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rinu Poštovi, PhD. za poskytnutou morálńı podporu a r̊uzné inspirativńı návrhy.
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Chapter 1

Introduction

In this thesis, we would like to introduce some fixed point theorems which are
consequences or extensions of famous Banach Contraction Principle.

Banach Contraction Principle. Let (Y, d) be a complete metric space and
F : Y → Y be contractive. Then F has a unique fixed point u and F ny → u for
each y ∈ Y .

In the next chapter we shall make some necessary definitions and give a proof
of Banach Contraction Principle. In Chapter 3, we shall derive some (almost di-
rect) consequences of Banach Contraction Principle. At first, we shall investigate
sequences of contractive mappings and continuity of map which assigns to every
map of some family of contractions its fixed point. Then we shall give several
examples how various conditions on contractivity of the map could be relaxed,
especially when the metric space is compact. We shall give a short note about
expansive mappings. In the last section we shall consider Banach space instead of
general metric space and give several examples how a richer structure of Banach
space implies interesting results. At the end of Chapter, we shall prove discrete
version of Banach Contraction Principle.

In last Chapter, several extensions of the classic Banach Contraction Principle
is derived. Above all, we shall modify the condition on contractivity

d(Fx, Fy) ≤ α d(x, y) α ∈ (0, 1)

in several different ways. More details will be given later in Chapter 4. It is con-
venient to note that a survey written by Rhoades (already in 1977!) compares
about 250 different generalized definitions of contraction. Therefore, instead of
making a long survey, we shall try to introduce some interesting and useful tech-
niques which could be used to derive significant extensions of Banach Contraction
Principle.

Most of results which are presented in this thesis are mentioned (without proof)
in Granas (2003) in Chapter 1 in Section 1.6 Miscellaneous Results and Examples.
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Chapter 2

Preliminaries

Several well-known terms at the beginning.

Definition 1. Let (X, d) be a metric space. We call a map F Lipschitz or Lips-
chitzian when there is such a constant L so that the map satisfies a condition

d(Fx, Fy) ≤ L d(x, y), ∀x, y ∈ X.

Then we call L a Lipschitz (or Lipschitzian) constant and (often) denote it by a
symbol L(F ).

If L(F ) < 1 then we call such a mapping as contraction or contractive mapping
and L(F ) is called contraction constant.

Definition 2. Let X be any space and f a map of X, or of a subset of X, into
X. A point x ∈ X is called a fixed point for f if x = f(x).

Definition 3. Let (X, d) be a metric space and A ⊂ X. A diameter of the set A
is defined as

diam A = sup{d(x, y) | x, y ∈ A}.

We shall begin with a classic proof of Banach Contraction Principle. The advan-
tage of the proof is that a useful estimate of error of n-th iteration is given.

Theorem A (Banach). Let (Y, d) be a complete metric space and F : Y → Y be
contractive. Then F has a unique fixed point u and F ny → u for each y ∈ Y .

Proof. We denote α contraction constant for F .

Uniqueness: Let us assume there are two fixed points x0 = F (x0) and y0 = F (y0)
such that x0 6= y0. Then we have a contradiction

d(x0, y0) = d(F (x0), F (y0)) ≤ αd(x0, y0) < d(x0, y0).

Existence: Observe that for any y ∈ Y

d(F ny, F n+1y) ≤ αd(F n−1y, F ny) ≤ . . . ≤ αnd(y, Fy).

It implies

d(F ny, F n+py) ≤
n+p−1∑

i=n

d(F iy, F i+1y)

≤ (αn + . . . + αn+p−1d(y, Fy) ≤ αn

1− α
d(y, Fy).
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Since α < 1, so that αn → 0, {F ny} is a Cauchy sequence and, because (X, d) is
complete, F ny → u for some u ∈ Y .

By continuity of F , we must have

F (F ny) → F (u).

Because {F (F ny)} = {F n+1y} is a subsequence of {F ny}, we must have

F (F ny) → u.

Then F (u) = u and F has at least one fixed point.

The immediate consequence which results from the proof is a useful estimation
of errors: from

d(F ny, F n+py) ≤ αn

1− α
d(y, Fy)

if we send p →∞ we shall have an estimation of the error of the n-th iteration:

d(F ny, u) ≤ αn

1− α
d(y, Fy).
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Chapter 3

Fixed Point Theorems in
Complete Metric Spaces

We begin with a simple consequence of Banach Contraction Principle. We con-
sider a map F (not necessarily continuous!) which has a property that FN is
contraction. This proposition was mentioned as an exercise in several different
lecture notes about fixed point theorems, however, with a superfluous presump-
tion on continuity of a map F .

Proposition 1 (Bryant, 1968). Let (X, d) be complete and F : X → X a map
such that FN : X → X is contractive for some N ∈ N. Then F has a unique
fixed point u and F nx → u for each x ∈ X.

Proof. Uniqueness: Let us assume that there are two fixed points x0 6= y0 for F .
Then we have

FN(x0) = FN−1(F (x0)) = FN−1(x0) = . . . = x0

and similarly FN(y0) = y0. But since FN is contractive and (by Banach Contrac-
tion Principle) has exactly one fixed point, this is a contradiction.

Existence: By Banach Contraction Principle, we know that FN has one fixed

point u and {F kNy
k→∞−−−→ u} for every y ∈ X. Let us consider an arbitrary point

x ∈ X and a sequence
{x, Fx, F 2x, F 3x, . . .}.

Then we can divide this sequence to N -subsequences: we denote yk = F kx and
we have

{y0, F
Ny0, F

2Ny0, . . .}
{y1, F

Ny1, F
2Ny1, . . .}

{y2, F
Ny2, F

2Ny2, . . .}
...

{yN−1, F
NyN−1, F

2NyN−1, . . .}

Each of these subsequences converges to u. Hence, the sequence F nx → u for any
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x ∈ X.1 Finally, we have to show that F (u) = u.2 But if F (u) = u′ 6= u, then we
have

FN(u) = u, FN(u′) = FN(F (u)) = F (FN(u)) = F (u) = u′.

This is a contradiction because FN has exactly one fixed point.

The existence could be proven much easier: Since FN is a contraction, then there is
x0 ∈ X such that FN (x0) = x0 and then

FN (F (x0) = F (FN (x0)) = F (x0),

it implies F (x0) is also a fixed point of FN and then F (x0) = x0.

Remark 1. A simple example that F really doesn’t need to be continuous. Let us
define F : [0, 2] → [0, 2],

F =

{
0 x ∈ [0, 1]
1
2
x x ∈ (1, 2]

Then F 2(x) = 0. �

3.1 Sequences of contractive mappings

Several next theorems are concerned with convergent sequences of contractive
mappings. Given such a sequence, there is a natural question:

If a sequence of contractive mappings converges, is the sequence of their fixed
points convergent or not? If the answer is positive, is the limit a fixed point of
the limit mapping?

We shall not investigate these questions in details. However, some basic facts are
presented in two following propositions.

Proposition 2. Let (X, d) be a complete metric space and Fn : X → X a
sequence of continuous maps. Assume that each Fn has a fixed point xn.

(a) Let Fn ⇒ F on X.

(i) If xn → x0 or F (xn) → x0 then x0 is a fixed point for F .

(ii) If F is contractive then xn converges to the unique fixed point of F .

(b) Let Fn → F pointwise, with each Fn Lipschitzian, L(Fn) ≤ M < ∞ for
all n. Then

(i) F is Lipschitzian with L(F ) ≤ M ;

(ii) if xn → x0, then x0 is a fixed point for F ;

(iii) if M < 1, then {xn} converges to the unique fixed point of F .

1Choose arbitrarily ε > 0: for each subsequence there is ki ∈ N such that d(F kiNyi, u) < ε.
Then for k = maxi ki we have d(F kNyi, u) < ε.

