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Název práce: Viskoelastické vlastnosti ferrokapaliny – Studium normálových napět́ı

Autor : Hana Šustková
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Abstrakt:
Od roku 1960 je známa ferrokapalina, specificky reaguj́ıćı na magnetické pole. Ferroka-
palina je koloidńı kapalina tvořená ferro- či ferrimagnetickými nanočásticemi rozptýlenými
v základové kapalině. Základová kapalina bývá nejčastěji na bázi vody, oleje nebo organ-
ických rozpouštědel. Každá nanočástice s rozměry kolem 10-20 nm bývá pokryta ochrannou
vrstvou proti shlukováńı částic. Ferrokapalina obvykle nez̊ustává zmagnetována po vyp-
nut́ı vněǰśıho magnetického pole, proto se řad́ı sṕı̌se mezi superparamagnetika. Tato práce
studuje viskoelastické vlastnost vybrané ferrokapaliny APG513a – vlastnost́ı v ustáleném
stavu a dynamickém režimu v porovnáńı se standartńı kapalinou (základová kapalina a
pod.) a MR kapalinou. K provedeńı experimentu byla navržena a zkonstruována magnet-
ická cela pro použitý reometr, celý systém byl zkalibrován a byly provedeny experimenty
s ferrokapalinou, MR kapalinou a referenčńı kapalinou.

Práce se nejv́ıce zaměřuje na problematiku rozd́ıl̊u normálových napět́ı (N1, N2) ve fer-
rokapalině, které doposud na této kapalině studovány nebyly. Dle odvozeného modelu pro
použitou měřićı geometrii lze očekávat, že jsou pr̊uběhy N1 a N2 silně závislé na magnet-
ickém poli; tyto vlastnosti byly také experimentálně ověřeny. Jedná se tedy o prvńı práci
tohoto druhu. Rozd́ıl normálových napět́ı byl zjǐstěn př́ımo nebo nepř́ımo pomoćı aplikace
Launova pravidla. Ferrokapalina se chovala velmi anizotropně pro r̊uzné směry měřeńı
pro smykový experiment. Vlastnost shear-thinningu ferrokapaliny v normálovém směru k
prováděnému smykovému experimentu byla mnohem silněǰśı než ve směru smyku. V dy-
namickém režimu ferrokapalina sleduje obdobu časově teplotńı superpozice a stává se pro
vyšš́ı frekvence dle komplexńı viskozity shear-thickening, což je v kontrastu s měřeńımi v
ustáleném stavu. Creep obsahoval informace o deľśıch relaxačńıch časech, které odpov́ıdaj́ı
relaxaci kratš́ıch segment̊u řetězce v kapalině, vytvořeného p̊usobeńım magnetického pole.
Viskozita odpov́ıdala ustálenému smykovému experimentu.

Kĺıčová slova: viskoelasticita; ferrokapaliny
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Abstract:

Since 1960, a liquid becoming strongly magnetized in the presence of a magnetic field, called
ferrofluid, is known. This colloidal liquid made of ferro- or ferrimagnetic nanoparticles,
with diameter in range 10-20 nm, suspended in a carrier fluid. This work focuses on the
study of the viscoelastic properties of a selected ferrofluid – the steady-state and dynamic
properties of the fluid with comparison to a standard fluid (basis fluid, etc.) and a MR fluid.
Rheological measurements are carried out using a commercial rheometer. A magnetic cell
for this rheometer is designed and built. In this magnetic cell the experiments are realized,
the whole system is calibrated and the experiments performed. The ferrofluid APG513a,
MR-fluid and reference fluid were used.

Study of normal stresses differences (N1,N2) in liquids is carried out. According to derived
theoretical model, the course of N1 and N2 should be strongly dependent on the field – this
was studied directly by measuring of the normal forces or indirectly applying the Laun’s
rule. A good accordance of theory and experiment was found and an anisotropic behaviour
of ferrofluid was studied. The shear-thinning ability of the ferrofluid in normal direction
for shear experiment is found to be much stronger than in shear direction. In dynamical
mode, the ferrofluid in magnetic field behaves similarly according to time-temperature
superposition principle - a shift factor according to WLF theory can be found for time-
magnetic field superposition. The fluid becomes shear-thickening according to complex
viscosity for higher frequencies which is in contrast to steady-state measurements. A
creep experiments contain an information about longer relaxation times which corellates
with relation of shorter parts of the built chains. Viscosity in teh creep experiment was
comparable to steady-state shear mode.
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Introduction

Dating back to the 1960s, the dispersion of nanosized (≈ 10 nm in diameter) ferromag-
netic particles within a carrier liquid, generally referred to as a ferrofluid, has attracted
great interest due to the inherent characteristics and formative character. The application
of a discrete and moderate magnetic field results in an external force which affects the
entire system of carrier liquid and nanoparticles and thus allows for a control of the flow
property of the fluid. Ferrofluids are generally classified amongst magnetorheological fluids
and are characterized by the fact that they remain in a flow state even under the action
of saturated magnetic fields (≈ 1 T). 50 years of ferrofluid synthesis and research along
with the technical roll-out have provided a deeper insight into the properties which allow
for the discovery of new applications, physical characteristics and rules.

Based on the relation between the external force and the direct fluid flow and due to
the surface and thermal properties, the range of applications for liquids containing ferro-
magnetic nanoparticles is broadened even further. The application area of ferrofluids spans
across the fields of engineering, physics, chemistry and medicine, where a new approach to
cancer treatment is made possible. Ferrofluids are already used for a number of applica-
tions, e.g. for the design of loudspeakers, computer hard discs (using magnetorheological
fluid as contrast agents (Kim et al., 2003, [9])), for magnetic drug targeting and magnetic
hyperthermia used in cancer treatment (Rahn, 2009, [29]) or for filtration and membrane
separation (Lesieur et al., 2003, [14]). Due to the nano-scale size of the particles suspended
within the liquid, the macroscopic attributes of the resulting ferrofluid is strongly influ-
enced by the particle size, the size distribution as well as the surface or particle-carrier
liquid interaction. Furthermore, the viscosity of the system is dependent on e.g. the pH,
the temperature or the general particle-carrier liquid compatibility alongside the choice of
carrier liquid itself. The yielding behavior is thus easily manipulated.

To ensure a good usability, the ferrofluids need to be stable and the sedimentation
issue is typically resolved by an appropriate selection of carrier liquid. This means, that
water-based ferrofluids, as used for medical applications, are not expected to be stable over
days, weeks or even years like those based on special kinds of polymeric liquid. In that
case the nanoparticles have to be coated with a shell of a tailor-made material to avoid
agglomeration. Therefore, it is possible to classify two types of ferrofluids: surfacted, which
are coated by a surfactant molecule, and ionic, where the shell is on an electric base.

The resulting rheological properties of the ferrofluid play a central role in the design
for application - the interests of physicians and engineers are combined here in a complex
task. The foregoing explanations underline the vital role of rheological studies for ferrofluid
research. As mentioned above, significant research efforts have already been conducted in
this direction, e.g. Odenbach et al. in 2002 ([21]) and Pop et al. in 2004 ([23]) amongst
others have studied the rheological properties using rotating rheometers while Dang et
al. in 2000 ([6]) used a capillary rheometer for a yield stress measure of the ferrofluid.
However, a number of questions remain open and provide the basis for future research.

To contribute to this, the thesis work presents a rheological approach to the study of
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ferrofluids. In this experimental setup the ferrofluid will be studied in steady-state and
dynamical shear mode. First, the matching rheological model for our experimental setup
will be derived from known theory. Next, because the study will be held in a magnetic
field, the magnetic cell used as measuring device will be designed. The central section then
focuses on the normal stresses differences in homogenous magnetic fields. In addition, the
viscosity behavior, range of applicability of the Cox-Merz and Laun rule will be obtained
and the microstructure of the ferrofluid will be studied by means of rheological techniques.
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1. Brief overview of physical
ferrofluid characteristics

1.1 Stability

Ferrofluids are a stable suspension of ferri-/ferromagnetic particles in a liquid carrier.
The magnetic particles exhibit a monodomain, while the solvent is non-magnetic. The
stability must thereore be assured both against sedimentation due to gravity or magnetic
force acting on the particles as well as the agglomeration.

The real ferrofluid is always polydisperse. The nanoparticle size distribution then varies
depending on the technique of the preparation, very narrow distribution will be assumed.

The stability against sedimentation is given by particle thermal energy inequality to
the energy of the acting field (gravitational, magnetic). The thermal energy of the particle
must be greater than the energy of the field to allow the particle to move opposite to the
gradient of that field. The potential energy of the particle in the gravitational field is

Ep =
∆ρπd3

6
gh , (1.1)

where ∆ρ = ρparticle − ρliquid denotes the difference of densities, d is the diameter of the
particle (approximated as a sphere), g the gravitational acceleration, while h denotes the
vertical position of the particle within the sample.

The energy of the magnetic field is given by

EM =
µ0M0πd

3

6
H , (1.2)

where M0 is the spontaneous magnetization and H is the acting field intensity.
Both of these energies must be balanced by the thermal energy given by the equiparti-

tion theorem
ET = kBT (1.3)

with the Boltzmann constant kB and temperature T .
Therefore, the critical diameter of the nanoparticles from the point of view of the

gravitational field and magnetic field can be expressed by

dcG =

(
6kBT

gh∆ρπ

)1/3

(1.4)

and

dcM =

(
6kBT

µ0M0Hπ

)1/3

, (1.5)

respectively. For the formation of a stable suspension of magnetite-alike materials, the
critical diameter is approximately 15 nm.
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The ferrofluid could also be designed in such a way that the nanoparticle magnetic
agglomeration (resulting in an overlap of the two previously determined critical diameters)
is avoided. The energy of dipole-dipole interaction of two particles with magnetic moments
~m1,2 with a separation ~r, is

Ed =
1

4πµ0

[
~m1 · ~m2

r3
− 3(~m1 · ~r)(~m2 · ~r)

r5

]
. (1.6)

Thus, when the two nanoparticle with |m| = µ0Mπd3

6
collide, the energy of the interaction

is

Ed =
µ0M

2πd3

72
. (1.7)

Again, by comparison with the thermal energy of one nanoparticle, the critical diameter
yields

dcD =

(
72kBT

µ0πM2

)1/3

. (1.8)

This result further reduces the critical diameter of the (magnetite-alike) nanoparticle for
a stable fluid below 10 nm.

There are, of course, additional effects which can be considered. They are however of
varying importance for partial ferrofluids, subjected to the coating used or not used for
the fluid. Examples are van der Waals or steric interactions and long-range electrostatic
interactions for ionic ferrofluids. For more detailed information, the reader is referred to
textbooks, e.g. Scherer ([33]).

1.2 Particle relaxation and birefringence

Due to their size, the nanoparticles in the carrier liquid are single-domain and su-
perparamagnetic, i.e. ferrimagnetic below the Curie temperature. These particles can
relax by two relaxation mechanisms named after their developers L. E. F. Néel and W.
F. Brown. The resulting dominating mechanism for the particle distribution in the fluid
causes different macroscopic responses, as is clear from the relaxation characteristics.

First, in small nanoparticles, the magnetic moment vector can randomly flip normal to
the easy axis of magnetization, thus exhibiting a thermal effect. The characteristic time
between two flips, the Néel relaxation time, is determined by

τN = τ0 exp
K ′V

kBT
. (1.9)

where K ′ denotes the anisotropy constant which, when multiplied with the volume V , pro-
vides the energy barrier, along which the magnetization flip takes place. The characteristic
time τ0 represents the attempt time, reciprocal to the Larmor frequency.
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Second, all of the particles undergo Brownian motion. During this motion, the nanopar-
ticles rotate freely resulting in a corresponding rotation of the magnetization direction. The
viscous torque acts against this rotation, so the Brownian time of rotational diffusion is

τB =
3ηV

kBT
(1.10)

where η is the viscosity of the carrier fluid, V the hydrodynamic volume and kBT is the
thermal energy of the particle.

If the nanoparticle is in the state where Brownian relaxation is quicker than Néel
relaxation, it will dominate and therefore the nanoparticle moves in the liquid carrying
a magnetic moment relative to itself along the same direction. From this point of view,
the magnetic moment is “frozen” inside the particle and can interact with the field and
build microstructures together with other particles within the fluid. If, however, the Néel
relaxation mechanism dominates, the magnetic moments flip their direction quickly and
the fluid is then in the ground state which is non-magnetic macroscopically. The total
relaxation time τi can be easily calculated from the parallel processes to yield

τi =
τNτB
τN + τB

. (1.11)

In the experiments conducted by F. Gazeau et al. in 1997 ([7]) a wide spectrum of mag-
netization relaxation times was found. This was an indication of polydisperse nanoparticles
while the viscosity and dynamic susceptibility response further indicated the formation of
entire chains of nanoparticles. This will be discussed in more detail below.

Furthermore, when an external magnetic field is applied to this generally optically
isotropic fluid, it exhibits induced birefringence (Raikher, Stepanov, 2003, [30]). This can
be explained by the fact that the nanoparticles are not ideal spheres and the fluid, isotropic
due the Brownian relaxation, becomes highly oriented under the acting field.

1.3 Phase separation and chain formation

The thermodynamical instability of the particles will plays its role, even in “stable
fluids”. This is caused predominantly by the dipole attraction which is marginalized by the
applied field. This can lead to phase separation. According to Zubarev (Statistical Physics
of Non-dilute Ferrofluids, in [21]), chain-like structures are built and phase separation takes
place even under weak magnetic fields. If, however, no such drops of separated material
or chains would be present within the suspension, the interparticle interaction would still
significantly influence the rheological properties of the fluid. The next theory introduced
by Zubarev uses these approximations: monodisperse ferrofluid, no Néel relaxation, no
interaction between the chains and the reaction of the chains to the magnetic field as
entire aggregates. Under those conditions, the length of the chain is determined by the
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minimum of the free energy per unit volume (Zubarev, [21]):

F = kBT

nc∑
nu=1

(
gn ln

gn
e

+ gnfn(κ′, ε′)
)

(1.12)

κ =
µ0m

kBT
H , ε =

µ0m
2

16πa3kBT
(1.13)

where a is the hydrodynamical radius of the spheroid particles, m their magnetic moment,
gn is the number of the nu-particle chains in a unit volume of the fluid. Then nc is the
maximal number of the particles in one chain and fn states for inner-structure free energy.
The first term of the free energy F represents the entropy of the ideal gas of n-particle
chains due to their translation motion, κ′ and ε′ are the dimensionless energies of the
interaction of the magnetic particle with the field H and of the magnetodipole interaction
between two neighbor particles in the chain. By minimizing this energy F and using
the normalization condition for the maximum of the particle content in a unit volume∑nc

nu=1 nu gn =
3ϕ

4πa3
, where ϕ represents the hydrodynamical volume concentration of the

nanoparticles, for equilibrated systems (ansatz nc =∞) one receives (Zubarev, [21])

gn =
xnu0 sinhκ′nu

vκ′nu
exp (−ε′) (1.14)

for

x0 =
2y coshκ′ − sinhκ′ −

√
(2y coshκ′ − sinhκ′)2 − 4y2

2y
, y = κ′ϕ exp ε′. (1.15)

We assume such approximation which takes only the nearest neighbor for the particle
interaction into account and ignores the thermal fluctuation of the chains. Further, we
assume that the chains build “straight rod-like” aggregates. This approximation leads to
the theory of linear polymer chains and to the result 1.14. The mean particle number in
the chain can thus be expressed as:

< nu >=

∑
nu nu gn∑
nu gn

=
ϕ

v
∑

nu gn
. (1.16)

These results are important for the rheology of the ferrofluid. As stated before, ferrofluids
are very likely to undergo chain formation and phase separation (which allows the observa-
tion of small dense droplets within the fluid) - this inhomogeneity and anisotropy influence
the stress and flow in the fluid significantly. It is possible to determine a prefered length
of the chains within the fluid and under the strain load, as shown by Zubarev ([21]), a
maximal number of particles for one chain also exists - in fact, the higher the strain rate
is, the more the inner structure is loaded and subsequently destroyed.

