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School Timetabling

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the master thesis: prof. RNDr. Roman Barták, Ph.D.

Study programme: Computer Science

Specialization: Theoretical Computer Science

Prague 2013





I would like to thank my supervisor prof. RNDr. Roman Barták, Ph.D. for his
patient guidance and express my appreciation for his constructive suggestions.
I’m very obliged to Jaroslav Reichl who helped me considerably with my effort to
understand the whole scope of the timetabling problem at the Secondary School
of Telecommunication and Broadcasting Technologies in Prague. I would also
like to express my gratitude to my parents for their support when I was working
on the thesis.



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague on August 1, 2013 Martin Všetička
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Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: prof. RNDr. Roman Barták, Ph.D.

Abstract: The thesis deals with a hard real-life school timetabling problem of a
Czech secondary school. In this problem, lessons are to be allocated to classrooms
while respecting various constraints such as curricula and teacher availability. We
study existing approaches used for school timetabling problems and we show how
to represent introduced problem in existing school timetabling software. We then
present a software prototype that solves introduced problem using constraint
logic programming. Related problems, such as data representation and data
conversion, are discussed.

Keywords: school timetabling, educational timetabling, constraint programming,
real-world problem





Contents

Introduction 5

1 School timetabling 7
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Simple (polynomial) problem . . . . . . . . . . . . . . . . 9
1.3.2 Basic Search Problem . . . . . . . . . . . . . . . . . . . . . 10

1.4 XHSTT format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Problem specification 13
2.1 School timetabling problem at SSTBTP . . . . . . . . . . . . . . 13

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Study programs . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5 Classrooms . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.6 Teachers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.7 Electives and optional subjects . . . . . . . . . . . . . . . 17
2.1.8 Fortnight lessons . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The current approach to timetabling . . . . . . . . . . . . . . . . 17
2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Basic constraints . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Student constraints . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Classroom constraints . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Teacher constraints . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Educational constraints . . . . . . . . . . . . . . . . . . . . 19
2.3.6 Travel time constraints . . . . . . . . . . . . . . . . . . . . 19
2.3.7 Constraint satisfaction . . . . . . . . . . . . . . . . . . . . 19

2.4 Formal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Existing approaches 25
3.1 Sequential methods . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Simulated annealing . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Integer programming . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Constraint programming . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Comparison of approaches . . . . . . . . . . . . . . . . . . . . . . 29

4 Timetabling software 31
4.1 Open-source timetabling software packages . . . . . . . . . . . . . 31

4.1.1 UniTime Timetabler . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 KHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1



4.1.3 FET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Data collection and representation 35
5.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Data format selection . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 JSON data format . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Solver properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Fortnight lessons . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Timetable compactness . . . . . . . . . . . . . . . . . . . . 39

6 FET solver 41
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Representation of SSTBTP problem . . . . . . . . . . . . . . . . . 42

6.4.1 Time grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4.2 Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4.3 Teachers, subjects, classrooms, buildings and activities . . 44
6.4.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5 Missing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 CLP solver 47
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Choice of a constraint programming system . . . . . . . . . . . . 47
7.3 Global constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Constraint model . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4.1 Representation of time slots . . . . . . . . . . . . . . . . . 49
7.4.2 Variables and initial domains . . . . . . . . . . . . . . . . 49
7.4.3 Lesson decomposition . . . . . . . . . . . . . . . . . . . . . 50
7.4.4 Students and a dual time model . . . . . . . . . . . . . . . 51
7.4.5 Constraints based on the dual time model . . . . . . . . . 52
7.4.6 Bounds on daily workload . . . . . . . . . . . . . . . . . . 52
7.4.7 Constraints for classrooms . . . . . . . . . . . . . . . . . . 53

7.5 Search procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5.1 Heuristic for lesson selection . . . . . . . . . . . . . . . . . 54
7.5.2 Heuristic for lesson scheduling . . . . . . . . . . . . . . . . 54

7.6 Score function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Experimental results 57
8.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 FET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.3 CLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.3.1 Experiment 1 – Basic properties of the CLP solver . . . . 59
8.3.2 Experiment 2 – Dead end limit . . . . . . . . . . . . . . . 60
8.3.3 Experiment 3 – Adjusted lesson scheduling strategy . . . . 61
8.3.4 Experiment 4 – Comparison with the official timetable . . 62

2



Conclusions 65

Further work 67

List of Abbreviations 75

Appendix A 77
A.4 buildings.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.5 classes.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.6 macros.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.7 study.programs.json . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.8 subjects.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.9 teachers.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.10 timetable.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix B 85
B.1 FET XML data format in a nutshell . . . . . . . . . . . . . . . . 85
B.2 Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.3.1 Basic constraints . . . . . . . . . . . . . . . . . . . . . . . 89
B.3.2 Student constraints . . . . . . . . . . . . . . . . . . . . . . 90
B.3.3 Classroom constraints . . . . . . . . . . . . . . . . . . . . 91
B.3.4 Teacher constraints . . . . . . . . . . . . . . . . . . . . . . 94
B.3.5 Educational constraints . . . . . . . . . . . . . . . . . . . . 94
B.3.6 Travel time constraints . . . . . . . . . . . . . . . . . . . . 95

Appendix: CD contents 97

3



4



Introduction

The thesis addresses the problem of constructing timetables for primary and
secondary schools. These schools construct timetables every year and the pro-
cess is typically very lenghty and tedious if users do not employ an automated
tool. Unfortunately most of the primary and secondary schools in the Czech Re-
public (and many other countries) create their timetables still by hand or in a
semi-automated way using various programs providing basic graphical tools for a
human scheduler [1].

The status quo is caused by several reasons. School timetabling (ST) is com-
putationally complex and it is proven to belong to the set of NP-complete prob-
lems [2]. Moreover, a significant obstacle in implementing a solver is the diversity
of the problem at different schools. This may be one of the reasons why up until
recent years the researchers did not study the problem as extensively as university
timetabling and other educational timetabling problems [3][4].

More formally, school timetabling deals with the problem of allocating lessons
to rooms and to teachers at primary and secondary schools while respecting
constraints such as curricula and teachers availability. The problem belongs to the
class of educational timetabling problems. Educational timetabling encompasses
university course timetabling, examination timetabling and school timetabling.

A reserved attitude of schools towards existing automated school timetabling
solvers is rational. Schools store their data in school management systems. Au-
thors of the solvers typically do not support an import feature because there are
simply too many different school management systems. Writing helper programs
for exporting schools’ data to the solvers’ input formats is a reasonable way to
tackle the problem. However, it is necessary to inspect the final data for errors.
In the end, after several days of work one may find out that the endeavor was
futile because there is an aspect of the problem the solver cannot cope with or
that the solution returned by the solver is not as good as expected. The whole
process of employing the solver instead of a manual scheduler is very time con-
suming and prospects are uncertain. Therefore, we are convinced that the thesis
addresses an important problem because it presents a case study of a real-life
school timetabling problem including all the necessary work from data collection
to running an automatic solver. A comparison of problem-solving techniques was
made and the chosen method was implemented in a software prototype.

The thesis is organized as follows: Chapter 1 presents the school timetabling in
detail. In Chapter 2 we introduce a real-life school timetabling problem we solved.
Chapter 3 is concerned with the existing approaches for solving school timetabling
problems. In Chapter 4 we present school timetabling software packages and we
discuss their capabilities to solve the introduced school timetabling problem. In
Chapter 5 we propose a data format for the problem introduced in Chapter 2. In
Chapter 6 we propose a solution based on an existing school timetabling solver.
Chapter 7 proposes a solver based on constraint programming. and in Chapter 8
we discuss how satisfactory are our solutions.

5
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1. School timetabling

School timetabling deals with the problem of allocating lessons to rooms and to
teachers at primary and secondary schools while respecting various constraints.
The problem belongs to the class of educational timetabling problems.

1.1 Terminology

Since terminology used in school timetabling problems is not well established,
this section introduces definitions of all important concepts. The definitions are
loosely based on paper [5].

Subject refers to a branch of human knowledge such as physics, mathematics,
English language, chemistry, etc.

Optional subject is a subject that a student has to choose from a predefined
set of subjects. For example, a student is supposed to take a foreign language
and it may be Spanish, French, or Chinese.

Elective subject is a subject that a student is free to take or not.
Class is a group of students that meets with teachers at certain times to learn

particular subjects. The division of students into classes is responsibility of the
school administration.

Subgroup refers to a particular group of students from one class.
Grade refers to a stage of study. A grade corresponds to one year of school

tuition. For a student the grade represents progress towards graduation.
Lesson is a scheduled meeting of a set of students from one class and a teacher

in a classroom. All data that are not predefined for lessons need to be assigned
during timetabling process1. An example of a fully specified lesson is: class 1A
meets with John Doe to study mathematics in classroom 1 on Monday at 9:00.

Lecture refers to an educational talk to an audience, especially one of students
in a university. Lectures involve much less interaction than lessons. The term
lecture will not be used further in this work.

Period refers to a time slot in a timetable. School administrations divide days
into periods and lessons are to be assigned to these periods.

Timetable is defined by Marte [6] as a rectangular time grid that divides the
planning period into disjoint time intervals of equal duration which are called
periods. For a typical example see Table 1.1.

Block lessons refer to lessons that are taught consecutively to the same class
and all the lessons take place in the same classroom. Blocks are useful for lessons
such as chemistry for which students need to change clothes, set up and clean up
laboratory equipment, etc. Blocks minimize these routine activities. We will use
the term even for lessons that take only one period.

Idle period for a student (a teacher) is a period in a timetable for which the
student (the teacher) does not have any lesson scheduled, and moreover, there is
at least one lesson before and after the mentioned period to which the student

1In this thesis, a starting time and a classroom has to be assigned to each lesson during the
timetabling process since the other data for lessons are provided. However, school timetabling
problems differ. For example, teachers need to be assigned to lessons in some school timetabling
problems.
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Day / Period 1 2 3 4 5 6 7 8
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Table 1.1: An example of a timetable

(teacher) has to attend. Idle periods may be used for lunch breaks but having
too many idle periods in a timetable is not desirable as it is hard for students to
use the time effectively.

Compact timetable is a such timetable that contains low number of idle pe-
riods. We say that timetable A is more compact that timetable B if A has less
idle periods than B.

Resource is either a class or a teacher or a classroom.
Constraint is a limitation of a resource usage determined by its capabilities

or by an educational system. For example, a classroom can accommodate up to
16 students.

Soft constraint (also desire) refers to a constraint that should be respected in
a timetable. For example, a teacher wishes not to teach on Friday. Violations
of the soft constraint are penalized but the violation itself does not lead to an
invalid timetable. Nevertheless, in many real-life problems it often happens that
soft constraints cannot be all satisfied.

Hard constraint (also requirement) is a constraint that must be respected in
a timetable in order for the timetable to be valid. For example, a teacher cannot
teach more than one class at once.

Feasible timetable refers to a timetable that satisfies all hard constraints.
Willemen’s definition [7]: Educational timetabling is the sub-class of timetabling

for which the events take place at educational institutions. If the events are exam-
inations (lessons or lectures) then we talk about examination timetabling (school
timetabling or university course timetabling).

Scheduling cycle refers to a period for which a given timetable was devised.
Typically, school timetabling uses a one-week scheduling cycle. However, there
are also timetables that employ a two-week scheduling cycle and in that case a
student needs to know if it is an odd week or an even one.

School timetabling solver (ST solver) refers to a software program that at-
tempts to solve school timetabling problems represented in an input format that
the program supports.

1.2 Problem definition

Formal definition of timetabling was given by A. Wren in paper [8]:

Definition 1. Timetabling is the allocation, subject to constraints, of given re-
sources to objects being placed in space-time, in such a way as to satisfy as nearly

8



as possible a set of desirable objectives.

We can define school timetabling by restricting Definition 1 as follows:

Definition 2. School timetabling refers to timetabling specific for primary and
secondary schools.

It remains to explain what is meant by resource , object and objective in
the previous two definitions. In school timetabling the resource is identical
to our definition of resource, i.e. a class or a teacher or a classroom. Object
represents a lesson. The objective of school timetabling is a feasible timetable
that satisfies soft constraints as much as possible.

1.3 Time complexity

The following two sections show the threshold where a school timetabling problem
becomes intractable. They are based on the paper [9] by A. Schaerf where a more
in-depth discussion of the time complexity of ST is presented.

1.3.1 Simple (polynomial) problem

Simple (polynomial) problem was defined by de Werra [10]. It is a formal model
representing a common core of the most school timetabling problems, i.e. assign
lessons to periods in such a way that no teacher or class is involved in more than
one lesson at a time[9]. It is defined by the following constraints:

p∑
k=1

xijk = rij (i = 1..m; j = 1..n) (1.1)

n∑
j=1

xijk ≤ 1 (i = 1..m; k = 1..p) (1.2)

m∑
i=1

xijk ≤ 1 (j = 1..n; k = 1..p) (1.3)

xijk = 0 or 1 (i = 1..m; j = 1..n; k = 1..p) (1.4)

where the meaning of the variables is as follows:

• xijk =

{
1 if class ci and teacher tj meet at period k

0 otherwise

• c1, . . . , cm represents m classes,

• t1, . . . , tn represents n teachers,

• Rm×n is so called requirement matrix and rij ∈ Rm×n is the number of
lessons given by teacher tj to class ci, and

• 1, . . . , p represents p periods.
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Equation 1.1 specifies that class ci has to meet with teacher tj for rij times to fulfill
requirement requests. Each teacher can be scheduled for at most one lesson per
period. This requirement is expressed by equation 1.2. Equation 1.3 is analogous
case to equation 1.2 and it constrains scheduling of classes. The objective is
then to find xijk for i = 1..m; j = 1..n; k = 1..p such that all the constraints are
satisfied.

Hopcroft and Karp [11] proved that the mentioned problem can be solved
in polynomial time with respect to n,m and p. The solution was based on a
bipartite multigraph and on finding a sequence of maximal matchings.

This Simple (polynomial) problem can be solved in polynomial time but un-
fortunately the model is too restricted for most real-life problems including our
task.

1.3.2 Basic Search Problem

Junginger [12] formulated the following formal model that extends the simple
(polynomial) model by adding two binary matrices Tm×p and Cn×p that express
teacher and class (un)availability. The constraints are:

p∑
k=1

xijk = rij (i = 1..m; j = 1..n) (1.5)

n∑
j=1

xijk ≤ tik (i = 1..m; k = 1..p) (1.6)

m∑
i=1

xijk ≤ cjk (j = 1..n; k = 1..p) (1.7)

xijk = 0 or 1 (i = 1..m; j = 1..n; k = 1..p)

where the meaning of new variables is as follows:

• tik =

{
1 if teacher ti is available at period k

0 otherwise

• cjk =

{
1 if class cj is available at period k

0 otherwise.

Equation 1.5 is identical to equation 1.1. Equation 1.6 (1.7) specifies that
each teacher (class) can be scheduled for at most one lesson per period if the
teacher (the class) is available.

Even et al. proved in paper [13] that the Junginger’s problem is NP-complete
through reduction from 3-SAT.

The result is important for the purpose of the thesis because teachers do
specify when they cannot teach in our problem instance and also because the
equations formally describe basic constraints (cf. Section 2.3.2) that are imposed
on our problem instance.
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1.4 XHSTT format

A school timetabling problem is a well-known problem but the problem definitely
cannot be considered solved. The research in the area of school timetabling is
still active. However, up until recently, there was no standardized data format
in order to exchange ST problem instances. As a consequence, a comparison or
a benchmarking of researchers’ solvers was problematic. Therefore, it was rea-
sonable to try using several solving techniques on one specific problem instance,
as opposed to attempting to solve several problem instances with one solving
method.

XHSTT is a joint effort of Gerald Post et al. to remedy the situation. It
is an XML based data format for high schools that attempts to become a stan-
dard for school timetabling. In fact, the contribution of Post et al. is not only
the data format itself. The researchers specified the common core of the school
timetabling problems such that the data format can be widely used. The data
format evolved from its first publication in paper [14] in 2008 to the current spec-
ification [15] that is available online. There is also an online XHSTT archive [16]
that currently provides 39 problem instances, real and artificial ones, of school
timetabling problems from many countries. The archive and the standard format
simplify benchmarking. Unfortunately, there are still very few solvers that sup-
port the XHSTT data format. We were able to obtain and try a few solvers from
the International Timetabling Competition 2011 [17] that support the XHSTT
data format. However, the solvers are proof of concept programs rather than
production quality solvers.
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2. Problem specification

The thesis is concerned with the school timetabling problem at the Secondary
School of Telecommunication and Broadcasting Technologies at Panská 3, Prague
(SSTBTP). More precisely, the aim of the work is to propose and implement a
solving method for the problem in order to create a timetable for each teacher
and for each class such that the hard constraints are satisfied and such that the
best effort is put to satisfy the soft constraints.

