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Abstrakt 

 

V posledních letech se hmotnostní spektrometrie (MS) stala dominantní technologií 
používanou při lipidomické analýze a silně ovlivnila výzkum a diagnostiku onemocnění 
lipidního metabolismu jako např. lysosomální střádavá onemocnění (LSD) 
charakterisovaná poruchami funkcí lysosomů. Soubor poruch lysosomální degradace 
sfingolipidů (SFL) přísluší ke skupině sfingolipidos. Tento stav má vážné až fatální 
klinické důsledky. 
Prvotním cílem práce bylo zavedení kvantitativní a kvalitativní analýzy SFL pro 
výzkum a diagnostiku LSD. Na jejím počátku bylo třeba připravit semisynthesou  
lipidní hmotnostně značené standardy pomocí imobilizované sfingolipid ceramid N-
deacylasy. Zavedené metody kvantitativní analysy byly posléze použity k průkazu 
zvýšené exkrece močových SFL u LSD s charakteristickým střádáním v ledvinách. 
Vyhodnocení SFL vylučovaných močí prokázalo svůj význam při diferenciální 
diagnostice deficitu prosaposinu a saposinu B kdy rutinní enzymologie selhává. MS 
navíc umožňuje sledování jednotlivých molekulárních druhů SFL (isoforem), jenž vedlo 
ke zjištění, že u některých LSD se jejich profil v moči mění. To následně vedlo k vývoji 
nové screeningové metody v suchém vzorku moče založeném na vyhodnocování profilu 
isoforem. Další aplikací MS byla analýza pitevních vzorků tkání nebo buněk u 
nevyjasněných případů. Fabryho choroba a prosaposinový deficit byly prokázány také 
analýzou pitevních vzorků ledvin a myokardu, což potvrdilo praktický význam 
takového postupu. V myokardu pacienta s Fabryho chorobou bylo také prokázáno 
zvýšení toxického lyso-SFL. MS vyhodnocení SFL v placentě podpořilo nálezy 
imunohistochemické analýzy a společně ukázalo na specifickou roli apikálního pólu 
placentálních endothelií. MS analýza se ukázala užitečná nejen při analýze metabolitů, 
ale též při měření aktivit lysosomálních enzymů, neboť umožňuje používání 
přirozených substrátů na rozdíl od fluorimetrických metod. Použitím MS se nám 
podařilo prokázat nulovou aktivitu β-glukocerebrosidasy v kožních fibroblastech 
pacienta s Gaucherovou chorobou typu II se závažným "collodion baby" fenotypem. 
Možnost používat hmotnostně značené substráty při dynamických metabolických 
experimentech namísto běžně užívaných radioaktivních lipidů byla testována v 
kulturách kožních fibroblastů pacientů s GM1 gangliosidosou. Bylo prokázáno, že 
hmotnostně značené substráty jsou vhodnou náhradou radioaktivních analogů, což 
přispívá k eliminaci rizik při práci s radioaktivními sloučeninami. 
V rámci této disertační práce  bylo zavedeno široké spektrum metod, které byly 
otestovány při určování metabolických profilů SFL za normálních a patologických 
stavů. Naše zjištění potvrdila, že  MS lipidomika přináší novou, vyšší úroveň citlivosti 
analýzy i množství dalších detailních informací. Sledování metabolického osudu 
jednotlivých molekul může přispět k lepšímu pochopení molekulárních mechanismů 
onemocnění. 
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Abstract 

 

In recent years, mass spectrometry (MS) become the dominant technology in lipidomic 
analysis and widely influenced research and diagnosis of diseases of lipid metabolism, 
e.g. lysosomal storage disorders (LSD) characterized by impairment of the lysosomal 
functions. Defects in lysosomal processing of sphingolipids SFL belong to the category 
of sphingolipidoses. This condition has severe and even fatal clinical outcome. 
The primary aim of this work was to establish quantitative and qualitative methods of 
SFL analysis useful for research and diagnosis of LSD. At first, semisynthesis of mass 
labeled lipid standards utilizing immobilized sphingolipid ceramide N-deacylase was 
performed. Established methods of quantitative analysis were then used to prove the 
increased excretion of urinary SFL in LSD with characteristic storage in the kidney. 
Determination of excreted urinary SFL was found useful for differential diagnosis of 
prosaposin and saposin B deficiences for which routine enzymology is failing. MS also 
enabled monitoring of individual molecular species (isoforms) of SFL, which led to the 
finding that their urinary pattern is changing in some LSD. This resulted in the 
development of new screening method in dry urinary samples based on isoform profile 
evaluation. Another MS application referred to analysis of autoptic tissues or cell 
samples in unresolved cases. Fabry disease and prosaposin deficiency were proved in 
the autoptic kidney and myocardium which showed the usefulness of this procedure. In 
the myocardium of Fabry patient, the increase of toxic compound, lyso-SFL was also 
demonstrated. MS determination of placental SFL supported immunohistochemical 
analysis and thus pointed to the specific features of placental endothelial apical pole. In 
addition to metabolites, MS was found very useful for determination of activities of 
lysosomal enzymes because of  use of natural substrates in contrast to fluorimetric 
methods. Using MS, we were able to demonstrate zero β-glucocerebrosidase activity in 
skin fibroblasts of Gaucher type II patient with severe collodion baby phenotype. The 
possibility to use the mass labeled substrates in dynamic metabolic experiments instead 
of conventional radioactive ones was tested in cultured skin fibroblasts from patients 
with GM1 gangliosidosis. Mass labeled substrates were found suitable substitutes 
eliminating the working risk with radioactive compounds. 
While working on this Ph.D. thesis, the wide range of methods has been introduced and 
tested  to determine metabolomic profiles of SFL under normal and pathological 
conditions. Our findings have confirmed that lipidomic MS brings a new, high level of 
sensitivity and more detailed information. Monitoring of metabolic fate of individual 
molecules can contribute to better understanding of the molecular mechanisms of the 
disease. 
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1. Introduction 

 

A. Sphingolipid biochemistry and pathobiochemistry 

 

1.1 Brief history of sphingolipids  

Term sphingolipid (SFL) is derived from amino alcohol backbone sphingosine.  Name 

of mysterious Egyptian Sphinx reflected enigmatic physical and chemical behaviour of 

sphingosine. 

Early history of SFL is connected with J. L. W. Thudichum and his famous book A 

Treatise on the chemical constitution of the brain (Bailliere, Tindall and Cox, 

London,1884) (Yamakawa T., 1996). Thudichum analyzed chemical composition of 

brain tissue and described  Leibrich's "Protagon" as a mixture of lecithins, cephalins and 

myelins. He also identified sphingomyelins, sulfatides and cerebrosides in the brain and 

wrote: "they are of fundamental importance and all further developments in chemical 

neurology must start from them as a basis" and "When the normal composition of brain 

shall be known to the uttermost item, then pathology can begin its search for abnormal 

compounds or derangements of quantities" (Cyberlipid, 2013). Correct structure of 

sphingosine was later proposed by H.E. Carter in 1947 (Carter H. E. et al., 1947). 

The other milestones in the history of SFL fall into the 1930s until the 1970s: isolation 

and characterization of sulfatides, sphingomyelin, neuraminic acid (later named sialic 

acid), structure and nomenclature of gangliosides, description of glycolipids responsible 

for ABO antigenic activity, etc (Kuhn R. and Wiegandt H., 1963; Yamakawa T. et al., 

1962; Yamakawa T., 1996). History of sphingolipid research continues as a part of 

lipidomics untill these days (www.lipidmaps.org).  

From the historical background, the important role of sphingolipid research is clearly 

visible in many biochemical and also medical fields. History also confirmed that new 

approaches in analysis together with understanding of basic principles of sphingolipid 

biochemistry and pathobiochemistry can help to find new analytical strategies and 

practical applications in clinical medicine and research. These aspects represent the 

major topics of the next chapters of my PhD thesis. 
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1.2 Nomenclature of sphingolipids 

Nomenclature of SFL and glycosphingolipids (GSL) is based on IUPAC and IUMB 

rules (Chester M. A., 1998). Nevertheless, for some SFL historical (trivial) terminology 

is still used. 

 

1.2.1 Sphingoid bases and ceramides  

Sphingoid bases or sphingoids are long-chain aliphatic aminoalcohols. Basic chemical 

structure is represented by "dihydrosphingosine" which is [(2S,3R)-2-aminooctadecane-

1,3-diol] and is referred as sphinganine or sphingosine, [(2S,3R)-2-aminooctadec-4-ene-

1,3-diol], sphing-4-enine both with carbon chain length of 18.  

Homologes with different chain length are named using root chemical name of the 

parent carbohydrate e.g. 20 carbon length homologue name is icosasphinganine 

(Chester M. A., 1998). 

There is also used "short" abbreviation for sphingoids consisting from one letter and 

two numbers. For example, abbreviation d18:1 refers to the most abundant sphingoid - 

sphingosine. Letter d (like di-) refers to two hydroxyl groups and numbers represent 

chain-length of 18 carbons with 1 double bond (Chester M. A., 1998).  

 

1.2.2 Trivial Names 

Trivial  names  are  used  in  some  cases such  as  cerebrosides  for  brain                              

β-galactosylceramides. Other trivial names consist of oligosaccharide name in 

combination with ceramide e.g. (LacCer) for GalGlcCer. Historically persisting 

nomenclature of gangliosides is simplified system invented by Svennerholm 

(Svennerholm L., 1963) which is widely accepted. Names consists of letter G for 

gangliosides followed by number of sialic acid residues, M for mono- D for di- and so 

on. The last number in the name identifies position of ganglioside from the start to the 

front of chromatogram. Sphingomyelin (N-acyl-sphing-4-enine-1-phosphocholine) is 

trivial name of phosphosphingolipid with phosphocholine group bound to the primary 

hydroxy group of sphingoid in the ceramide  (Chester M. A., 1998). 
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1.2.3 Semisystematic names 

They are used for GSL with larger oligosaccharide chains. The names are composed of: 

(root name)(root size)osylceramide e.g. globotetraosylceramide for 

GalNAcGalGalGlcCer. Root structures and their symbols are shown in Tab. 1.  

 

Tab. 1 Root names and structures (Chester M. A., 1998) 

 

1 Lacto as used here should not be confused with lactose. 
2 Note: The prefix “iso” is used here to denote a (1→3) vs (1→4) 
difference in the linkage position between the monosaccharide 
residues III and II, while the term “neo” denotes such a difference 
[(1→4) vs (1→3)] between residues IV and III. This scheme 
should be used also in other cases where such positional isomers 
occur, and only in such cases. 

 

1.2.4 Systematic names 

The oligosaccharide structure is described in detail by systematic names. The systematic 

names of GSL use the specific symbols for position of glycosidic bonds and anomeric 

configurations are represented by brackets between bonded monosaccharides. There are 

also short forms omitting the number of the anomeric carbon but retain possition of 

glycosidic bond. Example is shown in the Fig. 1.   