The next important parameter is the so-called interaction parameter λ∗:

λ∗ =
µ0M

2
0Vp

24kBT

(
d′′

d+ 2s

)3

(1.17)
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for M0 the spontaneous magnetization, d′′ and Vp the mean magnetic diameter and the
volume of the particles, respectively, while s expresses the size of the surfactant layer. The
interaction parameter describes the possibility of the ferrofluid particles to form a chain by
dipole-dipole interaction. For λ∗ > 1 the dipole-dipole energy is greater than the thermal
energy and chains can be formed.

According to the phase separation and chain formation, a huge magnetoviscous effect
(the increase of the viscosity with the increasing magnetic field) is found, much more
significant than that expected by model of single, non-chain-forming spherical particles
distributed in the fluid.

1.4 Rheology of ferrofluids

The ferrofluid is rather complex, since due to the microstructure, it is necessary to apply
the theory of polar continuum. Magnetization of the used nanoparticles was considered
to be collinear with the external magnetic field in the early works but the answer to the
extern magnetic field seems to be more complex.

According to Rosenweig [32], a central set from the system of basic equations for the
ferrofluid (13 equations in total) is given by:

• The equation of continuity

∂ρ

∂t
+∇ · (ρ~v) = 0 (1.18)

where ρ is the density of the fluid, ~v its velocity. The fluid is considered to be
compressible in general.

• The equation of motion

ρ

(
∂ρ

∂t
+ ~v · ∇~v

)
= −∇p+ (η + λ)∇(∇ · ~v) + η∆~v +∇× [2ζ(~ω − ~Ω)] + ρe ~E +~j × ~B

+ (~P · ∇) ~E + ( ~M · ∇) ~H + ~P × (∇× ~E) + ~M × (∇× ~H) + ρ~b

(1.19)

where ~P is electric polarization vector, ~E electric field vector, ~M is magnetisation,
~H magnetic field vector, p is a pressure-like variable defined as

p = p0(%, T ) +

∫ E

0

(
∂~v ~P

∂~v

)(e)

T,H,E

dE(e) +

∫ H

0

(
∂~v ~M

∂~v

)(e)

T,H,E

dH(e) (1.20)

(for further details refer to the original article, Rosenweig, [32]), η is shear viscosity, ζ

vortex viscosity, κ third viscosity coefficient, λ is bulk viscosity defined as λ =
κ− 2η

3
,

ω angular velocity of the fluid, Ω angular velocity of the nanoparticles, ρe is charge
density, ~j is the electric current density, ~b is the body force per unit mass.
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• Balance equation of angular momentum

I
d~Ω

dt
= (λ′ + η′)∇(∇ · Ω) + η′∆Ω− 4ζ(~ω − ~Ω) + ~M × ~H + ~P × ~E + ρI (1.21)

where I is the moment of inertia per unit volume,λ′ the bulk coefficient of spin
viscosity, η′ the shear coefficient of spin viscosity. Spin viscosity is the viscosity ’as
seen’ from the frame connected with the rotating particles.

The other 10 equations completing the system of basic equations for ferrofluids can be
found in Rosenweig, [32], p. 77.

Rosenweig also notes that, for a special system with negligible angular acceleration, spin
diffusion, electric polarization, and distant source of body couple, Eq. (1.21) simplifies to

~Ω =
1

4ζ
( ~M × ~H) + ~ω. (1.22)

This is a very important conclusion, if we would like to derive the shape of the stress tensor
in our experiment. It allows us to not only use according procedures for the measurement
itself, but to provide qualitative predictions as well as to fit the data accordingly to reveal
interesting properties of the fluid hidden in the experiment.
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2. Derived rheological model

Based on the specific rheology of ferrofluids introduced in Chapter 1 I can derive a
ferrofluid behaviour directly for our experiment. Starting with the work of Rosenweig,
[32], it is possible to derive basic equations relating to our experiment. In the following, a
parallel plate geometry (cylindrical coordinates r, θ, z) is assumed.
At this point, a short summary of the used notation proves meaningful:
T complete stress tensor
Tv viscous stress tensor, its symmetric and antisymmetric parts (s) and (a), respectively
Tm Maxwell type stress tensor for the polarizable fluid

D(v) strain rate tensor
p pressure-like scalar, presents a combination of ordinary pressure and field influences
~M magnetization
~H magnetic field intensity
~B magnetic flux density
~E electric field intensity
~P polarization
~ω fluid rate of rotation: one-half the fluid vorticity
~Ω average angular velocity of particles with respect to their own center
η shear viscosity
ζ vortex viscosity
κ third viscosity coefficient

λ =
κ− 2η

3
bulk viscosity

For a starting point for the considerations concerning the experiment it is possible to use
Eq. 1.22:

~Ω =
1

4ζ
( ~M × ~H) + ~ω (2.1)

because the conditions mentioned, for which this simplification holds, are satisfied in our
case. A second important relation can be obtained by considering the form of the viscous
stress tensor Tv ([32], eq. (82), (83) and (84) on p. 75):

(Tt
v)

(s) = 2ηD(v),

(Tt
v)

(a) = −2ζ~ε · (~ω − ~Ω),

tr(Tt
v) = κ(tr(D(v))).

(2.2)

As we easily see from 2.1, we can express the difference of angular velocities ~ω − ~Ω as

4ζ(~ω − ~Ω) = ~M × ~H (2.3)

which can be inserted into Eq. (2.2)2 -

(Tt
v)

(a) = −1

2
~ε · ( ~M × ~H). (2.4)
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2.1 Stress tensor

It is now possible to rewrite the entire stress tensor step-by-step:

Tv = T(s)
v + T(a)

v +
1

3
ItrTv (2.5)

Tv = 2ηD(v) − 1

2
~ε · ( ~M × ~H) +

1

3
Iγ(trD(v)) (2.6)

Tv = η[∇~v + (∇~v)t]− 1

2
~ε · ( ~M × ~H) + λ(∇ · ~v)I (2.7)

Tm = −
(
ε0E

2

2
+
µ0H

2

2

)
I + ~D ~E + ~B ~H (2.8)

T = −pI + Tm + Tv (2.9)

Recalling Eq. (1.20)

p = p0(%, T ) +

∫ E

0

(
∂~v ~P

∂~v

)(e)

T,H,E

dE(e) +

∫ H

0

(
∂~v ~M

∂~v

)(e)

T,H,E

dH(e) (2.10)

with a superscript (e) denoting the equilibrated state and the conventional pressure p0
within the fluid.

Finally we arrive at the following equation for the stress in the fluid:

T = −
(
p+

ε0E
2

2
+
µ0H

2

2
− λ(∇ · ~v)

)
I+η[∇~v+(∇~v)t]−1

2
~ε·( ~M× ~H)+ ~D ~E+ ~B ~H. (2.11)

Therefore, if we are able to define the ordinary pressure in the fluid, the electromagnet-
ic fields as well as the velocities and shear viscosity in the fluid, we can compute the
complete shear stress tensor (or its components) and make theoretical predictions for the
experimental results.

For work which takes the entire stress tensor into account, further simplification of the
relation is proposed. This is due to the fact, that the pressure-like quantity p is rather
complex as well the bulk viscosity term as, which we understand should be rather small.
A decomposition of the tensor into its trace and the symmetric and antisymmetric parts
correlates well with the measurement technique.

In the following, the trace of T will be denoted as Π, it can be considered the energy
content in form of a ’specific electromagnetic-hydrostatic pressure’, and the symmetric part
and antisymmetric parts as Υ and A, respectively:

Π = −
(
p+

ε0E
2

2
+
µ0H

2

2
− λ(∇ · ~v)

)
I + tr ~D ~E + tr ~B ~H (2.12)

Υ = η[∇~v + (∇~v)t] +
(
~D ~E
)(s)

+
(
~B ~H
)(s)

(2.13)

A = −1

2
ε · ( ~M × ~H) +

(
~D ~E
)(a)

+
(
~B ~H
)(a)

(2.14)
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2.2 Stress tensor derivative

It is now possible to determine the change of the stress tensor with change in the shear

deformation rate
vθ
∂r

= γ̇:

Π,γ̇ = (λ,γ̇(∇ · ~v)) I + tr ~P,γ̇ ~E + tr ~M,γ̇
~H (2.15)

Υ,γ̇ = η,γ̇ +
(
~P,γ̇ ~E

)(s)
+
(
~M,γ̇

~H
)(s)

(2.16)

A,γ̇ = −1

2
ε · ( ~M,γ̇ × ~H) +

(
~P,γ̇ ~E

)(a)
+
(
~M,γ̇

~H
)(a)

(2.17)

The magnetization and polarization can vary with changes in the shear rate which is
caused by the physical position change of the nanoparticles or possibly even by changes in
the viscosity, which is inner-field-dependent. The tensor Π, however, behaves much more
friendly in this form even if the bulk viscosity is still inner-field-dependent.

Therefore, a measurement of the normal stresses provides information about the bulk
viscosity and thus the compressibility of the fluid as well as the vortex viscosity rate, which
can not be measured directly.

With the given relations, it is possible to use the full part Υ for measurement and
model comparison and the derivative of the pressure part Π for vortex viscosity rate esti-
mation from the experiment. Knowledge of the magnetization and polarization shear rate
dependence are, however, still required for this.

For the theoretical model, we would need the electromagnetic response of the fluid,
in order to simulate the stress response in the system for specific shear rates. This was
accomplished using a VSM device (Vibrating sample magnetometer), and the results of
such measurements are provided in Fig. (4.3). There, the shear viscosity function, which
we have measured in our experiments, is required. This shear viscosity function is, however,
a slightly more complicated and should be handled carefully.

2.3 Stress tensor for shear experiment

This section deals with the steady-state situation. For the discussion of the shear
experiment, the use of cylindrical coordinates (r, θ, z) is appropriate. Taking into account

that in our case ~B || ~H, yields the following equations for

Π = −
(
p+

µ0H
2
z

2
− λvθ,θ

)
I +

(
~B ~H
)
zz

(2.18)

Υ = 2ηD(v) (2.19)

where the strain rate tensor is given by:

D(v) =
1

2

∂vθ
∂r

 0 1 0
1 0 0
0 0 0

 (2.20)
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and the antisymmetric part
A = 0 (2.21)

It is interesting to note, that the magnetic field influence is seen ’directly’ only in the
trace tensor Π (which can cause the volume changes and the second normal stress difference
N2 should change faster than first normal stress differenceN1, even for shear thinning fluids,
because of this field in z-direction), there is no antisymmetric part and in the deviatoric
stress Υ the role of the magnetic field is hidden in the shear viscosity function (for Π, shear
viscosity is further hidden in bulk viscosity λ). An exact reconstruction of the deviatoric
stress tensor Υ gives

Υ = η
vθ
∂r

 0 1 0
1 0 0
0 0 0

 (2.22)

and the derivation of those tensors with respect to
vθ
∂r

= γ̇ results in:

Π,γ̇ =

(
1

3
(κ,γ̇ − 2η,γ̇) vθ,θ

)
I +

(
~M,γ̇

~H
)
zz

(2.23)

Υ,γ̇ = 2η,γ̇D
(v) + 2ηD

(v)
,γ̇ (2.24)

where

D
(v)
,γ̇ =

1

2

 0 1 0
1 0 0
0 0 0

 (2.25)

and the antisymmetric part is still zero

A,γ̇ = 0 (2.26)

We can write Υ,γ̇ as

Υ,γ̇ = (η,γ̇ γ̇ + η)

 0 1 0
1 0 0
0 0 0

 (2.27)

2.3.1 Shear experiment and theory application

Having laid down the theoretical framework, we can turn to the experimental results.
For the experiments the sample fluid was exposed to shear deformation. If the fluid is
exposed to a magnetic field, this magnetic field causes a constant term in the trace tensor
Π, which is connected with volume changes of the fluid and therefore with the forces acting
in the direction normal to its surface. Therefore we can expect two processes contributing
to the estimation of normal stresses differences. The N1 part changes according to the
dependence of the viscosity on the field and the shear rate, while N2 will ’feel’ the same
influence of the viscosity change, but there is also a additional constant term at any time

14



and shear rate. This term will modify the shear rate dependence of normal stresses differ-
ences. The stress tensor has no antisymmetric part, so the changes in dynamics are only
displacement-like. The deviatoric stress Υ is influenced by the magnetic field through the
shear viscosity function and is therefore expected to experience different behaviors of shear
stress, depending on the magnetic field strength. However,the shear viscosity function is
not known in detail. It is the goal of the experiments, which will be described below, to
fill this void.

The result for the derivation of the stress tensor with respect to the shear rate γ̇, can
be used along with the known shear viscosity function and a fit for the N1 term, to find
the derivative of the third viscosity coefficient κ,γ̇ . Alternatively, it is possible to use the
measured functions and fit them into Υ, to determine the correlation of measurement and
theory.
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3. Viscoelastic Measurements

Some approximations of ferrofluid rheology behavior could be seen in viscoelastic fluids.
This approximation is based on the fluid microstructure and the responses known for these
fluids. But the behavior of the fluid strongly depends on the carrier liquid nature.

Viscoelasticity was introduced by W. Kelvin, J. Maxwell and L. Boltzmann in the
18th/19th century. Viscoelasticity models suppose that the total stress response to loading
can be split into an elastic and memory part and that the memory part does not contribute
to their equilibrium stress. The simple materials described by the theory of viscoelasticity
behave generally like an elastic solid in short time scales and like a viscous fluid in long
scales. In our work, the fluid changes its behavior under the magnetic field influence.

Such materials/fluids may be shear-thinning ones (this is very common property), this
means, that the shear stress increases in some shear rate window slower than linearly
with the shear rate. The viscosity of such material can decrease orders of magnitude for
relatively narrow shear rate change. Or the viscoelastic fluid may be shear-thickening, the
opposite behavior to shear-thinning one, thixotropic or rheopectic (changing its viscosity
with the time scale) and so one.

In our work, the viscoelastic behavior of the ferrofluids will be studied for comparison.
Our measurements are carried out in shear strain mode.

The carrier liquids is characterized by its own strain attributes but with the nanopar-
ticles suspended in it these attributes are shifted. When the nanoparticle chains are built,
caused by magnetic field, the fluid becomes anisotropic, oriented, and its flow behavior
is dramatically changed. For the assessment of these attributes and their change several
ways of measurements were developed. This will be introduced next.

The works of Barnes [1] and Tropea [36] will be used in these sections.

3.1 Shear Strain

3.1.1 Steady mode

Shear in the fluid means that the individual equiplanes in the liquid move to each other
during the strain process - such case arises for example when bodies rotate and translate in
the fluid, during mutual sliding of two surfaces on the fluid layer presence between them,
etc.

The relation between stress and deformation in viscoelasticity is a constitutive relation,
generally written as

↔
τ= F {F,D(v), ...} (3.1)

where
↔
τ is the stress tensor, F {...} means a functional, F is a strain tensor and D(v) is the

strain rate tensor (first time derivative of strain tensor), which can be written as

D(v) =
1

2

(
∇~v + (~v)T

)
(3.2)
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where ~v is the velocity of the fluid and T denotes the transposition.
The stress tensor can depend further on higher derivation orders of the strain tensor

(elastic solids depend on the strain tensor intself), on the temperature, pressure etc.
We neglect the thermodynamical pressure term hidden in the stress tensor and write

only the second part, called viscous stress. The shear part of the viscous stress tensor, τ21,
further denoted simply as τ , is proportional to the strain rate tensor as

τ = ηD(v) (3.3)

where τ is the shear stress in the fluid and η its viscosity. This proportion can be written
as

τ = ηγ̇ (3.4)

where we use the well-known form of strain rate tensor in shear (Eq. 2.20). The γ̇ is the
shear rate, η viscosity and τ shear stress.

