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Abstract

This thesis examines scaling properties of petrol and diesel prices in the Czech

Republic and a crude oil price over the period from January 2004 to February

2013. Using generalised Hurst exponent and multifractal detrended fluctuation

analysis techniques we find out that crude oil market is efficient, do not contain

long memory and the returns exhibit monofractal behaviour. On the other

hand, petrol and diesel markets in the Czech Republic are not efficient, because

their returns contain long-range dependence in autocorrelations and exhibit

multifractal behaviour caused mostly by fat-tailed distribution. Thus, fuels can

be modelled by complex methods like Markov switching multifractal model.
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Keywords petrol, diesel, crude oil, long memory, multifrac-

tality, GHE, MF-DFA
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Abstrakt

Tato práce zkoumá škálováńı cen benźınu a motorové nafty v České repub-

lice a ceny ropy na datech v obdob́ı od ledna 2004 do února 2013. Použit́ım

metod zobecněného Hurstova exponentu a multifraktálńı detrendované fluk-

tuačńı analýzy jsme zjistili, že trh s ropou je efektivńı, bez př́ıtomnosti dlouhé

paměti v autokorelaćıch a výnosy na trhu s ropou vykazuj́ı monofraktálńı

škálováńı. Na druhou stranu český trh s pohonnými hmotami neńı efektivńı,

protože je ovlivněn dlouhou pamět́ı v autokorelaćıch výnos̊u benźınu a nafty, a

vykazuje multifraktálńı škálováńı, které je zp̊usobeno zejména distribućı výnos̊u

s těžkými chvosty. Pro modelováńı pohonných hmot je tedy nutné použ́ıt

složitěǰśı metody, jako např́ıklad multifraktálńı Markov switching model.
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Chapter 1

Introduction

Crude oil is a commodity of fundamental importance if not one the most im-

portant in the modern world. In 2011 humankind consumed 87 million barrels

of crude oil per day. That is 10 million more than 10 years ago.1 Over the past

few years the price of crude oil has become much more volatile than ever before

in recent history. The price2 was virtually stable from 1987 to 1999 with the

exception of the period of Gulf War (August 1990–February 1991), when the

price peaked at 41.45 USD/barrel, with average of 29.08 USD/barrel. That is

approximately double of daily averages of 17.26 USD/barrel during the pre-war

period (1987-1990) and 17.67 USD/barrel during the post-war period (1991-

1999). From 2004 the price gradually increased to its historical maximum of

143.95 USD/barrel in July 2008, then suddenly dropped to 33.73 USD/barrel

in December 2008, followed by steady increase to 126.64 USD/barrel in May

2011. Since then it has been fluctuating around 110 USD/barrel. Overall the

period from 2004–2013 exhibit extreme volatility in comparison to data from

1987–2003. This can be illustrated by the difference between minimum and

maximum price in each period: (i) 1987–2003: 32.35 USD/barrel (min. 9.10,

max. 41.45) compared to (ii) 2004–2013: 114.93 USD/barrel (min. 29.02, max.

143.95). The source of this fluctuations is often attributed to constantly grow-

ing demand for crude oil, as it is a vital component in many of our daily used

products, and the uncertainty in supply in terms of both availability (politi-

cal situation in most producing countries is often very unstable) and existence

(costly discoveries and generally limited supply). Most importantly, crude oil is

an essential ingredient in the production of petrol and diesel – fuels required for

the operation of combustion engines used in cars and other self-propelled vehi-

1http://www.indexmundi.com/energy.aspx?product=oil&graph=consumption
2http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RBRTE&f=D

http://www.indexmundi.com/energy.aspx?product=oil&graph=consumption
http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=RBRTE&f=D
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cles. There are more than 1 billion motor vehicles in the world today and the

number is progressively rising. The total number of motor vehicles more than

doubled during the past 10 years. International Organization of Motor Vehicle

Manufacturers (OICA) reports that more than 60 million passenger cars and

additional more than 20 million light commercial vehicles, heavy trucks, buses,

coaches and other commercial vehicles were made in 2012 worldwide.3 In the

Czech Republic, the number of registered self-propelled vehicles increased from

4 844 019 at the end of 2003 to 6 142 719 at the end of 2011. Most of which

consist of passenger cars where the number grew from 3 706 012 to 4 581 642

(Czech Statistical Office a;b). In other words the number of inhabitants per a

passenger car dropped from 2.75 to 2.29. Regarding the Czech fuel market, it is

characterised by a dense network of petrol stations, one of the highest in terms

of per capita in Central Europe. Nevertheless, petrol and diesel prices do not

exhibit the same fluctuations as crude oil price. Despite the high penetration

of petrol stations, petrol and diesel market does not show the same market ef-

ficiency as crude oil market, which is classified as a commodity market. Petrol

and diesel prices tend to be more sticky. Although a dramatic increase in price

of crude oil is often used as an argument to rapid increase of petrol and diesel

prices, dramatic decrease in price of crude oil of the same magnitude is unlikely

to cause a rapid decrease in the price of petrol and diesel.

The thesis focuses on efficiency of the Czech fuel market by exploring the

autocorrelation structure and performing the multifractal analysis of changes in

price of petrol and diesel in the Czech Republic. Using common sense only, one

would expect them to exhibit the same behaviour as crude oil, the core element

of both fuels. However, we will show that crude oil market is much more efficient

and does not contain the same long memory as fuels. Overall, petrol and

diesel markets reveal fundamentally different properties in autocorrelations and

multifractality than crude oil market. The objective of this thesis is to prove

by employing generalised Hurst exponent (GHE) and multifractal detrended

fluctuation analysis (MF-DFA) techniques that petrol and diesel markets are less

efficient than crude oil market because they contain long-range dependence in

autocorrelations, and are subject to multifractal behaviour, which arises mostly

from the broad probability distribution function. To the best of our knowledge,

this kind of analysis has not been performed with the fuel prices yet.

The thesis is structured as follows: Chapter 2 reviews relevant literature

dealing with fractal analysis or fuel markets available up to date. Chapter 3

3http://oica.net/category/production-statistics/

http://oica.net/category/production-statistics/
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explains the methodology used in this thesis. Chapter 4 describes the dataset

used in the empirical part and gives insight into the Czech fuel market. Chap-

ter 5 presents and discuss our empirical results. And finally Chapter 6 sum-

marises our findings.



Chapter 2

Literature Review

This chapter summarises relevant literature regarding multifractal analysis up

to date, that is particularly long-range dependence in autocorrelations also

known as long memory, and multifractality per se.

Kantelhardt et al. (2002) develop MF-DFA, a method for the multifractal

analysis of nonstationary time series based on a generalisation of the detrended

fluctuation analysis (DFA). The MF-DFA consist of five steps, with the first three

almost identical to the original DFA. By comparing their MF-DFA method to the

standard DFA, they prove that both approaches are equivalent for stationary

signals with compact support. Further, they show that the new method can

reliably determine the multifractal scaling behaviour of time series. Moreover,

comparing the MF-DFA results for original series with those for shuffled series it

can be distinguished between multifractality due to long-range autocorrelations

and multifractality due to a broad probability density function. Finally, they

highlight that one of the reason for employing DFA or MF-DFA method is to avoid

spurious detection of correlations that are a mere artefacts of nonstationarities

in the time series.

Di Matteo et al. (2003) discuss scaling properties of four different stock

market indices as a “stylised fact” and demonstrate that the H(q) from GHE

approach is a powerful instrument to characterise and differentiate the scaling

structure of such markets. They find that very developed markets, represented

by Nasdaq 100 (USA) and Nikkei 225 (Japan), have H(2) ≈ 0.46 < 0.5, which

contrasts with emerging markets, represented by WIG (Poland) and JSX (In-

donesia), which have H(2) ≈ 0.58 > 0.5. Additionally, the empirical analysis

across a wide variety of stock markets confirms that the exponent H(2) is sensi-

tive to the degree of development of the market. They find out that developed
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stock markets show tendency to have H(2) < 0.5, while developing markets

show tendency to have H(2) > 0.5. The robustness of the presented empiri-

cal approach is tested in several ways, including varying window sizes, varying

maximum time-step, Jackknife method, and comparison with simulated Brow-

nian motions. They verify that the observed differentiation among different

degrees of market development is well above the numerical fluctuations and

statistical errors. On the other hand, the analysis over different sub-periods

reveals significant changes in the scaling behaviour of a given market in time.

This indicates that the scaling structure of markets is an evolving quantity

which is not only able to differentiate among markets at different development

stage but can also catch the overall variability of the market conditions.

Di Matteo et al. (2005) extend the previous study and estimates long-term

memories of developed and emerging markets using the scaling analysis to char-

acterise their stage of development. They empirically analyse wide variety of

32 stock indices, 29 foreign exchange rates, treasury rates and eurodollar rates

with various maturity dates to demonstrate the sensitivity of the generalised

Hurst exponents H(1) and H(2) to the degree of development of the market.

They find that for fixed income instruments, H(2) is close to 0.5 while H(1) is

systematically larger than 0.5. On the other hand, they find that in stock mar-

kets generalised Hurst exponents show remarkable differences between mature

and developing markets. Mature markets are characterised by low H(1) and

H(2) ≤ 0.5 while developing markets have high H(1) and H(2) ≥ 0.5.

Di Matteo (2007) continues in the follow-up paper, where the multi-scaling

methods are applied to financial data to discuss different tools used for estimat-

ing the scaling exponents, stressing their advantages and disadvantages. The

study concludes that GHE approach is a suitable tool for describing the multi-

scaling properties in financial time series since the method is powerful robust

and not biased, as other methods are. When estimations are performed in the

frequency domain, there is some bias present; however using the generalised

Hurst exponent method produce unbiased results even in this situation.

Alvarez-Ramirez et al. (2002) describe multifractal properties of crude oil

price dynamics by using rescaled range (R/S) analysis, a technique originally

from statistical physics. They use three types of crude oil, Brent (Europe),

West Texas Intermediate (WTI) (USA), and Dubai (Persian Gulf). They find

out that crude oil price is a persistent process including some long-run memory

effects for daily fluctuations (HR/S ≈ 0.58). Moreover, they detected multi-

fractal structures characterised by nonlinear dependence of the Hurst exponent
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H(q) and crossovers indicating several time scales in the evolution of crude oil

price. Low time scale ranging from days to weeks with non-Gaussian process

probably caused by market speculators, and larger one ranging from weeks to

quarters. They conclude that the crude oil market dynamics is the consequence

of different events acting at different time scales. Some of them with important

influence for the future price in the crude oil market and others introduced by

noisy speculators.