 

 

Fig. 1 Systematic names forms (Chester M. A., 1998) 
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Roman number is used for gangliosides and sulfatides to describe in their names the 

saccharide with attached sialic acid or sulfate group.  Upper index number represents 

the carbon to which the groups are bonded (Fig. 2).  

 

 

Fig. 2 Structure of GM1 ganglioside and systematic name 

IV3-A-N-glycoloylneuraminosyl-II3-A-N-acetylneuraminosylgangliotetraosylceramide 

IV3-A-Neu5Gc,II3-A-Neu5Ac-Gg4Cer. 

 

1.2.5 Specific nomenclature of the ceramide part of sphingolipids used in mass 

spectrometry 

For some purposes, description of the ceramide part of sphingolipid or ceramide itself is 

based on short abreviated form of both sphingoid and fatty acid. For example ceramide 

consisted from sphingosine a palmitic acid can be abbreviated as Cer(d18:1,16:0), 

similarly sphingolipid with tetrasaccharide oligosaccharide and ceramide with 20 

carbons chain length sphingoid and nervoic acid is referred as Gb4Cer(d20:0,24:1). This 

system of SFL nomenclature is commonly used e.g. in mass spectrometry because it 

determines the molecular weight of the molecule and also specifies the fragments 

acquired during the tandem mass spectrometric (MS/MS) analysis (Ii T. et al., 1995) 

 

1.3 Chemical and biological functions and properties of sphingolipids 

Hydrophobic ceramide represents the core structure of each sphingolipid.  It is 

responsible for their participation on the generation of micellar and later membranous 

structures (Goni F. M. and Alonso A., 2006; Masserini M. and Ravasi D., 2001; Ulrich-
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; Westerlund B. and Slotte J. P., 2009). Ceramides itself 

are immiscible with water especially those with longer fatty acids in molecule (Goni F. 

M. and Alonso A., 2006). Fatty acids bound in ceramide are responsible for the shape of 

the ceramide molecule which secondarily influences their properties and functions. 

Hydrophilic structures of the ceramide can create H-bonds with nitrogen of the amide 

bond which is leading to lancet shape of the whole sphingolipid molecule (Goni F. M. 

and Alonso A., 2006; Grosch S. et al., 2012; Masserini M. and Ravasi D., 2001; 

Westerlund B. and Slotte J. P., 2009). 

Sphingolipids play many different biological roles like participation on building of 

biological membranes (Goni F. M. and Alonso A., 2006). Hydrophilic parts of the lipids 

protruding outside of the membrane were later associated with SFL roles in adhesion, 

recognition, differentiation and antigenic function (Hakomori S. I., 2008; Lahiri S. and 

Futerman A. H., 2007; Schnaar R. L. et al., 2009). Changes in GSL oligosaccharide 

were found to participate in the oncogenic differentiation (Hakomori S., 1981; 

Hakomori S., 1998). Interconversion of SFL can modulate the membrane properties e.g. 

ceramides can cluster into the microdomains with different properties. Membrane 

modulation can also lead to permeabilization of membrane and induction of apoptosis 

(Goni F. M. and Alonso A., 2006; Grosch S. et al., 2012; Masserini M. and Ravasi D., 

2001; Westerlund B. and Slotte J. P., 2009). Nowadays, the role of SFL as signal 

molecules is well known and theory of “sphingolipid rheostat” has been postulated 

(Lahiri S. and Futerman A. H., 2007; Maceyka M. et al., 2009; Maceyka M. et al., 

2012; Stevenson C. E. et al., 2011; Takabe K. et al., 2008). Sphingolipids are also 

connected with immune response e.g. they play their role behind autoimmune reactions 

in sclerosis multiplex (Godfrey D. I. and Rossjohn J., 2011; Kanter J. L. et al., 2006; 

Kolter T. et al., 2005).   

 

1.4 Biosynthesis of sphingolipids 

 

1.4.1 Biosynthesis of ceramides  

De novo biosythesis of ceramides takes place in the lumen of endoplasmatic reticulum 

(ER) and begins with condensation of L-serine and palmitoyl-CoA catalyzed by serine 

palmitoyl-CoA transferase. Condensation reaction produces 3-ketosphinganine which is 
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then enzymaticaly reduced by 3-ketosphinganine reductase and NADP cofactor to 

sphinganine. Sphinganine is coupled with Acyl-CoA via amide bond by action of 

ceramidesynthase (CerS) to produce dihydroceramide. which is then processed by 

dihydroceramidedesaturase on ceramide (Futerman A. H., 2006; Lahiri S. and Futerman 

A. H., 2007; Levy M. and Futerman A. H., 2010; Neumann S. and van Meer G., 2008; 

Wennekes T. et al., 2009). In contrast, the recycling pathway of degraded complex SFL 

produces sphing-4-enine which condensates with Acyl-CoA to directly form ceramide 

(Kitatani K. et al., 2008). 

 

1.4.1.1 Ceramide synthases and isoforms of sphingolipids 

Ceramide synthases are important group of enzymes responsible for coupling sphingoid 

bases with fatty acyl-CoA. Nowadays, six different CerS are known (Tab. 2). They are 

exposing different specificity toward fatty acyl-CoA and almost the same specificity 

toward sphingoid bases. Ceramid synthases are thus responsible for biosynthesis of 

different molecular species of ceramides (isoforms) (Laviad E. L. et al., 2008; Levy M. 

and Futerman A. H., 2010). Their specificity and tissue expression is summarized in 

Tab. 2. 

 

Tab. 2 Human ceramid synthases (Levy M. and Futerman A. H., 2010) 
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1.4.2 Compartmentalization of biosynthesis of glycosphingolipids  

 

1.4.2.1 Transport proteins 

Specific proteins are required for SFL transportation between compartments and inner 

and outer layers of membrane bilayer (van Meer G., 2011). The system includes: 

 transport proteins - FAPP2, CERT, GLTP, ABC family proteins 

 flipases responsible for lipid flipping between inner and outer layers of 

membrane bilayer e.g. ABC family proteins 

 

1.4.2.2 Endoplasmatic reticulum - galactosylceramide and sulfatide 

Galactosylceramide is synthesized in lumen of ER after spontaneous ceramide flipping 

across the ER membrane (van Meer G., 2011; Wennekes T. et al., 2009). Galactose is 

transferred from UDP-Gal to ceramide by ceramide galactosyltransferase. Produced 

galactosyl ceramide is precursor for biosythesis of galactosylceramide-3-sulfate 

(sulfatide) by action of PAPS galactosylceramide: sulpho transferase.                        

3‘-phosphoadenosin 5‘-phosphosulfate (PAPS) is donor of sulfate group for 

biosynthesis (Wennekes T. et al., 2009).  

 

1.4.2.3 Golgi aparatus - glucosylceramide, lactosylceramide and complex neutral 

glycosphingolipids 

Ceramide is transported to cis-golgi by vesicular transport where glucosylceramide is 

synthesized on cytosolic side from UDP-Glc and ceramide by 

glucosylceramidesynthase. Synthesized glucosylceramide is then transported to the site 

of lactosylceramide biosynthesis by FAPP2 protein (D'Angelo G. et al., 2007; D'Angelo 

G. et al., 2012; Levine T. P., 2007; Wennekes T. et al., 2009). Translocation of 

glucosylceramide to golgi lumen is possibly provided also by FAPP2 protein 

(Wennekes T. et al., 2009). Lactosylceramide is then synthesized from UDP-Gal and 

glucosylceramide by galactosyl transferase I enzyme. Lactosylceramide is a precursor 

of various GSL series (Tab. 1) e.g. gangliosides from ganglioserie (Wennekes T. et al., 

2009). 
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1.4.2.4 Gangliosides 

Biosynthesis of gangliosides is maintained by enzymes either with high or low substrate 

specificity (Fig. 3). Enzymes with high substrate specificity synthesize starting 

substrates of different gangliosides branches called 0, a, b and c. Enzymes with small 

substrate specificity synthesize more complex gangliosides of each branch. They 

possibly create multienzyme complexes which contribute to regulation of gangliosides 

biosynthesis and also explain synthesis of GM1a ganglioside from GM3 ganglioside 

with only trace amount of GM2 ganglioside produced in mammals (Sandhoff K. and 

Kolter T., 2003). 

 

 

Fig. 3 Biosynthesis of complex gangliosides (Sandhoff K. and Kolter T., 2003) 

 

1.4.2.5 Sphingomyelin 

Ceramide is transported by CERT protein and by vesicular transport to trans-golgi 

network (Futerman A. H., 2006; Wennekes T. et al., 2009). Ceramide is there reoriented 

to golgi lumen by fliping. Sphingomyelin is then synthesized by sphingomyelin 

synthetase 1 which transfer phosphocholine from phosphatidylcholine to ceramide 

(Wennekes T. et al., 2009).  
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1.5 Degradation of sphingolipids 

Catabolism of SFL takes place in the endosomal/lysosomal compartment of the cell. 

Lysosomes are called "stomach of the cell" where SFL are degraded to their building 

blocks (Huotari J. and Helenius A., 2011; Kolter T. and Sandhoff K., 2010; Kolter T., 

2011) (Fig. 4). 

 

 

Fig. 4 Degradation pathways of selected sphingolipids and defects of individual catabolic steps. 
Sphingolipid hydrolases, their activators (Saps) and corresponding disorders are marked 
(Schulze H. et al., 2009) 

 

Lysosomes are thus responsible for recycling of lipids which is important for cell 

homeostasis (Huotari J. and Helenius A., 2011; Kolter T. and Sandhoff K., 2010).  

 

1.5.1 Endosomes  

Endosomes are generated during endocytosis by regulated budding of the cytoplasmatic 

membrane. Clathrin and caveolin are most common proteins involved in the process. 

 - 29 -  



Endosomes have characteristic evolutionary stages when they begin as early endosomes 

(EE) after membrane budding and terminate as late endosome (LE) before fusion with 

lysosome. Transformation of EE to LE has some characteristic events Fig. 5 (Huotari J. 

and Helenius A., 2011). 

 

 

Fig. 5 The endosome/lysosome system. (Huotari J. and Helenius A., 2011; Kolter T. and 
Sandhoff K., 2010) 

EE - Early Endosome, LE - Late Endosome, MT - Microtubules, TGN - trans-Golgi Network, 
Chol - cholesterol, Cer - Ceramide, BMP - bis(monoacylglacerol)phosphate, SM - 
sphingomyelin  

 - 30 -  



1.5.2 Lysosomes 

Macromolecules selected and sorted in endosomes are finally degraded in lysosomes. 

Lysosomal catabolism process is maintained by variety of acidic hydrolases in low 

internal pH of lysosomes generated by specific V-ATPase. Thick glycocalyx layer 

composed of N-glycosylated glycoproteins rich on repeated lactosamine residues on the 

intralysosomal membrane  keeps lysosomal integrity and protects it from degradation by 

their own  hydrolases (Huotari J. and Helenius A., 2011; Kolter T. and Sandhoff K., 

2010). 

