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Abstract: In the thesis we focus on sequential monitoring procedures. We extend some
known results towards more robust methods. The robustness of the procedures
with respect to outliers and heavy-tailed observations is introduced via use of
M-estimation. Another extension is towards dependent and multivariate data. For
several models, the appropriate test statistics are proposed and their asymptotic
properties are studied both under the null hypothesis of no change as well as under
the alternatives in order to derive proper critical values and show consistency of
the tests. Finite sample properties are checked in a simulation study and by an
application on real data as well.
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Abstrakt: V práci se zabýváme sekvenčńı analýzou změn. Některé známé výsledky
rozš́ı̌ŕıme na robutńı metody. Robustnost vzhledem k odlehlým pozorováńım
a pozorováńım s těžkými chvosty je dosažena využit́ım M-odhad̊u. Daľśı rozš́ı̌reńı
se týká mnohorozměrných a závislých dat. Pro několik model̊u jsou navrženy
vhodné testové statistiky a jejich asymptotické chováńı za nulové hypotézy žádné
změny stejně jako za alternativ je studováno. Dı́ky tomu můžeme odvodit správné
kritické hodnoty a ukázat konzistenci test̊u. Simulačńı studie potvrdila použitelnost
navržených procedur i pro konečné vzorky dat. Taktéž je ukázána možná aplikace.

Kĺıčová slova: robustńı analýza změn, M-odhady, slabá závislost, model oceňováńı
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Notation

m . . . length of training period; basis for asymptotics

T . . . ratio of monitoring period to training one

d . . . number of dimensions for multivariate data

a.e. . . . almost everywhere

a.s. . . . almost surely

D
= . . . equality in distribution

D−→ . . . convergence in distribution
D[0,T ]−→ . . . weak convergence in Skorokhod space D[0, T ]

Dd[0,T ]−→ . . . weak convergence in Skorokhod space Dd[0, T ]

P−→ . . . convergence in probability

:= . . . defining symbol

OP , op . . . stochastic Landau symbols, by default with m→ ∞
O, o . . . deterministic Landau symbols, by default with m→ ∞
I{·} . . . identificator of a set

(·)+ . . . positive part function (max(0, ·))
⌊·⌋ . . . integer part function

C . . . generic positive constant

α(k) . . . α-mixing coefficient
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Abbreviations

ARL . . . average run length

CAPM . . . capital asset pricing model

CLT . . . central limit theorem

CUSUM, MOSUM . . . cumulative sums, moving sums

DPC . . . delay-power curves (plot) - see p.82

DRL . . . density of run length (plot) - see p.82

FLT . . . flat top kernel (estimator)

FLT adapt . . . flat top kernel (estimator) with adaptive bandwidth choice

i.i.d. . . . independent and identically distributed

LAD . . . least absolute deviation

LHS . . . the left hand side

LRV . . . long-run variance

LS . . . least squares

RHS . . . the right hand side

SPC . . . size-power curves (plot) - see p.73

(V)AR . . . (vector) autoregression

WIP . . . weak invariance principle

WLOG . . . , without loss of generality
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Chapter 1

Introduction

The change-point analysis is introduced first in both of its two general setups. A
robustness of the procedures is introduced via use of M-estimators and thus we recall
the theory in Section 1.4. As data in the change-point analysis are time ordered the
assumption of independence is not usually feasible there. The dependence structure
considered in the thesis is presented in Section 1.5. In next section the latest develop-
ment of change-point analysis is presented. This chapter is concluded by an outline of
the thesis.

1.1 Change-point Analysis

Modern world is changing at tremendous speed. High tech instruments from last year
are average this year and will be outdated the next one. The change is present every-
where. Therefore the scientific study of change is of key importance.

A study of changes in statistical models is called change-point analysis. Otherwise said
it is a study of stability of models. It provides tools to decide whether a given time
ordered data remain stable over time (follow the same model all time) or whether some
change occurs. It means that data follow a certain model up to an unknown time-point
and a different model afterwards.

Two main areas of change-point analysis based on the data acquisition can be dis-
tinguished. When all data are at hand at the beginning of the analysis we speak
about Retrospective (or Offline) analysis. We formulate this subject in the next section.
However in modern applications it is common to receive the data online and monitor the
stability online as well. In that case we speak about Sequential (or Online) change-point
analysis or monitoring. This is set up in Section 1.3.