For non-Newtonian fluids is the constitutive relation not so easy and therefore the
classification is richer.

We can use the experimental measurement of the so-called flow curves, the shear stress
τ dependence on the shear rate γ̇. In many cases is the shear stress for low-enough shear
rates proportional to the applied shear stress - the fluid behaves like Newtonian fluid, (3.4).
This Newtonian behavior can be for many fluids be seen in the high-enough region of shear
rates, where the shear stress is proportional to the shear rate again. For these regions can
be estimated appropriate viscosities in accordance to the eq. (3.4): for the low-shear-rate
region we can estimate the viscosity and use the symbol η0 for it. In the high-shear-rate
region we denote the estimated viscosity as η∞.

In the intermediate region, where the law for Newtonian fluids is not fulfilled, a good
approximation for its behavior is possible. As we mentioned before, the fluids can be-
have in this region for example as shear-thinning ones (the viscosity in eq.(3.4) would not
be constant anymore and would be shear-rate dependent. η(γ̇) would decrease with an
increasing shear-rate) - this is a very common property for many fluids and polymer so-
lutions. Alternatively, the fluid can be shear-thickening (the viscosity η(γ̇) would increase
with increasing shear-rate) and so one.

The dependence of the viscosity on the shear deformation rate applied to the fluid can
be approximated by the so-called Cross equation in many cases. This equation describes
the entire shear rate region, both the Newtonian one and the intermediate region, which no
longer corresponds with eq. (3.4). This model can also be applied to the fluids examined
for this thesis work. We can express the Cross model for the coefficients of the flow curves
in terms of the viscosities:

η − η∞
η0 − η∞

=
1

1 + (Kγ̇)n
, (3.5)

with a constant stress consistency factor K with the dimension of time and a dimensionless
material constant, power-law index n for the specific fluid. If shear deformation is applied
to the fluid, its shear rate is γ̇ and the response of the system can be described by the
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viscosity η. The constants η0 and η∞ are viscosities for sufficiently low and sufficiently high
shear rates γ̇, where the fluid behaves like a Newtonian fluid.

In many cases, η0 � η∞, Kγ̇ � 1 and η∞ is small. Then the Cross model is reduced
to the power-law model (expressed in viscosites as well):

η = kγ̇n−1. (3.6)

k is referred to as the consistency with the unit [Pa.sn], n is the power-law index and the
range of well-approximated results of this model is 2-3 decades of the shear-rate.

If we would like to express the power-law model for shear stress, we get:

τ = Kγ̇n. (3.7)

where K is identical to the same term in the Cross equation (3.5), as is the power-low
index with respect to (3.6).

Further, we denote the linear viscoelasticity which is based on a superposition principle.
As a consequence of this principle (response is at any time directly proportional to the
value of the initiation), the guiding differential equation, which results from the constitutive
equations, assumes a linear form. To develop the theory for a pure ferrofluid liquid we would
need to use the constitutive equations for ferrofluids, which can be found in Rosensweig,
[32].

The Williams-Landel-Ferry equation expresses the superposition principle, and is pro-
vided here for shear modulus:

G(T, aTf) = G(T0, f) (3.8)

where G is the shear modulus of the sample, f is the frequency and aT is a shift factor,
defined as

log aT (T ) =
−c1(T − T0)
c2 + T − T0

(3.9)

where T0 is the reference temperature and c1 and c2 are two fit coefficients.
In the following, the basic steady-state stress responses will be distinguished: these are

relaxation (stress relaxation) and creep. Subsequently, the dynamic response is described.

Stress Relaxation

Stress relaxation is associated with the action of a constant shear strain to the fluid.
The response to the strain γ0 is tension within the liquid, which relaxes with time to a
lower value. The basic features of fluid viscoelastic relaxation are reflected in the Maxwell
model (Fig. 3.1), which consists of a serial connection between a Hooke-like spring of
elastic modulus G and a piston with a viscous liquid of viscosity η. The modulus G is
defined

G(t) =
τ(t)

γ0
. (3.10)
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η, γ
2
, σ

2

γ, σ

Figure 3.1: Maxwell model (Tropea and col. [36])

For viscoelastic fluids which fall under this rule, the shear stress monotonically decreases
with time: τ(t)↘ 0 for t→∞. Due to the serial connection of the spring and piston,
the following is applicable

γ1 + γ2 = γ0, (3.11)

τ1 = τ2, (3.12)

and further

τ1 = Gγ1, τ2 = η
dγ2
dt

(3.13)

while for the time derivative one arrives at

1

G

dτ

dt
+
τ

η
= 0. (3.14)

The solution :

τ(t) = Gγ0e
−

t

η/G , (3.15)

can be modified to

τ(t) = τ0e
−
t

tτ , (3.16)
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where tτ = η/G symbolizes the relaxation time, which comes from the Maxwell model for
the fluid.

In real systems, a slightly different relaxation of tension is observed - it is thus necessary
to introduce a correction of Maxwell’s model, which exhibits a better correlation with the
observations. This is based on a parallel combination of units from the Maxwell model,
which have multiple relaxation times. This, more accurate, Maxwell-Weichert model is
displayed in Fig. 3.2. The modulus of elasticity of the fluid is then given by

G(t) =
N∑
k=1

Gke
−
t

tτ , (3.17)

where the elastic modules Gk correspond to single base units of the Maxwell model.

G
i 
, γ

1i 
, σ

1i

η
i 
, γ

2i 
, σ

2i

γ, σ

Figure 3.2: Maxwell-Weichert model: schematically for N Maxwell units, parallel connec-
tion (Tropea and col. [36])

Creep

If a constant shear stress acts on the fluid, the fluid reaction is known as creep. In
this case, in contrast to the former, the shear strain is an increasing function of time. The
shear compliance is equal to

J(t) =
γ(t)

τ0
. (3.18)

While strain acts, the Boltzmann rule of superposition is applicable. Therefore, a different
model, the Burgers model is designed for creep. It describes the behavior of fluids under
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shear tension (fig. 3.3). The model results from the Voigt-Kelvin model (the parallel
connection of a piston carrying a viscous liquid and a Hooke-alike spring), which provides
a good approximation of the behavior of matter with connection, e.g. for rubbers. In
addition, in the Burgers model, the the Voigt-Kelvin model is supplemented by a serial
connection with the Maxwell model. The following applies for the Burgers model (the
strain and tension are depicted in fig. 3.3)

γ = γ1 + γ2 + γ3 τ = τ1 + τ2, (3.19)

γ1 =
τ

G
γ2 =

τ

G1

1− e
−
t

tτ

 , (3.20)

dγ3
dt

=
τ

η
. (3.21)

The final relation for time dependence of shear strain has the form:

γ(t) = τ0

J + J1[1− e
−
t

tτ ] +
t

η

 , (3.22)

γ(t) = τ0J(t), (3.23)

where the time-dependent shear compliance J(t) was introduced.

G, γ
1
, σ

η, γ
3
, σ

γ, σ

η
1
, γ

2
, σ

2
G

1
, γ

2
, σ

1

Figure 3.3: Burgers model (Tropea and col. [36])
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3.1.2 Dynamical mode

Besides creep and stress relaxation, dynamical measurements are also amongst the most
widely employed techniques for the determination of material properties. This is evident,
because the dynamical experiments contribute not only to the knowledge of the viscoelastic
behavior but to also provide a deeper insight into the structure-mechanical properties of
the system.

In the following, the complex unit i will be used.
In a dynamical experiment, the sample is exposed to periods of varying stress or strain

to apply a load. Again, assumung a linear viscoelasticity, the response to the load (e.g.
strain)

γ(t) = γ0e
iωt (3.24)

will be given by the equilibration harmonic with the amplitude γ0 and a phase term eiωt,
which contains the angular velocity of the acting stress ω.

If we further assume an elastic sample:

τ(t) = Gγ0e
iωt (3.25)

then the shear stress τ(t) is equal to the product of the steady-state shear modulus G and
the shear deformation γ(t) from eq. (3.24).

Similarly, for a viscous sample the relation yields:

τ(t) = ηiωγ0e
iωt (3.26)

and the shear stress τ(t) is equal to the product of the viscosity of the fluid η and time
derivation of the shear deformation γ(t) from eq. (3.24). This means that the stress
response in the elastic material is in phase with the load while, in contrast, the viscous
one is shifted by a half-phase. Therefore, if the material is viscoelastic and both of those
properties are thus present, then the material response will be general, with different
amplitudes and a shift δ

γ∗(t) = γ0e
iωt → τ ∗(t) = τ0e

i(ωt+δ) (3.27)

where γ∗(t) is the complex shear deformation and τ ∗(t) is the complex shear stress. These
two functions can be related using the complex shear modulus G∗:

τ ∗(t) = G∗γ∗(t) (3.28)

G∗ = G′ + iG′′ =
τ0
γ0
eiδ (3.29)

where G′ is the elastic (storage) and G′′ is the viscous (loss) part of the modulus. As can be
seen from these relations, the storage and loss modules are connected by the loss tangent
δ:

G′ =
τ0
γ0

cos δ G′′ =
τ0
γ0

sin δ, (3.30)

tan δ =
G′′

G′
. (3.31)
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It is now possible to state the complex compliance J∗:

J∗ =
1

G∗
= J ′ − iJ ′′ = γ0

τ0
eiδ, (3.32)

where J ′ and J ′′ are the real and imaginary part of the complex compliance, respectively,
G∗ is the complex shear modulus, γ0 is the amplitude of complex shear strain and τ0 the
amplitude of complex shear stress. Further, the complex viscosity η∗ can be given by

η∗ =
τ ∗

γ̇∗
= η′ − iη′′ = G′′

ω
− iG

′

ω
. (3.33)

where η′ and η′′ are the real and imaginary part of the complex viscosity, respectively, G′

and G′′ the real and imaginary part of shear modulus, γ∗ the complex shear rate and τ ∗

the complex shear stress. ω is the angular velocity of the deformation.
Every single function state above fully describes the viscoelastic behavior during the

shear strain but they also depend on the history of the load. For a linear response - the
response of the system to the disconcerting is linear and causal - the Boltzmann principle
of superposition can be applied. Then the stress response becomes

τ ∗(t) =

∫ t

−∞
G(t− tτ )

dγ∗(tτ )

dtτ
dtτ (3.34)

where τ ∗(t) is the time-dependent complex shear stress, G is the steady-state shear modu-
lus. This equation expresses the Boltzmann principle of superposition as a convolution of
the shear modulus and the time derivation of the complex shear rate over the time from
−∞ to now. The complex shear stress then depends on the entire deformation history of
the sample. Similarly, the complex shear modulus from eq. (3.29) and (3.27)

G∗(t) =
τ ∗(t)

γ∗(t)
= iω

∫ ∞
0

G(t)e−iωtdt (3.35)

depends on the entire history of deformation and on the entire spectrum of corresponding
steady-state shear moduli.
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Table 3.1: Trag Flow Measuring Instruments, see Macosko, [16]

Geometry Basic Characteristics

Couette flow cylindrical rotating concentric cylinders,
usable for low viscosity and high shear rates

Couette flow plane two parallel plates, homogeneous shear, for high viscosity,
problem with the load and gap height

Rotating cone and plate homogeneous shear, non-Newtonian fluids
normal stresses measurable
sensitive on the accurate alignment, problems with loads

Rotating parallel plates inhomogeneous shear varying with gap height,
but no problem with loading

Oscillating body in the low viscosities,
ideal for liquid metals

Falling body usable in high temperatures and pressures,
simple model: not usable for viscoelastic fluids

3.1.3 Measurement of the shear viscosity

When the fluid is subjected to shear strain/stress, the measurement of its viscosity
or other responses is possible. It is necessary to develop measurement geometries which
maximise the accuracy of shear strain and stress measurements. The problem is thus
reduced to achieving as simple flow kinematics as possible, ideally an isometric flow in
one dimension. This leads to a direct shear strain rate determination and eliminates
the dependence on the fluid type. Nevertheless, the flow kinematics are never ideal nor
isometric in reality.

Several geometries for rheological measurements have been developed, each having a
ideal region for usability. According to Macosko, [16], it is possible to divide the various
geometries into several groups: most commonly trag or pressure flow types along with
specialized techniques such as ultrasonic measurements. The instruments based on trag
flow set the flow of the measured fluid by motion of the instrument boundary or the surface
itself and deal with the external force (i.e. gravitational force). Meanwhile, the pressure
flow instruments set the flow of the fluid in the motion in fixed instrument geometry and
deal with the external pressure. In the tables (3.1) and (3.2), taken from Macosko, [16], a
brief overview of the geometries being used nowadays is displayed.

The range of errors or effects which may be encountered when using the specified
measurement geometries, is very wide. Examples are introduced below.

One very common problem is the effect of ends and edges or other losses of energy
together with an unideal geometry. When moving surfaces are present during the rheom-
etry, the free sample surfaces, typically in contact with air or another gas, must be taken
into account. Surface irregularities may also be a factor for cone and plate or parallel
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Table 3.2: Pressure Flow Measuring Instruments, see Macosko, [16]

Geometry Basic Characteristics

Poiseuille flow long capillary, high shear, wide range of measurements,
inhomogeneous shear, long lasting experiment

Orifice/Cup short capillary, only relative viscosity,
only Newtonian fluids

Slit pressure flow parallel plates, capillary flow alike
not easy to clean

Axial annulus pressure flow capillary flow alike, shear uniformity
problems with eccentricity

plates geometry. All of these effects cause energy losses or discrepancies and because of the
unideal geometry itself the next inaccuracy must be uncounted as well. Other effects, such
as a secondary flow effect for the Non-Newtonian fluids during the non-isothermal flows,
vortexes or other unwanted flow kinematics, which are increasing with the increasing Re
number, may be present within the geometry. Secondary flows, amongst others, leads to
non-zero normal stresses; e.g. one can observe the Weissenberg effect. During the experi-
ment the elastic effects, surface tension role, etc. could also affect the results and must be
dealt with according to specific situations.

An important process which affects the properties of the measured sample is tempera-
ture variation, caused by the environmental influences or by the viscous heating itself. As
mentioned earlier, the viscosity is by nature, very sensitive to temperature variations and
can influence the experiment output in the spatial and time frame as well.

In our application with a cone-and-plate geometry, the relevant model for viscoelastic
fluid was introduced by Olagunju et al., [24]. For the spherical coordinate system (r, φ, θ),
where φ = 1/2π−αψ, α is the cone angle and ψ = 0 at the plate and ψ = 1 on the surface
of the cone,

ν = δ(
T

T0
− 1) (3.36)

δ =
T0
η00
| ∂η
∂T
|T=T0 (3.37)

ν = νp +
1

2
r2ψ(1− ψ + 2µ)

η00δR
2ω2

kT0
e−νp (3.38)

χ =
k′T0

η00δR2ω2
< ν − νp > eνp (3.39)

where R is the plate radius, ω the angular velocity of the cone, η00 is the zero-shear-
rate viscosity at the reference temperature T0, k

′ the thermal conductivity, µ denotes
the temperature discrepancy between plate and cone (we suppose, that only the plate is
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tempered and thus the cone could exhibit a different temperature) and νp is the scaled
temperature at the plate. < . > denotes a radially averaged quantity.

From eq. 3.39 a graph of the temperature deviation from the isothermal value can be
determined for the experimental setup, and is displayed in figure 3.4.

