one-particle state |p, λ, V 〉 which couples to
the fields as

〈0|Rµν(0)|p, λ, V 〉 = ZRR
1/2u(λ)

µν (p) (3.103)

〈0|Vµ(0)|p, λ, V 〉 = ZV V
1/2ε(λ)

µ (p). (3.104)

Again at least one of such states is expected to be perturbative as above and it
correspond to the original degree of freedom described by L0; the others decouple
when the interactions is switched off. The other possible poles, sS = M2

S and
sṼ = M2

Ṽ
are analogical to the spin-zero and spin-one (opposite parity) states

discussed in detail in the previous two subsections; they correspond to the modes
which are frozen at the leading order and decouple in the free field limit. As we
have already discussed, without further restriction on the form of the interaction,
all the additional states can be also negative norm ghosts or tachyons.

Let us illustrate the general case using a toy interaction Lagrangian of the
form

Lct = −αV
4
V̂µνV̂

µν − βV
2

(∂µV
µ)2

−αR − βR
2

(∂µR
µν)(∂ρRρν)−

βR
4

(∂µR
αβ)(∂µRαβ). (3.105)

This gives

ΣL
RR(p2) = −αRp2

ΣT
RR(p2) = −βRp2

ΣT
V V (p2) = −αV p2

ΣL
V V (p2) = −βV p2

ΣRV (p2) = ΣV R(p2) = 0 (3.106)

and for βV,R > 0 the spectrum of one-particle states consists of one spin-zero
ghost, one spin-one ghost with opposite parity. Their masses and residue are

M2
S =

M2

βV
, ZS = − 1

βV
(3.107)

M2
Ṽ

=
M2

βR
, ZṼ = − 1

βR
(3.108)

(provided βR < 0 or βV < 0 the corresponding states are tachyons) and two
spin-one states with masses

M2
V± = M2 1 + αR + αV ±

√
D

2αRαV
D = (1 + αR + αV )2 − 4αRαV . (3.109)

To get both M2
V± > 0 we need D > 0, αV αR > 0 and 1 + αR + αV > 0; in this

case we get for the residue Z
(±)
RR and Z

(±)
V V at poles M2

V±

αRZ
(+)
RRZ

(−)
RR = αVZ

(+)
V V Z

(−)
V V =

1

D > 0 (3.110)
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Assuming Z
(−)
RR , Z

(−)
V V > 0 (note that, for small couplingsM2

V− = M2(1+O(αR, αV ))

with Z
(−)
RR , Z

(−)
V V = 1 + O(αR, αV ) corresponds to the perturbative solution), the

additional spin one-state is either positive norm state for αV,R > 0 or ghost for
αV,R < 0 (in this latter case the extra kinetic terms in Lct have wrong signs).

Also in this case the propagating degrees of freedom can be made manifest
within the path integral formalism. The corresponding discussion is in a sense
synthesis of subsections 3.2.1 and 3.2.2 and is postponed to Appendix 3.7.3.

3.3 Organization of the counterterms

Let us now return to the concrete case of RχT . Our aim is to calculate the one
loop self-energies defined in the previous section in all three formalisms discussed
there. In the process of the loop calculation we are lead to the problem of perform-
ing a classification of the countertems, which have to be introduced in order to
renormalize infinities. For this purpose, it is convenient to have a scheme, which
allows us to assign to each operator in the Lagrangian and to each Feynman
graph an appropriate expansion index. Indices of the counterterms, which are
necessary in order to cancel the divergences of the given Feynman graph, should
be then correlated with the indices of the vertices of the graph as well as with the
number of the loops. When we restrict ourselves to the (one-particle irreducible)
graphs with a given index, the number of the allowed operators contributing to
the graph as well as that of necessary counterterms should be finite.

There are several possibilities how to do it, some of them being quite efficient
but purely formal and unphysical, some of them having good physical meaning,
but not very useful in practise. In the literature, several attempts to organize the
individual terms of the RχT Lagrangian can be found. Let us briefly comment
on some of them from the point of view of its applicability to our purpose.

The first one is intimately connected with the effective chiral Lagrangian Lχ,res

which appears as a result of the (tree-level) integrating out of the resonances from
the RχT . Such a counting assigns to each operator of the resonance part of the
RχT Lagrangian Lres a chiral order according to the minimal chiral order of the
coupling (LEC) of the effective chiral Lagrangian Lχ,res to which the correspond-
ing operator contributes [58], [57]. More generally, in this scheme the chiral order
of the operators from Lres refers to the minimal chiral order of its contribution to
the generating functional of the currents Z[v, a, p, s] =

∑
n Z

(2n)[v, a, p, s]. The
loop expansion of Z[v, a, p, s] formally corresponds to the expansion around the
classical fields which are solutions of the classical equation of motion. The formal
chiral order of the resonance fields corresponds then to the chiral order of the
leading term of the expansion of the classical resonance fields in powers of p and
external sources according to the standard chiral power counting, i.e.

V µ = O(p3), Rµν = O(p2). (3.111)

At the same time, for the resonance mass (which plays a role of the hadronic
scale within the standard power counting) we take

M = O(1), (3.112)

and for the external sources as usual

vµ, aµ = O(p), χ, χ+ = O(p2). (3.113)
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The resonance propagators are then of the (minimal) order O(1) and the order
of the operators which contain the resonance fields is at least O(p4). This formal
power counting therefore restricts both the number of the resonance fields in the
generic operator as well as the number of the derivatives. When combined with
the large NC arguments, it allows for the construction of the complete operator
basis necessary for the saturation of the LEC’s in the chiral Lagrangian at a given
chiral order and a leading order in the 1/NC expansion [57].

Originally this type of power counting was designed for the leading order
(tree-level) matching of RχT and χPT within the large NC expansion and there
is no straightforward extension to the general graph Γ with L loops. The reason
is that the above power counting of the resonance propagators inside the loops
does not reproduce correctly the standard chiral order of the graph. As a result,
the loop graphs violate the naive chiral power counting in a way analogous to the
χPT with baryons [61] .

The second possibility applicable to loops is to generalize the Weinberg [1]
power counting scheme and formally arrange the computation as an expansion
in the power of the momenta and the resonance masses [80] (though there is no
mass gap and no natural scale which would give to such a formal power counting
a reasonable physical meaning4). Nevertheless, provided we make a following
assignment to the resonance field and to the resonance mass M

V µ, Rµν = O(1), M = O(p) (3.114)

we get for the kinetic and mass term of the resonance field

Lkin,Lmass = O(p2) (3.115)

i.e. the same order as for the lowest order chiral Lagrangian, which allows the
same power counting of the resonance propagators as for PGB within the pure
χPT . As a result, the Weinberg formula for the order DΓ of a given graph Γ with
L loops built from the vertices with the order DV ,

DΓ = 2 + 2L+
∑

V

(DV − 2), (3.116)

remains valid also within RχT . Note however, that now p2/M2 = O(1) and
therefore the counterterms needed for renormalization of the graph with chiral
order DΓ might contain more than DΓ derivatives (this feature is typical for
graphs with resonances inside the loops because of the nontrivial numerator of
the resonance propagator). Therefore this type of power counting is less useful for
the classification of the counterterms than in the case of the pure χPT , where DΓ

gives an upper bound on the number of derivatives of the counterterms needed
to renormalize Γ.

4Sometimes it is argued [80], [81], that such a counting can be used within the large NC
limit, due to the fact that the natural χPT scale ΛχPT = 4πF = O(

√
NC) grows with NC

while the masses of the resonances behave as O(1). In fact this results only in the suppression
of the loops but generally not in the suppression of the counterterm contributions. In the latter
case the expansion is rather controlled by the scale ΛH ∼MR = O(1), where MR is the typical
mass of the higher resonance in the considered channel not included in truncated Lagrangian
corresponding to minimal hadronic ansatz.
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There are also some other complications, which depreciate this counting in the
case of RχT . First note that the interaction vertices with the resonance fields
can carry a chiral order smaller than two. This applies e.g. to the trilinear vertex
in the antisymmetric tensor representation

ORRR = igρσ〈RµνR
µρRνσ〉 (3.117)

or to the odd intrinsic parity vertex mixing the vector and rge antisymmetric
tensor field in the first order formalism

ORV = εαβµν〈{V α, Rµν}uβ〉. (3.118)

Therefore, increasing number of such vertices will decrease the formal chiral order
causing again a mismatch between the chiral counting and the loop expansion.
Furthermore, such a naive scheme unlike the previous one does not restrict the
number of the resonance fields in a general operator because only the number of
derivatives, the resonance masses and the external sources score.

The former drawback can be formally cured by adding an artificial power of M
in front of such operators5 (or equivalently counting the corresponding couplings
as O(p2) and O(p) respectively) in order to increase artificially their chiral order
and preserve the validity of the Weinberg formula, which now can serve as a
formal tool for the classification of the counterterms. How to treat the latter
drawback we will discuss further bellow. Let us, however, stress once again, that
there is no physical content in such a classification scheme, though it might be
technically useful.

Third possibility how to assign an index to the given interaction terms and
to the general graphs, independent of the previous two, is offered by the large
NC expansion. In the NC → ∞ limit, the amplitude of the interaction of the
n mesonic resonances is suppressed at least by the factor O(N

1−n/2
C ) and, more

generally, the matrix element of arbitrary number of quark currents and n mesons
in the initial and final states has the same leading order behavior; e.g. for the
GB decay constant we get F = O(N

1/2
C ). Because within the chiral building

blocks the GB fields always go with the factor 1/F , we can treat the coupling
cO corresponding to the operator O of the RχT Lagrangian as cO = O(NωO

C ),
where

ωO = 1− nOR
2
− sO, (3.119)

nOR is the number of the resonance fields contained in O and sO is a possible
additional suppression coming e.g. from multiple flavor traces or from the fact,
that this coupling appears as a counterterm renomalizing the loop divergences6.
From such an operator, generally the infinite number of vertices V with increasing
number nVGB of GB legs can be derived, each accompanied with a factor cOF−nGB/2

and therefore, suppressed as O(NωV
C ), where the index ωV is given by7

ωV = 1− nOR
2
− nVGB

2
− sO. (3.120)

5In the case of ORV it seems to be natural from the dimensional reason.
6Note that, each additional mesonic loop yields a further suppression 1/NC , see also bellow.
7Here and in what follows we use subscript O when referring to the operator, while the

superscript V corresponds to the concrete vertex derived from the operator O.
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For a given graph, we have the large NC behavior O(NωΓ
C ) where8

ωΓ =
∑

V

ωV = 1− 1

2
E − L−

∑

O
sO, (3.121)

where L is number of the loops, E is the number of external mesonic lines and
we have used the identities

∑

V

(nVR + nVGB) = 2IR + 2IGB + E

IR + IGB = L+ V − 1 (3.122)

relating L and E with the number of resonance and GB internal lines IR and IGB.
The loop expansion is therefore correlated with the large NC expansion; higher
loops need additionally NC−suppressed counterterms Oct with higher sOct :

sOct =

(
1− 1

2
E

)
− ωΓ = L+

∑

O
sO (3.123)

Though the formula (3.121) refers seemingly to individual vertices, reformulated
in in the form (3.123) it points to the members of the chiral symmetric opera-
tor basis of the RχT Lagrangian. However, as it stays, it does not suit for our
purpose because the large NC counting rules give no restriction for the number
of derivatives as well as to the number of resonance fields (once the couplings re-
spect the leading order large NC behavior described above). The formula (3.123)
expresses merely the the fact that the large NC expansion coincide with the loop
one.

Let us now describe another useful technical way how to classify the coutert-
erms, which could overcome the problems with the above schemes and is in a sense
a combination of them. Let us start with the familiar formula for the degree of
superficial divergence dΓ of a given one particle irreducible graph Γ, which pro-
vides us with the upper bound on the number of derivatives dOct in a counterterm
Oct needed for the renormalization of Γ. Because in the Proca and antisymmetric
tensor formalisms the spin 1 resonance propagator behaves as9 O(1) for p→∞,
we get

dOct ≤ dΓ = 4L− 2IGB +
∑

O
dO (3.124)

where dO means the number of derivatives of the vertex V derived from the
operator O. Eliminating IGB in favour of L and IR and using the identity

∑

O
nOR = 2IR + ER,

relating IR with the number of external resonance lines ER, we get eventually

dOct ≤ dΓ = 2 + 2L+
∑

O
(dO + nOR − 2)− ER.

8Here and in what follows, the sum overO include all the operators from which the individual
vertices entering the graph Γ are derived with necessary multiplicity.

9In the case of the first order formalism, the mixed propagator behaves as O(p−1). In this
case, dΓ = 4L− 2IGB − IRV +

∑
O dO where IRV is number of the internal mixed lines. In the

following considerations we can take the r.h.s. of (3.124) as an upper bound on dΓ with the
conclusions unchanged.
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Adding further to both sides
∑
O(2nOs + 2nOp + nOv + nOa ), the total number of

insertions of the external v, a, p and s sources weighted with its chiral order, we
have

DOct + nctR − 2 ≤ 2L+
∑

O
(DO + nOR − 2)

where DO is the usual chiral order (as in pure χPT ) of generic operator O.
Therefore, introducing an index iO of a general operator O as follows10

iO = DO + nOR − 2 (3.125)

we get analog of the Weinberg formula11, now in the form of an upper bound

iOct ≤ iΓ = 2L+
∑

O
iO. (3.126)

Let us now discuss its properties more closely. First, the number of operators
with given iO ≤ imax is finite, because this requirement limits both the num-
ber of derivatives as well as the number of resonance fields. Second, note that,
for general operator O the index iO ≥ 0. We have iO = 0 for the leading or-
der χPT Lagrangian, for the resonance mass (counter)terms as well as for the
resonance-GB mixing term 〈Aµuµ〉 possible for 1+− resonances in the Proca field
formalism12. The usual interaction terms with one resonance field and O(p2)
building blocks correspond to the sector iO = 1, the same is true for the trilinear
resonance vertex (3.117) as well as for the “mixed” vertex (3.118), while the two
resonance vertices with O(p2) building blocks correspond to the sector iO = 2,
etc.

Therefore, according to the formula (3.126), the loop expansion is correlated
with the organization of the operators and loop graphs according to the indices
iO and iΓ respectively analogously to the pure χPT , with the only exception
that also lower sectors of the Lagrangian w.r.t. iO are renormalized at each step.
Therefore, we get the renormalizability provided we limit ourselves to the graphs
composed from one-particle ireducible building blocs for which the RHS of (3.126)
is smaller or equal to imax.

The counting rules can be summarized as follows

Rµν , Vµ = O(p), M = O(1) (3.127)

and for the external sources as usual

vµ, aµ = O(p), χ, χ+ = O(p2). (3.128)

Note also that, the index iO can be rewritten as

iO = DO − 2

(
1− nOR

2

)
(3.129)

10Analogous assignment of the chiral order to the interaction terms with at least two resonance
fields is proposed in [80], note however, that in this reference it is used by means of substitution
DV → iO in the Weinberg formula (3.116) with counting M = O(p).

11This can be recovered for nOR = 0, when the inequality changes to the equality.
12Note however, that this term can be removed by means of the field redefinition.
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and in the last bracket we recognize the exponent controlling the leading large NC

behavior of the coupling constant in front of the operatorO. Remember, however,
that the loop induced counterterms have an additional 1/NC suppression for each
loop (cf. (3.121)). Therefore it is natural to modify the index iO and iΓ as follows
(the coefficient 1/2 is a matter of convenience, see bellow)

îO =
iO
2

+ sO =
1

2
DO −

(
1− nOR

2
− sO

)
=

1

2
DO − ωO

îΓ =
iΓ
2

+ sΓ = L+
∑

O

iO
2

+ sΓ = 2L+
∑

O
îO (3.130)

where ωO is given by (3.119) and we have used (3.123) in the last line. With such
a modified indices îO, îΓ the formula (3.126) has the form

îOct ≤ îΓ = 2L+
∑

O
îO (3.131)

The content of this redefinition of iO is evident: the operators are now classified
according to the combined derivative and large NC expansion according to the
counting rules (for pure χPT introduced in [82], [83], [84])

p = O(δ1/2), v, a = O(δ1/2), χ, χ+ = O(δ),
1

NC

= O(δ) (3.132)

In what follows we shall use for the classification of the counterterms and for
the organization of our calculation the index iO given by (3.125) and (3.126).
Note however, that these formulae similarly to the previous cases, do not have
much of physical content and serve only as a formal tool for the proof of the
renormalizability and for the ordering of the counterterms. Namely, the index iΓ
which is by construction related to the superficial degree of the divergence (and
which applies to one-particle irreducible graphs only) does not reflect the infrared
behavior of the (one-particle irreducible) graph Γ, rather it refers to its ultraviolet
properties.

Note also, that the hierarchy of the contributions to the GF by means of fixing
iΓ for one-particle irreducible building blocks13 might appear to be unusual. For
instance, let us assume the antisymmetric tensor formalism. Taking then iΓ = 0
allows only the tree graphs with vertices from pure O(p2) chiral Lagrangian with
resonaces completely decoupled (the only iO = 0 relevant term with resonance
fields is the resonance mass terms) and such a case is therefore equivalent to the
LO χPT . When fixing iΓ ≤ 1, also the terms linear in the resonance fields (at least
in the antisymmetric tensor formalism, where the linear sources start at O(p2))
can be used as the one-particle irreducible building blocks and again only the tree
graphs are in the game. However, the resonance propagator is still derived from
the mass terms only. Therefore, summing up all the tree graphs with resonance
internal lines leads then effectively to the contributions equivalent to those of the
pure O(p4) χPT operators with O(p4) LEC saturated with the resonances in the

13That means at a given level imax we allow for all the graphs with one-particle irreducible
building blocks satisfying iΓ ≤ imax. This point of view is crucial in order to preserve the
symmetric properties of the corresponding GF.
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usual way14. Because the resonance kinetic term has iO = 2, the resonances start
to propagate only when we take iΓ ≤ 2. At this level we recover the complete NLO
χPT as a part of the theory (including the loop graphs) supplemented with tree
graphs built from the free resonance propagators and vertices with iO ≤ 2. As
far as the resonance part of the Lagrangian is concerned, these vertices coincide
with the O(p6) vertices in the first type of power counting we have considered in
the beginning of this section (where we assumed Rµν = O(p2), see (3.111)) but
also the four resonance term without derivatives is allowed. The resonance loops
start to contribute at iΓ ≤ 3 (with the resonance tadpoles) and iΓ ≤ 4 (with the
pure resonance bubbles). In order to renormalize the corresponding divergences,
plethora of new counterterms with increasing number of resonances as well as
increasing order of the chiral building blocks is needed. In what follows we will
encounter graphs with iΓ = 6 (the mixed GB and resonance bubbles) for which
we will need counterterms up to the index iO ≤ 6.

3.4 The self-energies at one loop

In this section we present the main result of our chapter, namely the one-loop self-
energies within all three formalisms discussed in the Section 3.2 in the chiral limit.
In what follows, the loops are calculated within the dimensional regularization
scheme. In order to avoid complications with the d−dimensional Levi-Civita
tensor, we use its simplest variant known as Dimensional reduction, i.e. we
perform the four-dimensional tensor algebra first in order to reduce the tensor
integrals to scalar ones and only then we continue to d dimensions.

3.4.1 The Proca field case

Our starting point is the following Lagrangian for 1−− resonances [85] (see also
[86])

LV = −1

4
〈V̂µνV̂ µν〉+

1

2
M2〈VµV µ〉

− i

2
√

2
gV 〈V̂ µν [uµ, uν ]〉+

1

2
σV εαβµν〈{V α, V̂ µν}uβ〉+ . . . (3.133)

where we have written down explicitly only the terms contributing to the self-
energy. Originally it was constructed to encompass terms up to the order O(p6)
within the chiral power-counting (3.111, 3.112). In the large NC limit the cou-

plings behave as gV = O(N
1/2
C ) and σV = O(N

−1/2
C ). This suggests that the

odd intrinsic parity terms are of higher order, however the vertices relevant for
our calculations have the same order O(N−1

C ) in both cases due to the presence

of the factor 1/F = O(N
−1/2
C ) which accompanies each Goldstone bosons field.

In the above Lagrangian the operators shown explicitly have no more than two
derivatives and two resonance fields. Therefore, because the interaction terms
are O(p2) we would expect (by analogy with the χPT power counting) the coun-
terterms necessary to cancel the divergencies of the one-loop graphs to have four

14Here we tacitly assume that the trilinear term without derivatives has been removed by
means of field redefinition, cf. [57, 58].
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Figure 3.1: The one-loop graphs contributing to the self-energy of the Proca
field. The dotted and full lines corresponds to the Goldstone boson and resonance
propagators respectively. Both one-loop graphs have iΓ = 6

derivatives at most. However, the nontrivial structure of the free resonance prop-
agator (namely the presence of the PL part) results in the failure of this naive
expectation. In fact, according to (3.125) and (3.126), the operators in (3.133)
have index up to iO ≤ 2, whereas the Feynman graphs corresponding to the self-
energies ΣL,T (depicted in Fig. 3.1) iΓ = 6. In order to cancel the infinite part of
the loops we have therefore to introduce a set of counterterms with two resonance
fields and indices15 iO ≤ 6, namely

LctV =
1

2
M2ZM〈VµV µ〉+ZV

4
〈V̂µνV̂ µν〉 − YV

2
〈(DµV

µ)2〉

+
XV 1

4
〈{Dα, Dβ}Vµ{Dα, Dβ}V µ〉+

XV 2

4
〈{Dα, Dβ}Vµ{Dα, Dµ}V β〉

+
XV 3

4
〈{Dα, Dβ}V β{Dα, Dµ}Vµ〉+

XV 4

2
〈D2Vµ{Dµ, Dβ}Vβ〉+XV 5〈D2VµD

2V µ〉

+Lct(6)
V . (3.134)

Here the last term accumulates the operators with six derivatives (iO = 6),
which we do not write down explicitly. The bare couplings are split into a finite
part renormalized at a scale µ and a divergent part. The infinite parts of the bare
couplings are fixed according to

ZM = Zr
M(µ)

ZV = Zr
V (µ) +

80

3

(
M

F

)2

σ2
V λ∞

XV = Xr
V (µ)− 80

9

(
M

F

)2

σ2
V

1

M2
λ∞

YV = Y r
V (µ)

X
′

V = X
′r
V (µ)

where

Xr
V (µ) = Xr

V 1(µ) +Xr
V 5(µ)

X
′r
V (µ) = Xr

V 1(µ) +Xr
V 2(µ) +Xr

V 3(µ) +Xr
V 4(µ) +Xr

V 5(µ),

and

λ∞ =
µd−4

(4π)2

(
1

d− 4
− 1

2
(ln 4π − γ + 1)

)
.

15Note that, for these counterterms the index iO coincides with the usual chiral order DO.
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The result can be written in the form (in the following formulae x = s/M2)

Σr
T (s) = M2

(
M

4πF

)2
[

3∑

i=0

αix
i − 1

2
g2
V

(
M

F

)2

x3B̂(x)− 40

9
σ2
V (x− 1)2xĴ(x)

]

Σr
L(s) = M2

(
M

4πF

)2 3∑

i=0

βix
i

In the above formulae αi and βi can be expressed in terms of the renormalization
scale independent combinations of the counterterm couplings and χlogs. The
explicit formulae are collected in the Appendix 3.7.4. The functions B̂(x) and

Ĵ(x) correspond to the vacuum bubbles with two Goldstone boson lines or with
one Goldstone boson and one resonance line respectively. On the first (physical)
sheet,

B̂(x) = B̂I(x) = 1− ln(−x)

Ĵ(x) = Ĵ I(x) =
1

x

[
1−

(
1− 1

x

)
ln(1− x)

]
, (3.135)

where we take the principal branch of the logarithm (−π < Im ln x ≤ π) with

cut for x < 0. On the second sheet we have then B̂II(x − i0) = B̂I(x + i0) =

B̂I(x− i0) + 2πi and similarly for Ĵ(x), therefore

B̂II(x) = B̂I(x) + 2πi

Ĵ II(x) = Ĵ I(x) +
2πi

x

(
1− 1

x

)
. (3.136)

The equation for the pole in the 1−− channel

s−M2 − ΣT (s) = 0

has a perturbative solution corresponding to the original 1−− vector resonance,
which develops a mass correction and a finite width of the order O(1/NC) due
to the loops. This solution can be written in the form s = M2

phys − iMphysΓphys

where

M2
phys = M2 + ReΣT (M2) = M2

[
1 +

(
M

4πF

)2
(

3∑

i=0

αi −
1

2
g2
V

(
M

F

)2
)]

MphysΓphys = −ImΣT (M2) = M2

(
M

4πF

)2
1

2
g2
V

(
M

F

)2

π

which gives a constraint on the values of αi’s

M2
phys +

1

π
MphysΓphys = M2

[
1 +

(
M

4πF

)2 3∑

i=0

αi

]

and in terms of the physical mass and the width we have then

Σr
T (s) = M2

phys

(
Mphys

4πF

)2
[

3∑

i=0

αix
i − 40

9
σ2
V (x− 1)2xĴ(x)

]
− 1

π
MphysΓphysx

3B̂(x)

Σr
L(s) = M2

phys

(
Mphys

4πF

)2 3∑

i=0

βix
i.
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For further numerical estimates it is convenient to adopt the on shell renormaliza-
tion prescription demanding M2 = M2

phys and also to identify F with Fπ (because
F = Fπ at the leading order). This gives

1

π

Γphys

Mphys

=

(
M

4πF

)2 3∑

i=0

αi

and, introducing parameters ai, bi with natural size O(1)

ai = π
Mphys

Γphys

(
Mphys

4πFπ

)2

αi ∼ O(1)

bi = π
Mphys

Γphys

(
Mphys

4πFπ

)2

βi ∼ O(1)

we get in this scheme for σrT,L(x) = M−2
physΣ

r
T,L(M2

physx)

σrT (x) =
1

π

Γphys

Mphys

(
1 +

3∑

i=1

ai(x
i − 1)− x3B̂(x)

)
− 40

9

(
Mphys

4πFπ

)2

σ2
V (x− 1)2xĴ(x)

σrL(x) =
1

π

Γphys

Mphys

3∑

i=0

bix
i.

3.4.2 The antisymmetric tensor case

We start with the following Lagrangian for 1−− resonances (here only the terms
relevant for the one-loop selfenergy are shown explicitly)

LR = −1

2
〈DµR

µνDαRαν〉+
1

4
M2〈RµνRµν〉

+
iGV

2
√

2
〈Rµν [uµ, uν ]〉+ d1εµνασ〈Dβu

σ{Rµν , Rαβ}〉

+ d3ερσµλ〈uλ{DνR
µν , Rρσ}〉+ d4ερσµα〈uν{DαRµν , Rρσ}〉

+ iλV V V 〈RµνR
µρRνσ〉+ . . . (3.137)

Note that, in the large NC limit the coupling GV behaves as GV = O(N
1/2
C ),

whereas di = O(1) and λV V V = O(N
−1/2
C ). Apparently the intrinsic parity odd

part and the trilinear resonance coupling are thus of higher order. However,
the trilinear vertices contributing to the one-loop self-energies are O(N

−1/2
C ) in

both cases due to the appropriate power of 1/F = O(N
−1/2
C ) accompanying uα.

Therefore, the operators with two and three resonance fields cannot be got rid of
using the large NC arguments. Also nonzero di are required in order to satisfy
the OPE constraints for VVP GF at the LO; especially for d3 we get [87]

d3 = − NC

64π2

(
M

FV

)2

+
1

8

(
F

FV

)2

(3.138)

where FV is the strength of the resonance coupling to the vector current.
The Lagrangian (3.137) includes terms up to the index iO ≤ 2. The one-loop

Feynman graphs contributing to the self-energy are depicted in Fig. 3.2. The
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Figure 3.2: The one-loop graphs contributing to the self-energy of the antisym-
metric tensor field. The dotted and double lines correspond to the Goldstone
boson and resonance propagators respectively. The GB and pure resonance bub-
bles have iΓ = 4, while the “mixed” one has iΓ = 6

first two bubbles include only interaction vertices with iO = 1 and therefore they
have indices iΓ = 4 while the third one is built from vertices with iO = 2 and has
the index iΓ = 6. In order to cancel the infinite part of the loops we have then
to add counterterms with indices iO ≤ 6, namely the following set

LctR =
1

4
M2ZM〈RµνRµν〉+

1

2
ZR〈DαR

αµDβRβµ〉+
1

4
YR〈DαR

µνDαRµν〉

+
1

4
XR1〈D2Rµν{Dν , D

σ}Rµσ〉+
1

8
XR2〈{Dν , Dα}Rµν{Dσ, Dα}Rµσ〉

+
1

8
XR3〈{Dσ, Dα}Rµν{Dν , Dα}Rµσ〉

+
1

4
WR1〈D2RµνD2Rµν〉+

1

16
WR2〈{Dα, Dβ}Rµν{Dα, Dβ}Rµν〉

+Lct(6)
R , (3.139)

where the last term accumulates the operators with six derivatives (iO = 6),
which we do not write down explicitly. The infinite parts of the bare couplings
are fixed as

ZM = Zr
M(µ) +

80

3

(
M

F

)2

d2
1λ∞ − 60

(
λV V V

M

)2

λ∞

ZR = Zr
R(µ) +

40

9

(
M

F

)2
1

M2
(12d1(d3 + d4)− d2

3 − 9d2
4 + 6d3d4)λ∞

+80

(
λV V V

M

)2
1

M2
λ∞

YR = Y r
R(µ) +

40

9

(
M

F

)2
1

M2
(6d2

1 − 12d1(d3 + d4) + 5d2
3 + 9d2

4 − 6d3d4)λ∞

−40

(
λV V V

M

)2
1

M2
λ∞

XR = Xr
R(µ) +

40

9

(
M

F

)2
1

M2
(d2

3 − 6d3d4 + 5d2
4)λ∞ −

(
GV

F

)2
1

M2
λ∞

WR = W r
R(µ) +

40

9

(
M

F

)2
1

M4
(d2

3 + 6d3d4 − 5d2
4)λ∞ − 10

(
λV V V

M

)2
1

M4
λ∞

where

Xr
R(µ) = Xr

R1(µ) +Xr
R2(µ) +Xr

R3(µ)

W r
R(µ) = W r

R1(µ) +W r
R2(µ).
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An explicit calculation gives for the renormalized self-energies (in the following
formulae x = s/M2)

Σr
L(s) = M2

(
M

4πF

)2
[

3∑

i=0

αix
i −
(

1

2

(
GV

F

)2

x2B̂(x) +
40

9
d2

3(x2 − 1)2Ĵ(x)

)]

−5

(
λV V V

4π

)2

(x− 4)(x+ 2)J(x)

Σr
T (s) = M2

(
M

4πF

)2
[

3∑

i=0

βix
i +

20

9

(
2d2

3 + (d2
3 + 6d3d4 + d2

4)x+ 2d2
4x

2
)

(x− 1)2Ĵ(x)

]

+5

(
λV V V

4π

)2

(x2 − 2x+ 4)J(x).