2Because F is not necessarily continuous (!) we can’t do it in the same way as in Banach’s
theorem.
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Proof. (a1): Assume xn → x0. Then by triangle inequality and the fact

sup
t∈X

d(Fn(t), F (t))
n→∞−−−→ 0

(which is an easy consequence of uniform convergence Fn ⇒ F ) we have

d(F (xn), x0) ≤ d(F (xn), Fn(xn)) + d(Fn(xn), x0)

≤ sup
t∈X

d(F (t), Fn(t)) + d(xn, x0)
n→∞−−−→ 0.

Thus the fact xn → x0 implies F (xn) → x0. F is obviously continuous (uniform
convergence preserves continuity and Fn are contractive so they are especially
continuous). Thus, by Heine theorem, we have

xn → x0 =⇒ F (xn) → F (x0)

so it implies F (x0) = x0.
Assume F (xn) → x0. Then

d(xn, x0) ≤ d(Fn(xn), F (xn)) + d(F (xn), x0)
n→∞−−−→ 0

because Fn ⇒ F and F (xn) → x0. It implies xn → x0 and we could complete the
proof as above.

(a2): If F is contractive then (by Banach Contraction Principle) it has one unique
fixed point x0. It is sufficient to show xn → x0. Let α < 1 be the contractive
constant for F .

Because of (a1) it is sufficient to show that {xn} is a convergent sequence and
(because X is complete) it is sufficient to show that {xn} is a Cauchy sequence.
For any k > 0 and n > k

d(xn, xk) = d(Fn(xn), Fk(xk))

≤ d(Fn(xn), F (xn)) + d(F (xn), F (xk)) + d(F (xk), Fk(xk))

≤ d(F (xn), F (xk)) + sup
t∈X

d(Fk(t), F (t)) + sup
t∈X

d(Fn(t), F (t))

F is contractive with the contractive constant α. Thus we have

d(F (xn), F (xk)) ≤ α d(xn, xk)

and the previous inequality gives

d(xn, xk) ≤
1

1− α
sup
t∈X

d(Fn(t), F (t)) +
1

1− α
sup
t∈X

d(Fk(t), F (t))
k→∞−−−→ 0

(because of Fk ⇒ F ). Thus {xn} is a Cauchy sequence and converges to a point x0

which is (by (a1)) fixed point of F .

(b1): We would like to show that F is Lipschitzian with L(F ) ≤ M . For any
x, y ∈ X, x 6= y we have by triangle inequality

d(F (x), F (y)) ≤ d(F (x), Fn(x)) + d(Fn(x), Fn(y)) + d(Fn(y), F (y)).
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We assume that Fn → F pointwise. For any ε > 0, there is n1 ∈ N such that
d(F (x), Fn(x)) ≤ ε for n ≥ n1 and n2 ∈ N such that d(F (y), Fn(y)) ≤ ε for
n ≥ n2. Let us take n = max(n1, n2). Since Fn is Lipschitzian, we have

d(Fn(x), Fn(y)) ≤ L(Fn) d(x, y) ≤ M d(x, y).

These facts and the previous inequality give

d(F (x), F (y)) ≤ 2ε + M d(x, y)

for any ε > 0. Hence
d(F (x), F (y)) ≤ M d(x, y)

which is precisely the proposition (b1).

(b2): Assume that xn → x0. For any ε > 0 there is n ∈ N that d(xn, x0) < ε and
d(F (x0), Fn(x0)) < ε. So we have

d(F (x0), x0) ≤ d(F (x0), Fn(x0)) + d(Fn(x0), Fn(xn)) + d(Fn(xn), x0)

≤ d(F (x0), Fn(x0)) + L(Fn) d(x0, xn) + d(xn, x0)

≤ ε + Mε + ε = (2 + M)ε.

The immediate consequence is that d(F (x0), x0) = 0 and thus F (x0) = x0.

(b3): By Banach Contraction Principle, we know that F has a unique fixed
point x0. Hence, it is sufficient to show that the sequence {xn} converges be-
cause by (b2) the limit is a fixed point for F . We have

d(x0, xn) ≤ d(F (x0), Fn(x0)) + d(Fn(x0), Fn(xn))

≤ d(F (x0), Fn(x0)) + M d(x0, xn)

and, since Fn is lipschitzian with the Lipschitz constant M < 1 and Fn converges
pointwise to F ,

d(x0, xn) ≤ 1

1−M
d(F (x0), Fn(x0))

n→∞−−−→ 0.

Remark 2. The condition L(Fn) ≤ M < 1 in the last proposition (b)(iii) cannot
be relaxed to L(Fn) < 1 even if L(F ) < 1. Define Fn : l2 → l2 by

Fn(x1, . . . , xn, . . .) = (0, . . . , (1− 1/n)xn + 1/n︸ ︷︷ ︸
n-th place

, 0, . . .).

Then L(Fn) = 1−1/n for each n and ‖Fn(0, . . . , 1, 0, . . .)‖ = ‖(0, . . . , 1, 0, . . .)‖ =
1, but Fn converges pointwise to the function F ≡ 0.

However, if we assume more about the complete metric space (X, d), the
condition can be relaxed. One example is the next proposition.

Proposition 3 (Nadler (1968)). Let (X, d) be a locally compact complete metric
space and F : X → X be contractive. Assume Fn : X → X is a sequence of
contractive maps converging pointwise to F . Let xn (respectively x̂) be the fixed
point of Fn (respectively of F ). Then xn converges to x̂.
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Proof. Let ε > 0 be sufficiently small so that

K(x̂, ε) = {x ∈ X | d(x̂, x) ≤ ε}

is a compact subset of X.3 Fn is an equicontinuous sequence of functions con-
verging pointwise to F . That’s because of

d(Fn(x), Fn(y)) < d(x, y).

Since K(x̂, ε) is compact, the sequence {Fn}∞n=1 converges uniformly on K(x̂, ε)
to F .4 Let us denote αn and α contractive constants of Fn and F . There exists
N ∈ N such that for n ≥ N and every x ∈ K(x̂, ε) is d(Fn(x), F (x)) < (1− α)ε.
Thus it holds

d(Fn(x), x̂) ≤ d(Fn(x), F (x)) + d(F (x), x̂)

= d(Fn(x), F (x)) + d(F (x), F (x̂)

≤ (1− α)d(x, x̂) + αd(x, x̂) = d(x, x̂).

Hence, every Fn for n ≥ N maps K(x̂, ε) into itself. It’s an obvious consequence
that Fn|K(x̂,ε) and F |K(x̂,ε) are contractions on K(x̂, ε) and thus have there their
fixed points xn, resp. x̂. Using the proposition 2a(ii) xn → x̂.

3.2 Modified contractions

In several following theorems, the condition on contractivity is either relaxed or
reformulated. If necessary, additional presumptions are given.

The first example is a simple extension, when the contractive constant α is
varying.

Proposition 4 (Weissinger, 1952). Let (X, d) be complete and {αn} be a se-
quence of nonnegative numbers with

∑∞
n=1 αn < ∞. Let F : X → X be such that

d(F nx, F ny) ≤ αnd(x, y) for all x, y ∈ X. Then F has a unique fixed point u and
F nx → u for each x ∈ X.

Proof. Since αn > 0 and
∑

αn < ∞, the sequence αn converges to zero. Hence,
there is n0 ∈ N and αn0 < 1.

Uniqueness: Let us assume that there are two fixed points x, y for F . Thus x, y
are fixed points for F n0 and we have

d(x, y) = d(Fx, Fy) = d(F n0x, F n0y) ≤ αn0d(x, y) < d(x, y)

and it’s a contradiction.

3) In a locally compact metric space, we could take a ball B(x̂, ε′) which is definitely a
neighbourhood of x̂. Then we know there exists a compact neighbourhood in this ball and
ε > 0 so that B(x̂, ε) is closed subset of this compact neighbourhood.