The school was chosen because we believe that school timetabling at SSTBTP
is a hard problem in comparison with other secondary schools in the Czech Repub-
lic. The other secondary schools in the Czech Republic typically do not own more
than one school building and therefore they do not need to minimize movements
between buildings. Moreover, SSTBTP is a technical school and it has many
specialized classrooms. Since capacities of the specialized classrooms are limited,
classes need to be divided into subgroups. It is hard to preserve compactness of
a timetable when there are many of these divisions.

As a consequence, a successful solving method for SSTBTP may prove useful
for the other Czech schools as well.

2.1 School timetabling problem at SSTBTP

This section characterizes SSTBTP from the perspective of timetabling and it
describes how the school operates.

2.1.1 Introduction

SSTBTP is a technical secondary school that provides education in broadcasting
and telecommunication technologies. The school offers four years of education
that is finished with a school leaving exam called maturita. The school is unique,
from the timetabling perspective, by the fact that teaching takes place at two
sites simultaneously. This is not common for secondary schools in the Czech
Republic.

We will refer to the locations by the name of the street the site is located
at as Panská and Štupartská. Both sites are located in Prague and the walking
distance between them is 10 minutes.

2.1.2 Study programs

There are four study programs that are provided by the school, namely Technical
Lyceum, Global Network Technologies, Communication and Multimedia and Film
and Television Production. A study program represents a curriculum for entire
study (i.e. four years). A student enrolls in a study program by submission of
a secondary school application. The study program specifies how many lessons
have to be taught per week for each particular subject1.

1The numbers are not necessarily integers. For example, civics is supposed to be taught 1.5
times per week and the meaning is that one week students take just one lesson of civics and
the other week they take 2 lessons of civics.
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2.1.3 Classes

A class is always a group of students who study the same study program and who
are in the same grade2. The number of classes changes from year to year because
it depends on the number of admitted students. The school administration is in
charge of sectioning students into classes. The maximum and the most common
number of students in a class is 32 students. The limit represents a maximum
seating capacity of a regular classroom in the school. The number of students in
a class may change every year. There are, for example, some students who need
to repeat grades or students who leave school before graduation.

Typically, a class meets with a teacher in a classroom to attend a lesson.
However, it is not always possible or desirable for all students of the class to take
the lesson at one time. For this reason students of the class can be divided by the
school administration into groups called subgroups and the original lesson has to
be taught as many times as the number of subgroups is. Moreover, all these new
lessons can have a different teacher, they do no need to take place at the same
time and the new lessons require empty classrooms.

We will use the term partition for a set of subgroups of a class so that each
student of the class belongs to exactly one subgroup of the partition. If students
of a class need to be divided for a lesson the division is always a partition. One
partition can be used for several lessons of a class.

Partitions are necessary for two reasons. First, specialized classrooms’ capac-
ities are typically lower than the number of students in a class. For example, the
capacity of gymnasiums is 16 students. If a class has more than 16 students then
it is necessary to create a partition where each subgroup is composed of 16 stu-
dents or less. The school administration specifies partitions for classes’ lessons.
A partition is created so that each subgroup of the partition has approximate-
ly the same number of students. Second, there are lessons where students need
to interact with their teachers more intensely. For example, teachers of English
lessons have to talk with students. Obviously, it would be hard to talk with 32
students in 45 minutes. Partitions help to alleviate this problem.

A partition is a tool used to solve classroom constraints and to improve quality
of education for students. However, partitions complicate the timetabling process.
Physical education can serve as an example. Typically, a partition with subgroups
boys and girls is used for PE lessons. PE lessons for the two subgroups do not
have to take place at the same time. Actually, if the school administration assign
the same teacher to both subgroups of PE lessons then the lessons cannot take
place at the same time.

All students of SSTBTP study English. English lessons of a class with more
than 16 students are divided into two halves – traditionally named A1 and A2
– according to students’ knowledge of English language. We call the partition
language1. Obviously, the lesser the number of partitions, the easier it is to solve
the timetabling problem. Therefore, a convention was devised: Use language1
partition whenever a class needs to be divided into halves and when it does not
matter which student is in which subgroup.

The language1 partition of a class typically covers many cases where the whole
class cannot attend a lesson at one time. Yet, there are special cases, such as

2cf. Terminology section 1.1
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photographic practice that require a class to be divided into quarters. Another
special case is the physical education. Students are put to subgroups according
to gender, and on top of that only students fit to exercise3 are taken into account.

It is important to note that for the scheduling purposes it is not generally
known which student attends which level of English because the timetabling
process takes place in June and the assessment test for new students is taken in
September. This means we are not able to work with students on a finer level
of granularity than on a subgroup level. Moreover, the problem input does not
contain an information how students are distributed to partitions’ subgroups. In
this regard, we only know the names of partitions and their subgroups.

Because the school administration ultimately decides about classes’ partitions,
generating partitions automatically for each class according to predefined rules,
while partially possible, is not practical for such a low number of classes. There-
fore, for the purposes of scheduling the partitions are considered to be a part of
the problem input.

Since we do not know which students belong to which subgroups, it may be
very well possible that lessons of some two subgroups from different partitions of
a class could take place at the same time. The school administration at SSTBTP
decided not to support this arrangement. Too much extra data would be required
for the feature and there is no convincing justification for it.

An auxiliary term we will use is study group. Study groups of a class denotes
students who were assigned to the same subgroups in all partitions of the class.
Consequently, students of a class belonging to the same study group of the class
follow the same timetable.

2.1.4 Periods

Teaching takes place from Monday to Friday. Teaching at Panská may take place
from 7:00 to 17:40 (i.e. 12 periods). On the other hand, teaching at Štupartská
takes place from 7:10 to 17:00 (i.e. 11 periods). The complete list of periods can
be seen in Table 2.1.

Period Panská Štupartská
1 7:00 - 7:45 7:10 - 7:55
2 7:50 - 8:35 8:00 - 8:45
3 8:45 - 9:30 8:55 - 9:40
4 9:50 - 10:35 10:00 - 10:45
5 10:45 - 11:30 10:55 - 11:40
6 11:40 - 12:25 11:50 - 12:35
7 12:35 - 13:20 12:45 - 13:30
8 13:30 - 14:15 13:40 - 14:25
9 14:20 - 15:05 14:30 - 15:15
10 15:15 - 16:00 15:25 - 16:10
11 16:05 - 16:50 16:15 - 17:00
12 16:55 - 17:40

Table 2.1: List of periods at Panská and Štupartská

3Some students do not exercise because of health issues.
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As the reader can see from the table, the period times are shifted by ten
minutes in Panská and Štupartská. The decision was made by the school ad-
ministration in order to ease the problem of traveling between school buildings.
This way it is possible for classes to move from Panská to Štupartská without the
need of an idle period. It is not, however, possible in the opposite direction. If
the period times were the same then it would not be possible to travel between
buildings without an idle period in either way.

You can also notice that all the periods have the same duration. However, it
is customary to group some consecutive periods to blocks to teach some subjects.
Timetabling solvers typically do not support different period durations.

Idle periods are permitted but the timetable should be rather compact. The
reason is that students are not able to use the free time effectively as teachers
can.

2.1.5 Classrooms

Classrooms are divided into three types:

• regular classrooms for up to 32 students,

• specialized classrooms for up to 16 students (language classrooms, gymna-
siums, etc.) and

• specialized classrooms for up to 8 students (photographic studio, music
studio, etc.).

A specialized classroom may be required or preferred for a lesson. The lessons
of physical education require a gymnasium. Conversely, the lessons of English
language should be taught in a language classroom but it is not required. Note
that the school possess several language classrooms and even several gymnasiums,
an ST solver needs to take into account the fact.

If a regular classroom is sufficient for a lesson then a regular classroom should
be preferred. It would be odd to take history lessons in an electrotechnical labora-
tory or in a gymnasium. The constraint also prevents damage of school property
as specialized rooms are expensive to equip.

Each class is assigned a classroom called a home classroom. This classroom is
used as a default option where lessons should take place whenever it is possible.
The convention is useful for classes because it eliminates moves of classes between
classrooms. Moreover, the assignments break symmetry of the ST problem and
therefore make it easier to solve.

2.1.6 Teachers

The school administration negotiates assignment with each teacher. As the agree-
ment of both parties takes place before the timetabling process, the agreement
is still preliminary because it may turn out to be problematic. As a consequence
some lessons are preassigned to certain time slots in the final timetable.

Formally, we can represent assignment as a 4-tuple (teacher, lessons, class,
subgroup). So for example assignment (John Doe, English lessons, 1A, A2) means
that the teacher John Doe is supposed to teach English lessons in the subgroup
A2 of the class 1A.
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2.1.7 Electives and optional subjects

The students at SSTBTP are quite restricted as for the choice of their subjects.
The students can attend optional subjects in the 3rd and 4th year of their studies.
Elective subjects are intended only for 4th year students. However, the ratio of the
number of compulsory subjects to the number of elective and optional subjects is
approximately 10:1. This model is rather similar to the Greek school timetabling
problem [2] than to the Dutch model that allows a great amount of freedom for
students [18].

2.1.8 Fortnight lessons

Most of the lessons are taught on a weekly basis. However, there are lessons,
such as chemistry labs and physics practice, that are taught biweekly. The school
currently uses a one-week scheduling cycle and teachers and students are briefed
about which lessons are fortnight ones. Naturally this leads to the question if
two-week scheduling cycle or one-week scheduling cycle should be employed. The
former approach is impractical because many constraints need to be added twice,
thus making the problem even more complex4. We decided to use the latter ap-
proach in the formal model of the timetabling problem because our problem does
not contain many fortnight lessons. Moreover, timetables can be often improved
by joining two fortnight lessons into one regular lesson in order to obtain a more
compact timetable.

2.2 The current approach to timetabling

The timetabling is currently done manually at SSTBTP. In the past, the time-
tabling process involved a plan of school buildings and pieces of paper, repre-
senting lessons, that were placed on classrooms. Nowadays, the school uses the
program called Bakaláři5 with an integrated timetabling module. However, the
program provides only a basic timetabling heuristic that is based on placing the
most constrained lessons first. It is certainly a more sophisticated approach of
solving the problem than the method with pieces of paper but this solver proved
to be inadequate to create satisfactory timetable for SSTBTP. Yet, the program
is still used because it can verify basic constraints such as classroom availability
when the human scheduler creates a timetable manually.

The time required by a human scheduler to create a final timetable is about
two weeks. The work results in a feasible timetable. On the other hand, the
problem has typically many solutions and we would like to know how good the
solution provided by the human scheduler is. This is difficult when we have only
one solution at our disposal. Moreover, the human scheduler is not able to take all
soft constraints into consideration, therefore some soft constraints are discarded
at the beginning of the timetabling process.

It is worth mentioning that timetables from previous years cannot be reused.
The numbers of students in study programs change because of many external
factors like students’ preferences, demographic changes, state subventions for

4Current software packages mostly do not directly support a two-week scheduling cycle.
5http://www.bakalari.cz/ - website is only in the Czech language
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schools, etc. Moreover, the staff is subject to change as a teacher may retire
or leave for any other reason. The external teachers typically do have a contract
for one year and if they quit then the subject may not be taught any more. All
of these impediments make reuse of previous timetables impractical.

2.3 Constraints

This section introduces a complete list of constraints that are imposed on the
timetabling problem of SSTBTP by the school administration.

All constraints are denoted by one of the following designation: Cz, HCx or
SCy. The last two stand for hard constraint and soft constraint, respectively.
C stands for constraint and it may be either a soft constraint or a hard one,
depending on the decision of the school administration in each particular case.
The x, y and z are counters and they serve only for reference purposes.

2.3.1 Basic constraints

HC1 At most one lesson per period must be scheduled for each teacher.

HC2 At most one lesson per period must be scheduled for each classroom.

HC3 At most one lesson per period must be scheduled for each student.

2.3.2 Student constraints

HC4 The maximum student workload is 9 lessons per day.

HC5 If a student attends 8 or more lessons on a certain day she has to have a
break. It means that a student can take at most 7 lessons consecutively.

SC1 A final timetable should be compact for students.

2.3.3 Classroom constraints

HC6 Each classroom is specified by its seating capacity and the capacity
cannot be exceeded.

C1 Specialized rooms are required or desired for some lessons.

HC7 Some specialized classrooms are inappropriate6 for some lessons and
thus they are not allowed for the lessons.

HC8 Classrooms are available according to opening hours of their respective
buildings (cf. Table 2.1).

SC2 Home classroom should be taken into account and lessons should be
scheduled to the home classroom. The importance of this constraint is
low.

6For example, a gymnasium is an inappropriate classroom for any subject other than physical
education.
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2.3.4 Teacher constraints

HC9 The maximum teacher workload per day is 8 lessons.

HC10 A teacher must not be scheduled for times when he or she is unavailable.

2.3.5 Educational constraints

HC11 Each class must be taught in conformity with its study program. Espe-
cially, the number of lessons for each particular subject in the timetable
must be in accordance with the study program specification.

HC12 Block constraints must be respected, i.e. some lessons of certain sub-
jects must be taught in a block.

2.3.6 Travel time constraints

SC3 The number of moves between the school buildings should be as low as
possible for a student.

HC13 When a student needs to move from Štupartská to Panská, there has
to be an idle period for that purpose.

2.3.7 Constraint satisfaction

The definition of a hard constraint dictates that the constraint has to be sat-
isfied in a feasible timetable. On the other hand, soft constraints does not
affect timetable’s feasibility. Yet, an importance of particular soft constraints
differs. For this reason many timetabling solvers come with the concept of nu-
meric weights that are assigned to soft constraints. The weights express then how
important the satisfaction of a soft constraint is with respect to other constraints.

The school administration does not follow a methodology specifying the im-
portance of particular soft constraints. We are therefore left with a wide variety
of options in this matter.

2.4 Formal model

We denote by

• D = {1, 2, . . . ,m} a set of days,

• P = {1, 2, . . . , n} a set of periods,

• T a set of teachers,

• S a set of students,

• C a set of classes,

• L a set of block lessons (as defined in Section 1.1),

• R a set of classrooms,
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• B a set of buildings,

• roomCap : R → N a function specifying capacities of classrooms,

• homeRoom : C → R a function specifying home classrooms for classes,

• tAvail : T ×D ×P → {0, 1} a function specifying for each teacher if he or
she is available for teaching at a given day and period,

• bld : R → B a function specifying for each classroom building the classroom
is located in, and

• O : B → 2|P| a function specifying for each building when its classrooms
are available.

In the following text we assume that B = {Panská, Štupartská}.

Definition 3. We define class C ∈ C as a group of students C ⊆ S such that all
students of class C are in the same grade. Moreover, each student s ∈ S belongs
to exactly one class.

Definition 4. Subgroup S of class C ∈ C is defined as subset S ⊆ C.

Notation 1. We denote CS a set of all subgroups defined for class C ∈ C in the
problem input by the school administration.

Definition 5. Partition P of class C ∈ C is a set of subgroups {S1, S2, . . . , Sn} 6= ∅
of class C such that ∀s ∈ C ∃!i ∈ [1, n] : s ∈ Si.

Notation 2. We denote CP a set of partitions of class C ∈ C defined in the
problem input by the school administration.

Note: {C} for C ∈ C is a trivial partition and ∀C ∈ C : {C} ∈ CP .

Notation 3. We denote CG =
⋃

P∈CP
{S |S ∈ P} for each C ∈ C. An element

of CG is called study group.

Example 1. Let C ∈ C and let CP = {Class, Language, PhysicalExercise}
where the partitions are defined as follows:

Class = {C},
Language = {EnglishBeginners, EnglishIntermediate}, and

PhysicalExercise = {Boys,Girls}.

Study groups are then:

CG = {
{Class, EnglishBeginners, Boys}
{Class, EnglishBeginners,Girls},
{Class, EnglishIntermediate, Boys},
{Class, EnglishIntermediate,Girls}
}.
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Definition 6. Block lesson l ∈ L is the 6-tuple:

(t, C, S, n, A,B)

where

• t ∈ T is a teacher teaching lesson l,

• C ∈ C is a class,

• S ∈ CS is a subgroup7 of class C attending lesson l,

• n ∈ {1, 2, . . . , |P|} is a number of consecutive periods that block lesson l
takes,

• ∅ 6= A ⊆ R represents permitted classrooms for lesson l, and

• B ⊆ A ⊆ R represents preferred classrooms for lesson l.

We will refer to particular elements of the 6-tuple l by subscripts – i.e. lt, lC , lS, ln, lA
and lB. A classroom and a starting time are assigned to block lesson l by an as-
signment function (see below).

Note: The previous definition does not allow fortnight lessons and thus it is
necessary to deal with them in a data preprocessing.