Figure 3.4: The temperature deviation from its isothermal value according to 3.39

Further reading can be found in e.g. Papathanasiou [26] (planar Couette flow), Pinar-
basi [27] (Poiseuille flow). It is clear, that for well-conducting fluids the viscous heating
affect the results - our measured fluid (see below) are shear-thinning and this effect ampli-
fies with temperature.

As described, a careful measurement is necessary for our non-Newtonian fluid - the
non-isothermality of the process is rather typical for polymer fluids (which are in focus for
this work as the base fluids) and the appearance of secondary flows (connected with the
normal stress in these fluids) is rather predictable. For example, Olagunju [25] showed this
effect for the parallel plate geometry, considering the Oldroyd-B model. The Oldroyd-B
model, according to the work of S. Musacchio [18], is a simple linear viscoelastic model,
used for dilute polymer solutions as measured for the thesis work, which is based on the
Dumbbell model:

τij = R−20 〈R′iR′j〉, (3.40)

for R′ the end-to-end vector of the polymer molecule and the radius of the gyration of
the molecule R0. The average is over thermal noise or a small volume V with plenty of
molecules. The stress tensor is symmetric and positive definite by definition so its trace
includes the measure of the square polymer elongation. According to the Dumbbell model

Ṙ′ = (R′ · ∇)v − 1

tτ
R′ +

√
2r20
tτ
ζ (3.41)
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with the polymer relaxation time tτ

tτ =
ζ ′′

K0

=
ζR2

l

kBT
. (3.42)

where Rl is the elongation, ζ ′′ the friction coefficient changing with the size of the molecule
and K0 the Hook modulus changing with Rl. This leads to the following equation for the
single molecule in the Oldroyd-B model

∂tτ + (v · ∇)τ = (∇v)T · τ + τ · (∇v)− 2

tτ
(τ − 1), (3.43)

with the matrix of velocity gradients (∇v)ij = ∂ivj. The fluid described by the Oldroyd-B
model can, for instance, exhibit the Weissenberg effect, which we need in our model (to
determine the normal stresses). Olagunju showed the secondary strem flows in an Oldroyd-
B model fluid: for casual experimental conditions as necessitated by our model, where the

ratio α =
h

R
(h: separation of the plates; R: radius) is much smaller than one (α << 1),

the strength of the secondary flow cannot exceed the O(
√
α) (in our case α ≈ 0.025).

According to Olagunju [25], the resulting stream function for α = 0.25 is displayed in
Fig. 3.5 (r and z are cylindrical coordinates scaled as nondimensional):

We will now introduce the measurement geometries, which we use in our experiment. We
will use the simplified equation of motion

∇· ↔τ +ρ
↔
b= 0 (3.44)

for
↔
τ the stress tensor and body forces

↔
b . We neglect the inertial forces and allow only the

body forces
↔
b , which include gravitational acceleration. This part is based on the work of

Tropea, [36].

Parallel plate rheometer

In this case, the two plates are of the form of two circular plates, one of them is rotated
about its z-axis. This disc is separated by a distance h from the other one and the fluid,
which is to be measured, is placed in the gap. If the gap h � R, i.e. the radius of those
discs, then the outer boundary can be neglected and further equations apply. The shearing
planes are plan-parallel planes/discs in this case. The upper plate, casually, rotates with the
angular velocity Ω0. The geometry is displayed in Fig. 3.6. We use cylindrical coordinates
r,θ, z again.

The equations of motion under shear deformation in a parallel plate rheometer are in
the form

∂τrr
∂r

=
N1 +N2

r
(3.45)
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Figure 3.5: Secondary flow in a shear experiment between parallel plates (cit. Olagunju,
[25])

∂τθz
∂z

= 0 (3.46)

∂τzz
∂z

= ρg (3.47)

where τij are the components of the stress tensor
↔
τ , N1 = τθθ− τzz and N2 = τzz− τrr are

the first and second normal stress differences , respectively, ρ is the density of the sample
and g = |~g| the gravitational acceleration in the z-direction.

The shear rate for such system is given by

γ̇ = r
dΩ

dh
, (3.48)

where γ̇ is the shear rate, h is the distance between plates and Ω is the angular velocity at
that point. This equation means that the shear rate is not constant along the radius line
and thus such a geometry is not the best choice for investigation of fluids which exhibit
shear-rate dependent properties.
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R

h

z

Ω

Figure 3.6: Couette flow - parallel plates

Fortunatly, according to eq. 3.46, the shear rate is independent of z and seems to be
linear to r:

γ̇(r) = r
Ω0

h
(3.49)

where γ̇(r) is the shear rate dependent only on the r-coordinate and Ω0 is the angular
velocity of the moving plate.

In this geometry, the viscosity can be expressed as

η =
3hC

2πR4Ω
(3.50)

where η is the viscosity of the fluid, h the distance between plates, C is the coefficient
describing the physical geometry, R the radius of the plates and Ω the angular velocity of
the fluid.

Cone and plate rheometer

In this geometry, the cone with a wide top angle, typically larger than 170o is used
together with circular plate, so that the angle between plate and cone is given by ∆Θ in
degrees (1o, 2o, 5o,..). In order to get rid of friction between the top of the rotating cone and
the fixed plate, the top of the cone is usually truncated and the area is thus only virtual.
For this case, the shearing planes have the form of coaxial cones. The cone rotates with
an angular velocity Ω0 and counterclockwise when observed from above. We again refer to
spherical coordinates r,θ, φ.

Equations of motion for this geometry are

∂τrr
∂r
− N1 + 2N2

r
= −ρg cos θ (3.51)

1

r

∂τθθ
∂θ
− N1

r
cot θ = ρg sin θ (3.52)
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Figure 3.7: Cone and plate geometry

1

r

∂τzθ
∂θ

+
2τθz
r

cot θ = 0 (3.53)

where τij are the components of the stress tensor
↔
τ , N1 = τφφ−τθθ and N2 = τθθ−τrr are

the first and second normal stress differences, respectively, ρ is the density of the sample
and g = |~g| the gravitational acceleration in the z-direction.

Integrating the equation (3.53) we get the constant stress tensor component τθz(θ) in the
θ-direction - this is the shear stress on the plate. It is possible to set τθz(θ) = τθz(1/2π) = C
so that the torque moment TM on the plate yields

TM =

∫ R

0

rτθz

(π
2

)
2πr dr =

2π

3
CR3 (3.54)

where TM is the torque moment, R is the radius of the cone and C is a constant corre-
sponding to τθz(θ). Therefore, we can extract the stress tensor component τθz from the
equation

τθz =
3TM
2πR3

(3.55)

The shear rate for the cone and plate geometry is (according to Tropeau)

γ̇ = sinθ
dΩ

dθ
(3.56)

where γ̇ is the shear rate, Ω is the angular velocity of the fluid and ∆Θ is the angle between
the cone and plate. Therefore, the shear rate is simply constant in the sample (according
to Tropeau, sinθ varies between 1 and 0.996):

γ̇0 =
Ω

∆Θ
(3.57)

where γ̇0 is a linearised shear rate from eq.(3.56), Ω is the angular velocity of the fluid and
∆Θ is the angle between the cone and plate.
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Using this relation for the shear rate, we arrive at a relation for the viscosity

η =
τθz
γ̇0
≈ 3TM∆Θ

2πR3Ω0

(3.58)

where η is the viscosity, γ̇0 is the linearised shear rate from eq.(3.57), Ω is the angular
velocity of the fluid, ∆Θ is the angle between the cone and plate, TM is the torque moment,
R the radius of the cone and Ω0 is the angular velocity of the cone.

We do not use a concentric cylinder geometry which is commonly used, because this
device demands greater amounts of fluid and our supply was limited. We do not use it
even for the normal stress differences for the same reason. Furthermore, due to technical
reasons we had to employ the parallel plate for the majority of our experiments, although
the cone and plate geometry offers some advantages. As we can see later, however, the
two techniques are complementary for the measurement of normal stress and can provide
more complex information when used in parallel.

3.1.4 Measurement of normal stresses

Different measurement geometries offer different methods and even levels of measura-
bility for the normal stresses. In our work, the parallel plate and cone and plate geometry
was used - also for the flow curves (shear stress dependence on shear rate).

The parallel plate geometry allows a determination of N1−N2 (with this geometry
the problem remains, that a uncertainty arises for the viscosity, which can be shear depen-
dent) and we can further determine the stress τzφ from the torque. According to this the
viscosity in these case can be explored via η = τzφ/γ̇.

N1(γ̇R)−N2(γ̇R) =
Fn
πR2

(
2 +

d logFn
d log Ω0

)
(3.59)

where τij are the components of the stress tensor
↔
τ , N1 = τθθ− τzz and N2 = τzz− τrr are

the first and second normal stress differences, respectively, R is the radius of the plates,
Ω0 the angular velocity of one of them (the second plate does not rotate) and Fn is the
normal force which acts on the plates. The stress is

τzφ(γ̇R) =
TM

2πR3

(
3 +

d log TM
d log Ω0

)
(3.60)

with the same quantities as stated above.
The cone and plate geometry offers the possibility of N1 + 2N2 measurements -

directly from the equations of motions.

r
∂τrr
∂r

= N1 + 2N2 (3.61)

31



where τij are the components of the stress tensor
↔
τ , N1 = τφφ−τθθ and N2 = τθθ−τrr are

the first and second normal stress differences, respectively. The cone was approximated
by a plate (using cos(θ) = 0). Alternatively, the term N1 + 2N2 can be obtained from the
slope of the plot τθθ versus ln(r/R), where R is the radius of the cone, because the normal
stress differences are dependent on the shear rate γ̇ (and, for the cone and plate geometry
is independent of γ̇ in the r-direction). Therefore the partial derivations are exchangeable.
One obtains from the (3.61) by the exchange ∂τrr/∂r → ∂τθθ/∂r

τθθ(r) = τθθ(R) + (N1 + 2N2) ln(r/R). (3.62)

where R is the radius of the cone, N1 = τφφ − τθθ and N2 = τθθ − τrr are the first and
second normal stress differences, respectively. This result yields in the common experiment
with low viscous fluids and tubes over the rotating cone (more see Fig. 3.8).

Ωr

z

Figure 3.8: The cone and plate geometry with tubes, in those the low viscous fluid shows
the measurable normal stress τθθ(r) as a function of radius.

From the total force acting on the plate we can get the first normal stress difference
from

τθθ(R) = N2 (3.63)

where N2 = τθθ − τrr is the second normal stress difference. Together with 3.62

Fn := −2π

∫ R

0

rτθθ(r)dr =
π

2
R2(N1 + 2N2)− πR2τθθ(R), (3.64)

where Fn is the normal force acting on the cone, R radius of the cone, N1 = τφφ− τθθ and
N2 = τθθ − τrr are the first and second normal stress differences, respectively and τij are
the components of the stress tensor in the fluid. Furthermore we have,

N1 =
2Fn
πR2

, γ̇ =
Ω

α
(3.65)

for a spherical sample of fluid, with Ω the angular velocity of the fluid, Fn the normal force,
R the radius of the cone and N1 = τφφ − τθθ the first normal stress difference.
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For every measurement geometry, special care must be taken, especially for lower viscous
non-Newtonian fluids like polymers. The role of inertia begins to play a role for higher
shear rates. The fluids own inertia causes a normal force acting against the elastic one for
high rotation rates. One can correct the results (for cone and plate geometry) by using
(Kulicke, Kiss, 1977, [10]):

Finertia = −0.075πρΩ2R4. (3.66)

where ρ is the density of the fluid, Ω is the angular velocity of the fluid and R the radius
of the cone/plate.

According to the empirical observation, a Cox-Merz rule was introduced in 1958. This
rule comes from the observation, that for many polymer melts, the viscosity measured
in static shear stress correlates with the complex viscosity measured dynamically. Vis-
cosity for samples that show edge fracture or other elastic flow instabilities at high de-
formation rates. The Cox–Merz rule is, however, often not succeesful for such fluids ex-
hibiting deformation-dependent microstructures (suspensions, hydrogen-bonded polysac-
charides,..), and for high frequencies as well (Al-Hadithi, [8]).

|η∗(ω)| ≡ η(γ̇)|γ̇=ω (3.67)

where η is the viscosity of the fluid in steady-state mode, γ̇ is the shear rate in the steady-
state mode, ω is the angular velocity in the dynamical mode and η∗ the complex viscosity
in the dynamical mode.

The possibility to combine these two measurements attracted strong attention from
theoreticians and experimentalists in the subsequent years. Theories for this phenomenon
were provided by several researchers, e.g. Milner in 1996 ([17]). But in 1986, the connection
between the first normal stress difference N1(γ̇) measured using steady shear flow and the
storage and loss modulus G′(ω), G′′(ω) measured in oscillatory shear was observed by Laun
([13]):

N1(γ̇)|γ̇=ω ∼= 2G′(ω)

(
1 +

(
G′(ω)

G′′(ω)

)2
)n

(3.68)

whereN1 is the first normal stress difference, the storage and loss modulus areG′(ω), G′′(ω),
respectively, ω is the angular velocity of the acting deformation and n is a power-law coef-
ficient of the fluid (see eq. (3.6)). This rule was found to be usable for many polymer melts
and concentrated solutions and highlighted the relation of linear and nonlinear response of
polymers. The power-law coefficient n is mainly chosen according to the polymer and lies
within the casual range n ∈ (0.5, 0.7).

According to Böhme, [3], the normal stresses are connected with the normal stress
coefficients, as well:

N1,2 = ν1,2(γ̇)γ̇2 (3.69)

where N1,2 are the first and second normal stress differences, respectively, γ̇ is the shear
rate and ν1,2 are the normal stresses coefficients. The normal stresses coefficients usually
exhibit a strong dependence on the shear rate and thus the zero normal stress coefficients
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are introduced:
ν01,2 = limγ̇→0ν1,2(γ̇) (3.70)

where γ̇ is the shear rate in the steady-state regime. Although, the fluid behaviour is
classified within the range of viscoelasticity, it is good to mention the Neo-Hookean model,
where the first normal stresses coefficient N1 is in connection with the shear stress modulus:

N1 = Gγ2 (3.71)

where G is the steady-state shear modulus and γ is the strain of the fluid.
This can be useful in the glassy state regime of the fluid.
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4. Experimental

The experimental work for this thesis has two objectives. The first aim was to design
and employ a magnetic measuring cell, which allows us to measure the flow curves and the
differences of normal stresses in ferrofluids. The design will be described in this chapter.
The second task, the actual characterization of the ferrofluid, was then conducted using
this cell after it has been calibrated and tested. This will be described in the next chapter
4.

4.1 Materials

The rheological measurements were conducted using the measurement apparatus de-
scribed above. We have examined several fluids, PEO aqueous solution 5 wt% (poly ethy-
lene oxide), magnetofluid Lord MRF 140CG, and a ferrofluid APG513a, of which the first
production line was used and which will be referred to as OLD in the following.

The PEO 5 wt% aqueous solution was prepared from the poly(ethylene oxide)
(−CH2CH2O−)n with viscosity average of molecular weight Mv = 900 000 g ·mol−1. It was
supplied as a powder by the company Sigma Aldrich. This fluid was chosen as a testing
fluid for the magnetic cell and normal stress evaluation. The PEO aqueous solutions is
well known to exhibit a quite strong Weissenberg effect which I would like to show with
my cell and measurement geometry. The aqueous solution was prepared in our laboratory
and should be comparable with commercial available liquid POLYOX WSR-1104.