In the following study, Alvarez-Ramirez et al. (2008) discuss the Hurst ex-

ponent dynamics and affiliated long-term autocorrelations of the same interna-

tional crude oil prices estimated this time with DFA for returns over the period

from 1987 to 2007. Using this model-free approach developed in statistical

physics reduces the effects of non-stationary market trends in the computation

of the Hurst exponent, and focuses on the intrinsic autocorrelation structure

of market fluctuations over different time horizons. To test for time-varying

degree of autocorrelations, the DFA method is applied over subsample rolling

windows with length from 30 to 300 business days. Their results indicate that

over long horizons the crude oil market is consistent with the efficient market

hypothesis. Nevertheless, for time horizons smaller than one month, meaning-

ful autocorrelations cannot be excluded and the Hurst exponent shows cyclic

non-periodic dynamics, well above 0.5, systematically in the 0.6–0.7 range.

Additionally, a 1.85-year cycle in the time varying behaviour of the short-term

Hurst exponent suggests that short-term inefficiencies can be exploited within

this 1.85-year cycles for marginal price forecasting. Therefore, the market pro-

duce a time-varying short-term inefficient behaviour that becomes efficient in

the long-term.

Further results to studies of efficiency of crude oil markets are provided in

Alvarez-Ramirez et al. (2010). They estimate WTI crude oil spot price data

for 1986–2009 with DFA with lagged autocorrelations. According to their re-

sults, the multiscaling pattern is not continuous. Instead, two discontinuities

at one-quarter and one-year scales are found, indicating different sources of

price fluctuations from speculative effects to fundamental supply and demand

shocks. In contrast to previous results, the crude oil market seems to present

important deviations from efficiency. Their results indicate positive or negative

autocorrelations that might be masked by delay effects.

Barunik & Kristoufek (2010) study the sampling properties of the Hurst

exponent estimation methods under heavy-tailed underlying processes. The

authors present more realistic settings and practicable implications for not
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normally distributed returns of financial markets than the majority of existing

studies that focus on estimation of expected values and confidence intervals

based on simulations of standard normal process. They run extensive Monte

Carlo simulation of α-stable distributed random variables with different lengths

ranging from 29 to 216 observations. The results show that R/S together with

GHE are robust to heavy tail in the underlying process, however, detrended

moving average (DMA) together with DFA and its multifractal generalisation

MF-DFA deteriorate with increasing heavy tail in the underlying distributions.

On normal data with α = 2, all the methods hold the expected value for all

time series lengths and therefore they seem to be better for H estimation than

R/S. However, on non-normal simulations, the situation changes dramatically.

The heavier tales of the underlying data are, the wider the confidence intervals

of the estimates are. MF-DFA(q = 1) tends to underestimate the expected 1/α

value. They conclude that MF-DFA methods as well as DMA are not appropriate

for data with heavier tails and small sample size. On the other hand, both GHE

tested methods proved to be very useful as they show the best properties.

Barunik et al. (2012) use GHE to examine multiscaling behaviour of financial

time series, namely a collection of stock exchange indices, foreign exchange

rates, and US treasury rates with different maturity. They provide evidence

by comparing empirical and simulated data that GHE is robust and powerful

tool in detecting various types of multiscaling. Nevertheless, they are faced

with puzzling phenomenon, when the shuffled series express higher degree of

multifractality than the original series. They presuppose that the puzzle is

cause by short memory time-correlations in the data. Overall, they reason that

the source of multifractality in financial time series comes mainly from the fat-

tailed distribution of returns and time-correlations have the effect to reduce

the measured multifractality.

Gu et al. (2010) provide empirical evidence of multifractality in the daily

returns of WTI and Brent crude oil markets. The authors estimate generalised

Hurst exponents with R/S and MF-DFA for data from 1987 to 2008. Apart

from using the whole sample, they chose to split the dataset into three periods

in order to offset the influence of two Gulf Wars to oil prices. The results

indicate that the two crude oil markets become more and more efficient for long-

term period, but have no such trend for short-period. The results also suggest

that the multifractal structure of WTI and Brent markets are not only mainly

attributed to the broad fat-tail distributions and persistence but also affected

by some other factors, e.g. deregulating crude oil markets. The findings are in
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line with conclusions of Tabak & Cajueiro (2007), who employed R/S analysis

on both Brent and WTI crude oil prices from 1983 to 2004 to analyse the the

impacts of the deregulation of the crude oil market that took place in the 1980s

and demonstrate that the crude oil markets became more efficient over time.

Indeed, this is apparent especially in comparison of period of regulated prices

in 1980s with period after deregulation in 1990s. Such findings are consistent

with the previous results of Serletis & Andreadis (2004) who concluded that

crude oil prices possess long-range dependence. Although, the degree of long-

range dependence has decreased over time in terms of both mean and volatility

returns.

He & Chen (2010) investigate multifractal features of the most important

oil pricing benchmarks globally WTI and Brent mixtures of crude oil on a data

from 1987 to 2009. Using MF-DFA and multifractal singular spectrum analysis,

the authors find out that both markets exhibit multifractal properties influ-

enced mainly by a nonlinear temporal correlations instead of a non-Gaussian

distribution.

Wang et al. (2011) explore autocorrelations and cross correlations of WTI

crude oil spot and futures return series from 1990 to 2010 using MF-DFA and de-

trended cross-correlation analysis. They conclude that both autocorrelated and

cross-correlated behaviours are persistent for time scales smaller than a month,

while for larger scales they are neither autocorrelated nor cross-correlated.

Therefore efficient behaviour is indicated in the long term. Furthermore, the de-

grees of short-term cross-correlations are higher than those of autocorrelations,

signalising that prediction of the oil spot or futures prices through analysing the

history of both series together is easier and more accurate than analysing each

series separately. By using MF-DFA, they find that the short-term correlations

are strongly multifractal while the long-term correlations are nearly monofrac-

tal. Empirical evidence shows that the complexity of crude oil markets in the

short term was much higher than that in the long term. Shuffling the original

series proved that both long-range correlations and fat-tail distributions make

important contributions to the multifractality.

Matia et al. (2003) research properties of 29 commodities and 2449 stocks

over a period of approximately 15 years with MF-DFA to find out that price

fluctuations for commodities have a significantly broader multifractal spectrum

than for stocks. Moreover, they suggest that the multifractality is mainly

caused by the broad distribution function.

Zunino et al. (2008) present evidence that multifractality degree is associ-



2. Literature Review 9

ated with the stage of market development by analysing 32 equity index returns

for different countries with MF-DFA. The authors develop a model to test the

relationship between the two and find robust evidence that higher multifractal-

ity degree corresponds with less developed market, implying that an inefficiency

ranking can be derived from multifractal analysis techniques.

Yuan et al. (2009) provide analogous results for Shanghai stock price index

daily returns from 1990 to 2008. Moreover, the authors divide the sample into

three periods according to two financial reforms that were introduced during

the main period to asses impact of the returns to the financial market risk.

Engelen et al. (2011) examine spot rate dynamics in the liquid petroleum

gas shipping market over period from 1992 to 2009 with MF-DFA and R/S tech-

niques. The authors study the effect of varying data-frequencies from daily, and

weekly to monthly, and time scales between short and long term. The results

indicate that the selected data-frequency affects the presence of multifractality.

Weekly returns are multifractal only because of their fat tails while monthly

returns are monofractal. On the other hand, daily returns are multifractal be-

cause of both fat tails and temporal autocorrelations, making it the richest and

most valuable dataset for further modelling of the market dynamics. Moreover,

MF-DFA showed that the daily returns are multifractal, persistent and include

long-range dependence, which undermines market efficiency, therefore it can be

modelled.



Chapter 3

Methodology

This chapter presents basic definitions and equations required for understand-

ing of the concepts of long memory and multifractality in time series, based on

Samorodnitsky (2007), Calvet & Fisher (2008), Di Matteo (2007) and Kantel-

hardt (2008).

A British hydrologist Harold Edwin Hurst introduced the R/S analysis in

1951 in his study of a water levels and the flow of water in the river Nile. Hurst

was interested in dam design, he examined more than 600 years long (622–1281)

data set of the water levels in the Nile river using a particular statistic approach

R/S to solve the riddle of the Nile’s great floods and to predict how much the

Nile flooded from year to year. The R/S statistic is one of the most popular

scaling method to estimate power-law correlation exponents from time series,

however, is highly influenced by outliers and returns a biased estimation of

the Hurst exponent. Peng et al. (1994) introduced the Detrended Fluctuation

Analysis (DFA) during their studies of the correlation of molecular chains in

deoxyribonucleic acid (DNA). This method has become widely used technique

for determination of particularly monofractal scaling properties, because it is

capable to avoid the spurious detection of apparent long-range correlations.

Kantelhardt et al. (2002) introduced the Multifractal Detrended Fluctuation

Analysis (MF-DFA) as a generalization of DFA. MF-DFA can be used for a global

detection of multifractal behaviour, surprisingly the algorithm is not much

difficult than the former DFA.
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3.1 Long memory

The concept of long memory has useful implications for economists as it de-

scribes a time series with slow hyperbolic decay in autocorrelations, that is

existence of some long-term relationship in values (e.g. prices, returns). In

such case it should be possible to use previous values (i.e. in finance typically

prices) to predict future values, which however, according to the Effective mar-

ket hypothesis (Fama 1970) voids one of the basic features of efficient markets.

Long memory (also known as long-range dependence) can be defined in

many different approaches – Guegan (2005) mentioned 11 different definitions.

Therefore, it is no surprise that definitions of long memory vary from author

to author. According to Samorodnitsky (2007), the most popular approach to

long memory is through a slow (hyperbolic) decay of autocorrelations.

Definition 3.1 (Long memory). A stochastic process Xt = (X1, X2, . . .) with a

finite variance EX2
1 = σ2 ∈ (0,∞) , covariances Rn = Cov (X1, Xn+1) and

correlations ρn = Rn/σ
2, n = 0, 1, . . . has long memory if the so-called long-

range correlations ρn declines as a power-law

ρn ∝ n−γ (3.1)

for n→∞, where 0 < γ < 1.

That is the autocorrelations are asymptotically proportional to the sample

size n scaled to the power of −γ. This means that the autocorrelations are

slowly decaying in a hyperbolic manner.

Equivalently, Definition 3.1 can be easily reorganised into the form used in

Beran (1994).