Definition 7. Problem is defined by 10-tuple

(D,P , C, T ,L,R, roomCap, homeRooms, tAvail, B).

We define assignment function g : L → (D,P ,R) that assigns to each block les-
son a day, a starting period and a classroom. An assignment function represents
a feasible solution if all the hard constraints from Definition 9 are satisfied.

Note: Set L has to be defined in accordance with study programs to satisfy
HC11 and HC12.

Definition 8. Let f be an assignment function. We define auxiliary variables as
follows:

• xCStdpr =

{
1 l = (t, C, S, n, A,B) ∈ L ∧ f(l) = (ds, p, r) ∧ ds ≤ d < ds + n

0 otherwise

The variables say if subgroup S of class C and teacher t meet at day d and
period p in classroom r.

• ∀C ∈ C, G ∈ CG, d ∈ D, p ∈ P : yCGdp =
∑

t∈T
∑

r∈R
∑

S∈G xCStdpr

Variables yCGdp represent if study group G of class C attends a lesson at
period p and day d.

7Note that the subgroup definition allows S = C.
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• ∀C ∈ C, G ∈ CG, d ∈ D, p ∈ P , r ∈ R : zCGdpr =
∑

t∈T
∑

S∈G xCStdpr

Variables zCGdpr represent if study group G of class C attends a lesson at
period p and day d in classroom r.

Definition 9. Let f be an assignment function. Hard constraints are specified as
follows:

HC1:
∑
C∈C

∑
S∈CS

∑
r∈R

xCStdpr ≤ 1 ∀t ∈ T , d ∈ D, p ∈ P

HC2:
∑
t∈T

∑
C∈C

∑
S∈CS

xCStdpr ≤ 1 ∀d ∈ D, p ∈ P , r ∈ R

HC3(1): yCGdp ≤ 1 ∀C ∈ C, G ∈ CG, d ∈ D, p ∈ P

HC4:
∑
t∈T

∑
r∈R

∑
S∈G

∑
p∈P

xCStdpr ≤ 9 ∀C ∈ C, G ∈ CG, d ∈ D

HC5:
∑
t∈T

∑
r∈R

∑
S∈G

|P |−7∑
p=1

p+7∑
i=p

xCStdir ≤ 7 ∀C ∈ C, G ∈ CG, d ∈ D

HC6: f(l) = (d, p, r) ∧ roomCap(r) ≥ |lS| ∀l ∈ L
HC7: f(l) = (d, p, r) ∧ r ∈ lA ∀l ∈ L
HC8: xCStdpr = 1 =⇒ p ∈ O(bld(r)) ∀C ∈ C, S ∈ CS, t ∈ T ,

d ∈ D, p ∈ P , r ∈ R

HC9:
∑
C∈C

∑
r∈R

∑
S∈CS

∑
p∈P

xCStdpr ≤ 8 ∀t ∈ T , d ∈ D

HC10:
∑
C∈C

∑
r∈R

∑
S∈CS

xCStdpr ≤ tAvail(t, d, p) ∀t ∈ T , d ∈ D, p ∈ P

HC13: ∀d ∈ D, p1 ∈ P , p2 ∈ P , p1 + 1 = p2, C ∈ C, G ∈ CG, r1 ∈ R, r2 ∈ R,
bld(r1) = Štupartská ∧ bld(r2) = Panská : zCGdp1r1 + zCGdp2r2 ≤ 1

HC3(2): ∀d ∈ D, p ∈ P , C ∈ C, P1 ∈ CP , P2 ∈ CP , P1 6= P2, S1 ∈ P1, S2 ∈ P2 :∑
r∈R

∑
t∈T

xCS1tdpr +
∑
r∈R

∑
t∈T

xCS2tdpr < 2

where HC3(1) and HC3(2) are two inequations that define HC3 constraint. HC3(2)
specifies which subgroups’ lessons can take place at the same time.

Definition 10. Let f be an assignment function. Soft constraints are specified in
the following manner.

SC1: Compactness of a timetable is given by the number of idle periods for all
study groups of classes:

CostSC1 =
∑
C∈C
G∈CG
p1∈P
p2∈P
d∈D

{p2 − p1 − 1 | yCGdp1 = 1, yCGdp2 = 1, p2 > p1,∀p3 ∈ (p1, p2) yCGdp3 = 0}
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SC2: Home classroom should be used as a default classroom for lessons of class
C. The number of violations is computed this way:

CostSC2 =
∑
{1 | l ∈ L, f(l) = (d, p, r), r 6= homeRoom(lC)}

SC3: We denote CostSC3 the following expression whose result is the total number
of moves between buildings:∑
C∈C
G∈CG
d∈D
p1∈P
p2∈P
r1∈R
r2∈R

{1 | zCGdp1r1 = 1, zCGdp2r2 = 1, p2 > p1, bld(r1) 6= bld(r2),∀p3 ∈ (p1, p2) yCGdp3 = 0}

C1: Some classrooms are more desired than others:

CostC1 =
∑
{1 | l ∈ L, f(l) = (d, p, r) ∧ r 6∈ lB}.

Definition 11. An assignment function represents optimized solution if all the
hard constraints from Definition 9 are satisfied and the expression

w1 · CostSC3 + w2 · CostSC1 + w3 · CostC1 + w4 · CostSC2

is minimalized for given weights w1, w2, w3, w4, w5 ∈ R such that w4 � w3 <
w2 ≤ w1.
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3. Existing approaches

Many different solving techniques and approaches have been tried in order to
solve various school timetabling problems. Since school timetabling problems
are NP-complete in most instances, the appropriate approaches were taken to
tackle the problems, e.g. heuristic methods. The approaches include evolution-
ary algorithms, integer programming, constraint programming (CP) and Greedy
Randomized Search Procedure (GRASP) [4] [9]. Apart from these methods there
are many hybrid approaches. So far there is no outstanding approach that is
better or more preferred than the others.

In the following sections we introduce approaches that are used for solving ST
problems and we discuss their applicability to our problem instance. We would
like to note beforehand that we were unable to find a constraint model that would
be equivalent or very much alike to our problem. Most of the models in studied
articles are simpler because only one building is typically used and classes are
not typically divided into groups. It is unclear if the successful solving techniques
used for those models are still able to solve more complex ST problems, such as
our one, or not.

3.1 Sequential methods

Sequential methods [19][9] are a set of techniques based on succesive augmentation
of timetables and they often simulate how the problem is solved by a human
scheduler. These methods are known from early sixties and their advantage is
their minimal computational requirements. A sequential methods work in two
phases:

1. Lessons are sorted using a domain heuristic.

2. A timetable is created by sequentially assigning lessons to time slots follow-
ing a rule so that the timetable is conflict-free at each step.

The most common heuristic for the sorting phase is called Largest degree first
and it is just an application of first-fail principle1 used in constraint programming:
assign the most restricted lesson first. The most restricted lesson can be either the
one with the largers number of constraints applied to the lesson or the one with
the least number of time slots to which the lesson can be assigned. Intuitively, it
is obvious the heuristic helps to find a feasible solution of a timetabling problem
sooner. This is why the heuristic is still so popular in many other approaches to
school timebling.

In the second phase we need a rule according to which we assign lessons to
valid time slots. There are many rules usable for the purpose. For example, a
lesson can be assigned to a first valid time slot or to the best time slot according
to an objective function.

Sequential methods are not typically used nowadays because that approach is
outperformed by more complex solving techniques. However, the heuristics, such

1The principle says that the variable with the fewest possible remaining alternatives is se-
lected for instantiation.
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as the presented one, are still useful. In fact they are often part of local search
methods and constraint programming techniques.

3.2 Evolutionary algorithms

An evolutionary algorithm (EA) simulates evolution of biological organisms in
nature. EA is a popular algorithm, or rather a framework, that was applied
to many different problems and school timetabling is no exception. In case of
school timetabling, the goal is to breed a good feasible timetable by the means
of mutation and crossover of timetables. The general form of the algorithm is as
follows:

1. Generate an initial population.

2. Evaluate each individual in the population.

3. Repeat until a termination condition is satisfied:

(a) select parents

(b) recombine pairs of parents (via so called crossover operator),

(c) mutate the resulting offspring (via so called mutation operator),

(d) evaluate new candidates (fitness function), and

(e) select individuals for the next generation.

Crossover operators are based on the idea that when we recombine parent
timetables we may get a better timetable because some building blocks are put
together. However, it is not clear what are the building blocks in timetables which
should a crossover operator work with and which should be recombined. Unfor-
tunately, crossover operators do not work very well for timetabling problems in
general. The impediment is that a crossover of feasible timetables may result in
an unfeasible timetable. There are several possibilities how to deal with the sit-
uation, such as genetic repair [20] or filtering unfeasible timetables out after the
application of evolutionary operators. Bufé et al. [21] mention an undesired prop-
erty of genetic repair functions, i.e. there is often very low correlation between
parent timetables and the offsprings. We think that these repairing techniques
represent a way how to use an inappropriate crossover operator at all costs.

Papers [22] [23] present solving algorithms for ST based on EA where the
authors decided deliberately not to use a crossover operator as they were unable to
find out a useful crossover operator that would exert sufficient selective pressure.
Consequently, all the hard work is done by mutation operator and the resulting
algorithm is rather similar to a local search metaheuristic, particularly the one
with restarts.

Wilke and Ostler [24] compared performance of Tabu Search, Genetic Algo-
rithm, Simulated Annealing and Branch & Bound algorithms on a German high
school. The result was that Genetic algorithm was noticeable slower in finding
equivalently good solutions than the other algorithms. Abramson and Abela [25]
also note that genetic algorithms require long runtimes to find a solution. In-
terestingly, the similar results were reported by Bajeh and Abolarinwa [26] who
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evaluated performance of a genetic algorithm and tabu search on an examination
timetabling problem.

We believe that EA can be successfully used to solve our problem. However,
with regard to the aforementioned issues, we decided not to use this approach.

3.3 Metaheuristics

The following metaheuristics are particularly useful in case we need to optimize
an existing initial feasible solution. Therefore, the following techniques represent
possible further optimization steps after a primary solver is created.

3.3.1 Simulated annealing

Simulated annealing is a Monte-Carlo technique used for solving large-scale op-
timization problems. This probabilistic meta-heuristic was used with success on
school timetabling problems by Abramson [27] [28] and Zhang et al. [29].

The viability of simulated annealing in practice was proved by the system
THOR2 [30] that employs the solving technique and that was used to create
timetables on more than 100 Portuguese schools. Since the constraint model used
in THOR does not match our constraint model and the software is commercial,
we can only conclude that simulated annealing seems to be a promising technique
for solving school timetabling problems.

3.3.2 Tabu search

Tabu search [31] is a technique that is based on local search and so called tabu list.
The tabu list represents a short-term memory that is used to escape local optima
and plateaus in a search space. The length k of the tabu list is a parameter of the
algorithm. The list consists of either k solution points or k solution attributes
that were stored in k previous steps of the tabu algorithm. In timetabling, a tabu
list that is composed of previous k timetables is not particularly useful. A list
of assignments that were made during the construction of a timetable is more
commonly used.

According to the survey [5] tabu search is one of the most popular techniques
for solving school timetabling problems.

A short-term memory of tabu search does not eliminate possibility of getting
stuck in a plateaus of the search space. In school timetabling problems, this
problem is solved by diversification strategies: random restarts [32] and adaptive
relaxation. In random restart, tabu search is restarted and all information from
previous tabu search is discarded. Adaptive relaxation [31] is a strategy based
on dynamic adjusting of an objective function during search in order to navigate
the search to new regions of the search space.

Santos et al. [33] used a tabu search algorithm that is guided by a cost
function which calculates cost of hard and soft constraints violations. Initial
solution is found by a constructive algorithm that rely on a heuristic approach

2THOR stands for Tabelas Horárias which can be translated as timetabling charts.
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of placing most difficult lessons first. The solution is then improved by a tabu
search algorithm employing a useful diversification strategy.

We did not try a tabu search algorithm. We wanted to concentrate our effort
on creating a constructive algorithm instead. However, we expect that using tabu
search on top of an constructive algorithm would eventually lead to improved
solutions for our problem instance.

It is wise to take into account that the constructive algorithm and tabu search
algorithm should rather be implemented in the same type of programming lan-
guages. If a declarative and an imperative languages were chosen, the constraints
would have to be implemented twice. Reusability of such a solver would suffer.

3.4 Integer programming

Integer programming (IP) is not a frequently used technique to solve school
timetabling problems. However, several successful attempts were reported in
papers [34] and [35].

Santos et al. [35] discuss a variant of the timetabling problem which they call
Class-Teacher Timetabling Problem with Compactness Constraints for a Brazilian
school based on an IP technique called Fenchel cuts. Besides basic constraints,
the presented model is designed to deal with timetable compactness, teacher
preferences and distribution of lessons throughout the week. The constraint model
presented in [35] does solve only a subset of constraints that are imposed on our
problem since only one building is taken into account, classes are not divided into
groups, etc. It is still the closest model to the formal model we present.

We did not employ an integer programming technique for several reasons.
First, real-life problems are prone to be hard to express strictly by mathematical
equations. Therefore, the approach may prove restrictive when we would like
to extend our model further. Morever, integer programming techniques are not
suitable for problems with many variables and constraints [36]. The second reason
is that we do not have adequate knowledge of integer programming to solve such
a robust task as is ours.

3.5 Constraint programming

Constraint programming (CP) is a programming paradigm where a problem is
formulated as constraint satisfaction problem (CSP) by variables with finite do-
mains and constraints over these variables. A solution to the CSP problem is
an assignment of variables such that all constraints are satisfied. Chronological
backtracking or its improved variants are typically used to find a solution for the
constraint satisfaction problem. Constraint programming systems take advantage
of a technique called constraint propagation that prunes variables’ domains after
an assignment of a value to a variable and thus the size of the search space is
reduced.

Valouxis et al. [37] used constraint programming to search initial solutions of
a school timetabling problem in Greece and then they applied a local search to
improve solutions further.
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Marte [38] used a CP model for solving a timetabling problem on a German
school. The model involves dead-end driven learning and an ability to restart
the CP solver. Marte demonstrates the importance of learning and restarting
and their impact on the performance of the solver. We consider the model very
interesting since it combines nice features of constraint programming, such as
constraint propagation, with randomization of lesson placement.

A practical disadvantage of constraint programming systems based on Prolog
is that they typically behave as black boxes in several aspects, such as constraint
propagation which makes it hard to work with large problems. Moreover, these
systems differ in support of built-in constraints considerably.

3.6 Comparison of approaches

A comparison of existing approaches for the introduced problem is difficult. There
are typically several ways how to represent the formal model described in Sec-
tion 2.4 in each of the mentioned approaches. Moreover, each of these represen-
tations may have a set of parameters that affect the performance of the solver
considerably. Therefore, we focused our attention rather on flexibility of a result-
ing solver.
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4. Timetabling software

In this work we examined only open-source software packages since commercial
programs may provide most of the functionality we require to solve the presented
problem but we would not be able to add the missing features.

It is very time consuming to fully test an open-source solver to see if it can
solve the problem since it requires us to implement the problem according to the
formal model in Section 2.4 or to program a converter of the problem’s input
to the solver’s data format. The conversion phase is not as straightforward as
usual since some features may not be supported by the target solver and these
features need to be worked around. The time needed for the conversion may be
significantly cut if the author of the solver provides support. However, open-
source solvers are typically maintained by their authors in their free time and
therefore support is on a best-effort basis.

4.1 Open-source timetabling software packages

We examined school timetabling solvers more or less thoroughly depending on the
state of their development and on properties related to the introduced problem.
We compiled a list of open-source timetabling software packages from the surveys
[5] and [39] that seemed promising for our work. Only mature software packages
are listed. Especially, we did not examine any software designated as (pre)alpha
and beta version.

Package Problems License Prog.
language

UniTime Timetabler University timetabling LGPL Java
Free Timetabling
Software (FET)

University timetabling,
School timetabling

GPL v2 C++

KHE School timetabling GPL v3 ANSI C

Table 4.1: List of open-source timetabling software

We examined closely FET and KHE software packages that we found partic-
ularly fit to our problem.

4.1.1 UniTime Timetabler

UniTime is an educational scheduling system developed by Tomáš Müller that is
based on Constraint Solver Library1 (CPSolver) written in Java. The solver uses
a local search technique called Iterative forward search algorithm (IFS). Although
UniTime is primarily used for solving large-scale university timetabling problems
[40], the solver’s architecture seems general enough to add the model of our
problem on top of it.

The distribution of CPSolver contains implemented problems such as course
timetabling, student sectioning and examination timetabling. We can see from

1http://www.unitime.org/index.php?tab=1
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the implementations of these problems that it is necessary to implement many
Java interfaces specifying all components of a problem to use CPSolver. So we
would have to program the whole formal model in Section 2.4 in Java. It means
implementing representation of our model from basic concepts such as lessons and
their properties to high-level features such as evaluating timetables by a score and
all the soft and hard constraints.