4) From Arzelá-Ascoli theorem. Since K(x̂, ε) is compact, F is bounded on K(x̂, ε). It’s
obvious that Fn are equally bounded because Fn → F .
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Existence: We could proceed in the same way as in the proof of Banach Contrac-
tion Principle. At first, we show that the sequence {F nx} is a Cauchy sequence

d(F nx, F n+p+1x) ≤
n+p∑
i=n

d(F nx, F n+1x)

≤
n+p∑
i=n

αid(x, Fx) ≤ d(x, Fx) ·
∞∑

i=n

αi
n→∞−−−→ 0.

(
∑∞

i=n αi is a residuum of a convergent series.) Thus F nx → u. F is lipschitzian
and thus, especially, continuous. By continuity F n(Fx) → Fu and it is obvious
that F n(Fx) = F n+1x → u. The proof is complete.

The following theorem looks interesting at first sight. However, it is only a simple
reformulation of Banach Contraction Principle in terms of shrinking sets. In the
following chapter, we will introduce a technique of shrinking orbits5 which looks
similar.

Proposition 5 (H. Amann, 1973). Let (X, d) be complete and F : X → X be such
that for any closed A ⊂ X with diam(A) 6= 0, we have diam(F (A)) ≤ α diam(A),
kde 0 ≤ α < 1. Then F has a fixed point.

Proof. F is a contraction. Assume that A = {x, y}. Then

d(F (x), F (y)) = diam(F (A)) ≤ α diam(A) = α d(x, y).

This completes the proof.

The following proposition is the last one which is dedicated to show a different
version of condition on contractivity and it is probably the most interesting one.

Proposition 6. Let (X, d) be complete and F : X → X be a map satisfying
d(Fx, Fy) < d(x, y) for x 6= y.

(a) If for some x0 ∈ X, the sequence {F nx0} has a convergent subsequence,
then F has a unique fixed point.

(b) If F (X) is compact (i.e., F is a compact map), then F has a unique fixed
point u and F nx → u for each x ∈ X.

Proof. (a) and (b): Uniqueness: If x, y are fixed points for F then

d(x, y) = d(Fx, Fy) < d(x, y)

easily gives contradiction.

(a) Existence: The sequence {F nx0} has a convergent subsequence F nkx0 → u,
{nk} ⊂ N. For arbitrary ε > 0, there exists N ∈ N and N + m ∈ N (m > 0) so
that

d(FN+mx0, u) < ε, d(FNx0, u) < ε.

5) it will be defined later
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Thus it holds

d(u, Fu) ≤ d(u, FN+mx0) + d(FN+mx0, F
mu) + d(Fmu, Fm+1u)

+ d(Fm+1u, Fm+1+Nx0) + d(Fm+1+Nx0, Fu)

≤ d(u, FN+mx0) + d(FNx0, u) + d(Fu, F 2u)

+ d(u, FNx0) + d(Fm+Nx0, u)

≤ 4ε + d(Fu, F 2u).

Since ε > 0 is arbitrary
d(Fu, F 2u) ≥ d(u, Fu).

But
Fu 6= F 2u =⇒ d(Fu, F 2u) < d(u, Fu).

Thus Fu = F 2u and Fu is a fixed point for F .

(b) Existence: Let us take an arbitrary point x ∈ X. Since {F nx}∞n=1 ⊂ F (X)
and F (X) is compact, the sequence {Fnx} contains an convergent subsequence.6

Then we use part (a).

This theorem has a familiar consequence which states: If (X, d) is compact com-
plete metric space, then a map F which satisfies a condition d(Fx, Fy) < d(x, y)
has unique fixed point. In the following remark, we shall show that the condition

d(Fx, Fy) < d(x, y) (∗)

is not strong enough (even with completness) to implicate the existence of fixed
point of the map F .

The mentioned theorem was proved by Edelstein (1962). The proof was later
simplified by Bennett and Fisher (1974).

Remark 3. There exists complete metric space (X, d) and a map F : X → X
satisfying the inequality

d(Fx, Fy) < d(x, y)

without fixed points.

Proof. Let us consider the map F (x) = ln(1 + ex) : R → R. Then it holds for
x > y

ln(1 + ex)− ln(1 + ey) < x− y.

One could see this from
1 + ex

1 + ey
< ex−y

1 + ex < ex−y + ex

1 < ex−y.

It implies the following inequality holds for any x, y ∈ R

|F (x)− F (y)| < |x− y|.

F does not have a fixed point. That’s a simple observation implied by

ln(1 + ex)− x = ln(1 + ex)− ln ex > 0 ∀x ∈ R.

6) Known characteristic of compact metric spaces: every sequence has a convergent subse-
quence.

11



3.3 A short note about expansive mappings

Let (Y, d) be a metric space. We call map F : Y → Y expansive iff there is β > 1
and the following condition is valid for every x, y ∈ Y

d(Fx, Fy) ≥ βd(x, y).

The following theorem is the simplest one of those which use this natural con-
sequence: if the inverse mapping F−1 exists then it is obviously a contraction.
This fact leads to one type of fixed point theorems for expansive mappings. One
example follows.

Proposition 7. Let (Y, d) be a complete metric space. A map F : Y → Y is
surjective and expanding (i.e., d(Fx, Fy) ≥ βd(x, y) for some β > 1 and all
x, y ∈ Y ). Then F is bijective, F has a unique fixed point u and F−ny → u for
each y ∈ Y .

Proof. F is injective (thus bijective): if x 6= y, then

d(Fx, Fy) ≥ βd(x, y) > d(x, y) > 0

and it is obvious that Fx 6= Fy.

F−ny → u and u is a unique fixed point of F : Uniqueness is obvious (the proof is
similar as the one in Banach Contraction Principle). Since F is bijective, we can
take the inverse F−1. It simply follows from the condition on expansivity

d(Fx, Fy) ≥ βd(x, y) =⇒ d(x, y) ≥ βd(F−1x, F−1y) =⇒

=⇒ d(F−1x, F−1y) ≤ 1

β
d(x, y),

thus F−1 is a contraction, has a unique fixed point u and F−ny → u for every
y ∈ Y (by Banach Contraction Principle). But

F−1u = u =⇒ F (F−1u) = Fu =⇒ u = Fu.

3.4 Several examples in Banach spaces

In last Section of Chapter 3, we consider Banach spaces instead of complete
metric spaces. Theorems about existence (and uniqueness) of solutions of operator
equations in Banach spaces are maybe the best-known sort of applications of fixed
point theorems in general. Several theorems of that kind are presented here.

Proposition 8. Let E, ‖·‖ be a Banach space and F : E → E a linear operator
such that (I − F )−1 exists.

(a) Let G : E → E be Lipschitzian with ‖(I − F )−1‖L(G) < 1. Then the map
x 7→ Fx + Gx, x ∈ E, has a unique fixed point.
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(b) Let r, λ be positive numbers with λ < 1, and let K = K(0, r). Assume
G : K(0, r) → E is a Lipschitzian map satisfying

‖G(0)‖ ≤ (1− λ)r/‖(I − F )−1‖.

Then if ‖(I − F )−1‖L(G) < λ, then the map x 7→ Fx + Gx, x ∈ K, has a
unique fixed point.

Proof. (a): We consider an equation

x = Fx + Gx

which is equivalent (under assumptions) to

(I − F )x = Gx

x = (I − F )−1G(x).

We define a map
T = (I − F )−1G.

It holds

‖T (x)− T (y)‖ = ‖(I − F )−1G(x)− (I − F )−1G(y)‖
≤ ‖(I − F )−1‖ · ‖G(x)−G(y)‖
≤ ‖(I − F )−1‖L(G) · ‖x− y‖.