Definition 3.2 (Long memory). A stochastic stationary process Xt is called a

stationary process with long memory if there exists a real number γ ∈ (0, 1)

and a constant cρ > 0 such that

lim
n→∞

ρn
cρn−γ

= 1. (3.2)

Again this states that the autocorrelations ρn are asymptotically propor-

tional to the scaled sample size n. Since γ ∈ (0, 1) it also implies that autocor-

relations are slowly decaying.

Some properties of long memory processes can be further demonstrated
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from either Definition 3.1 or Definition 3.2. Start with the stochastic process

Xt with finite variance from Definition 3.1 and compute the variance of partial

sum Sn = X1 + . . .+Xn.

VarSn =
n∑
i=1

n∑
j=1

Cov(Xi, Xj) = (3.3)

= σ2

n∑
i=1

n∑
j=1

ρ |i− j| = σ2

(
n+ 2

n−1∑
i=1

(n− i)ρi

)
Here, the last sum closely relates to the pace of decay in the autocorrelations

of the process Xt.

Often the pace of increase of the variance of partial sums itself is used

to distinguish between a short memory process and a long memory process.

Process has a short memory if

lim
n→∞

VarSn
n

<∞, (3.4)

whereas a process with long memory can be identified by the diverging limit

in (3.4), therefore

lim
n→∞

VarSn
n

=∞. (3.5)

Another property of a process with long memory is that the autocorrelations

of such process are not summable, which is a result of the slowly (hyperboli-

cally) decaying autocorrelation function (e.g. Samorodnitsky 2007).

∞∑
n=0

|ρn| =∞ (3.6)

It can be further shown that variance of partial sums of a process with

long memory are proportional to power law scaled number of observations (e.g.

Samorodnitsky 2007).

VarSn ∝ n2−γ (3.7)

for n→∞ and VarSn →∞, where 0 < γ < 1.

These properties are further used for construction of estimators of long-term

memory parameters such as Hurst exponent.
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3.2 Hurst exponent

Concepts of long memory and multifractality are interconnected through a

constant called the Hurst exponent, which value determines whether or not the

increments of a self-similar process with stationary increments has long memory

(Samorodnitsky 2007).

The Hurst exponent arises from the rescaled range statistics developed by

Hurst (1951). The construction of the R/S starts with a division of the time

series (i.e. in finance typically returns) of length T into N adjacent sub-periods

with length ν, so that N × ν = T . Then the rescaled range of cumulative

deviations from the mean is calculated as Ri/Si, where Ri is a range, i.e.

the difference between maximum and minimum values, of the corresponding

cumulative deviations from the mean, and Si is a standard deviation of the

corresponding returns. The procedure is repeated over each sub-period i of

selected length ν. Eventually an average rescaled range (R/S)ν is computed.

Hurst (1951) noticed a peculiar scaling behaviour of such rescaled ranges as

they all scale as

(R/S)ν ≈ cνH (3.8)

with varying ν where c is a finite constant independent of ν.

The scaling law can be easily uncovered by performing an OLS regression

on logarithms applied on each side of the equation. The H in (3.8) is known

as the Hurst exponent and it relates to the concept of long memory through

the exponent γ from (3.7) and it holds that

H = 1− γ

2
. (3.9)

Therefore, the Hurst exponent describes the dynamics of a time series.

Three scenarios can be distinguished. (i) The Hurst exponent H = 0.5 rep-

resents a self-determining process which current value is not correlated with

its past values. (ii) Hurst exponent 0 < H < 0.5 represents anti-persistent

process, i.e. the series express mean-reverting behaviour and an increase in

values is most likely to be followed by a decrease and vice versa. The closer the

Hurst exponent is to 0, the stronger tendency to revert back to its mean value

the series exhibit. And finally, (iii) Hurst exponent 0.5 < H < 1 represents

a persistent process, i.e. an increase in values is most likely to be followed by

another increase or the other way around. The closer the Hurst exponent to 1,

the stronger is the trend in a given time series. Thus in this case, the values rise
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and fall in a broader range than by pure random walk (Mitra 2012). Combining

(3.9) and (3.7) reveals that the third scenario, Hurst exponent 0.5 < H < 1,

also indicate a long memory process.

In case the whole dynamics of a given process cannot be described by a single

Hurst exponent, the multifractal (multiscaling) measures need to be applied.

3.3 Multifractality

Multifractality in its essence describes non-linear relationships at some parts

of probability distribution function of a time series. In our case this translates

particularly into different autocorrelation structure for certain parts of the cor-

responding distribution. Put differently, autocorrelations of small changes are

not the same as autocorrelations of large changes for any multifractal time

series. In other words, multifractality is a property of a time series that as

a result of non-linear relationships require more than one Hurst exponent to

describe its behaviour. It is a generalisation of (mono)fractal time series which

evolution is fully described by a single Hurst exponent. In general, the under-

lying principle of fractal theory is that a simple process when repeated over

infinitely many iterations becomes a very complex process. For example in

finance, multifractality may be created as a result of different investment hori-

zons. One can imagine a market with a large set of different agents, each with

his own individual investment horizon. Each agent perceive information differ-

ently and reacts according to his own individual investment horizon and other

preferences. Combining such iterations create multifractality in the market.

Therefore the notion behind fractals is to uncover and describe the simple un-

derlying process that is inside the complex process we normally observe in the

markets.

The idea of multifractality has been formally described by Benôıt Mandel-

brot, a French mathematician, who recommended to adopt fat-tailed “fractal”

processes as an alternative modelling approach built on the concept of scale

invariance – meaning that the shape of the distribution of returns should be

invariant with the change of time scale. Mandelbrot formalised this concept in

his publication in 1964, where he introduced the self-similar process.

Definition 3.3 (Self-similar process). A random process {X(t)} that satisfies

{X (ct1) , . . . , X (ctk)}
d
=
{
cHX (t1) , . . . , c

HX (tk)
}

(3.10)
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for some H > 0 and all c, k, t1, . . . , tk is called self-similar or self-affine. The

number H is the self-similarity index, also known as scaling exponent or Hurst

exponent, of the process {X (t)}.

This signify that self-similar process is invariant in distribution under suit-

able scaling of time. Which in plain English means that self-similar process

behaves identically in a statistical sense when observed from close or far away,

that is under different scales. A typical example of self-similar process in nature

is a fern, which self-similar structure is repeated from the whole blade (leaf),

through individual leaflets to their individual subleaflets and so forth.

Multifractals originated from natural sciences, where multifractal measures

have proven to be useful in many applications in numerous fields including

astrology, biology and medicine, network traffic modelling, seismology, and

many others. As already mentioned, fractals in their essence are sets that can

be constructed by interating a simple transformation. Multifractal measures

are similarly to fractal sets built by iterating a simple transformation. For

example, Calvet & Fisher (2008) states the binomial measure on [0, 1], derived

as the limit of a multiplicative cascade. Consider two positive numbers m0

and m1, that m0 + m1 = 1, and the uniform probability measure µ0 on the

interval [0, 1]. In the first step of the cascade, a measure µ1 is defined by

uniformly spreading the mass m0 on the left subinterval [0, 1
2
] and mass m1 on

the right subinterval [1
2
, 1]. In the second step, each subinterval from previous

step is split in half to create sub-subintervals. And again the mass m0 of the

subinterval µ1[0,
1
2
] is allocated to the left sub-subinterval [0, 1

4
] and mass m1

of the subinterval µ1[0,
1
2
] on the right sub-subinterval [1

4
, 1
2
]. Analogically, the

mass m0 of the subinterval µ1[
1
2
, 1] is allocated to the left sub-subinterval [1

2
, 3
4
]

and mass m1 on the right sub-subinterval [3
4
, 1]. This way we obtain measure

µ2, that is described as follows.

µ2[0,
1

4
] = m0m0, µ2[

1

4
,
1

2
] = m0m1, (3.11)

µ2[
1

2
,
1

4
] = m1m0, µ2[

3

4
, 1] = m1m1. (3.12)

Infinite sequence of measures µk is then generated by iterations of the procedure

above. Generalising this construction in order to allow intervals to be uniformly

split into arbitrary number (b≥ 2) of cells and randomising the allocation of

mass into subintervals leads us to multifractal measures.



3. Methodology 16

Definition 3.4 (Multifractal measure). A random measure µ defined on [0, 1] is

called multifractal if it satisfies for all q ∈ Q:

E ([t, t+ ∆t]q) ∼ c(q)(∆t)τ(q)+1 as ∆t→ 0, (3.13)

where Q is an interval containing [0, 1], and τ(q) and c(q) are deterministic

functions defined on Q.

Rich local properties characterising multifractal measures are described by

the Local Hölder exponent.

Definition 3.5 (Local Hölder exponent). Let g be a function defined on the neigh-

bourhood of a given date t. The number

α(t) = Sup
{
β ≥ 0 : |g(t+ ∆t)− g(t)| = O

(
|∆t|β

)
as ∆t→ 0

}
(3.14)

is called the local Hölder exponent or local scale of g at t.

In other words, the Hölder exponent describes the local changes (or vari-

ability) of the function at a point of time. The infinitesimal variations of the

function can be expressed as being of order |dg| ≈ (dt)α(t) around instant t.

Here, more abrupt variations coincide with lower values of α(t). For function

g that is bounded around t, the Hölder exponent α(t) is non-negative.

Each typical continuous process used in finance (i.e. monofractal series)

have a unique Hölder exponent. This contrasts with multifractal measures,

which contain continuum of local exponents. For illustration, α(t) = 0 at points

of discontinuity, α(t) = 1 at non-singular differentiable points, and α(t) = 1/2

for a Brownian motion. Fractional Brownian motion is characterised by a single

unique exponent α(t) = H.

Mandelbrot (1974; 1989) suggested multifractal spectrum as a convenient

representation for the distribution of Hölder exponents in multifractals. To

estimate the distribution of the local Hölder exponent α(t) at a random point,

one divides the unit interval [0, 1] into bk subintervals [ti, ti + ∆t] of length

∆t = b−k, and for each subinterval computes the coarse Hölder exponent

αk(ti) ≡ ln |g(ti,∆t)| / ln ∆t.

The number of coarse Hölder exponents contained between α and α + ∆α is

denoted by Nk(α).
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Definition 3.6 (Multifractal spectrum). The limit

f(α) ≡ lim

(
lnNk(α)

ln bk

)
as k →∞ (3.15)

represents a renormalised probability distribution of local Hölder exponents,

and is called the multifractal spectrum.