A history of change-point analysis goes back to 1950’ and relates to names Wald and
Page (see Wald [1947] and Page [1954] for example) and the area of statistical quality
control. Since then the area of applications has grown a lot and nowadays it is exploited
in a number of fields, for example in medicine, biology, climatology and economy. With
a growing data availability in science and business it will become even more important.
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CHAPTER 1. INTRODUCTION 8

Number of theoretical studies of the topic is also abundant, we summarize the recent
development is Section 1.6.

1.2 Retrospective Change-point Analysis

The problem of stability of historical models can be formulated as follows. Observations
Y1, . . . , Yn follow a statistical model, which may have changed during the observational
period. There could have been one or more changes. We have to decide how many
changes (if any) have occurred, then to locate them and finally to specify the way of
the change.

The task is treated as a hypothesis testing problem, where we test the null hypothesis
of no change against an alternative hypothesis, concerning a particular kind of change.
Most popular alternatives are so called AMOC (at-most-one-change) ones, where as
the name indicates we are looking for one abrupt change in the data. However the
so-called gradual changes as well as multiple changes have been studied. As an example
we introduce the AMOC alternative in a general case, where one looks for any change
in distribution.

We denote the distribution functions of data Y1, . . . , Yn as F1, . . . , Fn and we test the
null hypothesis

H0 : F1 = . . . = Fn (1.1)

against

H1 : there exists unknown time point k∗ < n such that

F1 = . . . = Fk∗ 6= Fk∗+1 = . . . Fn.
(1.2)

We have to define an appropriate test statistic and ensure that it behaves well under
both null the hypothesis (i.e. the required level is kept) and the alternative hypothesis
(test has appropriate power).

The problem is usually not treated in such a general setting but it is assumed that
the distribution is dependent on some parameter, such as location or scale parameter
or regression coefficient. Then the problem is reduced to the change in this parameter
itself.

1.3 Sequential Monitoring

We speak about (sequential) monitoring when observations are coming sequentially
and we want to monitor the stability online, i.e. after each new observation arrives,
we make a decision, whether a change has occurred or not. We therefore observe a
potentially infinite sequence Y1, Y2, Y3, . . .. Initially the generating process is ”under
control”. However at some unknown time-point k∗ the process changes and becomes
”out of control”. Our aim is to stop the observation (and take an appropriate action)
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as soon as possible after the change, but we also want to avoid false alarms caused by
random fluctuations only.

Similarly to the retrospective change-point analysis we treat the problem as a hypothesis
testing, where the null hypothesis of no change is testes against the alternative that
a change occurs at some unknown time k∗. Denote the distribution functions of the
observations Yi again as Fi, i = 1, 2, . . .. In the most general case the hypotheses of
interest can represent any change in the distribution. Hence the null hypothesis of no
change is

H0 : Fi = F0, 1 ≤ i <∞
and the alternative is

H1 : there exists unknown k∗ ≥ 1 such that

Fi = F0, 1 ≤ i ≤ k∗, Fi = F∗, k
∗ < i <∞, F0 6= F∗.

The testing procedure is described by the so-called stopping time, which is the time,
when the null hypothesis is rejected and the observations stopped. This time τ is defined
as

τ = inf{k ≥ 1 : Γ(k) > c},
with the understanding that inf{∅} = ∞. The test statistics Γ(k) = Γ(Y1, . . . , Yk)
k = 1, 2, . . . (sometimes called detectors) are evaluated at time k and can be based on
all available observations Y1, . . . , Yk. The value c is a critical value according to which
the decision is conducted.

The main task is to find a suitable detector Γ(k) and also a method how to determine
the critical value c such that the procedure fulfils two obvious requirements. The first
one is that under the null hypothesis of no change we do not want to stop observing (i.e.
cause the false alarm) whereas under the alternative we want to stop as soon as possible
after the time k∗. Apparently there is a trade-off between these two requirements. There
exists two main principles, how these requests can be balanced and the critical values
determined.