CPSolver is a very well programmed piece of software. We examined the
CPSolver source codes and as far as we know the solver should be able to solve the
introduced problem. Yet, the primary purpose of the solver is to solve university
timetabling problems that differ substantially from school timetabling problems.
To test CPSolver on the introduced problem would require a long-term time
investment with a high risk of failure so we decided not to try the solver.

4.1.2 KHE

KHE2 is a software platform on which a fully-fledged solvers may be built upon.
The platform is an open-source project of Jeff Kingston and it is written in ANSI
C. Jeff Kingston participated in the specification of XHSTT format [15] and
therefore the format was naturally used as an input format for KHE.

Since XHSTT data format was designed so as to specify the common core
of school timetabling problems, the format allows to specify many constraints of
our problem. However, the constraint HC13 specifying moves between buildings
cannot be expressed in XHSTT. The XHSTT data format was not designed with
buildings in mind and, therefore, constraints useful for schools with more build-
ings are not supported. Moreover, it is impossible to limit the number of moves
between buildings to satisfy the constraint SC3.

The fact that the other constraints of our problem can be expressed in XHSTT
does not mean that it can be done in a straightforward way. The constraint HC5
can be expressed in XHSTT but it is necessary to specify all time blocks of 8
periods in length for each day in the timetable and then specify that students can
study at most seven periods in each of these time blocks. Obviously, a constraint
added by the mentioned type of enumeration will have a negative impact on
performance.

A minor problem is that we cannot specify classrooms’ capacities in XHSTT
directly because XHSTT is designed so that the user specifies resources required
by lessons and the meaning of resources is not predefined by the XHSTT speci-
fication. In order to satisfy the constraint HC6 we would need to work it around
by a set of labels called resource types specifying capacities of classrooms not by
numbers but by categories with the meanings: room for up to 32 students, room
for up to 16 students, etc.

The way how KHE assigns lessons to time slots and classrooms is also impor-
tant. We would need to adjust current strategy because a simple placement of
lessons to classrooms without considering the buildings where the classrooms is
prone to return bad timetables.

Another important aspect of a timetable for us is its compactness. XHSTT is
designed to support limiting of idle periods for resources. We do not know how
well the support is but it is still possible to improve the compactness of resulting

2http://sydney.edu.au/engineering/it/~jeff/khe/
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timetables by specifying that we prefer lessons belonging to a partition of a class
to be taught at the same times. The possibilities for improving compactness of a
timetable are similar in XHSTT and in FET (see below).

We were considering extending KHE to fit our needs. Programs written in C
are generally used for performance-critical applications so performance would not
be an issue. However, we denied the possibility for several reasons. The code base
of KHE is about 4 mega bytes large. This fact alone is quite intimidating and
therefore not many people would invest their time to study an extended version
of such a program. Hence, the resulting program would not be useful for broad
public. It is also necessary to take into account versatility of school timetabling
problems. C language, or an imperative language for that matter, makes these
changes hard. This deliberation led us to employ a declarative programming
language instead.

An attempt was made to contact participants of 3rd International Timetabling
Competition in order to try the solvers on the introduced problem. A few par-
ticipants kindly provided their solvers. However, the effort was unfruitful. Some
solvers were not open-source and as such they were unusable for our purposes.
The open-source solvers were built upon an older version of KHE where we dealt
with some bugs.

4.1.3 FET

FET (Free Educational Timetabling)3 is a robust open-source timetabling solver
for primary schools, secondary schools and universities from Romanian program-
mer Liviu Lalescu. The solver is based on a local search technique called recursive
swapping. Since FET is oriented on real-life timetabling problems, it supports a
large set of constraints that are useful for various timetabling problems.

We decided to use FET to solve the introduced problem because the solver is
time-tested and it supports the constraints we require. Chapter 6 describes how
FET works in more detail and it introduces a solution of the presented problem.

3http://www.lalescu.ro/liviu/fet/
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5. Data collection and
representation

5.1 Data collection

Prior to solving a problem, it is necessary to obtain all necessary data. The school
administration at SSTBTP was kind to provide data we asked for. However,
the data was a set of internal school documents written for its employees who
were acknowledged with various sorts of shortcuts and conventions used in the
documents. The following process of data interpretation was very slow and it
required many interviews with the school administration to clarify details.

A somewhat hapless consequence of this approach was the fact that we got
answers for our questions, however, we did not know the proper questions be-
forehand. This lead to a series of late revelations about the introduced problem.
Actually, we found out that there were some lessons taught every fortnight on-
ly thanks to manual inspection of timetables. This fact was not obvious from
the timetables as software generating the timetables did not support fortnight
lessons and, therefore, they were printed out the same way as weekly ones. So
much time would be spared if there were a document describing how the school
works internally.

A second task was to transform the data we received to a useful data format.
The data we had was stored in a variety of data formats such as Microsoft Excel
XLS format, PDF, plain text and HTML. It was necessary to pick one data
format to which all relevant information would be converted.

The next section describes how the format was selected and what criteria of
the selection were considered.

5.1.1 Data format selection

First, it remains to clarify what data needs to be stored for the representation of
our problem. The vital data includes:

• set of periods,

• set of teachers,

• set of classes,

• set of subjects,

• set of classrooms and information about their function,

• set of study programs and their specifications,

• information teachers’ availability for teaching, and

• set of constraints.
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As sets were a prevalent data structure that we needed to store, we started off
by storing data in an open-source relation database management system called
MySQL. The database system was chosen because it allows to query and manage
stored data by a powerful language called SQL1. Moreover, MySQL is a popular
choice among software programmers because it is pluggable to many programming
languages.

Despite the forgoing facts, the decision turned out to be a poor one. MySQL
requires from its users to provide a schema of the database in advance. This is
not an issue when data of a fully decomposed problem are to be stored. We faced
a different situation, though. We were gradually getting grasp of the full extent
of the problem and data representation was subject to massive changes. Finally,
the MySQL was abandoned in favor of a more flexible data storage because it
took too long to repeatedly change structure of the database.

It is important to realize that the problem at SSTBTP will change in future
not only due to decisions of the school administration but also due to changes of
school education acts. Therefore, it is reasonable to use as flexible data format
as possible.

A decision was made to employ a human-readable data format with great
expressibility that was easy to work with. This particularly involved possibilities
such as editing data both manually and automatically. Easy convertibility to
other data formats was essential as well. There were two interesting candidates.
The first one was Extensible Markup Language (XML) and the second one was
JavaScript Object Notation (JSON).

JSON is a lightweight data-interchange format based on name/value pairs and
on ordered lists. XML is a markup language used for document exchange. XML
format is more robust in comparison with JSON. The main advantages of XML
over JSON are:

• It is possible to check if a XML document follows a defined XML schema
and therefore if it is valid.

• There is a query language called XPath that can be used to select required
parts of the XML document.

• One XML document can be converted into another one by using Extensible
Stylesheet Language Transformations (XSLT) language.

In the end, we chose JSON because we did not need the additional features
of XML and because the data format was designed in a way that common data
structures map directly to its counterparts in programming languages. The same
holds for XML but it is more complicated. The decision was rather subjective be-
cause both formats could be used. However, we found JSON to be more readable
and simpler so we chose this data format. The readability may be underestimated
but we dealt with a file that was 11,000 lines long and it was of utmost important
to spot mistakes easily.

Note that we did not use XHSTT data format for the representation of our
problem instance because it was not suitable as a primary data format in our
case. XHSTT data format cannot express things, such as study programmes and

1Structured Query Language
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many other details. Moreover, XHSTT would be inconvenient for exporting to
other data formats.

We assume the reader is familiar with the JSON format in the following
sections. If it is not the case, please refer to http://www.json.org/.

5.1.2 JSON data format

We propose a set of JSON files that specify particular parts of our problem:

• buildings.json,

• classes.json,

• classrooms.json,

• macros.json,

• study.programs.json,

• subjects.json,

• teachers.json, and

• timetable.json.

JSON format does not support comments as it is customary in many data
formats by prefixing a line with special characters such as //, #, %, etc. We will
use two slashes (//) to comment particular parts of our JSON format. Beware
that this is not syntactically valid2.

All the JSON listings in following sections are annotated by the meaning
of particular name/value pairs. We use the mark [Required] to specify which
name/value pairs are required, failing that leads to an invalid JSON format.
The mark [Informative] specifies that the corresponding name/value pair is
intended only for informative purposes and as such the pair is not required to
be present. However, we strongly recommend to specify these informative pairs.
Last mark we use is [Optional] and it denotes a name/value pair that need not
be present and a default value is used when the pair is missing.

In the following section, we show the classroom representation in JSON. The
rest of the files is described in Appendix A.

Classrooms (classrooms.json)

Classrooms are represented straightforwardly by their designations, capacities
and their locations. JSON data format is shown in Fig. 5.1.

{
// A unique identifier of the classroom.

//

// Note: The identifier is used to denote lessons that take place

// in classroom "Mechanical workshop" in a timetable. The identifier

// is typically a shortcut of the classroom name.

2A simple workaround is to simply add a new key-value pair to a JSON file. However, we
did not use the workaround in annotated JSON samples for reader’s convenience.
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"M": {
// [Required] A unique integer assigned to the classroom.

// NOTE: The identifier is useful for the solvers that work

// with numerical variables such as SICStus Prolog.

"id": 1,

// [Required] The same identifier (shortcut) as the one above.

"shortcut": "M",

// [Informative] A name of the classroom.

"room_name": "Mechanical workshop",

// [Required] A capacity of the classroom specified as

// the maximum number of students for which the classroom

// was designed.

"room_capacity": 16,

// [Required] A shortcut of the building where the classroom

// is located (see file buildings.json).

"building_shortcut": "Panska",

// [Informative] A note about the classroom.

"note": ""

},
"PS": {

"id": 2,

"shortcut": "PS",

"room_name": "Photographic studio",

"room_capacity": 16,

"building_shortcut": "Panska",

"note": ""

},
// ...

}

Fig 5.1: classrooms.json

Informative name/value pairs demonstrates how JSON format is flexible in
general because when we need to add more information about classrooms we
simply add a new name/value pair and it does not affect a convertor that works
with the JSON files.

5.2 Solver properties

Chapter 2 covers important aspects of the timetabling problem. However, there
are a few open questions that need to be addressed in order to propose a solution
for the timetabling problem. We will do so in the following paragraphs.

5.2.1 Fortnight lessons

Generally, a better timetable can be reached by joining two fortnight lessons to
a regular one. We examined fortnight lessons at SSTBTP and we concluded
that automatized joining of fortnight lessons would be troublesome and potential
gain would be negligible. This is why we manually added constraints to the
JSON representation of study programs, each of which links two fortnight lessons
according to customs at SSTBTP. It is up to a converter how it deals with the
information then.
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5.2.2 Timetable compactness

We can improve compactness of the final timetable significantly by putting lessons
of a class that belongs to different subgroups of one partition to the same time
slots as much as possible. Failing the heuristic leads to a loss of free time slots
for other lessons from other partitions or for lessons of whole class.

It may happen that a solver that is not guided by the heuristic will accomplish
similarly good placement of lessons but it is improbable. The problem can be
solved by adding an objective function to the solver that rewards the mentioned
placement of lessons. An intelligent lesson scheduler is also an option.
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6. FET solver

FET (Free Educational Timetabling) is a robust open-source timetabling solver1

for primary schools, secondary schools and universities from Romanian program-
mer Liviu Lalescu.

We decided to test how difficult the introduced problem is for an existing
school timetabling solver and we chose Free Educational Timetabling (FET)
5.19.0 for the purpose. The solver was successfully used to solve many other
school timetabling problems. Naturally, we wanted to know how it could cope
with our problem.

6.1 Introduction

FET is a cross-platform user-friendly computer software that was written in
C++ and Qt Framework. The main module of the program is the the recur-
sive swapping algorithm implementation. The program has two interfaces. Users
typically interact with the program by a graphical user interface in order to spec-
ify their timetabling problems. However, the solver can be run from a console as
a stand-alone program too.

Users typically input data to FET by its graphical user interface (GUI) and
then they run the solver to find a solution for the specified task. To specify a
timetabling problem in FET, a user has to provide data listed in Table 6.1.

Data Description
Time grid A time grid represented by a list of days and a list of periods.
Students A division of students to student groups.
Subjects All subjects that are taught at school.
Teachers All teachers who are employed at school.
Classrooms A list of all classrooms along with capacities of the classrooms.
Buildings Optionally a list of buildings.
Activities A list of lessons (called activities in FET).
Constraints Constraints imposed on students, teachers, classrooms, etc.

Table 6.1: A specification of a timetabling problem in FET.

It is very tedious and time consuming to enter all the required data for a
non-trivial timetabling problem to FET by hand since timetabling problems of-
ten contain hundreds of lessons and many constraints. A better approach for
complicated timetabling problems is to generate input data for FET by a helper
program than to use the GUI. An XML data format is used by FET to store and
retrieve timetabling problems.

6.2 Algorithm

The first version of FET resulted from Lalescu’s Master’s Thesis [41] and it was
based on a genetic algorithm. The author claims that the genetic algorithm was

1http://www.lalescu.ro/liviu/fet/
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slow and that he was not able to improve the algorithm to alleviate the long
runtime requirements. A local search algorithm called recursive swapping was
incorporated instead of the genetic algorithm in 2007. The change dramatically
improved solving capabilities of the system.

The recursive swapping algorithm is a recursive algorithm that starts by sort-
ing activities in decreasing order according to how difficult it is to place the
activities2. The activities are then recursively placed to available time slots in a
timetable. If an activity A cannot be placed then all time slots are considered as
a time slot for A. The time slot with the lowest number of conflicting activities
(e.g. B, C, D activities) is chosen for A and the conflicting activities B, C and
D are unallocated. The algorithm tries to resolve the problem with recursive
placing of B, C and D. On failure the algorithm tries to place A to the time slot
with the second lowest number of conflicting activities.

A more precise description of the algorithm can be found in the online docu-
mentation [42].

6.3 Data format

Unfortunately, the FET’s XML data format is not documented. This is because
regular users of FET do not need a specification in order to work with the program
since they use the graphical user interface.

The FET’s source codes are available, therefore it is possible to read how
the XML data format works but it requires a certain knowledge of C/C++. The
easiest way to understand the data format, we found, was to insert a constraint,
an activity or any other piece of information by the graphical interface and sub-
sequently store the result to a file for an inspection.

We present an overview of the FET’s XML data format in Appendix B.

6.4 Representation of SSTBTP problem

This section outlines how we represented the introduced problem in FET and
what was necessary to overcome. The actual XML code fragments are in Ap-
pendix B.

6.4.1 Time grid

We specified a time grid for SSTBTP by adding five days and twelve periods.
This simple definition of the timetable is sufficient since we do not need to create
timetables for both buildings separately. The periods in Panská and Štupartská
are shifted only by ten minutes and the travel time constraints specified in Sec-
tion 2.3.6 are not in conflict with this simple representation.

6.4.2 Students

FET works with students divided into years, groups and subgroups. We will
refer to these terms as FET’s year, FET’s group and FET’s subgroup in order to

2The author claims that this provides a significant speed up of the algorithm.

42



avoid confusion. The reader may expect a FET’s year is just a label to denote a
class with proper grade. As counterintuitive as it is FET’s years, FET’s groups
and FET’s subgroups are always groups of students and we can, for example,
assign them a lesson or impose a constraint on them. FET’s years, FET’s groups
and FET’s subgroups are internally represented as one list of groups of students.
Therefore, the division to years, groups and subgroups is artificial and its main
purpose is to improve user experience.

To represent classes, partitions of classes and subgroups, it was necessary to
match our classes and subgroups on FET’s years, groups and subgroups. We
will demonstrate how this can be done on an example of class 1.C with two
partitions EnLang = {A1, A2} and TV = {TVB, TVG}. The straightforward
representation is demonstrated in Fig. 6.1. The figure shows a natural division
of students to grades, classes and subgroups.

<Students_List>

<Year>

<Name>1</Name>

<Number_of_Students>200</Number_of_Students>

<Group>

<Name>1.C</Name>

<Number_of_Students>32</Number_of_Students>

<!-- Partition "EnLang" -->

<Subgroup>

<Name>1.C A1</Name>

<Number_of_Students>16</Number_of_Students>

</Subgroup>

<Subgroup>

<Name>1.C A2</Name>

<Number_of_Students>16</Number_of_Students>

</Subgroup>

<!-- Partition "TV" -->

<Subgroup>

<Name>1.C TVB</Name>

<Number_of_Students>16</Number_of_Students>

</Subgroup>

<Subgroup>

<Name>1.C TVG</Name>

<Number_of_Students>16</Number_of_Students>

</Subgroup>

</Group>

<!-- A specification of other classes is omitted. -->

</Students_List>

Fig 6.1: FET’s student list definition - bad solution

The problem with this representation is that FET would allow activities of all
FET’s subgroups A1, A2, TVB and TVH of class 1.C to take place simultaneously
which is inconsistent with our model. FET supports a constraint named A set
of activities are not overlapping that allows to specify which lessons cannot take
place at the same time. However, the constraint is inefficient due to the way
how it is implemented in FET. Moreover, we would need a large number of these
constraints to ensure correct placement of class’ lessons. We have found a more
efficient solution.