Lysosomal degradation of SFL takes place on intralysosomal membraneous vesicles 

originating from intraluminal vesicle (ILV) of endosomes. These vesicles have specific 

composition to generate negative charge on their surface required for docking of 

positively charged acidic hydrolases. Negative charge is generated by high 

concentration of bis(monoacylglycerol)phosphate (BMP) and partially by 

phosphatidylinositol-3,5-bisphosphate (Kolter T. and Sandhoff K., 2010). 

Intralysosomal degradation of macromolecules (e.g. SFL) to primary building blocks is 

followed by their transport out of the lysosomes and reutilization in the cell (Kolter T. 

and Sandhoff K., 2010).  

 

1.5.3 Catabolism of sphingolipids with short oligosaccharide chain 

Glycosphingolipids are degraded by sequential cleavage of sacharides from 

nonreducing oligosaccharide end by specific acid hydrolases (Fig.4). 

Glycosphingolipids with short oligosaccharide chains having four or less saccharide 

units require the protein activator (Saposins, GM2-activator) for their mobilization from 

the membrane and degradation (Kolter T. and Sandhoff K., 2010; Kolter T., 2011; 

Sandhoff K. et al., 2001).  

 

1.5.3.1 Sphingolipid activator proteins  

Sphingolipid activator proteins, saposins (Saps) are protein cofactors of lysosomal acid 

hydrolases facilitating solubilization of hydrophobic lipid substrates and acting as 

enzyme activators. (Kolter T. and Sandhoff K., 2010; Kolter T., 2011; Sandhoff K. et 

al., 2001).  
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Prosaposin (pSap) is 70kDa glycoprotein precursor of 4 saposins – Sap-A, Sap-B, Sap-

C and Sap-D which are formed in lysosomes. Prosaposin gene is located on 10q22.1.  

(Kolter T. and Sandhoff K., 2010; Kolter T., 2011; Sandhoff K. et al., 2001).  

Sap-B was the first described member of the Sap family formerly named "sulfatide 

activator protein" required for degradation of the sulfatides. Later on, Sap-B was found 

to act also in degradation of Gb3Cer and diGalCer. It has the shape of hair pin with 

open and closed conformations. The open conformation is supposed to interact directly 

with the membrane, to promote a reorganization of the lipid alkyl chains, and to extract 

the lipid ligand, which is accompanied by a change to the closed conformation. The 

substrate is then mobilized and exposed to the enzyme in a water-soluble activator-lipid 

complex. (Kolter T. and Sandhoff K., 2010; Kolter T., 2011; Sandhoff K. et al., 2001).  

 

1.6 Lysosomal storage disorders 

Defects in genes of lysosomal acid hydrolases, protein activators and some other 

lysosomal proteins (e.g. NPC1 and NPC2 proteins) lead to disorders know as lysosomal 

storage disorders (LSD). Nowadays about 50 of these severe diseases are known. They 

are characterized by deficient lysosomal processing of substrates which leads to their 

intralysosomal accumulation.  Impairments of related pathways are also known e.g 

impaired calcium homeostatsis, oxidative stress, autophagy, inflamamation, altered lipid 

trafficking (Vitner E. B. et al., 2010). Defects in lysosomal processing of SFL belong to 

the category of sphingolipidoses (Kolter T. and Sandhoff K., 2010; Kolter T., 2011).  

This study is focused on the following disorders: 

 

1.6.1 Prosaposin deficiency (OMIM 611721) (Sandhoff K. et al., 2001) 

http://omim.org/entry/611721 

Genetics: mutation in prosaposin gene located on 10q22.1  

Biochemistry: deficient activity of acid hydrolases requiring saposins for their function 

which leads to accumulation of sphigolipids with short oligosaccharide chain 

Inheritance:  autosomal recessive.  

Clinical phenotype: severe neurovisceral disease (e.g. white matter abnormalities, 

hepatosplenomegaly) with early death. 
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Diagnosis: prosaposin gene analysis, multiple SFL increased in urine, in skin 

fibroblasts, in tissues (autopsy samples). Dynamic metabolic experiments in fibroblast 

cultures (loading tests) give evidence of blocks in degradative pathways of SFL. 

 

1.6.2 Sap-B deficiency (OMIM 249900) (Sandhoff K. et al., 2001)  

http://omim.org/entry/249900 

Genetics: mutation in Sap-B region of prosaposin gene which affects the function of the 

Sap-B only. 

Biochemistry: deficient activity of ɑ-Galactosidase A and Arylsulfatase A, impairment 

in degradation of Gb3Cer, diGalCer and sulfatides. 

Inheritance:  autosomal recessive.  

Clinical phenotype: similar to juvenile metachromatic leukodystrophy (MLD) with 

some exceptions. Life expectancy depends on the onset of the disorder and is similar to 

MLD. 

Diagnosis: prosaposin gene analysis, several SFL increased in urine and fibroblasts.  

Dynamic metabolic experiments in fibroblast cultures (loading tests) give evidence of 

blocks in degradative pathways of SFL. 

 

1.6.3 Metachromatic leukodystrophy (OMIM 607574) (von Figura K. et al., 2001) 

http://omim.org/entry/607574 

Genetics: mutations in ARSA gene located on 22q13.33 

Biochemistry: Deficiency of enzymatic activity of Arylsulfatase A and block in 

degradation of sulfatides. Pseudodeficiency of Arylsulfatase A with low enzyme 

activity and without clinical affection is described in 2% of European population 

Inheritance: autosomal recessive 

Clinical phenotype: severe neuronal disorder which affects central and peripheral 

nervous system, storage in some visceral organs (especially kidney), three clinical 

phenotypes 
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Diagnosis: leukodystrophic image of the central nervous system, reduced nerve 

conduction velocity in peripheral nervous system; urinary sulfatide analysis, 

confirmation of deficient enzyme activity and genotyping  

 

1.6.4 Fabry disease (OMIM 300644) (Desnick R. J. et al., 2001) 

http://omim.org/entry/300644 

Genetics: AGAL gene mutations, localization Xq22.1,  

Biochemistry: deficiency of the activity of ɑ-galactosidase A , block of degradation of 

Gb3Cer, diGalCer and GSL with oligosaccharide determinants of blood group B 

antigens (Asfaw B. et al., 2002; Ledvinova J. et al., 1997) 

Inheritance: X-linked type of inheritance, female are heterozygots and  males 

hemizygots 

Clinical phenotype: direct neuronal involvement is missing, later-onset of symptoms 

(e.g. cardiomyopathy with hyperthrophy of left ventricle, kidney involvement, 

angiokeratoma, parenthesis) 

Diagnosis: enzymology and gene analysis, urinary Gb3Cer analysis 

 

1.6.5 Treatment of lysosomal storage disorders 

Treatment of LSD is based on restoration of substrate turnover. This can be achieved by 

three different approaches.  

 Replacement of deficient enzyme (Platt F. M. and Lachmann R. H., 2009; 

Sakuraba H. et al., 2006) 

o Enzyme replacement therapy – utilizing recombinant enzymes infusions 

o Bone marrow transplantation – replacement of deficient microglia by 

healthy cells which secretes enzyme to extracellular space 

o Gene therapy – repairing of the defective gene 

o Stem cell therapy – similar to bone marrow transplantation  

 Chemical chaperon therapy using subinhibition dose of enzyme inhibitor to 

stabilize the mutant enzyme protein to allow it pass through quality control 

 - 34 -  



mechanisms and express its residual activity in lysosomes. Chaperones are small 

molecules which can pass blood brain barrier (Platt F. M. and Lachmann R. H., 

2009). 

 Substrate reduction therapy is based on inhibition of SFL biosynthesis to 

decrease turnover of substrates; usually targets biosynthesis of glucosylceramide 

(Platt F. M. and Lachmann R. H., 2009). 

 

 

B. Mass spectrometry and tandem mass spectrometry 

 

1.7 Mass spectrometry – Mass spectrometers 

Mass spectrometry (MS) is analytical method based on measurement of mass to charge 

ratio of ions in gaseous state (Cole R. B., 2010; de Hoffman E. and Stroobant V., 2002; 

Dulcks T. and Juraschek R., 1999). Mass spectrometer consists of three fundamental 

parts: ionization device, mass analyzer and detector.  

  

1.7.1 Ionization device  

Ionization device in mass spectrometer is used to generate gaseous ions of analysed 

compounds. We can differentiate ionization devices according to some criteria (Cole R. 

B., 2010; de Hoffman E. and Stroobant V., 2002): 

 Pressure at which ionization is achieved -  vacuum or atmospheric pressure 

ionization (abbreviated as API). API devices such as electrospray can be directly 

coupled to separation techniques like HPLC or capillary electrophoresis. 

 Pulse or continuos ionization is another criteria.  

 Energy applied to analyte to generate ions differentiates ionization on hard and 

soft techniques. Hard ionization methods are characterized by high 

fragmentation of analytes during ionization process whereas soft ionization 

methods are producing mostly molecular ions. 
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Some of the ionization techniques are able to perform surface scan and are used for 

mass spectrometry imaging (MSI) e.g. MALDI, DESI, SIMS (McDonnell L. A. and 

Heeren R. M., 2007). 

  

1.7.1.1 Electrospray ionization 

Electrospray ionization abbreviated as ESI is one of the soft techniques for polar 

compounds ionization in liquid solvent which is passing through the metal capillary at 

flow rates up to 1 ml/min (Fig. 6). Ions are generated by application of strong electric 

field on the capillary tip which sorts ions on the solvent surface and creates excess 

charge. This leads to generation of the Taylor cone on the capillary tip which is then 

dispersed into the droplets (Cole R. B., 2010; de Hoffman E. and Stroobant V., 2002; 

Dulcks T. and Juraschek R., 1999; Kebarle P., 2000). 

 

 

Fig. 6 Scheme of electrospray ionization process 
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Polarity of generated ions depends on the polarity of applied electric field. Cations are 

generated in the positive and anions in the negative ion mode (Cole R. B., 2010; de 

Hoffman E. and Stroobant V., 2002; Kebarle P., 2000).  

Solvent of the droplets is evaporated and droplet shrinks in size which leads to 

accumulation of the surface charge. When the surface charge exceeds the surface 

tension then the droplet breaks forming secondary smaller droplets. This process is 

called Raileigh fission which is repeated until the gaseous ions are formed. Two 

theories of gaseous ions formation during ESI are postulated (Cech N. B. and Enke C. 

G., 2001; Cole R. B., 2010; Kebarle P., 2000).  

 Ion evaporation model better matches formation of gaseous ions from small 

molecules which are formed in the moment when the ions are able leaving the 

droplet surface by repulsion force.  

 Charged residue model better suits the formation of gaseous ions from large 

molecules such as proteins.  Droplets undergo repetitive Raileigh fission to the 

point when droplet contains only one ion of analyte. In this point solvent is 

completely evaporated and gaseous ion is released.  