Here the functions B̂(x) and Ĵ(x) are same as in the previous subsection and
J(x) is given on the physical sheet by

J(x) = J
I
(x) = 2 +

√
1− 4

x
ln

√
1− 4

x
− 1

√
1− 4

x
+ 1

.

with the same branch of the logarithm as before. On the second sheet we have

J
II

(x− i0) = J
I
(x+ i0) = J

I
(x− i0) + 2iπ

√
1− 4/x and therefore

J
II

(x) = J
I
(x) + 2iπ

√
1− 4

x
.

The explicit dependence of the renormalization scale invariant polynomial param-
eters αi and βi on the counterterm couplings and χlogs are given in the Appendix
3.7.4.

In order to simplify the following discussion we put λV V V = 0 in the rest of
this subsection. This is in accord with the fact, that the corresponding trilinear
interaction term can be effectively removed by resonance field redefinition [57].
Also, the two-resonance cut starts at x = 4 which is far from the region we are
interested in. Here the effect of the resonance bubble can be effectively absorbed
to the polynomial part of the self-energies.

The equation for the propagator poles in the 1−− channel

s−M2 − ΣL(s) = 0

has an approximative perturbative solution corresponding to the original 1−−

vector resonance, which develops a mass correction and a finite width of the
order O(1/NC) due to the loops. This solution can be written in the form s =
M2

phys − iMphysΓphys where

M2
phys = M2 + ReΣL(M2) = M2

[
1 +

(
M

4πF

)2
(

3∑

i=0

αi −
1

2

(
GV

F

)2
)]

MphysΓphys = −ImΣL(M2) = M2

(
M

4πF

)2
1

2

(
GV

F

)2

π,
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which gives a constraint on the values of αi’s

M2
phys +

1

π
MphysΓphys = M2

(
1 +

1

(4π)2

(
M

F

)2 3∑

i=0

αi

)
.

This allows us to re-parameterize perturbatively ΣL(s) in terms of Mphys and
Γphys as

Σr
L(s) = M2

phys

(
Mphys

4πF

)2
[

3∑

i=0

αix
i − 40

9
d2

3(x2 − 1)2Ĵ(x)

]
− 1

π
ΓphysMphysx

2B̂(x)

Σr
T (s) = M2

phys

(
Mphys

4πF

)2

×
[

3∑

i=0

βix
i +

20

9

(
2d2

3 + (d2
3 + 6d3d4 + d2

4)x+ 2d2
4x

2
)

(x− 1)2Ĵ(x)

]
.

As for the Proca field case, within the on shell renormalization prescription
M2 = M2

phys and we get a constraint

1

π

Γphys

Mphys

=

(
Mphys

4πFπ

)2 3∑

i=0

αi. (3.140)

As a result, we can re-write the self-energy (in the units of M2
phys, i.e. as in the

previous section σrT,L(x) = M−2
physΣ

r
T,L(M2

physx) in what follows) in the form

σrL(x) =
1

π

Γphys

Mphys

[
1− x2B̂(x) +

3∑

i=1

ai(x
i − 1)

]
− 40

9

(
Mphys

4πFπ

)2

d2
3(x2 − 1)2Ĵ(x)

using the re-scaled parameters ai with a natural size O(1)

ai = π
Mphys

Γphys

(
Mphys

4πFπ

)2

αi ∼ O(1).

So that the Σr
L(s) has four independent parameters αi, i = 1, 2, 3 and d3. Similar-

ly, Σr
T (s) can be written in this scheme in terms of six independent dimensionless

parameters bi , d3 and γ

bi = π
Mphys

Γphys

(
Mphys

4πFπ

)2

βi ∼ O(1)

γ = d4/d3 ∼ O(1)

as

σrT (x) =
1

π

Γphys

Mphys

3∑

i=0

bix
i+

20

9

(
Mphys

4πFπ

)2

d2
3

(
2 + (1 + 6γ + γ2)x+ 2γ2x2

)
(x−1)2Ĵ(x).

In order to satisfy the OPE constraints for V V P correlator [87], we have to put
further (according to (3.138))

d3 = −3

4

(
Mphys

4πFπ

)2(
Fπ
FV

)2
[

1− 1

6

(
4πFπ
Mphys

)2
]

(3.141)

which reduces the number of the independent parameters for σrL(x) and σrT (x) to
three and five respectively.
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= +

Figure 3.3: The extra one-loop graphs contributing to the vector field self-energy
of in the first order formalism. The dotted and double lines corresponds to the
Goldstone boson and antisymmetric tensor field propagators respectively, the
thick line stay symbolically for the “mixed” propagator.

3.4.3 The first order formalism

In this case, the interaction part of the Lagrangian describing 1−− resonances
collects all the terms from the previous two formalisms. It contains also one
extra term which mixes the the fields Rµν and Vα

LRV =
1

2
M2〈VµV µ〉+

1

4
M2〈RµνRµν〉 −

1

2
〈RµνV̂µν〉

− i

2
√

2
gV 〈V̂ µν [uµ, uν ]〉+

1

2
σV εαβµν〈{V α, V̂ µν}uβ〉

+
iGV

2
√

2
〈Rµν [uµ, uν ]〉+ d1εµνασ〈Dβu

σ{Rµν , Rαβ}〉

+d3ερσµλ〈uλ{DνR
µν , Rρσ}〉+ d4ερσµα〈uν{DαRµν , Rρσ}〉

+
1

2
MσRV εαβµν〈{V α, Rµν}uβ〉+ iλV V V 〈RµνR

µρRνσ〉+ . . .

Because the free diagonal propagators are the same as in the pure Proca or
antisymmetric tensor cases, all the graphs depicted in the Figs. 3.1, 3.2 contribute
also here to the diagonal self-energies ΣRR and ΣV V . The mixed vertex and mixed
propagator generate additional graphs contributing to ΣRR, ΣV V and ΣRV which
are depicted in the Figs. 3.3, 3.4 and 3.5 respectively (in the latter case also the
GB bubble contributes).

= +

Figure 3.4: The extra one-loop graphs contributing to the antisymmetric tensor
field self-energy in the first order formalism. The meaning of the various types of
lines is the same as in the previous figures.

= + + + +

Figure 3.5: The one-loop graphs contributing to the “mixed” self-energy in the
first order formalism.

Similarly, the set of counterterms necessary to renormalize the infinities in-
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cludes all the terms (3.134) and (3.139) and additional mixed terms

LctRV =
1

2
M2ZMV 〈VµV µ〉+ZV

4
〈V̂µνV̂ µν〉 − YV

2
〈(DµV

µ)2〉

+
XV 1

4
〈{Dα, Dβ}Vµ{Dα, Dβ}V µ〉+

XV 2

4
〈{Dα, Dβ}Vµ{Dα, Dµ}V β〉

+
XV 3

4
〈{Dα, Dβ}V β{Dα, Dµ}Vµ〉+

XV 4

2
〈D2Vµ{Dµ, Dβ}Vβ〉+XV 5〈D2VµD

2V µ〉

+
1

4
M2ZMR〈RµνRµν〉+

1

2
ZR〈DαR

αµDβRβµ〉+
1

4
YR〈DαR

µνDαRµν〉

+
1

4
XR1〈D2Rµν{Dν , D

σ}Rµσ〉+
1

8
XR2〈{Dν , Dα}Rµν{Dσ, Dα}Rµσ〉

+
1

8
XR3〈{Dσ, Dα}Rµν{Dν , Dα}Rµσ〉

+
1

4
WR1〈D2RµνD2Rµν〉+

1

16
WR2〈{Dα, Dβ}Rµν{Dα, Dβ}Rµν

−1

2
ZRVM〈RµνV̂µν〉+

1

2
XRV 1M〈DαRµνDαV̂µν〉+

1

2
XRV 2M〈DµR

µνDσV̂σν

+Lct(6)
RV
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Now the infinite parts of the bare couplings have to be fixed as follows

ZRV = Zr
RV (µ)− 20

3

(
M

F

)2

(σRV + 2σV )(2d1 − σRV )λ∞

XRV = Xr
RV (µ)− 20

9

(
M

F

)2
1

M2
(σRV + 2σV )(4d3 + σRV )λ∞

ZMV = Zr
MV (µ)

ZV = Zr
V (µ) +

20

3

(
M

F

)2 (
σRV (σRV + 2σV ) + 4σ2

V

)
λ∞

XV = Xr
V (µ)− 20

9

(
M

F

)2
1

M2

(
σRV (σRV + 2σV ) + 4σ2

V

)
λ∞

YV = Y r
V (µ)

X
′

V = X
′r
V (µ)

ZMR = Zr
MR(µ) +

20

3

(
M

F

)2

(4d2
1 − σRV (σRV − 2d1))λ∞

ZR = Zr
R(µ) +

40

9

(
M

F

)2

(12d1(d3 + d4)− d2
3 − 9d2

4 + 6d3d4)λ∞

+
10

9
σRV (10d3 + 18d4 + σRV )λ∞

YR = Y r
R(µ) +

10

9

(
M

F

)2
1

M2
(24d2

1 − 48d1(d3 + d4) + 20d2
3 + 36d2

4

−24d3d4 − σ2
RV + 2σRV (d3 + 3d4))λ∞

XR = Xr
R(µ) +

40

9

(
M

F

)2
1

M2
(d2

3 − 6d3d4 + 5d2
4)λ∞

−10

9

1

M2
σRV (6(d3 + d4)− σRV )λ∞ −

(
GV

F

)2
1

M2
λ∞

WR = W r
R(µ) +

40

9

(
M

F

)2
1

M4
(d2

3 + 6d3d4 − 5d2
4)λ∞ +

10

9
σRV (σRV − 2(d3 + 3d4))λ∞

where

Xr
V (µ) = Xr

V 1(µ) +Xr
V 5(µ)

X
′r
V (µ) = Xr

V 1(µ) +Xr
V 2(µ) +Xr

V 3(µ) +Xr
V 4(µ) +Xr

V 5(µ)

Xr
R(µ) = Xr

R1(µ) +Xr
R2(µ) +Xr

R3(µ)

W r
R(µ) = W r

R1(µ) +W r
R2(µ)

Xr
RV (µ) = Xr

RV 1(µ) +Xr
RV 2(µ)
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The renormalized self-energies can be then written in the form

ΣRV (s)r = M

(
M

4πF

)2
[

2∑

i=0

αRVi xi +
1

2

gVGV

M

(
M

F

)2

x2B̂(x)

+
10

9
(σRV + 2σV )(2d3x+ 2d3 − σRV )(x− 1)2Ĵ(x)

]
= ΣV R(s)r

ΣT
V V (s)r = M2

(
M

4πF

)2
[

3∑

i=0

αV Vi xi − 1

2
g2
V

(
M

F

)2

x3B̂(x)

−10

9

(
σRV (σRV + 2σV ) + 4σ2

V

)
(x− 1)2xĴ(x)

]

ΣL
V V (s)r = M2

(
M

4πF

)2 3∑

i=0

βV Vi xi

ΣL
RR(s)r = M2

(
M

4πF

)2
[

3∑

i=0

αRRi xi − 1

2

(
GV

F

)2

x2B̂(x)

−10

9
(4d2

3(x+ 1)2 − 2d3σRV (x+ 1) + σ2
RV )(x− 1)2Ĵ(x)

]

ΣT
RR(s)r = M2

(
M

4πF

)2
[

3∑

i=0

βRRi xi +
5

9
(8d2

3 − 4σRV d3 + 2σ2
RV

+(4d2
3 − 2σRV d3 + σ2

RV + 24d3d4 + 4d2
4 − 6σRV d4)x+ 8d2

4x
2)(x− 1)2Ĵ(x)

]
.

Here again the renormalization scale independent coefficients of the polynomial
parts of the self-energies are expressed in terms of the couplings and chiral logs;
the explicit formulae can be found in the Appendix 3.7.4.

The equation for the poles in the 1−− channel

D(s) = (M2 + ΣL
RR(s))(M2 + ΣT

V V (s))− s(M + ΣRV (s))(M + ΣV R(s)) = 0

can be solved perturbatively writing the solution in the form s = M2
phys −

iMphysΓphys = M2 + ∆. To the first order in ∆ and the self-energies we get
then

s = M2 + ΣL
RR(M2) + ΣT

V V (M2)−M(ΣRV (M2) + ΣV R(M2))

and therefore

M2
phys = M2 + Re

[
ΣL
RR(M2) + ΣT

V V (M2)−M(ΣRV (M2) + ΣV R(M2))
]

= M2

[
1 +

(
M

4πF

)2
(

3∑

i=0

(αRRi + αV Vi )− 2
2∑

i=0

αRVi − 1

2

(
M

F

)2(
gV +

GV

M

)2
)]

MphysΓphys = −Im
[
ΣL
RR(M2) + ΣT

V V (M2)−M(ΣRV (M2) + ΣV R(M2))
]

= πM2

(
M

4πF

)2
1

2

(
M

F

)2(
gV +

GV

M

)2

which yield the constraint

M2
phys +

1

π
MphysΓphys = M2

(
1 +

(
M

4πF

)2
(

3∑

i=0

(αRRi + αV Vi )− 2
2∑

i=0

αRVi

))
.
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In the on-shell scheme M2 = M2
physwe get further

1

π

Γphys

Mphys

=

(
Mphys

4πFπ

)2
(

3∑

i=0

(αRRi + αV Vi )− 2
2∑

i=0

αRVi

)

On the contrary to the previous two cases, this allows to exclude both the con-
stants gV and GV in favor of the physical observables only for the combination

σ(x) ≡ xσLRR(x) + σTV V (x)− x(σRV (x) + σV R(x))

=
1

π

Γphys

Mphys

(
1 +

4∑

i=0

ai(x− 1)i − x3B̂(x)

)

−20

9

(
Mphys

4πFπ

)2

x(x− 1)2Ĵ(x) [d3(x+ 1)(2d3(x+ 1) + σRV + 4σV ) + σV (σRV − 2σV )]

(here ΣLr
RR = M2σLRR, Σr

RV = MσRV etc.), where

ai = π
Mphys

Γphys

(
Mphys

4πFπ

)2 (
αRRi−1 + αV Vi − 2αRVi−1

)

with αRR−1 = αRV−1 = 0 are parameters of order O(1),
From the OPE constraints applied to V V P correlator within the first order

formalism we get further

d3 = − NC

64π2

(
M

FV

)2

+
1

8

(
F

FV

)2

+
1

2
(σRV + σV )

= −3

4

(
Mphys

4πFπ

)2(
Fπ
FV

)2
[

1− 1

6

(
4πFπ
Mphys

)2
]

+
1

2
(σRV + σV )

Using dimensionless variables, we can write the condition for the poles in the
form

(1 + σLRR(x))(1 + σTV V (x))− x(1 + σRV (x))(1 + σV R(x)) = 0

in the 1−− channel and

1 + σTRR(x) = 0

1 + σLV V (x) = 0
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in the 1+− and 0+− channels respectively. Within the on-shell scheme

σRV (s)r =
1

π

Γphys

Mphys

(
2∑

i=0

aRVi xi − (1− C)Cx2B̂(x)

)

+
10

9

(
Mphys

4πFπ

)2 [
(σRV + 2σV )(2d3x+ 2d3 − σRV )(x− 1)2Ĵ(x)

]

σTV V (s)r =
1

π

Γphys

Mphys

(
3∑

i=0

aV Vi xi + C2x3B̂(x)

)

−10

9

(
Mphys

4πFπ

)2 [(
σRV (σRV + 2σV ) + 4σ2

V

)
(x− 1)2xĴ(x)

]

σLV V (s)r =
1

π

Γphys

Mphys

3∑

i=0

bV Vi xi

σLRR(s)r =
1

π

Γphys

Mphys

(
3∑

i=0

aV Vi xi + (1− C)2x3B̂(x)

)

−10

9

(
Mphys

4πFπ

)2 [
(4d2

3(x+ 1)2 − 2d3σRV (x+ 1) + σ2
RV )(x− 1)2Ĵ(x)

]

σTRR(s)r =
1

π

Γphys

Mphys

3∑

i=0

bRRi xi +
5

9

(
Mphys

4πFπ

)2 [
(8d2

3 − 4σRV d3 + 2σ2
RV

+(4d2
3 − 2σRV d3 + σ2

RV + 24d3d4 + 4d2
4 − 6σRV d4)x+ 8d2

4x
2)(x− 1)2Ĵ(x)

]
.

and
1

π

Γphys

Mphys

C2 =
1

2
g2
V

(
Mphys

Fπ

)2

Mphys

(
Mphys

4πFπ

)2

and the other parameters are of natural size O(1) with the constraint

3∑

i=0

(aRRi + aV Vi )− 2
2∑

i=0

aRVi =
4∑

i=0

ai = 1.

3.4.4 Note on the counterterms

Let us note, that the counterterm Lagrangians (3.134), (3.139) and (3.142) might
be further simplified using the leading order equations of motion (EOM) in or-
der to eliminate the terms with more then two derivatives as it has been done
e.g. in [64]. However, this does not mean, that we do not need to introduce
such counterterms at all. As we have proved by means of the above explicit
calculations, without the higher derivative counterterms (or equivalently with-
out the couterterms proportional to the EOM) we would not have the off-shell
self-energies finite.

In fact, the infinities originating in the missing EOM-proportional countert-
erms are not always dangerous. Note e.g., that such infinities are in fact harmless,
provided we restrict our treatment to strict one-loop contribution to the GF of
quark bilinears or to the corresponding on-shell S-matrix elements. Namely, in
this case, the one-loop generating functional of the GF is obtained by means
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of the Gaussian functional integration of the quantum fluctuations around the
solution of the lowest order EOM. As a result, the EOM can be safely used to
simplify the infinite part of the one-loop generating functional. On the strict
one-loop level the infinite parts of the self-energy subgraphs corresponding to the
missing EOM-proportional counterterms cancel with similar infinities stemming
from the vertex corrections.

Nevertheless, already at the one-loop level these counterterms might be nec-
essary under some conditions. Namely, near the resonance poles we can (and in
fact have to) go beyond the strict one-loop expansion e.g. by means of the Dyson
resumation of the one-loop self-energy contributions to the propagator. This will
generally destroy such a compensation of infinities. This is the reason why we
keep the counterterm Lagrangian in the general form (3.134), (3.139) and (3.142).

3.5 From self-energies to propagators

In the previous sections we have given the explicit form of the self-energies in a
given approximation within all three formalisms for the description of the spin-1
resonances. Here we would like to discuss interpretation of these results and the
construction of the corresponding propagators. We will concentrate on the most
frequently used antisymmetric tensor representation, where all the characteristic
features of other approaches are visible without unsubstantial technical compli-
cations. The remaining two cases can be discussed along the same lines with
similar results.

Let us remind the form of the self-energies for the antisymmetric tensor case

σrL(x) =
1

π

Γphys

Mphys

[
1− x2B̂(x) +

3∑

i=1

ai(x
i − 1)

]
− 40

9

(
Mphys

4πFπ

)2

d2
3(x2 − 1)2Ĵ(x)

(3.142)

σrT (x) =
1

π

Γphys

Mphys

3∑

i=0

bix
i +

20

9

(
Mphys

4πFπ

)2

d2
3

(
2 + (1 + 6γ + γ2)x+ 2γ2x2

)
(x− 1)2Ĵ(x),

(3.143)

where d3 is given by (3.138) and where we have already re-parametrized the gen-
eral result in terms of the parameters of the perturbative solution of the pole
equation in the 1−− channel (which we have identified with the original degree
of freedom). In doing that we have tacitly assumed the validity of the gener-
al relation between the self-energies and the propagator (3.44). The equations
determining the additional poles of the propagators are then

fL(x) ≡ x− 1− σrL(x) = 0 (3.144)

fT (x) ≡ 1 + σrT (x) = 0. (3.145)

In what follows we shall discuss these equations in more detail. We will find
a lower and upper bound on the number of their solutions and give a proof,
that the corresponding lover bounds are greater than one on both sheets. We
will also briefly discuss the compatibility of the relation (3.44) with the Källén-
Lehman representation and show, that at least one of the roots of (3.6) and
(3.145) corresponds inevitably either to the negative norm ghost or the tachyon.
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3.5.1 The number of poles using Argument principle

Let us first briefly discuss a determination of the number of solution of the equa-
tions (3.6) and (3.145). This can be made using the theorem known as Argument
principle (see e.g. [88]). According to this theorem, for a meromorphic function
f(z) with no zeros or poles on a simple closed contour C, the difference between
the number of zeros N and poles P (counted according to their multiplicity)
inside C is given as

N − P =
1

2π
[arg f(z)]C . (3.146)

Here [arg f(z)]C is the change of the argument of f(z) along C. Using this theorem
we will show, that in both cases (3.6) and (3.145) there is a nonzero lower bound
on the number of solutions on the first and the second sheet, which correspond to
the poles of the propagator (3.44). We will also give conditions for the saturation
of these lower bounds.

Let us start with (3.145). The left hand side of the pole equation fT (z) =
1 + σrT (z) is analytic on the first sheet (and meromorphic on the second sheet)
of the cut complex plane with cut from z = 1 to z = +∞. Let us choose
contour C = C+ + CR − C− + Cε which is usually used for the proof of the
dispersive representation for the self-energy, namely the one consisting of the
infinitesimal circle Cε encircling the point z = 1 clockwise, two straight lines C±
infinitesimally above and bellow the real axis going from z = 1 to z = R and a
circle CR corresponding to z = R eiθ, 0 < θ < 2π, and take the limit with ε→ 0,
R → ∞ in the end. According to the argument principle, the total change of
the phase of the function f I,IIT (z) along this contour gives the number of zeros
(with their multiplicities) nI of f(z) on the first sheet and nII − 2, where nII is
the number of zeros of f(z) on the second sheet (note that f IIT (z) has pole of the
second order at z = 0) lying inside the contour C, i.e.

nI =
1

2π
[arg f IT (z)]C

nII =
1

2π
[arg f IIT (z)]C + 2.

Let us assume the contour Cε first. Suppose that x = 1 is not a solution of
the equation fT (z) = 0. As a consequence, [arg f I,IIT (z)]Cε vanishes 16.

On the contour CR, i.e. for z = R eiθ we get for b3 6= 0

f I,IIT (R eiθ) = R3e3iθ

(
1

π

Γphys

Mphys

b3 +
20

9

(
Mphys

4πFπ

)2

d2
32γ2 [1− lnR + i(2π − θ ∓ π)]

(3.147)

+O

(
1

R
,
lnR

R

))
(3.148)

16In the case f I,IIT (x) → 0 for x → 1 when f I,IIT (x) = (x − 1)k gI,IIT (x) where k ≤ 3 and

when gI,IIT (x) (which has the branching point at x = 1) has a finite nonzero limit at x = 1) we

get [arg f I,IIT (z)]Cε = −2πk.
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and therefore, for R → ∞, [arg f I,IIT (z)]CR → 6π. The same is valid also for
b3 = 0 with γ 6= 0. However, for b3 = γ = 0 we get

f I,IIT (R eiθ) = R2e2iθ

(
1

π

Γphys

Mphys

b2 +
20

9

(
Mphys

4πFπ

)2

d2
3 [1− lnR + i(2π − θ ∓ π)]

(3.149)

+O

(
1

R
,
lnR

R

))
. (3.150)

In this case [arg f I,IIT (z)]CR → 4π and because d3 6= 0 (unless we are in a
conflict with OPE for the tree level V V P correlator17), this gives also the lower
bound for [arg f I,IIT (z)]CR .

Finally let us discuss the lines C±. Because Im f IT (x± i0) = ImσrT (x± i0) ≷ 0
(and f IT is real analytic), Im f IIT (x ± i0) > 0 for x > 1, and Ref I,IIT (R ± i0 ) →
−∞ for R → ∞, we can easily conclude that in this limit [arg f I,IIT (z)]C+ = 0

unless f I,IIT (1) > 0, in the latter case [arg f I,IIT (z)]C+ = π and in both cases

[arg f I,IIT (z)]C− = ±[arg f I,IIT (z)]C+ .

Putting all pieces together we get under the assumption f I,IIT (1) 6= 0 the
following bound

[arg f I,IIT (z)]C ≥ 4π

and therefore for the number of zeros in the cut complex plane we get

2 ≤ nI ≤ 4 (3.151)

4 ≤ nII ≤ 5 (3.152)

where the lower bound is saturated for f I,IIT (1) < 0, b3 = γ = 0 and the upper
bound for f I,IIT (1) > 0 and either b3 6= 0 or γ 6= 0. For f I,IIT (1) = 0 (provided we
include also this zero with its multiplicity into nI,II) the these bounds are valid
too18.

An analogous simple analysis for fL(z) = z − 1− σrL(z) in the cut complex
plane with the cut from z = 0 to z = +∞ gives 19 for f I,IIL (0) 6= 0

3 ≤ nI ≤ 4 (3.153)

nII = 5 (3.154)

where the lower bounds are saturated for f I,IIL (0) < 0 otherwise nI equals to the
upper bound.

17Note however, that the requirement that the tree level conditions for OPE are satisfied
might be modified by loop corrections.

18In this case the point x = 1 is solution of f I,IIT (x) = 0 and provided f I,IIT (x) = (x − 1)k

gI,IIT (x) (zero with multiplicity k ≤ 3) we have according to the footnote 16 the phase deficit
−2πk (i.e. the number of the poles different from z = 1 is then reduced by k) in comparison

with the case f I,IIT (x) 6= 0.
19Note, that in this case,

f I,IIL (R eiθ) = R3e3iθ

(
− 1

π

Γphys

Mphys
a3 +

40

9

(
Mphys

4πFπ

)2

d2
3 [1− lnR+ i(2π − θ ∓ π)] +O

(
1

R
,

lnR

R

))

and therefore [arg f I,IIL (z)]CR
= 6π.
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We can not therefore avoid in any way the generation of the additional poles
(some of them might even be of the higher order) in both 1−− and 1+− channels
of the propagator only by means of an appropriate choice of the free parameters
ai, bi and γ. The minimal number of the additional poles (with their orders) on
the second sheet is the same for both channels (note that, one pole in 1−− channel
has to correspond to the perturbative solution describing the original degrees of
freedom we have started with). The conditions for the saturation of the lower
bounds in the 1−− and 1+− channels are

− 1

π

Γphys

Mphys

[
1−

3∑

i=1

ai

]
+

20

9

(
Mphys

4πFπ

)2

d2
3 < 1 (3.155)

and

b3 = γ = 0 (3.156)

− 1

π

Γphys

Mphys

3∑

i=0

bi > 1 (3.157)

respectively. Note that, while the first condition is in accord with the large NC

counting, the last one is not. Let us now discuss the physical relevance of such

additional poles.

3.5.2 The Källén-Lehman representation and nature of
the poles

In this subsection, we will show that the the propagator (3.44) with self-energies
(3.142) and (3.143) is incompatible with the Källén-Lehman representation with
the positive spectral function. Moreover, at least one of the solutions of both
equations (3.6) and (3.145) is pathological and corresponds to the negative norm
ghost or the tachyonic pole.

Let us first briefly remind the Källén-Lehman representation of the antisym-
metric tensor field propagator. According to the Lorentz structure we can write
the following spectral representation of the full propagator (modulo generally
non-covariant contact terms)

∆µναβ(p) = p2ΠT
µναβ(p)∆T (p2)− p2ΠL

µναβ(p)∆L(p2) + ∆contact
µναβ (p)

where (up to the necessary subtractions)

∆L,T (p2) =

∫ ∞

0

dµ2 ρL,T (µ2)

p2 − µ2 + i0
(3.158)

and where the spectral functions ρT,L(p2) are given in terms of the sum over the
intermediate states as

(2π)−3θ(p0)
[
ρT (p2)p2ΠT

µναβ(p)− ρL(p2)p2ΠL
µναβ(p)

]
(3.159)

=
∑

N

δ(4)(p− pN)〈0|Rµν(0)|N〉〈N |Rαβ(0)|0〉.
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Note that, in the above formula we assume all the states |N〉 to have a positive
norm; the spectral functions ρL,T (p2) are then positive (for the proof see the
Appendix 3.7.5). For the one particle spin-one bound stated states |p, λ〉 with
mass M either

〈0|Rµν(0)|p, λ〉 = Z
1/2
L u(λ)

µν (p) (3.160)

or
〈0|Rµν(0)|p, λ〉 = Z

1/2
T w(λ)

µν (p) (3.161)

according to its parity (cf. (3.50) and (3.56)). Therefore (using the formulae from
the Appendix 3.7.5), the corresponding one particle contribution to ρL,T (µ2) is

ρone-particle
L,T (µ2) =

2

M2
ZL,T δ(µ

2 −M2). (3.162)

Positivity ρL,T (µ2) implies ZL,T > 0 in the above one-particle contributions.
For free fields with mass M we get

ρfreeL (µ2) =
2

M2

(
δ(µ2 −M2)− δ(µ2)

)

ρfreeT (µ2) =
2

M2
δ(µ2). (3.163)

Note the kinematical poles in ∆L,T (p2) at p2 = 0, which do not correspond to
any one-particle intermediate state and which sum up to the contact terms of the
form

∆free,contact
µναβ (p) =

1

M2
(gµαgβν − gµβgνα) . (3.164)

Let us now define for complex z by means of the analytic continuation (up to
the possible subtractions)

∆L,T (z) =

∫ ∞

0

ds
ρL,T (s)

s− z , (3.165)

Within the perturbation theory however, the primary quantities are the self-
energies, which we define as (cf. (3.44))

∆T (s) =
1

s

2

M2 + ΣT (s)

∆L(s) =
1

s

2

s−M2 − ΣL(s2)
. (3.166)

The poles at s = 0 are of the kinematical origin and in analogy with the free prop-
agator they sum up into the contact terms provided ΣT (0) = ΣL(0). The formulae
(3.166) can be understood as the Dyson re-summation of the 1PI self-energy in-
sertions to the propagator or as an inversion of the 1PI two-point function. Due
to the positivity of ρL,T (s), we get for the imaginary parts of ΣL,T the following
positivity (negativity) constraints:

ImΣL(s+ i0) =
1

2
θ(s)s Im∆L(s+ i0)|s−M2 − ΣL(s+ i0)|2 ≤ 0

ImΣT (s+ i0) = −1

2
θ(s)s Im∆T (s+ i0)|M2 + ΣL(s+ i0)|2 ≥ 0. (3.167)

95



Let us now turn to the RχT -like effective theories and try to demonstrate
their possible limitations. In such a framework the self-energies ΣL,T are given
by a sum of the 1PI graphs organized according to some counting rule (for RχT
e.g. by the index iΓ , cf. (3.126)). Up to a fixed given order (which we assume to
be fixed from now on) we have the asymptotic behavior ΣL,T (z) = O(zn lnk z))
for z → −∞ according to the Weinberg theorem. Here n corresponds to the
maximal degree of divergence of the contributing (sub)graphs and therefore, it
grows with the number of loops as well as with the index of the vertices (cf.
(3.125) ).