The advantage of multifractal spectrum in comparison with a plain his-

togram is that the spectrum makes it easier to detect the events that occur

many times during the construction but at vanishing frequency. The quantity

f(α) corresponds with the fractal dimension of the set of instants with local

Hölder exponent α.

The relation between multifractal spectrum and scaling function, which is

the link towards the explicit formulae for the multifractal spectrum f(α) based

on the scaling function τ(q), is derived as follows (see e.g. Calvet & Fisher

2008).

Proposition 3.1 (Multifractal spectrum and scaling function). The multifractal

spectrum f(α) is the Legendre transformation

f(α) = inf
q

[αq − τ(q)] (3.16)

Direct application of this proposal results into the explicit formulae for the

multifractal spectrum. For example, consider a multiplier M with lognormal

distribution – logbM ∼ N(λ, σ2), then Proposition 3.1 implies the multifractal

spectrum as a quadratic function

f(α) = 1− (αq − λ)2/[4(λ− 1)], (3.17)

parametrised by the unique real number λ > 1.

Corresponding with multifractal measures, we can define multifractal pro-

cess by its moment-scaling properties.

Definition 3.7 (Multifractal process). A stochastic process {X(t)} is called mul-

tifractal if it has stationary increments and satisfies the moment scaling rule

E (|X(t+ ∆t)−X(t)|q) ∼ cX(q)(∆t)τX(q)+1 (3.18)

as ∆t converges to zero.
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The function τX(q) is known as the scaling function. By setting the pa-

rameter q = 0 in the equation (3.18) it can be demonstrated that all scaling

functions have the same intercept τX(0) = −1. It has been verified that the

scaling function τX(q) is weakly concave (e.g. Calvet & Fisher 2008).

A self-similar process has a linear scaling function τX(q). Direct implication

of the invariance condition X(t)
d
= tHX(1) is E (|X(t)|q) = tHqE (|X(1)|q) , and

therefore the scaling rule (3.18) holds with

τX(q) = Hq − 1. (3.19)

Because the intercept τX(0) = −1 is fixed, a linear scaling function is fully

determined by its slope H. That is the reason why self-similar processes are

often called uniscaling, unifractal, or monofractal. Self-similar processes do not

capture the changes in distribution of returns at different time horizons, so

typical for most financial data.

Generally, we can distinguish between two types of processes: (i) a process

with H(q) = H, constant independent on q; and (ii) a process with H(q) not

constant (i.e. dependent on q).1 A process of the first type is called monofractal

(or equivalently uni-fractal, or uni-scaling) because its scaling behaviour is

determined from a single constant H which is the original Hurst exponent H

(also known as self-affine index). This exponentH is equal to 0.5 for a Brownian

motion, and is a constant different from 0.5 for fractional Brownian motion. A

process of the second type is called multifractal (or equivalently multi-scaling)

(Feder & Bak 1989) because multiple different exponents defines the scaling

behaviour of different qth-moments of the distribution.

3.4 Sources of multifractality

There is a wide consensus in the literature about the sources of the multifrac-

tality. One cause is the autocorrelation structure (long memory and different

long-range correlations for small and large fluctuations) and the other cause is

the distribution of data (fat-tailed distribution and extreme events) (e.g. Matia

et al. 2003; Jia et al. 2012).

Generally, in order to identify the contributions of the two sources to the

multifractality of a time series, two other time series can be introduced (Jia

1Note that we use H without parentheses as the classical Hurst exponent for self-similar
process and H(q) as the generalised Hurst exponent
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et al. 2012) – (i) a reshuffled series, which perfectly destroys all long-range

correlations and at the same time keeps the fluctuation distributions obtained

by shuffling the original series, and (ii) a surrogate series obtained from the

Fourier transform, which eliminate the fat-tailed distribution and preserves the

long memory of the original series.

In this thesis, we implement the procedures as follows. (i) During shuffling,

each observation in a vector of data is assigned an index from 1 to N , where N

is the length of the series. Then a new vector of indices is created as a random

permutation of the original vector of indices. Finally, the shuffled series is

created by reorganising the original observations according to the new vector

of indices. Such shuffled series has the same distribution as the original one,

however the autocorrelation structure is destroyed. (ii) Apart from the shuffling

method, we create a surrogate series as an additional evidence of the true source

of multifractal behaviour of our data. The procedure creates discrete Fourier

transformation of the original series (signal), randomise (shuffles) the positions

of the frequencies included in the signal. Finally, the surrogate series is created

by inverse discrete Fourier transformation of the shuffled frequencies. Such

surrogate series has the same autocorrelation structure as the original one, but

the distribution of observations is approximately Gaussian.

Therefore, for series with a multifractal behaviour caused purely by differ-

ent long-range correlations for small and large fluctuations, the shuffled series

will indicate simple random behaviour Hshuff (q) = 0.5 (i.e. non-multifractal

scaling), whereas for the surrogate series the original H(q) dependence will

not change, Hsurr(q) = H(q). On the other hand for series with a multi-

fractal behaviour caused purely by fat-tailed distribution, shuffled series will

report the original H(q) dependence unchanged, Hshuff (q) = H(q), whereas

the surrogate series will indicate simple random behaviour Hsurr(q) = 0.5 (i.e.

non-multifractal scaling). If both sources of multifractality contributes to the

overall multifractal behaviour of the series, then the shuffled and surrogate se-

ries will exhibit weaker multifractality, i.e. multifractality degree of the original

series ∆H = ∆Hmax −∆Hmin will be larger than the ∆Hshuff and ∆Hsurr.

In order to estimate the scaling properties of crude oil, petrol, and diesel

time series, we utilise two independent methods: Generalised Hurst exponent,

and multifractal detrended fluctuation analysis as described in the next sec-

tions.
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3.5 Generalised Hurst exponent

We employ the generalised Hurst exponent (GHE) method based on Di Matteo

et al. (2003). In a nutshell, GHE is a tool to directly examine the statistical

properties of data by analysing the q-order moments of the distribution of

the increments (Mandelbrot 1997) and (Barabási & Vicsek 1991). During the

initialisation process, all variables are detrended by eliminating linear drift (if

present) as suggested by Di Matteo et al. (2005). This serves as a precaution

against the known fact that financial time series exhibit variations in their

statistical properties with time. Otherwise we could detect false variations and

dependencies on time window T .

The statistical evolution of stochastic variable X(t) is defined as

Kq(τ) =
〈|X (t+ τ)−X (t)|q〉

〈|X(t)|q〉
, (3.20)

where the time interval τ can evolve between ν and τmax.

The generalised Hurst exponent H(q)is defined from the scaling behaviour

of Kq(τ) if it follows the relation (Barabási & Vicsek 1991)

Kq(τ) =
(τ
ν

)qH(q)

. (3.21)

It is worth mentioning, that some values of q are associated with special

features. E.g. for q = 2 the Kq(τ) is proportional to the autocorrelation func-

tion and H(2) therefore describes the scaling behaviour of the autocorrelation

function. Implying that values of H(2) ∈ (0.5, 1) indicate presence of long-

range dependence, the stronger the closer the exponent is to 1. H(2) = 0.5

indicates self-determining random walk process, thus no presence of long-range

dependence. And finally, values of H(2) ∈ (0, 0.5) indicate negative autocorre-

lations, therefore violent fluctuations of the variable. Additionally, for q = 1,

H(1) describes the scaling of the absolute values of the increments, which is in

fact closely related to the classical Hurst exponent H, that is indeed associated

with the scaling of the absolute spread in the increments.

One can plot values of qH(q) against q to visually judge multifractality. As

already mentioned in Section 3.3, a monofractal series is described by a single

Hurst exponent H, H(q) = H for all q. Therefore qH(q) of monofractal process

will be a straight line. Whereas H(q) of a monofractal series is dependent on q,

therefore the corresponding qH(q) will translate into a non-linear curve. The
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more bent the curve is, the stronger the multifractal behaviour of the given

variable is.

3.6 Multifractal detrended fluctuation analysis

We apply the multifractal detrended fluctuation analysis (MF-DFA) method

as described in Kantelhardt et al. (2002). In essence, the method focuses on

fluctuations around trend in the data. The procedure itself can be described

in five steps, where the first three steps are essentially the same as in the

conventional DFA procedure (see e.g. Peng et al. 1994).

Assume a series Xt of length N and of compact support. The support is

defined as the set of the indices t with non zero values Xt, and it is compact if

Xt = 0 for an insignificant fraction of the series only. The value of Xt = 0 is

interpreted as having no value at this n.

� Step 1: Calculate the cumulative deviations from mean (“profile”)

Y (i) ≡
i∑
t=1

[Xt − 〈X〉] , i = 1, . . . , N . (3.22)

� Step 2: Split the profile Y (i) into Ns ≡ (N/s) non-overlapping segments

of equal length s. Usually a short block of the series is left at the end,

simply because the length of the series N is scarcely a multiple of the

time scale s. Not to ignore the information from this leftover part, we

repeat this step from the end of the series to the beginning. Therefore,

we obtain 2Ns segments in total.

� Step 3: Calculate the polynomial fit (local trend) for each of the 2Ns

segments, and the variance

F 2(ν, s) ≡ 1

s

s∑
i=1

{Y [(ν − 1) s+ i]− yν (i)}2 (3.23)

for each segment ν, ν = 1, . . . , Ns and

F 2(v, s) ≡ 1

s

s∑
i=1

{Y [N − (ν −Ns) s+ i]− yν (i)}2 (3.24)
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for ν = Ns+1, . . . , 2Ns. Where, yν(i) is the fitting polynomial in segment

ν. Polynomial fit can be of arbitrary order, usually linear, or quadratic

is used. In this thesis we employ linear detrending.

� Step 4: Compute the qth order fluctuation function by averaging over all

segments

Fq(s) ≡

{
1

2Ns

2Ns∑
ν=1

[
F 2 (ν, s)

]q/2}1/q

, (3.25)

where q is in general any real number. However q = 0 requires special

treatment as 1
0
→∞, see the next step. Steps 2 to 4 are usually repeated

several times to find out the relation between fluctuation function Fq(s)

and time scale s for different weights q.

� Step 5: Analyse log–log plots Fq(s) versus s for each q to visualise the

scaling behaviour of the fluctuation functions. For long-range power-law

correlated series Xt, the fluctuation function Fq(s) increases for large

values of s as a power-law

Fq(s) ≈ sH(q). (3.26)

For stationary series, the H(2) is equal to the Hurst exponent, therefore, the

function H(q) is called the generalised Hurst exponent.