Liquid surface of the formed droplets is limiting factor for gaseous ions formation and 

influences the analyte ionization efficiency. In some cases, ionization of analyte may be 

suppressed by other compounds. This is resulting in the matrix effect of co-eluted and 

co-ionized compounds on the signal of analyte. The matrix effect is recommended to 

measure prior to analysis (Cech N. B. and Enke C. G., 2001; Cole R. B., 2010; de 

Hoffman E. and Stroobant V., 2002; Kebarle P., 2000; Taylor P. J., 2005). 

 

Mechanisms of electrospray ionization 

Four different mechanisms describing the process of compound ionization in 

electrospray source were postulated (Cech N. B. and Enke C. G., 2001; Cole R. B., 

2010; Kebarle P., 2000): 

 Ionization through charge separation 

 Adduct formation 

 Ionization through gas-phase reaction 
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 Ionization through electrochemical oxidation or reduction 

 

1.7.2 Mass analyzer  

This part of mass spectrometer is used for evaluation of mass to charge ratio of analyzed 

gaseous ions. This is achieved by application of different physical principles and thus 

mass analyzers can be compared by their specific parameters e.g. resolution (de 

Hoffman E. and Stroobant V., 2002; Hu Q. et al., 2005; McLuckey S. A. and Wells J. 

M., 2001; Perry R. H. et al., 2008; Scigelova M. and Makarov A., 2006) 

 

1.7.2.1 Quadrupole mass analyzer 

Quandrupolar mass analyzer is working as ion filter which separates ions according to 

their mass to charge ratio. Quadrupole (Q) consists of four parallel rods with hyperbolic 

or cylindrical crossection (de Hoffman E. and Stroobant V., 2002; Douglas D. J., 2009; 

McLuckey S. A. and Wells J. M., 2001) (Fig. 7). Application of direct current together 

with radiofrequency voltage on the rods generates quadrupolar field  which  properties 

can be adjusted by changing direct curent voltage U and radiofrequency voltage 

amplitude V. Changing the properties of the quadrupolar field influences the ions 

trajectory when passing the quadrupole in the m/z dependent manner. The ion on the 

stable trajectory will pass through the quadrupole. On the other hand ions on the 

unstable trajectory will collide with the rods or will be rejected from the quadrupole 

(Fig. 7) (de Hoffman E. and Stroobant V., 2002; Douglas D. J., 2009). 

Quadrupole is the low resolution mass analyzer which has usually unit resolving power 

and is able to distinguish the ions with difference ± 1m/z. Its main advantage is in the 

simple construction, low demand on vacuum, high scanning speed and possibility of 

real time separation of ions according to the m/z. These advantages made quadrupole 

one of the most widespread benchtop mass spectrometer for quantitative analyses (de 

Hoffman E. and Stroobant V., 2002; Douglas D. J., 2009; McLuckey S. A. and Wells J. 

M., 2001). 
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Fig. 7 Quadrupolar mass filter and the trajectories of two ions. Red line: an ion in an unstable 
region of the stability diagram on an unstable trajectory. Blue line: an ion in a stable region of 
the stability diagram passing the quadrupole on a stable trajectory. A) Section of the quadrupole 
illustrating radiofrequency voltage; B) Upper side view of the ion trajectories in the quadrupole. 

 

 1.8 Tandem mass spectrometry 

Tandem mass spectrometry (MS/MS) uses the principle of two mass analyzes and 

fragmentation process which takes place between them. This two dimensional analytical 

technique can be performed in two ways (de Hoffman E. and Stroobant V., 2002; 

McLuckey S. A. and Wells J. M., 2001; Sleno L. and Volmer D. A., 2004)  

 Tandem mass spectrometry in time is specific for instruments where the tandem 

analysis is performed in the same place which is characteristic for ion trap mass 

spectrometers.  

 Mass spectrometry in space is done in two separated mass analyzers connected 

by collision cell e.g. tripplequadruple mass spectrometers. 

 

A key feature of MS/MS is fragmentation of compounds after first mass spectrometric 

analysis. These fragments are then evaluated by second MS analysis. Fragmentation is 

based on the change in internal energy of the molecule and breaking its chemical bonds 

leading to generation of fragments. One of the ways how to fragment the ions is by 

collision induced dissociation (CID) (de Hoffman E. and Stroobant V., 2002; Jennings 

K. R., 2000; Sleno L. and Volmer D. A., 2004).  
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1.8.1 Collision induced dissociation 

Process of CID is based on kinetic collisions of analyte ions (Precursor ions) with 

molecules of neutral gas (collision gas) in the collision cell (e.g. RF voltage quadrupole 

abbreviated by q). Kinetic energy of the collisions (collision energy) is transferred to the 

internal energy of analyte ion. If the increased internal energy is sufficient to break 

chemical bond then fragments of analyte (Product ions) are generated (de Hoffman E. 

and Stroobant V., 2002; Jennings K. R., 2000; Sleno L. and Volmer D. A., 2004).  

Energy transfer of the collision is influenced by kinetic energy of precursor ions and 

MW of collision gas . We can discriminate the collisions based on their collision energy 

to low energy (1-100 eV) and to high energy (˃1 keV) collisions (de Hoffman E. and 

Stroobant V., 2002; Sleno L. and Volmer D. A., 2004).  

 

1.8.2 Scanning modes of tandem mass spectrometer 

Tandem mass spectrometers are able to perform analyses as single MS instrument but 

have some specific MS/MS modes (de Hoffman E. and Stroobant V., 2002; Sleno L. 

and Volmer D. A., 2004). 

 

MS scans 

Mass range scan – mass spectrometer scans through the range of selected m/z. 

Selected ion monitoring – mass spectrometer records signal intensity of selected ion(s) . 

 

MS/MS scans 

Product ions scan: This mode is used for evaluation of the product ions which are 

produced by CID from their selected precursors. 

Precursor ions scan – This technique is reverse to the product ions scan and allows 

searching for precursor ions which share structural similarity based on selected product 

ion. 

Neutral loss scan – MS/MS instruments are able to scan for ions producing neutral 

fragment in the process of CID.  
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Multiple reaction monitoring – First and second mass spectrometers scan selected pairs 

(transition pairs) of precursor and product ions. This technique is useful for selective 

and sensitive quantification because it maximizes duty cycle of the analysis. 

 

1.9 Electrospray tandem mass analysis of sphingolipids: brief overview 

Electrospray ionization can be used for the separation of SFL during the MS analysis. 

This can be achieved by selective intrasource ionization used e.g. in the shotgun 

lipidomics MS (Fig. 8) (Han X. and Gross R. W., 2005; Haynes C. A. et al., 2009). 

 

  

Fig. 8 Scheme of intrasource ionization strategies for 

shotgun lipidomics (Han X. and Gross R. W., 2003) 

 

Different mechanisms of ion generation resulting in different forms of sphingolipid ions 

and their fragments can be used  (Fig. 9) (Boscaro F. et al., 2002; Cech N. B. and Enke 

C. G., 2001; Han X. and Gross R. W., 2005; Haynes C. A. et al., 2009; Kebarle P., 

2000; Mano N. et al., 1997; Olling A. et al., 1998).  

It is also possible to use separation techniques prior the ESI-MS/MS analysis. Normal 

phase HPLC can be used for separation of SFL according to their hydrophilic part 

(Lipid groups separation - Fig. 10 D,C) whereas reverse phase HPLC can separate 

sphigolipid isoforms according to the hydrophobicity mostly by properties of the 

ceramide part of the molecule (Fig. 10 A,B) (Shaner R. L. et al., 2009). 
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Fig. 9 Fragmentation of ceramide (A) and specific fragments of sphingomyelin (B), GM1 
ganglioside (C) and sulfatides (D). Neutral fragment of hexose (galactose) is an example of 
fragmentation used in a neutral loss scan (E). 

 

  

Fig. 10 HPLC separation of sphingolipids (Shaner R. L. et al., 2009) - elution profiles on 
reverse phase (A, B) and normal phase (C, D) chromatography. Shown are the elution of 
sphingoid bases and 1-phosphates and Cer1P in the single-phase extract of approximately (panel 
A) versus cells alone (panel B) The abbreviations identify the nature of the sphingoid base (e.g., 
S, sphingosine, d18:1; Sa, sphinganine, d18:0; and internal standards d17:1 and d17:0), the 1-
phosphates (1P), and ceramide1-phosphates (Cer1P, designating the sphingoid base and amide-
linked fatty acid). C: Elution of complex sphingolipids in the “lower phase extract” D: 
Separation of d18:1/C16:0-GlcCer and -GalCer standards 
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1.10 Quantitative analysis in the mass spectrometry 

There are three major approaches for quantitative analysis which are based on the 

presumption that the measured signal express amount of analyte. It is required that the 

signal intensities have linear response in the measured range of concentrations. Nearly 

linear relationship between the relative intensities of molecular ions and the mass of 

individual lipids over a 10,000-fold dynamic range together with small experimental 

error makes this method ideal for selective and sensitive quantification (de Hoffman E. 

and Stroobant V., 2002; Han X. and Gross R. W., 2003; Han X. and Gross R. W., 

2005).  

 External calibration method  

 Internal standard (IST) method is also based on the use of calibration curve. 

Analyte standards are mixed with known stable amount of the IST. The same 

amount of IST is added to the measured sample.. IST compensates for errors 

caused by sample preparation and by matrix effect. Internal standards are 

divided into three groups: 

o structural analogues labeled with stable isotopes  

o structural homologues  

o compounds from the same chemical family  

 Isotopic dilution method 
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2. AIMS of the study 

 

In recent years, increased interest in investigation of metabolism and biological 

functions of SFL has help to develop sensitive and accurate methods for their analysis. 

One of the leading analytical methods, tandem mass spectrometry (MS/MS), fulfils the 

requirements and provides high selectivity and sensitivity, even using crude lipid 

extracts and shotgun approach. Identification of various molecular species of individual 

sphingolipid classes in different biological material is an additional, but important, 

advantage.  

This study focuses on the contribution of MS/MS to sphingolipidomics and its 

applications related to the laboratory research and diagnosis of inherited disorders of 

sphingolipid degradation. Outlines of the study include: 

 

A. Selection and optimization of tandem mass spectrometry methods of 

sphingolipid analysis 

 evaluation of fragmentation patterns and methods of qualitative and quantitative 

analysis of sphingolipids  

 preparation of  labeled sphingolipids containing  atypical or mass labeled fatty 

acids 

 

B. Analysis of sphingolipids in human urine for purposes of differencial diagnosis 

in lysosomal storage disorders  

 to establish  method for quantitative analysis of urinary SFL; optimization of 

methods for evaluating data and normalization of results 

 to examine urinary sphingolipids as potential diagnostic markers in rare 

deficiences of saposin activators and other related LSD (Fabry disease and 

MLD) 

 to search for new diagnostic markers of LSD:  examination of  the profiles of 

sphingolipid isoforms in urine 
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C. Analysis of sphingolipids in human cells and tissues in normal state and in 

lysosomal storage disorders  

 analysis of sphingolipids and their deacylated derivatives in cells and tissues in 

selected LSD (Fabry disease, MLD, prosaposin and saposin B deficiencies) 

 

D. In vitro and in situ enzymology of  lysosomal storage disorders utilizing tandem 

mass spectrometry 

 In vitro enzymology of LSD 

 In situ examination of sphingolipid degradation pathways  in living cells using 

mass labeled substrates 
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3. RESULTS AND DISCUSSION (A-D) 

Laboratory methods and statistics are given in published articles that are listed in the 

Supplementary publications section of this PhD thesis. Link to relevant articles is 

always noted in references in the appropriate section of Results and discussion. 