LORD magnetorheological fluids (MRF) are also known as good normal stresses ex-
hibitors. The MRF 140CG set is a several years old hydrocarbon-based magnetorheological
fluid, which (according to the producer) is used nowadays primarily for shocks, dampers
and brakes. The fluid consists of micron-sized, ferromagnetic particles in a carrier fluid
(non-magnetic oil). They are covered by a protective cover to avoid agglomeration. In a
magnetic field the particles create a chain similar to the observation in ferrofluids - MRF
also exhibits the magnetorheological effect. The response of the fluid to the magnetic field
is simply a sudden transformation from a liquid to a semi-solid state with a controllable
yield strength. In absence of a magnetic field, MRF 140CG behaves like Newtonian fluids
and does not exhibit yield stress (which is caused by the chain formation).

Table 4.1: properties of LORD MRF-140CG, according to Wísniewski, [37]

Solids content [wt%] 85.44
Density [g/cm3] 3.64 ± 0.1
Flash point [oC] >150
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Figure 4.1: Chain formation inside the magnetorheological fluids, cit. [37]

Figure 4.2: The magnetic properties (magnetisation curve including sample magnetic flux
density as a function of applied magnetic field intensity) of new MRF 140CG, as provided
by the producer ([15]).

The main interest of this work focuses on the ferrofluid sample. I have tested APG513a
samples from the company Ferrotec. The fluid sample was several years old, belonging to
an older product line. The particle size dispersion culminates (according to VSM mea-
surements) to about 9 nm. According to the producer, the carrier liquid is a di-ester,
the particles are from magnetite and the concentration of magnetite is 7, 2% (v/v). The
ferrofluid includes nanoparticles with a polymer cover of a thickness of about 2 nm. The
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APG fluid family was designed for loudspeaker applications but the APG513a is no longer
in production.

Figure 4.3: Magnetisation curve (sample magnetic flux density in dependence on applied
magnetic field intensity) obtained by VSM measurement (upper), its regularization using
the software Regmag: particle diameter distribution (lower)

The magnetization curve in Fig. (4.3) was fitted with the Langevin function:

M(H) = A cotgh(bH)− 1

bH
(4.1)
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with parameters
A = 29520± 60

b = (7.505± 0.128) · 10−5

These parameters can be used in a comparison of measurement and theory as in Chapter
2 (for example see eq. (2.18)) since the magnetisation required in the trace part of the
stress tensor, Π is known.

Figure 4.4: Magnetization curve (sample magnetization M in dependence on applied mag-
netic field intensity H) obtained by VSM measurement. The experimental M(H) curve is
then fitted with Langevin function, eq. (4.1).

4.2 Instruments

For the measurement presented in this work a magnetic cell was designed and used. This
magnetic cell was custom-made according to our design in the workshop at TU Dresden
and was subsequently completed by ourselves. The cell was used in combination with the
commercial rheometer Haake Mars III and a custom-made parallel plate geometry, the
aspects of which were adjusted to fit with the magnetic cell.

The goal was to build an experimental apparatus which is able to measure normal
stresses and to proceed with dynamical measurements in a varying magnetic field. For the
available rheometer, it is possible to consider several different solutions. For example, an
electromagnetic cell with one solenoid or Helmholtz coils, a magnetic cell with permanent
magnets or a coil with a core in various shapes (coil can be external to the rheometer). The
solution with permanent magnets was chosen here because of the limited space inside the
measurement area of the rheometer, the thermal stability, the low costs and high usability
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(since it is not necessary to use an electric source which would create secondary magnetic
fields).

4.2.1 Rheometer

The Haake Mars III rheometer was developed by the company Thermo Scientific, a part
of Thermo Fisher Scientific Germany. The Haake Mars III modular rheometer platform
presents, according to the producer, a “Modular Advanced Rheometer System”. The
rheometer platform has the form of a two-column stand with different flow of forces in
comparison to conventional commercial rheometers (the forces act in one plane).

The Haake Mars III works in the “CR” (controlled rate), “CS” (controlled stress), and
“CD” (controlled deformation) modes in rotation and in CS and CD modes in oscillation.
The pressure forces lie within a range from -50 N to +50 N. The measuring head is equipped
with the air bearing. The measuring area can be tempered by electric or Peltier elements
at temperatures between -150 ◦C and +600 ◦C.

The rheometer is modular; the following components are exchangeable: the temperature
control unit, the measurement geometries, the measuring head, and the electronic system.
It is possible to purchase additional cells for this rheometer, but for this work a custom-
tailored magnetic cell was developed.

Figure 4.5: Haake Mars III - 1. Display and control panel, 2. Holder for tempering units,
3. Electric temperature-module TM-EL-P, 4. Electric temperature-module TM-EL-H, 5.
Holder for measuring head, 6. Measuring head; (see the Instruction Manual Haake Mars
III, Thermo Scientific, Ver. 1.5, p. 40)
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4.2.2 Measurement geometries

For the measurement conducted for the thesis work, the measuring geometries called
’cone and plate’ and ’parallel plates’ (which were introduced in the chapter above) were
used. In both cases a custom aluminum bottom plate was used, which reaches the needs
of its height in the magnetic cell - the bottom plate was produced on according to our
design by the workshop at TU Dresden. The plate has two plateaus because of the fixative
ring, which has a constrained height. The upper part of the plate has (68.0 ± 0.5) mm in
diameter and has a thickness of (11.0 ± 0.5) mm, the bottom part has (72.0 ± 0.5) mm
in diameter and a thickness of(3.0 ± 0.5) mm.

11 mm

3 mm

68 mm

72 mm

Figure 4.6: The bottom plate for the cone and plate and parallel plate measurement
geometry

For the cone and plate measurement a commercial Haake Mars C60 1o Ti cone was
used (cone fabricated from titan with the diameter (60.0 ± 0.5)mm and the plate-cone
angle 1o),primarily as a comparative geometry for the results and for the calibration of the
new geometry. For the parallel plate geometry the upper plate was custom-made according
to our design by Thermo Scientific. It is made of titan as well and the diameter is (19.840
± 0.005 )mm. The thickness of the plate is (2.000 ± 0.005) mm.

The parallel plate geometry, called MR, was calibrated with by measurement with the
cone C60 1o Ti (shortly C60) and with the Baysilone Oil M 0.100 and Baysilone Oil M
1.000 at the temperatures 23oC and atmospheric pressure. Both geometries, MR and C60,
were used to measure the flow curves of both oils and it was subsequently to determine
the calibration constants A and M by the method of least squares in the L2 norm. For
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custom-made geometry MR these were determined to (h=0.5 mm was used):

A = (615900± 5800) Pa/Nm

M = (19.84± 0.4) s−1

Then, the results were compared with the method described in the instruction manual to
Haake Mars III ver. 1.5, page 120-121.

A =
2

πR3
= 676 397 Pa/Nm (4.2)

with the R radius of the plate, and

M =
R

h
= 19.87 s−1 (4.3)

with the set distance h of the plates.
Evidently, for the coefficient M the results are comparable within the error intervals.

For the coefficient A they are slightly different and the calculated ones were used for
measurements. The MR testing flow curves of the Baysilone 0.100 were found to be in
good agreement with the flow curves gained with C60.

4.2.3 The magnetic cell

This chapter serves to describe the magnetic cell design and the test of its usability. The
idea of a temperature stable magnetic cell with the field strength up to approx. 100 mT
for the measurement of strength temperature-dependent ferrofluids with the Haake Mars
III rheometer was fulfilled with the cell containing three permanent magnets. These ring
magnets have a variable distance from the measuring plate and the magnetic field in the
measuring region is thus easily variable. The permanent magnets do not require cooling
and therefore do not contribute to the environmental temperature influences described in
chapter 2. Three permanent magntets were employed. Two large ferrite magnets labeled
as F30 (rings 220 x 110 x 20 mm), produced by ENES Magnesy Pawel i Tomasz Zientek
Sp. k. in Poland, and one smaller neodymium magnet N35 (ring 100 x 90 x 20 mm),
produced by Magsy s r.o. in the Czech Republic, were chosen, in order to cover the entire
range of the magnetic flux density. The magnetic remanence of the ferrite F30 is stated
as 330 mT while it amounts to 1.20 T for the neodymium N35. The geometry of the cell
was chosen according to the idea of a long solenoid, in order to establish a homogeneous
vertical magnetic field in the center of the cell axis. The geometry is displayed in Fig. 4.7.
Both an analytical and FEM model have been computed (see below) for this geometry first,
for the F30 and N35 magnets plugged in with the same orientation of the magnetization
vector and second, for both F30 magnets with an orientation of the magnetization vector
opposed to that of the N35 magnet in the middle. Subsequently, the field in the center
was computed for the N35 magnet alone and for the two F30 magnets alone, once with
the same orientation of the magnetization vector, and once with the opposite orientations.
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In conclusion, such a geometry can cover a wide range of magnetic flux density in the cell
center on the rotational axis of the cell.

F30

F30

N35
measuring  plate

Figure 4.7: Three ring magnets from the side - schema of the geometry

measuring plate

F30

N35

Figure 4.8: Three ring magnets from the top - schema of the geometry
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Figure 4.9: Simple 2D simulation of the magnet geometry in Vizimag 1.39 - top the geom-
etry, bottom: with field lines (F30 positive magnetization direction, N35 negative direction
of magnetization)
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Figure 4.10: From left to right: a) 2D Vizimag simulation - field lines for both N35 and
F30 magnets with the same orientation of magnetization, b) 2D Vizimag simulation - field
lines for only the F30 magnets with the same orientation of magnetization, c) 3D Femlab
simulation - N35 positive, F30 negative: the vector of the B-field on the xy-plane (z=0)

This was also the reason for usage of both neodymium and ferrite magnets - the ferrite
magnets itself can cover the middle range of the magnetization (positive and opposite
orientation of the vector of the magnetization) and together with the strong N35 magnet
can also cover the range around zero very well (both F30 magnetization vectors in the
opposite orientation to that of the N35 magnet) or higher values (all the magnetization
vectors with identical orientation).

The full overview is provided in Tab. 4.2. Only the promising orientations of those
magnets are computed and displayed - based on the field form in the measurement area -
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magnet name do x di x h[mm] Br [T] material
N35 100 x 90 x 20 1.20 neodymium
F30 220 x 110 x 20 0.33 ferrite

for instance, the assembly with no N35 magnet and both F30 magnets, with an opposite
orientation of the magnetization vectors does not promise a sufficiently wide homogeneous
vertical field (as computed using Vizimag and FemLab).

For the magnet geometry a holder frame was proposed. The final design of the frame
was carried out by Mr. Ulf Neumann. Non-magnetic materials were used for the frame,
combining the austenitic steel (screw-able frame for the N35 magnet, screw bolts, nuts),
copper (screws, nuts) and aluminum (holder plates for the F30 magnets). The purchased
magnets were then combined together on the holder frame (the parts were processed by
the workshop at TU Dresden). The holder frame is depicted in Fig. 4.11 and 4.12. The
whole magnetic cell together with the holder frame was simulated using FemLab 3.1 in 3D,
the geometry of simple magnets according to Fig. 4.7 was simulated by the Vizimag 3.19.
Some of these results are displayed in Fig. 4.9 and 4.10.

Figure 4.11: The magnetic cell - overview (3D model produced by Mr Ulf Neumann,
Lehrstuhl für Magnetofluiddynamik, TU Dresden (MFD))
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Figure 4.12: The magnetic cell - cut (3D model produced by Mr Ulf Neumann, MFD)

Next, an analytical model was prepared for the magnet geometry. The analytic model
was based on the following equations (simple Ampére Law):

Bz1(Br1 , R1, R2, h, x) =
Br1

2

([
x+ h√

(x+ h)2 +R2
2

− x− h√
(x− h)2 +R2

2

]
−[

x+ h√
(x+ h)2 +R2

1

− x− h√
(x− h)2 +R2

1

]) (4.4)

Bz2(Br2 , R1a, R2a, ha, x) =
Br2

2

([
x+ ha√

(x+ ha)2 +R2
2a

− x− ha√
(x− ha)2 +R2

2a

]
−[

x+ ha√
(x+ ha)2 +R2

1a

− x− ha√
(x− ha)2 +R2

1a

]) (4.5)
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Table 4.2: The achievable range of magnetic flux density according to the orientation of
the magnetization vector - computed from the analytical model (the flux density range is
limited by the physical size of the magnets, the holder frame and the space available in the
measuring area of the rheometer)

F30 N35 magnetic flux density range [mT]
direction: positive positive 44 - 64

positive no magnet 19 - 39
positive negative -14 - 0

Bz3(Br2 , R1a, R2a, ha, x, d) =
Br2

2

([
x+ 2ha + d√

(x+ 2ha + d)2 +R2
2a

− x+ d√
(x+ d)2 +R2

2a

]
−[

x+ 2ha + d√
(x+ 2ha + d)2 +R2

1a

− x+ d√
(x+ d)2 +R2

1a

]
−[

x− 2ha − d√
(x− 2ha − d)2 +R2

2a

− x− d√
(x− d)2 +R2

2a

]
−[

x− 2ha − d√
(x− 2ha − d)2 +R2

1a

− x− d√
(x− d)2 +R2

1a

])
(4.6)

These equations describe the z-component of magnetic flux density for three ideal
magnets (Bz1 is the z-component of the magnetic flux density for the N35 magnet, Bz2 and
Bz3 are the z-components of the magnetic flux density for the F30 magnets) without end
effects in the assembly as introduced in Fig. 4.7. h and ha stand for half of the height of the
magnets N35, F30 respectively, d denotes half of the distance between the F30 magnets.
The following values were used:

Br1 = 1.20 T; R1 = 0.05 m; R2 = 0.045 m; h = 0.01 m;

Br2 = 0.33 T; R1a = 0.11 m; R2a = 0.055 m; ha = 0.01 m.

The magnetic cell was calibrated by LakeShore Gaussmeter and the results were com-
pared with all of the models. The calibration measurement was carried out in the mea-
surement position lying on the rheometer plate. In Fig. 4.13, the analytical model and
the measured values are compared. It is evident, that the measured values for the sit-
uation with the F30 magnet positive and N35 magnet negative are slightly higher than
those predicted by the model, this could be due to the overall contraction of the entire
green-blue-red band caused by the magnetic parts of the rheometer. But the main problem
is the size of the Hall probe which is installed on the top of the LakeShore Gaussmeter.
The accuracy is not very high and the effect is enhanced by the error made by measuring
in the 3D space.
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Figure 4.13: Dependence of the z-component of the magnetic flux density, Bz, at half the
distance between both F30 magnets, denoted as d. The vertical lines denote the range of
magnetic flux densities, which can be achieved with our magnetic cell.

Figure 4.14: Magnetic flux density for the two magnets F30 and N35 with an opposite
orientation of magnetization in the holder frame - xy plane for z=0 cm and d=2.5 cm
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Based on these results, the vector of the magnetic flux in the xy plane (z-component
varies from -2 to 2 cm) is comparable with the model results within the range of error
(which is rather rough) and the magnetic cell was found to be sufficiently accurate for the
characterization of the magnetofluids and primary ferrofluids.

Subsequently, the magnetic cell was tested with Baysilone Oil M 0.100 and 1.000 with
the MR measurement geometry. The flow curves of the following setups have been com-
pared: a. the commercial titan under-plate P60 and cone C60 b. the base plate P60
and measurement plate MR c. the custom-made aluminum base plate and measurement
plate MR and d. the custom-made aluminum base plate and measurement plate MR for
various magnetic fields in the magnetic cell. This comparison showed a good agreement of
the results which means that the data obtained from the magnetic cell are usable also in
comparison to other experiments outside this cell (the ability of the rheometer to measure
correctly in the magnetic field was confirmed by these experiments).