According to the assumption ‖(I − F )−1‖L(G) < 1, the map T is a contraction
on Banach space E and has unique fixed point. Hence the equation

x = (I − F )−1G(x)

has unique solution and the same is valid for the equation

x = Fx + Gx.

The map Fx + Gx has then a unique fixed point.

(b): Likewise in the part (a), we define

T = (I − F )−1G, T : K → E

We show several estimates that implicate T (K) = K and T is a contraction on
K. For this purpose, we consider

‖T (0)‖ ≤ ‖(I − F )−1‖ · ‖G(0)‖ ≤ (1− λ)r.

Then for arbitrary x ∈ K

‖T (x)‖ − ‖T (0)‖ ≤ ‖T (x)− T (0)‖ = ‖(I − F )−1G(x)− (I − F )−1G(0)‖
≤ ‖(I − F )−1‖L(G) · ‖x− 0‖ ≤ λ‖x‖ ≤ λr.

Now we have
‖T (x)‖ ≤ ‖T (0)‖+ λr ≤ (1− λ)r + λr = r.

It is now obvious that T (K) = K. We shall proceed in a similar way as before

‖T (x)− T (y)‖ = ‖(I − F )−1G(x)− (I − F )−1G(y)‖
≤ ‖(I − F )−1‖L(G) · ‖x− y‖ ≤ λ‖x− y‖

thus T : K → K is a contraction. Since K is a closed subset of Banach space E,
K is complete and T has a unique fixed point. The rest is clear.
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However, operator equations are not the only part of theory in Banach spaces
that finds contractive mappings interesting and useful. Many other specific re-
sults could be derived for contractive mappings in Banach spaces. One geometric
example follows.

Proposition 9. Let E = A
⊕

B be a Banach space represented as a direct sum
of two closed linear subspaces A and B with linear projections PA : E → A and
PB : E → B. Let F : A → E and G : B → E be two Lipschitzian maps, and
let f : A → E and g : B → E be given by a 7→ a − F (a) and b 7→ b − G(b)
respectively. If

‖PA‖L(F ) + ‖P (B)‖L(G) < 1,

then the intersection f(A) ∩ g(B) consists of at most one point.

Proof. At first, we should prove a useful lemma: If H : E → E is contractive,
then map G : x 7→ x−H(x) is a homeomorphism of E onto itself. G is obviously
continuous. G is bijective: if y ∈ E is an arbitrary point then the equation

G(x) = y ⇐⇒ x = y + H(x) =: G′(x)

has exactly one solution because G′ is contractive.

Now we define a map

T = f ◦ PA + g ◦ PB, T : E → E.

T (x) = f(xA) + g(xB)

where we denote xA = PA(x) and xB = PB(x). Observe that

T (x) = xA + xB − F (xA)− F (xB) = x− F (xA)−G(xB)

and one can show that a map K : x 7→ x− T (x) is contractive:

‖K(x)−K(y)‖ ≤ ‖F (xA)− F (yA)‖+ ‖G(xB)−G(yB)‖

≤
{
‖PA‖L(F ) + ‖PB‖L(G)

}
‖x− y‖.

By lemma mentioned at the beginning of the proof, it is obvious that T is home-
omorphism E onto E.

If f(A) ∩ g(B) contains at least two points u, v then there has to be y1, z1 ∈ A
and y2, z2 ∈ B such that

f(y1) = u, g(y2) = u,

f(z1) = v, g(z2) = v.

Then
T (y1 + z2) = f(y1) + g(z2) = g(y2) + f(z1) = T (y2 + z1)

and that is contradiction because T is one to one.

Remark 4. One can show that f(A) ∩ g(B) consists of exactly one point.
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3.5 Discrete contraction principle

We shall start with a theorem of Samuel Eilenberg7 which has some applications
in automata theory. Instead of metric space, we shall consider an abstract set X
with sequence of equivalence relations.

(In fact, it is only a different way how to describe ”the same” structure of the
space. Instead of direct use of a metric, the structure is described through given
neighbourhoods of the diagonal.)

Theorem 10 (Discrete Banach theorem, S. Eilenberg, 1978). Let Y be a set, and
{Rn | n = 0, 1, . . .} ⊂ Y × Y a sequence of equivalence relations such that

(a) Y × Y = R0 ⊃ R1 ⊃ . . .,

(b)
⋂∞

n=0 Rn = the diagonal in Y × Y ,

(c) if {yn} is any sequence in Y such that (yn, yn+1) ∈ Rn for each n, then there
is a y ∈ Y such that (yn, y) ∈ Rn for each n.

Let F : Y → Y be a map such that whenever (x, y) ∈ Rn, then (Fx, Fy) ∈ Rn+1.
Then F has a unique fixed point u and (F ny, u) ∈ Rn for each n and each y ∈ Y .

Proof. Uniqueness: let us assume that u, v ∈ Y are two fixed points under F .
Then by assumptions on F

(u, v) ∈ R0 = Y × Y =⇒ (u, v) = (F nu, F nv) ∈ Rn ∀n

and

(u, v) ∈
∞⋂

n=0

Rn = diagonal in Y × Y =⇒ u = v.

Existence: let us take an arbitrary point y ∈ Y . Then

(y, Fy) ∈ R0 =⇒ (F ny, F n+1y ∈ Rn).

The sequence {F ny} has the property (c). Then

∃u ∈ Y (F ny, u) ∈ Rn ∀n.

Thus we have (from symmetry of equivalency and assumptions on F )

(u, F ny) ∈ Rn, (F ny, F n+1y ∈ Rn, (F n+1y, Fu) ∈ Rn+1 ⊂ Rn

and from transitivity
(u, Fu) ∈ Rn ∀n.

Hence,

(u, Fu) ∈
∞⋂

n=0

Rn = diagonal in Y × Y =⇒ u = Fu.

7) As Jacek Jachymski told in his article from 2004, the theorem was presented by S. Eilen-
berg on his lecture at the University of Southern Carolina, Los Angeles, 1978
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Remark 5. One can show that Eilenberg theorem is equivalent to Banach contrac-
tion principle restricted to ultrametric bounded metric spaces. (We call a metric
space (Y, d) ultrametric if d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ Y .) The
idea of the proof is quite simple. Let us take two different points x, y ∈ Y . We
define

d(x, y) = αp(x,y), where p(x, y) = max
n∈N

{(x, y) ∈ Rn}.

One can show that (Y, d) is a bounded ultrametric space and a map F (which
satisfies conditions in Eilenberg theorem) is α-contraction in that space. For the
converse implication: if we have (Y, d) a bounded ultrametric space, then we shall
define

Rn = {(x, y) ∈ X ×X : d(x, y) ≤ αn diam(X)}.

and verify that Rn are equivalences which satisfies conditions (i)-(iii). Then it is
clear that a map F (satysfing conditions in the theorem) is an α-contraction in
(Y, d).

However, this formulation is not equivalent to (unrestricted) Banach Con-
traction Principle. Jachymski (2004) proved an extension which is equivalent to
Banach Contraction Principle. We mention it here without proof.

Let X be an abstract set and (Rn)n∈Z a sequence of reflexive and symmetric
relations in X such that

(i) given n ∈ Z, if (x, y) ∈ Rn and (y, z) ∈ Rn, then (x, z) ∈ Rn−1,

(ii)
⋃

n∈Z Rn = X ×X, and . . . ⊇ R−1 ⊆ R0 ⊆ R1 ⊆ . . .,

(iii)
⋂

n∈Z Rn = the diagonal in X ×X,

(iv) given a sequence (xn)∞n=1 such that (xn, xn+1) ∈ Rn for all n ∈ N, there is
an x ∈ X such that (xn, x) ∈ Rn−1 for all n ∈ N.