The first one is based on the average run length (ARL). The idea is that we specify
a lower bound for the average number of observations, which should be taken under
the null hypothesis until the first alarm. Based on this request we can determine the
critical values. Among the procedures that use ARL are also the famous Shewhart and
CUSUM ones. Since the topic of this thesis is based on the second method, we do not
give further details about ARL methods, those can be found in Siegmund [1985] for
example.

The second one is based on requirements on probabilities of type I and type II errors.
The idea is that we constrain the probability of false alarm (type I error) with a pre-
defined small value α ∈ (0, 1) and then we minimize the probability of type II error (or
try to make it small at least). We can formulate the requirements as follows:

P (τ <∞|H0) ≤ α, P (τ <∞|H1) = 1.
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With such requirements, the procedure detects the change with probability 1 if it occurs,
but if there is no change, it rejects the null hypothesis with probability α at most.

Sequential Monitoring with Training Data Available

Now we introduce some more specific setting under which we work throughout the
thesis. It is related to the one suggested by Chu et al. [1996].

Let us assume that the distribution function is characterized by some (generally mul-
tivariate) parameter θ i.e. Fi(·) = F (·,θi) and the change is allowed only in this
parameter. In sequential change-point analysis, it is often assumed that there is available
a training data set (historical data) with no change. Denote the size of this data set by
m. A stability of the parameter of interest in this data set is called non-contamination
assumption

θ1 = . . . = θm. (1.3)

We can estimate the null hypothesis value of parameter from the historical data.
Throughout the thesis we will work with the non-contamination assumption. The length
of historical period m is also taken as a basis for the asymptotics i.e. the asymptotic
relations are taken for m→ ∞ (this is usually assumed implicitly and thus not written).

The null hypothesis can be rewritten as

H0 : θi = θ0, 1 ≤ i < m+N + 1, (1.4)

which is tested against the alternative that a change in the parameter occurs

H1 : there exists k∗ = k∗m < N such that

θ0 = θ1 = . . . = θm+k∗ 6= θm+k∗+1 = . . . = θ∗.

The values of θ0,θ∗ and k∗ are unknown. Above we also introduced the maximal length
of monitoring period N .

We can consider either a possibly infinite monitoring period or the so-called closed-end
monitoring which is very useful in practical applications, since the maximal number of
possible observations is (or easily can be) specified a priori and thus allow us to tailor
the critical values appropriately to get more powerful tests. Further we assume that the
maximal monitoring period is a fix multiple of the training period i.e. that N = mT
for some fixed T > 0.

The stopping time now depends both on the length of the historical data and the
monitoring period, which is emphasized in the notation as well. It is defined as

τm,T = inf{1 ≤ k ≤ mT : Γ(m, k) > cm,T (α)}, (1.5)

where again the detector Γ(m, k) and the critical values cm,T (α) have to be chosen such
that the crucial requirements on the monitoring procedure

lim
m→∞

P (τm,T <∞|H0) ≤ α, (1.6)

lim
m→∞

P (τm,T <∞|H1) = 1 (1.7)
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are fulfilled. Equation (1.6) ensures the level to be at most α asymptotically while the
condition (1.7) corresponds to the consistency of the test, i.e. the probability of the
type II error tends to 0 or, in other words, the power tends to 1, as m→ ∞.

The detector has often a form of a standardized statistic

Γ(m, k) =

∣∣Q̂(m, k)
∣∣

g(k/m)
, (1.8)

where Q̂(m, k) = Q̂(m, k, Y1, . . . , Ym+k) uses all the observations available at time m+k
and g(·) is the so-called boundary function used for standardization.

Based on (1.5), the decision rule is as follows:

• The null hypothesis is rejected and the observation is stopped, whenever the ratio
of |Q̂(m, k)| and g(k/m) exceeds the critical value cm,T (α).

• Otherwise we take a new observation up to mT .

1.4 M-estimates

In this section we briefly recall robust estimation. Basic introduction can be found e.g.
in Huber [1981] and Jurečková and Sen [1996].

Let us consider a random sample Y1, . . . , Yn, where the observations have some unknown
distribution function Fθ(·) = F (· − θ), where θ ∈ Θ is a location parameter. Then the
classical least squares estimate of the true value of parameter is defined as

θ̃n = arg min
t∈Θ

n∑

i=1

(Yi − t)2.