Note

The entire system suffers from an accuracy problem - the measurement geometry MR
was not built with sufficient precision (it was fabricated by Thermo Scientific as a sample
only) and during rotation the measurement plate undergoes precessive and nutative move-
ments. Therefore as a result, one obtains for well-defined torque measurement a harmonic
signal in a constant state. In accordance with that, all the measured data was recorded
over a sufficiently long time period to receive the entire signal information (entire periods
of the harmonic signal) and to be able to find the ground state value of the measured
one. This causes a significant increase in the required measurement efforts and also proves
detrimental to the precision of all measurements. Calibration could only be carried out
for a given precision. Additionaly, the precession and nutation require a minimal parallel
plate distance (which influences the thermal stability of the sample and the accuracy of
the normal stresses measurement).
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5. Results and discussion

After the calibration of the magnetic cell a set of shear, creep and dynamic experiments
have been conducted for each of investigated fluids. Hereby, 5 wt% aqueous solution of
poly ethylene oxide (next referenced as PEO) and magnetorheological fluid Lord MRD
served as reference liquids, for the characterization of APG513a.

5.1 Rheological behavior of PEO 5 wt% aqueous so-

lution

The aqueous solution of 5 wt% PEO was prepared and measured for shear and creep
with both geometries (C60 and MR) in the linear regime. Subsequently, dynamic mea-
surements were also conducted. The flow curve was compared with the data obtained by
Ladouani, [12], see Fig. 5.1. From the experimental flow curve the power-law coefficients
were computed (L2 norm):

τ =Kγ̇n

K =(6.216± 0.501) Pa.s0.586, n = 0.586± 0.010
(5.1)

which is a typical shear-thinning index for a polymer aqueous solution, containing rather
longer molecules. A good agreement is achieved between the measured data and the results
obtained by Ladouani [12]. Our measurements were were carried out at 23◦C and the PEO
has a viscosity average of molecular weight of Mv = 900 000 g · mol−1. Therefore, in
comparison with Ladouani (Fig. 5.2), our τ(γ̇) curve lies close to the left curve (square
symbols) for the PEO τ(γ̇) dependence for a volume molar weight of Mv = 1000 000 g ·
mol−1.
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Figure 5.1: The τ(γ̇) dependence (flow curve, in red) and the viscosity dependence η(γ̇)
(in green). On the stress flow curve power-law, Eq. (5.1), was applied.

Figure 5.2: Flow curves (τ(γ̇) dependencies), as obtained by Ladouani [12].

Subsequently, the normal force were measured using the C60 and MR measuring ge-
ometries - with the geometry of parallel plates (here, with device MR) we can measure the
differences of normal stresses N1−N2 (see Eq. (3.59)), while the cone and plate geometry
(here, with the device C60) allows for a measurement of the first normal stresses difference
N1 (see Eq. (3.65)). However, as shown in literature (for example [12]), N2 is significantly
smaller than N1 and can thus be neglected. The results of both geometries are therefore
comparable, as shown in Fig. 5.3. We can see very good agreement between the data
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measured with the cone (C60) and the plate (MR) geometries. It can thus be concluded,
that the contribution of the second normal stresses difference N2 to our measurements, is
also very small.

From our measurements the normal stress coefficients can be expressed in accordance
with the power law, Eq. (3.7):

N1 = Kγ̇n (5.2)

In our case, the function above was estimated from the data (Fig. 5.3) with coefficients

K = (0.670± 0.015) Pa.s0.211,

n = (0.211± 0.001).

The small power-law index is in accordance to power-law results in the case of shear stress
measurements (Eq .(5.1)). The parameter K and the power-law index are rather smaller.
Because this parameter K contains information related to the shear modulus in hard
matter, we can conclude that the PEO solution is rather viscous.

Figure 5.3: The first normal stress difference N1 and normal stress differences N1 − N2

with respect to the shear rate γ̇. Red: N1 without a magnetic field, measured in the C60
geometry. Green: N1−N2 measured in the MR geometry, without a magnetic field. Blue:
with a 33 mT magnetic field.
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Figure 5.4: The first normal stress difference N1 and normal stress differences N1 − N2

with respect to the shear rate γ̇. Displayed in log scale to include a broader shear rate
window. Red: N1 measured in the C60 geometry, without a magnetic field. Green: N1−N2

measured in the MR geometry without a magnetic field. Blue: in 33 mT magnetic field

The fluid dynamical experiments conclude this first set of measurements. One can see
in Fig. 5.5, that the dynamical shear modulus is rather low. In this range of temperature
and frequency the fluid is still within the flow regime where the viscosity and flow play
the main roles. Therefore, the deformation is also non-recoverable. On the border of the
measurement window, at 100 Hz, the fluid approaches the rubbery plateau which exhibits
both the flow and elastic body attributes. For higher frequencies, a different slope and
elastic plateau (glassy state) are expected.
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Figure 5.5: Storage and loss shear moduli (red and green), the complex modulus (purple)
and complex viscosity (blue) as a function of frequency for the PEO 5 wt% in water at
23◦C.

5.2 Magnetorheological behavior of fluid Lord MRF

140CG

The magnetorheological fluid LORD MRF 140CG was measured in steady shear flow
and in oscillatory shear flow (linear regime, if not explicitly stated otherwise). This fluid
was measured with the MR plate and the PP60 base plate. The measurements were
conducted for magnetic field strengths in the range of (0 - 12.1) mT. Due to the effect
of In-Use-Thickening and the evaporation of the base fluid, the results cannot be easily
compared those of other research groups or to the manufacturer specifications. For more
details on In-Use-Thickening and the variation of magnetorheological fluid characteristics
with time, the reader is referred to e.g. Carlson, [5].

The flow curves are displayed in Fig. 5.6. These flow curves were also fitted with the
power law function:

τ = Kγ̇n (5.3)

In these experiments, the power-law index is almost constant for different field strengths
and remains within a range of n ∈ (0.6 − 0.7). The consistency coefficient K cannot be
fitted very precisely but we can say it increases with an increasing intensity of the applied
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magnetic field. The consistency coefficient is one order higher than the one for PEO 5wt%
aqueous solution which is in accordance to in-vivo observations. Both of the power-law
rule coefficients for magnetorheological fluid LORD MRF 140CG are summarized in Tab.
5.1.

Figure 5.6: Experimental flow curves τ(γ̇) of Lord MRF 140CG without a magnetic field
(red) and with a 12 mT magnetic field (green), crosses for shear stress and diamonds for
viscosity, as displayed on the second axis.

The experimental flow curve can be compared with the flow curve provided by the
producer [15]. This curve, obtained at a temperature of 40◦C (which means lower viscosities
at the same shear rates in comparison to the measured data), is displayed in Fig. 5.7. In
comparison with Fig. 5.6 the range of stresses is one order lower which cannot be explained
simply by the difference in measurement temperatures. However, the producer obtained
this curve with a freshly fabricated fluid and I have used a sample which is several years
old. This discrepancy is expectable because of the so-called thickening process. In our case,
the sample must have already undergone the thickening process. This effect of a viscosity
change over time is well known [5].
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Table 5.1: Consistency coefficient K and power-law index n according to Eq. (5.3) for
magnetorheological fluid Lord MRF 140CG.

B [mT] K [Pa.sn] n [-]
0 43.42 ± 6.949 0.647 ± 0.029
2.1 54.18 ± 1.254 0.601 ± 0.004
9.6 36.27 ± 10.39 0.677 ± 0.052
12.1 70.19 ± 29.50 0.616 ± 0.072)

Figure 5.7: Flow curve τ(γ̇) for the fluid Lord MRF 140CG, as provided by the producer,
[15].

We can see, that the fluid does not change its power-law index which mean it stays
in the same shear-thickening state with or without the field. This fact can be due to
the thickening process, as previously noticed. During this process, the microparticles in
the fluid can dissolve, break down and aggregate. Naturally, the fluid was exposed to
ultrasound and a mixing procedure before every measurement in order to minimize the
ageing effect, however it could not be fully suppressed.

This result is further underlined by the results for the first difference of normal stresses,
as is evident in Fig. 5.8. The normal stresses measurement displays the anisotropy of the
fluid in zero magnetic field, which is not a common fluid property and which can related
to the thickening process. Furthermore, the fluid exhibits a broadened anisotropy as the
field increases.

A fit of the normal stresses differences N1 was carried out according to the power law
as given in Eq. (5.2):

N1 = Kγ̇n (5.4)
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The reaction of the fluid shows a tendency to lower the consistency coefficient K with
an increasing magnetic field intensity and a simultaneous increase of the power-law index.
In comparison to shear stress, the normal stress in the fluid exhibits a one order higher
consistency coefficient and a lower power-law index (it reaches comparable values for a
magnetic field flux density of 12.1 mT). Both coefficients are displayed in Tab. 5.2. We
can observe a rather large uncertainty for the consistency coefficient. But the decrease of
the consistency coefficient K with an increasing magnetic field is very interesting, because
it means that the fluid no longer carries the elastic properties which contribute to the com-
plex viscoelastic behavior. The opposite tendency would be expected - a larger magnetic
field intensity should lead to a ’harder’ and ’more solid-like’ fluid. This property is only
observed in the normal direction, not in shear (here the consistency coefficient increases
with increasing field).

This following measurement was conducted both with the parallel plate geomtery (MR)
and the cone-and-plate geometry (C60) with zero magnetic field. In this case, the very good
correlation of C60 and MR measurements confirms the hypothesis of a negligible value of
the second stresses difference N2. In Fig. 5.8 the experimental normal stresses differences
curves are depicted for various magnetic field strengths when using a MR parallel plate
geometry.
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Table 5.2: Coefficients of the power-law fit for normal stresses differences of magnetorheo-
logical fluid LORD MRF 140CG, according to Eq. (5.4)

B [mT] K [Pa.sn] n [-]
0 155.3 ± 209.4 0.272 ± 0.169
2.1 115.9 ± 214.9 0.309 ± 0.259
9.6 5.841 ± 10.23 0.823 ± 0.329
12.1 1.46 ± 24.63 0.629 ± 0.195

Figure 5.8: The measurement of normal stresses differences in magnetorheological fluid
LORD MRF 140 GC at 23◦C in the parallel plate geometry MR. Red: the normal stresses
differences N1 − N2 as a function of shear rate γ̇ with zero magnetic field. Green: in a
magnetic field of magnitude 2.1 mT. Blue: magnitude of 9.6 mT. Purple: magnitude of
12.6 mT.

In order to reach lower shear rates dependencies for the shear stress curve and the
normal stresses difference curves, the oscillatory shear experiments were conducted. As
is evident from the results, the fluid is in a flow regime at room temperature (measured
at 23◦C) for a frequency window of f = (0.1 − 100) Hz. As we stated above, the second
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normal stresses difference N2 can be neglected in our measurements and we can, therefore,
work with the normal stresses differences results including only the first normal stresses
difference N1 (instead of the entire term N1−N2 which is actually measured with the MR
parallel plate geometry). Fig. 5.9 displays the comparison of the storage, loss and complex
shear moduli (G′, G′′ and |G ∗ |, respectively) along with the complex viscosity |η ∗ |. The
flow regime is evident here for larger loss shear modulus than storage shear modulus. The
complex viscosity exhibits the shear thinning property.

Figure 5.9: The oscillatory shear experiment for magnetorheological fluid Lord MRF
140CG at 23◦C. The dependencies of the storage and loss shear moduli (G′ and G′′) on
the frequency f are depicted (a) for a magnetic field intensity of 2.1 mT in red and green,
respectively and (b) for 12.1 mT in purple and blue squares. The dependency of the com-
plex viscosity on the frequency f is depicted with blue crosses on the secondary axis and
with dark red circles for a magnetic field intensity of 12.1 mT.

The semi-empirical Cox-Merz, Eq. (3.67), and Laun’s rule, Eq. (3.68), allow us to
employ this data to obtain extended flow curves and the dependence of the first normal
stresses difference on the shear rate γ̇ (as discussed above, it is possible to deal with the
results of the measured difference N1 − N2 as the pure N1 value and it is subsequently
possible to apply Laun’s rule). The Cox-Merz rule, Eq. (3.67), compares the steady-state
viscosity η with the complex viscosity η∗ from the dynamical experiment, for the same
angular velocity ω in the dynamical mode as the shear rate γ̇ in the steady-state mode:

|η∗(ω)| ≡ η(γ̇)|γ̇=ω (5.5)

This provides an extended viscosity dependency curve (η(γ̇)) according to the power law.
The extension is presented in Fig. 5.10. We can observe a very good accordance which
allows us to apply Laun’s rule (more details on this problem are provided by Al-Hadithi,
[8]).
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Laun’s rule is more complicated and compares the storage and loss part of the complex
shear moduli, G′ and G′′, with the first normal stresses difference N1, again for the same
angular velocity in the dynamical mode as the shear rate in the steady-state mode:

N1(γ̇)|γ̇=ω ∼= 2G′(ω)

(
1 +

(
G′(ω)

G′′(ω)

)2
)n

(5.6)

For the application of Laun’s rule, we need to use the model of the fluid in order to examine
the power index n. We use the power-law with indexes as obtained from the experimental
data (see Tab. 5.1). The entire Laun’s rule relation (Eq. (3.68)) had to be shifted to
lower values because of different calibration. The results are provided in Fig. 5.11. After
applying the shift, the data correlate very well.

Figure 5.10: The Cox-Merz rule, Eq. (3.67), applied to the steady-state experimental
viscosity curve, Eq. (5.6), and the dynamical complex viscosity curve, Fig. (5.9), for
magnetorheological fluid Lord MRF 140 CG at 23◦C. The steady-state viscosity, η, is
depicted (a) for a magnetic field flux density of 2.1 mT, in red and (b) for 12.1 mT, in
green. The complex viscosity η∗ is depicted (a) for a magnetic field flux density of 2.1 mT,
in blue and (b) for 12.1 mT, in purple.
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Figure 5.11: The application of Laun’s rule, Eq. (3.68), on the steady-state experimental
normal stresses differences curve, Fig. (5.8), and the dynamical storage and loss shear
moduli curve, Fig. 5.9, in magnetorheological fluid Lord MRF 140 CG at 23◦C. The
steady-state first normal stresses difference N1 is depicted (a) for a magnetic field flux
density of 2.1 mT, in red and (b) for 12.1 mT, in green. The dynamical storage and loss
shear moduli data is depicted (a) for a magnetic field flux density of 2.1 mT,in blue and
(b) for 12.1 mT, in purple.

The application of Laun’s rule, allows us to observe the influence of the magnetic field
on the rheological properties of the fluid.

From the experimental viscosity curve in Fig. 5.10, the magnetoviscous effect can thus
be expressed for a broader range of shear rates. Using the time-temperature superposition
principle, the range of known viscosities for different magnetic field strengths can also be
explained. According to the given graph, the magnetoviscous effect for the shear rate
γ̇ = 0.016s−1 is up to 850 %. An overview is displayed on a logarithmic scale in Fig. 5.12.
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Figure 5.12: The dependence of the ratio η12.1mT/η2.1mT on the shear rate γ̇ (so-called
magnetoviscous effect) using both the oscillatory (red) and steady-state shear flow (green)
measurements. Computed using the Cox-Merz rule, Fig. 5.10, for magnetorheological fluid
Lord MRF 140CG.

5.3 Magnetorheological behavior of APG513a OLD

In the magnetic cell the ferrofluid APG513a was measured in a parallel plate geometry
(MR) within the linear regime (unless stated otherwise). This elder production line, which
typically contains an increased amount of larger magnetite particles with diameter over
12 nm, was examined using steady-state shear and oscillatory shear mode as well as time-
dependent measurements. The measurements were repeated several times due to technical
problems with the Rosensweig instability, which operatively changes the amount of fluid
under the plate and decreases the measured moment virtually. An overview of the flow
curves τ(γ̇, ~B), viscosities η(γ̇, ~B) and normal stresses differences [N1−N2](γ̇, ~B) is provided
in the following.