Such a grow of the inverse propagator is known to lead to problems. Suppose
e.g., that we can organize the result of the calculation of the 1PI graphs in the
form of a dispersive representation for the functions ΣL,T (z) on the first sheet20

ΣI
L,T (z) = PL,T

n (z) +
QL,T
n+1(z)

π

∫ ∞

xt

dx

QL,T
n+1(x)

ImΣL,T (x+ i0)

x− z (3.168)

where xt ≥ 0 is the lowest multi-particle threshold, PL,T
n (z) and QL,T

n+1(z) (we

suppose QL,T
n+1(x) > 0 for x > 0) are renormalization scale independent real poly-

nomials of the order n and n+ 1 respectively and ImΣL,T (x+ i0) can be obtained
using the Cutkosky rules. The contributions to PL,T

n (z) stem from the countert-
erms necessary to renormalize the superficial divergences of the contributing 1PI
graphs as well as from the loops (χlogs)21.

As a consequence, the functions zk∆L,T (z) where 0 ≤ k ≤ n and where
∆L,T (s) is naively defined by (3.166) are analytic (up to the finite number of
complex poles zj generally different for ∆L and ∆T and a kinematical pole at
z = 0 - see bellow) in the cut complex plane. As far as the number of poles
zj are concerned, provided ImΣL,T (x + i0) ≶ 0 as suggested by (3.167), we can
almost literally repeat the analysis from the previous subsection based on the
argument principle. The change of a phase of the inverse propagator along the
path CR is now [arg ∆−1

L,T (z)]CR → 2πn (for R → ∞), while the absolute value

of the [arg ∆−1
L,T (z)]C± is bounded by π due to the positivity (negativity) of

ImΣL,T (x± i0). Provided ∆−1
L,T (xt) 6= 0, we can therefore conclude

n− 1 ≤ nI (3.169)

n ≤ nII − pII (3.170)

where nI,II is the number of the solutions of the equation ∆−1
L,T (z) = 0 on the

first and second sheet respectively and pII is the number of the poles (weighted
with their order) of ΣL,T (z) on the second sheet22.

20Here we do not assume the existence of any CDD poles [89] for simplicity. In general case,
provided the spectral representation of ∆L,T is valid in the form (3.165), and Im∆−1

L,T (s) =
O(sn) for s→∞ we formally get

∆−1
L,T (z) = Pn(z) +QL,Tn+1(z)

(
1

π

∫ ∞

xt

dx

QL,Tn+1(x)

Im∆−1
L,T (x)

x− z −
∑

i

Ci
z − z0i

)

where Ci > 0 and 0 < z0i < xt correspond to the CDD poles.
21In what follows we give such an representation of our one-loop iΓ ≤ 6 result explicitly.
22Note that, the case n = 1 is in some sense exceptional. In this case it is possible to get a
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Therefore, because zk∆L,T (z) = O(zk−n−1), we can write for 0 < k ≤ n an
unsubtracted dispersion relation (cf. (3.165), we will omit the subscript L, T in
the following formulae for brevity and write simply ∆(z), ρ(s) etc.)

zk∆(z) =
∑

j>0

Rjz
k
j

z − zj
+

1

π

∫ ∞

xt

dx
xkdisc∆(x)

x− z

or

∆(z) =
1

zk

∑

j>0

Rjz
k
j

z − zj
+

1

πzk

∫ ∞

xt

dx
xkdisc∆(x)

x− z . (3.171)

and for k = 0 (note the kinematical pole at z = 0)

∆(z) =
R0

z
+
∑

j>0

Rj

z − zj
+

1

π

∫ ∞

xt

dx
disc∆(x)

x− z (3.172)

Due to the asymptotic fall off ∆(z) = O(z−n−1) the discontinuity disc∆(x) has
to satisfy the following sum rules

− 1

π

∫ ∞

xt

dxxkdisc∆(x) +
∑

j

Rjz
k
j = 0, 0 < k ≤ n− 1. (3.173)

− 1

π

∫ ∞

xt

dxdisc∆(x) +
∑

j

Rj +R0 = 0 (3.174)

Suppose on the other hand validity of the dispersive representation (3.165). Then
all the poles have to be real, and we can identify

ρ(s) = − 1

π
disc∆(s) +

∑

j

Rjδ(s− zj) +R0δ(s). (3.175)

However, the sum rules (3.173) are generally inconsistent with the spectral
representation (3.165). The validity of some of them might require either an
appearance of the states with the negative norm in the spectrum, i.e. we are in a
conflict with the positivity of the spectral function ρ(s) ≥ 0 or an appearance of
physically non-acceptable tachyon poles leading to the acausality. For instance,
suppose disc∆(s) ≤ 0, then for R0 ≥ 0 at least one of the poles has to correspond
to a negative norm one-particle state (ghost). On the other hand, for disc∆(s) ≤
0, Rj > 0 we can still satisfy the k = 0 sum rule with negative R0, however,
from the k = 1 sum rule we need at least one pole to be negative (tachyon)
(in this case, however, the sum rules with even k cannot be satisfied)23. These
considerations illustrate the known fact that the representation of the propagator
based on the formulas (3.166) has limited range of validity within the fixed order
of the perturbation theory and has to be taken with some care.

realistic resonance propagator compatible with the Källén-Lehman representation with no pole
on the first sheet and one pole on the unphysical sheet. Such a propagator has been obtained
in [90] for scalar resonances. Cf. also [91].

23An analogous discussion can be done for the second sheet. Concrete examples of various
types of poles will be given in the next section.
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One point of view might be that the range of applicability of the formulae
(3.166) is |z| < Λmax = min{|zj|} where {zj} is the set of unwanted poles. Pro-
vided there exists a genuine expansion parameter α applicable to the organization
of the perturbative series, according to which ΣL,T =

∑
i>0 α

iΣ
(i)
L,T (e.g. expand-

ing in powers of α = 1/NC in RχT ), one can expect the additional (generally
pathological) poles of ∆L,T (z) to decouple ( i.e. Λmax →∞ for α→ 0). In such a
case we could argue that they are in fact harmless. However, the size of Λmax for
actual value of α need not to be far from M which could invalidate this approach
to the theory in the region for which it was originally designed.

Alternatively, instead of using the (partial) Dyson re-summation, we can ex-
pand directly ∆µναβ(p) to the fixed finite order n which leads to

∆L(s) =
2

s

(
1

s−M2
+ α

1

s−M2
Σ

(1)
L (s2)

1

s−M2
+ . . .+ αn

1

s−M2
Σ

(n)
L (s2)

1

s−M2

)

∆T (s) =
2

s

(
1

M2
+ α

1

M2
Σ

(1)
T (s2)

1

M2
+ . . .+ αn

1

M2
Σ

(n)
T (s2)

1

M2

)
.

This expansion (which does not give rise to the additional poles of the propagator)
might be useful for s�M2, however, in this case a higher-order pole at s = M2

is generated, which is not correct physically in the resonance region s ∼ M2.
Here we instead expect a single pole on the second sheet of ∆L(z), where z =
M2

phys − iMphysΓphys (where the mass M2
phys = M2 +O(α) and the width Γphys =

O(α)) corresponding to the original degree of freedom of the free Lagrangian.
Therefore, the Dyson re-summation (i.e. the application of the formulae (3.166))
suplemented with some other more sophisticated approaches (e.g. the Redmond
and Bogolyubov method [92,93] consisting of the subtraction24 of the additional
unwanted poles from the propagator, or diagonal Padé approximation method
[94]) seems to be inevitable for s ∼M2.

However, in the concrete case of our calculations of the antisymmetric tensor
field propagator, the plain Dyson re-summation might produce various types of
poles some of which we illustrate in the next subsection.

3.5.3 Examples of the poles

The additional poles of the propagator can have different nature. Let us assume
the 1−− channel first. By construction for any values of the constants ai we have
one pole on the second sheet (which is directly accessible from the physical sheet
by means of the crossing of the cut for 0 < z < 1) which corresponds to the
physical resonance (ρ meson) we have started with at the tree level. On the first
sheet we get then a typical resonance peak. These two structures are illustrated in
the Fig. 3.6, where the square of the modulus of the propagator function, namely
i.e. |z − 1 − σL(z)|−2, is plotted25 on the first and the second sheet for ai = 0.
In this case, no additional pole appears in the region of assumed applicability of

24Note that, in order to perform this on the lagrangian level, nonperturbative and nonlocal
counterterms would have to be added to the theory. However the status of such a counterterms
is not clear, cf. [95].

25We have used the following numerical inputs: Mphys = 770MeV , Γphys = 150MeV , F =
93.2MeV , FV = 154MeV .

98



Figure 3.6: The plot of the the square of the modulus of the propagator function
|z − 1 − σL(z)|−2 on the first and the second sheet for ai = 0. The pole on the
second sheet and the peak on the first sheet correspond to the ρ(770).

RχT . However, for another set of parameters we can get also pathological poles
not far from this region (e.g. tachyon as it is illustrated in analogous Fig. 3.7,
now for a0 = a1 = a2 = 10, a3 = 0).

Figure 3.7: The plot of the the square of the modulus of the propagator function
|z − 1− σL(z)|−2 on the first and the second sheet for a0 = a1 = a2 = 10, a3 = 0.
The additional pole on the first sheet is a tachyon.

In the 1+− channel, there is no tree-level pole in the propagator. The struc-
ture of the poles of the Dyson resumed propagator is strongly dependent on the
parameters bi and γ in this case. Let us illustrate this briefly. Note e.g. that, the
equation (3.145) can have (exact) solution x = 1 on the first sheet provided the
parameters bi satisfy the following constraint

3∑

i=0

bi = −πMphys

Γphys

∼ −16 (3.176)

where the numerical estimate corresponds to (Mphys,Γphys) ∼ (Mρ,Γρ). In order
to interpret this solution as a 1+− bound state pole we need the residuum ZA at
this pole to be positive, i.e.

Z−1
A = σrT (x)

′ |x=1 =
1

π

Γphys

Mphys

3∑

j=1

jbj > 0 (3.177)
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otherwise the pole is a negative norm ghost state. Of course, from the phe-
nomenological point of view, both these possibilities are meaningless. Note also
that, the constraints (3.176) and (3.177) require unnatural large values of the
parameters bi and it is also in a conflict with the large NC counting26.

For γ = 0, a pathological tachyonic solution of (3.145) exists for x = −2
provided

3∑

i=0

(−2)ibi = −πMphys

Γphys

which might be satisfied with more reasonable values of the parameters bi than in
the previous case. More generally, we can have pathological poles x = xγ where
xγ is a solution of

2 + (1 + 6γ + γ2)xγ + 2γ2x2
γ = 0.

This xγ is a pole of the propagator on both physical and unphysical sheets under
the conditions that the following constraint on the parameters bi

3∑

i=0

xiγbi = −πMphys

Γphys

is satisfied. Here xγ is real (and negative) for |γ + 5| > 2
√

6 and it represents
therefore a physically unacceptable tachyonic pole. Outside of this region of γ we
get pair of complex conjugate poles on the physical sheet with Rexγ > 0 when
−3 + 2

√
2 > γ > −3− 2

√
2.

However, we can easily get a more realistic situation and ensure that the
position of the complex pole zR = xR− iyR on the second sheet in the 1+− channel
corresponds e.g. to a resonance b1(1235). In this case, two conditions for bi,
and γ have to be satisfied, which correspond to the real and imaginary part
of the pole equation 1 + σrT (zR) = 0. This allows us to eliminate two of the
five independent parameters in favor of the mass and the width of the desired
resonance27. However, it might be difficult to eliminate additional pathological
poles in the assumed region of applicability of RχT . We illustrate this in the Fig.
3.8, where the the square of the modulus of the propagator function |1+σT (z)|−2

on the first and the second sheet for b0 = −2.16, b1 = −3.66, b2 = −4.45, b3 = 1.47
and γ = 0 is plotted on the first and the second sheet. In addition to the desired
b1(1235) pole on the second sheet we get also four additional poles on the second
sheet which is difficult to interpret physically as well as two additional structures
the first sheet one of which can be interpreted as an tachyonic pole.

In general it is not so straightforward to formulate the conditions for ai, bi, and
γ under which there are no additional poles on the real axis in the antisymmetric
tensor field propagator. Because ImσrL(x+ i0) is negative for x > 0 (and similarly
ImσrT (x + i0) is positive for x > 1), we can clearly conclude, that there is no
real pole in these regions on the first and the second sheet. As far as the regions
of x < 0 (for σrL) and x < 1 (for σrT ) are concerned, we can proceed as follows.

Note, that we can write for the functions Ĵ(x) and B̂(x) the following dispersive

26While bi = O(1) in the large NC limit, the right hand side of (3.176) begaves as O(NC).
27Similar conditions we get in the 1−− channel, provided we demand to generate e.g. ρ(1450)

dynamically.
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Figure 3.8: The plot of the the square of the modulus of the propagator function
|1 + σT (z)|−2 on the first and the second sheet for b0 = −2.16, b1 = −3.66,
b2 = −4.45, b3 = 1.47 and γ = 0. Along the desired b1(1235) pole on the 2nd
sheet (z = 2.552−0.295i) and peak on the 1st sheet, additional structures appear.

representation

B̂(x) = 2 + x+ (x+ 1)2

∫ ∞

0

dx
′

(x′ + 1)2

1

x′ − x
≡ 2 + x+ b(x)

Ĵ(x) =

∫ ∞

1

dx
′

x′

(
1− 1

x′

)
1

x′ − x,

from which the representation (3.168) for ΣL with desired properties easily fol-

lows. From this we can see that on the first sheet b(x), Ĵ(x) > 0 for x < 0 and
x < 1 respectively. Similarly, for ΣT we can write

(
2 + (1 + 6γ + γ2)x+ 2γ2x2

)
Ĵ(x) = 1 +

1

6

(
3γ2 + 18γ + 5

)
x+ j(x)

where

j(x) = x2

∫ ∞

1

dx
′

x′3

(
1− 1

x′

)(
2 + (1 + 6γ + γ2)x

′
+ 2γ2x

′2
) 1

x′ − x

and j(x) > 0 for x < 1. The equations (3.5) and (3.145) have therefore the
following structure

pL(x) = − 1

π

Γphys

Mphys

x2 (b(x) + 2)− 40

9

(
Mphys

4πFπ

)2

d2
3(x2 − 1)2Ĵ(x)(3.178)

pT (x) = −20

9

(
Mphys

4πFπ

)2

d2
3(x− 1)2 (j(x) + 1) , (3.179)

where pL,T (x) are the following polynomials of the third order

pL(x) = x− 1− 1

π

Γphys

Mphys

[
1− x3 +

3∑

i=1

ai(x
i − 1)

]
= (x− 1)qL(x)

pT (x) = 1 +
1

π

Γphys

Mphys

3∑

i=0

bix
i +

10

27

(
Mphys

4πFπ

)2

d2
3

(
3γ2 + 18γ + 5

)
x(x− 1)2.
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where

qL(x) = 1− 1

π

Γphys

Mphys

(
(1 + x+ x2)(a3 − 1) + a1 + a2(x+ 1)

)

Because the right hand sides of the equations (3.178) and (3.179) are negative in
the regions of interest, the sufficient (but not necessary) condition of the absence
of the poles in these regions is qL(x) < 0 for x < 0 and pT (x) > 0 for x < 1. For
qL(x) this can be achieved in many ways, e.g. for

a3 ≥ 1

qL(0) = 1− 1

π

Γphys

Mphys

(a1 + a2 + a3 − 1) < 0

q
′

L(0) = − 1

π

Γphys

Mphys

(a3 + a2 − 1) > 0

i.e.

a1 > π
Mphys

Γphys

, a2 < 0, a3 ≥ 1.

Note however, that such a condition for a1 requires unnatural value for this pa-
rameter and is in a conflict with the large NC counting. Similarly, the condition
pT (x) > 0 can be ensured e.g. when the coefficients at the third power of x vanish
identically, i.e.

b3 = −10

27

(
Mphys

4πFπ

)2

π
Mphys

Γphys

d2
3

(
3γ2 + 18γ + 5

)
,

the coefficients at the second power of x are positive, i.e

b2 >
20

27

(
Mphys

4πFπ

)2

π
Mphys

Γphys

d2
3

(
3γ2 + 18γ + 5

)
,

and

pT (1) = 1 +
1

π

Γphys

Mphys

3∑

i=0

bi > 0

p
′

T (1) =
1

π

Γphys

Mphys

3∑

j=0

bjj > 0.

On the contrary to the previous case, these conditions respect the large NC count-
ing. Therefore without any detailed information about the actual value of the ai
and bi it seems to be quite natural to have tachyonic pole in the 1−− channel and
no bound states or tachyon poles in the 1+− channel of the propagator.

3.6 Summary and discussion

In this chapter we have studied and illustrated various aspects of the renormal-
ization procedure of the Resonance Chiral Theory using the spin-one resonance
self-energy and the corresponding propagator as a concrete example. The explic-
it calculation of the one-loop self-energies within three possible formalisms for
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the description of the spin-one resonances, namely the Proca filed, antisymmetric
tensor field and the first order formalism is the main result of our article. Because
the theory is non-renormalizable and the loop corrections break the ordinary chi-
ral power counting, we had presumed an accurence of problems of several types
which have proved to be true within our explicit example.

The first sort of problems concerned the technical aspects of the process of
renormalization, namely the organization of the loop corrections and the coun-
terterms and the mixing of the ordinary chiral orders by the loops. In order to
organize our calculations we have proposed a self-consistent scheme for classifica-
tion of the one-particle irreducible graphs Γ and corresponding counterterms Oi
which renormalize its superficial divergences. The classification is according to
the indices iΓ and iOi assigned to graph Γ and operator Oi respectively. Though
the scheme based on iO restricts both the chiral order of the chiral building blocs
(number of derivatives and external sources) as well as the number of resonance
fields in the operators in the RχT Lagrangian at each fixed order and can be
understood as a combination of the chiral and 1/NC counting, it is however not
possible to assign to iΓ a clear physical meaning connected with the infrared char-
acteristics of the graphs Γ. Nevertheless the scheme works at least formally and
can be used for the proof of the renormalizability of RχT to given order iΓ, iOi ≤
imax. We have used it at the level imax ≤ 6 and proved that the complete set
of counterterms from zero up to six derivatives is necessary to renormalize the
divergences of the one-loop self-energies in the contrary to the naive expectations
based on the usual chiral powercounting.

The last aspect, namely that the complete set of counterterms including also
those with two derivatives (i.e. the kinetic terms) is necessary, is connected to
the second sort of problems. The tree level Lagrangian is constructed using just
one of such a kinetic term in order to ensure the propagation of just three degrees
of freedom corresponding to the spin-one particle state. If we would include all
possible kinetic terms with two derivatives into the free Lagrangian, we would
get (according to the formalism used) additional poles in the free propagator
corresponding to the additional one-particle states some of them being necessarily
either negative norm ghost or tachyon. This was the first signal of the problems
with unphysical degrees of freedom connected with the one-loop corrections to
the self-energies. The higher derivative kinetic terms further increase the number
of these extra degrees of freedom. We have studied this feature also using the
path integral representation and integrated in additional fields which appear to
be responsible for the additional propagator poles.

The problems with additional degrees of freedom are also connected with
the well known fact that the propagator obtained by means of the Dyson re-
summation of the perturbative one-particle irreducible self-enery insertions might
be incompatible with the Källén-Lehman spectral representation even in the case
of the renormalizable theories [96]. As is well known, in this case tachyonic or
negative norm ghost state can appear as an additional pole. Such an extra pole
is usually harmless because it is very far from the energy range where the theory
is applicable. In the power-counting non-renormalizable effective theories like
RχT such problems are much stronger either because of the worse UV behavior
of the self-energies (which increases the number of additional poles) or because
the additional pathological poles might lie near the region where the theory was
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assumed to be valid. The nontrivial Lorentz structure of the fields describing spin-
one resonances further complicates this delineation because some of the additional
poles might have different quantum numbers than the original tree-level degrees of
freedom. As far as this type of poles is concerned, we have demonstrated using the
path integral formalism that it can be eliminated by means of the requirement of
additional protective symmetry of the interaction Lagrangian, which is an analog
of U(1) gauge transformation known for the Proca and Rarita-Schwinger fields.
However, these symmetries are in general in conflict with chiral symmetry, though
individual interaction vertices can posses such a symmetry accidentally.

The results of our calculations proved to fit this general picture. Using the
explicit example of the one-loop antisymmetric tensor self-energy we have shown
that the Dyson re-summed propagator has always (ie. irrespectively to the actu-
al values of the couterterm couplings) at least three additional poles on the first
sheet in the 1−− channel, just five such poles on the second sheet (one of them cor-
responding to the original degree of freedom) and at least two additional poles on
the first sheet in the 1+− channel and at least four such poles on the second sheet.
As we have seen in explicit analysis of the pole equations, without any additional
information about the size of the counterterm couplings and consequently about
the actual values of the renormalization scale invariant parameters entering the
polynomial part of the self-energies, a rich variety of poles in the propagator is
possible. Some of the poles might be unphysical (complex conjugated pairs of
poles on the first sheet and tachyonic or negative norm ghosts on both sheets)
and some of them even can be situated near or inside the assumed applicability
region of RχT .

It might be argued that the additional poles are just artifacts of the inap-
propriate treatment of the theory and that the one-loop one-particle irreducible
self-energy insertion cannot be re-summed in order to construct a reliable ap-
proximation of the full resonance propagator. However, the mere truncation of
the Dyson series keeping only first two terms (corresponding to tree-level con-
tribution and to the strict one-loop correction to the propagator respectively)
generates double poles at s = M2 on both sheets and is therefore in contradiction
with the expected analytic structure of the full propagator. Though this might be
an useful approximation of the full propagator for s� M2, it cannot be correct
in the resonance region. Therefore provided we would like to use RχT at one-loop
also for s ∼M2, the construction the propagator using some sort of re-summation
(i.e. the Dyson one or its modifications like e.g. the Redmond and Bogolyubov
procedure or Padé approximation) might be inevitable. The actual position of
the additional poles (if there are any within the chosen procedure) might be then
understood as a bound limiting the range of applicability of the theory. In the
most optimistic scenario all the additional poles are far form the region of inter-
est and RχT can be treated as a consistent effective theory describing just the
degrees of freedom we start with at the tree level. The less satisfactory case when
only the pathological poles are far-distant, we can either abandon the theory as
inconsistent or alternatively we can try to interpret the non-pathological poles as
a prediction of the theory corresponding to the dynamical generation of higher
resonances. Such a treatment was used in the case of scalar resonances in [77]
(see also [78, 79]). Eventually in the case when all the additional poles lie near
s ∼ M2, either the approximative construction of the propagator or one-loop
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RχT itself might be problematic. Which scenario actually turns up depends on
the values of the couplings in the RχT Lagrangian.

3.7 Appendix

3.7.1 Additional degrees of freedom in the path integral
- the Proca field

Suppose that the interaction Lagrangian has the form

Lint = Lct + L′int (3.180)

where Lct is the toy interaction Lagrangian (3.18). Our aim will be to transform
Z[J ] to the form of the path integral with all the additional degrees of freedom
represented explicitly in the Lagrangian and the integration measure. In terms
of the transverse and longitudinal degrees of freedom we get

Lint(V⊥ − ∂Λ, J, . . .) = Lct(V⊥ − ∂Λ, J, . . .) + L′int(V⊥ − ∂Λ, J, . . .)

=
α

2
V µ
⊥�V⊥µ −

β

2
(�Λ)2 +

γ

2M2
(�V µ

⊥ )(�V⊥µ) +
δ

2M2
(∂µ�Λ)(∂µ�Λ)

+L′int(V⊥ − ∂Λ, J . . .). (3.181)

In order to lower the number of derivatives in the kinetic terms we integrate in
auxiliary scalar fields χ, ρ, π, σ and auxiliary transverse vector field B⊥µ. Writing

exp

(
−i
∫

d4x
β

2
(�Λ)2

)
=

∫
Dχ exp

(
i

∫
d4x

(
1

2β
χ2 − ∂µχ∂µΛ

))
(3.182)

and similarly for other higher derivative terms we can finally formulate the theory
as

Z[J ] =

∫
DV⊥DB⊥DΛDχDρDσDπ exp

(
i

∫
d4xL(V⊥, B⊥,Λ, χ, ρ, σ, π, J, . . .)

)

(3.183)
with

DB⊥ = DBδ(∂µBµ) (3.184)

Bµ
⊥ =

(
gµν − ∂µ∂ν

�

)
Bν . (3.185)

and

L(V⊥, B⊥,Λ, χ, ρ, σ, π, J, . . .) =
1

2
(1 + α)V µ

⊥�V⊥µ +
1

2
M2V µ

⊥V⊥µ −
1

2γ
M2Bµ

⊥B⊥µ −Bµ
⊥�V

µ
⊥

+
1

2
M2∂µΛ∂µΛ +

1

2β
χ2 − ∂µχ∂µΛ

− 1

2δ
M2∂µρ∂

µρ− ∂µρ∂µσ − ∂µπ∂µΛ− πσ

+L′int(V⊥ − ∂Λ, J, . . .) (3.186)
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In this formulation the kinetic terms have no more than two derivatives, however,
the number of fields is higher than the actual number of degrees of freedom.
We therefore have to integrate out the redundant variables. As a first step we
diagonalize the kinetic terms performing the shifts

V µ
⊥ → V µ

⊥ +
1

1 + α
Bµ
⊥

Λ → Λ +
1

M2
χ+

1

M2
π

ρ → ρ− δ

M2
σ

χ → χ− π (3.187)

respectively to the form

L(V⊥, B⊥,Λ, χ, ρ, σ, π, J, . . .) =
1

2
(1 + α)V µ

⊥�V⊥µ +
1

2
M2V µ

⊥V⊥µ

−1

2
(1 + α)−1Bµ

⊥�B
µ
⊥ +

1

2
M2

(
(1 + α)−2 − γ−1

)
Bµ
⊥B⊥µ

+M2(1 + α)−1V µ
⊥B⊥µ

+
1

2
M2∂µΛ∂µΛ− 1

2M2
∂µχ∂

µχ+
1

2β
(χ− π)2

− 1

2δ
M2∂µρ∂

µρ+
δ

2M2
∂µσ∂

µσ − πσ

+L′int(V , J, . . .). (3.188)

where

V = V⊥ +
1

1 + α
B⊥ − ∂Λ− 1

M2
∂χ (3.189)

Now the superfluous degrees of freedom are easily identified. Namely, the fields
ρ and σ decouple and moreover π has no kinetic term. Both of them can be
therefore easily integrated out. As a result of the gaussian integration we get

Z[J ] =

∫
DV⊥DB⊥DΛDχDσ exp

(
i

∫
d4xL(V⊥, B⊥,Λ, χ, σ, J, . . .)

)
(3.190)

where

L(V⊥, B⊥,Λ, χ, σ, J, . . .) =
1

2
(1 + α)V µ

⊥�V⊥µ +
1

2
M2V µ

⊥V⊥µ

−1

2
(1 + α)−1Bµ

⊥�B
µ
⊥ +

1

2
M2

(
(1 + α)−2 − γ−1

)
Bµ
⊥B⊥µ

+M2(1 + α)−1V µ
⊥B⊥µ

− 1

2M2
∂µχ∂

µχ+
δ

2M2
∂µσ∂

µσ − 1

2
βσ2 − χσ

+
1

2
M2∂µΛ∂µΛ

+L′int(V , J, . . .). (3.191)

Let us assume α > −1 and δ > 0 in what follows. Note that, in this case the
fields Bµ

⊥ and χ have opposite minus sign at their kinetic terms. This is a signal
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of the appearence of the negative norm ghosts in the spectrum of the theory. The
”dangerous” fields Bµ

⊥ and χ mix with the fields V µ
⊥ and σ respectively. In order

to identify the mass eigenstates we further rescale the fields

V µ
⊥ → (1 + α)−1/2V µ

⊥
Bµ
⊥ → (1 + α)1/2Bµ

⊥
χ → Mχ

σ → δ−1/2Mσ (3.192)

and afterwards we diagonalize the mass terms

Lmass =
1

2

M2

1 + α

(
V µ
⊥V⊥µ +

(
1− (1 + α)2

γ

)
Bµ
⊥B⊥µ

)

−1

2
M2

(
βσ2 + δ−1/2χσ

)
(3.193)

by means of an appropriate Sp(2) symplectic rotation of the fields V µ
⊥ , Bµ

⊥ and
χ, σ

V µ
⊥ → V µ

⊥ cosh θV +Bµ
⊥ sinh θV

Bµ
⊥ → V µ

⊥ sinh θV +Bµ
⊥ cosh θV

χ → χ cosh θS + σ sinh θS

σ → χ sinh θS + σ cosh θS. (3.194)

This is possible for (1 +α)2 > 4γ and β2 > 4δ, when the off-diagonal elements of
the mass matrix vanish for

tanh θV =
(1 + α)2 − 2γ − (1 + α)

√
(1 + α)2 − 4γ

2γ

tanh θS =

√
β2 − 4δ − β

2δ1/2
. (3.195)

We get finally for the generating functional

Z[J ] =

∫
DV⊥DB⊥DΛDχDσ exp

(
i

∫
d4xL(V⊥, B⊥,Λ, χ, σ, J, . . .)

)
(3.196)

where

L(V⊥, B⊥,Λ, χ, σ, J, . . .) =
1

2
V µ
⊥�V⊥µ +

1

2
M2

V+V
µ
⊥V⊥µ −

1

2
Bµ
⊥�B

µ
⊥ +

1

2
M2

V−B
µ
⊥B⊥µ

+
1

2
∂µσ∂

µσ − 1

2
M2

S+σ
2 − 1

2
∂µχ∂

µχ− 1

2
M2

S−χ
2 +

1

2
M2∂µΛ∂µΛ

+L′int(V
(θ)
, J, . . .).

(3.197)

where now

V
(θ)

=
exp θV

(1 + α)1/2
(V⊥ +B⊥)− ∂χ cosh θS − ∂σ sinh θS − ∂Λ (3.198)

and where M2
V±, M2

S± are the mass eigenvalues (3.21) and (3.23). The theory is
now formulated in terms of two spin one and two spin zero fields, whereas two of
them, namely Bµ

⊥ and χ, are negative norm ghosts. The field Λ do not correspond
to any dynamical degree of freedom, its role is merely to cancel the spurious poles
of the free propagators of the transverse fields V⊥ and B⊥ at p2 = 0.
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3.7.2 The additional degrees of freedom in the path integral-
the antisymmetric tensor case

We assume the interaction Lagrangian to be of the form

Lint = Lct + L′int, (3.199)

where Lct is given by (3.57) and re-express it in the terms of the longitudinal and
transverse components of the original field Rµν

Lint(Rµν
‖ −

1

2
εµναβΛ̂αβ, J, . . .) = Lct(Rµν

‖ −
1

2
εµναβΛ̂αβ, J, . . .)+L

′

int(R
µν
‖ −

1

2
εµναβΛ̂αβ, J, . . .)

(3.200)
where

Lct(Rµν − 1

2
εµναβΛ̂αβJ, . . .) =

α

4
Rµν
‖ �R‖µν +

γ

4M2
(�Rµν

‖ )(�R‖µν)

+
β

2
(�Λµ

⊥)(�Λ⊥µ)− δ

2M2
(∂α�Λµ

⊥)(∂α�Λ⊥µ).(3.201)

We can introduce the auxiliary (longitudinal) antisymmetric tensor field Bµν
‖ and

(transverse) vector fields χµ⊥, ρµ⊥, σµ⊥ and πµ⊥ in order to avoid the higher derivative
terms and write in complete analogy with the Proca field case

Z[J ] =

∫
DR‖DB‖DΛ⊥Dχ⊥Dρ⊥Dσ⊥Dπ⊥

exp

(
i

∫
d4xL(R‖, B‖,Λ⊥, χ⊥, ρ⊥, σ⊥, π⊥, J, . . .)