Fig. 6.2 demonstrates how to implement partitions in FET. Firstly, the read-
er can see that a class is represented by FET’s <Year> tag and subgroups are
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represented by FET’s <Group> tags. Although the code is counterintuitive, it
is perfectly valid. Secondly, the code listing contains dummy FET’s subgroups
with names in form SUBGROUP A-share-SUBGROUP B3. The purpose of these
dummy subgroups is to say that some FET’s groups have students in common
and therefore, the activities of these FET’s groups cannot take place simulta-
neously. For example, the reader can see in Fig. 6.2 that FET’s subgroup 1.C
A1-share-1.C TVB was added to forbid lessons of 1.C A1 subgroup and 1.C TVB
to take place at the same time.

The number of students in a dummy subgroup can be an arbitrary number
because we do not assign to these subgroups any activities and the number is
used only to check if a capacity of a classroom is not exceeded.

<Students_List>

<Year>

<Name>1.C</Name>

<Number_of_Students>32</Number_of_Students>

<Group>

<Name>1.C A1</Name>

<Number_of_Students>16</Number_of_Students>

<Subgroup>

<Name>1.C A1-share-1.C TVB</Name>

<Number_of_Students>0</Number_of_Students>

</Subgroup>

<Subgroup>

<Name>1.C A1-share-1.C TVG</Name>

<Number_of_Students>0</Number_of_Students>

</Subgroup>

</Group>

<Group>

<Name>1.C TVB</Name>

<Number_of_Students>16</Number_of_Students>

<Subgroup>

<Name>1.C A1-share-1.C TVB</Name>

<Number_of_Students>0</Number_of_Students>

</Subgroup>

<Subgroup>

<Name>1.C A2-share-1.C TVB</Name>

<Number_of_Students>0</Number_of_Students>

</Subgroup>

</Group>

<!-- Other groups are defined similarly. -->

</Year>

</Students_List>

Fig 6.2: FET’s student list definition - good solution

6.4.3 Teachers, subjects, classrooms, buildings and activ-
ities

Teachers, subjects and buildings are defined by lists that contain names of teach-
ers or subjects or buildings, respectively.

Classrooms are represented in the similar straightforward way, and moreover,
we need to specify student capacities of the classrooms and the buildings where

3Note that the names of the dummy subgroups are not in any way special for FET.
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the classrooms are located. The constraint HC6 is thus very easy to add.
An activity is specified by a subject, a teacher, a length of the activity, and a

student set. We have all the information so this is straightforward too.

6.4.4 Constraints

We present implementation details of the constraints specified in Section 2.4 in
Appendix B. Those constraints are easy to add. In the following sections we
discuss the constraints imposed on the introduced problem that are problematic
to add.

Travelling between buildings

The constraint HC13 specifying moves between buildings cannot be currently ex-
pressed in FET. However, FET supports the constraint Min gaps between building
changes for a students set (MGBBC) that, as the name suggests, is stronger than
we require. A soft variant for the MGBBC constraint would make it easier to
satisfy SC3 constraint.

The compactness of generated timetables

A problem we encountered repeatedly was how to specify FET’s constraints so
that a generated timetable would be compact for students. The solver was in-
tended evidently for schools that do not allow gaps in their timetables or for
universities that only try to limit the numbers of gaps. However, we were al-
so interested where the gaps were located in timetables. For example, it is not
particularly desirable for a student to have a gap after a first lesson he or she
attends.

The possibilities how to improve the compactness of timetables for SSTBTP
in FET were limited. Issues with the timetables’ compactness went hand in
hand with the inconvenience that lessons of some study groups were placed in
the timetables in a way that students of the study groups started their day in
afternoon. The constraints we impose on the problem do not forbid this placement
of lessons. However, the placement is not desirable because students would not
have time for studying after they return from school.

We have the following constraints to control an arrangement of lessons in
FET:

1. Hard constraint Max gaps per day for all students (MGPD). The constraint
limits the number of gaps for study groups4. Unfortunately, a soft version
of the constraint is missing. This makes the use of constraint somewhat
clumsy because it is necessary to start with a high value of permitted gaps
and lower the number as long as FET is able to find a solution.

2. Hard constraint All students begin early (max beginnings at second hour)
(ASBE). We can use the constraint to ensure that study groups attend their
first lessons at first or second period. We would benefit from an existence
of a constraint specifying the latest period when students can attend their

4See Section 2.4.
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first lesson on each day. Sadly, this is not supported in the current version
of FET. A soft variant of ASBE constraint is also missing.

3. Soft time constraint Activities Preferred Time Slots (APTS). The constraint
specifies how preferred are certain time slots for placing lessons.

With the help of APTS constraint we can create preferred time zones as
shown in Table 6.2. The idea is simply to add APTS constraints so that periods
denoted by the letters A in Table 6.2 are more preferred than periods denoted by
the letters B and so on.

Day / Period 1 2 3 4 5 6 7 8
Monday A B C D E F G H
Tuesday A B C D E F G H
Wednesday A B C D E F G H
Thursday A B C D E F G H
Friday A B C D E F G H

Table 6.2: Priority zones in a timetable.

6.5 Missing constraints

We examined the source codes of the solver with the intention to add the con-
straints we miss. We found a method that takes care of swapping of lessons.
However, the method was about 6,000 lines of code long and it was not com-
mented. Unfortunately, the method was not an exception. Moreover, there was
no software documentation to substitute the lack of source code comments. That
is why we gave up the idea to add the constraints we missed to FET.
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7. CLP solver

This chapter presents a model of the introduced problem in constraint logic pro-
gramming and we discuss properties of the model. The model is based on Marte’s
model [38].

7.1 Introduction

Constraint Programming [38] [43] is an approach where combinatorial problems
are specified declaratively in terms of a set of variables and constraints over them.
A constraint is a restriction of values that variables can be assigned concurrently.
The formal definitions [44] are as follows:

Definition 12. Constraint satisfaction problem (CSP) is specified by a triple (X ,D, C)
where

- X is a set of variables X = {x1, x2, . . . , xn},

- D is a set of finite domains D = {D1, D2, . . . , Dn} for the variables, and

- C is a set of constraints C = {C1, C2, . . . , Cm} such that the scope of each
constraint is a subset of X .

Definition 13. The domain of a variable is a finite set of all values that can be
assigned to the variable.

Definition 14. A constraint Cl is a pair (sl, Rl), where

• sl = (xl1 , . . . , xlm) is an m-tuple of variables called scope,

• Rl is a subset of the Cartesian product
∏

xi∈sl Di, i.e. Rl is a subset of all
possible variable values representing the allowed combinations of simultane-
ous values for the variables in sl.

Definition 15. An instantiation I is a set of pairs (xi, ai) such that xi ∈ X is a
variable and ai ∈ Di and each variable appears at most once in the instantiation.

Definition 16. Let P be CSP (X ,D, C) and let I be a complete instantiation of
the variables in X . A value assignment is then the function defined as follows:

δ(xi) = v ⇐⇒ (xi, v) ∈ I

A solution of P is a value assignment satisfying all the constraints in C.

7.2 Choice of a constraint programming system

There are many constraint programming (CP) systems such as Choco, CHIP,
SWI-Prolog, SICStus Prolog, etc. We chose SICStus Prolog because we imple-
mented a CP model that is based on the Marte’s model [38] which was imple-
mented in SICStus Prolog as well. Therefore, timetabling practitioners with an
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intention to build their solvers upon the Marte’s model can draw from the expe-
rience of the Marte’s model and our model.

SICStus Prolog belongs to the category of constraint logic programming sys-
tems. Essentially, these systems combine Prolog programming language that is
based on backtracking with a constraint programming library such as CLP(FD)1.
The constraint library provides typically a set of well-known global constraints
such as all different, global cardinality constraint, etc.

SICStus Prolog is a commercial product. There is an alternative open-source
constraint programming system called ECLiPSe2 that should be able to run the
source code we wrote for SICStus Prolog. We did not try to run the source code
in ECLiPSe because the global constraint disjoint2 we use (see below) will not
be available until the release of ECLiPSe 6.1.

7.3 Global constraints

All constraint programming problems can be expressed by a set of binary con-
straints. However, in practice constraint programming systems provide a set of
carefully crafted n-ary global constraints that are designed for efficient filtering of
variables’ domains. Thus, the global constraints can significantly improve perfor-
mance of CP programs. We describe the global constraints we use in the following
paragraphs.

The disjoint2 constraint is a two dimensional disjunctive constraint that con-
strains the placement of a collection of rectangles R = {R1, . . . , Rn} to not overlap
in their areas. A rectangle Ri is defined by a 4-tuple (xi, yi, wi, hi) specifying top-
left coordinates of the rectangle (variables xi, yi), its width wi and its height hi.
The constraint disjoint2(R) is satisfied in a CSP (X ,D, C) with a value assign-
ment function δ if and only if

∀1 ≤ i < j ≤ n : δ(xi) + δ(wi) ≤ δ(xj)∨
δ(xj) + δ(wj) ≤ δ(xi)∨
δ(yi) + δ(hi) ≤ δ(yj)∨
δ(yj) + δ(hj) ≤ δ(yi).

The global cardinality constraint (gcc) [45] over a set of variables and values
states that the number of variables instantiating to a value must be between a
given upper and lower bound, where the bounds can be different for each val-
ue. More precisely, if (X ,D, C) with an assignment function δ, x1, . . . , xn ∈ X ,
v1, . . . , vm ∈

⋃
D, l1, . . . , lm, u1, . . . , um ∈ N, and

C = gcc({x1, . . . , xn}, {(v1, F1, l1, u1), . . . , (vm, Fm, lm, um)}) ∈ C

then C is satisfied if and only if

∀1 ≤ j ≤ m : δ(Fi) = |{vi|1 ≤ i ≤ n : δ(xi) = vj}|, lj ≤ δ(Fi) ≤ uj.

The automaton is a global constraint in SICStus Prolog whose input is a
sequence of variables and a finite-state machine. The finite-state machine checks

1CLP(FD) stands for Constraint Logic Programming - Finite Domain.
2http://eclipseclp.org/
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a ground instance of the sequence and if the machine ends in a final state the
automaton constraint holds true; otherwise it fails.

The element constraint is satisfied in a CSP (X ,D, C) with an assignment
function δ, x, y ∈ X , L is an arbitrary tuple of variables from X , and

C = element(x, L, y) ∈ C

then C is satisfied iff the δ(x)-th element of tuple L is equal to δ(y).

7.4 Constraint model

In this section we propose a constraint programming model based on Marte’s CP
model [38] that specifies core requirements of school timetabling problems.

We presented the formal model of the introduced problem in Section 2.4 and
we will use the notation established in the section in the following text – namely
the sets D,P , C,B,L and the functions tAvail and bld.

7.4.1 Representation of time slots

Marte proposes a straightforward representation of the time grid G = D×P where
the pair (0, 0) represents the first time slot of the first day, (0, |P|− 1) represents
last time slot of the first day, (1, 0) represents first time slot of the second day,
etc. Unfortunately, variables in finite-domain constraint programming can be
only integers and therefore Marte proposes mapping of pairs (i, j) to numbers
i · |P| + j which can be easily decoded back by the modulo operation and by
computing integer quotients.

7.4.2 Variables and initial domains

We use function δ0 to denote initial domains of variables. For each block lesson
l ∈ L we add six finite-domain integer variables:

• a period-level starting time variables PLST(l) and PLST2(l)3,

• a day-level starting time variable DLST(l),

• a classroom variable R(l) and R2(l),

• a building variable B(l).

We initialize the variables as follows:

• The initial domain of PLST(l) is obtained

(i, j) ∈ δ0(PLST(l)) ⇐⇒ ∀j ≤ k < j + ln : (i, k) ∈ G \ U(l)

where U(l) are teacher unavailabilities:

U(l) = {(d, p) | ∀d ∈ D, p ∈ P : tAvail(lt, d, p) = 1}.

The initialization ensures that the constraint HC10 is not violated.
3Variable PLST2(l) is an auxiliary variable used to encode custom orders of PLST(l) domain

values. Variables R2(l) and R(l) are in the same relation as PLST2(l) and PLST(l).
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• To obtain the initial domain of DLST(l), we use the following projection:

δ0(DLST(l)) = {i : (i, j) ∈ δ0(PLST(l))}

• Changes in the domain of PLST(l) are propagated to the domain of DLST(l)
and vice versa, by imposing the following constraint:

DLST(l) = bPLST(l)/|P|c

• The domain of R(l) is initialized with the classrooms that are permitted for
lesson l:

δ0(R(l)) = lA.

We assume that the classrooms lA are encoded by integers. For the encoding
we need to know the number MaxRooms defined as:

MaxRooms = max
b∈B
|bld−1(b)|

The MaxRooms represents the maximum number of classrooms in the
buildings. Classrooms from the first building are represented by integers
1, 2, . . . ,MaxRooms − 1. Classrooms from the second building are repre-
sented by integers MaxRooms,MaxRooms+ 1, . . . , 2 ·MaxRooms− 1.

The initialization ensure that the hard constraints HC6, HC7 and C1 are
satisfied.

• The variable R2(l) is an auxiliary variable that enforces a custom order of
the classrooms permitted for lesson l. We need a new variable and a con-
straint for that purpose because a finite-domain variable cannot be specified
with a custom order of the domain values.

• The domain of B(l) is initialized with the buildings that are permitted for
lesson l:

δ0(B(l)) = {br/MaxRoomsc | r ∈ lA}

• To propagate changes in the domain of R(l) to the domain of B(l) and vice
versa, the following constraint is imposed:

B(l) = bR(l)/MaxRoomsc+ 1

7.4.3 Lesson decomposition

We decompose each block lesson l ∈ L to one-period long lessons u1, . . . , uln such
that the following variables and constraints are introduced:

• We introduce PLST(uk) variables for 1 ≤ k ≤ ln such that:

δ0(PLST(uk)) = {(i, j + k − 1) : (i, j) ∈ δ0(PLST(l))}.
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• The constraint PLST(u1) = PLST(l) is imposed to bound the lesson l with
the first lesson of its decomposition. Moreover, the lessons u1, . . . , uln can
only take place in succesive order. The following constraints are imposed
for that purpose:

PLST(uk+1) = PLST(uk) + 1 ∀1 ≤ k < ln.

We use the lesson decompositions because it allows us to work with block
lessons in global cardinality constraints. For example, HC3 constraint is imple-
mented this way. Lesson decompositions also ensures that the constraint HC12
is satisfied.

7.4.4 Students and a dual time model

The constraints HC3, SC1, HC13 and HC5 are specified for individual students.
This is convenient but we cannot work with students as individuals because the
problem input contains only classes’ partitions and their subgroups. For this
reason we define a study group4 that represents a set of students who have the
same timetable in common.

We implemented the basic constraint HC3 for students by adding gcd con-
straint for each study group:

gcc(L, {(0, E0, 0, 1), (1, E1, 0, 1), . . . , (x,Ex, 0, 1)})

where

• x = |D| · |P| − 1 is the number of time slots in each timetable of the study
group,

• L is a set of PLST variables corresponding to decomposed lessons of the
study group as described in Section 7.4.3,

• variables E0, . . . , Ex are new finite-domain variables with the domains {0, 1}.

It is hard to express constraints such as SC1 and SC3 with the help of PLST
variables. That is why we use a dual model to the time model described in Sec-
tion 7.4.1. The dual model describes which time slots of a study group timetable
are occupied by lessons of the study group. The variables E0, . . . , Ex are used for
the purpose. Each variable Ei for 0 ≤ i ≤ x is equal to 1 if a lesson of the study
group takes place at period i and 0 otherwise.

Moreover, we have a set of variables for each student group F0, . . . , Fx so that
variable Fi specify a building where the study groups is at period i:

Fi =


0 idle period,

1 Panská, and

2 Štupartská.

4See Section 2.4.
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Figure 7.1: A finite-state automaton for counting gaps in a timetable for a day.

To obtain F0, . . . , Fx variables for a study group, we impose element constraints
and one gcc constraint. We decompose each lesson l ∈ L of the study group to
variables u1, . . . , uln and we impose:

element(PLST(uk), (F0, . . . , Fx), B(l)) ∀1 ≤ k < ln.