The flow curves τ(γ̇, ~B) were measured for |B| ∈ (0− 67) mT, γ̇ ∈ (1− 1000) s−1. The
response to the magnetic field is not directly proportional to the magnetic field flux density.
In Fig. 5.13 a complete overview is displayed. For slow and increasing shear rates γ̇, the
difference between the two shear stress responses τ(γ̇, ~B) to the applied magnetic field flux
densities increases. On the other hand, in the large shear rates regime, γ̇ ∈ (200−1000) s−1

, this difference decreases with a decreasing field intensity and remains constant for larger
field intensities. The impact of the magnetic field on the shear stress (for smaller field flux
densities (up to approx. 40 mT)) thus exhibits a maximum around γ̇ ∈ (100− 200) s−1 or
higher. Furthermore, with an increasing magnetic field flux density it the coupling to the
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shear rate is significantly weaker. We cannot rule out a maximum at higher shear rates,
since this would lie outside the measurement range.

In Fig. 5.14, a detailed view is provided. In this figure a narrower range of shear rates,
up to 100 s−1, is shown and we can see the influence of the magnetic field on the shear stress
response. Between 0 and 19 mT, and also between 43 and 54 mT, we can see a significant
change in the response. Such changes can be caused by the formation of chain structures,
which are not rigid enough for low fields and are thus destroyed due to the strain. In
the second case, of stronger fields (43 and 54 mT), the chain structures are already built
and can be characterized using a spacial ratio of these structures - the anisotropy level.
Therefore, especially for these fluids, the experiment must be conducted with great care and
the direction of shear rate change (increase or decrease) presents an important variable in
the experiment. Concerning the ferrofluid APG513a OLD, no influence on the flow curves
was observed.

Figure 5.13: The flow curves τ(γ̇) of APG513a OLD for various magnetic field strengths,
at 23◦C.
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Figure 5.14: Detailed flow curves τ(γ̇) for APG513a OLD for various magnetic field
strengths, at 23◦C.

The obtained flow curves τ(γ̇) allow for the recovery of the viscosity. The relation
between shear stress and viscosity is the rheological relation which is expected to obey
the laws derived in chapter 2, Eq. (2.19). Because these are experimental viscosity curves
η(γ̇), the Cross model was used first to examine the course of the shear rate functions.
The fitted viscosities are depicted in Fig. 5.15. The model was fitted for the experimental
viscosity dependence on the shear rate in Fig. 5.16 - the fitted Cross model coefficients,
Eq. (3.5),

η − η∞
η0 − η∞

=
1

1 + (Kγ̇)n
,

are in Tab. 5.3.
The experimental viscosity curves η(γ̇) show, that as in the case of magnetorheological

fluid Lord MRF 140CG the power-law index stays in a narrow interval for any magnetic
field applied. In this case the power-law index n ∈ (0.6− 0.8) which is a typical value for
a fluid with larger, longer molecules (here with chains as well). The consistency coefficient
increases with the increasing magnetic field and the fluid is then more shear-thinning under
the influence of magnetic fluid.
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Table 5.3: Cross model coefficients according to Eq. (3.5)

B [mT] K [Pa.sn] n [-]
0 0.032 ± 0.002 0.860 ± 0.073
19 0.143 ± 0.028 0.694 ± 0.044
24 0.277 ± 0.046 0.657 ± 0.024
33 0.282 ± 0.061 0.713 ± 0.040
43 0.249 ± 0.027 0.771 ± 0.029
50 0.745 ± 0.097 0.699 ± 0.013
54 0.917 ± 0.092 0.667 ± 0.008
67 1.314 ± 0.166 0.662 ± 0.009

Figure 5.15: The viscosity curves η(γ̇) of APG513a OLD for various magnetic field
strengths and shear rates, at 23◦C.
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Figure 5.16: The viscosity curves η(γ̇) of APG513a OLD for different magnetic field
strengths and shear rates, at 23◦C. The Cross model coefficients for the model curves
are summarized in Tab. 5.3.

Next, the magnetoviscous effect for the APG513a was calculated. This experimental
curves are obtained as ratio between viscosity of the fluid exposed to magnetic field to
viscosity of the fluid in absence of the magnetic field (so-called reference viscosity). The
magnetoviscous effect is displayed in Fig. 5.17. The magnetoviscous effect is quite strong
for this liquid and reaches 800 % for lowest shear rate γ̇ = 1 s−1 and strongest field B= 33
mT.
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Figure 5.17: The magnetoviscous effect - the viscosity ratio η/η0 in dependence on shear
rate γ̇ for ferrofluid APG513a OLD at 23◦C. Viscosity η varies from 19mT (red), 24 mT
(green) to 33mT (blue). The reference viscosity η0 is the viscosity measured at megantic
field absence (vis Fig. 5.16)

.

The fluid was further exposed to normal force measurements. This experiment was
more difficult compared to the shear stress measurement. There are multiple reasons for
this. For instance, the experiment is very sensitive to any variation of the gap between
the parallel plates and there are also Rosensweig instabilities within the ferrofluid, when
it is exposed to a magnetic field. These instabilities change the normal force locally and
must be avoided for the measurement of the normal stresses differences. This means, that
the free surface of the fluid has to be eliminated. For a parallel plate measuring geometry,
the side of the sample has a free surface. We have thus employed a shallow cup, cut into
the bottom plate. Next, the measured force is rather low in comparison to that of the
fluids measured above (polymer PEO 5wt% aqueous solution and magnetorheological fluid
Lord MRF 140CG). The measurement must therefore be calibrated very carefully and all
secondary processes in the fluid will have a strong effect on the measurment. The fluid is
also a better heat conductor (and therefore the measurement errors described in Chapter
3 play a more significant role, vis Fig. 3.4, Fig. 3.5 and further reading in Olagunju,
[25]). Therefore, the gap must be estimated in accordance to the temperature variation
and constraints given by the precession of the MR geometry. The gap between the plates
was determined as h = 0.5 mm.

The results of the normal stresses differences N1−N2 measurement are provided in Fig.
5.18.
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Figure 5.18: Normal stress difference N1 −N2 in dependence on shear rate γ̇ in ferrofluid
APG513a OLD at 23◦C

In Fig. 5.18 we can observe the effect of constant contribution of the magnetic field flux
density to the second normal stresses difference N2 - according to the derived theory, the
trace part of the stress tensor contributes a constant term BH - Eq. (2.18), where H is the
magnitude of the applied magnetic field intensity and B the response of the material, the
induced magnetic flux density. This response was previously observed in VSM measurement
(in Fig. 4.4 and from experimentalM−H curve (fluid magnetization dependence on applied
magnetic field intensity H) we arrive at a corresponding magnetisation function, Eq. (4.1).
We can see that the magnetisation of the fluid in the range of B ∈ (0− 67) mT lies within
an interval of M ∈ (0−5) kA/m. Thus, the contribution of this constant term is significant
and therefore, when a magnetic field is applied, the chains are formed within the fluid and
contribute to the first normal stress difference N1. However, they are destroyed at larger
shear rates γ̇ so that the constant in the term for the second normal stresses difference N2

plays a more significant role. After the observed maximun, the entire experimental curve
N1 −N2 decreases, as supported by our experiment.

For the normal stresses difference, a power-law model was also applied. This model
was, however, adapted in order to reflect the theory, Eq. (2.18). Therefore a function of
two terms was used where the first part accounts for the influence of N1 (this term includes
the bulk viscosity) and the second term describes N2 and includes the constant term of
magnetic field influence.

N1 −N2 = Kαγ̇
n1 +Kβγ̇

n2 (5.7)

This function was applied to the experimental N1−N2 curves, but the fit was unstable.
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Therefore, the first part, for which the first normal stress difference dominates the second
part,

N1 � N2

was modeled separately. The power-law model was used:

N1 = Kαγ̇
n1 (5.8)

For this fit, shear rates γ̇ ≤ 40 s−1 were selected. The fit became unstable for the region
of larger viscosities. From this part the power-law index n1 was found to be very close to
1. On the basis of this result, the overall power-law model for the ferrofluid normal stress
differeces can be described as

N1 −N2 = Kαγ̇ −Kβγ̇
n2 . (5.9)

The model and experimental normal stress differences curves are displayed in Fig. 5.18
and 5.19.

In Fig. 5.18 we can observe the effect of a constant contribution of the magnetic field
flux density to the second normal stresses difference N2. This effect is in accordance with
the derived theory, see Eq. (2.18). The term N2 can rapidly change the course of the
normal stress differences N1 − N2 because the value of Π33 contributes a constant BH
term. The material response B can be obtained from the experimental curve (Fig. 4.3).
Therefore the stronger the field is, the more the second normal stress difference N2 will
shift into the negative. In addition, this constant term in N2 will play a more important
role while the shear rate increases (the fluid is shear-thinning). All of these effect are
supported by the experimental data, Fig. 5.18 and 5.19.

Model parameters fitted on the experimental curves are displayed in Tab. 5.3.

Table 5.4: Consistency coefficients Kα and Kβ refering to normal stresses differences N1

and N2 and power-law index n2 according to modified power-law model, Eq. (5.9).

B [mT] Kα [Pa.s] Kβ [Pa.sn2 ] n2 [-]
0 -0,063 ± 0,074 -1,024 ± 91,90 0,193 ± 11,93
19 -0,365 ± 0,095 -43,92 ± 33,31 0,291 ± 0,132
24 -0,320 ± 0,069 -152,0 ± 183,0 0,140 ± 0,128
33 -2,250 ± 147,0 -3,842 ± 122,0 0,927 ± 4,570
43 -0,174 ± 0,107 -37,56 ± 91,80 0,221 ± 0,355
50 -0,072 ± 0,057 -606,0 ± 3230 0,031 ± 0,155
54 -0,198 ± 0,072 -64,39 ± 157,0 0,151 ± 0,276
67 -0,196 ± 0,052 -170,0 ± 503,0 0,080 ± 0,202

Tab. 5.4 shows some interesting results. The power-law index n2 varies for this ferrofluid
and model between 0.1 - 0.3 (excluding extreme values) and refers thus to a shear thinning
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fluid with longer moleculs (chains). The index is not very sensitive to the magnetic field
intensity. This value is however only one-third of the value for the shear stress mode.
This means that the fluid is more shear-thinning in the normal direction than in the shear
direction.

The consistency coefficients are one order higher than in the shear stress measurement
and are negative. The consistency coefficient Kα is comparable to its value for shear stress
direction and refers to the same attribute of the fluid as in the shear direction. However,
the second consistency coefficient Kβ is larger. The precision of this quantity was low. The
fluid is more rigid with increasing Kβ.

Figure 5.19: Normal stress difference N1 − N2 in dependence on shear rate γ̇ and model
functions, Eq. (5.9),in ferrofluid APG513a OLD at 23◦C

To obtain a complete characterization of the normal stresses in the ferrofluid APG513a
OLD, time-dependent measurements were conducted. These include dynamical shear and
creep experiments.

An increased accuracy was achieved for the oscillatory experiments. This is very advan-
tageous for the application of the Cox-Merz and Laun rules. A complete shear experiments
better accuracy is held. Therefore, this experiment is very suitable for the use of the Cox-
Merz and Laun rules. We have measured the complex shear modulus, with the storage
and loss parts, and, thereby, also obtained the complex viscosity. These experiments were
conducted at several different temperatures to extend the frequency range and also the
shear strain window using the Cox-Merz and Laun rules. However, the temperature range
is constrained by the rheometer properties and the fluid specifications. The rheometer was
not capable (at the time of the experimental work) to cool down the sample below 10◦C.
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Furthermore, the fluid cannot be heated above 50◦C, so that we end up with a usable
temperature range of T ∈ (15 − 40) ◦C. The temperature increments were chosen to be
5◦C because this presents a good compromise between the number of measurement and
the possibility to apply the time-temperature superposition principle (3.8).

For the creation of the master curve, in accordance to the William-Landau-Ferry equa-
tion and the time-temperature superposition principle, Eq. (3.8), the reference temperature
T0 = 25◦C was chosen. The master curves were plotted with Gnuplot. To determine the
accuracy, the aT (T ) plot is depicted in Fig. 5.22 and a fit results in the function

aTfit(T ) = 9.85x−0.07 − 6.72. (5.10)

In Fig.(5.20), which covers the storage modulus G′, and in Fig.5.21, which covers the
loss modulus G′′, the field induced change of the flow regime is clearly observed - for zero
field, the fluid is fully in the flow regime, without an elastic element (as expected). For
an increasing magnetic flux density, the regime is shifted towards the rubbery plateau and
elastic ascension. Both the storage and loss moduli increase, as will be shown below.
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Figure 5.20: Master curves of the storage modulus G′ in dependence on the magnetic field,
at a reference temperature T0 = 25◦C. The fluid APG513a OLD was used. From left to
right the master curves of G′ in magnetic flux densities of B=0, 19, 24 and 33 mT.
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Figure 5.21: Master curves of the loss modulus G′′ in dependence on the magnetic field,
at a reference temperature T0 = 25◦C . The fluid APG513a OLD was used. From left to
right the master curves of G′′ in magnetic flux densities of B=0, 19, 24 and 33 mT.
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Figure 5.22: The shift factor aT in dependence on the temperature for APG513a OLD,
according to Eq. (5.10).

The master curves can be compared with each other and used to express the influence
of the magnetic field. The comparison is provided in Fig. 5.23 for the different magnetic
flux densities used in experiment. The storage and loss moduli are displayed for every
magnetic flux density - it is interesting to observe, that the curves for the magnetic flux
densities 19 mT and 24 mT are simply overlapping each other within the range of lower
frequencies. Therefore, the mechanical properties of the fluid remain unchanged within
this region.

Fig. 5.24 shows the comparison of the storage and loss moduli changes in the field.
Only the minimal and maximal fields were chosen in the interest of lucidity. It can be
observed, that the ferrofluid shifts from the flow regime at 0 T to a rubbery state at 33
mT.
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Figure 5.23: Master curves of the storage and loss moduli (G′ and G′′) in dependence on
the magnetic field, at a reference temperature T0 = 25◦C. The fluid APG513a OLD was
used. From left to right the master curves of G′ and G′′ in magnetic flux densities of B=0,
19, 24 and 33 mT.
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Figure 5.24: Master curves of the storage and loss moduli (G′ and G′′) without a mag-
netic field in light and dark green, respectively, and for B = 33 mT in red and purple,
respectively. The reference temperature was T0 = 25◦C. The storage and loss moduli are
displayed in dependence on magnetic field. The fluid APG513a OLD was used.

On the basis of the oscillatory measurements, the semi-empirical Cox-Merz rule can be
applied. In accordance to the theory, Eq. (3.67), the plots in Fig. 5.25, and 5.26 express
this rule. The accordance of both viscosities can be found within the range of errors for
shear rates γ̇ ∈ (1−100) s−1. Hoever, the data obtained by steady-state shear experiments
do not exhibit the same quality discussed above. The data obtained by steady-state shear
experiments follow the same trend as the data obtained by the dynamical experiments with-
in the given interval of shear rates (excluding the experiment done without any magnetic
field presence). The experimental viscosity curves obtained in stead-state and dynamical
mode for zero magnetic field display opposite trends. The experimental viscosity curve η(γ̇)
obtained from the dynamical measurements expresses the shear-thickening property while,
in contrast, the experimental viscosity curve obtained from steady-state measurements ex-
presses the shear-thicking property. With the Cox-Merz rule, we obtain the viscosity for
lower shear-rates than γ̇ = 1 s−1 and are therefore able to observe the same trend here.
In the magnetic field, both experimental curves exhibit the shear-thinning property for
avnarrow window of shear-rates γ̇ ∈ (1 − 100) s−1 and, subsequently, with an increase of
the shear rate the behavior of the viscosity obtained by steady-state and dynamical mea-
surements begin to differ. The experimental viscosity curve in steady-state mode exhibits
the shear-thinning property for any shear-rate measured and any magnetic field applied
(compare with Fig. 5.16). The experimental viscosity curve in dynamical mode exhibits a
different behavior. For shear-rates above approx. 100 s−1 the curves reache a local mini-
mum and then begins to increase for increasing shear rates (the shear-thickening property).
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Therefore, both curves differs in this range of higher shear rates.
This different behavior could be caused by the progress of the experiment. For steady

state mode, the ferrofluid is exposed to a constant shear rate for longer periods of time
(tens of seconds, minutes). It is probable, that in this time the fluid can relax (as we show
later, the relaxation times for time-dependent experiments are very large, about tens of
seconds, see Tab. 5.5). The chain formation and other processes are in equilibrium and
the final viscosity value is the equilibrated viscosity as well.