 

A. Selection and optimization of tandem mass spectrometry 

methods of sphingolipid analysis 

The use of MS for the analysis of SFL requires reliable methodological background. 

This primarily needs selection of appropriate fragmentation reaction. The next crutial 

step is to choose suitable internal standards which often require laboratory preparation. 

For this purpose, we have developed a method of enzyme-catalyzed synthesis on the 

surface of solid nanoparticles and prepared several mass labeled sphingolipid analogs 

suitable as internal standards.  

 

A.1 Biosynthesis of sphingolipids labeled by atypical fatty acid  

In recent years, an enzymatic reaction catalyzed by sphingolipid ceramide N-deacylase 

(SCDase, EC 3.5.1.69) was found to be effective for the preparation of specific 

sphingolipid molecules (Fauler G. et al., 2005; Ito M. et al., 1995; Ito M. et al., 2000; 

Kita K. et al., 2001; Mills K. et al., 2002). 

SCDase catalyses the conversion of GSL into lyso-derivatives (N-deacylated GSL, lyso-

GSL) under acidic conditions (pH 5, detergent concentrations up to 0.8%) by splitting 

the amide bond between the sphingoid and fatty acid in the ceramide. Under modified 

conditions (pH 7, detergent concentrations up to 0.1%) the enzyme catalyses the reverse 

reaction, i.e., reacylation. The effectiveness of the condensation is influenced by the 

type of lyso-GSL and fatty acid (Ito M. et al., 1995; Ito M. et al., 2000; Kita K. et al., 

2001). 

SCDase is the most important and expensive component of the reaction mixture, so we 

looked for conditions that would enable us to reuse the enzyme, e.g., by utilizing the 

principle of enzyme immobilization on the surface of solid particles (Bilkova Z. et al., 

2002; Bilkova Z. et al., 2005; Bilkova Z. et al., 2006; Korecka L. et al., 2008). 
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A carrier with superparamagnetic properties was chosen for the simple and gentle 

separation of products from the reaction mixture. Magnetic macroporous bead (MMB) 

cellulose was selected for its hydrophilic properties and high specific surface area, 

which provides maximum binding activity. The character of the particles and the chosen 

method of immobilisation resulted in a system with many advantages (Bilkova Z. et al., 

2002; Bilkova Z. et al., 2005; Bilkova Z. et al., 2006; Korecka L. et al., 2008). 

The standard procedure used for enzyme immobilisation was based on the creation of a 

Schiff base between the primary amino group of the enzyme and the aldehyde group of 

the activated MMB cellulose (Bilkova Z. et al., 2005; Korecka L. et al., 2005). The 

advantage is that the reactive aldehyde groups are formed on the solid phase, while the 

enzyme molecule is not affected by the oxidation. The resulting Schiff base is mildly 

reduced with cyanoborohydride to form a stable bond (Hermanson G. T., 1996). The 

prepared SCDase-activated MMB cellulose had a higher rate of substrate conversion for 

both the deacylation and reacylation reactions than the soluble enzyme using standard 

conditions (Kita K. et al., 2001). The optimal substrate ratio for synthesis was found 1:1 

as shown in Tab. 3. 

 

Tab. 3 The effects of different molar ratios of substrates on the 
formation of the C18:0 Gb3Cer product. Reactions were catalyzed by 
the SCDase-activated MMB cellulose  

 
*Evaluated by TLC densitometry in arbitrary units 

 

Although soluble SCDase has been successfully applied to sphingolipid semisynthesis 

(Fauler G. et al., 2005; Kita K. et al., 2001; Mills K. et al., 2002; Mitsutake S. et al., 

1997; Mitsutake S. et al., 1998) the reaction mixture contained considerable amount of 

contaminating fatty acids and the resulting product revealed very low isoform purity. 

This complicates the preparation of specific isoforms especially when different lots of 

commercial enzyme may contain varying amounts of contaminants. This is 

unacceptable for further studies where MS is used as analytical method. 
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To compare both methods of enzymatic semisynthesis, C17:0 GlcCer was prepared in 

bulk solution containing a soluble form of SCDase (Fig 11).. Mass spectra revealed a 

considerable amount of contaminants in the final product; the contaminants were 

identified as GlcCer isoforms with C16:0 and C18:0 fatty acids (see Fig. 11(A)). The 

total yield of GlcCer synthesis was 99% (data not shown), but only 36% of the lyso-

GlcCer was converted into the requested C17:0 isoform. The remaining 63% of the 

product consisted of contaminating isoforms.  

 

 

Fig. 11 ESI-MS/MS analysis of C18:0 and C16:0 
isoform contaminants and comparison of the soluble 
and immobilized SCDase reaction products. 
Semisynthesis of C17:0 GlcCer using (A) soluble 
SCDase and (B) SCDase-activated MMB cellulose. 

  

Using immobilized enzyme, 80% of lyso-SGalCer, 90% of lyso-GlcCer were acylated 

and converted into C17:0, SGalCer and GlcCer, respectively. Only trace amounts of 

contaminating isoforms (about 3% in both lipid preparations shown on Fig 11B and Fig 
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12) were detected. These fatty acid labeled SFL were then used as internal standards for 

MS quantitative analysis. Similarly, The C17:0 GM1 ganglioside was prepared from 

lyso-GM1 with 90% rate of conversion and 97%  isoform purity.  

 

 

Fig. 12 ESI-MS/MS analysis of C17:0 sulfatide (A) and C17:0 glucosylceramide (B) prepared 
with the SCDase-activated MMB cellulose.  

 

The great advantage of the SCDase-activated MMB cellulose was that did not show any 

decrease in activity after 15 reuses and was still active after 1.5 year of storage in the 

buffer. 

In comparison with other methods, immobilized SCDase showed further advantages:  

 1. using the soluble enzyme, (Fauler G. et al., 2005) only 25% of lyso-Gb3Cer was 

converted into the pure Gb3Cer isoform and consumption of both, the enzyme and the 

product precursor was high 

2. chemical synthesis utilising lyso-sphingolipids (Mills K. et al., 2005) and highly 

reactive acid chlorides can lead to non specific products due to side reaction with the 

hydroxyl groups of the oligosaccharide  

3. other procedures of organic synthesis (Zhou X. et al., 2001) reactions have proved to 

be time consuming and giving small yields 

 

Reference: 

Supplementary publication A, Supplementary publication D 
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A.2 Set up of tandem mass spectrometry analysis of sphingolipids  

The methodological scheme for MS/MS analysis of different classes of SFL was 

developed tested and optimized to get the most specific and sensitive analytical system.  

The ionization of SFL by ESI can be done by different ionization strategies. One of 

them utitilizes neutral amonium salts which are added to the solution to facilitate the 

ionization of analytes.  We have chosen ammonium formiate in the 5mM concentration 

which is a more efficient additive for generation of  [M+H]+ sphingolipid ions than 

ammonium acetate (Mano N. et al., 1997). Acidic SFL, e.g. sulfatides or gangliosides, 

have acidic groups that lose H+ . We used pure methanol as convenient solvent to 

generate [M-H]- ions in negative ion mode by ionization through charge separation. 

  

 

Fig. 13 Principle of neutral loss measurements of sphingolipids with deuterated 
dihydroceramide and sphinganine (sphing-4-anine) in the ceramide region of the molecule.  

A) Complete loss of Gb3Cer oligosaccharide, B) Shortening of Gb3Cer oligosaccharide C) 
Neutral loss of saccharide part in lysoglycosphingolipids. CID – collision induced dissociation; 
Gb3Cer – globotriaosylceramide. 

 

For further measurements we selected the most common fragment with 264 m/z which 

is derived from the ceramide with C18:1 sphingosine and the fragment with 282 m/z for 

deacylated derivatives (Gu M. et al., 1997; Lieser B. et al., 2003; Olling A. et al., 1998; 

Scherer M. et al., 2010). Other fragments were also occasionally used esp. for SFL with 

ionizable polar group like sphingomyelin, sulfatides etc. (Domon B. and Costello C. E., 
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; Hsu F. F. et al., 1998; Hsu F. F. and Turk J., 2000; Ii T. et al., 1995; Kerwin J. L. 

et al., 1994; Murphy R. C. et al., 2001; Whitfield P. D. et al., 2001). 

We found that for GSL containing dihydroceramide or sphinganine, generation of 

specific neutral fragment during CID is 5 times more effective than generation of   264 

or 282 m/z fragments. (Fig. 13). 

 

Reference: 

Supplementary publication E 

 

A.3 Quantification 

Individual SFL are not represented by one specific molecule only, but they form a 

heterogeneous group of molecular types (isoforms) with various fatty acids and 

sphingoids with different molecular masses. Their profiles are usually cell- and tissue-

specific (Fig. 14). This points to the importance of examination of isoform profiles  

before conducting a quantitative analysis. 

   

 

Fig. 14 Isoform profiles measured using precursor ion scans for different 
lipids and biological materials. Isoforms with different fatty acid chain 
lengths are identified. A) ceramides in skin fibroblasts, B) Gb3Cer in the 
kidney. 
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Quantification was done by single point calibration with an external lipid standard 

corrected by the signal ratio toward IST. The concentrations of lipid calibrators in 

external and internal standards were within the range of previously determined linear 

response. The concentrations of IST in the external calibration point and in the analyzed 

samples were the same (de Hoffman E. and Stroobant V., 2002).  

Mono- and di- hexosyl SFL were quantified in one fraction because they are isobaric 

(have the same mass and product ions) and therefore indistinguishable by MS. 

 

Reference: 

Supplementary publication B, Supplementary publication E 

 

B. Analysis of sphingolipids in human urine and its use for the 

differential diagnosis of lysosomal storage disorders  

Laboratory diagnosis of LSD should be always focused on utilization of non invasive 

biological material. Therefore, we were interested in methods for analysis of SFL in the 

urine with a particular focus on the following: 

 appropriate method of quantification of SFL in urine 

 application for diagnosis of  LSD with typically high excretion of specific SFL 

e.g. in Fabry disease and MLD 

 application for  LSD caused by the defects of protein activators (saposins) where 

routine laboratory enzymology  fails  

 examination of  isoform profiles of specific urinary  SFL as potential LSD 

biomarkers  

 

B.1 Quantity of urinary sphingolipids  

Urine is a non-invasive diagnostic material that is of practical importance in diagnosing 

lysosomal disorders where the storage of non-degraded substrate induces  pathological 

processes in the kidney cells. These disorders are characterized by the massive excretion 

of specific SFL, e.g., Gb3Cer in Fabry disease (α-galactosidase A deficiency due to 
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mutations of the GLA gene) (Desnick R. J. et al., 2001); sulfatides in metachromatic 

leukodystrophy (arylsulfatase A deficiency due to mutations of the ARSA gene) (von 

Figura K. et al., 2001) and both lipids in prosaposin and saposin B defects (Sandhoff K. 

et al., 2001). 