The gcd constraint is used straightforwardly to enforce zeros to those variables
F0, . . . , Fx whose values were not enforced by an element constraint.

7.4.5 Constraints based on the dual time model

The constraints SC1, SC3 and HC13 can be easily expressed by finite-state ma-
chines. Figure 7.1 shows the automaton that counts gaps. An input of the
automaton is an ordered sequence of time slots variables of a day, i.e. variables
Es, . . . , Ee where s ∈ {i | i ∈ P : i mod |P| = 0} and e = s + |P| − 1. The
automaton uses counters T and R. The former counter is an auxiliary one and
the later counter contains the actual number of gaps. The automaton is posted
to CP system in form of automaton constraint for each study group and for each
day of the study group’s timetable.

The automaton shown in Figure 7.2 ensures that a study group have an idle
period before a movement from Štupartská to Panská. The input of the automa-
ton is a sequence of variables Fs, . . . , Fe where s ∈ {i | i ∈ P : i mod |P| = 0} and
e = s + |P| − 1. The reader can notice that there is no edge between the states
P and S. The missing edge guarantees that HC13 constraint is satisfied.

The automaton to counts movements between buildings is simple. It can be
constructed straightforwardly, therefore, we do not present it here.

7.4.6 Bounds on daily workload

We can limit bounds of daily workload for a study group or a teacher by means
of gcc constraint:

gcd(L, {(d, Fd, X, Y ) | d ∈ D})

where the X and Y are integers that represent the lower and the upper bound of
daily workload for a resource, and

L = {
⋃

l∈L⊆L

{DLST(mi) |m1, . . . ,mln is decomposed l, 1 ≤ i ≤ ln}}.

The approach is used to implement the maximum workload for study groups
and for teachers (i.e.HC4 and HC9).
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Figure 7.2: Representation of HC13 constraint by a finite-state automaton where
i stands for idle period, state P stands for Panská and state S stands for
Štupartská.

7.4.7 Constraints for classrooms

Double-booking of classrooms (i.e. HC2) is forbidden by a disjoint2 global
constraint in the following manner:

disjoint2(L ∪ U)

where

• L = {(PLST(l),R(l), ln, 1) | l ∈ L}, and

• U = {(11, r, 1, 1)|r ∈ R ∧ bld(r) = Štupartská}.

The set U is used to specify unavailabilities of classrooms specified in HC8.

7.5 Search procedure

We adopted Marte’s search procedure described in paper [38]. The procedure is
an extension of chronological backtracking that adds a restarting capability when
the search hits a dead end. We explain the search procedure only briefly since a
detailed description is available in Marte’s paper [38].

1 solve(Lessons) :-

2 catch(probe(Lessons), restart, solve(Lessons)) .

3
4 probe([]).

5 probe(Lessons) :-

6 chooseLesson(Lessons, Lesson),

7 if(scheduleLesson(Lesson),

8 (remainingLessons(Lessons, Lessons1), probe(Lessons1)),

9 (registerDeadEnd(Lesson), fail).

Fig 7.1: Shortened version of Marte’s search procedure

The solve procedure is the main method of the search procedure and it ini-
tiates the search by calling probe procedure that schedules lessons one by one
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until all lessons are successfully scheduled or until a lesson cannot be sched-
uled. If scheduleLesson procedure fails when scheduling a lesson l ∈ L, counter
deadEndCount(l) for the lesson is incremented. If the counter reaches a global
user-defined limit called restart threshold then the search is stopped, all lessons
become unscheduled and program continues by initiating the search again on
line 2 in Figure 7.1.

It remains to discuss how we implemented the procedures chooseLesson and
scheduleLesson.

7.5.1 Heuristic for lesson selection

A time-tested heuristic for school timetabling problems is to choose the most
restricted lesson to be scheduled first. We use the heuristic and we estimate how
hard lesson l ∈ L is to schedule by calculating the following weight function:

w(l) =
1

resourceDemand(l) ·max(1, deadEndCount(l))

where

resourceDemand(l) =
10 · subgroupsNo(l) · ln + random(1, 9)

|dom(PLST(l))| · |dom(R(l))|
.

We know subgroup lS for each lesson l ∈ L. Subgroup lS is an element of
partition P and the function subgroupsNo(l) returns |P |. This means we want to
schedule lessons belonging to complicated partitions sooner. The dom function
returns current domain of a CP variable and the function random(x, y) returns
a pseudo-random integer between x and y.

More specifically, chooseLesson procedure selects the lesson that minimizes
w(l) from the set of lessons that are to be scheduled.

7.5.2 Heuristic for lesson scheduling

To schedule a lesson, we need to assign:

• a start time to the lesson, and

• a classroom where the lesson should take place.

As for a start time selection strategy we basically use a first available time
slot strategy. Table 7.1 shows the order of time slots the strategy tries for each
lesson. However, we use the strategy in a modified form. First, we try to assign
the lesson to time slots where there are already scheduled lessons of the same class
and of the same partition as the currently scheduled lesson. In case of failure we
try the first available time slot strategy.

Classrooms are encoded with CP variables R2(l) so that the preferred class-
rooms lB for lesson l are encoded by lower numbers than the rest of permitted
classrooms lA \ lB of the lesson l. Moreover, lesson l should respect home class-
room H of class lC . Therefore, an encoding function f : R → N+ is used to
satisfy the following order:

{f(r) | r ∈ lB} < {f(H)} < {f(r) | r ∈ lA \ lB \ {H}}. (7.1)
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Day / Period 1 2 3 4 5
Monday 1 6 11 16 21
Tuesday 2 7 12 17 22
Wednesday 3 8 13 18 23
Thursday 4 9 14 19 24
Friday 5 10 15 20 25

Table 7.1: The order of time slots in lesson scheduling.

The function f satisfies Equation 7.1, and moreover, classrooms are sorted so
that the classrooms located in the same building as home classroom H come
first. Consequently, the domain values of R2(l) can be sequentially tried and the
order of classrooms is to our liking. The order of values is also likely to improve
how well the constraints C1 and SC2 are satisfied.

We assign a start time to a lesson and consequently a classroom is assigned
to the lesson.

7.6 Score function

To compare solutions produced by our CLP solver, we use a score function. There
were many possible score functions that could be used for the introduced problem.
We chose the following one that was computed from classes’ timetables:

score(timetables) =2 ·
∑
C∈C

∑
G∈CG

# idle periods for study group G

2 ·
∑
C∈C

∑
G∈CG

# buildings changes for study group G

The goal is to minimize the score. The score variable is used in the CLP solver
and it is restricted in each run of the solver so that only integers from the lower
half of its initial domain range are allowed. Whenever a solution is found by the
CLP solver, the solver is restarted and the score variable can be assigned a value
that is lower than the score of the last solution.
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8. Experimental results

In this chapter we discuss the results of the introduced CLP solver and the results
we obtained from FET. All experiments were run on Intel R© CoreTM2 Quad Q9550
CPU at 2.83 GHz with 4 GB of RAM.

8.1 Data

Since timetables from previous years were not archived at SSTBTP, we made
experiments on the timetabling data from the academic year 2012/2013. The
data set is supplied in the attached CD in JSON format. A summary of the data
set is in Table 8.1.

Classes 26
Study groups 381
Study programs 7
Block lessons 974
Teachers 94
Buildings 2
Classrooms 46
Subjects 70

Table 8.1: Summary of timetabling data at SSTBTP

The following graph shows a number of study groups in each class. The
numbers are in agreement with the fact that students attend optional subjects
only in 4th grade, and therefore, there are more study groups in fourth grade
classes.

Figure 8.1: Study groups for 2012/2013 data
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8.2 FET

8.2.1 Experiments

We tried FET on the data from the academic year 2012/2013. The following
parameters were necessary to set:

• Max gaps per day for all students (MGPD) - We can set an integer that
specifies the maximum of idle periods for each study group.

• All students begin early (max beginning at second hour) (ASBE) – We can
either use the constraint or not.

• Activities preferred time slots (APTS) – We can set priority zones and
weights of particular zones. See Table 6.2 for more details.

• Max building changes per day (MBCPD) – We can set an integer that spec-
ifies the maximum of movements between buildings for each study group.

We experimented with the following configurations:

Config. MGPD MBCPD ASBE APTS
1 5 3 No No
2 5 3 No 1-20, 2-18, 3-15, 4-12, 5-9, 6-6
3 5 3 No 1-40, 2-20, 3-15, 4-12, 5-9, 6-6
4 5 3 No 1-60, 2-30, 3-15, 4-12, 5-9, 6-6
5 5 3 No 1-70, 2-40, 3-25, 4-15, 5-10, 6-5

Table 8.2: FET – configurations

In the configurations 2, 3, 4 and 5 we used priority zones so that each zone was
two periods wide1. MGPDF and MBCPD were chosen as the worst acceptable
values2. The syntax x-y in Table 8.2 means that x-th zone was added by the
Activities preferred time slots constraint with weight y.

The experiments we conducted are listed in Table 8.3. We chose time limits for
the experiments to be rather excessive. Each experiment was repeated 10 times
and we list only best scores. Table 8.3 shows that priority zones may improve
scores of final timetables.

We repeated the experiments in Table 8.3 with enabled ASBE constraint and
we obtained no solution. This result is not surprising because when there are
many study groups it is not probable that all study groups can start at first or
second period of each day.

The results of the experiments were disappointing. We did not get a solution
for the timetabling problem at SSTBTP. We obtained some solutions when we
reduced the number of activities by searching a solution for the first three classes
of the timetabling problem. However, the scores in Table 8.3 are still much worse
than the ones that our CLP solver produces in up to 10 seconds.

1The introduced problem is specified by a time grid with 5 days and 12 periods per day. So
we used 6 priority zones in total.

2We consulted the values with the school administration at SSTBTP.
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Experiment # Config. Classes Avg. time (s) Best score
1 1 All N/A N/A
2 2 All N/A N/A
3 3 All N/A N/A
4 4 All N/A N/A
5 5 All N/A N/A
6 1 3 73.1 806
7 2 3 109.7 636
8 3 3 167.9 524
9 4 3 183.6 524
10 5 3 N/A N/A

Table 8.3: FET – results

8.2.2 Conclusions

The experiments with FET shows that it was not possible to use FET to solve
the introduced problem. We tested FET on a small-sized timetabling problem
and we obtained some solutions for the problem. However, we did not like the
timetables because lessons seemed to be placed ”wherever was a free time slot”
and the timetables were not as compact as we would like them to be.

8.3 CLP

In the following sections we present results of several experiments we carried out
in order to show how well the CLP solver works.

8.3.1 Experiment 1 – Basic properties of the CLP solver

To see how the CLP model behaves, we wanted to know its runtime requirements
and other characteristics. Since we had only one data set, we always used first n
classes as an input for the CLP solver. We used first 3, 6, 9, 12, 15, 18, 21, 24 and
26 classes from the data set as the timetabling inputs. We ran the CLP solver on
each of these 9 timetabling problems 10 times and we computed the arithmetic
mean for the results. We use this setup in the following experiments too.

Before the CLP solver was run on a timetabling problem we always had ran-
domly removed up to 20 lessons from the input to add variation to the tests. The
CLP solver was stopped after a first solution was found.

The CLP solver was set to use the heuristic that we described in Section 7.5.2.
The results of the experiment are shown in the tables 8.4, 8.5 and 8.6. Note that
all the values in the tables are the average values from the ten runs of the CLP
solver for each number of classes.

Table 8.4 shows the relation between the number of classes and an average
time required to find a first solution of the problem. We can see that the time
required to find a solution increases quite rapidly. Yet, first solutions were found
in less than one hour for the hardest test cases on average. We find the times
satisfactory. Figure 8.2 shows the required time with an interpolation to a power
function.
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Classes Lessons Study groups Score Time (s) V.P.C.L. L.w.P.C.
3 110.1 26 316 5.6 5.1 19.8
6 233.3 64 1009.6 28.6 15.6 42.9
9 344.3 110 1538.4 128.8 15.8 62.6
12 455.44 130 2009.11 231 21.89 83.44
15 554.1 151 2318.2 341.9 30.1 102.3
18 673.6 187 2887.8 1234.1 37.5 125.9
21 779.2 249 3319.2 1122.5 46.8 149.3
24 885.3 309 4292.2 1866 56.9 169.4
26 960.1 381 5509.8 2060 68.8 194.1

Table 8.4: Experiment 1 – V.P.C.L. stands for ”Violations of preferred classrooms
for lessons” and L.w.P.C. stands for Lessons with preferred classroooms”.

The numbers of lessons that were not assigned to preferred classrooms are
between 25 to 35 per cent. We find the result acceptable too.

Figure 8.2: Experiment 1 – average time requirements

Table 8.5 shows average numbers of idle periods for students per week. The
maximum values are not satisfactory but Experiment 1 was conducted to find
first solutions, not best ones. The mean values are very good because a study
group has on average about one gap per day.

8.3.2 Experiment 2 – Dead end limit

We were interested how good solutions we can expect from the CLP solver when
it is run a longer time. Therefore, we let the CLP solver to search for solutions
for each input until 30 dead ends were reached. The experiment was conducted
five times for 3, 6, 9, 12 and 15 classes. Moreover, we removed up to 20 lessons
from the input for each run as in Experiment 1.

The results are in tables 8.7, 8.8 and 8.9. These tables can be compared with
the tables 8.4, 8.5 and 8.6 from the previous experiment. The Total and Mean
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Classes Total Maximum Mean
3 76.3 5.6 2.93
6 250.4 7.7 3.91
9 518.3 11.8 4.71
12 688.22 12.56 5.29
15 790.9 12 5.24
18 995.2 13.2 5.32
21 1120.6 13.1 4.50
24 1563.6 12.3 5.06
26 1950 12.8 5.12

Table 8.5: Experiment 1 – Average numbers of gaps per student per week. The
Total value represents a sum of all gaps of all study groups. The Maximum value
represents maximum number of gaps for a study group per week. The Mean value
is an average number of gaps for a study group per week.

Classes Total Maximum Mean
3 81.7 4.3 3.14
6 254.4 6.9 3.98
9 250.9 5.9 2.28
12 316.33 6.67 2.43
15 368.2 6.7 2.44
18 448.7 7.3 2.40
21 539 7.2 2.16
24 582.5 7 1.89
26 804.9 7.1 2.11

Table 8.6: Experiment 1 – Average numbers of movements between buildings per
student per week. Total value represents a sum of all movements of all study
groups. Maximum value represents maximum number of movements between
buildings for a study group per week. Mean value is an average number of
movements between buildings for a study group per week.

numbers of movements between buildings improved by about 8.5 per cent and
Maximum values improved only by about 0.5 per cent. The Total, Mean and
Maximum numbers of gaps improved by about 10 per cent.

We can conclude that even though it took much longer time to obtain the
solutions, we obtained better timetables for students. Therefore, the CLP solver
seems to be able to improve solutions over time.

8.3.3 Experiment 3 – Adjusted lesson scheduling strategy

We use the lesson scheduling strategy that was described in Section 7.5.2. Ex-
periment 3 was conducted with:

• not modified first available time slot strategy,

• 30 dead ends limit, and

• 5 times for 3, 6, 9, 12 and 15 classes.
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Classes Lessons Study groups Score Time (s) V.P.C.L
3 110.14 26 259.71 224 5
6 234.4 64 921.6 701.2 13.4
9 343.6 110 1436.8 1997.2 13.4
12 455.2 130 1875.6 3282.6 22.6
15 552.71 151 2181.71 4881.86 26.57

Table 8.7: Experiment 2 – V.P.C.L stands for ”Violations of preferred classrooms
for lessons”

Classes Total Maximum Mean
3 58.43 4.43 2.25
6 228.4 8 3.57
9 481.4 10 4.38
12 640.4 11.4 4.93
15 761.14 10.71 5.04

Table 8.8: Experiment 2 – Average numbers of gaps per student per week. The
Total value represents a sum of all gaps of all study groups. The Maximum value
represents maximum number of gaps for a study group per week. The Mean value
is an average number of gaps for a study group per week.

Results of the experiment are in Table 8.10 where the reader can see that the
modified strategy takes longer time and it seems to produce slightly better solu-
tions. However, the results for 15 classes are surprising and they make the results
of the experiment inconclusive.

8.3.4 Experiment 4 – Comparison with the official timetable

Table 8.11 compares the official solution of the timetabling problem from the
academic year 2012/2013 with the solutions we obtained from our CLP solver.
Note that the official solution contained a few errors. Some movements between
buildings did not satisfy HC13 constraint. Moreover, a human scheduler of the
official scheduler assigned some lessons from different partitions of a class to the
same time slots. Therefore, we solved with CLP a little bit harder problem than
the human scheduler.