This estimate is optimal if the underlying distribution is normal. However in case the
distribution has heavier tails or some outliers are present, this estimate can be seriously
distorted.

To overcome such difficulties Huber [1964] proposed a generalization which leads to the
so-called M-estimates. These use a convex loss function ρ, i.e.

θ̂n = arg min
t∈Θ

n∑

i=1

ρ(Yi − t). (1.9)

A choice of the loss function ρ influences sensitivity of the estimate with respect to
outliers and heavy-tailed distributions i.e. the robustness of the given M-estimate.

If we assume that the loss function has a derivative (at least one sided) then the
M-estimate can be defined via a score function ψ such that ρ′ = ψ almost everywhere.
Since ρ is assumed convex then ψ is monotone. In case that ψ is also continuous then
(1.9) is equivalent to finding solution of

n∑

i=1

ψ(Yi − t) = 0 (1.10)
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with respect to t ∈ Θ. However, in general (e.g. when ψ is a step function) equation
(1.10) may not have any solution. In that case we need to interpret a solution as a point
where LHS changes a sign. Another problem can be an identification of a particular
solution if there are more of them. Therefore we define

θ̂−n = sup

{
t ∈ Θ :

n∑

i=1

ψ(Yi − t) > 0

}
, θ̂+

n = inf

{
t ∈ Θ :

n∑

i=1

ψ(Yi − t) < 0

}
(1.11)

(note that ψ(· − t) is nonincreasing in t). Any θ̂∗n ∈ [θ̂−n , θ̂
+
n ] can serve as a M-estimate

and minimizes (1.9). Moreover the asymptotic behavior is the same regardless of θ̂∗n
chosen (see below). Thus for uniqueness we usually choose the midpoint

θ̂n =
1

2

(
θ̂−n + θ̂+

n

)
. (1.12)

Now we present some basic facts about the asymptotic behavior of the estimates. As
was said, the case when ψ function is not continuous can be problematic. This can
however be overcome, if the distribution Fθ compensate for it. Thus we define function

λ(t) = −
∫
ψ(x− t)dFθ(x), t ∈ Θ,

which incorporates both previous aspects. This function is widely used in M-estimation
theory.

Next two results about consistency and asymptotical normality under the general defini-
tion (1.12) are slightly adapted versions of Corollary 3.2 and 3.5 of Huber and Ronchetti
[2009].

Lemma 1.1. Let Y1, . . . , Yn be i.i.d. random variables, ψ nondecreasing function and
θ0 the unique solution of λ(t) = 0.
Then θ̂n → θ0 in probability and almost surely as n→ ∞.

Lemma 1.2. Let Y1, . . . , Yn be i.i.d. random variables, ψ nondecreasing function and
θ0 the unique solution of λ(t) = 0. Further suppose that λ(t) is differentiable at θ0 such
that λ′(θ0) > 0 and σ2(t) =

∫
R
ψ2(x− t)dFθ(x) is finite and continuous in neighborhood

of θ0.
Then

√
n(θ̂n−θ0) is asymptotically normal with mean 0 and variance σ2(θ0)/(λ

′(θ0))2.

Later in the thesis we will need the root-n consistency of the estimate, which is a
result in between of those of Lemma 1.1 and 1.2 and therefore we present the following
proposition together with a proof.

Proposition 1.3. Let Y1, . . . , Yn be i.i.d. random variables, ψ nondecreasing function
and θ0 the unique solution of λ(t) = 0. Further suppose that λ(t) is differentiable at
θ0 such that λ′(θ0) > 0 and σ2(t) =

∫
R
ψ2(x − t)dFθ(x) is finite and continuous in

neighborhood of θ0.
Then for any θ̂∗n ∈ [θ̂−n , θ̂

+
n ] is θ̂∗n − θ0 = OP (n−1/2) as n→ ∞.
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Proof. For simplicity we assume that θ0 = 0.
Note that for θ̂−n , θ̂

+
n from (1.11) holds

{θ̂−n < t} ⊆
{∑

ψ(Yi − t) ≤ 0
}
⊆ {θ̂−n ≤ t}, (1.13)