If F is a self-map of X such that given n ∈ Z and x, y ∈ X, condition

(x, y) ∈ Rn =⇒ (Fx, Fy) ∈ Rn+1

is satisfied, then F has a unique fixed point x∗, and given x ∈ X, there is a k ∈ N
such that (F k+nx, x∗) ∈ Rn for all n ∈ N.
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Chapter 4

Extensions of the Banach
theorem

We shall begin with theorem of Michael Edelstein. The main question is here:
Is Banach contraction principle still valid if the contractive condition is hold for
near points only?

Theorem 11 (M. Edelstein, 1961). A metric space (X, d) is ε-chainable if for
each pair x, y ∈ X there are finitely many points (ε-chain) x = x0, . . . , xn+1 = y
such that d(xi, xi+1) < ε for all 0 ≤ i ≤ n.

Let (X, d) be complete, and let F : X → X be a map. Assume that there is
an ε > 0 and a 0 ≤ k < 1 such that d(Fx, Fy) ≤ kd(x, y) whenever d(x, y) < ε.
If (X, d) is ε-chainable, then F has a unique fixed point.

Proof. The proof is quite straightforward. Let us take arbitrary point x ∈ X and
a point F (x) ∈ X. There is an ε-chain

x = x0, x1, x2, . . . , xn = F (x)

and it follows

d(x, F (x)) ≤
n∑

i=1

d(xi−1, xi) = nε.

(Let us note that for fixed x ∈ X is n ∈ N fixed either.) It is obvious that a finite
sequence

F (x) = F (x0), F (x1), F (x2), . . . , F (xn) = F 2(x)

is also an ε-chain because of condition of uniform local contractivity on F . By
induction, a finite sequence

Fm(x) = Fm(x0), F
m(x1), F

m(x2), . . . , F
m(xn) = Fm+1(x)

is an ε-chain for any m ∈ N and it follows by local contractivness

d(Fmx, Fm+1x) ≤
n∑

i=1

d(Fmxi−1, F
mxi) ≤

n∑
i=1

kmd(xi−1, xi) = kmnε.

Hence, the sequence {Fmx}∞m=1 is a Cauchy sequence and since (X, d) is a com-
plete metric space, Fmx → u. The rest of the proof is similar to the proof of
Banach Contraction Principle.
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Maybe we should note a bit more about uniqueness. If u, v ∈ X are two
different fixed points of F then there is an ε-chain

u = ξ0, ξ1, . . . , ξn = v.

It follows for an arbitrary N ∈ N

d(u, v) = d(FNu, FNv) ≤
n∑

i=1

d(FNξi−1, F
Nξi) = kmnε

N→∞−−−→ 0.

And that’s an obvious contradiction.

4.1 Generalized contractions I

The condition on the map F (to be a contraction) could be weakened in several
ways. At first, we shall change classic contractive condition

d(Fx, Fy) ≤ α d(x, y) α < 1

with a condition of this kind

d(Fx, Fy) ≤ ϕ[d(x, y)]

where ϕ : R+ → R+ is an appropriate function. Several different types of functions
can be used for substituting classic contractive condition.

Now, we shall give a proof of quite general principle in which F images the
ball into itself if its center is sufficiently near. It will be useful later.

Theorem 12. Let (X, d) be a complete metric space and F : X → X a map, not
necessarily continuous. Assume

(∗) for each ε > 0 there is a δ(ε) > 0 such that if d(x, Fx) < δ, then F [B(x, ε)] ⊂
B(x, ε).

Then, if d(F nu, F n+1u) → 0 for some u ∈ X, the sequence {F nu} converges to a
fixed point for F .

Proof. At first, one has to show that {F nu} converges and it is sufficient to show
that {F nu} is Cauchy sequence. So choose an arbitrary ε > 0. There is N ∈ N
such that

d(FNu, FN+1u) < δ(ε) =⇒ F [B(FNu, ε)] ⊂ B(FNu, ε) =⇒ FN+1u ∈ B(FNu, ε)

and then for every k ∈ N
FN+ku ∈ B(FNu, ε).

Hence, for every m,n ≥ N

d(Fmu, F nu) ≤ d(Fmu, FNu) + d(FNu, F nu) ≤ 2ε.

Thus, {F nu} is a Cauchy sequence and converges to some y ∈ X. Now, let us
assume that y is not a fixed point for F . Then

ε′ := d(y, Fy) > 0.
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Choose such n ∈ N that d(F nu, y) < ε′/3 and d(F nu, F n+1u) < δ(ε′/3). Since

F [B(F nu, ε′/3)] ⊂ B(F nu, ε′/3) =⇒ Fy ∈ B(F nu, ε′/3),

one can show a contradiction with

d(Fy, F nu) ≥ d(Fy, y)− d(y, F nu) ≥ 2

3
ε′ =⇒ Fy 6∈ B(F nu, ε′/3).

This theorem is quite useful for deriving fixed point theorems based on com-
pleteness and contractionlike conditions mentioned above. As an example, we
shall derive theorems of Matkowski (1975) and Browder (1968).

Proposition 13 (Matkowski, 1975). Let (X, d) be complete, and let F : X → X
be a map satisfying

d(Fx, Fy) ≤ ϕ[d(x, y)],

where ϕ : R+ → R+ is any nondecreasing (not necessarily continuous) function
such that ϕn(t) → 0 for each fixed t > 0. Then F has a unique fixed point u and
F nx → u for each x ∈ X.

Proof. We would like to use the previous theorem. At first, for each x ∈ X

d(F nx, F n+1x) ≤ ϕn[d(x, Fx)] =⇒ d(F nx, F n+1x) → 0.

Now choose ε > 0 and choose δ(ε) = ε − ϕ(ε)1 and if d(x, Fx) < δ(ε) then for
any y ∈ B(x, ε)

d(Fz, x) ≤ d(Fz, Fx) + d(Fx, x) < ϕ[d(z, x)] + δ ≤ ε(ε) + ε− ϕ(ε) = ε.

The rest is easy.

Proposition 14 (Browder (1968)). Let (X, d) be complete and F : X → X a
map satisfying d(Fx, Fy) ≤ ϕ[d(x, y)] for all x, y ∈ X, where ϕ : R+ → R+ is
any function such that

(i) ϕ is nondecreasing,

(ii) ϕ(t) < t for each t > 0,

(iii) ϕ is right continuous.

Then F has a unique fixed point u and F nx → u for each x ∈ X.

Proof. If we show that ϕn(t) → 0 for any t > 0, we shall be able to use the
previous proposition. So choose fixed t ∈ R+. It is clear that {ϕn(t)} is monotonic
sequence and thus has a limit y ∈ R+. We denote tn = ϕn(t). Then

lim
n→∞

tn = y

1) δ(ε) > 0 because ϕ(t) < t since ϕ is nondecreasing and ϕn(t) → 0. Obviously, if t ≤ ϕ(t)
then ϕ(t) ≤ ϕ(ϕ(t)) etc.
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and
t1 > t2 > t3 > . . . > tn > . . . > y

Since ϕ is right continuous, it has to be

lim
tn→y+

ϕ(tn) = ϕ(y).

However, {ϕ(tn)} ⊂ {tn} so
ϕ(y) = y.

Hence, y = 0 and the proof is complete.

4.2 Generalized contractions II

From a wide variety of generalized contractive conditions analyzed by Rhoades
(1977), we shall take another example. Classic Banach’s condition is now replaced
by condition

d(Fx, Fy) ≤ something which operates with some terms of the set

{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)}

”Something” can have multifarious forms: e.g.

d(Fx, Fy) ≤ a[d(x, Fx) + d(y, Fy)], a ∈ (0, 1
2
) (Kannan)

d(Fx, Fy) ≤ a1d(x, y) + a2d(x, Fx) + a3d(y, Fy) + a4d(x, Fy) + a5d(y, Fx),∑
ai < 1 (Hardy, Rogers)

and many other ones. Our first example is based on Ćirić’s version of generalized
contraction.