)
(3.202)

where the measures and fields are

DB‖ = DBδ(∂αBµν + ∂νBαµ + ∂µBνα) (3.203)

Bµν
‖ = − 1

2�
(∂µgνα∂β + ∂νgµβ∂α − (µ↔ ν))Bαβ (3.204)

and for φµ = χµ, ρµ, σµ and πµ

Dφ⊥ = Dφδ(∂µφµ) (3.205)

φµ⊥ =

(
gµν − ∂µ∂ν

�

)
φ⊥ν . (3.206)

The Lagrangian is then

L =
1 + α

4
Rµν
‖ �R‖µν +

1

4
M2Rµν

‖ R‖µν

−1

γ
M2Bµν

‖ B‖µν +Bµν
‖ �R‖µν

+
1

2
M2Λµ

⊥�Λ⊥µ −
1

2β
χµ⊥χ⊥µ − χµ⊥�Λ⊥µ

+
1

2δ
M2∂αρµ⊥∂αρ⊥µ − ∂αρµ⊥∂ασ⊥µ − ∂αΛµ

⊥∂απ⊥µ − πµ⊥σ⊥µ

+Lint
(
Rµν − 1

2
εµναβΛ̂αβ, J, . . .

)
. (3.207)
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Note that, the fields χµ, ρµ, σµ and πµ mix with Λµ and are therefore pseudovec-
tors. The Lagrangian (3.207) is completely analogical to (3.186) up to the more
Lorentz indices, so will be brief in the next steps. First we identify the redun-
dant degrees of freedom diagonalizing the kinetic terms by means of the following
sequence of shifts (cf. (3.187))

Rµν
‖ → Rµν

‖ − 2(1 + α)−1Bµν
‖

Λµ
⊥ → Λµ

⊥ +
1

M2
χµ⊥ −

1

M2
πµ⊥

ρµ⊥ → ρµ⊥ +
δ

M2
σµ⊥

χµ⊥ → χµ⊥ + πµ⊥. (3.208)

As a result we get the Lagrangian in the form (cf. (3.188))

L =
1

4
(1 + α)Rµν

‖ �R‖µν +
1

4
M2Rµν

‖ R‖µν

−(1 + α)−1Bµν
‖ �B‖µν + (1 + α)−2M2Bµν

‖ B‖µν −
1

γ
M2Bµν

‖ B‖µν

−(1 + α)−1M2Rµν
‖ B‖µν

+
1

2
M2Λµ

⊥�Λ⊥µ −
1

2M2
χµ⊥�χ⊥µ −

1

2β
(χµ⊥ + πµ⊥)(χ⊥µ + π⊥µ)

+
1

2δ
M2∂αρµ⊥∂αρ⊥µ −

δ

2M2
∂ασµ⊥∂ασ⊥µ − πµ⊥σ⊥µ

+Lint
(
R, J, . . .

)
, (3.209)

where

R
µν

= Rµν
‖ − 2(1 + α)−1Bµν

‖ −
1

2
εµναβ(Λ̂αβ +

1

M2
χ̂⊥αβ). (3.210)

Integrating out the superfluous fields ρ⊥µ and π⊥µ which are decoupled from the
interaction we get

Z[J ] =

∫
DR‖DB‖DΛ⊥Dχ⊥Dρ⊥Dσ⊥Dπ⊥

exp

(
i

∫
d4xL(R‖, B‖,Λ⊥, χ⊥, ρ⊥, σ⊥, π⊥, J, . . .)

)
(3.211)

with (cf. (3.191))

L =
1

4
(1 + α)Rµν

‖ �R‖µν +
1

4
M2Rµν

‖ R‖µν

−(1 + α)−1Bµν
‖ �B‖µν + (1 + α)−2M2Bµν

‖ B‖µν −
1

γ
M2Bµν

‖ B‖µν

−(1 + α)−1M2Rµν
‖ B‖µν

+
1

2
M2Λµ

⊥�Λ⊥µ

− 1

2M2
χµ⊥�χ⊥µ +

δ

2M2
σµ⊥�σ⊥µ +

1

2
βσµ⊥σ⊥µ + χµ⊥σ⊥µ

+Lint(S, J, . . .) (3.212)
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Again, assuming α > −1 and δ > 0 we have two pairs of fields with opposite
signs of the kinetic terms, namely (Rµν

‖ , B
µν
‖ ) and (χµ⊥, σ

µ
⊥) respectively.The fields

within both of these these pairs mix. After re-scaling

Rµν
‖ → (1 + α)−1/2Rµν

‖ (3.213)

Bµν
‖ → 1

2
(1 + α)1/2Bµν

‖

χµ⊥ → Mχµ⊥

σµ⊥ →
M√
δ
σµ⊥

the form of the mass matrix becomes identical to that of (3.193) (with obvious
identifications) and we can therefore perform the same symplectic rotations as in
the Proca field case and under the same assumptions to get diagonal mass terms
corresponding to the eigenvalues (3.21, 3.23). As a result we have found four
spin-one states, two of them being negative norm ghosts, namely Bµν

‖ and σµ⊥ and

two of them with opposite parity, namely χµ⊥ and σµ⊥. As in the Proca field case,
the field Λµ

⊥ effectively compensates for the spurious p2 = 0 poles in the Rµν
‖ and

Bµν
‖ propagators within Feynman graphs.

3.7.3 Path integral formulation of the first order formal-
ism

Within the first order formalism, the path integral formulation is merely a gen-
eralization of the previous two cases, so we will be as brief as possible in what
follows. Note that, now the kinetic term is invariant with respect to the both
transformations (3.26) and (3.60), therefore the manifestation of the degrees of
freedom within the the path integral formalism can be done in analogy with the
previous two cases. Using triple Faddeev-Popov trick in the path integral

Z[J ] =

∫
DR exp

(
i

∫
d4x

(
MVν∂µR

µν +
1

2
M2VµV

µ +
1

4
M2RµνR

µν + Lint
))

(3.214)
where Lint = Lint(V α, Rµν , J, . . .). We get

Z[J ] =

∫
DR‖DΛ⊥DV⊥DΛ exp

(
i

∫
d4xL(Rµν

‖ ,Λ
ρ
⊥, V

α
⊥ . . . ,Λ, J, . . .)

)
(3.215)

where

L(Rµν
‖ ,Λ

ρ
⊥, V

α
⊥ . . . ,Λ, J, . . .) = MV⊥ν∂µR

µν
‖ +

1

2
M2V⊥µV

µ
⊥ +

1

4
M2R‖µνR

µν
‖

+
1

2
M2Λµ

⊥�Λ⊥µ +
1

2
M2∂µΛ∂µΛ

+Lint(Rµν
‖ −

1

2
εµναβΛ̂αβ, V

α
⊥ − ∂αΛ, J, )(3.216)
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and, as in the previous subsections

DR‖ = DRδ(∂αRµν + ∂νRαµ + ∂µRνα)

DΛ⊥ = DΛδ(∂µΛµ)

DV⊥ = DV δ(∂µΛµ)

Rµν
‖ = − 1

2�
(∂µgνα∂β + ∂νgµβ∂α − (µ↔ ν))Rαβ

Λµ
⊥ =

(
gµν − ∂µ∂ν

�

)
Λν

V µ
⊥ =

(
gµν − ∂µ∂ν

�

)
Vν . (3.217)

In order to diagonalize the kinetic terms we perform a shift

V µ
⊥ → V µ

⊥ −
1

M
∂νR

νµ
‖ (3.218)

and get

L(Rµν
‖ ,Λ

ρ
⊥, V

α
⊥ . . . ,Λ, J, . . .) =

1

4
Rµν
‖ �R‖µν +

1

4
M2R‖µνR

µν
‖ +

1

2
M2V⊥µV

µ
⊥

+
1

2
M2Λµ

⊥�Λ⊥µ +
1

2
M2∂µΛ∂µΛ

+Lint(Rµν
‖ −

1

2
εµναβΛ̂αβ, V

α
⊥ −

1

M
∂νR

νµ
‖ − ∂αΛ, J, ).

(3.219)

The discussion of the role of the field Rµν
‖ and the Λµ

⊥ is the same as in the

antisymmetric tensor case. The extra fields V µ
⊥ and Λ do not correspond to the

original degree of freedom, their free propagators are

∆µν
V⊥(p) =

P T µν

M2
(3.220)

∆Λ(p) =
1

M2

1

p2
(3.221)

with spurious poles at p2 = 0. According to the form of the interaction, only the
combination with spurious poles cancelled, namely

∆µν
V⊥(p) + pµpν∆Λ(p) +

1

M2
pαpβ∆αµβν

‖ (p) = − P T µν

p2 −M2
+
PL µν

M2
(3.222)

enters the Feynman graphs.
Alternatively, we could make in (3.216) the following shift

Rµν
‖ → Rµν

‖ +
1

M
(∂µV ν

⊥ − ∂νV µ
⊥ ) (3.223)

leading to

L(Rµν
‖ ,Λ

ρ
⊥, V

α
⊥ . . . ,Λ, J, . . .) =

1

2
V⊥µ�V

µ
⊥ +

1

2
M2V⊥µV

µ
⊥ +

1

4
M2R‖µνR

µν
‖ (3.224)

+
1

2
M2Λµ

⊥�Λ⊥µ +
1

2
M2∂µΛ∂µΛ

+Lint(Rµν
‖ +

1

M
(∂µV ν

⊥ − ∂νV µ
⊥ )− 1

2
εµναβΛ̂αβ, V

α
⊥ − ∂αΛ, J, . . .).
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In this formulation, the role of the fields V µ
⊥ and the field Λ is the same as in the

Proca field case. Rµν
‖ does not correspond to the original degree of freedom and,

as in the previous formulation, it serves together with Λ⊥µ to cancel the spurious
p2 = 0 poles.

Let us end up this subsection with the path integral treatment of the toy
quadratic interaction Lagrangian (3.105). Using the same transformations as
before we get

L(Rµν
‖ ,Λ

ρ
⊥, V

α
⊥ . . . ,Λ, J, . . .) = MV⊥ν∂µR

µν
‖ +

1

2
M2V⊥µV

µ
⊥ +

1

4
M2R‖µνR

µν
‖

+
1

2
M2Λµ

⊥�Λ⊥µ +
1

2
M2∂µΛ∂µΛ

+
αV
2
V⊥µ�V

µ
⊥ −

βV
2

(�Λ)2 +
αR
4
R‖µν�R

µν
‖ +

βR
4
�Λµ

⊥�Λ⊥µ

+L′int(Rµν
‖ −

1

2
εµναβΛ̂⊥αβ, V

α
⊥ − ∂αΛ, J, . . .) (3.225)

Introducing the auxiliary fields analogous to the previous two examples, we have

L(Rµν
‖ ,Λ

µ
⊥, χ, χ

µ
⊥, σ

µ
⊥, π

µ
⊥, J, . . .) =

αV
2
V⊥µ�V

µ
⊥ +

1

2
M2V⊥µV

µ
⊥ (3.226)

+
αR
4
R‖µν�R

µν
‖ +

1

4
M2R‖µνR

µν
‖

+MV⊥ν∂µR
µν
‖

+
1

2
M2Λµ

⊥�Λ⊥µ −
1

2
M2Λ�Λ

+
1

2βV
χ2 + χ�Λ− 1

2βR
χµ⊥χ⊥µ − χµ⊥�Λ⊥µ

+L′int(Rµν
‖ −

1

2
εµναβΛ̂⊥αβ, V

α
⊥ − ∂αΛ, J, . . .)

The kinetic terms can be diagonalized now by means of the shifts

Λµ
⊥ → Λµ

⊥ +
1

M2
χµ⊥ (3.227)

Λ → Λ +
1

M2
χ (3.228)

to the form

L(Rµν
‖ ,Λ

µ
⊥, χ, χ

µ
⊥, J, . . .) =

αV
2
V⊥µ�V

µ
⊥ +

1

2
M2V⊥µV

µ
⊥

+
αR
4
R‖µν�R

µν
‖ +

1

4
M2R‖µνR

µν
‖

+MV⊥ν∂µR
µν
‖

+
1

2
M2Λµ

⊥�Λ⊥µ −
1

2
M2Λ�Λ

− 1

2M2
χµ⊥�χ⊥µ −

1

2βR
χµ⊥χ⊥µ

+
1

2M2
χ�χ+

1

2βV
χ2

+L′int(S,W, J, . . . ),
(3.229)
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where

R
µν

= Rµν
‖ −

1

2
εµναβΛ̂⊥αβ −

1

2M2
εµναβχ̂⊥αβ

V
µ

= V α
⊥ − ∂αΛ− 1

M2
∂αχ.

In the formula (3.229) the scalar and axial-vector ghost field as well as two prop-
agating dynamically mixed spin-1 degrees of freedom are explicit.

3.7.4 The parameters αi and βi in terms of LECs

In this appendix we present the expressions for the renormalization scale inde-
pendent polynomial parameters entering the self-energies (cf. Section 3.4).

The Proca field case

α0 =

(
4πF

M

)2

Zr
M(µ)

α1 =

(
4πF

M

)2

Zr
V (µ)− 40

3
σ2
V

(
ln
M2

µ2
+

1

3

)

α2 =

(
4πF

M

)2

M2Xr
V (µ) +

40

9
σ2
V

(
ln
M2

µ2
+

1

3

)

α3 =

(
4πF

M

)2

M4U r
V (µ) + g2

V

(
M

F

)2(
ln
M2

µ2
− 2

3

)

β0 =

(
4πF

M

)2

Zr
M(µ) = α0

β1 =

(
4πF

M

)2

Y r
V (µ)

β2 =

(
4πF

M

)2

M2X
′r
V (µ)

β3 =

(
4πF

M

)2

M4V r
V (µ).

Here UV and VV are certain linear combinations of the couplings of Lct(6)
V renor-

malized as

UV = U r
V (µ)− 2g2

V

(
M

F

)4
1

M4
λ∞

VV = V r
V (µ)
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The antisymmetric tensor case

α0 =

(
4πF

M

)2

Zr
M(µ)− 40

3
d2

1 ln
M2

µ2
− 20

9
(3d2

1 − d2
3)

−5

(
λV V V

M

)2(
F

M

)2(
7− 6 ln

M2

µ2

)

α1 =

(
4πF

M

)2

(Zr
R(µ) + Y r

R(µ))− 40

9
(3d2

1 + 2d2
3) ln

M2

µ2
− 20

3

(
d2

1 +
1

9
d2

2

)

+
10

3

(
λV V V

M

)2(
F

M

)2(
7− 6 ln

M2

µ2

)

α2 =

(
4πF

M

)2

M2(Xr
R(µ) +W r

R(µ))− 40

9
d2

3

(
ln
M2

µ2
+

1

3

)

+
1

2

(
GV

F

)2(
ln
M2

µ2
− 2

3

)
− 5

3

(
λV V V

M

)2(
F

M

)2(
2− 3 ln

M2

µ2

)

α3 =

(
4πF

M

)2

M4U r
R(µ) +

40

9
d2

3

(
ln
M2

µ2
+

1

3

)

β0 =

(
4πF

M

)2

Zr
M(µ)− 40

3
d2

1 ln
M2

µ2
− 20

9
(3d2

1 + d2
3)

−5

3

(
λV V V

M

)2(
F

M

)2(
11− 6 ln

M2

µ2

)

β1 =

(
4πF

M

)2

Y r
R(µ)− 20

9
(6d2

1 − 12d1(d3 + d4) + 5d2
3 + 9d2

4 − 6d3d4) ln
M2

µ2

−20

27
(9d2

1 − 18d1(d3 + d4)− 7d2
3 − 12d2

4 + 18d3d4)

20

3

(
λV V V

M

)2(
F

M

)2(
7 + 3 ln

M2

µ2

)

β2 =

(
4πF

M

)2

M2W r
R(µ)− 20

9
(d2

3 + 6d3d4 − 5d2
4) ln

M2

µ2
− 80

27
(d2

3 + 4d2
4)

−5

3

(
λV V V

M

)2(
F

M

)2(
4− 3 ln

M2

µ2

)

β3 =

(
4πF

M

)2

M4V r
R(µ)− 40

9
d2

4

(
ln
M2

µ2
− 2

3

)
.

Here UR and VR are certain linear combinations of the couplings of Lct(6)
R with

the infinite parts fixed as

UR = U r
R(µ)− 80

9

(
M

F

)2
1

M4
d2

3λ∞

VR = V r
R(µ) +

80

9

(
M

F

)2
1

M4
d2

4λ∞.
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The first order formalism

αRV0 =

(
4πF

M

)2

Zr
RV (µ) +

10

9
(σRV + 2σV )

[
(d1 − d3) + 3(2d1 − σRV )

(
ln
M2

µ2
+

1

3

)]

αRV1 =

(
4πF

M

)2

M2Xr
RV (µ) +

10

9
(σRV + 2σV )(4d3 + σRV )

(
ln
M2

µ2
+

1

3

)

αRV2 =

(
4πF

M

)2

M4Y r
RV (µ)− 20

9
(σRV + 2σV )d3

(
ln
M2

µ2
+

1

3

)

−1

2

gVGV

M

(
M

F

)2(
ln
M2

µ2
− 2

3

)

αV V0 =

(
4πF

M

)2

Zr
MV (µ)

αV V1 =

(
4πF

M

)22

Zr
V (µ)− 10

3

(
σRV (σRV + 2σV ) + 4σ2

V

)(
ln
M2

µ2
+

1

3

)

αV V2 =

(
4πF

M

)2

M2Xr
V (µ) +

10

9

(
σRV (σRV + 2σV ) + 4σ2

V

)(
ln
M2

µ2
+

1

3

)

αV V3 =

(
4πF

M

)2

M4U r
V (µ) + g2

V

(
M

F

)2(
ln
M2

µ2
− 2

3

)

βV V0 =

(
4πF

M

)2

Zr
MV (µ) = αV V0

βV V1 =

(
4πF

M

)2

Y r
V (µ)

βV V2 =

(
4πF

M

)2

M2X
′r
V (µ)

βV V3 =

(
4πF

M

)2

M4V r
V (µ)

αRR0 =

(
4πF

M

)2

Zr
MR(µ) +

10

3

(
σRV (2d1 − σRV )− 4d2

1

)(
ln
M2

µ2
+

1

3

)

−10

9
(d1 − d3) (2d1 + 2d3 − σRV )

αRR1 =

(
4πF

M

)2

(Zr
R(µ) + Y r

R(µ))− 40

9
(3d2

1 + 2d2
3) ln

M2

µ2
− 20

3

(
d2

1 +
1

9
d2

2

)

+
10

9

(
ln
M2

µ2
+

1

3

)
σRV (4d3 + σRV )

αRR2 =

(
4πF

M

)2

M2(Xr
R(µ) +W r

R(µ))− 20

9
d3(2d3 + σRV )

(
ln
M2

µ2
+

1

3

)

+
1

2

(
GV

F

)2(
ln
M2

µ2
− 2

3

)

αRR3 =

(
4πF

M

)2

M4U r
R(µ) +

40

9
d2

3

(
ln
M2

µ2
+

1

3

)
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βRR0 =

(
4πF

M

)2

Zr
MR(µ) +

10

3
(σRV (2d1 − σRV )− 4d2

1)

(
ln
M2

µ2
+

1

3

)

−20

9
(d2

1 + d2
3) +

10

9
σRV (d1 + d3 − σRV )

= αRR0 − 40

9
d2

3 +
10

9
σRV (2d3 − σRV )

βRR1 =

(
4πF

M

)2

Y r
R(µ)− 20

9
(6d2

1 − 12d1(d3 + d4) + 5d2
3 + 9d2

4 − 6d3d4) ln
M2

µ2

−20

27
(9d2

1 − 18d1(d3 + d4)− 7d2
3 − 12d2

4 + 18d3d4)

− 5

27
σRV

(
32d3 + 6(d3 + 9d4) ln

M2

µ2
− 3σRV

(
ln
M2

µ2
− 2

3

))

βRR2 =

(
4πF

M

)2

M2W r
R(µ)− 20

9
(d2

3 + 6d3d4 − 5d2
4) ln

M2

µ2
− 80

27
(d2

3 + 4d2
4)

+
5

27
σRV

(
8d3 + 6(d3 + 3d4) ln

M2

µ2
− 3σRV

(
ln
M2

µ2
− 2

3

))

βRR3 =

(
4πF

M

)2

M4V r
R(µ)− 40

9
d2

4

(
ln
M2

µ2
− 2

3

)
.

Here UV , VV , UR, VR and YRV are certain linear combination of the couplings
from Lct(6)

RV with infinite parts fixed according to

UV = U r
V (µ)− 2g2

V

(
M

F

)4
1

M4
λ∞

VV = V r
V (µ)

UR = U r
R(µ)− 80

9

(
M

F

)2
1

M4
d2

3λ∞

VR = V r
R(µ) +

80

9

(
M

F

)2
1

M4
d2

4λ∞

YRV = Y r
RV (µ) +

40

9

(
M

F

)2
1

M4
(σRV + 2σV )d3λ∞ +

gVGV

M

(
M

F

)2
1

M4
λ∞

3.7.5 Proof of the positivity of the spectral functions

Here we prove the positivity of the spectral functios ρL,T (µ2) defined as

(2π)−3θ(p0)
[
ρT (p2)p2ΠT

µναβ(p)− ρL(p2)p2ΠL
µναβ(p)

]

=
∑

N

δ(4)(p− pN)〈0|Rµν(0)|N〉〈N |Rαβ(0)|0〉. (3.230)

Let us define for p2 > 0

u(λ)
µν (p) =

i√
p2

(
pµε

(λ)
ν (p)− pνε(λ)

µ (p)
)

w(λ)
µν (p) =

1

2
ε αβ
µν u

(λ)
αβ (p)
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where ε
(λ)
µ (p) are the usual spin-one polarization vectors corresponding to the

mass
√
p2. Then for p2 > 0 we get the following orthogonality relations

u(λ)
µν (p)u(λ

′
)µν(p)∗ = −2δλλ

′

w(λ)
µν (p)w(λ

′
)µν(p)∗ = 2δλλ

′

u(λ)
µν (p)w(λ

′
)µν(p)∗ = 0

and the projectors can be written for p2 > 0 in terms of the polarization sums as

ΠL
µναβ(p) = −1

2

∑

λ

u(λ)
µν (p)u

(λ)
αβ (p)∗

ΠT
µναβ(p) =

1

2

∑

λ

w(λ)
µν (p)w

(λ)
αβ (p)∗.

Multiplying (??) by u
(λ)
µν (p)∗u(λ)

αβ (p) and w
(λ)
µν (p)∗w(λ)

αβ (p) respectively we get the
positivity constraints for the spectral functions

0 ≤
∑

N

δ(4)(p− pN)|〈0|Rµν(0)|N〉u(λ
′
)µν(p)∗|2 = 2(2π)−3θ(p0)ρL(p2)p2

0 ≤
∑

N

δ(4)(p− pN)|〈0|Rµν(0)|N〉w(λ
′
)µν(p)∗|2 = 2(2π)−3θ(p0)ρT (p2)p2.
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4. Amplitudes in the Non-linear
sigma model

4.1 Introduction

The chiral nonlinear sigma model is a widely used tool for description of many
phenomena in theoretical particle physics. It is based on a simple Lie Group
G and the spontaneous symmetry breaking G × G → G gives rise to massless
excitations - Goldstone bosons. For instance, in the theory of strong interactions,
the group G is SU(Nf ) where Nf = 2, 3 is a number of light quark flavors and
Goldstone bosons are associated with the triplet of pions (for Nf = 2) or octet of
pseudoscalar mesons π, K and η (for Nf = 3). The interactions of these degrees of
freedom dominate the hadronic world at low energies. In this context, the leading
order nonlinear U(3)×U(3) chiral invariant effective Lagrangian, the kinetic part
of which corresponds to the chiral nonlinear U(3) sigma model, was constructed
in the late sixties by Cronin [97] while the SU(2) case was studied by Weinberg
[98,99], Brown [100] and Chang and Gürsey [101]. Further generalization lead to
the invention of Chiral Perturbation Theory as a low energy effective theory of
Quantum Chromodynamics by Weinberg [1] and by Gasser and Leutwyler [2], [3].
Chiral Perturbation Theory became a very useful tool for the investigation of the
low energy hadron physics.

The focus of this chapter is on scattering amplitudes of Goldstone bosons with-
in the SU(N) nonlinear sigma model described by the leading order Lagrangian.
In principle, the standard Feynman diagram approach allows us to calculate arbi-
trary amplitude. Because the model is effective, and the Lagrangian contains an
infinite tower of terms the calculation becomes very complicated for amplitudes
of many external Goldstone bosons even at tree-level. It would be therefore desir-
able to find alternative non-diagrammatic methods which could save the compu-
tational effort and provide us with a tool to get the amplitudes more efficiently.
In the past an attempt to formulate the calculation of the tree-level without any
reference to the Lagrangian was made by Susskind and Frye [102]. They postu-
lated recursive procedure for pion amplitudes based on certain algebraic duality
assumptions supplemented with the requirement of Adler zero condition which
should have to be satisfied separately for group-factor free kinematical functions
recently known as the partial or stripped amplitudes. Such a condition had been
proven in the special case of pion amplitudes described by the SU(2) nonlinear
sigma model by Osborn [103]. In [102] the authors successively calculated the
amplitudes up to eight pions and showed that these results are equivalent to the
diagrammatic calculation based on the SU(2) nonlinear sigma model. The full
equivalence for all amplitudes has been proven by Ellis and Renner in [104].

Over the past two decades there has been a huge progress in understanding
scattering amplitudes using on-shell methods (for a review see e.g. [105–108]).
They do not use explicitly the Lagrangian description of the theory and all on-
shell quantities are calculated using on-shell data only with no access to off-
shell physics (unlike virtual particles in Feynman diagrams). This has lead to
many new theoretical tools (e.g. unitary methods [109, 110], BCFW recursion
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relations for tree-level amplitudes [111,112] and the loop integrand [113]) as well
as practical applications of on-shell methods to LHC processes (for recent results
of the next-to-leading order QCD corrections for W + 4-jets see [114]). Most of
the recent theoretical developments have been driven by an intensive exploration
of N = 4 super Yang-Mills theory in the planar limit both at weak and strong
couplings (see e.g. [115–126]).

There have been several attempts to extend some of these methods to other
theories. The most natural starting point are the recursion relations for on-shell
tree-level amplitudes, originally found by Britto, Cachazo, Feng and Witten for
Yang-Mills theory [111], [112] and later also for gravity [127], [128] . The main
idea is to perform a complex shift on external momenta and reconstruct the
amplitude recursively using analytic properties of the S-matrix. More recently,
this recursive approach was extended to Yang-Mills and gravity theories coupled
to matter, as well as more general class of renormalizable theories [129].

In this chapter, we find the new recursion relations for all on-shell tree-level
amplitudes of Goldstone bosons within SU(N) nonlinear sigma model. This
shows that on-shell methods can be applied also for effective field theories and it
gives new computational tool in this model. Using these recursion relations we
are also able to prove more properties of tree-level amplitudes that are invisible
in the Feynman diagram approach.

The chapter is organized as follows: In section 2 we discuss SU(N) nonlinear
sigma model, introduce stripped amplitudes and using minimal parametrization
(the convenient properties of which has been discussed in [104]) we calculate
tree-level amplitudes up to 10 points. In section 3 we review BCFW recursion
relations and their generalization to theories that do not vanish at infinity at large
momentum shift. Section 4 is the main part of the chapter, we first introduce
semi-on-shell amplitudes, ie. amplitudes with n − 1 on-shell and one off-shell
external legs. Then we prove scaling properties under particular momentum
shifts which allows us to construct BCFW-like recursion relations. Finally, we
show explicit 6pt example. In section 5 we use previous results to prove Adler
zeroes and double-soft limit formula for stripped amplitudes. Additional results
and technical details are postponed to appendices: In Appendix 4.7.1, we describe
the general parametrization of the SU(N) nonlinear sigma model. In Appendix
4.7.2 we give the results of the amplitudes up to 10p. Appendix 4.7.3 is devoted to
the counting of flavor-ordered Feynman graphs needed for the calculations of the
amplitudes in nonlinear sigma models and other theories. In Appendix 4.7.4 we
present additional scaling properties of the semi-on-shell amplitudes. In Appendix
4.7.5, we study the double soft-limit for more general class of spontaneously
broken theories for complete (not stripped) amplitudes.

4.2 Nonlinear sigma model

4.2.1 Leading order Lagrangian

Let us first assume a most general case of the principal chiral nonlinear sigma
model based on a simple compact Lie group G. Such a model corresponds to the
spontaneous symmetry breaking of the chiral group GL × GR where GL,R = G
to its diagonal subgroup GV = G, i.e. to the subgroup of the elements h =
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(gL, gR) where gL = gR. The vacuum little group GV is invariant with respect
to the involutive automorphism (gL, gR) → (gR, gL) and the homogeneous space
GL ×GR/GV is a symmetric space which is isomorphic to the group space G. A
canonical realization of such an isomorphism is via restriction of the mapping

(gL, gR)→ gRg
−1
L ≡ U (4.1)

(which is constant on the right cosets of GV in GL×GR) to GL×GR/GV . Provided
we induce the action of the chiral group on GL × GR/GV by means of the left
multiplication, the transformation of U under general element (VL, VR) of the
chiral group is linear

U → VRUV
−1
L . (4.2)

This can be used to construct the most general chiral invariant leading order
effective Lagrangian in general number d of space-time dimensions describing the
dynamics of the Goldstone bosons corresponding to the spontaneous symmetry
breaking GL ×GR → GV as

L(2) =
F 2

4
〈∂µU∂µU−1〉 = −F

2

4
〈(U−1∂µU)(U−1∂µU)〉, (4.3)

where F is a constant1 with the canonical dimension d/2− 1. Here and in what
follows we use the notation 〈·〉 = Tr(·) and the trace is taken in the defining
representation of G. The overall normalization factor is dictated by the form of
the parametrization of the matrix U in terms of the Goldstone boson fields φa

which we write for the purposes of this subsection2 as

U = exp

(√
2

i

F
φ

)
(4.4)

where φ = φata and ta, a = 1, . . . , dimG are generators of G satisfying

〈tatb〉 = δab (4.5)

[ta, tb] = i
√

2fabctc. (4.6)

Here fabc are totally antisymmetric structure constants of the group G. According
to (4.2), the fields φa transform linearly under the little group GV as the vector
in the adjoint representation of G while the general chiral transformations of φa

are nonlinear.
The Lagrangian L(2) can be rewritten in terms of the Goldstone boson fields

as follows. We have

U−1∂µU = −exp
(
−
√

2 i
F

Ad(φ)
)
− 1

Ad(φ)
∂µφ = − 1√

2
t · exp

(
−2i
F
Dφ

)
− 1

Dφ

· ∂φ (4.7)

where
Ad(φ)∂µφ = [φ, ∂µφ] =

√
2taDab

φ ∂µφ
b ≡
√

2t ·Dφ · ∂φ, (4.8)

the matrix Dab
φ is given as

Dab
φ = −if cabφc (4.9)

1The decay constant of the Goldstone bosons.
2In what follows we will use also more general parametrization of U .
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and the dot means contraction of the indices in the adjoint representation. In-
serting this in (4.3) we get finally

L(2) =
F 2

4
∂φT · 1− cos

(
2
F
Dφ

)

D2
φ

· ∂φ = −∂φT ·
( ∞∑

n=1

(−1)n

(2n)!