As already mentioned in previous step, we cannot determine the value of

H(0) directly because of the diverging exponent in (3.25) for q = 0. Thus, the

’zero-order’ fluctuation function is defined as

F0(s) ≡ exp

{
1

4Ns

2Ns∑
ν=1

ln
[
F 2(ν, s)

]}
∼ sh(0). (3.27)

In case of monofractal time series, the scaling behaviour of the variances

F 2(ν, s) is constant across all segments ν and the averaging procedure in step

4 will return the same scaling behaviour, thus H(q) is independent of q. For

multifractal time series, the scaling behaviour of the variances F 2(ν, s) changes

across segments ν as a result of different scaling of small and large fluctuations

(i.e. deviations from the polynomial fit within a given segment), which affects

the average Fq(s), therefore the generalised Hurst exponent H(q) is dependent

on q. Positive values of q emphasise, periods with large fluctuations as a direct
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implication of (3.25). For this reason, typically, in case of multifractal series,

large fluctuations have lower H(q) than small fluctuations.

The accuracy of H(q) determined by MF-DFA depends on the length of the

series analysed. Kantelhardt (2008) states that for q ∈ 〈−10, 10〉 and length

of time series N = 10 000, the systematic and statical error (i.e. ’standard

deviation’) can be expected up to ∆H(q) = ±0.1.

Additionally, Kantelhardt et al. (2002) provides the relation between scaling

function τ(q) and generalised Hurst exponent H(q) as

τ(q) = qH(q)− 1. (3.28)

Thus multifractal spectrum f(α) related with τ(q) via a Legendre transfor-

mation is (Peitgen et al. 2004)

f(α) = αq − τ(q), (3.29)

where α = τ ′(q) is the Hölder exponent and f(α) denotes the dimension of

the subset of the series characterised by α.

Combining (3.28) and (3.29) we obtain direct relations amongst f(α), α,

and H(q) as

α = H(q) + qH ′(q) and f(α) = q[α−H(q)] + 1. (3.30)

The width of multifractal spectrum f(α) is an indicator of degree of multi-

fractality ∆α

∆α = αmax − αmin. (3.31)

The wider the spectrum the stronger multifractal properties are present in the

time series.



Chapter 4

Data

The data sample used in this thesis is daily price of crude oil and daily retail

prices of petrol (Natural 95)1 and diesel in the Czech Republic. The analysis

is performed on data within time window of 1st January 2004 – 28th February

2013. That is 3 020 observations in case of petrol price series, 3 019 observa-

tions in diesel price series (value for 9th April 2004 is missing in the original

data for unknown reasons), and 2 317 observations in crude oil price series.2

Different length of time series is not to pose any problem for the methodology,

because we are comparing behaviour/statistics of separate time series rather

than comparing time series as such against each other.

Daily price of crude oil in the Czech Republic is calculated from the Brent

spot price FOB in the European market.3 We chose to use Brent because Czech

National Bank (CNB) uses Brent as the benchmark for Czech price of crude oil.

For our analysis and easier comparison with fuel prices, which are traditionally

stated in litres, the volumes of crude oil is converted from barrels into litres

(1 barrel = 158.987 litres), and from USD into CZK using CNB spot exchange

rates for each date of our time series.4 Because the crude oil price is provided

by a foreign entity and banking holidays differ across countries, we use only the

dates for which a crude oil price is stated. If such a day is a banking holiday

in the Czech Republic, therefore an exchange rate is not updated by the CNB,

we use the previous business day exchange rate for conversion into CZK.

1regular unleaded petrol 95 RON
2petrol and diesel prices are available online at http://www.finance.cz/makrodata-eu/

pohonne-hmoty/
3crude oil price time series are available online at http://www.eia.gov/dnav/pet/hist/

leafhandler.ashx?n=pet&s=rbrte&f=d
4CNB exchange rates are available online at http://www.cnb.cz/cs/financni_trhy/

devizovy_trh/kurzy_devizoveho_trhu/vybrane_form.jsp

http://www.finance.cz/makrodata-eu/pohonne-hmoty/
http://www.finance.cz/makrodata-eu/pohonne-hmoty/
http://www.eia.gov/dnav/pet/hist/leafhandler.ashx?n=pet&s=rbrte&f=d
http://www.eia.gov/dnav/pet/hist/leafhandler.ashx?n=pet&s=rbrte&f=d
http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/vybrane_form.jsp
http://www.cnb.cz/cs/financni_trhy/devizovy_trh/kurzy_devizoveho_trhu/vybrane_form.jsp
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Petrol and diesel prices are nation wide averages collected and calculated

by CCS, which is the main entity for issuance of so called fuel cards, accepted

at most of the petrol stations in the Czech Republic. Approximately 5 000

petrol stations in the Czech Republic and Slovakia accepts CCS fuel cards as

of 31st December 2012; As of April 2007, the cards were accepted at about

2 300 petrol station in the Czech Republic. The averages are calculated as a

simple average of unit price of petrol/diesel at every petrol station where at

least one transaction occurs that given day (every petrol station produce just

one unit price of petrol/diesel, no weights nor adjustments for the volume sold

nor for number of customers).

Retail fuel prices are reported including taxes – in case of the Czech Republic

it is a value added tax (VAT) and excise tax. Both fuels are heavily taxed and

the degree of taxation changed during the observed time window, therefore raw

price series need to be adjusted for taxes to obtain a tax-free prices comparable

across time. Taxation changed three times during our time frame (2004 – 2013),

VAT was 22% until the end of April 2004, 19% from May 2004 to the end of the

year 2009, 20% from January 2010 to December 2012, and the final change so

far came in the begining of 2013, when the VAT was raised to 21%. Changes in

VAT are summarised in Table 4.1.

Table 4.1: Changes of VAT in the Czech Republic

from to VAT

1. 1. 1993 31. 12. 1994 23%
1. 1. 1995 30. 4. 2004 22%
1. 5. 2004 31. 12. 2009 19%
1. 1. 2010 31. 12. 2012 20%
1. 1. 2013 present 21%

Source: Ministry of Finance of the Czech Republic

According to the Customs Administration of the Czech Republic (2010),

excise taxes were increased on 1st January 2010 from 11 840 CZK per 1 000 litres

to 12 840 CZK per 1 000 litres and from 9 950 CZK per 1 000 litres to 10 950

CZK per 1 000 litres, for petrol and diesel respectively.5

According to our calculations, tax component of petrol ranged from 50%

to 69.3%; Tax component of diesel ranged from 44.3% to 64.4%. Historical

5Excise tax is considered as a part of the VAT tax base, therefore VAT is calculated from
the net of tax price + excise tax
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average calculated from our sample is 56.9%, and 51.4% taxation of petrol,

and diesel, respectively. Crude oil price is reported net of any tax. Plot of net

of tax prices in comparison to crude oil price in the upper panel of Figure 4.1

reveals similar positive trends in prices for all variables disrupted by a sudden

drop during the recent crisis in the second half of 2008. The lower panel shows

volatility clusters in petrol and diesel returns occurring particularly in the later

stages of the crisis from late 2009 to early 2010.

Figure 4.1: Petrol, diesel and crude oil simple-prices and simple-
returns (left), and log-prices and log-returns (right)

4.1 Czech Fuel Market

The fuel market in the Czech Republic is characterised by a dense network of

petrol stations. In terms of petrol stations per capita, it has one of the highest

penetrations in Central Europe. Demand for fuels in 2004 was 4.92 million

litres, equally split into petrol and diesel. Fuel demand reached its maximum

in 2006 with total demand of 6.41 million litres, this was caused by increase in

demand for diesel to 3.77 million litres. From 2007 the total demand gradually
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decreased to 5.33 million litres in 2010. Demand for gasoline was rather stable,

from 2.30 million litres in 2004 to its maximum of 2.44 million litres in 2006

and then steadily decreased to 1.83 million litres in 2012. Demand for diesel

grew from 2.50 million litres in 2005 to 3.77 million litres in 2006 and then

slowly decreased to 3.48 million litres in 2012. (MITCR)

According to the Ministry of Industry and Trade of the Czech Republic

(MITCR) (Dušek & Purnoch 2013), there are 6 790 petrol stations in total in

the Czech Republic (as of 31st December 2012), which can be further divided

into three types (see Table 4.2).

(i) Public, where anyone can buy fuel. Typical public petrol station sell

multiple kinds of fuels (2 745 out of 3 728).

(ii) “Petrol stations with restricted access and sales” (Restricted), which are

typically used only by their respective owners and/or operators. These

are usually operated in business areas (e.g. quarries, sawmills, farms,

transport organisations, construction yards) and the sale of fuel is carried

out according to a specific contract. The vast majority of these petrol

stations sell only one kind of fuel (typically only diesel) (411 out of 472).

(iii) Private, which are used only by their owners within the company. These

are located exclusively in business areas (e.g. farms, freight and passenger

transport companies, quarries, sand pits, garages of municipal services,

construction yards, etc.). An overwhelming 97.3% of these stations “sell”

only a single kind of fuel, typically diesel (2 519 out of 2 590).

Table 4.2: Types of petrol stations in the Czech Republic as of
31st December 2012

petrol stations share

Public 3 728 54.9%
Restricted 472 7.0%
Private 2 590 38.1%

Total 6 790 100%

Source: Ministry of Industry and Trade of the Czech Republic

Dušek & Purnoch (2013) highlights that the legislative changes introduced

in the beginning of 2011 were the main driver of the apparent growth in 2011

and 2012 in the category of Restricted petrol stations in Table 4.3, as some
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Table 4.3: Number of registered petrol stations 2006–2012

2004 2005 2006 2007 2008 2009 2010 2011 2012

Public NA NA 3 649 3 610 3 578 3 615 3 672 3 717 3 728
Restricted NA NA 39 92 208 251 293 397 472
Private NA NA 2 670 2 658 2 638 2 633 2 626 2 576 2 590

Total NA NA 6 358 6 360 6 424 6 499 6 591 6 690 6 790

Source: Ministry of Industry and Trade of the Czech Republic

private petrol stations had to change their status to Restricted to confirm with

the new law.

No reliable comparable data for annual statistics of registered petrol stations

for years 2004 and 2005 were available at the time of writing this thesis. Total

number of petrol stations in the Czech republic for this years is expected to

be around 2200 in 2004, and 3600 in 2005, according to estimations of MITCR

(Dušek 2004; 2005). However, because of different legislation in force until 2006,

not all petrol stations were subject to the data collection process. Additionally,

petrol stations were divided into categories according to size of each operator

(in terms of number of petrol stations network) unlike the three categories (i.e.