 

B.1.1 Pitfalls of the quantification of sphingolipids in urine  

The normalization parameter commonly used for urinary metabolites is creatinine 

which, however, does not reflect the cellular origin of SFL. Therefore, concentration in 

urinary samples with creatinine level lower than 1 mM, are artificially inflated (Fig. 

15A), which may lead to an incorrect diagnosis in patients (e.g., Fabry disease, 

prosaposin and saposin B deficiencies, and MLD). Regarding Fabry disease, this issue 

has already been pointed out (Forni S. et al., 2009). 

Urinary volume was found more convenient normalization parameter (Fig. 15B). 

Another possibility is the concentration ratio of the analyzed compound to 

sphingomyelin representing a major sphingolipid of the cell membrane (Berna L. et al., 

1999). 

  

Fig. 15 Comparison of two methods of normalization of urinary Gb3Cer in four groups of 
samples: in controls with low creatinine (creatinine ≤1 mM), in infantile and adult controls with 
creatinine within a normal range (creatinine >1 mM-15 mM) and in Fabry patients. 

Graph A clearly shows that controls with low creatinine values, are indistinguishable from 
patients with Fabry disease. This fact is usually not taken into account in the literature although 
low levels of creatinine are quite often found in newborns and young children. In contrast, urine 
volume as a normalization parameter more reliably distinguishes between controls and Fabry 
patients (graph  B)  
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Reference: 

Supplementary publication B, Supplementary publication E 

 

B.1.2 Urinary sphingolipids in prosaposin and saposin-B deficient patients and in 

other sphingolipidoses 

Results in Tab. 4 summarizes the quantity of urinary sphingolipids  in patients 1            

(pSap-d) and 2 (SapB-d) compared to findings in Fabry disease, MLD, and normal 

controls. The data were normalized relative to the concentration of sphingomyelin as a 

reference cellular sphingolipid. 

 

Tab. 4 Urinary Sphingolipids in Patient 1 (pSap-d), Patient 2 (SapB-d) compared  with MLD 

and Fabry patients and with controls (ESI-MS/MS determination) 

 

 

The percent distribution of the main urinary SFL is shown on Fig.16. This format, 

which allowed for a simple normalization of urinary lipid values in the absence of 

normalizing parameters, confirmed most of the findings summarized in Tab. 4. In 

normal controls sphingomyelin accounted for more than 60% of SFL, but in the 

patients, the proportion of sphingomyelin was considerably less due to the 

preponderance of other SFL. The combined percentages for sulfatide, Gb3Cer, 

dihexosylceramides, glucosylceramide, and ceramide was higher in the diseases studied 

than for controls, with pSap-d having the highest percentage, consistent with the unique 

urinary multiple sphingolipid elevations in this condition. 
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Fig. 16 Percent distribution of main urinary sphingolipids. Order of column 
sections from bottom to top: sulfatide (right edge dark), globotriaosylceramide 
(sand-like), dihexosylceramides (gray), glucosylceramide (light), ceramide 
(black), sphingomyelin (light gray). Columns: pSap-d, patient 1; SapB-d, 
patient 2; MLD, metachromatic leukodystrophy group (mean, Tab. 4); Fabry, 
Fabry disease group (mean, Tab. 4); inf. cont., infantile/late-infantile controls 
(mean, Tab. 4); adult cont., adult controls (mean, Tab. 4). 

 

We have demonstrated for the first time the use of urinary sphingolipid analysis when 

diagnosing the rare pSap-d condition. We have also shown efficiency of this procedure 

when screening for SapB-d and other sphingolipidoses (Tab. 4). In particular, urinary 

lipid analysis by ESI-MS/MS done for the pSap-d neonate verified the complex urinary 

lipid changes in this condition and allowed quantification of individual sphingolipid 

classes. High increase in the concentration of Gb3Cer (within the range seen in adult 

Fabry disease) along with the  increase in sulfatide, dihexosylceramides (LacCer and 

digalactosylceramide), GlcCer, and in ceramide has been demonstrated. The urinary 

concentration of LacCer/diGalCer fraction was also elevated in the SapB-d patient (Tab 

4) due to digactosylceramide, another substrate of α-galactosidase A (EC 3.2.1.22) in 

synergic function with SapB (Bradova V. et al., 1993). Increase in multiple SFL, CDH, 

Gb3Cer and sulfatide  in SapB-d  has been reported previously  using chromatographic 

methods (Li S. C. et al., 1985).   

 

Reference: 

Supplementary publication B, Supplementary publication E 

 

 - 55 -  



B.2 Search for novel urinary sphingolipid biomarkers  

 

B.2.1 Sphingolipid isoform profiles 

Tandem mass spectrometry provides specific data that allow to examine patterns of 

molecular species and to monitor changes in their relative abundance related to the 

nature of the disease. It may strongly influence the clinical view in some diseases. 

Understanding these variations in relation to the disease may help to identify new 

categories of biomarkers (Paschke E. et al., 2011; Postle A. D., 2008). 

For example, an analysis of urinary lipid extracts in the case of MLD showed significant 

differences in sulfatide isoform profiles (Fig 17, 18B); such differences were also 

evident in cases of pSap-d (Fig 17) and SapB-d (data not shown) We also found 

modified patterns of globotriaosylceramide species in the urine of Fabry patients (Fig. 

18A). 

 

Fig. 17 Comparison of urinary isoform profiles from MLD and prosaposin deficiency (Psap-d) 
patients and controls. Arrows indicate components undergoing major changes. 
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Fig. 18 Elevated excretion of major sphingolipid isoforms (A) C24:0 Gb3Cer 
in Fabry disease; (B) C24:0-OH sulfatide in MLD 

 

Reference: 

Supplementary publication C, Supplementary publication E, Supplementary publication 

F 

 

B.2.2 Hypotesis explaining pathological changes in isoform patterns of urinary 

sulaftides  

It is presumed that the exfoliated renal tubule epithelium cells affected by lysosomal 

storage  are the primary source of excreted SFL in some LSD (Chatterjee S. et al., 1984; 

Iwamori M. and Moser H. W., 1975; von Figura K. et al., 2001; Warnock D. G. et al., 

2010). In the absence of renal damage, the renal epithelium cells appear in the urinary 

sediment in only very small quantities (Chatterjee S. et al., 1986; Nguyen G. K. and 

Smith R., 2004).  

We compared the sulfatide profiles in urine and in extracts of kidney homogenates from 

normal individuals and from the prosaposin deficient patient.   

The pattern of sulfatide isoforms was similar in the healthy kidney and in the kidney 

affected by lysosomal storage (Fig. 19 A,B; purple highlighted bars).  

In contrast, an altered urinary sulfatide profile (Fig. 19, blue bars) exactly corresponded 

to the sulfatide kidney profile ("indirect kidney biopsy"; (Desnick R. J. et al., 1970)) of 
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the prosaposin deficient patient. This can be taken as an  indirect evidence for changes 

in the composition of cellular types in the urinary sediment - desquamated urothelial 

cells in healthy controls (Chatterjee S. et al., 1986)  and lipid-laden renal tubule cells 

(Warnock D. G. et al., 2010) in patients with LSD . 

 

 

Fig. 19 Comparison of sulfatide isoform urinary and kidney profiles in controls (panel A) and 
the prosaposin deficiency (Psap-d) patient (panel B). The similarity of urinary and kidney 
profiles in Psap-d is obvious. Arrows indicate major changes in the isoform profiles. 

 

The spectrum of the sulfatide isoforms in the kidney corresponds largely with the 

expression of CerS2 which is primarily expressed in the kidney cells and is specific for 

acylation of sphingoid base with C22 through C24 fatty acids (Laviad E. L. et al., 2008; 

Levy M. and Futerman A. H., 2010). These are the major molecular forms of kidney 

sulfatides and are elevated in urine of patients with MLD and prosaposin deficiency. 

 

Reference: 

Supplementary publication C 

 

B.2.3 Tandem mass spectrometry profiling of urinary sulfatides bound to DEAE 

membrane and its diagnostic significance 

Transportation of liquid biological material such as blood and urine is often quite 

complicated. Large sets of liquid samples, organization of a rapid transport from distant 

places and maintenance of required temperature pose a considerable burden and may 

lead to inaccuracies in the measured parameters. This can be overcome by preparation 
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of dry samples. As for the blood, the dry blood spots (DBS) have proved very useful for 

many different diagnostic applications including determination of activities of several 

lysosomal hydrolases (Turecek F. et al., 2007).  

For diagnosis of sulfatidoses, we have introduced DEAE membrane (as a carrier of 

sulfatides) for preparation of dry urine samples, acting simultaneously as a tool of 

partial purification of sulfatides and enhancing sensitivity of the analysis. These are the 

key characteristics of the procedure which is being considered as a screening method for 

MLD because enzyme-based DBS analysis is still missing.  

In an effort to simplify the analytical procedure and lower the cost, we sought to find 

the least variable component of the sulfatide spectrum for normalization of the signal of 

major elevated isoforms. Sulfatide C18:0 isoform was the most stable parameter percent 

wise and was used as an indigenous reference for calculating the isoform profile number 

(IPN), the disease marker. IPN represents the ratio of the summed SRM intensities of 

five elevated major urinary sulfatide isoforms (C22:0, C:22:0-OH, C24:0, C24:1-OH, 

and C24:0-OH) to C18:0 isoform. Selection of five MLD-related isoforms minimizes 

individual differences in collected samples in comparison with the previously reported 

analysis of Gb3Cer profile in urine of Fabry patients based on only one major elevated 

C24:0 isoform (Paschke E. et al., 2011). The use of the C18:0 reference isoform also 

helps to resolve the long-standing problem of suitable evaluation of urinary lipids which 

resulted from the use of inappropriate normalizing parameters (i.e. creatinine ) (Forni S. 

et al., 2009).  

We have shown that simple profiling of specifically increased sulfatide isoforms by 

calculating the IPN was able to reliably identify all patients with MLD and  prosaposin 

deficiency, indicating no false negatives, and distinguished all controls, indicating no 

false positives (Fig. 20).  
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Fig. 20 Ratio of composed SRM intensities of major urinary isoforms to the SRM intensity of 
the intrinsic C18:0 reference (IPN) for MLD and prosaposin deficiency (Psap-d) patients, a 
heterozygote, and controls. 