The dynamical mode is different. The fluid is exposed to harmonicaly changing strain
and the response of the fluid - shear stress is then measured for periods of applied frequency.
The anisotropic strain in the fluid is thus very different from the strain in the steady state
mode. The nanoparticles in the fluid can change the stress field strongly and thus change
the reponse of the fluid for higher frequencies, where these bodies are not capable to move
with the high frequency. According to the Cox-Merz rule, the values of viscosity for larger
shear rates are compared with values of viscosity for larger frequencies. Thus, the difference
increases with higher frequencies. When we compare the experimental viscosity curves for
non-zero magnetic fields, the chain microstructure of the ferrofluid is still observed for
larger shear rates / frequencies. Due to magnetic field, the chain structures form in the
fluid and their rigidity increases with an increasing magnetic field intensity. Therefore the
experimental viscosity curves differ very strongly for zero magnetic field and this difference
decreases with an increase of the field intensity.

This result provides information on the magnetoviscous effect in the fluid and the
experimental range of the applicability of the Cox-Merz rule.

Figure 5.25: Experimental viscosity curves η(γ̇) and |η ∗ |(ω) in dependence on γ̇ and ω
for ferrofluid APG513a OLD exposed to two magnetic flux densities (from left: 0T and
19mT, respectively)- the Cox-Merz rule (Eq. (3.67)) was applied for this comparison of
steady state viscosity η and dynamical complex viscosity η∗.
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Figure 5.26: Experimental viscosity curves η(γ̇) and |η ∗ |(ω) in dependence on γ̇ and ω
for ferrofluid APG513a OLD exposed to two magnetic flux densities (from left: 24T and
33mT, respectively) - the Cox-Merz rule (Eq. (3.67)) was applied for this comparison of
steady state viscosity η and dynamical complex viscosity η∗.

The dynamical experiment was conducted in order to extend the shear rate window
for normal stresses differeces. This can be done after the evaluation of the Cox-Merz rule
range of applicability. The Laun rule can be then applied with the restrictions given by
Cox-Merz rule [13].

As shown above, the Cox-Merz rule was applicable for APG513a OLD at magnetic flux
densities of B = 19, 24 and 33 mT, respectively, and for shear rates γ̇ in the range of 1 to
100 s−1. In these ranges, the measured storage and loss shear moduli will be used in order to
obtain the corresponding first normal stresses difference using Laun’s rule. Subsequently, if
we apply this rule for lower shear rates (up to 30-40 s−1), the second normal stress difference
N2 is negligible in comparison to the first normal stress difference N2 and thus the term
N1 − N2 can be reduced to include N1 only. Therefore, in the range of γ̇ ∈ (1 − 40) s−1

the values of N1 are obtained by direct steady-state shear measurement and are compared
with the N1 values obtained from Laun’s rule application on the dynamical measurement.
In this range of shear rates a good accordance is therefore expected.

In contrast, for larger shear rates the second term N2 cannot be neglected. The N1 value
obtained by the application of Laun’s rule is compared with the N1 − N2 value obtained
by direct steady-state shear measurements. This fact can be used for proof of the impact
of the N2 term on the N1 −N2 function of γ̇ which was studied in theory (Eq.(2.18)) and
steady state shear measurements (Tab. 5.4).

In Fig. 5.27 an overview of the application of Laun’s rule to any measured magnetic
field dependence of the normal stresses difference is displayed.
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Figure 5.27: The comparison of normal stresses difference N1−N2 from steady-state mode
and N1 = 2G′[1 + (G′/G′′)2]ni , where G′, G′′ are storage and loss moduli of the fluid,
respectively. The index ni is the power-law index for according magnetic filed as in the
Tab. 5.4 for APG513a OLD at 23◦C. The magnetic field varies from 19mT (top picture),
24mT (central picture) to 33mT (bottom picture).
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The results obtained using Laun’s rule are similar to the results obtained by Cox-
Merz rule application. For lower shear rates, the experimental curves are correlate well
qualitatively. The curves exhibit an increased correlation for stronger magnetic fields where
the errors decrease and the curves approach each other. Because of the restricted range
of shear rates, however, this process cannot give us new information for lower shear rates
about the normal stress differences. As it was shown above, the second normal stress
difference N2 plays a role for shear rates larger than approx. 30-40 s−1. In the range
γ̇ ∈ (50 − 100) s−1 the experimental curves are expected to differ due to the contribution
of the term N2. This is observable for magnetic flux densities B=24 and 33 mT but the
shear rate window is restricted to values below γ̇ = 100 s−1 and thus we cannot obtain
information about the N2 term for higher shear rates.

The application of Laun’s rule thus confirms qualitatively that the N2 term is not
negligible any longer for larger shear rates and that it even reaches values larger than the
first normal stress difference N1. However, due to the restrictions on the shear rate range
no additional information besides the qualitative interpretation can be obtained.

The time-dependent measurements are completed with the creep experiment. Accord-
ing to the theory of viscoelasticity and in correlation to the micro-structure of loaded
materials, the creep experiments can be described by the Burgers model among others
(used mainly for the experimental data was fitted using the function

γ(t) = τ

J + J1

1− e
−
t

tτ

+
t

η

 (5.11)

The experiments were conducted under a stress of τ =50 Pa. The creep curves provided
in Fig. 5.28.

Table 5.5: Coefficients of creep function (Burgers model, Eq. (5.11) for creep experiment
done with ferrofluid APG513a OLD at 23◦C

B [mT] J [Pa−1] J1 [Pa−1] tτ [s] η [Pa.s]
19 0,016 ± 0,003 -1,790 ± 0,044 17,889 ± 0,988 1,164 ± 0,001
24 0,010 ± 0,003 -1,667 ± 0,048 21,740 ± 1,234 1,250 ± 0,001
33 0,015 ± 0,013 -2,653 ± 0,121 27,771 ± 1,980 1,702 ± 0,003
43 0,012 ± 0,014 -1,526 ± 0,055 29,338 ± 1,565 2,138 ± 0,002
54 0,022 ± 0,011 -0,709 ± 0,021 21,453 ± 1,250 3,506 ± 0,003
67 0,015 ± 0,002 -1,097 ± 0,021 24,377 ± 0,848 4,130 ± 0,004
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Figure 5.28: Creep experiment (strain dependence on applied shear stress γ(τ)) at a shear
stress τ = 50Pa for ferrofluid APG513a OLD at 23◦C exposed to magnetic flux densities
from 19mT (red) to 67mT (yellow).

Very good accordance is found by this model at viscosity estimation. These viscosities
can be compared with the viscosities obtained in the steady-state shear experiment at
corresponding magnetic fields. A very good correlation of the two data sources is observed.
The influence of the magnetic field is interesting - the curves form three groups which
are separated by larger intervals. This is in accordance to steady-state measurements,
where the same behavior was observed (vis Fig. 5.14). This behavior, which is similar
for steady-state and time-dependent measurements, expresses a connection to a change
in microstructure during the measurement. The structure is strongly dependent on the
applied strain and at a specific point the equilibrated structure is no longer strong enough
and is subsequently destroyed by the strain. However, for higher fields the structures are
again sufficiently rigid, as is evident from the stress or strain response.

This behavior is also evident in the observed relaxation times. The relaxation time (the
velocity of system response) increases with an increasing field, however, after a specific point
it decreases again. The relaxation time definitely provides an important characteristic of
the system. It even reaches tens of seconds which has a parallel in polymer systems where
these relaxation times correlate with short chain parts relaxations. Such long relaxation
times express the elastic behavior again and specify the scale on which the fluid is rigid
and the scale on which the fluid can flow (after the relaxation time).

The main result of this part is then the multilateral character of the ferrofluid. As is
evident from the shear axis, the fluid behaves as expected because the ratio of the elastic
part to the viscous part increases with an increasing magnetic field. In the normal direction,
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however, the fluid flows more freely for stronger magnetic fields. A different behavior of
fluid for different time scales was found. From dynamical measurements, fluid becomes
shear-thickening according to complex viscosity for higher frequencies which is in contrast
to steady-state measurements. For a Cox-Merz rule application, only a narrow window of
correspondence was found. In this range, on the other hand, fluid behaves very similarly to
the steady-state shear mode, which supports the duality of the view and allows us to apply
the Cox-Merz and Laun rules in a given range. Due to the narrow temperature window we
were not able to extend the shear rates sufficiently to allow for an application of Laun’s
rule and to obtain additional results of qualitative behavior of second normal stress N2. It
was, however, possible to demonstrate that this is generally possible and it can be applied
in the future.

The creep experiments served as further evidence to the observation, that the fluid
is very specific. The shear modulus is very low and the fluid is polymer-like during the
measurement. The ferrofluid in our experimental setup flows after a rather long relaxation
time which can reach up to 30s. Based on this, the fluid can be considered more elastic than
viscous and this property is very closely connected to the magnetic flux density. Therefore
the ferrofluid exhibits many contrary attributes depending on the external parameters.
Therefore, the ferrofluid anisotropy is very strong and this opens up a variety of applications
in practice. Furthermore, it should serve to ignite further studies in the future.

82



Conclusion

This thesis provides a rheological approach to the study of ferrofluids. The work was
focused on the normal stress differences in sample ferrofluids and their variation under the
influence of an external magnetic field. To achieve this goal the following steps were taken:

• a magnetic cell, containing a set of adjustable permanent magnets, was designed to
be used with a Haake Mars III rheometer

• a bottom plate for both a cone-and-plate and a parallel plate measuring geometry
was designed

• a prototype of the measuring geometry in the parallel plate arrangment, the MR
plate, was obtained

• the magnetic cell and measuring geometries were calibrated with silicon oils and
subsequently tested using a PEO 5 wt% aqueous solution

These tests have shown that, with the installed magnetic cell and in the specific mea-
suring geometry, the rheometer is able to measure in shear mode, steady-state mode and
dynamical mode and can produce comparable result for the normal stresses differences.
In the dynamical mode, precise curves were obtained for various magnetic field strengths
and this demonstrated the usability of the device designed for magnetic field-dependent
measurements of the normal force.

To allow for the application of the Cox-Merz and Laun rule for the ferrofluid/magnetofluid,
which enable an extension of the measuring window for the normal stress differences, mea-
surement of the magnetorheological fluid Lord MRF 140CG was used. This measurement:

• proved the ability of the measuring device/setup to obtain comparable results for
magnetic fluids : Lord MRF 140CG was examined in shear steady-state mode and
dynamical mode and the obtained results showed a good qualitative accordance with
literature values

• showed, that the Cox-Merz and Laun Rules are applicable for the magnetic fluid
and work very well for this sample by extending the measurement window of normal
stress differences by 4 orders of magnitude

The main measurements were conducted for the characterisation of the ferrofluid APG513a
OLD. This fluid was tested in several ways. All the experiments were carried out at various
magnetic field strengths to examine the magnetic field dependence.

• The flow curves τ(γ̇) for APG513a OLD were obtained and evaluated using the Cross
model
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• This measurement allowed for a determination of the ferrofluid attributes and mag-
netic field dependence in the shear direction (Tab. 5.3). When exposed to a magnetic
field, the fluid behaves like a viscoelastic body with a low consistency coefficient in
the range of (0.032 - 1.314) Pa.s0.69 (increasing with an increasing magnetic field
strength) and a constant power-law index n = (0.691± 0.014).

• The normal forces were measured, the normal stresses differences were obtained and
evaluated using a power law model which was modified in accordance with the derived
rheological model.

• Two processes were observed for the normal stress differences. They are interpreted
as a chain building process and a process containing a constant magnetic field con-
tribution term. A strong impact of second normal stress difference is almost certain
(Tab. 5.4). In this case, the consistency coefficients are comparable to shear direction
of measurement but the power-law indexes vary for first process around 1 and for
the second one between 0.1 - 0.3. The dependence of the power-law indexes on the
magnetic field was not observed.

• Dynamic experiments were conducted and experimental shear modulus curves were
obtained. Master curves were recorded for a reference temperature of T0 = 25◦C.
In accordance to the theory [8] and previous tests with Lord MRF 140CG the Cox-
Merz Rule was applied. From the results, the different time-dependent behavior of
the ferrofluid was found. The Cox-Merz rule could be applied only in a range of
γ̇ ∈ (1 − 40) s−1. A dependence of the magnetoviscous effect on the shear rate for
an extended shear rate window (Fig. 5.17). The magnetoviscous effect reaches 800%
for γ̇ = 1 s−1 and a magnetic flux density of B=33 mT.

• In correlation with the Cox-Merz Rule, Laun’s Rule was applied in a range of cor-
respondence, γ̇ ∈ (1 − 40) s−1 and a window of the dependence of the normal stress
difference on the shear rate was obtained (Fig. 5.27). From these experimental curves
a non-neglectable negative second normal stress N2 was found. This result confirms
the theory (Eq. (2.18)).

• Time-dependent creep experiments were conducted and the Burgers model was ap-
plied. Application of the Burgers model allowed for a determination of the com-
pliances and relaxation times. These exhibited further ferrofluid attributes - long
relaxation times tτ ∈ (17 − 29) s concerning the elastic behaviour of the fluid and
small compliances which decrease for an increasing magnetic flux density (Tab. 5.5).
These relaxation times can be connected with relaxation of shorter parts of chains,
built under the magnetic field influence. These results provide an extended insight
on the ferrofluid behavior under various conditions.

• These results also express a strong anisotropy of the ferrofluid. A chain formation
process and a strong magnetic field influence, which result in the anisotropy, have
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been observed. The fluid behaves qualitatively different when studied in shear direc-
tion or normal direction and behaves very differently for different time frames.

In summary, this work contributes to the knowledge of ferrofluid, specifically concerning
the microstructure. An anisotropy was evident under the influence of a magnetic field - the
fluid behaves very differently in dependence on the different orientation of the acting force
and on different measurement directions. The work has demonstrated the applicability of
Laun’s rule for such ferrofluids. Therefore, it can provide a basis for further development
of rheological models and for the design of practical applications in the industry.
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Abbreviations

APG513a OLD commercial ferrofluid
C60 commercial cone for cone-and-plate geometry
F30 ferrite magnet
FEMlab finite element method software
LORD MRF 140CG commercial magnetorheological fluid
MFD Lehrstuhl für Magnetofluiddynamik
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Attachments

Figure 5.29: My designed magnetic cell - top view

Figure 5.30: My designed magnetic cell - side view
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Figure 5.31: My designed magnetic cell - top view, placing of one F30 magnet

Figure 5.32: My designed magnetic cell, measuring geometry MR and custom base plate
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Figure 5.33: Sample of ferrofluid APG513a OLD - one droplet in a homogeneus magnetic
field (an example of Rosensweig instability)

Figure 5.34: Sample of ferrofluid APG513a OLD - practical problems to leave the droplet
in the measuring area
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Figure 5.35: Rosensweig instabilities during measuring of ferrofluid APG513a OLD in
magnetic field - side view

Figure 5.36: Rosensweig instabilities during measuring of ferrofluid APG513a OLD in
magnetic field - top view
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