(
2

F

)2n−2

D2n−2
φ

)
· ∂φ.

(4.10)

4.2.2 General properties of the tree-level scattering am-
plitudes

Note that, the only group factors which enter the interaction vertices are the
structure constants fabc. In any tree Feynman diagram each fabc is contracted
either with another structure constant within the same vertex or via propagator
factor δab with some structure constant entering next vertex. Therefore, using
the standard argumentation for a general tree graph [105], i.e. expressing any
fabc as a trace fabc = −〈i[ta, tb]tc〉/

√
2 and then successively using the relations

like f cdetc = −i[td, te]/
√

2 in order to replace the contracted structure constants
with the commutators of the generators inside the single trace, we can prove that
any tree level on-shell amplitude has a simple group structure, namely

Ma1a2...an(p1, p2, . . . , pn) =
∑

σ∈Sn/Zn

〈taσ(1)taσ(2) . . . taσ(n)〉Mσ(p1, . . . , pn). (4.11)

Here all the momenta treated as incoming and the sum is taken over the permu-
tation of the n indices 1, 2, . . . , n modulo cyclic permutations. As a consequence
of the cyclicity of the trace we get

Mσ(p1, p2 . . . , pn) =Mσ(p2, . . . , pn, p1) (4.12)

Due to the Bose symmetry, the kinematical factorsMσ(p1, , . . . , pn) has to satisfy

Mσ◦ρ(p1, , . . . , pn) =Mσ(pρ(1), pρ(2), . . . , pρ(n)) (4.13)

(where σ ◦ ρ is a composition of permutations) and therefore

Mσ(p1, . . . , pn) =M(pσ(1), pσ(2), . . . , pσ(n)) (4.14)

where we have denoted M≡Mid (here id is identical permutation). The am-
plitudes M(p1, . . . , pn) are called the stripped or partial amplitudes. Note that
the same arguments can be used also for the Feynman rules for the interaction
vertices, the general form of which can be written as

V
a1a2...an

n (p1, p2, . . . , pn) =
∑

σ∈Sn/Zn

〈taσ(1)taσ(2) . . . taσ(n)〉Vn(pσ(1), pσ(2), . . . , pσ(n)).

(4.15)
After some algebra we get explicitly (see Appendix 4.7.1 for details) V2n+1(p1, . . . , p2n+1) =
0 and

V2n(p1, . . . , p2n) =
(−1)n

(2n)!

(
2

F 2

)n−1 2n−1∑

k=1

(−1)k−1

(
2n− 2
k − 1

) 2n∑

i=1

(pi ·pi+k). (4.16)
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Let us note that besides (4.3), (4.4) we need not to use any algebraic relations
specific for the concrete group G when deriving this formula and it is therefore
valid for general G. In the general case we can therefore define the stripped
amplitudes and stripped vertices, however, their relation is not straightforward
and may depend on the group G. In what follows we will concentrate on the case
G = SU(N).

4.2.3 Tree-level amplitudes for G = SU(N)

Flavor ordered Feynman rules

The standard way of calculation of the tree-level amplitudes Ma1...an(p1, . . . , pn)
is to evaluate the contributions of all tree Feynman graphs with n external legs
build form the complete vertices (4.15) and propagators ∆ab = iδab/p

2. This
includes rather tedious group algebra which is specific for each group G. In the
special case of G = SU(N) the calculations can be further simplified. Because
we have the completeness relations for the generators ta in the form

N2−1∑

a=1

〈Xta〉〈taY 〉 = 〈XY 〉 − 1

N
〈X〉〈Y 〉, (4.17)

we can simply merge the traces from the vertices of any tree Feynman graphs
in one single trace preserving at the same time the order of the generators taj

inside the trace. Note that the “disconencted” 1/N terms have to cancel in the
sum in order to produce the single trace in (4.11)3. This enables us to formulate
simple “flavor ordered Feynman rules” directly for the stripped amplitudes M
completely in terms of the stripped vertices Vn. The general recipe is exactly the
same as in the more familiar case of SU(N) Yang-Mills theory, i.e. the tree graphs
built form the stripped vertices and propagators are decorated with cyclically
ordered external momenta and the corresponding ordering of the momenta inside
the stripped vertices are kept.

Let us note that such a simple way of the calculation of the stripped ampli-
tudes might not be possible for general group G. For instance for G = SO(N)
we have the following completeness relations

N(N−1)/2∑

a=1

〈Xta〉〈taY 〉 =
1

2

(
〈XY 〉 − 〈XY T 〉

)
(4.18)

the second term of which reverses the order of the generators in the merged
vertex and the aforementioned simple argumentation leading to the flavor ordered
Feynman rules has to be modified.

The SU(N) case has also another useful feature. As a consequence of the com-
pleteness relations (4.17) for the group generators of SU(N) and the analogous
relation

N2−1∑

a=1

〈XtaY ta〉 = 〈X〉〈Y 〉 − 1

N
〈XY 〉 (4.19)

3As we shall see in what follows, this fact can be understood as a consequence of the decou-
pling of the U(1) Goldstone boson in the nonlinear U(N) sigma model.
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it can be proved [105] that the traces 〈taσ(1)taσ(2) . . . taσ(n)〉 and 〈taρ(1)taρ(2) . . . taρ(n)〉
are orthogonal in the leading order of N in the sense that

∑

a1,a2,...,an

〈taσ(1)taσ(2) . . . taσ(n)〉〈taρ(1)taρ(2) . . . taρ(n)〉∗ = Nn−2(N2−1)

(
δσρ +O

(
1

N2

))

(4.20)
where δσρ = 1 for ρ = σ modulo cyclic permutation and zero otherwise. This rela-
tion is enough to uniquely determine the coefficients Tσ in the general expansion
of the form

T a1a2...an =
∑

σ∈Sn/Zn

〈taσ(1)taσ(2) . . . taσ(n)〉Tσ, (4.21)

(provided the coefficients Tσ are N−independent) as the leading in N terms of
the “scalar product”

∑

a1,a2,...,an

T a1a2...an〈taσ(1)taσ(2) . . . taσ(n)〉∗ = Nn−2(N2−1)

(
Tσ +O

(
1

N2

))
(4.22)

Because the stripped amplitudes and vertices by construction do not depend on
N , the coefficients at the individual traces in the representation (4.11) are unique
a therefore the stripped amplitudes and vertices are unique.

Dependence on the parametrization

Up to now we have identified the Goldstone boson fields φa using the exponen-
tial parametrization (4.4) of the group elements U(φa). However, according the
equivalence theorem, the amplitudes Ma1a2...an(p1, p2, . . . , pn) are the same for

any other parametrization U(φ̃a) where

φ̃a = φa + F a(φ) (4.23)

where F a(φ) = O(φ2) is at least quadratic in the fields φ. Therefore, according to
the aforementioned uniqueness, the stripped amplitudes for the nonlinear SU(N)
sigma model do not depend on the parametrization. Note, however, that this is
not true for the stripped vertices which do depend on the parametrization because
the complete vertices V

a1a2...an

n (p1, p2, . . . , pn) do.
As far as the on-shell tree-level amplitudes are concerned, in various calcula-

tions we are thus free to use the most suitable parametrization and consequently
the most useful form of the corresponding stripped vertices for a given purpose.
We shall often take advantage of this freedom in what follows.

A wide class of parameterizations for the chiral nonlinear sigma model with
G = U(N) and G = SU(N) has been discussed in [97]. The general form of such
a parameterizations reads

U =
∞∑

k=0

ak

(√
2

i

F
φ

)k
(4.24)

where a0 = a1 = 1 and the remaining real coefficients ak are constrained by
the requirement UU+ = 1. The exponential parametrization (4.4) corresponds
to the choice an = 1/n!. In fact, as was proved in [97], for SU(N) nonlinear
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sigma model with N > 2, the exponential parametrization is the only admissible
choice within the above class of parameterizations (4.24) compatible with the
nonlinearly realized symmetry with respect to the SU(N) chiral transformations
(4.2). On the other hand, for SU(2) and for the extended chiral group G = U(N)
with arbitrary N , the parameterizations of the form (4.24) represent an infinite-
parametric class. The more detailed discussion can be found in Appendix 4.7.1.

Interrelation of the cases G = U(N) and G = SU(N)

Let us note, that the SU(N) and U(N) chiral nonlinear sigma models are tightly
related. Within the exponential parametrization we can write in the U(N) case

U = exp

(
i

F

√
2

N
φ0

)
Û (4.25)

where Û ∈ SU(N) and φ0 is the additional U(1) Goldstone boson corresponding
to the U(1) generator t0 = 1/

√
N . We get then

U−1∂µU =
i

F

√
2

N
∂µφ

0 + Û+∂µÛ (4.26)

and as a consequence,

L(2) =
1

2
∂φ0 · ∂φ0 +

F 2

4
〈∂µÛ∂µÛ−1〉. (4.27)

Therefore φ0 completely decouples. This means that for the on-shell amplitudes
in this model

Ma1a2...an(p1, p2, . . . , pn) = 0 (4.28)

whenever at least one aj = 0. Note that this statement does not depend on
the parametrization. We can therefore reproduce the on-shell amplitudes of the
SU(N) chiral nonlinear sigma model from that of the U(N) one simply by as-
signing to the indices ai the values corresponding the SU(N) Goldstone bosons.
Keeping this in mind, in what follows we will freely switch between the U(N)
and SU(N) case and use the general parameterizations (4.24) also in the context
of the SU(N) chiral nonlinear sigma model.

The fact that the U(1) Goldstone boson decouples gives also a nice physical
explanation why the “disconnected“ 1/N term can be omitted in the relation
(4.17) when summing over virtual states in the tree-level Feynman graphs for the
SU(N) nonlinear sigma model. This term can be interpreted as the subtraction
of the extra U(1) virtual state contained in the first “connected“ part. However,
because this state decouples, no such correction is in fact needed.

The decoupling of the U(1) Goldstone boson is an effect analogous to the
decoupling of the U(1) component of the gauge field in the case of the U(N)
Yang-Mills theory. For the tree-level amplitudes (and the corresponding stripped
amplitudes) we get as a consequence a set of identities constraining their form.
For instance taking only one aj = 0 (say a1) in (4.28), we get the “dual Ward
identity” (or the U(1) decoupling identity)

M(p1, p2, p3, . . . , pn) +M(p2, p1, p3, . . . , pn) + . . .+M(p2, p3, . . . , p1, pn) = 0
(4.29)

exactly as in the Yang-Mills case (see e.g. [105] and references therein).
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4.2.4 Explicit examples of SU(N) on-shell amplitudes

Using (4.11) we can reconstruct the complete amplitudeMa1...an(p1, . . . , pn) just
from a single stripped amplitude M(p1, . . . pn) which is given by the sum of
Feynman diagrams with ordered external legs {1, 2, . . . n}. Though the aim of
this chapter is not to calculate scattering amplitudes using the Feynman diagram
approach, in this section we provide explicit examples for diagrammatic calcula-
tion of the stripped 4pt and 6pt amplitudes of the chiral nonlinear SU(N) sigma
model (the 8pt and 10pt amplitudes we postpone to the Appendix 4.7.2) as the
reference result for the recursive formula given in section 4.

We can easily see that the only poles in the stripped amplitude are of the
form 1/si,j where

si,j = p2
i,j with pi,j =

j∑

k=i

pk (4.30)

(Obviously si,j = sj+1,i−1 due to momentum conservation). The variables si,j are
therefore well suited for presentation of the amplitudes.

As we have discussed above, the SU(N) stripped amplitudes are essentially
the same as those for the U(N) case and, as we have discussed above, they are
independent on the parametrization of the unitary matrix U in (4.3). The most
convenient one for diagrammatic calculation of on-shell scattering amplitudes is
the minimal parametrization [104]

U =
√

2
i

F
φ+

√
1− 2

φ2

F 2
= 1 +

√
2

i

F
φ− 2

∞∑

k=1

(
1

2F 2

)k
Cn−1φ

2k (4.31)

where Cn are the Catalan numbers (4.164). The stripped Feynman rules for
vertices can be written in terms of si,j as follows (see Appendix 4.7.1 for details)

V2n+2(si,j) =

(
1

2F 2

)n
1

2

n−1∑

k=0

CkCn−k−1

2n+2∑

i=1

si,i+2k+1 (4.32)

Note that within this parametrization the stripped vertices do not depend on the
off-shellness of the momenta entering the vertex and when expressed in terms of
the variables si,j they are identical taken both on-shell or off-shell. This rapidly
speeds up the calculation, because there are no partial cancelations between the
numerators and propagator denominators within the individual Feynman graphs
and it allows us to find the final expressions for the amplitudes in very compact
form.

The four-point amplitude is directly given by the Feynman rule in the simple
parametrization,

2F 2M(1, 2, 3, 4) = s1,2 + s2,3. (4.33)

Note that for n-point amplitude
∑n

k=1 pk = 0 and this can be used to systemati-
cally eliminate pn or equivalently s·,n.

The six-point amplitude is given by diagrams in Fig. 4.1. The explicit formula
reads
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Figure 4.1: Graphical representation of the 6-point amplitude (4.34) with cycling
tacitly assumed.

4F 4M(1, 2, 3, 4, 5, 6) =

= −(s1,2 + s2,3)(s1,4 + s4,5)

s1,3

− (s1,4 + s2,5)(s2,3 + s3,4)

s2,4

− (s1,2 + s2,5)(s3,4 + s4,5)

s3,5

+ (s1,2 + s1,4 + s2,3 + s2,5 + s3,4 + s4,5) (4.34)

This can be rewritten as

4F 4M(1, 2, 3, 4, 5, 6) = −1

2

(s1,2 + s2,3)(s1,4 + s4,5)

s1,3

+ s1,2 + cycl ,

with ‘cycl’ defined for n-point amplitude as

A[si,j, . . . , sm,n] + cycl ≡
n−1∑

k=0

A[si+k,j+k, . . . , sm+k,n+k] , (4.35)

which will quite considerably shorten the 8- and 10-point formulae. These are
postponed to Appendix 4.7.2.

4.3 Recursive methods for scattering amplitudes

Feynman diagrams are completely universal way how to calculate scattering am-
plitudes in any theory (that has Lagrangian description). However, it is well-
known that in many cases they are also very ineffective. Despite the expansion
contains many diagrams each of them being a complicated function of exter-
nal data, most terms vanish in the sum and the result is spectacularly simple.
The most transparent example is Parke-Taylor formula [130] for all tree-level
Maximal-Helicity-Violating amplitudes 4. The simple structure of the result is
totally invisible in the standard Feynman diagrams expansion.

Several alternative approaches and methods have been discovered in last
decades, let us mention e.g. the Berends-Giele recursive relations for the cur-
rents [131] and the more recent BCFW (Britto, Cachazo, Feng and Witten) re-
cursion relations for on-shell tree-level amplitudes that reconstruct the result from
its poles using simple Cauchy theorem [111], [112].

4.3.1 BCFW recursion relations

For concreteness let us consider tree-level stripped on-shell amplitudes of n mass-
less particles in SU(N) Yang-Mills theory (“gluodynamics” ).5 The partial am-

4Scattering amplitudes of gluons where two of them have negative helicity and the other
ones have positive helicity.

5The recursion relations can be also formulated for more general cases and also for massive
particles. See [132] for more details.
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plitudeMn is a gauge-invariant rational function of external momenta and addi-
tional quantum numbers h (helicities in case of gluons)

Mn ≡Mn(p1, p2, . . . pn;h1, h2, . . . hn). (4.36)

The external momenta are generically complex but if we are interested in physical
amplitudes we can set them to be real in the end. Let us pick two arbitrary indices
i, j and perform following shift.

pi → pi(z) = pi + zq, pj → pj(z) = pj − zq (4.37)

such that the momentum q is orthogonal to both pi and pj, ie. q2 = (q · pi) =
(q ·pj) = 0 and the shifted momenta remain on-shell. Let us note that such q can
be found only for the case of spacetime dimensions d ≥ 4. The amplitude becomes
a meromorphic function Mn(z) of complex parameter z with only simple poles.
The original expression corresponds to z = 0. If Mn(z) vanishes for z → ∞ we
can use the Cauchy theorem to reconstruct Mn =Mn(0),

0 =
1

2πi

∫

C(∞)

dz

z
Mn(z) =Mn(0) +

∑

k

Res (Mn, zk)

zk
(4.38)

where C(∞) is closed contour at infinity. Mn can be then expressed as

Mn = −
∑

k

Res (Mn, zk)

zk
(4.39)

where k is sum of all residues of Mn(z) in the complex z-plane. Residues of
Mn(z) can be straightforwardly calculated for the following reason: the only poles
of Mn are p2

a,b = 0 where pa,b = (pa + pa+1 + . . . pb). The poles of Mn(z) have
still the same locations just shifted, namely p2

a,b(z) = 0 where i ∈ (a, a+1, . . . b)
or j ∈ (a, a+1, . . . b). If none of the indices i, j or both of them are in this range,
the dependence on z in pa,b(z) cancels and it is not pole in z anymore. It is easy
to identify all locations of the corresponding poles zab. Suppose that particle
i ∈ (a, a+1, . . . b),

p2
a,b(z) = (pa + . . . pi 1 + (pi + zq) + pi+1 + . . . pb)

2 = 0 ⇒ za,b = −
p2
a,b

2(q · pa,b)
(4.40)

In the original amplitudeMn the residue on the pole p2
a,b = 0 is given by unitarity:

on the factorization channel with given helicity the amplitude factorizes into two
sub-amplitudes, and therefore

Res (Mn, za,b) =
∑

hab

ML(za,b)
−hab i

2(q · pa,,b)
Mhab

R (za,b) (4.41)

where the summation over the helicities hab of the one-particle intermediate state
is taken. The “left” and “right” sub-amplitudes M±hab

L,R (za,b) are

M−sab
L (za,b) = Mb−a+2(pa, . . . , pi(za,b), . . . pb,−pa,b(za,b);ha, . . . ,−hab) (4.42)

Msab
R (za,b) = Mn−(b−a)(pa,b(za,b), pb+1, . . . , pj(za,b), . . . , pa−1;hab, . . . , ha−1).(4.43)
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The amplitude Mn can be then written as

Mn =
∑

ab,hab

M−hab
L (za,b)

i

p2
a,b

Mhab
R (za,b) (4.44)

It is convenient to choose i and j to be adjacent because it eliminates the number
of factorization channels we have to consider.

4.3.2 Reconstruction formula with subtractions

The BCFW recursion relations discussed above are very generic and applicable
for a large class of theories. The main restriction is the requirement of large z
behavior: Mn(z) → 0 for z → ∞. However, this behavior is not guaranteed
in general and there exist examples when it is broken no matter which pair of
momenta pi and pj is chosen to be shifted. In such a case, an additional term
(dubbed boundary term) is present on the right hand side of eq. (4.44). The
boundary term, which is hard to obtain in general case, has been studied by
various methods in the series of papers [133], [134] and [135], however no general
solution is still available. Sometimes this problem can be cured by means of con-
sidering more general approach when all the external momenta pk are deformed
(such an all-line shift has been introduced in [136], see also [137])

pk → pk(z) = pk + zqk. (4.45)

where z is a complex parameter and qk are appropriate vectors compatible with
the requirements of the momentum conservation and on-shell constraint for pk(z),
ie. pk · qk = q2

k = 0. The on-shell amplitude

Mn(z) ≡Mn(p1(z), p2(z), . . . , pn(z)) (4.46)

become again meromorphic function of the variable z the only singularities of
which are simple poles and the residue at these poles have the simple structure
(4.41) dictated by unitarity. In some cases the desired behavior Mn(z) → 0 for
z → ∞ can be achieved in this way. However, in general case the behavior of
Mn(z) for z →∞ is power-like with non-negative power of z. This fact requires
some modification of the reconstruction procedure.

This can be done as follows. Let us suppose that we have made any (linear)
deformation of the external momenta pk → pk(z) in such a way that the deformed
amplitude Mn(z) is a meromorphic function the only singularities of which are
simple poles and let us assume the following asymptotic behavior

Mn(z) ≈ zk (4.47)

when z → ∞. Let us denote the poles of Mn(z) as zi, i = 1, 2, . . . n. Assume
aj, j = 1, 2, . . . , k + 1 to be complex numbers satisfying |aj| < R different form
the poles zi. Then we can write for z 6= aj inside the disc D(R) (i.e. inside
the domain |z| < R the boundary of which is a circle C(R) of the radius R) the
following “k + 1 times subtracted Cauchy formula” (see Fig.4.2)

1

2πi

∫

C(R)

dw
Mn(w)

w − z
k+1∏

j=1

1

w − aj
(4.48)

= Mn(z)
k+1∏

j=1

1

z − aj
+

k+1∑

j=1

Mn(aj)

aj − z
k+1∏

l=1,l 6=j

1

aj − al
+

nC(R)∑

i=1

Res (Mn; zi)

zi − z
k+1∏

j=1

1

zi − aj
.
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z

Figure 4.2: Illustration of the contour used for the derivation of the subtracted
Cauchy formula (4.48) with k = 1 and nC(R) = 3.

Here z1, z2, . . . , znC(R)
are the poles inside D(R) and Res (Mn; zi) are correspond-

ing residues. In the limit R → ∞ the integral vanishes due to (4.47) and D(∞)
will contain all n poles. As a result we get a reconstruction formula with k + 1
subtractions

Mn(z) =
n∑

i=1

Res (Mn; zi)

z − zi

k+1∏

j=1

z − aj
zi − aj

+
k+1∑

j=1

Mn(aj)
k+1∏

l=1,l 6=j

z − al
aj − al

. (4.49)

This is the desired generalization of the usual prescription. In order to recon-
struct the amplitude with the asymptotic behavior (4.47) from its pole structure,
we need therefore along with the residues at the poles zi (which are fixed by
unitarity) also supplementary information, namely the k + 1 values Mn(aj) of
the amplitude at the points aj. Such a additional information is the weakest
point of the relations (4.49): there exists no universal recipe how to get the val-
ues Mn(aj) for a general theory. This corresponds to the well known analogous
situation of k + 1 subtracted dispersion relations, which allow to reconstruct a
general amplitude from its discontinuities uniquely up to the k + 1 generally un-
known subtraction constants. Note that, provided we choose aj in such a way
that Mn(aj) = 0 (i.e. aj are the roots of the deformed amplitude Mn(z)), we
can reproduce the formula

Mn(z) =
n∑

i=1

Res (Mn; zi)

z − zi

k+1∏

j=1

z − aj
zi − aj

(4.50)

first written in this context by Benincasa a Conde [138] and further discussed by
Bo Feng, Yin Jia, Hui Luo a Mingxing Luo in [139].

4.4 BCFW-like relations for semi-on-shell am-

plitudes

The straightforward application of the BCFW reconstruction procedure is not
possible for the SU(N) nonlinear sigma model because the amplitudesMn(z) do
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not have appropriate asymptotic behavior for z → ∞. The reason is that due
to the derivative coupling of the Goldstone bosons the interaction vertices are
quadratic in the momenta. Therefore after the BCFW shift the vertices along
the “hard” z−dependent line of the Feynman graph are in general linear in z
and the linear large z behavior of the propagators cannot compensate for it. For
instance, under the shift6(4.37) with i = 1, j = 2 we get for the 6pt amplitude
(4.34) for z →∞

M6(z) = −2z

(
(q · p2,3) (s1,4 + s4,5 − s1,3)

s1,3

+
(q · p2,5) (q · p2,3)

(q · p2,4)
(4.51)

+
(q · p2,5) (s3,4 + s4,5 − s3,5)

s3,5

)
+O(z0).

and analogously Mn(z) = O(z) for general7 n. As discussed in the previous
section, in order to reconstruct such an amplitude from its pole structure, it
would be sufficient to know the values ofMn(z) for two fixed values of z. However,
such an information is difficult to gain solely from the Feynman graph analysis
restricted only to the amplitudes Mn. It is therefore useful to take into account
also more flexible objects, namely the semi-on-shell amplitudes, which unlike the
on-shell amplitudes depend on the parametrization of the matrix U and from
which the on-shell amplitudes can be straightforwardly derived. As we would
like to show in this section, appropriate choice of parametrization together with
suitable way of BCFW-like deformation of the semi-on-shell amplitudes allows to
substitute for the missing information on the amplitudes Mn and to construct
generalized BCFW-like relations for them.

4.4.1 Semi-on-shell amplitudes and Berends-Giele rela-
tions

The semi-on-shell amplitudes Ja1a2...an
n (p1, p2, . . . , pn) (or currents in the termi-

nology of the original paper [131], where they were introduced for QCD and more
generally for the SU(N) Yang-Mills theory) can be defined in our case as the
matrix elements of the Goldstone boson field φa(0) between vacuum and the n
Goldstone boson states |πa1(p1) . . . πan(pn)〉

Ja,a1a2...an
n (p1, p2, . . . , pn) = 〈0|φa(0)|πa1(p1) . . . πan(pn)〉. (4.52)

Here the momentum pn+1 attached to φa(0)

pn+1 = −
n∑

j=1

pj. (4.53)

6Under the all-line (anti)holomorphic BCFW shift the large z behavior is the same. Here we
can use the general formulae derived in [137] which relate the number n of external particles,
the sum H of their helicities and the overall dimension c of the couplings to the asymptotics
of the amplitude under the all-line holomorphic (O(za)) and anti-holomorphic (O(zs)) shift.
These formulae reads 2s = 4 − n − c + H and 2a = 4 − n − c − H. In our case H = 0 and
the only coupling constant is F−1, therefore c = 2 − n, therefore in general case a = s = 1
independently on n.

7The general statement can be derived by induction from Brends-Giele recursive relations
discussed in the next subsection.
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m, {jk}

Figure 4.3: Graphical representation of the Berends-Giele recursive relations

is off-shell. Note that Ja,a1a2...an
n (p1, p2, . . . , pn) has a pole for p2

n+1 = 0.
In complete analogy with the on-shell amplitudes, at the tree level the right

hand side of (4.52) can be expressed in terms of the flavor-stripped semi-on-shell
amplitudes Jn(p1, p2, . . . , pn) in the form

〈0|φa(0)|πa1(p1) . . . πan(pn)〉|tree =
∑

σ∈Sn
Tr(tataσ(1) . . . taσ(n))Jn(pσ(1), pσ(2), . . . , pσ(n)).

(4.54)
Let us note that, at higher orders in the loop expansion the group structure
contains also multiple trace terms. We normalize the one particle states according
to

J1(p) = 1. (4.55)

In this section the above semi-on-shell flavor-stripped amplitudes Jn(p1, p2, . . . , pn)
will be the main subject of our interest. The on-shell stripped amplitudes
M(p1, p2, . . . , pn+1) can be extracted from them by means of the Lehmann-Symanzik-
Zimmermann (LSZ) formulas

M(p1, p2, . . . , pn+1) = − lim
p2
n+1→0

p2
n+1Jn(p1, p2, . . . , pn). (4.56)

The main advantage of the semi-on-shell amplitudes Jn(p1, p2, . . . , pn) (in what
follows we also use short-hand notation J(1, 2, . . . , n)) is that they allow to aban-
don the Feynman diagram approach using appropriate recursive relation. The
latter has been first formulated by Berends and Giele in the context of QCD [131]
and proved to be very efficient for the calculation of the tree-level multi-gluon am-
plitudes. For the U(N) nonlinear sigma model the generalized recurrent relations
of Berends-Giele type can be written in the form (see Fig.4.3)

J(1, 2, . . . , n) =
i

p2
1,n

n∑

m=2

∑

{jk}
iVm+1(p1,j1 , pj1+1,j2 , . . . pjm−1+1,n,−p1,n)

m∏

k=1

J(jk−1+1, . . . , jk)

(4.57)
where the sum is over all splittings of the ordered set {1, 2, . . . , n} into m non-
empty ordered subsets {jk−1 + 1, jk−1 + 2, . . . , jk}, (here j0 = 0 and jm = n)8,

8Explicitly

∑

{jk}
≡
n−m+1∑

j1=1

n−m+2∑

j2=j1+1

· · ·
n−m+(m−1)∑

jm−1=jm−2+1

.
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n 2 3 4 5 6 7 8 9 10

t(2n+ 1) 4 12 33 88 232 609 1 596 4 180 10 945
b(2n+ 1) 5 17 50 138 370 979 2 575 6 755 17 700
f(2n+ 1) 4 21 126 818 5 594 39 693 289 510 2 157 150 16 348 960
t4(2n+ 1) 3 6 10 15 21 28 36 45 55
b4(2n+ 1) 4 10 20 35 56 84 120 165 220
f4(2n+ 1) 3 12 55 273 1 428 7 752 43 263 246 675 1 430 715

Table 4.1: A comparison of the number t of the terms on the right hand side
of the Berends-Giele recursive relation with the total number b of terms needed
for the Berends-Giele recursive calculation of the amplitude J(1, 2, . . . , 2n + 1)
and with the total number f of flavor ordered Feynman graphs contributing to
the same amplitude. In the last three row we compare these numbers with the
analogous ones for the case of “φ4 theory”.

Vm+1 is the flavor-stripped Feynman rule for vertices with m + 1 external legs
and pi,k =

∑k
j=i pj as above.

Let us note that, because the Lagrangian of the nonlinear sigma model in-
cludes infinite number of vertices with increasing number of fields, the above
Berends-Giele relation for Jn have to contain vertices up to n+ 1 legs, i.e. much
more terms than in the case of power-counting renormalizable theories like QCD
where the number of vertices is finite9. This fact rather reduces the efficiency
of these relation for the calculations of the amplitudes. We illustrate this in the
Tab. 1, where the number of terms on the right hand side of the Berends-Giele
relation (4.57) written for J2n+1 (denoted as t(2n + 1)) and the total number of
terms necessary for the calculation of the same semi-on-shell amplitude using the
Berends-Giele recursion (denoted as b(2n+1)) is compared with the total number
f(2n + 1) of the flavor ordered Feynman graphs contributing to J2n+1 and with
the same numbers valid for the theory with only quadrilinear vertices (“φ4 theory
” ) denoted with subscript “4” . See Appendix 4.7.3 for more details and for
derivation of the explicit formulae for these and other related cases.

On the other hand, as we will see in what follows, the Berends-Giele relations
can be used as a very suitable tool for the investigation of the general properties of
the semi-on-shell amplitudes. Let us mention e.g. the following simple relations
valid for J(1, 2, . . . , n)

J(1, 2, . . . , 2n) = 0 (4.58)

J(1, 2, . . . , n) = J(n, n− 1, . . . , 2, 1). (4.59)

These relation are valid independently on the field redefinition. However, as we
shall see in what follows, some properties of the semi-on-shell amplitudes are not
valid universally and are tightly related to a given parametrization.