 

The stability of sulfatides captured on the DEAE membrane under different storage 

conditions was found sufficient, as the IPN value provided clear differentiation between 

the control group and MLD patients at any time point up to 100 days of storage (Tab. 

5). 

Samples are usually delivered to the analytical laboratory within one week after 

collection but even longer storage period had no negative impact on the outcome of the 

laboratory analysis and diagnosis. 
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Tab. 5 - Stability of sulfatides bound to DEAE membrane under different storage conditions 

evaluated by IPN  

  Day        
   1 3 6 100 Avg SD CV% 
C1 LT 7.69 6.73 8.06 6.07 7.14 0.91 12.71
 FR 7.30 8.28 8.03 6.40 7.50 0.84 11.24
C2 LT 9.51 10.05 8.44 7.78 8.95 1.03 11.46
 FR 8.50 8.34 9.55 8.80 8.80 0.54 6.12
C3 LT 8.62 9.86 10.26 6.79 8.88 1.56 17.57
 FR 11.04 8.62 9.98 8.55 9.55 1.19 12.50
MLD1 LT 48.86 51.69 40.40 43.16 46.03 5.16 11.22
 FR 36.42 37.19 48.27 35.53 39.35 5.98 15.20
MLD2 LT 32.33 20.63 25.30 20.50 24.69 5.56 22.53
 FR 31.22 28.20 30.62 34.63 31.17 2.65 8.51
MLD3 LT 27.07 29.83 20.99 27.70 26.40 3.79 14.37
 FR 21.76 24.20 24.32 24.99 23.82 1.42 5.95
IPN values are average of two measurements 

C - Control; MLD - metachromatic leukodystrophy; LT - laboratory temperature; FR- storage 
in a freezer at -20 oC; values of IPN are in arbitrary units; 

 

Reference: 

Supplementary publication C 

 

C. Analysis of sphingolipids in human cells and tissues in 

normal state and in lysosomal storage disorders  

Sphingolipid analysis in tissues and cells may have the specific diagnostic application. 

Autopsy tissue analysis of SFL has been proved very useful for determining the 

postmortem diagnosis in many cases. Also sphingolipid composition of cultured skin 

fibroblasts can provide valid information on defects of degradative pathways in 

sphingolipidoses.  

Some examples of analyses  of archived  human tissues and cells follow: 

 SFL in skin fibroblasts 

 Kidney SFL 

 Myocardium Gb3Cer and its relation to lyso-Gb3Cer 

 SFL in the placenta 
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C.1 Sphingolipids in skin fibroblasts  

Cultured skin fibroblasts are not typical “storage cells,” but the concentration of 

nondegraded SFL increases significantly in some of the LSD. Quantitification of SFL in 

the harvested pellet of  skin fibroblasts  thus can help in laboratory diagnosis of rare 

diseases e.g. defects of saposin activators (Table 6) 

 

Tab. 6 Increased concentration of sphingolipids in cultured skin fibroblasts in patients 
with sphingolipid activator deficiencies (saposin B and prosaposin deficiencies) and in 
patients with defective enzyme proteins (Fabry and Niemann-Pick A disease). 

 

Values are in ng/µg of protein  

Cer - ceramide; CDH – ceramidedihexoside, CMH – ceramidemonohexoside; SM – 
sphingomyelin; Gb3Cer - globotriaosylceramide 

 

Reference: 

Supplementary publication E 

 

C.2 Sphingolipids of human kidney and myocardium   

In some cases, postmortem analysis of autoptic tissues revealed a metabolic defect 

which was essential for genetic councelling in families.  Here, we are showing two 

examples leading to a final diagnosis which was confirmed by DNA analysis later on.  

The first example shows the accumulation of Gb3Cer in the kidneys of patients with 

Fabry disease and prosaposin deficiency (Tab. 7). These findings are in accordance with 

other authors (Aerts J. M. et al., 2008; Bradova V. et al., 1993; Desnick R. J. et al., 

2001).  
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Tab. 7 Concentration of sphingolipids in the kidneys of Fabry male patient and in a case of 
prosaposin deficiency  

 

Values are in ng/µg of protein, Control is represented by the mean value 

Cer - ceramide; CDH – ceramidedihexoside, CMH – ceramidemonohexoside, SM – 
sphingomyelin; Gb3Cer - globotriaosylceramide 

 

Second example demonstrates the storage of Gb3Cer and lyso-Gb3Cer 

(globotriaosylsphingosine) in the myocardium of Fabry patient (Fig. 21). The role of 

these derivates esp. that of lyso-Gb3Cer in the pathological process is still underrated. 

An elevated concentration of lyso-Gb3 encountered in plasma of symptomatic Fabry 

patients was found to inhibit residual α-galactosidase A activity and thus increase 

Gb3Cer concentration. Moreover, induction of smooth muscle cell proliferation in cell 

culture by low concentrations of lyso-Gb3 was reported (Aerts J. M. et al., 2008; 

Dekker N. et al., 2011). Another known effect is cell toxicity of lyso-SFL. It is assumed 

that the toxicity of lyso-GalCer has a major pathological effect in the Krabe disease 

(Suzuki K., 1998). Toxic effect of lyso-GlcCer in the cell culture of Gaucher 

neuroblastoma cells was also described (Schueler U. H. et al., 2003). 

  

 

B A 

Fig. 21 Gb3Cer and lyso-Gb3Cer (globotriaosylsphingosine) in the myocardium of Fabry 
patient measured by FIA-ESI-MS/MS 

A) Gb3Cer and B) lyso-Gb3Cer detected in the autoptic myocardium of Fabry patient compared 
to age-matched control.  
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Interestingly, it is not yet clear how deacylated derivatives are formed. Both hypotetical 

pathways, biosynthesis (Schueler U. H. et al., 2003) and deacylation (Yamaguchi Y. et 

al., 1994) are considered possible but not completely confirmed (Cox T. M. and 

Cachon-Gonzalez M. B., 2012). 

 

Reference: 

Supplementary publication E 

 

C.3 Sphingolipids in human placenta  

The study of the glycosphingolipid (GSL) profile of placental endothelial cells was 

induced by our engagement in studies of lysosomal storage of Gb3Cer in Fabry disease. 

Immunohistochemical detection of Gb3Cer in a sample of the placenta of Fabry 

heterozygote surprisingly showed strong staining of the villous capillaries but free of 

lysosomal storage. The same picture was found in placentas of healthy women. All 

placentas showed uniform distinct staining of vilous capillary endothelial cells for 

Gb3Cer, GM1 and GM3 gangliosides, cholesterol and caveolin 1 suggesting the 

presence  of caveola-associated raft microdomains..  

Comprehensive biochemical study of the GSL profile in normal placentas was done by 

tandem mass spectrometry and by TLC using specific detections to confirm the 

presence of immunohistochemically detected lipids. Gb3Cer and other frequently 

occurring neutral GSLs (ceramide mono- and dihexosides, globoside and GM3 

ganglioside) were MS/MS proved (Tab. 8)  which was consistent with previously 

published results (Jordan J. A. and DeLoia J. A., 1999; Mikami M. et al., 1993; 

Strasberg P. et al., 1989; Taki T. et al., 1988).  

Gb3Cer was identified as the most abundant component of neutral GSL while GM3 was 

the major component of acidic sphingolipids. GM1 ganglioside formed one fraction 

with its positional isomer sialylparagloboside (IV3NeuAc-nLc4Cer (SPG) which is not 

discriminated by MS/MS because of isobaric character of both compounds.  

The presence of GM1 ganglioside was confirmed by further analysis on the principle of 

its specific binding with cholera toxin B-subunit. This reaction was used for 

visualization after chromatografic separation of sialylated GSL on TLC plate  and also 

for specific staining of tissue sections. Monosialylated tetrahexosylceramide fraction 
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contained SPG as a major component and traces of GM1 ganglioside (≤0.12% of the 

total fraction). 

Gangliosides bearing ganglio-series backbone have not yet been demonstrated in the 

placenta. This is the first time that the detectable amount of GM1, a characteristic 

component of cellular membranes and their lipid domains (rafts) has been detected.   

Positivity for GM1, GM3 and cholesterol in combination with caveolin 1 (see also 

(Lyden T. W. et al., 2002)) suggests the presence of caveola-associated microdomains 

(Pang H. et al., 2004; Parton R. G., 1994) at the apical pole of endothelial cells in the 

placental capillary network, unique with regard to their high levels of Gb3Cer.  

The physiological significance of this finding is open for further studies, which may 

discover whether it is related to the clathrin-independent endocytosis (Mayor S. and 

Pagano R. E., 2007; Nichols B., 2003), to specific transport processes known to exist at 

this level (Solder E. et al., 2009; Takizawa T. et al., 2005) or to the regulation of the 

humoral control of the placental microcirculation (Tedde G. et al., 1990). 

 

Tab. 8 GSL in human placenta (in pmol/nmol sphingomyelin) 

 

C1-5, different normal human placentas; N.Q., not quantified. The 
MS/MS does not differentiate between GSL sugar moieties having 
the same mass. Therefore, glucosylceramide and galactosylceramide, 
lactosylceramide and digalactosylceramide, and SPG and GM1 are 
quantified as monohexosylceramides (CMH), dihexosylceramides 
(CDH), and SPG + GM1 fraction, respectively. Samples were 
measured in duplicates and values standardized to sphingomyelin, 
the major ubiquitous sphingolipid of the cell 
 

Reference: 

Supplementary publication D 
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D. In vitro and in situ enzymology of lysosomal storage 

disorders utilizing tandem mass spectrometry 

Tandem mass spectrometry has wide applications in enzymology esp. in DBS screening 

for deficient activities of sphingolipid hydrolases (Turecek F. et al., 2007). We modified 

the DBS method for detemination of enzyme activities in cell homogenates i.e. skin 

fibroblasts. This would give us the opportunity to compare results obtained from in vitro 

measurements in cell homogenates and from the dynamic experiments on living cells in 

situ (loading tests). These tests are either performed with radiolabeled substrates or with 

mass labeled lipid compounds, the latter being then evaluated by MS/MS. Examples are 

following:  

 in vitro determination of β-glucocerebrosidase activity using tandem mass 

spectrometry 

 in situ dynamic metabolic experiments on acid β-galactosidase deficient cells 

(GM1 gangliosidosis): comparison of procedures of mass spectrometry and 

radiochemistry 

 

D.1 Tandem mass spectrometry applications for in vitro enzymology of 

lysosomal storage disorders diagnosis  

Enzymology, in combination with MS/MS, is useful for LSD screening and for 

evaluations of enzyme activities in biological material, in general (Kasper D. C. et al., 

2010; Li Y. et al., 2004; Spacil Z. et al., 2011; Turecek F. et al., 2007). One possible 

application is measurement of residual β-galactocerebrosidase activity in cultured skin 

fibroblasts from patients with Gaucher disease. Assay is based on glucosylceramide 

with C12:0 fatty acid as a natural enzyme substrate.  