Proposition 15 (L. B. Ćirić, 1974). Let (X, d) be complete and F : X → X
continuous. Assume that

d(Fx, Fy) ≤ k max{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)} (∗)

for some k ∈ [0, 1) and all x, y ∈ X. Then F has a unique fixed point u and
F nx → u for each x ∈ X.

Proof. Uniqueness: Let us consider u, v two different fixed points under F . The
condition (∗) and equalities Fu = u, Fv = v simply leads to contradiction

d(u, v) = d(Fu, Fv) ≤ k max{d(u, v), d(u, Fu), d(v, Fv), d(u, Fv), d(v, Fu)

= k max{d(u, v), d(u, u), d(v, v), d(u, v), d(v, u)} = k · d(u, v) < d(u, v).

Existence: We shall divide the proof into three steps. We define sets

O(x, n) := {x, Fx, F 2x, . . . , F nx},

O(x,∞) := {x, Fx, F 2x, . . . , F nx, . . .}.
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At first, let us show this: If n ∈ N then for each x ∈ X and all i, j ∈ {1, . . . , n}
is

d(F ix, F jx) ≤ k · δ[O(x, n)].

Since F has the property (∗) and F ix, F i−1x, F jx, F j−1x ∈ O(x, n), it follows

d(F ix, F jx) = d(FF i−1, FF j−1x)

≤ k ·max
{
d(F i−1x, F j−1x), d(F i−1x, F ix), d(F j−1x, F jx),

d(F i−1x, F jx), d(F ix, F j−1x)
}

≤ kδ[O(x, n)].

Second step: we shall show

∀x ∈ X δ[O(x,∞)] ≤ 1

1− k
d(x, Fx).

Since δ[O(x,∞) = sup{δ[O(x, n)], n ∈ N}, it is sufficient to show for all n ∈ N

∀x ∈ X δ[O(x, n)] ≤ 1

1− k
d(x, Fx).

Choose n ∈ N arbitrarily. There exists k ≤ n, k ∈ N such that2

d(x, F kx) = δ[O(x, n)].

By triangle inequality and the first step of proof

d(x, F kx) ≤ d(x, Fx) + d(Fx, F kx) ≤ d(x, Fx) + k · δ[O(x, n)]

= d(x, Fx) + k · d(x, F kx).

Therefore

δ[O(x, n)] = d(x, F kx) ≤ 1

1− k
d(x, Fx).

Last step: We shall show that {F nx} is a Cauchy sequence. Let be n, m ∈ N,
n < m. From the first step of the proof we see

d(F nx, Fmx) = d(FF n−1x, Fm−n+1F n−1x) ≤ k · δ[O(F n−1x, m− n + 1)].

There is k1 ∈ N, k1 ≤ m− n + 1 such that

δ[O(F n−1x, m− n + 1)] = d(F n−1x, F k1F n−1x).

Let’s do the same thing once more. It follows

δ[O(F n−1x, m− n + 1)] = d(F n−1x, F k1F n−1x)

= d(FF n−2x, F k1+1F n−2x)

≤ k · δ[O(F n−2x, k1 + 1)]

≤ k · δ[O(F n−2x, m− n + 2)].

2) The diameter of O[x, n] is the distance of point x and one other point F kx ∈ O[x, n].
This is an easy consequence of (∗) if we put k = 1 and apply the inequality on arbitrary points
d(F kx, F lx) as many times as it is necessary to achieve F 0x in one or the other coordinate.
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Hence

d(F nx, Fmx) ≤ k · δ[O(F n−1x, m− n + 1)] ≤ k2 · δ[O(F n−2x, m− n + 2)]

and one could show in a similar way

d(F nx, Fmx) ≤ kn · δ[O(x, m)].

The immediate consequence of the second step is

d(F nx, Fmx) ≤ kn · 1

1− k
d(x, Fx)

n→∞−−−→ 0,

thus the sequence {F nx} is a Cauchy sequence. Since (X, d) is complete, there is
u ∈ X such that F nx → u. It holds

d(u, Fu) ≤ d(u, F n+1x) + d(FF nx, Fu)

≤ d(u, F n+1x) + k ·max{d(F nx, u), d(F nx, F n+1x),

d(u, Fu), d(F nx, Fu), d(F n+1x, u)}
≤ d(u, F n+1u) + k · [d(F nx, u) + d(F nx, F n+1x)

+d(u, Fu) + d(F n+1x, u)]

and thus

d(u, Tu) ≤ 1

1− k

[
kd(F nx, u) + kd(F nx, F n+1x) + (1 + k)d(F n+1x, u)

]
→ 0

because F nx → u and {F nx} is a Cauchy sequence. Then u is a fixed point under
F and the proof is complete.

As an example, how careful one must be in such a kind of statement, we shall
mention a proposition of Pittnauer. Initially, we shall give a rather complicated
proof.

Proposition 16 (F. Pittnauer, 1975). Let (X, d) be complete and F : X → X
continuous. Assume that there exists and integer n and 0 ≤ k < 1 such that

d(Fx, Fy) ≤ k[d(x, F nz) + d(y, F nz)] ∀x, y, z ∈ X. (∗)

Then F has a unique fixed point.

Proof. Let us choose x ∈ X arbitrarily. The condition (∗) gives immediately

d(F n+1x, F n+2x) ≤ k[d(F nx, F nz) + d(F n+1x, F nz)]

and if we choose z = Fx we’ll get

d(F n+1x, F n+2x) ≤ k · d(F nx, F n+1x).

In the same way, we could consider inequality

d(F n+2x, F n+3x) ≤ k[d(F n+1x, F nz) + d(F n+2x, F nz)]
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and if we choose z = F 2x we’ll get

d(F n+2x, F n+3x) ≤ k · d(F n+1x, F n+2x) ≤ k2 · d(F nx, F n+1x).

By induction, one may show

d(F n+mx, F n+m+1x) ≤ km · d(F nx, F n+1x).

(We remind that n ∈ N is fixed.) It follows

d(F n+mx, F n+m+px) ≤
p−1∑
i=0

d(F n+m+ix, F n+m+i+1x)

≤
p−1∑
i=0

km+i · d(F nx, F n+1x)

≤ km

1− k
d(F nx, F n+1x)

m→∞−−−→ 0.

Hence, the sequence {Fm}∞m=0 is a Cauchy sequence and since (X, d) is complete,
there exists u ∈ X such that Fmx → u. Since F is continuous, it has to be

F (Fmx) → Fu, Fm+1x → u.

Then F (u) = u and F has at least one fixed point.

Uniqueness: Let us consider two different fixed points u, v under F . Then it follows
by (∗) with z = u

d(u, v) = d(F n+1u, F n+1v) ≤ k[d(F nu, F nu) + d(F nv, F nu)] =

kd(F nv, F nu) = kd(v, u) < d(u, v).

That is a contradiction.

However, the condition (∗) only looks more generally than usual contractivity. It
is obvious, that (∗) implies

d(Fx, Fy) ≤ k d(x, y) for all x, y ∈ F n(X)

and thus this result is a consequence of Banach Contraction Principle.3

4.3 Dugundji’s approach

In the last section, we will aim our attention to an alternative technique how to
construct fixed point theorems. It comes from James Dugundji and was intro-
duced in 1975. The main ”tool” of this method are theorems (17) and (20), both
of them has a slightly different use and together implies a wide range of fixed
point theorems. Our examples are mainly propositions which were derived earlier
than Dugundji’s theorems by (sometimes much) more difficult and sophisticated
methods.

The first theorem is concentrating on minimizing sequences for a suitable
function ϕ: vast majority of applications then use ϕ(x) = d(x, Fx) and try to
find suitable conditions in order to infx∈X ϕ(x) would be zero.