4.4.2 Cayley parametrization

Unlike the on-shell amplitudesMa1...an(p1, p2, . . . , pn), which are physical observ-
ables and do not depend on the choice of the field variables provided the different

9The number of terms on the right hand side of (4.57) grows exponentially with increasing
n in contrast to the polynomial growths typical for the renormalizable theories. See Appendix
4.7.3 for details.
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choices are related by means of admissible (generally nonlinear) transformations,
the concrete form of Ja,a1...an

n (p1, p2, . . . , pn) as well as the flavor-stripped ampli-
tudes Jn(p1, p2, . . . , pn) depends on the parametrization of the U(N) nonlinear
sigma model. In what follows we will almost exclusively use the so called Cayley
parameterizations

U =
1 + i√

2F
φ

1− i√
2F
φ

= 1 + 2
∞∑

n=1

(
i√
2F

φ

)n
, (4.60)

where the Goldstone boson fields are arranged into the hermitian matrix φ = φata

with ta being the U(N) generators. As described in Appendix 4.7.1, represen-
tation (4.60) is a special member of a wide class of parameterizations suited for
the construction of the flavor-stripped Feynman rules. The interrelation between
the field φ and analogous field φ̃ of the more usual exponential parametrization

U = exp
(

i
F
φ̃
)

is through the following admissible nonlinear field redefinition

φ = 2F tan

(
i

2F
φ̃

)
= φ̃+O

(
φ̃3
)
. (4.61)

As is shown in Appendix 4.7.1, the flavor-stripped Feynman rules for vertices
read in the Cayley parametrization

V2n+1 = 0

V2n+2 = −(−1)n

2n+1

(
1

F

)2n n∑

j=0

2n+2∑

i=1

(pi · pi+2j+1) =
(−1)n

2n

(
1

F

)2n
(

n∑

i=0

p2i+1

)2

,

(4.62)

where we have used the momentum conservation in the last row. For the first
non-trivial vertex V4 we get

V4 = − 1

2F 2
(p1 + p3)2 = − 1

2F 2
(p2 + p4)2 (4.63)

and the first two non-trivial semi-on-shell amplitudes read in the Cayley parametriza-
tion

J(1, 2, 3) =
1

2F 2p2
4

(p1 + p3)2 (4.64)

J(1, 2, 3, 4, 5) =
1

4F 4p2
6

[
(p1 + p2 + p3 + p5)(p1 + p3)2

(p1 + p2 + p3)2
+

(p1 + p3 + p4 + p5)2(p3 + p5)2

(p3 + p4 + p5)2

+
(p1 + p5)2(p2 + p4)2

(p2 + p3 + p4)2
− (p1 + p3 + p5)2

]
(4.65)

Let us illustrate explicitly the dependence of the semi-on-shell amplitudes on
the parametrization. Using the exponential one we obtain different amplitude
J(1, 2, 3), namely

J(1, 2, 3)exp = − 1

6F 2

(p1 + p2)2 + (p2 + p3)2 − 2(p1 + p3)2

p2
4

. (4.66)

However, both J(1, 2, 3) and J(1, 2, 3)exp give the same on-shell amplitude (4.33).
In the next subsection we will prove additional useful properties of the semi-

on-shell amplitudes.
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4.4.3 Scaling properties of semi-on-shell amplitudes

The Cayley parametrization is specific in the sense that the semi-on-shell ampli-
tudes Jn(p1, . . . , pn) in this parametrization obey simple scaling properties when
some subset of the momenta pi are scaled pi → tpi and the scaling parameter t is
then send to zero. Here we will study two important scaling limits, corresponding
to the case when all odd or all even on-shell momenta are scaled. As we shall
see in the following section, these two scaling limits are the key ingredients for
the construction of the BCFW-like relations for semi-on-shell amplitudes in the
Cayley parametrization.

We will prove that for n > 1 and t→ 0

J2n+1(tp1, p2, tp3, p4, . . . , p2r, tp2r+1, p2r+2, . . . , p2n, tp2n+1) = O(t2) (4.67)

and

lim
t→0

J2n+1(p1, tp2, p3, tp4, . . . , tp2r, p2r+1, tp2r+2, . . . , tp2n, p2n+1) =
1

(2F 2)n
. (4.68)

The general proof of (4.67) and (4.68) is by induction. Let us first verify the
base cases. While the second statement holds already for n = 1

J3(p1, tp2, p3) =
1

F 2

(p1 · p3)

(p1 + tp2 + p3)2
→ 1

2F 2
, (4.69)

the first one is not valid unless n = 2. Indeed

J3(tp1, p2, tp3) =
1

2F 2

t(p1 · p3)

(p1 · p2) + (p2 · p3) + t(p1 · p3)
= O(t). (4.70)

On the other hand, using the explicit form of J5 (cf. (4.65)) we get

J5(tp1, p2, tp3, p4, tp5) = O(t2); (4.71)

we can therefore proceed by induction starting at n = 2.
Let us first prove the scaling property (4.67). Suppose, that (4.67, 4.68)

holds for all n̄, where 1 < n̄ < n and write for the left hand side of (4.67) the
Berends-Giele relation (4.57) expressing J2n+1 in terms of J2n̄+1 with n̄ < n.
After the scaling p2k+1 → tp2k+1, the t → 0 behavior of p2

2n+2 and Vm+1 is O(t0)
and O(tr) where r ≥ 0 respectively. The scaling of the remaining semi-on-shell
amplitudes on the right hand side of (4.57) can be deduced from the induction
hypothesis. Note that it depends on the number of the external on-shell legs of
J(ji−1 + 1, . . . , ji) as well as on the parity of ji−1 + 1, because the semi-on-shell
amplitude with scaled even or odd momenta scales differently. Namely, according
to the induction hypothesis, the scaling of these building blocks of the right hand
side of (4.57) is as follows (see Fig. 4.4)

J(j) = 1 = O(t0), J(2j − 1, 2j, 2j + 1) = O(t), J(2j, . . . , 2k) = O(t0),

J(2j + 1, . . . , 2k + 1) = O(t2) for k − j > 1. (4.72)

This implies, that those terms of Berends-Giele relations which are depicted in
Fig. 4.5, i.e. those which contain at least one block J(2j+ 1, . . . , 2k+ 1) = O(t2)
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= O(t0)

2j

2j + 1

= O(t0)

2j + 1
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2j + 3

2k + 1

= O(t2)= O(t)

2j − 1

2j

2j + 1

2k

Figure 4.4: Scaling of the building blocks on the right hand hand of the Berends-
Giele recursion relation according to the induction hypothesis when the odd mo-
menta are scaled.

O(t2)

2jk + 1

2jk + 2

2jk + 3

2jk+1 − 1

= O(t2)

2jk+1

2jk

1

2n+ 1

2j1 − 1

2jm−1 + 1

2jk−1

2jk+2

O(t)

2k − 1

2k

2k + 1

= O(t2)

2jk+1

2j + 1

1

2n+ 1

2j1 − 1

2jm−1 + 1

2j1

2jk+2

2j

O(t)

Figure 4.5: The terms on the right hand hand of the Berends-Giele recursion
relation which are automatically O(t2) using the induction hypothesis when the
odd momenta are scaled.

with k−j > 1 or at least two building blocs J(2j−1, 2j, 2j+1) are automatically
O(t2). Therefore, the only dangerous terms on the right hand side of (4.57) are
those without the buildings block of the type J(2j + 1, . . . , 2k + 1) = O(t2) with
k − j > 1 and at the same time without (case I) or with just one (case II)
building block J(2j − 1, 2j, 2j + 1) = O(t) (see Fig. 4.6). To this terms the
induction hypothesis cannot be applied directly.

In the case I, the odd lines of the corresponding vertex V2m+2 are attached to
J(2jk + 1) = 1 and such a vertex is then proportional to the squared sum of the
odd momenta tp2jk+1, (cf. (4.62))

V2m+2(tp1, p2,2j1 , tp2j1+1, . . . , tp2n+1) ∼ (tp1 + tp2j1+1 + · · ·+ tp2n+1)2 (4.73)

which means that it scales as O(t2). This is in fact the scaling of the complete
contribution of the terms in the case I, because all the remaining building blocs
are of the order O(t0) for t→ 0.

In the case II with exactly one building block J3(tp2j−1, p2j, tp2j+1) = O(t)
(note that, it has to be attached to the odd line of the vertex V2m+2), all the
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V2m+2 ∼ (tp2j−1 + p2j + tp2j+1 +
∑

k tp2jk+1)
2 = O(t1)V2m+2 ∼ (tp1 + tp2j1+1 + . . .+ tp2n+1)

2 = O(t2),

2jm−1 + 1

2j1

1

2n+ 1

2

2n

O(t0)

O(t0)
O(t0)

O(t0)

O(t0)

2jm−1 + 2

V2m+2

case I

2j

2j1

1

2n+ 1

2

2n

O(t1)

O(t0)
O(t0)

O(t0)

O(t0)

2jm−1 + 2

V2m+2

case II

2j − 1

2j + 1

Figure 4.6: Typical terms on the right hand hand of the Berends-Giele recursion
relation to which the induction hypothesis (4.67) cannot be applied directly. In
both cases, to all (case I) or to all but one (case II) odd lines of the vertex
the blocks J1 are attached. In the case II, one building block J3 is attached to
remaining odd line.

other odd lines of V2m+2 are attached to J(2jk + 1) = 1 and such a vertex is then
proportional to the squared sum of the momenta tp2jk+1 and the momentum of
the line which is attached to J3(tp2j−1, p2j, tp2j+1), namely

V2m+2 ∼
(
tp2j−1 + p2j + tp2j+1 +

∑

k

tp2jk+1

)2

= O(t). (4.74)

Therefore the complete contribution of the dangerous terms in the case II is in
fact O(t2) for t → 0 because both V2m+2 and J3(tp2j−1, p2j, tp2j+1) scale as O(t)
and again all the remaining building blocks are of the order O(t0) for t → 0.
All the other “non-dangerous” terms on the right hand side of the Berends-Giele
relations scale at least as O(t2), which finishes the proof of (4.67).

Let us now prove (4.68), i.e. the case when all even momenta are scaled.
Suppose validity of this relation for n̄ < n and again write the Berends-Giele
relation for the left hand side of (4.68). Thanks to the just proven statement
(4.67), the terms on the right hand side of (4.57) with at least one building block
J(jk + 1, . . . , jk+1) with odd jk and jk+1 − jk > 1 do not contribute in the limit
t → 0. Such a block can be attached only to the even line of the vertex Vm+1.
Therefore, the only terms which can contribute in the limit t→ 0 have the form
depicted in Fig. 4.7, i.e. those with the building blocks J1 attached to all even
lines of the vertex.

According to the induction hypothesis and using the explicit form of V2k+2

this gives for t→ 0
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2j1 + 1
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1
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2jm

V2m+2

Figure 4.7: Typical terms on the right hand hand of the Berends-Giele recursion
relation which contribute to (4.68). Here to all even lines of the vertex the blocks
J1 are attached.

− (−1)k

2kF 2k

k+1∏

l=1

1

(2F 2)jl−jl−1−1
= − (−1)k

2nF 2n
(4.75)

where we denote j0 = 0 and jk+1 = n+ 1. Sum of all such contributions is

n∑

k=1

∑

1≤j1<j2<...,jk≤n

(−1)k−1

2nF 2n
=

1

2nF 2n

n∑

k=1

(
n
k

)
(−1)k−1 =

1

2nF 2n
, (4.76)

which finishes the proof.
Another independent scaling properties of the semi-on-shell amplitudes J2n+1

can be proven using the same strategy. For instance, when all odd momenta and
one additional even momentum (say p2r) are scaled, we get

lim
t→0

J2n+1(tp1, p2, tp3, p4, . . . , tp2r−1, tp2r, tp2r+1, . . . , p2N , tp2n+1) = 0 (4.77)

for n > 1. We postpone the proof to the Appendix 4.7.4.
Let us note that due to the homogeneity of J(1, 2, . . . , 2n+ 1) we can rewrite

the relations (4.67) and (4.68) as a statement on the asymptotic behavior of the
scaled amplitudes for t→∞, namely

lim
t→∞

J2n+1(tp1, p2, . . . , p2n, tp2n+1) = lim
t→∞

J2n+1(p1, t
−1p2, . . . , t

−1p2n, p2n+1) =
1

(2F 2)n

(4.78)
and

J2n+1(p1, tp2, . . . , tp2n, p2n+1) = J2n+1(t−1p1, p2, . . . , p2n, t
−1p2n+1) = O(t−2).

(4.79)

4.4.4 BCFW reconstruction

As we have mentioned in the previous subsection, the standard BCFW-like de-
formation of the external momenta pi yields deformed amplitudes which behave
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as a non-negative power of z for z → ∞. As a result, for the reconstruction of
the amplitude from its pole structure we need to use the general reconstruction
formula (4.49) for which additional information on the on-shell amplitude (its
values at several points) is necessary. However, such an information is not at our
disposal. We solve this problems by the following trick: we relax some demands
placed on the usual BCFW-like deformation and allow more general ones for
which either the reconstruction formula without subtractions can be applied or
additional information on the deformed amplitudes is accessible. The momentum
conservation cannot be evidently avoided, what remains is the on-shell condition
of all the external momenta. It seems therefore to be natural to relax this con-
straint and instead of the on-shell amplitudes M2n+2 to use the semi-on-shell
amplitudes J2n+1, or the cut semi-on-shell amplitudes M2n+1 defined as

M2n+1 (p1, . . . , p2n+1) = p2
1,2n+1J2n+1 (p1, . . . , p2n+1) . (4.80)

Motivated by the results of the previous section let us assume the following
deformation of the semi-on-shell amplitude M2n+1 in the Cayley parametrization

M2n+1(z) ≡M2n+1(p1, zp2, p3, zp4, . . . , zp2r, p2r+1, zp2r+2, . . . , zp2n, p2n+1) (4.81)

i.e. all even momenta are scaled by the complex parameter z and the odd mo-
menta are not deformed

p2k(z) = zp2k, p2k+1(z) = p2k+1 (4.82)

Note that in contrast to the standard BCFW shift this deformation is possible for
general number of space-time dimensions d. The physical amplitude corresponds
to z = 1. For n = 1 we get explicitly

M3(z) =
1

F 2
(p1 · p3) (4.83)

For general n let us denote the sums of all odd (even) momenta as

p =
n∑

k=0

p2k+1, p+ =
n∑

k=1

p2k . (4.84)

Then in general case the function M2n+1(z) has the following important proper-
ties:

1. With generic fixed pi it is a meromorphic function of z with simple poles.

2. The asymptotics of M2n+1(z) can be deduced form the known properties
of J2n+1, namely for n > 1 we get as a consequence of (4.79)

M2n+1(z) = (p+z + p−)2J2n+1(p1, zp2, . . . , zp2n, p2n+1) = O(z0). (4.85)

3. For n ≥ 1 we have according to known scaling property (4.68) of J2n+1

lim
z→0

M2n+1(z) =
1

(2F 2)n
p2
− (4.86)
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The first two properties allows us to write for M2n+1(z) the reconstruction
formula with one subtraction, i.e. the relation (4.49) with k = 0. The third
property is the key one for the complete reconstruction and determines both
the “subtraction point“ a1 = 0 and the “subtraction constant“ M2n+1(a1) =
p2
−/(2F

2)n. The resulting formula reads10

M2n+1(z) =
1

(2F 2)n
p2
− +

∑

P

Res (M2n+1, zP )

z − zP
z

zP
(4.87)

where the sum is over the poles zP of M2n+1(z). The position of the poles is
known and the corresponding residues can be determined recursively as in usual
BCFW relations, however, there are some subtleties.

The poles zP of M2n+1(z) correspond to the vanishing denominators of the
deformed propagators p2

P (z) = 0, where

p2
P (z) ≡ pi,j(z)2 = 0, for 2 ≤ j − i < 2n (4.88)

and where j − i is even; in this formula pi,j(z) = zp+
i,j + p−i,j with

p+
i,j =

∑

i≤2k≤j
p2k, p−i,j =

∑

i≤2k+1≤j
p2k+1, (4.89)

i.e. p±i,j is a sum of all even (odd) momenta from the ordered set pi, pi+1, . . . , pj−1, pj.
Explicitly for j − i > 2

z±i,j =
−(p+

i,j · p−i,j)±
(
−G(p+

i,j, p
−
i,j)
)1/2

p+2
i,j

(4.90)

where G(a, b) = a2b2 − (a · b)2 is the Gram determinant, which is nonzero for
generic momenta pi, . . . , pj. Therefore in the generic case for j − i > 2 we deal
with doublets of single poles.

The case of three-particle poles corresponding to j − i = 2 has to be treated
separately. In this case either p+2

i,j = 0 or p−2
i,j = 0 (this sets in for p+

i,j = pi+1 or
for p−i,j = pi+1 respectively; let us remind that pk are on-shell). In the first case
we have only one pole

z2j−1,2j+1 = − (p2j−1 · p2j+1)

p2j · (p2j−1 + p2j+1)
(4.91)

while in the second case we have apparently two poles

z+
2j,2j+2 = 0 (4.92)

z−2j,2j+2 ≡ z2j,2j+2 = −p2j+1 · (p2j + p2j+2)

(p2j · p2j+2)
(4.93)

10Let us note, that we could write analogous reconstruction formula directly for the currents
J2n+1 as we did in [142]. In such a case we do not need any subtraction. The price to pay is that
we get two more poles, the residues of which cannot be determined recursively from unitarity.
Fortunately, the relation (4.79) and the residue theorem can be used in order to obtain the
unknown residues in terms of the remaining ones. The resulting formula is fully equivalent to
(4.87), however it is a little bit less elegant.
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1 i− 1

j + 12n+ 1

i

j

M2n+1−(j−i)
Mj−i+1

pi,j(z
±
i,j)

Figure 4.8: Graphical representation of the right hand side of the relation (4.95).

However z+
2j,2j+2 = 0 cannot be a pole according to (4.86) and the corresponding

residue has to be zero.
The residues of the function M2n+1(z) are dictated by unitarity and at the

poles they factorize (see Fig. 4.8). Writing for j − i > 2

(zp+
i,j + p−i,j)

2 = p+2
i,j (z − z+

i,j)(z − z−i,j) (4.94)

we get for j − i > 2

Res
(
M2n+1, z

±
i,j

)
= ±

M
(i,j)
L (z±i,j)M

(i,j)
R (z±i,j)

p+2
i,j (z+

i,j − z−i,j)
(4.95)

where we denoted

M
(i,j)
L (z±i,j) = M2n+1−(j−i)(p1(z±i,j), . . . , pi−1(z±i,j), pi,j(z

±
i,j), pj+1(z±i,j), . . . , p2n+1(z±i,j))

(4.96)

M
(i,j)
R (z±i,j) = Mj−i+1(pi(z

±
i,j), pi+1(z±i,j), . . . , pj(z

±
i,j)). (4.97)

Note that, while the amplitude M
(i,j)
L remains semi-on-shell, the amplitude M

(i,j)
R

is fully on-shell, because the deformed momentum pi,j(z) is on-shell for z = z±i,j.
The formula (4.95) is valid also for the three-particle pole z2j,2j+2 given by

(4.93). However the pole z2j−1,2j+1 deserves a special remark because the corre-
sponding residue is determined by the formula different from (4.95), namely

Res (M2n+1, z2j−1,2j+1) =
M

(2j−1,2j+1)
L (z2j−1,2j+1)M

(2j−1,2j+1)
R (z2j−1,2j+1)

2p+
2j−1,2j+1 · p−2j−1,2j+1

(4.98)

where M
(2j−1,2j+1)
L,R (z2j−1,2j+1) are given by (4.96) and (4.97) with z±i,j replaced by

z2j−1,2j+1.
To summarize, we have found a closed system of recursive BCFW-like re-

lations for the tree cut semi-on-shell amplitudes M2n+1, which consists of the
reconstruction formula (4.87), the pole positions (4.90), (4.91) and (4.93) and the
residue formulae (4.95) and (4.98). Note that the initial condition for the recur-
sion (4.83) can be understood as the special case of (4.87) for n = 1 because then
there is no pole zi,j with 2 ≤ j − i < 2 and the sum of the residue contributions
is empty. The physical amplitude M2n+1(p1, . . . , p2n+1) corresponds to z = 1

M2n+1(p1, . . . , p2n+1) =
1

(2F 2)n
p2
− +

∑

P

Res (M2n+1, zP )

zP

1

1− zP
. (4.99)
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As a final result we get then using (4.95), (4.98), (4.91), (4.93) and (4.94)

M2n+1(p1, . . . , p2n+1) =
1

(2F 2)n
p2
− +

∑

P

M
(P )
L (zP )

RP

p2
P

M
(P )
R (zP ). (4.100)

Note that there is an extra function RP in contrast to the standard BCFW
formula (4.44), namely

RP =





z−2
P for zP = z2j,2j+2

z−1
P for zP = z2j−1,2j+1

1
z±i,j−z

∓
i,j

1−z∓i,j
z±i,j

for zP = z±i,j

(4.101)

For further convenience, we rewrite (4.100) with help of (4.83) in the following
more explicit form

M2n+1 (p1, . . . , p2n+1) =
1

(2F 2)n
p2
− +

+
n−1∑

j=1

M
(2j,2j+2)
L (z2j,2j+2)

1

p2
2j,2j+2

p2j · p2j+2

F 2

−
n∑

j=1

M
(2j−1,2j+1)
L (z2j−1,2j+1)

1

p2
2j−1,2j+1

p+
2j−1,2j+1 · p−2j−1,2j+1

F 2

+
∑

2<j−i<2n

1

z+
i,j − z−i,j

×
(
M

(i,j)
L (z+

i,j)
1

p2
i,j

M
(i,j)
R (z+

i,j)
1− z−i,j
z+
i,j

−M (i,j)
L (z−i,j)

1

p2
i,j

M
(i,j)
R (z−i,j)

1− z+
i,j

z−i,j

)
.

(4.102)

The on-shell amplitude is then

M2n(1, 2, . . . , 2n− 1; 2n) = − lim
p2

1,2n−1→0
M2n−1(1). (4.103)

4.4.5 Explicit example of application of BCFW relations:
6pt amplitude

As an illustration let us apply the BCFW-like recursive relations (4.87) to the
amplitude M5(z) ≡ M5(p1, zp2, p3, zp4, p5). In this case we have three poles, all
of them being three-particle, namely

z1,3 = 1− s1,3

s1,2 + s2,3

, z2,4 =

(
1− s2,4

s2,3 + s3,4

)−1

, z3,5 = 1− s3,5

s3,4 + s4,5

(4.104)

where the variables si,j are given by (4.30).The residues are given by the relations
(4.95) for z2,4 and (4.98 ) for z1,3 and z3,5. After simple algebra using the explicit
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form of the poles (4.104) we get

Res (M5, z1,3)

z1,3

=
1

4F 4
(1− z1,3)(s2,5 − s2,4 + s3,4 − s3,5)− 1

4F 4
(s1,5 − s1,4 − s4,5)

Res (M5, z3,5)

z3,5

=
1

4F 4
(1− z3,5)(s1,4 − s1,3 + s2,3 − s2,4)− 1

4F 4
(s1,5 − s1,2 − s2,5)

Res (M5, z2,4)

z2,4

=
1

4F 4
(s1,5 − s1,4 + s2,4 − s2,5) . (4.105)

Note that the potential unphysical poles zi,j(pk) = 0 have canceled completely.
We have also

(1−z1,3)−1 =
s1,2 + s2,3

s1,3

, (1−z3,5)−1 =
s3,4 + s4,5

s3,5

, (1−z2,4)−1 = 1− s2,3 + s3,4

s2,4

(4.106)
These factors are responsible for setting of the physical poles in the resulting
amplitude. After inserting this to the formula (4.99) we get for the individual
contributions to the semi-on-shell amplitude in the Cayley parametrization

Res (M5, z1,3)

z1,3(1− z1,3)
=

1

4F 2

[
(s1,4 + s4,5 − s1,5) (s1,2 + s2,3)

s1,3

+ s2,5 − s2,4 + s3,4 − s3,5

]

Res (M5, z3,5)

z3,5(1− z3,5)
=

1

4F 2

[
(s1,2 + s2,5 − s1,5)(s3,4 + s4,5)

s3,5

+ s1,4 − s1,3 + s2,3 − s2,4

]

Res (M5, z2,4)

z2,4(1− z2,4)
=

1

4F 2

[
(s1,4 + s2,5 − s1,5) (s2,3 + s3,4)

s2,4

+ s1,5 − s1,4 + s2,4 (4.107)

−s2,5 − s2,3 − s3,4]

p2
−

4F 2
=

1

4F 2
[s1,3 − s1,2 − s2,3 + s1,5 − s1,4 + s2,4 − s2,5 + s3,5 − s3,4 − s4,5] .

(4.108)

Finally we get

4F 2M5(1) =

=
(s1,4 + s4,5 − s1,5) (s1,2 + s2,3)

s1,3

+
(s1,2 + s2,5 − s1,5)(s3,4 + s4,5)

s3,5

(4.109)

+
(s1,4 + s2,5 − s1,5) (s2,3 + s3,4)

s2,4

+ 2s1,5 − s1,2 − s1,4 − s2,3 − s2,5 − s3,4 − s4,5.

Taking this amplitude on-shell according to (4.103), i.e. setting s1,5 → 0 and
changing the overall sign, we reproduce the parametrization independent physical
amplitude (4.34).

4.5 More properties of stripped semi-on-shell

amplitudes

The BCFW recursive relations provides us with a Lagrangian-free formulation
of the tree-level nonlinear SU(N) sigma model in the Cayley parametrization.
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We can use them similarly as the Berends-Giele relations as a tool for the inves-
tigation of further interesting features of the stripped semi-on-shell amplitudes
M2n+1 and J2n+1. As we have already mentioned, these features are not universal
because of the parametrization dependence of M2n+1 and J2n+1, however, their
implications for the fully on shell amplitudes hold universally11. In this section
we will concentrate on the problem of single soft limits (Adler zeroes) and double
soft limit of the semi-on-shell amplitudes.

The presence of Adler zeroes for the on-shell Goldstone boson amplitudes
Ma1...a2n(p1, . . . , p2n), i.e. validity of the limit

lim
pj→0
Ma1a2...a2n(p1, p2, . . . , p2n) = 0, (4.110)

is a well known consequence of the nonlinearly realized chiral symmetry. More
generally it is an universal (non-perturbative) feature in the theories with sponta-
neous breakdown of a global symmetry. In such theories the amplitudes with one
extra Goldstone boson πa in the out (or in) state vanishes when the Goldstone
boson become soft, e.g.

lim
p→0
〈f + πa(p), out|i, in〉 = 0, (4.111)

provided the πa cannot be emitted from the external lines corresponding to the
states |i, in〉 or |f, out〉. In the SU(N) nonlinear sigma model the Adler zero
is present also for the stripped on-shell amplitudes M2n(p1, p2, . . . , p2n) due to
the leading N orthogonality relations (4.20) and corresponding uniqueness of the
decomposition (4.11). However, this property is not guaranteed automatically for
the semi-on-shell amplitudes M2n+1 and the soft Goldstone boson behavior can
depend on the parametrization. For instance using the Cayley parametrization,
we find for the amplitude M3 = (p1 · p3)/F 2 the Adler zero for soft p1 and p3,
however there is no zero for soft p2 in general when keeping p4 off-shell. For
the same amplitude in the exponential parametrization (cf. (4.66)) we have no
Adler zero at all. As we shall show in this section, for the semi-on-shell amplitudes
M2n+1 in the Cayley parametrization we can prove, using the BCFW-like relation,
the Adler zero for half of the momenta (namely for those pj with odd index j).

The double soft limit of the Goldstone boson on-shell amplitudes
Ma1a2...a2n+2(p1, p2, . . . , p2n+2) is more complicated and has been studied relatively
recently in connection with the regularized action of the broken generators on
the n Goldstone boson states [143]. Motivated by direct inspection of the six
Goldstone boson amplitude in the nonlinear chiral SU(2) sigma model it was
conjectured that provided the two soft momenta are sent to zero with the same
rate, the following limit holds

lim
t→0
Maba1a2...a2n(tp, tq, p1, p2, . . . , p2n)

= − 1

2F 2

n∑

i=1

fabcf caid
pi · (p− q)
pi · (p+ q)

Ma1...ai−1dai+1...a2n(p1, p2, . . . , p2n),(4.112)

where fabc are the structure constants. Analogous statement has been then rig-
orously proven for the tree-level amplitudes in the N = 8 supergravity using

11Let us remind that the on-shell amplitudes are parametrization independent.
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BCFW relations. In fact, for the on-shell amplitudes, the formula (4.112) can be
proven non-perturbatively under some assumptions for the general enough case
of the theory with global symmetry breaking (including the case of chiral non-
linear sigma model with general chiral group G) using the symmetry arguments
only (cf. the PCAC soft-pions theorems [141]) . We postpone the details to the
Appendix 4.7.5 .

In terms of the stripped on-shell amplitudes the relation (4.112) can be
rewritten as

lim
t→0
M2n+2(p1, . . . , pi−1, tpi, . . . , tpj, pj+1, . . . p2n+2)

=
1

4F 2
δj,i+1

(
pi+2 · (pi − pi+1)

pi+2 · (pi − pi+1

− pi−1 · (pi − pi+1)

pi−1 · (pi − pi+1

)
M2n(p1, . . . , pi−1, pi+2, . . . p2n+2).

(4.113)

In this section we will prove this relation also for the tree-level semi-on-shell
amplitudes J2n+1 (and consequently for M2n+1) of the SU(N) nonlinear sigma
model in the Cayley parametrization using suitable form of the generalized BCFW
representation.

4.5.1 Adler zeroes

In this subsection we will use the BCFW-like relations (4.102) derived in the
previous section and prove the presence an Adler zero at M2n+1 when one of the
odd momenta, say p2l−1, is soft, i.e. we will prove that for l = 1, 2, . . . , n+ 1

lim
t→0

M2n+1(p1, p2, . . . , p2l−2, tp2l−1, p2l+1, . . . , p2n+1) = 0. (4.114)

For the fundamental amplitude M3(p1, p2, p3) we have explicitly12

M3(tp1, p2, p3) = M3(p1, p2, tp3) =
1

F 2
t(p1 · p3)→ 0. (4.115)

In the general case the proof of (4.114) is by induction. Let us assume validity of
(4.114) for m < n. This assumption also means that, taking the cut semi-on-shell
amplitude M2m+1 on shell, i.e. for p2

1,2n+1 → 0, the Adler zero is in fact present
at M2m+1|on shell = −M2m+2 for all momenta, i.e.

lim
t→0

M2m+1(p1, p2, . . . , tpj, . . . p2m+1)|on shell = 0 (4.116)

for all j = 1, . . . , 2m+ 1 due to the cyclicity of M2m+2.
Let us now substitute p2l−1 → tp2l−1 to the right hand side of (4.102). Note

that, under such substitution, the position of the poles z2j,2j+2, z2j−1,2j+1 and
z±i,j become t−dependent. The t− dependence of the right hand side of (4.102)
is therefore both explicit (due to the explicit dependence on p2l−1) and implicit
(due to the implicit t−dependence of the poles zP ).