Public, Restricted, Private) as from 2006. Therefore, we assume that the data

collected in 2004 and 2005 are rather comparable to the Public petrol stations

only of the sum of Public and Restricted petrol stations. This assumption is in

line with the actual number of Private and Restricted petrol stations reported

in 2006.

The Czech Republic has very limited crude oil resources in its territory,

therefore most of the crude oil is imported (98%). Most of the imports come

from Russia (61.40%), Azerbaijan (28.62%), Kazakhstan (9.94%), and Algeria

(0.04%). In the first two quarters of 2012 a total of 3 337 700 tonnes of crude

oil were imported, see Table 4.4 (Dušek 2012).

Judging by the level of market penetration, one would expect the Czech

fuel market to be highly competitive, therefore changes in the price of petrol

and diesel should not be autocorrelated (Fama 1970). However, it is not the

case, and the autocorrelation structure is more complicated and contains long

memory, as we are going to present in the next section.
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Table 4.4: Crude oil imports in the first two quarters of 2012

country of origin imports in thousands of tonnes share

Algeria 1.3 0.04%
Azerbaijan 955.1 28.62%
Kazakhstan 331.9 9.94%
Russia 2 049.4 61.40%

Total 3 337.7 100%

Source: Ministry of Industry and Trade of the Czech Republic

4.2 Descriptive statistics

A simple log-transformation is applied to make the interpretation of the results

easier (e.g. change in log-return can be interpreted as a percentage change in

price). Additionally, from now on in order to simplify the following text, we

will refer to log-price as price, and log-return as return.

First of all, we check the distribution of our data by Jarque-Bera test. The

null hypothesis that the data come from normal distribution is strongly re-

jected for each series. Histograms in Figure 4.3 summarise the distribution of

each series. All the price series seem to be of a multi-modal distributions with

truncated right end. The crude oil price histogram indicate tri-modal distribu-

tion, the petrol and diesel price histograms suggests multi-modal distribution.

Multimodality can be attributed to different stages of the local market at a

given time, as the prices tend to gently fluctuate around a certain price for a

few weeks or even months before any sudden jump that typically comes at the

beginning of year or summer season occur. Between mid-2005 and mid-2008,

the net of tax price of petrol and diesel fluctuated around 15 CZK/l, then sud-

denly dropped in the end of 2008 to 10 CZK/l (petrol) and 6 CZK/l (diesel).

Ever since the prices evolve around a positive trend with repeated periods of

seeming price stability that usually lasts for a few weeks. If we add back tax

components and compare the retail prices over the period of 2004–2013 across

European countries, we will see that the Czech petrol and diesel retail prices

have grown from relatively low to one of the highest in Europe. However, that

is partly a result of changes in taxation regimes in the Czech republic, therefore

this information is provided only to give the big picture, although it cannot be

applied directly to the net of tax prices we use in the analysis. Histograms of

returns show unimodal leptokurtic distributions with mean close to zero and
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fat tails. Especially, the histograms of petrol and diesel returns exhibit very

large excess kurtosis and extreme fat tails. Narrowness of the distributions

suggests that prices tend to evolve in a rather small steps (i.e. returns are close

to zero), however, fat tails indicate that some extreme events occur from time

to time.

To find out whether the series are stationary, we employ Augmented Dickey-

Fuller (ADF) test, which tests for the presence of unit root in a process, together

with Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test for trend stationarity.

Combining the two tests is necessary to distinguish among series that appear

to be stationary, series that appear to have unit root, and series that are not

informative enough and one cannot be sure about their stationarity or inte-

gration. In our case, ADF test (with constant – to capture non-zero mean)

fails to reject the presence of unit root in the crude oil price and diesel price

series with p-values 0.18. ADF test on petrol price returns statistics with p-

value close to 0.05, therefore we should reject the unit root hypothesis at 5%

significance level, on the other hand the null hypothesis cannot be rejected at

1% significance level. As for the returns, ADF test strongly rejects unit root

Table 4.5: Descriptive statistics

crude oil petrol diesel crude oil petrol diesel
price price price return return return

observations 2317 3020 3019 2316 3019 3018

mean 2.2242 2.5546 2.6524 4.57e-04 2.56e-04 3.03e-04
st.dev. 0.2743 0.2054 0.1989 0.0218 0.0077 0.0059
mode 1.3827 2.4827 2.3933 -0.1702 0 0
median 2.2346 2.5848 2.6516 0.0011 0 0
min 1.3827 1.9214 2.0345 -0.1702 -0.1629 -0.0790
max 2.7199 2.9598 2.9999 0.1813 0.1575 0.0970
1st q. 2.0542 2.4338 2.5125 -0.0118 -0.0015 -0.0013
3rd q. 2.4409 2.6933 2.8056 0.0126 0.0015 0.0013
skewness -0.3088 -0.3960 -0.1508 -0.0330 0.9006 2.1563
kurtosis 2.4532 2.7721 2.3647 8.4410 150.4155 69.7746

Jarque-Bera 65.7018 85.4847 62.2136 2857.25 2.73e+06 563038
J-B p-val. 5.41e-15 2.74e-19 3.09e-14 <0.01 <0.01 <0.01

ADF stats -2.2716 -2.8880 -2.2881 -8.9968 -7.1750 -8.1415
ADF p-val. 0.1813 0.0468 0.1759 4.89e-16 1.11e-10 1.92e-13

KPSS stats 12.2002 10.4815 12.0477 0.0664 0.1295 0.3540
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hypothesis in each series. Therefore the return series do not have a unit root.

KPSS test rejects the null hypothesis of trend-stationarity for each of the price

series at 5% significance level (critical value 0.461), and fails to reject the null

hypothesis for the returns at the same 5% significance level. Therefore, ac-

cording to the KPSS test, returns are stationary around deterministic trend.

Combination of the ADF and KPSS test hence implies that the price series are

not stationary, whereas the return series are stationary. Therefore, we proceed

with analysis with return series only. Descriptive statistics are summarised in

Table 4.5.

Plots of the autocorrelation function (ACF) of returns (see Figure 4.2) reveal

more interesting patterns. The ACF of crude oil returns is almost clear of

any autocorrelation, suggesting effective crude oil market (e.g. Fama 1970).

Ljung-Box Q test confirms that within a 5 days long trading week there is no

autocorrelation in crude oil returns, the Q-statistics at lag 5 is 1.90 with p-value

0.86. On the other hand, Ljung-Box Q test for petrol and diesel series indicate

that returns are autocorrelated, the Q-statistics at lag 5 is 224.03 and 175.87,

respectively (p-values <0.01). Thus, judging by the (P)ACF plots and Ljung-

Box Q tests, both petrol and diesel returns seems to contain long memory,

therefore it makes sense to study their properties by methods presented in the

previous chapter.
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Figure 4.2: ACF (left) and PACF (right) plots of crude oil, petrol,
and diesel returns
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Figure 4.3: Histograms of crude oil, petrol, and diesel prices (left) and
their returns (right)



Chapter 5

Empirical Results

In this section, we report the empirical findings of our analysis. We start

with generalised Hurst exponent (GHE) method to estimate presence of long

memory and multifractality in the fuel market in the Czech Republic. Then,

we continue with multifractal analysis of the Czech fuel market by employing

multifractal detrended fluctuation analysis (MF-DFA). Description of the data

including descriptive statistics and insight into local Czech market is to be

found in Chapter 4.

5.1 Generalised Hurst exponent

We start our analysis by employing GHE method to examine the fuel (logarith-

mic) returns, particularly for presence of long memory in the Czech fuel market.

The scaling behaviour of crude oil, petrol and diesel returns is depicted in Fig-

ure 5.1. Each curve represents scaling behaviour for different fixed value of qth

moments of Kq(τ) defined in (3.20) ranging from q = 0.1 to q = 4, where τ

describes time scale ranging from 1 to 19 days as suggested by Di Matteo et al.

(2003). Scaling at integer values of q are highlighted for better clarity. Scaling

behaviour for q = 1 and q = 2 is particularly of our interest as it conveys

an intuitive interpretation. Behaviour at q = 1 describes scaling of absolute

returns, which can be also perceived as the degree of tail heaviness. Scaling

behaviour for q = 2 can be interpreted as scaling of autocorrelations of returns.

As the Figure 5.1 illustrates, scaling behaviour given by (3.21) holds for all our

time series. Scaling is almost perfectly linear for values of q ≤ 2. Higher values

around q = 3 scales almost linearly, particularly in case of petrol and diesel.

Scaling for larger values of q is more complicated (non-linear), especially in
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case of crude oil returns. However, as we are interested particularly in scaling

behaviour for q = 2, i.e. scaling of autocorrelations, this non-linear scaling

for higher q is not a problem for our research. In fact, the perfect linearity of

scaling does not hold for higher values of q for empirical data in general.

Figure 5.2 depicting qH(q) as a function of q provides evidence of multi-

scaling (multifractal) behaviour of petrol and diesel returns, and monoscaling

(monofractal) behaviour of crude oil returns. That is because monoscaling se-

ries should display linear relationship between qH(q) and q, as a single Hurst

exponent is capable to describe the whole dynamics of the underlying process.

Hence, the generalised Hurst exponent H(q) is independent on q in case of

monofractal data. On the other hand, multifractal data exhibit non-linear re-

lationship in qH(q) against q plot, which points out multiscaling behaviour. In

this case, one Hurst exponent is not enough to describe the whole dynamics of

the underlying process, therefore the generalised Hurst exponent H(q) depends

on q. Such information can be interpreted in terms of complexity of relation-

ships among autocorrelations. Autocorrelations of petrol and diesel returns

differ in certain parts of the corresponding probability distribution function.

In other words, autocorrelations of small changes in petrol or diesel returns are

not equivalent to autocorrelations of large changes of corresponding fuel return

series and they exhibit complex non-linear relationships. Whereas crude oil

returns demonstrate linear relationship among autocorrelations, that is auto-

correlations for both small and large changes are identical. As an implication

of our findings, petrol and diesel returns cannot be successfully modelled by

traditional processes used in finance. Instead, a model with built-in multifrac-

tal scaling is required for proper modelling of petrol and diesel returns in the

Czech fuel market. The specific type of model depends also on presence of long

memory, which we examine in the next step.