We modified Turecek´s method (Turecek F. et al., 2007)  by addition of inactivated 

bovine serum albumin (BSA) to the reaction mixture to stabilize the enzyme and used 

this procedure to determine  residual enzyme activities in Gaucher patients including the 

most severe form  "collodion baby  phenotype" (Fig 22). Measurable residual enzyme 

activities were found in all Gaucher types (I and II) in contrast to zero activity in 

fibroblasts from Gaucher Type II-collodion baby phenotype. This is in concordance 
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with published observations when only arteficial substrate was used (Finn L. S. et al., 

2000).  

 

Fig. 22 In vitro activity of lysosomal acid β-glucocerebrosidase in Gaucher and control 
fibroblasts measured with natural substrate C12:0 glucosylceramide. The reaction product was 
analyzed by FIA-ESI-MS/MS 

 

Reference: 

Supplementary publication E 

 

D.2 In situ enzymatic analysis for monitoring the sphingolipid 

degradation pathways by tandem mass spectrometry  

Loading experiments in cell cultures (also called feeding experiments) are frequently 

used to track the metabolic fate of labeled exogenous compounds in living model 

systems (Asfaw B. et al., 1998; Asfaw B. et al., 2002; Leinekugel P. et al., 1992; Martin 

O. C. and Pagano R. E., 1994; Porter M. T. et al., 1971; Schwarzmann G. et al., 1983; 

Sonderfeld S. et al., 1985). The main advantage of such experiments is that they assess 

the entire aparatus of living cells, including any nonenzymatic cofactors e.g. like 
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saposins. It can give important diagnostic information in those LSD which are not 

detectable by routine enzymology. 

We compared the methods utilizing radioisotope and mass labeled substrates in loading 

experiments on fibroblasts with genetic variants of the ß-galactosidase deficiency. Both 

methods using either [3H]GM1 ganglioside or C18:0-D3 analogue, clearly revealed 

defect in β-galactosidase function (Fig. 23). 

 

        

A 
 
 
 
 
 
 
 
 
B 
 
 
 

Fig. 23 In situ degradation of GM1 ganglioside by skin fibroblasts from control 
and β-galactosidase deficient patients (different variants of GM1 gangliosidosis). 

(A) Degradation pattern of [3H]GM1 ganglioside in control and β-galactosidase-
deficient cells evaluated by HPTLC and radioscanner. Degradation products are 
represented by peaks: 0(ceramide), 1(monohexosylceramide), 
2(dihexosylceramide), 3 (GM3 ganglioside) 4 (GM2 ganglioside) 

(B) MS/MS quantification of GlcCer product formed from stable isotope-labeled 
GM1ganglioside precursor (C18:0-D3);  

Clinical GM1 gangliosidosis phenotypes: a-control, b-adult GM1 gangliosidosis, 
c-Morquio B, d-adult GM1 gangliosidosis/Morquio B, e-juvenile GM1 
gangliosidosis, f-infantile GM1 gangliosidosis, and g-infantile GM1 
gangliosidosis 

 

 - 68 -  



Tandem mass spectrometry facilitates accurate quantification of lipids and the results 

correlate better with the clinical and biochemical phenotypes of individual cases. 

Moreover, the procedure used to prepare cellular lipids for MS/MS analysis is simple 

and relatively fast. Unlike radioisotope assays (Asfaw B. et al., 1998), it does not 

require separation during the pre-analytical phase.  Finally, mass labeled substrates can 

replace radioactive analogues in many cases and thus contribute to the safety and 

simplification of analytical work. 

 On the other hand, the experiments with radiolabeled glycolipid substrates reveal the 

entire metabolic pattern of one specific compound (Fig 23 A) making thus possible to 

identify relevant metabolites for targeted MS/MS analysis (example Fig.23B)  

 

Reference: 

Supplementary publication E 

 

 - 69 -  



4. CONCLUSIONS (A-D) 

 

This study presents wide range of MS/MS applications in sphingolipid biochemistry and 

pathobiochemistry focused on LSD. Outputs of the main studied areas are following: 

 

A. Selection and optimization of tandem mass spectrometry 

methods of sphingolipid analysis 

 

A.1 Optimization of procedures of sphingolipids analysis by mass 

spectrometry  

Ionization and fragmentation reactions for MS/MS analysis of SFL were selected and 

tested and procedures were optimized. For  GSL containing dihydroceramide or 

sphinganine, new method of MS/MS analysis has been developed based on the 

important finding that they preferentially lose neutral (oligo)sacharide fragment during 

CID which is 5 times more effective than production of common fragments with 264 or 

282 m/z. 

 

A.2 Biosynthesis of sphingolipid isoforms labeled by specific fatty acids 

Enzymatic semisynthesis of specific molecular types of SFL has been developed. 

Sphingolipid ceramide N-deacylase covalently immobilized on the porous magnetic 

cellulose catalyzed reverse conversion of corresponding lysoderivatives into fully 

acylated sphingolipid molecules containing C17:0 fatty acid. High yield of final 

products was achieved (80% for sulfatide and over 90% for   glucosylceramide and 

GM1 ganglioside). The greatest  advantage of the procedure was purity and particularly 

high isoform purity (97%) of products compared to reactions utilizing soluble 

nonimmobilized enzyme. Prepared labeled lipids were subsequently used as internal 

standards in the MS/MS quantitative analysis. In summary, the immobilized SCDase on 

MMB cellulose has the following advantages: reusability, long-term stability, high rate 

of conversion, low production of by-products (isoform purity) and effectiveness for 
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preparation of low amounts of sphingolipids. This system has an universal application 

for the preparation of SFL specifically labeled in the fatty acid moiety and is useful for 

studies in various fields of sphingolipid biochemistry. 

 

B. Analysis of sphingolipids in human urine and its use for the 

differencial diagnosis of lysosomal storage disorders 

 

B.1 Pitfalls of urinary sphingolipids quantification   

Evaluation of commonly used reference parameters for the expression of lipid 

concentrations excluded urinary creatinine as a reference factor for biased results at its 

low values. Instead of that, we recommended urinary volume or sphingomyelin as more 

realiable normalizers. 

 

B.2 Quantity of sphingolipids in urine  

Quantitative analysis of excreted urinary SFL was demonstrated as important first step 

in laboratory diagnosis of suspected Sap-B or prosaposin deficiencies. 

Massive increase in urinary sulfatides is also typical for MLD while increase in Gb3Cer 

for Fabry disease. Their diagnoses are then confirmed by enzyme assays and 

genotyping. However, in cases with defective prosaposin protein routine enzymology 

fails and the MS/MS proof of multiple SFL excreted in patient´s urine is the basis for 

the differential laboratory diagnosis and final confirmation by DNA analysis.  

 

B.3 Changes in a pattern of sphingolipid urinary isoforms: new 

markers for diagnosis of MLD, Fabry disease and prosaposin 

deficiency  

Tandem mass spectrometry examination of sphingolipid molecular species in urine 

revealed a shift in the isoform pattern to species with longer chain fatty acids (C22:0, 

C24:0 and C24:1) that can potentially be used for diagnosis of prosaposin and Sap-B 

deficiences, MLD and Fabry disease. For screening of MLD and prosaposin deficiency, 
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a new method utilizing selective capture of sulfatides to DEAE membrane has been 

developed and successfully tested on 50 controls and 21 patients. Long term stability of 

sulfatides bound to the membrane allows transportation of dry samples and solves the 

problem of complicated transportation of liquid samples of urine.   

 

C. Analysis of sphingolipids in human tissues and cells - a 

contribution to general knowledge of pathology of  lysosomal 

storage disorders (C.1-C.3) 

Tandem mass spectrometry of SFL in cells and tissue biopsy or autopsy samples  was 

found effective for diagnosis of unsolved cases of LSD.  For example, analysis of SFL 

in the autoptic kidney samples, skin fibroblasts and some other tissues confirmed the 

diagnosis of Fabry disease and prosaposin deficiency,  later verified by DNA analysis. 

Analysis of Fabry myocardium showed  - in addition to the massive accumulation of 

Gb3Cer, small increase in toxic lyso-derivative which may contribute to the 

manifestations of disease. These derivatives are supposed to have important regulatory 

and signaling functions but their role in the lysosomal pathology has not yet been fully 

elucidated  

In the placenta, GM1 ganglioside was for the first time reported in this tissue.  MS 

identified Gb3Cer and GM3 ganglioside as most abundant SFL. The presence of 

Gb3Cer, GM1 and GM3 gangliosides and cholesterol along with caveolin 1 in the 

placental blood villous capillaries suggests the existence of  caveola-associated 

microdomains (rafts)  at the apical pole of endothelial cells in the placental capillary 

network. This represents a unique finding pointing to specific features of endothelial 

apical pole of placental vilous capillaries. The physiological significance of this finding 

is open for further investigation. 
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D. In vitro and in situ enzymology of lysosomal storage 

disorders by tandem mass spectrometry 

  

D.1 Determination of lysosomal enzyme activities in cell homogenates  

Determination of lysosomal β-glucocerebrosidase activity using natural substrate 

(glucosylceramide with C12:0 fatty acid) confirmed zero activity in fibroblast 

homogenates from patient with the most serious form of Gaucher type II disease 

("collodion baby" phenotype). 

 

D.2 Tandem mass spectrometry monitoring of degradation pathways 

in living cells  

Results from experiments utilizing mass- and radiolabeled substrates for loadings in 

fibroblast cultures from patients with GM1 gangliosidosis were compared. Both 

approaches, either using [3H]GM1 ganglioside (radiolabeled) or its C18:0-D3 analogue 

(mass labeled), clearly showed hindered degradation of critical GSL.  

The use of MS/MS in dynamic metabolic experiments with  mass labeled lipid 

substrates in living cells increases quantification accuracy and throughput why 

eliminating working risk and restrictions of radioisotope methods. 

 

In conclusion, MS/MS is a robust and sensitive analytical procedure efficient in 

determining the composition of endogenous sphingolipid classes in various biological 

materials and is effective in monitoring their metabolic fate. Its ability to establish 

metabolomic profiles of SFL under normal and pathological conditions in cells and 

tissues can contribute to a better understanding of the biological significance of 

sphingolipid molecules. 
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nahlédnutím do zpřístupněné závěrečné práce nemohou být použity k výdělečným 
účelům, ani nemohou být vydávány za studijní, vědeckou nebo jinou  tvůrčí činnost jiné 
osoby než autora. 
 
Byl/a jsem seznámen/a se skutečností, že si mohu pořizovat výpisy, opisy nebo kopie 
závěrečné práce, jsem však povinen/a s nimi nakládat jako s autorským dílem a 
zachovávat pravidla uvedená v předchozím odstavci. 
 

Příjmení, jméno 
(hůlkovým 
písmem) 

Číslo dokladu 
totožnosti 
vypůjčitele 
(např. OP, 

cestovní pas) 

Signatura 
závěrečné 

práce 

Datum Podpis 
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