12Note however that for t→ 0 according to (4.68).

M3(p1, tp2, p3)→ 1

2F 2
(p1 + p3)2

and therefore the statement analogous to (4.114) for even momenta does not hold.
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M
(2j,2j+2)
L

× 1
F 2

p2j·p2j+2

p22j,2j+2
→ 0

p1

z2j,2j+2p2
tp2l−1

p2j−1

p2j+3p2n+1

z2j,2j+2p2j+4

p2j,2j+2(z2j,2j+2)

M
(2j,2j+2)
L

× 1
F 2

p2j·p2j+2

(p+2j,2j+2+tp2j1)
2 → 1

(2F 2)n
p2−|p2l−1→0

p1

O(t)p2

p2j−1

p2j+3p2n+1

O(t)p2j+4

O(t)p+2j,2j+2 + tp2j+1

A) j 6= l − 1

B) j = l − 1

Figure 4.9: Graphical representation of the t→ 0 limit of the second term on the
right hand side of (4.102). The soft momentum is denoted by dashed line in the
case A. In the case B, O(t) indicates the order of the t−dependent z2j,2j+2.

We will now inspect the behavior of the individual terms under the limit
t→ 0. The first term gives finite limit

1

(2F 2)n
p2
− →

1

(2F 2)n
p2
−|p2l−1→0. (4.117)

As far as the second term is concerned, the individual terms of the sum over j
vanish in this limit unless j = l − 1. The reason is as follows. For j 6= l − 1 (the
case A in the Figure 4.9), the kinematical factor p2j · p2j+2/p

2
2j,2j+2 as well as the

position of the pole z2j,2j+2 are t−independent and because tp2l−1 is placed on the

odd position in M
(2j,2j+2)
L (z2j,2j+2), we can safely13 use the induction hypothesis

to conclude that
lim
t→0

M
(2j,2j+2)
L (z2j,2j+2)|p2l−1→0 = 0.

For j = l−1 (the case B in the Figure 4.9), the kinematical factor p2j ·p2j+2/p
2
2j,2j+2

becomes explicitly t−dependent and tends to 1/2 for t→ 0, whileM
(2j,2j+2)
L (z2j,2j+2)

has both explicit (through p2j,2j+2 = z2j,2j+2(p2j + p2j+2) + tp2j+1) and implicit
t−dependence. In this case z2j,2j+2 = O(t), as can be seen from (4.93). Therefore,

all even momenta in M
(2j,2j+2)
L (z2j,2j+2) are scaled by O(t) factor, in the same way

as in (4.68). We can therefore conclude with help of (4.68) that

lim
t→0

M
(2j,2j+2)
L (z2j,2j+2)

1

p2
2j,2j+2

p2j · p2j+2

F 2
= δj,l−1

1

(2F 2)n
p2
−|p2l−1→0. (4.118)

The third term on the right hand side of (4.102) can be treated exactly in the

13Indeed, in general the momenta pk(z2j,2j+2) and p2j,2j+2(z2j,2j+2) are t−independent and
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M
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L

× 1
F 2

p2j·(tp2j−1+p2j+1)

(tp2j−1+p2j+p2j+1)2
→ 1

(2F 2)n
p2−|p2j−1→0

p1

O(t)p2

O(t)p2j−2

O(t)p2j+2p2n+1

p2j+3

tp2j−1 +O(t)p2j + p2j+1

B) j = l

M
(2j−1,2j+1)
L

× 1
F 2

p+2j−1,2j+1·p−2j−1,2j+1

p22j−1,2j+1
→ 0

p1

z2j−1,2j+1p2 tp2l−1

z2j−1,2j+1p2j−2

z2j−1,2j+1p2j+2p2n+1

p2j+3

p2j−1,2j+1(z2−1j,2j+1)

A) j 6= l, l − 1

Figure 4.10: Graphical representation of the t→ 0 limit of the third term on the
right hand side of (4.102). The soft momentum is denoted by dashed line in the
picture A. In the picture B, we show only the j = l case, the j = l − 1 case is
treated analogously. O(t) indicates the order of the t−dependent z2j,2j+2.

same way as the second (see Fig. 4.10). Also here the individual terms of the
sum over j do not contribute with the only exception of j = l and j = l − 1 by
induction hypothesis applied to M

(2j−1,2j+1)
L (z2j−1,2j+1) which has for j 6= l, l − 1

only explicit t−dependence. In the remaining two cases j = l and j = l − 1, the
explicitly t−dependent kinematical factors p+

2j−1,2j+1 · p−2j−1,2j+1/p
2
2j−1,2j+1 tend

again to 1/2 and within M
(2j−1,2j+1)
L (z2j−1,2j+1) the even momenta are scaled by

z2j−1,2j+1 = O(t) (see (4.91)) and thus (4.68) can be used14 to conclude that

lim
t→0

M
(2j−1,2j+1)
L (z2j−1,2j+1)

1

p2
2j−1,2j+1

p+
2j−1,2j+1 · p−2j−1,2j+1

F 2
= (δj,l + δj,l−1)

1

(2F 2)n
p2
−|p2l−1→0.

(4.119)
The fourth term on the right hand side of (4.102) vanish completely in the
limit t → 0. This is easy to see for those terms of the sum over (i, j) for

which15 limt→0 z
±
i,j 6= 0. In this case either M

(i,j)
L (z±i,j) or M

(i,j)
R (z±i,j) have explicit

t−dependence through tp2l−1 (which is for M
(i,j)
L (z+

i,j) on odd position) and thus
the induction hypothesis in the form (4.114) or (4.116) can be used16. By direct
inspection of (4.90) we find that the only case for which the above argumentation
does not apply is the case j − i = 4 with i even and i ≤ 2l − 1 ≤ j. Here

nonzero.
14Note that, the odd momenta are t−idependent with the only exception of

p2j−1,2j+1(z2j−1,2j+1)|p2j∓1→tp2j∓1
the limit of which is p2j±1.

15It is easy to realize that limt→0 z
+
i,j 6= limt→0 z

−
i,j for generic pk.

16Let us remind that M
(i,j)
R (z+

i,j) is fully on-shell.
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limt→0 z
−
i,j 6= 0 and so for the “minus” part of this (i, j) term we can use the

induction hypothesis as above. However, the “plus” part might be problematic
because

z+
i,j = −(p2l−1 · p2l−1±2)

(p2l−1±2 · p+
i,j)

t+O(t2). (4.120)

Using this formula and (4.65) we find after some algebra

M
(i,j)
R (z+

i,j) = M5(pi(z
t+
i,j ), . . . tp2l−1, . . . , pj(z

t+
i,j )) = O(t2). (4.121)

which shows that also the “plus” part has vanishing t→ 0 limit.
Putting therefore the only nonzero contributions (4.117), (4.118) and (4.119)

together we get finally

lim
t→0

M2n+1(p1, p2, . . . , p2l−2, tp2l−1, p2l+1, . . . , p2n+1)

=
1

(2F 2)n
p2
−|p2l−1→0

(
1 +

n−1∑

j=1

δj,l−1 −
n∑

j=1

(δj,l + δj,l−1)

)
= 0,

which finishes the proof.

4.5.2 Double-soft limit

Let us now study the behavior of the semi-on-shell amplitude J2n+1 in the Cayley
parametrization under the double soft limit, i.e. the case when two external
momenta, say pi and pj, are scaled according to pi,j → tpi,j and t is sent to zero.
In this section we will prove, that for 1 < i < j < 2n+ 1

lim
t→0

J2n+1(p1, . . . , p2n+1)|pi→tpi,pj→tpj

= δj,i+1
1

2F 2

(
(pi · pi+2)

pi+2 · (pi+1 + pi)
− (pi · pi−1)

pi−1 · (pi+1 + pi)

)
J2n−1(p1, . . . , pi−1, pi+2 . . . , p2n+1),

(4.122)

which has an identical form as (4.113)17. The key ingredient of the proof is the
generalized form of the BCFW representation mentioned in Section 4.3.2 written
for a suitable two-parameter complex deformation of the amplitude J2n+1. Such a
representation allows us to calculate the double soft limit with help of the known
behavior of the poles and corresponding residues in this limit. Useful information
on this behavior can be inferred from the statement (4.114) concerning the Adler
zeroes proved in the previous subsection.

The above mentioned deformation of J2n+1 can be defined as the following
function of two complex variables z and t

Sni,j(z, t) = J(p1, . . . , p2n+1)|pi→tpi,pj→zpj , (4.123)

17Indeed,

(pi · pi+2)

pi+2 · (pi+1 + pi)
− (pi · pi−1)

pi−1 · (pi+1 + pi)
=

1

2

(
pi+2 · (pi − pi+1)

pi+2 · (pi − pi+1)
− pi−1 · (pi − pi+1)

pi−1 · (pi − pi+1)

)
.
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therefore
Sni,j(1, 1) = J2n+1(p1, . . . , p2n+1) (4.124)

Various types of the double soft limit correspond then to various ways of taking
the limit (z, t) → (0, 0) in the double complex plane (z, t); the limit (4.122)
corresponds to limt→0 S

n
i,j(t, t) ≡ Sn,0i,j .

For z →∞ and t > 0 fixed the following asymptotic behavior holds

Sni,j(z, t) = O(z0), (4.125)

as can be easily proved e.g. by induction with help of the Berends-Giele recursive
relations (4.57). We can therefore write the generalized BCFW relation with one
subtraction in the form (4.49)

Sni,j(z, t) = Sni,j(a, t) +
∑

k,l

Res
(
Sni,j; zk,l(t)

)

z − zk,l(t)
z − a

zk,l(t)− a
. (4.126)

where a 6= zk,l(t) is a priory arbitrary, however, as we shall see in what follows,
appropriate choice of a can simplify the calculation.

The poles zk,l(t) for k ≤ j ≤ l correspond to the conditions p2
k,l|pi→tpi,pj→zpj =

0, or explicitly

zk,l(t) = −
p2
k,l|pi→tpi,pj→0

2(pj · pk,l)|pi→tpi
. (4.127)

The residues at the poles zk,l(t) factorize

Res
(
Sni,j; zk,l(t)

)
=

1

2(pj · pk,l)|pi→tpi
[J2n+1−(l−k)(p1, . . . , pk−1, pk,l, pl+1, . . . , p2N+1)

×Ml−k+1(pk, . . . , pl)|pi→tpi,pj→zpj ]|z→zk,l(t), (4.128)

where Ml−k+1 is the cut amplitude (4.80). Namely the latter two formulae along
with (4.114) contain sufficient amount of information for the calculation of the
double soft limit.

Let us first assume i < j where i is odd and j arbitrary. This choice is a
technical one, and as we shall see, the general case can be easily obtained using
the symmetry properties of the amplitude. In what follows we set a = 1 in
(4.126), the double soft limit then simplifies to

Sn,0i,j ≡ lim
t→0

Sni,j(t, t) = lim
t→0

∑

k,l

Res
(
Sni,j; zk,l(t)

)

t− zk,l(t)
t− 1

zk,l(t)− 1
, (4.129)

where we have used the existence of the Adler zero for
Sni,j(1, t) = J2n+1(p1, . . . , tpi, . . . , p2n+1) and i odd (cf. (4.114)).

For generic pr there exist a finite limit

zk,l(0) = lim
t→0

zk,l(t) 6= 1 (4.130)

In fact the only nonzero contributions to the right hand side of (4.129) stem from
the cases for which zk,l(0) = 0. Indeed, for zk,l(0) 6= 0 we get for the corresponding
contribution

1

zk,l(0)(zk,l(0)− 1)
lim
t→0

Res
(
Sni,j; zk,l(t)

)
, (4.131)
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and, according to (4.114), on the right hand side of (4.128) we get either

lim
t→0

[Ml−k+1(pk, . . . , pl)|pi→tpi,pj→zpj ]|z→zk,l(t) = 0 (4.132)

for k ≤ i < j ≤ l or

lim
t→0

J2n+1−(l−k)(p1, . . . , tpi, . . . , p(k, l)(t), pk+1, . . . , p2n+1) = 0 (4.133)

for i < k < j ≤ l. In both cases the complementary factor has finite limit and
therefore

lim
t→0

Res
(
Sni,j; zk,l(t)

)
= 0. (4.134)

Let us therefore discuss the contributions form the poles for which zk,l(0) = 0.
Note that, for generic pr such a pole does not exist provided j > i + 2. We can
therefore immediately conclude

Sn,0i,j = 0 for j > i+ 2. (4.135)

What remains are the following two alternatives for which the three-particle poles
zk,l(t) with l = k + 2 can vanish in the limit t→ 0 (see Fig. 4.11)

1. j = i+ 1 and either k = i or k = i− 1. In this case either

p2
i−1,i+1|pi→tpi,pj→0 → p2

i−1 = 0 (4.136)

or
p2
i,i+2|pi→tpi,pj→0 → p2

i+2 = 0 (4.137)

2. j = i+ 2 and k = i, in this case

p2
i,i+2|pi→tpi,pj→0 = p2

i+1 = 0. (4.138)

In what follows we will discuss separately the cases j = i+1 and j = i+2. Let us
first study the double soft limit of two adjacent momenta, i.e. j = i+1 where i is
odd. We will investigate the contributions of individual poles zk,l(t) on the right
hand side of (4.129) separately. In this case we get for i > 1 only two potentially
nonzero contributions (i.e. (4.137) and (4.136)) to the right hand side of (4.129),
namely

Sn,0i,i+1 = lim
t→0

Res
(
Sni,i+1; zi−1,i+1(t)

)

t− zi−1,i+1(t)

t− 1

zi−1,i+1(t)− 1
+lim
t→0

Res
(
Sni,i+1; zi,i+2(t)

)

t− zi,i+2(t)

t− 1

zi,i+2(t)− 1
.

(4.139)
We get for the poles zi−1,i+1(t) and zi,i+2(t)

zk,k+2(t) = −
p2
k,k+2|pi→tpi,pj→0

2(pj · pk,k+2)|pi→tpi
= −t (pi · pr)

(pj · pr)
+O(t2), (4.140)

where either r = i+2 (for k = i) or r = i−1 (for k = i−1), and as a consequence,

1

t− zk,k+2(t)

t− 1

zk,k+2(t)− 1
=

1

t

(pj · pr)
pr · (pj + pi)

(1 +O(t)). (4.141)
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J2n−1

1 i− 1
i

i+ 1

i+ 2
i+ 32n+ 1

pi+2 + tpi + zi,i+2(t)pi+1

M3

J2n−1

1 i− 1
i

i+ 1

i+ 2
i+ 32n+ 1

pi+1 + tpi + zi,i+2(t)pi+2

M3

i− 1

i

i+ 1

M3 → − (pi·pi−1)
pi−1·(pi+pi+1)

→ (pi·pi+2)
pi+2·(pi+pi+1)

J2n−1

1 i− 1

i+ 32n+ 1

J2n−1

1 i− 2

i+ 22n+ 1

i− 1

i+ 2

→ 0

J2n−1

1 i− 2

i+ 22n+ 1

pi−1 + tpi + zi−1,i+1(t)pi+1

Ki−1,i+1(t)

Ki,i+2(t)

Ki,i+2(t)

Figure 4.11: Graphical representation of the t→ 0 limit of the three cases (4.136),
(4.137) and (4.138) for which zk,l(t) → 0. The soft momenta are denoted by
dotted lines. The multiplicative factors Kk,l(t) stays for (t−1)/(t−zk,l(t))(zk,l(t)−
1).

We have further

pk,k+2(t) = tpi + zk,k+2(t)pj + pr → pr 6= 0 (4.142)

and therefore in both cases

lim
t→0

J2n−1(p1, . . . , pk−1, pk,k+2(t), pk+3, . . . , p2n+1) = J2n−1(p1, . . . , pi−2, pi−1, pi+2, . . . , p2n+1).

(4.143)
For the remaining ingredients of the formula (4.128) we get

M3(tpi, zi,i+2(t)pi+1, pi+2) =
1

F 2
t(pi · pi+2) (4.144)

M3(pi−1, tpi, zi−1,i+1(t)pi+1) =
1

F 2
zi−1,i+1(t)(pi−1 · pi+1) = −t 1

F 2
(pi · pi−1)(1 +O(t)).

(4.145)

Inserting this into the formulae (4.128) and (4.139) get finally for i > 1

Sn,0i,i+1 =
1

2F 2

(
(pi · pi+2)

pi+2 · (pi+1 + pi)
− (pi · pi−1)

pi−1 · (pi+1 + pi)

)
J2n−1(p1, . . . , pi−2, pi−1, pi+2, . . . , p2n+1).

(4.146)
In the same way, for i = 1 only the first term on the right hand side of (4.146)
contributes.

Let us proceed to the case 2. when j = i+ 2 and zi,i+2(t)→ 0 for t→ 0 is the
only pole which can give nonzero contribution to (4.129). In this case we have
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Sn,0i,i+2 = lim
t→0

Res
(
Sni,i+2; zi,i+2(t)

)

t− zi,i+2(t)

t− 1

zi,i+2(t)− 1
. (4.147)

The formulae (4.140, 4.141, 4.142, 4.143) are still valid with r = i + 1, but now
we have

M3(tpi, pi+1, zi,i+2(t)pi+2) =
1

F 2
tzi,i+2(t)(pi · pi+2) = O(t2). (4.148)

which implies Sn,0i,i+2 = 0.
To summarize, we have for k > 0

lim
t→0

J2n+1(p1, . . . , p2k, tp2k+1, . . . , tpj, . . . , p2n+1) =

= δj,2k+2
1

2F 2
J2n−1(p1, . . . , p2k, p2k+3, . . . , p2n+1)

×
(

(p2k+1 · p2k+3)

p2k+3 · (p2k+2 + p2k+1)
− (p2k+1 · p2k)

p2k · (p2k+2 + p2k+1)

)

(4.149)

and for k = 0

lim
t→0

J2n+1(tp1, . . . , tpj, . . . , p2n+1) = δj,2
1

2F 2

(p1 · p3)

(p2 · p3) + (p1 · p3)
J2n−1(p3, . . . , p2n+1).

As it is clear from the above discussion, the “asymmetry” of the latter result
stems from the fact that p2n+2 is off-shell and therefore the three-particle pole
corresponding to (p3 + p4 + . . . + p2n+1)2 = (p2n+2 − p1 − p2)2 → p2

2n+2 6= 0 does
not contribute.

Because
J(1, 2, . . . , 2n+ 1) = J(2n+ 1, 2n, . . . , 2, 1), (4.150)

we get for j < 2k + 1

J2n+1(p1, . . . , tpj . . . , p2k, tp2k+1, . . . , , p2n+1) = J2n+1(p2n+1, . . . , tp2k+1, p2k, . . . , tpj, . . . , p1).
(4.151)

On the right hand side of this identity the momentum p2k+1 stays on the odd
position and thus

lim
t→0

J2n+1(p1, . . . , tpj . . . , p2k, tp2k+1, . . . , p2n+1)

= δj,2k
1

2F 2
J2n−1(p1 . . . , p2k−1, p2k+2, . . . , p2n+1)

×
(
− (p2k · p2k−1)

p2k−1 · (p2k + p2k+1)
+

(p2k · p2k+2)

p2k+2 · (p2k + p2k+1)

)

(4.152)

Putting (4.149) and (4.152) together the final result (4.122) follows.
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4.6 Summary and conclusion

We have studied various aspects of the SU(N) chiral nonlinear sigma model
which describes the low-energy dynamics of the Goldstone bosons corresponding
to the spontaneous chiral symmetry breaking SU(N) × SU(N) → SU(N). As
we have shown, the tree-level scattering amplitudes of the Goldstone bosons can
be constructed from the stripped amplitudes, which are identical as those of the
U(N) chiral nonlinear sigma model. It is therefore possible to use this correspon-
dence and to investigate both the SU(N) and U(N) cases on the same footing.
Especially we are allowed to choose any parametrization (field redefinition) of
the chiral unitary matrix U(x) entering the Lagrangian from the wide class of
parametrizations admissible for the extended U(N) case, because the fully on-
shell stripped amplitudes do not depend on the parametrization. For the direct
calculation of the flavor ordered Feynman graphs, the most convenient choice
proved to be the minimal parametrization (4.31), which we have chosen in order
to calculate the on-shell amplitudes up to 10 Goldstone bosons.

The proliferation of the Feynman graphs with increasing number of the Gold-
stone bosons call for alternative methods of calculation. The more efficient
method is based on the Berends-Giele recursive relations for the semi-on-shell
amplitudes, but due to the infinite number of the interaction vertices in the La-
grangian of the nonlinear sigma model, the number of terms necessary to evaluate
the n−point amplitude grows much faster (exponentially) with n than for the case
of the power-counting renormalizable theories (where the growth is polynomial).

The BCFW recursive relations could make the calculation of the on-shell
stripped amplitude as effective as for the renormalizable theories at least as far
as the number of terms (which is in both cases related to the number of fac-
torization channels) is concerned. However, the standard way of the BCFW
reconstruction is not directly applicable for the nonlinear sigma model because of
the bad behavior of the BCFW deformed amplitudes at infinity. We have there-
fore proposed an alternative deformation of the semi-on-shell amplitudes based on
the scaling of all odd or all even momenta, for which we were able to prove exact
results concerning the behavior of the semi-on-shell amplitudes when the scaling
parameter tended to zero. Using the Berends-Giele recursive relations we were
able to prove this scaling properties for general n−point amplitude. An essential
ingredient of the proof was the fact that the semi-on-shell amplitudes (unlike the
on-shell ones) are parametrization dependent and we could therefore make an
appropriate choice of the parametrization (the Cayley one). We have then used
these exact scaling properties for a generalized BCFW reconstruction formula
(with one subtraction) which determines fully all the semi-on-shell amplitudes
in the Cayley parametrization including the basic four-point one. Putting then
the semi-on-shell amplitudes on-shell we reconstruct simply the parametrization
independent on-shell amplitudes. In contrast to the standard BCFW relations
our procedure is not restricted to d ≥ 4 space-time dimensions.

The BCFW recursive relation are also a suitable tool for investigation of the
properties of the amplitudes. We have illustrated this in two cases, namely we
have proved the presence of the Adler zero and established the general form of the
double soft limit for the semi-on-shell amplitudes in the Cayley parametrization.

The existence of BCFW recursion relations for power-counting non-renormalizable
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effective theory as the SU(N) chiral nonlinear sigma model gives an evidence that
the on-shell methods can be used for much larger classes of theories than has been
considered so far. It also indicates that the SU(N) chiral nonlinear sigma model
is rather special and deeper understanding of all its properties is desirable. For
future directions, it would be interesting to see whether the construction can
be re-formulated purely in terms of on-shell scattering amplitudes not using the
semi-on-shell ones. Next possibility is to focus on loop amplitudes. As was shown
in [113] the loop integrand can be also in certain cases constructed using BCFW
recursion relations, it would be spectacular if the similar construction can be
applied for effective field theories.

4.7 Appendix

4.7.1 General parametrization

In this Appendix we will discuss a very general class of parameterizations of the
U(N) sigma model originally studied in [97], which is suited for a derivation of
the stripped Feynman rules. Within this class the field U(x) ∈ U(N) is expressed
in the form

U =
∞∑

k=0

ak

(√
2

i

F
φ

)k
(4.153)

where φ = taφa , φa are the Goldstone boson fields, ta are the U(N) generators
normalized according to 〈tatb〉 = δab and ak are real coefficients. These coefficients
are not completely arbitrary, because the unitarity condition U+U = 1 implies
the following constraint

n∑

k=0

akan−k(−1)k = δn,0. (4.154)

For n = 0 we get a2
0 = 1 and without lose of generality we can set a0 = 1. In

order to preserve the correct normalization of the kinetic term and to keep the
interpretation of F as the decay constant for the fields φa we have to fix also
a1 = 1.

For n odd the relations (4.154) are satisfied automatically while for n = 2k
we can solve them for a2k and get a recurrent formula for the even coefficients
expressed in terms of the odd ones

a2k = −(−1)k

2
a2
k −

k−1∑

j=1

(−1)jaja2k−j. (4.155)

This gives up to k = 3

a2 =
1

2
a2

1 =
1

2

a4 = −1

2
a2

2 + a1a3 = −1

8
+ a3

a6 =
1

2
a2

3 + a1a5 − a2a4 =
1

16
− 1

2
a3 +

1

2
a2

3 + a5 (4.156)
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The explicit solution of the recurrent relations (4.155) to all orders can be
easily found by means of the following trick. Let us introduce the generating
function f(x) of the above coefficients ak

f(x) =
∞∑

k=0

akx
k. (4.157)

The relations of unitarity with the initial conditions a0 = a1 = 1 are then equiv-
alent to

f(−x)f(x) = 1, f(0) = 1, f
′
(0) = 1 (4.158)

which represents a functional equations for the generating functions f(x). Let us
define f±(x) to be the even and odd part of f(x), i.e. f±(x) = (f(x)± f(−x)) /2.
From (4.158) we get then

f+(x)2 − f−(x)2 = 1 (4.159)

or finally
f+(x) =

√
1 + f−(x)2. (4.160)

The formal series expansion of both sides of the last equation at x = 0 gives the
solution of the recurrent relations (4.155), i.e. the explicit expressions for a2k in
terms of an infinite number of free parameters a2k+1. The general solution of the
functional equation (4.158) is then

f(x) = f−(x) +
√

1 + f−(x)2 (4.161)

where f−(x) is arbitrary odd real function analytic for x = 0 satisfying f ′(0) = 1.
The minimal parameter-free solution corresponds to the choice a2k+1 = 0 for
k > 0, i.e. fmin

− (x) = x and

fmin(x) = x+
√

1 + x2 (4.162)

i.e. for k ≥ 1

amin
2k =

(−1)k+1

22k−1
Ck−1, (4.163)

where

Cn =
1

n+ 1

(
2n
n

)
(4.164)

are the Catalan numbers.
Another frequently used choices are the exponential and Cayley parameteri-

zations corresponding to fexp(x) and fCayley(x) respectively, where

fexp(x) = ex (4.165)

fCayley(x) =
1 + (x/2)

1− (x/2)
, (4.166)

or in terms of the coefficients ak

aexp
k =

1

k!
(4.167)

aCayley
k =

1

1 + δk,0

1

2k−1
. (4.168)
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These two parameterizations can be understood as minimal parameter-free vari-
ants with respect to other two possible forms of the general solutions of the
functional equation (4.158), namely

f(x) = exp g(x) (4.169)

and

f(x) =
h(x)

h(−x)
(4.170)

where g(x) and h(x) are arbitrary real functions analytic for x = 0 for which

g(x) = −g(−x), (4.171)

g(0) = 0, g′(0) = 1 (4.172)

and

h′(0) =
1

2
h(0) 6= 0. (4.173)

As was proved in [97], for N > 2 the only parametrization from the class
(4.153) admissible also for SU(N) sigma model is the exponential one. The
reason is that, under the general axial SU(N) transformation

U(x)′ =
∞∑

k=0

ak

(√
2

i

F
φ′
)k

= UA

∞∑

k=0

ak

(√
2

i

F
φ

)k
UA (4.174)

which defines corresponding nonlinear transformation of the matrix of the Gold-

stone boson fields φ =
∑N2−1

a=1 φata the SU(N) condition for the trace 〈φ′〉 = 0
is not preserved unless ak = 1/k!. Of course, in the case N > 2 we can use
different admissible parameterizations of SU(N) which, however, do not belong
to the class (4.153) (see e.g. [140]).

Let us now find the stripped Feynman rules. Using the general parametriza-
tion (4.153) we can write the Lagrangian of the nonlinear U(N) sigma model in
the expanded form

L(2) =
F 2

4
〈∂U · ∂U+〉 =

∞∑

n,m=0

vn,m〈∂φφn · ∂φφm〉. (4.175)

where we get for vn,m after some algebra (and using the unitarity condition
(4.154))

vn,m = (1 + (−1)n+m)
(−i)n+m

4F n+m

m∑

k=0

akam+n+2−k(−1)k+1(k − 1−m) (4.176)

Therefore only the terms with even number of fields survive, explicitly

L(2) =
∞∑

n=0

L(2)
2n+2 (4.177)

where

L(2)
2n+2 =

2n∑

k=0

vk,2n−k〈∂φφk · ∂φφ2n−k〉 (4.178)
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The usual Feynman rules for the vertices can be easily obtained as a sum over
permutations

V
a1,...,a2n+2

2n+2 (p1, p2, . . . , p2n+1; p2n+2) = −2n+1
∑

σ∈S2n+2

〈taσ(1) . . . taσ(2n+2)〉

×
2n∑

k=0

vk,2n−k(pσ(1) · pσ(1)+k+1)(4.179)

The stripped Feynman rule then follows in the form

V2n+2(p1, p2, . . . , p2n+1; p2n+2) = −2n+1

2n∑

k=0

2n+2∑

i=1

vk,2n−k(pi · pi+k+1) (4.180)

Inserting (4.167) into (4.176) we get after some algebra for the exponential parametriza-
tion

vexp
k,2n−k =

(−1)n

2F 2n

(−1)k

(2n+ 2)!

(
2n
k

)
. (4.181)

while for the Cayley parametrization we have vCayley
2k+1,2n−2k−1 = 0 and

vCayley
2k,2n−2k =

(−1)n

2F 2n

1

22n+1
. (4.182)

Similar calculations can be made also for the minimal parametrization, but the
result is much more lengthy and we will not need it explicitly. Instead we will
rewrite the Feynman rules for the vertex V2n+2 with 2n+ 2 external legs in terms
of the variables

si,j = p2
i,j (4.183)

where 1 ≤ i < j ≤ 2n+ 1 and

pi,j =

j∑

k=i

pk (4.184)

Here we identify

s2n+2,2n+2+k = sk+1,2n+1 (4.185)

si,2n+2+k = sk+1,i−1. (4.186)

The scalar products (pi · pj) can be then expressed as

(pi · pi) = si.i (4.187)

(pi · pi+1) =
1

2
(si,i+1 − si,i − si+1,i+1) (4.188)

and for k ≥ 2

(pi · pi+k) =
1

2
(si,i+k − si,i+k−1 + si+1,i+k−1 − si+1,i+k). (4.189)

On-shell we get si,i = 0 and s1,2n+1 = 0. The stripped Feynman rule in these
variables can be written in the form valid for n ≥ 1

V2n+2(si,j) = (−1)n
(

2

F 2

)n n∑

k=0

wk,n

2n+2∑

i=1

si,i+k (4.190)
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where

w0,n = (−1)n2F 2n (2v0,2n − v1,2n−1) (4.191)

wk,n = (−1)n2F 2n (2vk,2n−k − vk−1,2n+1−k − vk+1,2n−1−k) for k < n (4.192)

wn,n = (−1)n2F 2n(vn,n − vn−1,n+1). (4.193)

Within the general parametrization we get from (4.176) and (4.154) after some
algebra

wk,n =
(−1)k

1 + δkn
ak+1a2n+1−k. (4.194)

For the above special cases this reads for N ≥ 1

wexp
k,n =

(−1)k

1 + δkn

1

(2n+ 2)!