Presence of long memory in our time series can be inferred from the actual

values of generalised Hurst exponents. Values of generalised Hurst exponents

H(q) for integer values of q are summarised in Table 5.1. There, particularly

exponents for q = 1 and q = 2 are to be pointed out as they are associated

with special features. H(1) describes scaling behaviour of absolute values of

increments (i.e. absolute returns), which is closely related to the classical Hurst

exponent H for self-similar processes. Thus a series with H(1) = 0.5 indicates a

self-determining random walk process which current value is not dependent on

its past values. A series with H(1) ∈ (0, 0.5) indicates anti-persistent process,

i.e. the series express mean-reverting behaviour and an increase in values is
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Figure 5.1: Scaling behaviour of crude oil, petrol, and diesel returns,
highlighted lines for q=1(�), q=2(�), q=3(◦), q=4(4)
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Figure 5.2: qH(q) as a function of q

most likely to be followed by a decrease and vice versa. The closer the Hurst

exponent is to 0, the stronger tendency to revert back to its mean value the

series exhibit. And finally, a series with H(1) ∈ (0.5, 1) indicates a persistent

process, i.e. an increase in values is most likely to be followed by another

increase or the other way around. The closer the Hurst exponent to 1, the

stronger is the trend in a given time series. On the other hand H(2) is an

indicator of long-range dependence of autocorrelations (i.e. long memory). A

series with H(2) = 0.5 indicates absence of long-range dependence. A series

with H(1) ∈ (0.5, 1) corresponds to anti-persistence and indicates strong neg-

ative autocorrelations that decay after certain lag or decay exponentially. The

closer H(2) is to 0, the more violently the process fluctuate. And lastly, a

series with H(2) ∈ (0.5, 1) corresponds to persistence and indicates positive

autocorrelations that decay as a power law (i.e. slower than exponentially).

The closer H(2) is to 1, the stronger the long-range dependence is. There is

no straightforward economic interpretation for H(q ≥ 3), however running the

analysis for wider range of parameters q allows us to read the scaling behaviour

from qH(q) plot.

Our empirical results show that both H(1) and H(2) of crude oil returns

are very close to 0.5 (0.50 and 0.48, respectively), demonstrating negligible

anti-persistence in autocorrelations and random walk like behaviour. However

H(1) and H(2) of petrol and diesel is significantly larger than 0.5. Values of
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Table 5.1: Generalised Hurst exponent

crude oil petrol diesel

H(1) 0.4960 0.8136 0.7714
std.dev. (0.0057) (0.0180) (0.0217)
H(2) 0.4776 0.6554 0.6482
std.dev. (0.0086) (0.0249) (0.0131)
H(3) 0.4462 0.4761 0.5115
std.dev. (0.0127) (0.0406) (0.0073)
H(4) 0.4029 0.3602 0.4029
std.dev. (0.0209) (0.0462) (0.0209)

H(1)petrol = 0.81 and H(1)diesel = 0.77 suggest strong persistence of both series

and points out clusters of high volatility. Moreover, values of H(2)petrol = 0.66

and H(2)diesel = 0.65 reveal significant long-range dependence in autocorrela-

tions which is an evidence against market efficiency (Fama 1970).

We can summarise our results from GHE stating that petrol and diesel mar-

kets are not efficient, as their returns are autocorrelated and contain long-range

dependence in autocorrelations. Additionally, they are subject to multifractal

behaviour. Therefore, in order to model petrol and diesel returns, one has to

implement a process including both long memory, and multifractality. An ex-

ample of such model is Markov switching multifractal model (Calvet & Fisher

2008). On the other hand, no indication of long-range dependence is found in

monofractal crude oil returns. It is therefore enough to use traditional models

in case of crude oil, however, because of random walk like behaviour there is

not much to be modelled in its returns. Such finding about crude oil are in

line with our expectations and the fact that crude oil is traded in commodity

markets. In order to provide further evidence, we perform MF-DFA in the next

part of this chapter.

5.2 Multifractal detrended fluctuation analysis

Following GHE method, we perform MF-DFA1 over the Czech crude oil, petrol

and diesel (logarithmic) returns to provide further evidence of long memory

and multifractal behaviour in the Czech fuel market.

1our MATLAB code for MF-DFA is based on Multifractal Toolbox by Ihlen (2012), available
online at http://www.ntnu.edu/inm/geri/software

http://www.ntnu.edu/inm/geri/software
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According to the algorithm of MF-DFA, we calculate the fluctuations Fq(s)

as defined in (3.25) for scales s ranging from 8 to T/4 observations, where T is

the length of a given time series, as generally recommended (e.g. Kantelhardt

et al. 2002). Fluctuations Fq(s) as a function of s for q ∈ [−4, 4] are illustrated

in Figure 5.3, where the lower curves of each series correspond to lower values

of q. Fluctuations for q = 2 (i.e. second moments) are emphasised in the

plot as they represent the scaling behaviour of autocorrelations of the returns.

Linear relationship in this scaling behaviour is at least reasonably good for all

values of q, although it becomes weaker particularly for very high or very low

(very negative) q for some fluctuations typically in the larger range of scales

s. Overall the scaling is very reasonable, most importantly, scaling at q = 2 is

almost linear, therefore we can state that power-law scaling between Fq(s) and

s defined in (3.26) holds (although it weakens for q on the edge of our selected

range) and we can perform MF-DFA on the whole sample.

Presence of multifractality in our time series can be detected from the plot of

generalised Hurst exponent H(q) as a function of q displayed in the left panel of

Figure 5.4 . It shows that crude oil return series exhibit monofractal behaviour,

while petrol and diesel returns exhibit multifractal behaviour. The reasoning

behind this statement is following. In case of monofractal series, a single Hurst

exponent is able to fully describe dynamics of a given series, therefore, the

Figure 5.3: Fluctuation function for crude oil (black), petrol (blue)
and diesel (red), with highlighted lines for q=2
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Figure 5.4: Generalised Hurst exponent (left) and multifractal spec-
trum (right)

generalised Hurst exponent H(q) is independent on q. On the other hand, in

case of multifractal series, one Hurst exponent is not capable to fully describe

dynamics of a given series, therefore, H(q) vary with different values of q. The

later behaviour is apparent from the plot for petrol and diesel returns as H(q)

decrease from values close to 1.1 to approximately 0.6 suggesting that small-

scope fluctuations (described by negative q) have stronger persistence than

larger fluctuations (described by positive q).

The ∆H defined as H(q)max−H(q)min is very large (0.50 for petrol and 0.48

for diesel), therefore, petrol and diesel returns seems to be multifractal. On the

contrary, crude oil returns seems to be monofractal as its plot depicts almost

stable linear relationship between H(q) and q. It only starts to slightly bend

between q = 2.5 and q = 4. Source of this bending behaviour can be attributed

to not-perfectly linear scaling of fluctuations Fq(s) for higher values of q. This

behaviour is likely to be caused by multifractal noise and would be probably

eliminated if the time series is longer (Grech & Pamula 2011). Additionally,

∆H of crude oil is 0.06 which is within the confidence bands for monofractal

series with finite sample of similar length as proved by simulating multifractal

behaviour of monofractal series of finite sample in Grech & Pamula (2011).

In the right panel of Figure 5.4 displaying the multifractal spectrum we can

clearly see that the width of multifractal spectrum (i.e. degree of multifractaly)

∆α = αmax−αmin is almost the same, and large enough for both petrol (0.82)

and diesel returns (0.77) to confirm multifractality. ∆α for crude oil return is

0.23 which is larger than expected, however, the same reasoning as in previous

paragraph applies, i.e. the multifractal-like behaviour is likely to be caused

by multifractal noise and would be probably eliminated if the time series is



5. Empirical Results 41

longer (Grech & Pamula 2011). Additionally, it has been statistically proved

(e.g. Grech & Pamula 2011) that length of series affect the ability of accurate

estimation of ∆α and that monofractal time series with relatively short sam-

ple (4096 observations) can exhibit ∆α of approximately 0.23 despite being

monofractal. Therefore, in our case with 2317 observations of crude oil prices,

∆α = 0.23 is within the confidence bands, and we cannot interpret this result

as evidence of multifractality in crude oil returns. Multifractal spectrum can

be interpreted as a typical distribution of the measure (Mandelbrot 1990), thus

we can say that H(q) of crude oil tends to be around 0.5 (i.e. monofractal),

while H(q) of petrol and diesel tend to be spread out over many values (i.e.

multifractal).

Such findings can be interpreted in the same way as our GHE results. That

is, there are complex non-linear relationships in autocorrelations across the

probability distribution function of petrol and diesel returns in the Czech mar-

ket. Such non-linearities imply that autocorrelations of small changes in petrol

or diesel returns are different from autocorrelations of large changes of corre-

sponding fuel return series. On the other hand, crude oil returns exhibit linear

relationships along the whole probability distribution function, in other words

autocorrelations for both small and large changes are the same. Presence of

multifractality in time series requires specific models, because traditional mod-

els used in finance (e.g. ARIMA-(G)ARCH family) are not able to cope with

multifractal behaviour. Nevertheless, the actual type of model depends on

both multifractality and presence of long memory, thus we need to continue

and analyse the generalised Hurst exponents estimated by MF-DFA to make

any conclusions regarding long memory.

Generalised Hurst exponents H(q) for integer values of q together with ∆H

and ∆α are summarised in Table 5.2. The bigger ∆H (or ∆α) the more com-

plicated the underlying process, and therefore scaling behaviour is. Thus, more

complexity is to be found in the given market. Analogically to GHE case, par-

ticularly values of H(1) representing scaling behaviour of absolute returns, and

H(2) indicating presence of long-range dependence in autocorrelations should

be emphasised and discussed.

Our results indicate that the crude oil market is very efficient as its returns

have H(1) ≈ H(2) = 0.51 ≈ 0.5, suggesting negligible persistence in autocor-

relation and random walk like behaviour. However, petrol and diesel markets

seems to have long-range dependent autocorrelations as their H(2) is equal to

0.77 and 0.75, respectively. Moreover, values of H(1) equal to 0.87 and 0.82,
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Table 5.2: MF-DFA generalised Hurst exponent

crude oil petrol diesel

H(−4) 0.5313 1.1224 1.1265
H(−3) 0.5200 1.0905 1.0858
H(−2) 0.5112 1.0500 1.0334
H(−1) 0.5065 1.0001 0.9696
H(0) 0.5069 0.9400 0.8980
H(1) 0.5107 0.8650 0.8243
H(2) 0.5107 0.7723 0.7544
H(3) 0.4968 0.6855 0.6953
H(4) 0.4686 0.6225 0.6501

∆H 0.0627 0.4999 0.4763
∆α 0.2334 0.8165 0.7691

respectively, suggesting strong persistence of both petrol and diesel returns,

therefore high (low) returns of petrol and diesel are likely to be followed by

high (low) returns, eventually pointing out clusters of volatility. Therefore,

not only multifractality but also long memory is present in both petrol and

diesel markets in the Czech Republic. In order to successfully model their re-

turns, one needs to implement a more complex model capable to cope with

both multifractality and long memory. Calvet & Fisher (2008) suggest to use

Markov switching multifractal model for such conditions in the market. On the

other hand, crude oil market is monofractal and free of long-range dependence.