3) A proposition of Bryant (1) could be used, for example
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Theorem 17 (Dugundji, 1975). Let (X, d) be complete metric space and ϕ : X → R+

be an arbitrary (not necessarily continuous) nonnegative function. Assume that

inf{ϕ(x) + ϕ(y) | d(x, y) ≥ a} = µ(a) > 0 ∀a > 0.

Then each sequence {xn} ⊂ X for which ϕ(xn) → 0 converges to one and the
same point u ∈ X.

Proof. Let An = {x | ϕ(x) ≤ ϕ(xn)}. These sets are nonempty and any fi-
nite family has a nonempty intersection. We show diam(An) → 0: given any
ε > 0, choose N so large that ϕ(xn) < 1

2
µ(ε) for all n ≥ N ; then for any

n ≥ N and x, y ∈ An we have ϕ(x) + ϕ(y) < µ(ε); therefore, the condi-
tion on ϕ gives d(x, y) < ε, so diam(An) ≤ ε. Thus, diam(An) → 0; because
diam(An) = diam(An) → 0, we conclude from Cantor theorem that there is a
unique u ∈

⋂
n An and, since xn ∈ An for each n, that xn → u. For any other

sequence {yn} satisfying ϕ(yn) → 0 we get ϕ(xn) + ϕ(yn) → 0, so, from the con-
dition above as before, d(xn, yn) → 0 and therefore yn → u also.

It follows almost immediately:

Corollary 18. Let (X, d) be complete metric space and F : X → X continuous.
Assume that the function ϕ(x) = d(x, Fx) has the property

inf{ϕ(x) + ϕ(y) | d(x, y) ≥ a} = µ(a) > 0 ∀a > 0

and
inf
x∈X

d(x, Fx) = 0.

Then F has a unique fixed point.

Proof. Since infx∈X ϕ(x) = 0, there is a sequence {xn} such that ϕ(xn) → 0.
Each sequence with that property converges to the same point. By the previous
theorem xn → x̂ ∈ X and it is obvious that

ϕ(x̂) = 0 ⇐⇒ d(x̂, F (x̂)) = 0.

Then F (x̂) = x̂ and F has unique fixed point.

It is worthy to note that Banach Contraction Principle is an easy consequence
of (18). And as the promised example, we shall derive a fixed point theorem of
Bailey.

Proposition 19 (D. F. Bailey, 1966). Let (X, d) be complete and F : X → X
continuous. Assume that for each ε > 0 and each pair x, y ∈ X, there is an
n = n(x, y, ε) such that d(F nx, F ny) < ε. If the function ϕ(x) = d(x, Fx) has the
property

inf{ϕ(x) + ϕ(y) | d(x, y) ≥ a} = µ(a) > 0 ∀a > 0,

then F has a fixed point.
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Proof. Choose ε > 0 and x ∈ X. For y = F (x), there exists n such that

d(F nx, F n+1x) < ε.

Hence, for X 3 u = F nx we have

ϕ(u, Fu) < ε.

Since ε > 0 was arbitrary, it must be

inf
x∈X

ϕ(x) = inf
x∈X

d(x, Fx) = 0.

Therefore, the proposition follows from (18).

The second Dugundji theorem is similar to the first one. However, the condition is
replaced: we have a suitable compact A (in applications, it is often a single point)
and nonnegative function ϕ which has positive infimum out of the compact A.
Then every sequence which minimizes ϕ contains a subsequence which converges
to some point of A (mostly to the fixed point).

Theorem 20 (Dugundji, 1975). Let (X, d) be an arbitrary metric space, and let
A ⊂ X be compact. Let ϕ : X → R+ be an arbitrary (not necessarily continuous)
nonnegative function such that

inf{ϕ(x) | d(x, A) ≥ a} > 0

for each a > 0. Then each sequence {xn} in X for which ϕ(xn) → 0 contains a
subsequence converging to some point of A.

Proof. At first, let us assume that the sequence {xn} contains an infinitely many
points of A; this means there is a subsequence {xnk

} ⊂ A. But a well-known state-
ment says we can choose a convergent subsequence from an arbitrary sequence in
a compact metric space (or in a compact subset of a metric space).

Now assume that the sequence {xn} has only finitely many points in A. Then
we can choose a subsequence (which we will denote {xn} as well) without any
point in A. It is easy to show, that d(xn, A) → 0. Indeed, if d(xn, A) ≥ a > 0,
then it is obvious by condition on ϕ that ϕ(xn) ≥ K > 0 for each n ∈ N. Hence,
we can once more choose a subsequence (which we still denote {xn}) such that
d(xn, A) ↘ 0.

Choose a sequence {εk} such that εk > 0 and εk ↘ 0. For every εk > 0 there
is xk in our chosen subsequence {xn} such that εk+1 < d(xk, A) < εk and there
has to be yk ∈ A such that 2εk+1 < d(xk, yk) < 2εk. We constructed a sequence
{yk} ⊂ A and A is compact. Let us assume that the sequence converges4 and we
denote the limit y. Obviously, y ∈ A because A is compact and thus closed. It is
also obvious5 that y ∈ ∂A because d(yk, X/A) < 2εk → 0.

We want to choose (hopefully, for the last time) a subsequence of the sequence
{xk} which would converge to y. For every εk there has to be index m(k) ≥ k
and a point ym(k) such that

d(y, ym(k)) < εk.

4) otherwise, we can choose a convergent subsequence again
5) we denote ∂A a boundary of the set A.
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But then for xm(k) ∈ {xk} it holds

d(xm(k), y) ≤ d(xm(k), ym(k)) + d(ym(k), y) ≤ εm(k) + εk < 2εk.

Hence, we shall construct a sequence {xm(k)} in the way as it is described.
Therefore, for arbitrary ε > 0 there is εk < 1

2
ε and for every m ≥ m(k) ≥ k it

follows
d(xm, y) ≤ d(xm, ym) + d(ym, y) < εm + εk < 2εk < ε.

This completes the proof.

Maybe it would be better to repeat the idea of the proof once again. If the se-
quence {xn} has infinitely many points in A then we can choose a convergent
subsequence immediately. If not then we use this idea: at first we choose a sub-
sequence {xn} which approaches the set A so the distance d(xn, A) is decreasing
monotonically. Then we use the boundary of A as a mirror – we define a point yn

as the point, which is ”very near” to xn but already in the set A. Then in the set
A, we can choose a convergent subsequence. The rest is only a technical problem;
it is pretty clear that if yn → y and xn are ”very near” to yn then the sequence
xn should converge to y (or at last there should be a converging subsequence).

The rest of this section contains several fixed point theorems which are derived
by using this theorem. Almost every one of them is derived by using a suitable
auxiliary function ϕ. We remind the fact that these theorems were known earlier
and were proven with variety of different and more sophisticated techniques. The
fact, that all of them are consequences of theorem (20), is truly noteworthy.

Proposition 21. Let (X, d) be an arbitrary metric space and F : X → X a map
satisfying d(Fx, Fy) < d(x, y) whenever x 6= y. Assume that for some z ∈ X, the
sequence {F lz}∞l=0 has a subsequence converging to a point u. Then u is a fixed
point for F .

Proof. We would like to use the previous theorem (20). Define A := {u}. Then
A is obviously a compact set. Now we define a function

ϕ(x) = d(x, Fx)− d(Fx, F 2x) + d(x, u).

Because d(x, Fx) > d(Fx, F 2x), it is obvious that ϕ is a nonnegative function. If
x 6= u and dist(x, A) = d(x, u) ≥ a > 0 then

ϕ(x) ≥ d(x, u) ≥ a > 0.