Both solutions were obtained by restricting the score variable to be less than
5000. As the reader can see, our solutions are not better than the official solution
when we compare the solutions by their scores. However, our solutions are only
slightly worse than the official solution. In fact CLP 1 solution has even less gaps
than the official solution. Both our solutions could be actually used by SSTBTP
and it is up to the school administration to choose a solution they like.

A great advantage of the CLP solver is that it is fast in comparison with a
human scheduler. The human scheduler can use the CLP solver to generate a
timetable and he or she can consequently improve the timetable further. There
are other scenarios in which the CLP solver can be useful. For example, the
solver can be used to finish a partial timetable that the human scheduler created
or the solver can be used to generate several timetables for different assignments
of teachers.
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Classes Total Maximum Mean
3 71.43 3.86 2.75
6 232.4 6.4 3.63
9 237 6.6 2.15
12 297.4 7 2.29
15 329.71 6.57 2.18
18 446 7 2.39

Table 8.9: Experiment 2 – Average numbers of movements between buildings per
student per week. Total value represents a sum of all movements of all study
groups. Maximum value represents maximum number of movements between
buildings for a study group per week. Mean value is an average number of
movements between buildings for a study group per week.

Experiment 2 Experiment 3 Comparison
Classes Score Time (s) Score Time (s) ∆ Score (%) ∆ Time (%)
3 259.71 224 288.57 159.14 10.00 -40.76
6 921.6 701.2 1076.4 550.6 14.38 -27.35
9 1436.8 1997.2 1732 1659.75 17.04 -20.33
12 1875.6 3282.6 2146 2471.4 12.60 -32.82
15 2181.71 4881.86 1960.14 2407.29 -11.30 -102.79

Table 8.10: Comparison of first available time slot strategy (FATSS) and the
modified FATSS in the sense of Section 7.5.2.

Official
solution

CLP 1 CLP 2

Score 4152 4748 4770
Building changes
– Total 459 867 648
– Maximum 4 4 4
– Mean 1.20 2.28 1.7
Gaps
– Total 1617 1507 1737
– Maximum 8 8 8
– Mean 4.24 3.96 4.56
Preferred classrooms violations 192 73 251
Time 14 days 102 minutes 138 minutes

Table 8.11: Comparison of timetables for data 2012/2013
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Conclusions

Real problems are tough, the current specification of SSTBTP timetabling prob-
lem arised from questioning of school employees and examining of other school
timetabling problems. The school was kind to provide study programs and the
timetable for the academic year 2012/2013. Yet, it took several months to obtain
all the necessary data and to understand the internal workings of the school.

We managed to represent the school timetabling problem by an existing
timetabling solver called FET. However, the software provided solutions only for
small instances of the presented problem. For this reason we applied a constraint
logic approach (CLP) and we implemented a CLP solver.

Using our CLP solver we can produce a solution to the school timetabling
problem at SSTBTP significantly faster than a human scheduler can. We can
produce several solutions by the CLP solver in contrast with a human scheduler
who is typically able to provide just one solution. Moreover, solutions provided
by the CLP solver can be improved further by a human scheduler. The CLP
solver can also use the solver to find a solution based on a partial solution.
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Further work

There many improvements left to do and many ideas left to try. We see several
key issues that should be further improved:

• run time requirements – We would like to decrease the runtime requirements
of the CLP solver.

• new constraints – There are many schools in the Czech Republic. A compar-
ison of their timetables and timetables generated by the CLP solver would
certainly bring some ideas how to improve the CLP solver further.

• optimizations – An optimization heuristic working on top of solutions pro-
vided by the CLP solver could improve quality of final timetables.

• CP system – The current source codes of the CLP solver are run in SICStus
Prolog. The Prolog is a commercial product and the fact may prevent
schools from using the solver. An effort to port the solver to ECLiPSe or
any other free CP solver would be beneficial.

There are many approaches that can used to solve timetabling problems. We
would be particularly interested in a comparison of the constraint logic approach
to a local search technique such as tabu search.
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Appendix A

The Appendix A introduces details of JSON representation of the formal model
in Section 2.4.

All the JSON listings in following sections are annotated by the meaning
of particular name/value pairs. We use the mark [Required] to specify which
name/value pairs are required, failing that leads to an invalid JSON format.
The mark [Informative] specifies that the corresponding name/value pair is
intended only for informative purposes and as such the pair is not required to
be present. However, we strongly recommend to specify these informative pairs.
Last mark we use is [Optional] and it denotes a name/value pair that need not
be present. A default value is used if the name/value pair is missing.

A.4 buildings.json

The following JSON representation shows how buildings are defined.

{
// A unique identifier of the building.

//

// A classroom is assigned to a building by

// specifying a building identifier in the

// "building_shortcut" name/value pair in

// classrooms.json file.

"Panska": {
// [Required] The same identifier as above.

"shortcut": "Panska",

// [Informative] An address of the building.

"address": "Panska 3, Prague 1",

// [Informative] A note about building.

"note": "Main building"

},
"Stupartska": {

"shortcut": "Stupartska",

"address": "Mala Stupartska 7\/8, Prague 1",

"note": "The second building"

}
}

Fig 8.1: Description of buildings.json

A.5 classes.json

The following JSON representation defines classes and teachers’ assignments. The
file also defines classes’ partitions and their subgroups.

{
// A unique identifier of the class.

"1.A":{
// [Required] A grade that the class belongs to.

"year":1,

// [Required] A unique identifier of the class. The characters a-z, A-Z and

// dot (.) are permitted. The value is the same as the one specified above.
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"class_name":"1.A",

// [Informative] A designation of the class that does not change over time.

"invariable_class_name":"12A",

// [Required] A home classroom for class 1.A.

"home_room":"S4",

// [Required] A study program that the class follows. The value refers to

// a key in "study.programs.json" file.

"study_program_shortcut":"GST12",

// [Required] Statistics for the class.

"statistics":{
// [Required] Total number of students in the class.

"total":30,

// [Informative] A number of boys in the class.

"boysNo":30,

// [Informative] A number of girls in the class.

"girlsNo":0,

// [Informative] A number of boys in the class who can

// attend physical education.

"exercisingBoysNo":30,

// [Informative] A number of girls in the class who can

// attend physical education.

"exercisingGirlsNo":0

},
// Constraints that affect lessons of the class.

"constraints":{
// Only one constraint is supported so far and it is

// called "theSameStartingTime". The constraint is used

// to specify that two or more lessons should/have to

// be taught at the same time.

//

"theSameStartingTime": [

{
//

"weight": 100,

"value": [

"F-practice:A1",

"CH-practice:A2"

]

}
],

// Other constraints can follow.

},
"subjects":{

// An identifier of a subject.

//

// Subjects’ identifiers are specified in "subjects.json" file

// as "shortcut" name/value pairs.

"A":{
// Generally lessons of a subject are not the same. Students

// are typically taught theory and practice. Lessons differ

// then in length, how often are the lessons repeated etc.

"activities":{
// Key "theory" must be specified in study.programs.json in:

// GST12 -> subjects -> A -> activities -> year-1 -> theory.

"theory":{
"partition":{

// [Required] A partition name used for division of class 1.A.

// Note: Only characters a-z, A-Z and 0-9 are permitted.
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// Note: If lessons are for whole class then the name

// must be "class".

"name":"L1",

// [Required] Subgroups that belongs to the partition L1.

"parts":[

// A definition of the first subgroup.

{
// [Required] A name of the subgroup.

"part":"A1",

// [Required] A teacher assigned to the subgroup A1.

"teacher":{
"shortcut":"Bo"

}
},
// A definition of the second subgroup.

{
// [Required] A name of the subgroup.

"part":"A2",

// [Required] A teacher assigned to the subgroup A2.

"teacher":{
"surname":"Machacova",

"first_name":"Michaela",

"shortcut":"Mh"

}
}

]

}
}

},
//

// Other activities

//

}
}

}
}

Fig 8.2: Description of classes.json

Partitions of classes are defined implicitly. A program processing classes.json

file has to go through the file and for each class it has to store each partition name
and it has to assign to the partition name a union of all part names corresponding
to the partition name in the specification of the class.

This file is subject to change each year and, unfortunately, it will take some
time to update the data. However, if a school has a set of rules for assigning
teachers to lessons then the file can be generated automatically. The other JSON
files except teachers.json either do not change so frequently or required changes
are small.

A.6 macros.json

There are several cases when we need to specify the exact same information in
JSON files on several places. For example, when a new study plan is released,
it is typically very similar to the previous one. We decided to add support for
macros to our JSON files to get rid of this source of errors.
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Each JSON file has to be pre-processed before it is used in a convertor. In the
pre-processing the strings "@identifier" has to be replaced by the corresponding
values specified in macros.json file as long as there is no such sequence in the
processed JSON file. Note that this property guarantees us that macros can be
recursive.

{
// Notice the at sign (@) character.

// All names in name/value pairs

// have to start with the at sign in

// macros.json file.

"@language-practice--preferred-rooms": {
"type": "soft",

"value": [

"PJ",

"D3",

"SJ"

],

"weight": 50

},
// Macros are useful for defining constants.

"@constraint-HardConstraint": 100,

"@constraint-VeryHighWeight": 99,

"@constraint-HighWeight": 80

}

Fig 8.3: Description of macros.json

A.7 study.programs.json

The following JSON listing documents study programs.

{
// A unique identifier of a study program

"KAM12": {
// [Informative] An official study program name

"program": "Communication and multimedia",

// [Required]

"shortcut": "KAM12",

// [Informative] An academic year when the study program

// was used for the first time.

"released": 2012,

// [Informative] An arbitrary comment.

"note": "The study plan replaces the old study program KAM05.",

// [Required] A specification of subjects in the study program.

"subjects": {
// An identifier of a subject (see subjects.json file).

"En": {
// [Required] A specification of English lessons for all grades.

"activities": {
// A name/value pairs following name convention "year-<Grade>".

"year-1": {
// A unique identifier of a set of block lessons for each

// class in the first grade that follows the study program "KAM12".

//

// Example: We want to specify 4 block lessons so that each

// block lesson takes 1 period, and moreover, each block
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// lesson is taught every fortnight.

"practice": {
// [Required] A number of lessons in the set. The

// following name/value pairs specify properties of the

// lessons in the set.

"count": 4,

// [Optional] A number of consecutive periods that

// each lessons should take.

// Note: If omitted the default value is "1".

"blockLength": 1,

// [Optional] An interval how often each lesson should

// be repeated. Permitted values are "per week" and

// "every fortnight". As the name suggests "frequency"

// specify if each block lesson of the set is taught

// once or if it is taught every two weeks.

// Note: The default value is "per week".

"frequency": "every fortnight",

// [Optional] Constraints for all the block lessons of

// the set.

"constraints": {
// [Optional] A specification of preferred classrooms.

// All supported constraints follow the same structure

// as the example below.

"preferredRooms": {
// [Required] A constraint type.

// Two values are supported:

// * "hard" for a hard constraint, and

// * "soft" for a soft constraint.

"type": "soft",

// [Required] A weight of the soft constraint.

// The weight is a number between 1 (the lowest weight)

// and 100 (the highest weight). The larger the number

// the more we want the constraint to be satisfied.

// More precisely, we assume linear dependency.

//

// Note: A hard constraint has always the weight 100.

"weight": 50,

// [Required] A list of classrooms that are preferred.

// The values are classrooms’ identifiers (see

// classrooms.json file).

"value": [

"PP"

]

},
// [Optional] A specification of classrooms that are

// permitted for the set of lessons. The constraint

// has to be always specified as a hard constraint.

// If the "allowedRooms" constraint is not specified

// all classrooms are permitted for the set of lessons.

"allowedRooms": {
"type": "hard",

"weight": 100,

// [Required] A list of classrooms’ identifiers.

"value": [

"PP"

]

}
},
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// [Informative] An arbitrary comment.

"note": ""

}
},
"year-2": {

"theory": {
// ...

}
},
"year-3": {

// ...

},
"year-4": {

// ...

}
}

},
// ...

}
},
}

Fig 8.4: Description of study.programs.json

A.8 subjects.json

The following JSON representation shows how subjects are defined and how con-
straints related to a subject can be added.

{
// A unique identifier of the subject.

"En": {
// [Required] A name of the subject.

"name": "English language",

// [Required] The same shortcut as above.

"shortcut": "En",

// [Optional] Constraints for the subject.

"constraints": {
// An example of constraints with value

// in form of a macro.

"allowedRooms" :"@regular-rooms"

},
// [Informative] A note about the subject.

"note": ""

},
// ...

}

Fig 8.5: Description of subjects.json

A.9 teachers.json

The following representation shows how teachers are represented in JSON. The
most importantly the file specifies when the teachers are unavailable for teaching.
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{
// A unique identifier a teacher

"An": {
// [Required] The surname of the teacher.

"surname": "Anisimova",

// [Required] The first name of the teacher.

"first_name": "Elena",

// [Required] The same identifier as the one above.

"shortcut": "An",

// [Required] A specification of teacher’s unavailabilities.

"unavailabilities": [

// A first definition of unavailability.

{
// [Required] An identifier of a day from timetable.json file.

"day": "Monday",

// [Required] Periods are numbered from one and they

// correspond to the specification of periods in

// timetable.json file.

"periods": "8",

// [Informative] A reason of the teacher’s unavailability.

"note": ""

},
// A second definition of unavailability.

{
"day": "Thursday",

// [Required] A range of periods from the first period

// to the ninth period.

"periods": "1-9",

"note": ""

},
]

},
"Ba": {

"surname": "Bauerova",

"first_name": "Bohumila",

"shortcut": "Ba",

"unavailabilities": [

// no unavailabilities

]

},
// ...

}

Fig 8.6: Description of teachers.json

A.10 timetable.json

The following JSON representation defines dimensions of a timetable and it spec-
ifies names of periods and days.

{
// [Required] Specification of days

"days" :[

// A specification of the first day.

// Note: When this period is referred from any other

// file it should be referred as period zero (0)

// because the periods are numbered from zero.
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{
// [Required] A unique identifier of the first day.

"name": "Monday"

},
// A specification of the second day.

{
// [Required] A unique identifier of the second day.

"name": "Tuesday"

},
// ...

],

"periods" :[

// A specification of the first period.

{
// [Required] A designation of the period.

"name": "7:00 - 7:45"

},
// A specification of the second period.

{
"name": "7:50 - 8:35"

},
// ...

]

}

Fig 8.7: Description of timetable.json
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Appendix B

The Appendix B introduces details of representation of our problem in FET XML
data format.

B.1 FET XML data format in a nutshell

Terminology used in FET is slightly different than the one we defined in Sec-
tion 1.1. Table 8.12 shows a comparison of terms used in this work and in FET.

Thesis FET
Block lesson Activity
Period Hour
Class Group

Table 8.12: Terminology used in the thesis and in FET

The following code listing outlines skeleton of FET XML data format.

<?xml version="1.0" encoding="UTF-8"?>

<fet version="5.19.0">

<Institution_Name><!-- Arbitrary string --></Institution_Name>

<Comments><!-- Arbitrary string --></Comments>

<!--

FET works with the concept of a rectangular time grid as is usual

in school timetabling problems. The tags <Days_List> and

<Hours_List> specify dimensions of the time grid.

-->

<!-- A specification of days. -->

<Days_List>

<!-- <Number> tag specifies the number of days that are specified

by <Name> tags below. The information is redundant, however, it has

to be filled out. -->

<Number>5</Number>

<!-- <Name> tag specifies the name of a day. The information is

used on many places in GUI of FET and in generated timetables. -->

<Name>Monday</Name>

<Name>Tuesday</Name>

<Name>Wednesday</Name>

<Name>Thursday</Name>

<Name>Friday</Name>

</Days_List>

<!-- A specification of periods. -->

<Hours_List>

<!-- The same content as in <Days_List> is expected except that

periods instead of days are specified. -->

</Hours_List>
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<!-- A specification of classes and subgroups. -->

<Students_List>

<Year>

<Name>1.A</Name>

<!-- The number of students is used for comparison with

capacities of classrooms. -->

<Number_of_Students>30</Number_of_Students>

<Group>

<Name>1.A A1</Name>

<Number_of_Students>5</Number_of_Students>

<Subgroup>

<Name>1.A A1-share-1.A TVH1</Name>

<Number_of_Students>0</Number_of_Students>

</Subgroup>

<Subgroup>

<Name>1.A A1-share-1.A TVH2</Name>

<!-- The number of students can be zero. However, the tag has

to be present. -->

<Number_of_Students>0</Number_of_Students>

</Subgroup>

</Group>

</Year>

</Students_List>

<!-- A list of teachers. -->

<Teachers_List>

<!-- Teachers are specified only by their names. All other data

about teachers (e.g. unavailabilities of teachers) are added by

means of constraints. -->

<Teacher>

<Name>John Doe</Name>

</Teacher>

</Teachers_List>

<!-- A list of subjects. -->

<Subjects_List>

<!-- Subjects are specified only by their names. -->

<Subject>

<Name>En</Name>

</Subject>

</Subjects_List>

<!--

Activities can be designated by tags and the tags are then used in

constraint specifications in <Time_Constraints_List> and in

<Space_Constraints_List>.