Therefore, it seems to be efficient and there is not much to be modelled. This

is in line with our expectations and results from GHE method in Section 5.1.

To identify the source of multifractality in our data, we introduce two ad-

ditional types of series (a) shuffled series, and (b) surrogate series. Both pro-

cedures are thoroughly described in Section 3.4. The generating process of

such series from the original dataset and following estimation by MF-DFA was

repeated 500 times each to ensure statistical significance of our results.

Let us first discuss the results of the simulation visually by description of

Figure 5.5 depicting one of the 500 realisations (the axis are fixed at the same

scale for all variables to ensure easier comparison). Left panels of the figure

show generalised Hurst exponents for each variable and right panels display

multifractal spectra. It is apparent that shuffling the series have very small

effect on ∆H as H(q) still varies in q. The curve depicting generalised Hurst

exponent for shuffled crude oil returns is almost identical to the original one.
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The curves depicting H(q) for shuffled petrol and shuffled diesel returns are

shifted down and particularly in case of diesel it is slightly straightened up.

However, they both still exhibit strong multifractal behaviour. The spectra

of petrol and diesel is shifted to left and only negligibly narrower, while the

spectrum of crude oil is shortened to less than a half of its original length.

On the other hand, all surrogate series exhibit constant H(q) across all q and

therefore multifractal spectra are concentrated in a tiny narrow arc of points

and multifractal degree ∆α is close to zero. Thus multifractality seems not to

be present in surrogate series. Corresponding histograms of ∆H and ∆α of

shuffled and surrogate series are visualised in Figure 5.6 . The histograms also

suggests that surrogate series are probably free of multifractality as the mean

value of ∆H and ∆α for each variable is close to zero. On the other hand,

mean value of ∆H and ∆α for each shuffled series is significantly different from

zero, therefore, multifractality seems to be present.

To support these observations with statistically significant test, we use the

simulated data to calculate 0.025 and 0.975 quantiles and thus form a 95% con-

fidence intervals for ∆H and ∆α for all shuffled and surrogate series. Finally,

the original values from MF-DFA results are compared with the correspond-

ing critical intervals to asses the true source of multifractality. Therefore, the

corresponding null hypotheses are H0,shuffled: Multifractality completely due

to distributional properties, and H0,surrogate: Multifractality completely due to

(linear) autocorrelations, respectively. The confidence intervals summarised in

Table 5.3 imply that both petrol and diesel returns are multifractal (large ∆H

and ∆α). The proximity of original values to the confidence interval of shuf-

fled series indicate that the major source of multifractality of both fuels arise

from distributional properties (i.e. fat-tailed distribution of returns), whereas

Table 5.3: Original values and 95% confidence intervals of simulation
results

crude oil petrol diesel

∆H original series 0.0627 0.4999 0.4763
shuffled series [0.0511, 0.1511] [0.2811, 0.4418] [0.2417, 0.3733]
surrogate series [0.0088, 0.0841] [0.0059, 0.0747] [0.0053, 0.0617]

∆α original series 0.2334 0.8165 0.7691
shuffled series [0.1270, 0.3151] [0.5525, 0.8071] [0.4623, 0.6864]
surrogate series [0.0262, 0.1749] [0.0172, 0.1223] [0.0177, 0.1194]
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autocorrelations of returns as such have some small contribution to the overall

multifractality. The contribution of autocorrelations is slightly bigger in case

of diesel returns than in case of petrol returns, as the original values are rel-

atively further away from the confidence interval of shuffled series. In case of

crude oil returns, the simulation suggest that we cannot reject the hypothesis

that multifractality (or multifractal noise) is completely due to distributional

properties, however, as already mentioned, the actual values of ∆H and ∆α

are too small to indicate presence of multifractality and are most likely to be

caused by a multifractal noise.

Figure 5.5: Results of shuffling and surrogate procedures
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Figure 5.6: Histograms ∆H (left) and ∆α (right) of simulated shuffled
and surrogate series

Using a similar reasoning as Calvet & Fisher (2008) about financial markets,

where different agents apply variety of strategies and investment horizons, that

through multiplicative cascade of individual decisions and simultaneous flow of

information create multifractal market, and applying this to Czech fuel mar-

ket could bring us an idea about the economic interpretation of the source of

discovered multifractality in fuels. For simplicity, let us imagine two types of

agents in the market. One is a private individual with passenger car, the other

is a business entity with commercial vehicle or truck. In general, one can expect
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that a private individual would be more price sensitive and would substitute

to other means of transport more easily than a business entity if fuel is too

expensive, therefore he makes decisions within his relatively long “investment

horizon”. On the other hand, business entity cannot afford to stop doing its

business just because of the price of fuel, therefore has relatively low price sen-

sitivity and makes decisions within its very short “investment horizon”. Each

type of agents perceive information in the market differently and makes deci-

sions according to its own investment horizon. Such effects, when combined

together creates complicated flows of information. Extending this thought by

allowing more diversity within each type of agents, who make simultaneous

decisions within their own unique investment horizon forms the multiplicative

cascade that in the end creates multifractality in the market. There is even

more diversity to be found in the real world, therefore, we suggest that in

practice, the source of multifractality in petrol and diesel markets in Czech

Republic could be attributed to heterogeneous demand created by wide range

of individual customers with different preferences and buying strategies (i.e.

investment horizons).



Chapter 6

Conclusion

In this thesis, we investigated and compared the efficiency of Czech petrol and

diesel markets together with European crude oil market on daily prices from

January 2004 to February 2013 with generalised Hurst exponent (GHE) and

multifractal detrended fluctuation analysis (MF-DFA) techniques. We adjusted

the retail prices to net of tax prices prior to the analysis, because very large

fraction (approximately 50%) of the daily retail price of petrol and diesel is a

tax component and taxation regimes changed a few times during the period of

interest. Crude oil price, reported in USD was converted into CZK using Czech

National Bank spot exchange rates for corresponding date. For convenience

and easier interpretation, the analysis was performed with logarithmic returns.

Autocorrelation function of petrol and diesel returns combined with Ljung-

Box Q test at lag 5, representing 5 days long business week, confirmed our

hypothesis of strong autocorrelation (p-values <0.01), which is not to be found

in crude oil returns (p-value 0.86). Furthermore, petrol and diesel returns come

from heavily fat-tailed distribution, suggesting that the prices usually evolve

in rather small steps, however, some extreme jumps occur from time to time.

Results from both GHE and MF-DFA supported our hypothesis about ef-

ficient crude oil market. Depending on the method, only negligible anti-

persistence or persistence was detected in crude oil returns (H(1)GHE = 0.48,

H(1)MF-DFA = 0.51) and no significant indication of long-range dependence was

found (H(2)GHE = 0.50, H(2)MF-DFA = 0.51) suggesting random walk like be-

haviour and efficient market. Moreover, both methods suggested that crude oil

returns are monofractal, with ∆H = 0.06, and ∆α = 0.23 suggesting only some

multifractal noise, which is likely to be due to relatively short length of the se-

ries. This, however, was not statistically proved because our null hypotheses
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were defined in order to uncover the source of multifractality instead. There-

fore it is enough to use traditional models to analyse crude oil market, however,

because of the random walk like behaviour there is not much to be modelled

in its returns. Such finding about crude oil are in line with our expectations

and the fact that crude oil is traded in commodity markets.

On the other hand, petrol market in the Czech Republic proved to be ineffi-

cient because its returns are strongly persistent (H(1)GHE = 0.81, H(1)MF-DFA =

0.87) and contain long-range dependence in autocorrelations (H(2)GHE = 0.66,

H(2)MF-DFA = 0.77). Strong persistence indicate formation of clusters of

high volatility and presence of long memory violates market efficiency. Ad-

ditionally, GHE suggested presence of multifractality in petrol returns, which

was subsequently confirmed by the width of multifractal spectrum in MF-DFA

(∆H = 0.50, ∆α = 0.82). Presence of multifractality indicates non-linearities

in scaling of autocorrelations as they differ across the probability distribu-

tion function. As a result, it implies that petrol market cannot be successfully

modelled by traditional models used in finance. Instead, a more complex model

capable to implement both long memory and multifractality is required. For in-

stance, Markov switching multifractal model would be appropriate under such

circumstances.

Similarly to petrol, diesel market in the Czech Republic proved to be inef-

ficient because for the same reasons. Diesel returns are strongly persistent as

well, nevertheless the degree of persistence is slightly smaller (H(1)GHE = 0.77,

H(1)MF-DFA = 0.82). Long-range dependence in autocorrelations was again de-

tected with negligibly smaller values than in petrol returns (H(2)GHE = 0.65,

H(2)MF-DFA = 0.75). As expected, GHE suggested presence of multifractality in

petrol returns, which was subsequently confirmed by the width of multifractal

spectrum in MF-DFA (∆H = 0.48, ∆α = 0.77). Analysis of diesel returns re-

vealed very similar results to analysis of petrol returns, therefore, all conclusion

regarding petrol market from the previous paragraph apply to diesel market as

well.

To identify the source of multifractality in petrol and diesel returns, we ran

simulations for shuffled and surrogate series. We have statistically proved that

the major source of multifractality in petrol and diesel markets in the Czech

Republic is fat-tailed distribution of their returns. Linear autocorrelations of

returns have only small contribution to the overall multifractality, although,

their relative contribution is slightly bigger in case of diesel market than in

petrol market.
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In the end of the thesis, we presented a thought that in practice, multifrac-

tality in petrol and diesel markets in the Czech Republic could be caused by

heterogeneous demand, created as a result of wide range of numerous interact-

ing agents, each with different individual preferences and consuming strategies.

Finally, we suggest that future research should attempt to model data from

petrol and diesel market in the Czech Republic with Markov switching multi-

fractal model or similar methods implementing both long memory and multi-

fractality.
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