Now we want to show that ϕ(F nkz) → 0 where {F nkz} is the convergent subse-
quence of {F lz}. At first, we shall derive several auxiliary inequalities. For any
ε > 0, there are n, m ∈ N such that

d(F nz, u) < ε, d(F n+mz, u) < ε.

It holds:

d(F nz, F n+1z) ≤ d(F nz, F n+mz) + d(F n+mz, F n+m+1z)

+d(F n+m+1z, F n+1z)

≤ d(F nz, F n+mz) + d(F n+mz, F n+m+1z) + d(F n+mz, F nz)

≤ 2ε + d(F n+mz, F n+m+1z) + 2ε
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because
d(F nz, F n+mz) ≤ d(F nz, u) + d(u, F n+mz) < 2ε.

Thus we have

ϕ(F nz) = d(F nz, F n+1z)− d(F n+1z, F n+2z) + d(F nz, u)

≤ 4ε + d(F n+mz, F n+m+1z)− d(F n+1z, F n+2z) + ε

≤ 5ε,

because n + m ≥ n + 1 and it follows

d(F n+1z, F n+2z) ≥ d(F n+2z, F n+3z) ≥ . . . ≥ d(F n+mz, F n+m+1z))

which means
d(F n+mz, F n+m+1z))− d(F n+1z, F n+2z) ≤ 0.

Hence
ϕ(F nkz) → 0.

Since F nkz → u, it has to be

0 = ϕ(u) = d(u, Fu)− d(Fu, F 2u).

It implies for u 6= Fu

d(Fu, F 2u) < d(u, Fu) = d(Fu, F 2u)

and that is a contradiction. Thus u = F (u) and the proof is complete.

Proposition 22. If (X, d) is a metric space and F : X → X is a map, we
denote the diameter of the orbit {F nx | n = 0, 1, . . .} of x ∈ X by δ(x). The map
F is said to have shrinking orbits if for each x with δ(x) > 0, there is an n with
δ(F nx) < δ(x).

Let (X, d) be a bounded metric space, and F : X → X a map satisfying
d(Fx, Fy) ≤ d(x, y) for all x, y ∈ X. Assume that for some z ∈ X, the sequence
{F nz} has a subsequence converging to a point u. If F has a shrinking orbits,
then u is a fixed point for F .

Proof. At first, we shall show that the function δ(·) is continuous. For that pur-
pose, let us take arbitrary point x0 and choose ε > 0. We assume that d(x, x0) < ε.
Then for each n, k ∈ N we have

d(F nx, F kx) ≤ d(F nx, F nx0) + d(F nx0, F
kx0) + d(F kx0, F

kx)

≤ d(x, x0) + sup
n,k∈N

d(F nx0, F
kx0) + d(x, x0)

≤ 2ε + δ(x0).

Now we can apply supremum to the left side of inequality and it gives

δ(x) ≤ 2ε + δ(x0) =⇒ δ(x)− δ(x0) ≤ 2ε.

On the other side, we could write

d(F nx0, F
kx0) ≤ d(F nx0, F

nx) + d(F nx, F kx) + d(F kx, F kx0)

≤ d(x, x0) + sup
n,k∈N

d(F nx, F kx) + d(x, x0)

≤ 2ε + δ(x)
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and by applying supremum to the left side we get

δ(x0)− δ(x) ≤ 2ε.

Hence, the function δ(·) is continuous.

Now we define a collection of auxiliary functions

ϕ(x) = δ(x)− δ(F sx) + d(x, u), s ∈ N.

It is obvious that δ(x) ≥ δ(F sx) so ϕ is nonnegative and if d(x, u) ≥ a > 0 then

ϕ(x) ≥ d(x, u) ≥ a > 0.

We would like to show that ϕ(F nkz) → 0 for each s ≥ 1. (Here is {F nkz} the
convergent subsequence of sequence {F nz} and we remind that F nkz → u.) Let
us take s ∈ N fixed and choose ε > 0. Then there is K ∈ N such that

d(F nKz, u) < ε

and for every m ≥ 0 is
d(F nKz, F nK+mz) < ε.

(Convergent sequences are Cauchy sequences.) This implies (using the previous
part of the proof)

δ(F nKz)− δ(F nK+mz) < 2ε.

We choose m ∈ N such that nK+m > nK + s. Then

ϕ(F nKz) = δ(F nKz)− δ(F nK+sz) + d(F nKz, u)

= δ(F nKz)− δ(F nK+mz) + δ(F nK+mz)− δ(F nK+sz) + d(F nKz, u)

≤ 2ε + 0 + ε = 3ε

because
nK + s < nK+m =⇒ δ(F nK+mz)− δ(F nK+sz) ≤ 0.

This implies (for each s ∈ N)

ϕ(F nKz) → 0 =⇒ ϕ(u) = 0.

Thus we have
0 = ϕ(u) = δ(u)− δ(F su)

δ(u) = δ(F su) ∀s ∈ N.

Since F has shrinking orbits, δ(u) = 0 and then u = F (u).

In this and the previous proof we use the fact that the function ϕ is continuous.

Proposition 23. Let (X, d) be a metric space and F : X → X continuous.
Assume that for some z ∈ X, the orbit {F nz} contains a convergent subsequence
{F niz}. If d(F niz, F 1+niz) → 0, then F has a fixed point.
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Proof. We denote u = lim F niz and

ϕ(x) = d(x, u) + d(Fx, u).

Let us choose ε > 0. Since there is ni ∈ N such that d(F niz, u) < ε and
d(F niz, F ni+1z) < ε, it holds

ϕ(F niz) = d(F niz, u) + d(F ni+1z, u)

≤ d(F niz, u) + d(F ni+1z, F niz) + d(F niz, u)

≤ ε + ε + ε = 3ε.

Thus ϕ(F niz) → 0 and it implies if ϕ is continuous

ϕ(u) = 0.

Hence
0 = ϕ(u) = d(Fu, u) =⇒ F (u) = u.

It remains to show continuity of ϕ. For arbitrary point x0 ∈ x, it holds

|ϕ(x)− ϕ(x0)| = |d(x, u) + d(Fx, u)− d(x0, u)− d(Fx0, u)|
≤ |d(x, u)− d(x0, u)|+ |d(Fx, u)− d(Fx0, u)|
≤ d(x, x0) + d(Fx, Fx0)

x→x0−−−→ 0

because F is continuous. The proof is complete.

Proposition 24. Let (X, d) be a metric space and F : X → X continuous.
Assume that there is a continuous nonnegative function V : X × X → R+ with
V −1(0) contained in the graph of F , and such that inf{V (x, x) | x ∈ X} = 0.
Now

(a) If the function ϕ(x) = V (x, x) has the property in (20) relative to some
compact A ⊂ X, then F has a fixed point.

(b) If (X, d) is complete and ϕ(x) = V (x, x) has the property

inf{ϕ(x) + ϕ(y) | d(x, y) ≥ a} = µ(a) > 0 ∀a > 0,

then F has a fixed point.

Proof. (a): Since infx∈X ϕ(x) = 0, there is at least one sequence {xn} such that
ϕ(xn) → 0. Let us choose an arbitrary sequence {xn} with this property. Then
theorem (20) implies xn → u where u ∈ A. It holds

ϕ(xn) = V (xn, xn) → 0

and continuity of V implies
V (u, u) = 0.

But V −1(0) is contained in the graph of F . Hence

F (u) = u.
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(b): Since infx∈X ϕ(x) = 0, there is at least one sequence {xn} such that

ϕ(xn) → 0.

Let us choose an arbitrary sequence {xn} with this property. Then theorem (17)
implies xn → u where u ∈ X (and the point u is the same for every sequence
with that property). The rest is similar to the part (a). It holds

ϕ(xn) = V (xn, xn) → 0

and continuity of V implies
V (u, u) = 0.

But V −1(0) is contained in the graph of F . Hence

F (u) = u.
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