-->

<Activity_Tags_List>

<Activity_Tag>

<!-- An example of a tag might be "morning-lessons" that we can
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assign to each activity that is supposed to take place in the

morning when students are rested. The tag "morning-lessons" is

then used in a constraint specifying that preferred times for

"morning-lessons" are, for example, three first periods of each

day. -->

<Name>morning-lessons</Name>

</Activity_Tag>

</Activity_Tags_List>

<!-- A list of block lessons. -->

<Activities_List>

<Activity>

<!-- A teacher defined in <Teachers_List>. -->

<Teacher>Bo</Teacher>

<!-- A subject defined in <Subjects_List>. -->

<Subject>En</Subject>

<!--

Students defined in <Students_List>. Any value of <Name> tag

specified in <Year> or <Group>, or <Subgroup> is permitted.

-->

<Students>1.A A1</Students>

<!-- A number of periods the block lesson takes. -->

<Duration>1</Duration>

<!--

Activities can be divided into subactivities. <Duration> then

means the length of subactivity and <Total_Duration> is equal

to the sum of lengths of subactivities.

Note: We do not use subactivities in our convertor.

Subactivities improve user experience for regular FET users who

work with GUI. Yet, whatever is expressed by means of

subactivities can be expressed by regular activities as well.

-->

<Total_Duration>1</Total_Duration>

<!-- A unique integer identifier assigned to each activity. -->

<Id>1</Id>

<!-- An integer identifier for used to associate subactivities

with each other.

Note: Use zero (0) for a regular activity. -->

<Activity_Group_Id>0</Activity_Group_Id>

<!-- The activity can be disabled without removing it from a file.

Permitted values are "true" and "false". -->

<Active>true</Active>

<!-- A comment can be attached to the activity. -->

<Comments></Comments>

</Activity>

</Activities_List>

<!-- A specification of buildings is a list of building names. -->

<Buildings_List>

<!-- The <Building> tag can be repeated several times. -->
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<Building>

<!-- A value specifying name of a building -->

<Name>Panska</Name>

</Building>

</Buildings_List>

<!-- List of classrooms -->

<Rooms_List>

<!-- The <Room> tag can be repeated several times. -->

<Room>

<!-- Designation of a classroom -->

<Name>IT Laboratory</Name>

<!-- The building where the classroom is located. -->

<Building>Panska</Building>

<!-- A capacity of the classroom. -->

<Capacity>16</Capacity>

</Room>

</Rooms_List>

<!-- Time constraints we place upon activities. -->

<Time_Constraints_List>

<!-- The constraint <ConstraintBasicCompulsoryTime> is required by

FET and it cannot be omitted. The basic time constraint ensures

that a teacher never instructs two or more activities at the same

time. Moreover, students are allowed to have at most one activity

per period. -->

<ConstraintBasicCompulsoryTime>

<!-- Each constraint has assigned a weight from the range 0.0 -

100.0. The larger the number the more we prefer the constraint to

be satisfied. The value 100 is special and it means the

constraint has to be respected.

-->

<Weight_Percentage>100</Weight_Percentage>

<!-- The <Active> tag is used to enable/disable a constraint

without the need to delete the constraint from a FET file. -->

<Active>true</Active>

<!-- An arbitrary comment. -->

<Comments></Comments>

</ConstraintBasicCompulsoryTime>

<!-- Many other constraints can be added here. -->

</Time_Constraints_List>

<!-- A list of space constraints.

These constraints include preferred classrooms for teachers,

students, activities and many other types of constraints that

affect a location.

-->

<Space_Constraints_List>

<!-- The constraint <ConstraintBasicCompulsorySpace> is required by

FET and it cannot be omitted. The constraint ensures that

classrooms are not double-booked. -->

<ConstraintBasicCompulsorySpace>
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<Weight_Percentage>100</Weight_Percentage>

<Active>true</Active>

<Comments/>

</ConstraintBasicCompulsorySpace>

<!-- Many other constraints can be added here. -->

</Space_Constraints_List>

</fet>

Fig 8.8: FET format skeleton

A constraint in FET is always defined with a weight. An important question
is how to specify the weight. The weight is not formally explained in FET’s
manual. However, the following excerpt from FET’s documentation[46] helps to
understand how the weights affect a timetabling process:

Every constraint has a weight. A weight of 100% means that this
constraint must be respected. A lower value means it should be re-
spected, but it is not necessary. It is difficult to explain the exact
function, but a simple illustration is the following: 50% weight means
that in average FET retries two times to place an activity without
a conflict. If FET isn’t able to place the activity without a conflict
after average 2 times it keeps the conflict and tries to place the next
activity.

It is clear from the excerpt that setting weights to constraints is subject to
trial and error in many cases.

B.2 Students

Classes, class partitions and subgroups are specified in <Students List> in the
way we descibe in Section 6.4.2. A problem input contains information about the
number of students in each class. However, we do not know how many students
are in particular subgroups of a class. This can be easily solved because we
can assume that for each partition of a class students are evenly divided to all
subgroups of the partition.

B.3 Constraints

This section shows how we represent the constraints imposed on the introduced
problem in FET.

B.3.1 Basic constraints

HC1

The HC1 constraint is satisfied by Basic Compulsory Time constraint (cf. Fig.
8.9) which is an integral part of FET solver and it cannot be even removed. In
fact the Basic Compulsory Time constraint not only ensures that teachers do not
instruct two or more lessons at the same time but it also ensures that students
do not attend two or more lessons at the same time.
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<ConstraintBasicCompulsoryTime>

<Weight_Percentage>100</Weight_Percentage>

<Active>true</Active>

<Comments/>

</ConstraintBasicCompulsoryTime>

Fig 8.9: The Basic Compulsory Time constraint.

HC2

The HC2 constraint is satisfied by Basic Compulsory Space constraint (cf. Fig.
8.10). This constraint is also an integral part of FET and it cannot be removed.

<ConstraintBasicCompulsorySpace>

<Weight_Percentage>100</Weight_Percentage>

<Active>true</Active>

<Comments/>

</ConstraintBasicCompulsorySpace>

Fig 8.10: The Basic Compulsory Space constraint.

HC3

The constraint HC3 was implemented by the combination of Basic Compulsory
Time constraint and a trick with dummy FET subgroups that was discussed in
Section 6.4.2.

B.3.2 Student constraints

HC4

It is easy to restrict maximum number of lessons per day for students in FET.
We can just add the following constraint.

<ConstraintStudentsMaxHoursDaily>

<Weight_Percentage>100</Weight_Percentage>

<Maximum_Hours_Daily>9</Maximum_Hours_Daily>

<Active>true</Active>

<Comments></Comments>

</ConstraintStudentsMaxHoursDaily>

Fig 8.11: A specification of maximum number of lessons per day.

FET applies the constraint on all students sets specified by tags <Year>,
<Group>, <Subgroup>. Because we specified which FET’s student sets cannot be
taught simultaneously in HC3, FET can compute correctly the number of lessons
for each study group and therefore it can correctly restrict the number of lessons
for students.

HC5

The constraint HC5 can be added very similarly to the constraint HC4 by adding:
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<ConstraintStudentsMaxHoursContinuously>

<Weight_Percentage>100</Weight_Percentage>

<Maximum_Hours_Continuously>7</Maximum_Hours_Continuously>

<Active>true</Active>

<Comments></Comments>

</ConstraintStudentsMaxHoursContinuously>

Fig 8.12: A specification of the maximum number of lessons for students.

SC1

We described problems related to the compactness of timetables in Section 6.4.4.
The syntax of the constraints mentioned in the section is as follows:

<ConstraintStudentsSetEarlyMaxBeginningsAtSecondHour>

<!-- Weight has to be 100%. This is a restriction of FET. -->

<Weight_Percentage>100</Weight_Percentage>

<!-- An integer value is expected. -->

<Max_Beginnings_At_Second_Hour>NUMBER</Max_Beginnings_At_Second_Hour>

<Students>1.A</Students>

<Active>true</Active>

<Comments/>

</ConstraintStudentsSetEarlyMaxBeginningsAtSecondHour>

Fig 8.13: A specification of the requirement that a student set has to start each
day at the first or second period defined in <Hours List>.

<ConstraintStudentsSetMaxGapsPerDay>

<!-- Weight has to be 100%. This is a restriction of FET. -->

<Weight_Percentage>100</Weight_Percentage>

<Max_Gaps>NUMBER</Max_Gaps>

<Students>1.A</Students>

<Active>true</Active>

<Comments></Comments>

</ConstraintStudentsSetMaxGapsPerDay>

Fig 8.14: A maximum number of gaps for students per day.

The ConstraintStudentsSetMaxGapsPerDay has to be added for each class.

B.3.3 Classroom constraints

HC6

We do not need a special constraint in FET for the constraint HC6 since seating
capacities are a part of classroom specifications.

<Rooms_List>

<Room>

<Name>S1</Name>

<Building>Stupartska</Building>

<Capacity>32</Capacity>

</Room>

<!-- Analogous entries follow. -->
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<Rooms_List>

Fig 8.15: A specification of a classroom capacity.

HC7

Inappropriate classrooms for a lesson can be eliminated by enumerating class-
rooms that are preferred for the lesson. For this purpose FET implements the
constraint named ConstraintActivityPreferredRooms.

However, the effect of the FET constraint on an activity is rather surprising.
FET considers only the classrooms specified in the constraint when placing the
activity even if the weight of the constraint is less than 100.

<ConstraintActivityPreferredRooms>

<Weight_Percentage>100</Weight_Percentage>

<Activity_Id>7</Activity_Id> <!-- An activity ID from

<Activity_List> -->

<Number_of_Preferred_Rooms>25</Number_of_Preferred_Rooms> <!--

The number of <Preferred_Room> tags below -->

<Preferred_Room>K</Preferred_Room>

<Preferred_Room>1</Preferred_Room>

<Preferred_Room>2</Preferred_Room>

<!-- ... -->

<Active>true</Active>

<Comments/>

</ConstraintActivityPreferredRooms>

Fig 8.16: Preferred classrooms for an activity.

HC8

Availability of classrooms is implemented in FET in form of the constraint Constraint-
RoomNotAvailableTimes. Therefore, we can simply add the constraint for each
classroom when it cannot be used to satisfy the constraint HC8.

<ConstraintRoomNotAvailableTimes>

<Weight_Percentage>100</Weight_Percentage>

<!-- A classroom name specified in <Room_List> -->

<Room>S1</Room>

<Number_of_Not_Available_Times>5</Number_of_Not_Available_Times>

<!-- The number of <Not_Available_Time> tags below -->

<Not_Available_Time>

<!-- The value has to be specified in "<Days_List>". -->

<Day>Monday</Day>

<!-- The value has to be specified in "<Hours_List>". -->

<Hour>16:55 - 17:40</Hour>

</Not_Available_Time>

<Not_Available_Time>

<Day>Tuesday</Day>

<Hour>16:55 - 17:40</Hour>

</Not_Available_Time>

<Not_Available_Time>

<Day>Wednesday</Day>
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<Hour>16:55 - 17:40</Hour>

</Not_Available_Time>

<Not_Available_Time>

<Day>Thursday</Day>

<Hour>16:55 - 17:40</Hour>

</Not_Available_Time>

<Not_Available_Time>

<Day>Friday</Day>

<Hour>16:55 - 17:40</Hour>

</Not_Available_Time>

<Active>true</Active>

<Comments></Comments>

</ConstraintRoomNotAvailableTimes>

Fig 8.17: An unavailability of a classroom.

C1

The constraint ConstraintActivityPreferredRooms is generated when a con-
straint preferredRooms is specified for a lesson in a JSON input.

<ConstraintActivityPreferredRooms>

<!-- A weight corresponding to the weight in the

"preferredRooms" constraint in JSON representation. -->

<Weight_Percentage>WEIGHT</Weight_Percentage>

<Activity_Id>NUMBER</Activity_Id>

<!-- A number of occurences of "<Preferred_Room>" tag below. -->

<Number_of_Preferred_Rooms>NUMBER</Number_of_Preferred_Rooms>

<!-- Some names of classrooms defined in "<Rooms_List>" follow.

-->

<Preferred_Room>PJ</Preferred_Room>

<Preferred_Room>D3</Preferred_Room>

<Preferred_Room>SJ</Preferred_Room>

<!-- The constraint is either enabled or disabled. The values

"true" and "false" are permitted. -->

<Active>true</Active>

<Comments></Comments>

</ConstraintActivityPreferredRooms>

Fig 8.18: A specification of preferred classrooms for an activity.

SC2

Home classrooms can be added by the FET’s constraint ConstraintStudents-

SetHomeRoom. The weight of the constraint should be low, because a higher value
may lead FET to try the home classrooms too often and thus prevent FET from
searching better timetables.

<ConstraintStudentsSetHomeRoom>

<!-- We chose a low number so the classroom is tried by FET but

not too often. -->

<Weight_Percentage>20</Weight_Percentage>

<!-- A student set defined in "<Students_List>". -->
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<Students>1.D</Students>

<!-- A classroom name specified in <Room_List> -->

<Room>S1</Room>

<Active>true</Active>

<Comments/>

</ConstraintStudentsSetHomeRoom>

Fig 8.19: A specification of a home classroom for a class.

B.3.4 Teacher constraints

HC9

<ConstraintTeachersMaxHoursDaily>

<Weight_Percentage>100</Weight_Percentage>

<Maximum_Hours_Daily>8</Maximum_Hours_Daily>

<Active>true</Active>

<Comments></Comments>

</ConstraintTeachersMaxHoursDaily>

Fig 8.20: Maximum teaching hours for teachers

HC10

<ConstraintTeacherNotAvailableTimes>

<Weight_Percentage>100</Weight_Percentage>

<Teacher>Bo</Teacher>

<Number_of_Not_Available_Times></Number_of_Not_Available_Times>

<Not_Available_Time>

<Day>Monday</Day>

<Hour>7:00 - 7:45</Hour>

</Not_Available_Time>

<Comments>Teacher ’Bohacova’ is not available on Monday 7:00 -

7:45</Comments>

</ConstraintTeacherNotAvailableTimes>

Fig 8.21: Teacher unavailability

B.3.5 Educational constraints

HC12

The constraint is imposed by specifying correct durations for each activity:

<Activity>

<!-- A name specified in "<Teachers_List>". -->

<Teacher>Bo</Teacher>

<!-- A name specified in "<Subjects_List>". -->

<Subject>En</Subject>

<!-- A name specified in "<Students_List>". -->

<Students>1.A A1</Students>

<!-- -->

<Duration>2</Duration>

<Total_Duration>2</Total_Duration>
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<Id>2</Id>

<Activity_Group_Id>0</Activity_Group_Id>

<Active>true</Active>

<Comments>

Teacher ’Bohacova’ teaches class 1.A (subgroup A1) English

language. The lesson is taught in block of length 2 periods.

</Comments>

</Activity>

Fig 8.22: A duration of an activity.

B.3.6 Travel time constraints

HC13

The constraint ConstraintStudentsMinGapsBetweenBuildingChanges is the on-
ly available choice to satisfy HC13. FET does not allow to specify a direction in
which the constraint should be applied, therefore, the FET’s constraint is stronger
than we require.

<ConstraintStudentsMinGapsBetweenBuildingChanges>

<Weight_Percentage>100</Weight_Percentage>

<Min_Gaps_Between_Building_Changes>1</Min_Gaps_Between_Building_Changes>

<Active>true</Active>

<Comments></Comments>

</ConstraintStudentsMinGapsBetweenBuildingChanges>

Fig 8.23: An idle period for students before a movement between buildings.

SC3

We can limit the number of moves between buildings by ConstraintStudents-

MaxBuildingChangesPerDay constraint:

<ConstraintStudentsMaxBuildingChangesPerDay>

<Weight_Percentage>100</Weight_Percentage>

<Max_Building_Changes_Per_Day></Max_Building_Changes_Per_Day>

<Active>true</Active>

<Comments>NUMBER</Comments>

</ConstraintStudentsMaxBuildingChangesPerDay>

Fig 8.24: A limit on the maximum of moves between buildings.
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Appendix: CD contents

The compact disk attached to the thesis has the following structure:

• Thesis.pdf - An electronic version of the thesis.

• Convertors - The directory with PHP scripts we use for converting of JSON
format presented in Appendix A to FET XML format and to a format we
use in our CLP solver.

• CLP - The folder with SICStus Prolog source codes.

• Experiments - The data used in experiments and the results of the experi-
ments.
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