(
2n+ 2
k + 1

)
(4.195)

wCayley
k,n =

(−1)k

1 + δkn

1

22n
(4.196)

wmin
0,n = wmin

2k,n = 0 (4.197)

wmin
2k+1,n =

1

1 + δ2k+1,n

(−1)n

22n
CkCn−k−1. (4.198)

Note that, for the minimal parametrization the coefficients wmin
0,n at si,i = p2

i

vanish, therefore the stripped Feynman rules for vertices do not depend on the
off-shellness of the momenta in this case. This fact has been observed already
in [104] without calculating the explicit Feynman rules.

4.7.2 More examples of amplitudes

The eight-point amplitude is

8F 6M(1, 2, 3, 4, 5, 6, 7, 8) =

=
1

2

(s1,2 + s2,3)(s1,4 + s4,7)(s5,6 + s6,7)

s1,3s5,7

+
(s1,2 + s2,3)(s1,4 + s4,5)(s6,7 + s7,8)

s1,3s6,8

− (s1,2 + s2,3)(s4,5 + s4,7 + s5,6 + s5,8 + s6,7 + s7,8)

s1,3

+ 2s1,2 +
1

2
s1,4 + cycl

(4.199)

and graphically in Fig. 4.12. Finally the ten-point amplitude is given by

Figure 4.12: Graphical representation of the 8-point amplitude (4.199) with cy-
cling tacitly assumed.
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16F 8M(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) = −s1,2 + s2,3

s1,3

{

1

2

(s1,4 + s4,9)(s5,8 + s6,9)(s6,7 + s7,8)

s5,9s6,8

+
1

2

(s1,4 + s4,5)(s1,8 + s6,9)(s6,7 + s7,8)

s1,5s6,8

+
1

2

(s1,8 + s4,9)(s4,5 + s5,8)(s6,7 + s7,8)

s4,8s6,8

+
(s1,4 + s4,5)(s1,6 + s6,7)(s1,8 + s8,9)

s1,5s1,7

+
(s1,4 + s4,5)(s1,6 + s6,9)(s7,8 + s8,9)

s1,5s7,9

+
(s1,8 + s4,9)(s4,7 + s5,8)(s5,6 + s6,7)

s4,8s5,7

+
(s1,6 + s4,9)(s4,5 + s5,6)(s7,8 + s8,9)

s4,6s7,9

− 1

2

(s1,4 + s1,8 + s4,5 + s4,9 + s5,8 + s6,9)(s6,7 + s7,8)

s6,8

− (s1,8 + s4,9)(s4,5 + s4,7 + s5,6 + s5,8 + s6,7 + s7,8)

s4,8

− (s1,4 + s1,6 + s4,5 + s4,7 + s5,6 + s6,7)(s1,8 + s8,9)

s1,7

− (s1,4 + s1,6 + s4,5 + s4,9 + s5,6 + s6,9)(s7,8 + s8,9)

s7,9

− (s1,4 + s4,5)(s1,6 + s1,8 + s6,7 + s6,9 + s7,8 + s8,9)

s1,5

− (s1,4 + s4,9)(s5,6 + s5,8 + s6,7 + s6,9 + s7,8 + s8,9)

s5,9

+ 2s1,4 + s1,6 + 2s1,8 + 2s4,5 + s4,7 + 2s4,9 + 2s5,6 + s5,8 + 2s6,7 + s6,9 + 2s7,8 + 2s8,9

}

− 1

2

(s1,2 + s1,4 + s2,3 + s2,5 + s3,4 + s4,5)(s1,6 + s1,8 + s6,7 + s6,9 + s7,8 + s8,9)

s1,5

+ 5s1,2 + 2s1,4 + cycl (4.200)

with one-to-one correspondence with Fig. 4.13

4.7.3 Relative efficiency of Feynman diagrams and Berends-
Giele relations

In this appendix we review the solution of several types of recursive relations
which count the number of ordered Feynman graphs needed for the semi-on-shell
amplitude J(1, 2, . . . , n) in the nonlinear sigma model and related toy models.

Number of the Feynman graphs

Let us start with the case of nonlinear sigma model, i.e. with the case with infinite
number of vertices in the interaction Lagrangian. The above recursive relations,
which determine the number f(2n + 1) of the (flavor ordered) Feynman graphs
which contribute to J(1, 2, . . . , 2n + 1), are tightly related to the Berends-Giele
relations (4.57). Indeed, after making the following substitution to (4.57)

J(1, 2, . . . , 2n+ 1)→ f(2n+ 1),
i

p2
2n+2

→ 1, iV2k+1 → 0, iV2k+2 = 1, (4.201)
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Figure 4.13: Graphical representation of the 10-point amplitude (4.200) with
cycling tacitly assumed.

the individual terms on the right hand side just count the number of Feynman
graphs generated from these terms by the iterations of the recursive procedure.
As a result we get for f(2n+ 1) the following recursive relation

f(2n+ 1) =
n∑

k=1

∑

{ni}

2k+1∏

i=1

f(2ni + 1), (4.202)

with the initial condition f(1) = 1. In the above formula the sum over {ni} is
constrained by the requirement

2k+1∑

i=1

(2ni + 1) = 2n+ 1⇔
2k+1∑

i=1

ni = n− k (4.203)

i.e. it corresponds to the sum over all possible decompositions of ordered set of
2n + 1 momenta to non-empty clusters with odd number of momenta in each
cluster (cf. (4.58) and Fig. 4.3), i.e. more explicitly

f(2n+ 1) =
n∑

k=1

∑
∑
i ni=n−k

2k+1∏

i=1

f(2ni + 1), f(1) = 1. (4.204)

Standard method for solution of this type of recursive relation is based on the
generating function defined as

A(x) =
∞∑

n=0

f(2n+ 1)xn. (4.205)
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The recursive formula (4.204) implies the following equation for A(x)

A = 1 +
∞∑

k=1

xkA2k+1 = 1 +
xA3

1− xA2
(4.206)

or

x =
B

(B + 1)2 (2B + 1)
≡ B

g(B)
(4.207)

where B = A−1 and g(z) = (z+1)2(2z+1). In this form, the problem is prepared
for the application of the Lagrange–Bürmann inversion formula

B(x) =
∞∑

n=0

xn

n!

dn−1

dzn−1
g(z)n|z=0 =

∞∑

n=1

xn

n!

dn−1

dzn−1
(z + 1)2n(2z + 1)n|z=0. (4.208)

After straightforward algebra with help of Leibnitz rule we get for n ≥ 1

f(2n+ 1) =
2n−1

n

n−1∑

k=0

(
n

k + 1

)(
2n
k

)
2−k = 2n−1

2F1

(
1− n,−2n, 2;

1

2

)
,

(4.209)
where 2F1(α.β, γ; z) is the hypergeometric function. In the same way one can
solve the recurrence relations for the number of ordered Feynman graphs for
the semi-on-shell amplitudes J(1, 2, . . . , n) in the cases when only quadrilinear
vertices (“φ4 theory”), only trilinear vertices (“φ3 theory”) or both trilinear and
quadrilinear vertices (“φ3 + φ4 theory”) are present in the Lagrangian. In the
first case, similarly to the nonlinear sigma model, only J(1, 2, . . . , n) with n odd
can be nonzero, while in the remaining two cases J(1, 2, . . . , n) both parities
of n are generally allowed. Let us denote the number of the Feynman graphs
for J(1, 2, . . . , n) as f4(n), f2(n) and f3+4(n) respectively. We get the following
recurrence relations

f4(2n+ 1) =
∑

n1+n2+n3=n−1, ni≥0

f4(2n1 + 1)f4(2n2 + 1)f4(2n3 + 1)(4.210)

f3(n) =
∑

n1+n2=n, ni≥1

f3(n1)f3(n2) (4.211)

f3+4(n) =
∑

n1+n2=n, ni≥1

f3+4(n1)f3+4(n2) (4.212)

+
∑

n1+n2+n3=n, ni≥1

f3+4(n1)f3+4(n2)f3+4(n3) (4.213)

with initial conditions fj(1) = 1, j = 3, 4, 3 + 4. The corresponding generating
functions

A4(x) =
∞∑

n=0

f4(2n+ 1)xn, A3,3+4(x) =
∞∑

n=1

f3,3+4(n)xn (4.214)

then satisfy

A4 = 1 + xA3
4, A3 = x+ A2

3, A3+4 = x+ A2
3+4 + A3

3+4. (4.215)
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n 2 3 4 5 6 7 8 9 10

f3(n) 1 2 5 14 42 132 429 1 430 4 862
f3+4(n) 1 3 10 38 154 654 2 871 12 925 59 345
f4(2n+ 1) 3 12 55 273 1 428 7 752 43 263 246 675 1 430 715
f(2n+ 1) 4 21 126 818 5 594 39 693 289 510 2 157 150 16 348 960

Table 4.2: Number of flavor ordered Feynman graphs for J(1, . . . , n) and
J(1, . . . , 2n + 1) in the models of the type φ3, φ3 + φ4, φ4 and nonlinear sig-
ma model.

In the second case we get

A3(x) =
1−
√

1− 4x

2
=

1

2

(
1−

∞∑

n=0

(
1/2
k

)
(−4x)k

)
(4.216)

and therefore

f3(n) =
1

n

(
2(n− 1)
n− 1

)
= Cn−1 (4.217)

where Cn are the Catalan numbers. In the first case, writing

x =
A4 − 1

A3
4

=
B4

(B4 + 1)3
(4.218)

and using the Lagrange–Bürmann inversion formula we get for n > 0

f4(2n+ 1) =
1

n!

dn−1

dzn−1
(z + 1)3n|z=0 =

1

2n+ 1

(
3n
n

)
. (4.219)

In the third case, we get from

x = A3+4

(
1− A3+4 − A2

3

)
(4.220)

and using the Lagrange–Bürmann inversion formula

f3+4(n) =
1

n!

dn−1

dzn−1

(
1

1− z − z2

)n
|z=0 =

(−1)n

n!

dn−1

dzn−1

(
1

z1 − z

)n(
1

z2 − z

)n
|z=0(4.221)

(where z1 = −φ, z2 = φ −1 and φ = (1 +
√

5)/2 is the Golden ratio) the result

f3+4(n) = (−1)n+1φ
1−n

n

n−1∑

k=0

(
n− 1 + k

k

)(
2(n− 1)− k

n− 1

)(
φ

1− φ

)k

=

(
−4

φ

)n−1

Γ

(
n− 1

2

)
2F1

(
1− n, n, 2− 2n;

φ

1− φ

)
. (4.222)

The first twelve members of the above sequences are illustrated in the Table 4.2.

Efficiency of the Berends-Giele relations

We can compare this with the number of terms generated by Berends-Giele re-
cursion. For the nonlinear sigma model, the number of terms on the right hand
side of (4.57) is just

t(2n+ 1) =
n∑

k=1

∑

{ni}
1 =

n∑

k=1

(
n+ k
n− k

)
= F2n+1 − 1 (4.223)
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where

Fn =
1√
5

(φn − (φ− 1)n) (4.224)

are the Fibonacci numbers and φ = (1 +
√

5)/2 is the Golden ratio. Therefore,
using the known results for J(1, 2, . . . , 2m+ 1) with m < n at each step, we need
to evaluate altogether

b(2n+ 1) =
n∑

m=1

t(2m+ 1) =
1√
5

(
φ3φ

2n − 1

φ2 − 1
− (φ− 1)3 (φ− 1)2n − 1

(φ− 1)2 − 1

)
− n

(4.225)
terms in order to calculate J(1, 2, . . . , 2n+ 1) using the Berends-Giele recursion.
We show the sequences t(2n + 1) and b(2n + 1) in the first and second row of
Tab.1 respectively.

In the same way we can calculate analogous numbers tj(n) and bj(n) for
j = 3, 4, 3 + 4, i.e. for “φ3 theory” , “φ3 theory” or “φ3 + φ4 theory”. For
instance, for t4(2n+ 1) we have (see Tab. 1 for numerical values)

t4(2n+1) =

(
n+ 1

2

)
, b4(2n+1) =

n∑

m=1

t4(2m+1) =
1

6
n(n+1)(n+2) (4.226)

Note the exponential growth of t(2n + 1) and b(2n + 1) with increasing n in
contrast to the only polynomial growth of t4(2n+ 1) and b4(2n+ 1) .

4.7.4 Other example of scaling properties of the semi-on-
shell amplitudes

In this appendix we prove the following scaling limit

lim
t→0

J2n+1(tp1, p2, tp3, p4, . . . , tp2r−1, tp2r, tp2r+1, . . . , p2N , tp2n+1) = 0 (4.227)

which is valid for for n > 1. Let us note, however, that

J3(tp1, tp2, tp3) = J3(p1, p2, p3) 6= 0. (4.228)

On the other hand, for N = 2 we get by direct calculation

lim
t→0

J5(tp1, tp2, tp3, p4, tp5) = lim
t→0

J5(tp1, p2, tp3, tp4, tp5) = 0 (4.229)

and we can therefore proceed by induction based on Berends-Giele relations al-
most exactly as in the case of the proof of (4.67). The only modification here is
that, along with the “dangerous” contributions without blocks J(jk+1, . . . , jk+1)
where jk is even and jk+1 − jk > 1 attached to the odd line of the vertex
Vm+1(provided at least one such a block is present, the contribution vanish either
by the induction hypothesis or by (4.67) ) we have to discuss separately new type
of “dangerous” terms with building block J(p2r−1, p2r, p2r+1) (this block does not
vanish due to (4.228)). The “old” dangerous terms do not in fact contribute as
was already discussed within the proof of (4.67). The “new” dangerous terms
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have the following general form

i

p2
2N+2

iV2k+2(p1, p2,2j1 , p2j1+1, . . . , p2jl+2,2r−2, p2r−1,2r+1, p2r+2,2jl+1
. . .

. . . , p2jk−1,2n, p2n+1,−p1,2n+1)

× J(p1)J(2, . . . , 2j1)J(p2j1+1) . . . J(2jl + 2, . . . , 2r − 2)

× J(p2r−1, p2r, p2r+1)J(2r + 2, . . . , 2jl+1) · · · J(2jk−1, . . . , 2n)J(p2n+1). (4.230)

Note that, p2r−1,2r+1 is attached to the odd line of the vertex V2k+2 and scales as

p2r−1,2r+1 → tp2r−1,2r+1 (4.231)

i.e. in the same way as the remaining momenta attached to the odd lines of the
vertex. The vertex being proportional the squared sum of the odd line momenta
scales therefore as O(t2), and the contribution of the “new” dangerous terms
vanish. This finishes the proof.

4.7.5 Double soft limit of Goldstone boson amplitudes

In this appendix we will discuss the properties of the on-shell scattering ampli-
tudes of the Goldstone bosons, which are dictated by the symmetry, namely the
limits of the amplitudes for soft external momenta. Some of these properties have
been obtained in the special case of pions by PCAC methods in the late sixties
(see e.g. [141]). Here we enlarge and reformulate them in a more general form
appropriate for our purposes with stress on the proof of the double soft limit
discussed recently for pions and N = 8 supergravity in [143].

Let us assume a general theory with spontaneous symmetry breaking accord-
ing to the pattern G → H where the homogeneous space G/H is a symmetric
space, i.e. the vacuum little group H is the maximal subgroup invariant with
respect to some involutive automorphism of G (“parity”). This implies the fol-
lowing structure of the Lie algebra of G

[T a, T b] = ifabcT T c

[T a, Xb] = ifabcX Xc

[Xa, Xb] = iF abcT c. (4.232)

Here T a and Xa are the unbroken and broken generators respectively and fabcT ,
fabcX and F abc are the structure constants. The chiral nonlinear sigma model is a
special case for which fabcT = fabcX = F abc = fabc.

The invariance of the theory with respect to the group G can be expressed in
terms of the Ward identities for the correlators in the general form

ipµ〈Ṽ a
µ (p)Õ1(p1) . . . Õn(pn)〉 = −

n∑

i=1

i〈Õ1(p1) . . . δaT Õi(pi + p) . . . Õn(pn)〉

(4.233)

ipµ〈Ãaµ(p)Õ1(p1) . . . Õn(pn)〉 = −
n∑

i=1

i〈Õ1(p1) . . . δaXÕi(pi + p) . . . Õn(pn)〉.

(4.234)
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Here V a
µ (x) and Aaµ(x) are the Noether currents corresponding to the generators

T a andXa respectively (in analogy with the chiral theories we will call them vector
and axial currents in what follows and to the Ward identities (4.233) and (4.234)
we will refer to the vector and axial WI) , Oi(x) are (generally composite) local
operators, δaTOi(x) and δaXOi(x) are their infinitesimal transforms with respect to
the generators T a and Xa . The tilde means the Fourier transform

Õi(p) =

∫
d4xeip·xOi(x). (4.235)

According to the Goldstone theorem the spectrum of the theory contains as
many Goldstone bosons πa as the broken generators Xa for which the currents
Aaµ(x) play the role of the interpolating fields, i.e.

〈0|Aaµ(0)|πb(p)〉 = ipµFδ
ab. (4.236)

where F is the Goldstone boson decay constant. Let as denote Ma1...an(p1, . . . , pn)
the on-shell scattering amplitude of the Goldstone bosons πa1(p1), . . . , πan(pn). In
what follows we will concentrate on the properties of Ma1...an(p1, . . . , pn) dictated
by the symmetry, i.e. those which are encoded in the WI (4.233) and (4.234).

Vector WI and symmetry with respect to H

The invariance with respect to the unbroken subgroup H implies
n∑

i=1

faaibX Ma1...ai−1bai+1...an(p1, . . . , pn) = 0. (4.237)

This can be understood as the consequence of the vector WI of the form

− ipµ〈Ṽ a
µ (p)Ãa1

µ1
(p1) . . . Ãanµn(pn)〉 = −

n∑

i=1

i〈Ãa1
µ1

(p1) . . . δaT Ã
ai
µi

(p+ pi) . . . Ã
an
µn(pn)〉

(4.238)
Note that the infinitesimal transformations δaV b

ν and δaAbν of these currents with
respect to the generator T a of the unbroken subgroup H are as follows

δaTA
b
ν = −fabcX Acν (4.239)

δaTV
b
ν = −fabcT V c

ν . (4.240)

Because there is no pole for p → 0 in the correlator on the left hand side of
(4.238), we get in this limit

n∑

i=1

faaib〈Ãa1
µ1

(p1) . . . Ãbµi(pi) . . . Ã
an
µn(pn)〉 = 0. (4.241)

Using the LSZ formula we get according to (4.236)

〈Ãa1
µ1

(p1) . . . Ãanµn(pn)〉 =

(
n∏

i=1

i

p2
i

Zµi

)
Ma1...an(p1, . . . , pn) +Ra1...

µ1...
(4.242)

where Zµi = iFpiµi and the remnant Ra1...
µ1...

is regular on shell in the sense that

lim
p2
i→0

(
n∏

i=1

p2
i

)
Ra1...
µ1...

= 0. (4.243)

which implies (4.237) for the on-shell amplitude Ma1...an(p1, . . . , pn).
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p1, a1 pi−1, ai−1

pi+1, ai+1pn, an

pi, ai

p, a, µ

Figure 4.14: Graphical representation of the singular contributions to the matrix
element (4.244).

Soft vector current singularity

Let us assume now the following matrix element

〈Ṽ a
µ (p)|πa1(p1) . . . πai(pi) . . . π

an(pn)〉. (4.244)

In what follows we will discuss the behavior of this object in the limit p → 0.
On the level of the Feynman graphs, the only singularities in the soft limit p→ 0
are those which stem from the one-Goldstone-boson-reducible graphs for which
the vector current Ṽ a

µ (p) is attached to the external Goldstone boson line. The
potential singularities are therefore of the form (see Fig. 4.14 )

〈Ṽ a
µ (p)φaj(0)|πai(p1)〉1PI i∆ajak((p− pi)2)〈φak(0)|πa1(p1) . . . π̂ai(pi) . . . π

an(pn)〉1PI
(4.245)

where the subscript 1PI means one-Goldstone-boson-irreducible block, the hat
means omitting of the corresponding particle, φa(x) is the Goldstone boson in-
terpolating field normalized as

〈0|φa(0)|πb(p)〉 = δab (4.246)

and ∆ajak(q2) is a Goldstone boson propagator. For q2 → 0 we have

∆ajak(q2) =
δajak

q2

(
1 +O(q2)

)
. (4.247)

As a consequence of the Lorentz invariance, invariance with respect to H and
LSZ formulae we have

〈Ṽ a
µ (p)φaj(0)|πai(pi)〉1PI = if

aaiaj
X FV (p2)(2pi − p)µ +O((p− pi)2) (4.248)

where FV (p2) is the on-shell vector form-factor defined as18

〈πaj(p− pi)|Ṽ a
µ (p)|πai(pi)〉 = if

aaiaj
X FV (p2)(2pi − p)µ. (4.249)

We can fix the normalization of the vector currents V a
µ in such a way that

FV (p2) = 1 +O(p2). (4.250)

18The form of the right hand side is dictated by H-invariance, Bose and crossing symmetry.
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Analogously we have

〈φak(0)|πa1(p1) . . . π̂ai(pi) . . . π
an(pn)〉1PI = Ma1...ai−1akai+1...an(p1, . . . , pn)+O((p− pi)2).

(4.251)
Using (p− pi)2 = −2(p · pi) + p2 and putting all the ingredients together we get
for p→ 0

〈Ṽ a
µ (p)|πa1(p1) . . . πai(pi) . . . π

an(pn)〉

=
n∑

i=1

faaidX

(2pi − p)µ
2(p · pi)

Ma1...ai−1dai+1...an(p1, . . . , pn) +O(1)

(4.252)

Axial WI and Adler zero

To illustrate the method which we will use in the next subsection, let us briefly
recapitulate the textbook example of the derivation of the Adler zero for the
amplitude Ma1...an(p1, . . . , pn) (see e.g. [144]). Let us start with the axial WI in
the form

− ipµ〈Ãaµ(p)Ãa1
µ1

(p1) . . . Ãanµn(pn)〉 = −
n∑

i=1

i〈Ãa1
µ1

(p1) . . . δaXÃ
ai
µi

(p+ pi) . . . Ã
an
µn(pn)〉

(4.253)
where now

δaXA
b
ν = −F abcV c

ν

δaXV
b
ν = −fabcX Acν . (4.254)

Applying on both sides of (4.253) the LSZ reduction to all but one axial currents,
we get the conservation of the axial current in terms of the transversality of the
matrix element of Aaµ between the initial and final states |i〉 and 〈f |

− ipµ〈f |Ãaµ(p)|i〉 = 0. (4.255)

On the other hand from (4.242) we get the Goldstone boson pole dominance for
p2 → 0

− ipµ〈f |Ãaµ(p)|i〉 =
1

p2
pµZµ〈f + πa(p)|i〉 − ipµRa

µ,fi (4.256)

where Zµ = iFpµ and the remnant Ra
µ,fi is regular in this limit

lim
p2→0

p2Ra
µ,fi = 0. (4.257)

Putting (4.255) and (4.256) together we get for the amplitude with emition of
the Goldstone boson πa(p) in the final state

〈f + πa(p)|i〉 =
1

F
pµRa

µ,fi. (4.258)

Provided the following stronger regularity condition holds

lim
p→0

pµRa
µ,fi = 0, (4.259)
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we get
〈f + πa(0)|i〉 = 0, (4.260)

i.e. the Adler zero for p→ 0.
An useful off-shell generalization of the formula (4.256) reads

− ipµ〈Ãaµ(p)Ãa1
µ1

(p1) . . . Ãanµn(pn)〉 = iF 〈πa(p)|Ãa1
µ1

(p1) . . . Ãanµn(pn)〉 − ipµRa,a1...
µ,µ1...

(4.261)
where

lim
p2→0

p2Ra,a1...
µ,µ1...

= 0. (4.262)

and using the Ward identity (4.253) and (4.254) we get

F 〈πa(p)|Ãa1
µ1

(p1) . . . Ãanµn(pn)〉

= pµRa,a1...
µ,µ1...

+
n∑

i=1

F aaic〈Ãa1
µ1

(p1) . . . Ṽ c
µi

(p+ pi) . . . Ã
an
µn(pn)〉. (4.263)

Double soft limit

Our starting point is the axial WI (4.253) rewritten in the form

− ipµ〈Ãaµ(p)Ãbν(q)Ã
a1
µ1

(p1) . . . Ãanµn(pn)〉 = −i〈δaXÃbν(p+ q)Ãa1
µ1

(p1) . . . Ãanµn(pn)〉

−
n∑

i=1

i〈Ãbν(q)Ãa1
µ1

(p1) . . . δaXÃ
ai
µi

(p+ pi) . . . Ã
an
µn(pn)〉

(4.264)

Multiplying then both sides by −iqν and using the axial WI (4.253) once again
we get

−pµqν〈Ãaµ(p)Ãbν(q)Ã
a1
µ1

(p1) . . . Ãanµn(pn)〉
= qνF abc〈Ṽ c

ν (p+ q)Ãa1
µ1

(p1) . . . Ãanµn(pn)〉

+
n∑

i 6=j;i,j=1

F aajcF baid〈Ãa1
µ1

(p1) . . . Ṽ d
µi

(pi + q) . . . Ṽ c
µj

(p+ pj) . . . Ã
an
µn(pn)〉

+
n∑

i=1

F aaicf bcdX 〈Ãa1
µ1

(p1) . . . Ãdµi(p+ q + pi) . . . Ã
an
µn(pn)〉. (4.265)

The left hand side of (4.265) is symmetric with respect to the interchange of
(p, a) ↔ (q, b); its right hand side can be therefore rewritten in the manifestly
symmetric form

−pµqν〈Ãaµ(p)Ãbν(q)Ã
a1
µ1

(p1) . . . Ãanµn(pn)〉 (4.266)

= −1

2
(p− q)νF abc〈Ṽ c

ν (p+ q)Ãa1
µ1

(p1) . . . Ãanµn(pn)〉

+
n∑

i 6=j;i,j=1

F aajcF baid〈Ãa1
µ1

(p1) . . . Ṽ d
µi

(pi + q) . . . Ṽ c
µj

(p+ pj) . . . Ã
an
µn(pn)〉

+
1

2

n∑

i=1

(
F aaicf bcdX + F baicfacdX

)
〈Ãa1

µ1
(p1) . . . Ãdµi(p+ q + pi) . . . Ã

an
µn(pn)〉.
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On the other hand, the LSZ formula gives for p2, q2 → 0

〈Ãaµ(p)Ãbν(q)Ã
a1
µ1

(p1) . . . Ãanµn(pn)〉 =
∑

c,d

i

p2
〈0|Aaµ|πc(p)〉

i

q2
〈0|Abν |πd(q)〉

× 〈πc(p)πd(q)|Ãa1
µ1

(p1) . . . Ãanµn(pn)〉+Rab,...
µν

(4.267)

where the regular remnant satisfies

lim
p2,q2→0

p2q2Rab,...
µν = 0. (4.268)

Therefore, using (4.236) we get

−pµqν〈Ãaµ(p)Ãbν(q)Ã
a1
µ1

(p1) . . . Ãanµn(pn)〉
= F 2〈πa(p)πb(q)|Ãa1

µ1
(p1) . . . Ãanµn(pn)〉 − pµqνRab,...

µν (4.269)

On the other hand applying the LSZ reduction to (4.265, 4.266) (let us note that
only the first terms on the right hand side has the appropriate poles at p2, q2 → 0)
we get

pµqν〈Ãaµ(p)Ãbν(q)|πa1(p1) . . . πd(pi) . . . π
an(pn)〉

= qνF abc〈Ṽ c
ν (p+ q)|πa1(p1) . . . πd(pi) . . . π

an(pn)〉
= pµF bac〈Ṽ c

µ (p+ q)|πa1(p1) . . . πd(pi) . . . π
an(pn)〉

= −1

2
F abc(p− q)µ〈Ṽ c

µ (p+ q)|πa1(p1) . . . πd(pi) . . . π
an(pn)〉 (4.270)

and as a consequence of LSZ reduction of (4.269)

F 2〈πa(p)πb(q)|πa1(p1) . . . πai(pi) . . . π
an(pn)〉

= −1

2
F abc(p− q)µ〈Ṽ c

µ (p+ q)|πa1(p1) . . . πd(pi) . . . π
an(pn)〉+ pµqνRab,...

µν |LSZ .
(4.271)

According to (4.252) we have for p, q → 0

−1

2
F abc(p− q)µ〈Ṽ c

µ (p+ q)|πa1(p1) . . . πd(pi) . . . π
an(pn)〉

= −1

2

n∑

i=1

F abcf caidX

(2pi − p− q) · (p− q)
2((p+ q) · pi)

〈πa1(p1) . . . πd(pi) . . . π
an(pn)〉+O(p− q)

= −1

2

n∑

i=1

F abcf caidX

pi · (p− q)
pi · (p+ q)

〈πa1(p1) . . . πd(pi) . . . π
an(pn)〉

+O

(
p− q, p2 − q2

pi · (p+ q)

)
(4.272)

For p2 = q2 = 0 we finally get

F 2
0 〈πa(p)πb(q)|πa1(p1) . . . πai(pi) . . . π

an(pn)〉

= −1

2

n∑

i=1

F abcf caidX

pi · (p− q)
pi · (p+ q)

〈πa1(p1) . . . πd(pi) . . . π
an(pn)〉

+pµqνRab,...
µν |LSZ +O (p− q) . (4.273)
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Provided condition stronger than (4.268) holds, namely limp,q→0 p
µqνRab,...

µν |LSZ =
0 (cf. (4.259)), we get as a result

lim
t→0

F 2
0 〈πa(tp)πb(tq)|πa1(p1) . . . πai(pi) . . . π

an(pn)〉

= −1

2

n∑

i=1

F abcf caidX

pi · (p− q)
pi · (p+ q)

〈πa1(p1) . . . πd(pi) . . . π
an(pn)〉. (4.274)

For the chiral nonlinear sigma model corresponding to the symmetry breaking
G × G → G, we have F abc = fabcX = fabcT and we get the formula (4.112) as a
special case.
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Conclusion

Quantum Chromodynamics is a theory that accurately describes the sector of
strong interactions of the Standard model. However, it is a strongly coupled
theory and the fundamental degrees of freedom – quarks and gluons are not
physical degrees of freedom at low energies. We are forced to use the effective
field theory approach to be able to do any calculations.

In this thesis we studied different aspects of effective field theories for QCD.
In first two chapters we worked in the context of the effective field theory for
resonances. In the first chapter we calculated the SS-PP correlator at one-loop
and matched the result with low energy expansion in Chiral perturbation theory
and high energy OPE and obtained both the resonance saturation of low energy
constants as well as non-trivial constraints between resonance couplings. In the
second chapter we focused on more conceptual problem of one loop renormaliza-
tion and dynamical generation of new degrees of freedom that do not propagate
at tree-level. We showed that this indeed can happen even inside the resonance
region. In the last chapter we studied the tree-level amplitudes in the non-linear
sigma model which serves as a leading order low energy effective field theory for
QCD. Inspired by BCFW recursion relations in Yang-Mills theory we constructed
the recursion relations for all tree-level amplitudes using the non-trivial behav-
ior of amplitudes under certain shifts. This provides further insight on the well
known theory.
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