{θ̂+
n < t} ⊆

{∑
ψ(Yi − t) < 0

}
⊆ {θ̂+

n ≤ t}. (1.14)

We focus on θ̂−n first. For K > 0

P (θ̂−n ≤ Kn−1/2) ≥ P
( n∑

i=1

ψ(Yi −Kn−1/2) ≤ 0
)

=

= P
(
n−1/2

n∑

i=1

[ψ(Yi −Kn−1/2) − Eψ(Yi −Kn−1/2)] ≤ −√
nEψ(Yi −Kn−1/2)

)

(1.15)

Now we concentrate on the event within the last P (·). RHS of the inequality can be
expressed as

n1/2λ(Kn−1/2) = n1/2[λ′(0)Kn−1/2 +O(n−1)] = λ′(0)K + o(1) as n→ ∞.

On the other hand we have by simple application of Chebyshev’s inequality that LHS
is OP (1) (n→ ∞) and thus (1.15) can be made at least 1− ε for all ε > 0 by choosing
K properly large. Similarly we have

P (θ̂−n < −Kn−1/2) ≤ P
( n∑

i=1

ψ(Yi +Kn−1/2) ≤ 0
)

=

= P
(
n−1/2

n∑

i=1

[ψ(Yi +Kn−1/2) − Eψ(Yi +Kn−1/2)] ≤ −√
nEψ(Yi +Kn−1/2)

)

(1.16)

and the RHS in the last P (·) is equal to −λ′(0)K + o(1) (n→ ∞). Thus (1.16) can be
bounded from above by ε. Together we have θ̂−n = OP (n−1/2).
Using (1.14) instead of (1.13) we get the same also for θ̂+

n , which concludes the proof.

The asymptotic normality of M -estimates is a useful result, enabling, for example,
testing the significance of estimate. However even more insight into the asymptotic
behavior can be gained via the representation similar to Bahadur [1966] developed for
sample quantiles. This representation will be very useful for our later work, thus we
present here results of He and Shao [1996]. For simplicity of notation we formulate the
assumptions with θ0 = 0 as is the usual case for error distributions. Assume

(i) Y1, Y2, . . . are i.i.d.,

(ii) the function ψ is nondecreasing (i.e. ρ is convex); λ(0) = 0; the derivative λ′(t)
exists at t = 0 such that λ′(0) > 0 and is Lipschitz in the neighborhood of zero,
i.e., for a positive constant D3 and |t| ≤ D3, there exists D4 > 0, such that

|λ(t) − λ(0) − tλ′(0)| ≤ D4t
2,
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(iii) it holds that
∫
|ψ(e)|2+ξdF (e) <∞ for some ξ > 0 and further for some constants

a ≥ 1 and D1, D2 > 0 it holds that
∫

(ψ(x− t2) − ψ(x− t1))
2dF (x) ≤ D1|t2 − t1|a, |tj | ≤ D2, j = 1, 2,

(iv)
∫
ψ2(e)dF (e) ∈ (0,∞).

The Bahadur almost sure representation of θ̂n, as n→ ∞, is

θ̂n = θ0 + (nλ′(0))−1
n∑

i=1

ψ(Yi − θ0) +O

(
ln lnn

n

)
a.s. (1.17)

From (1.17) we easily conclude that

√
n(θ̂n − θ0) =

1√
nλ′(0)

n∑

i=1

ψ(Yi − θ0) +OP (n−η), for some η > 0, (1.18)

which is a form sufficient for us. It is also easy to see how the asymptotic normality
follows from here. For further details about the asymptotic representation, see also
Jurečková and Sen [1996].

Finally, typical choices of score functions ψ are given:

(a) ψ(x) = x, x ∈ R leads to least squares (LS,L2) estimation

(b) ψ(x) = signx, x ∈ R leads to least absolute deviation (LAD, L1) estimation

(c) So-called Huber ψ function

ψ(x) = xI{|x| ≤ K} +K sign (x)I{|x| > K}, x ∈ R, for some K > 0 (1.19)

is a compromise between the previous two and serves as a representative for robust
estimation.

1.5 Weak Dependence

The classical assumption of independence of observations is often too strong to be
realistic in many applications. Especially if data are collected sequentially over time
which is indeed our case. It is then natural to expect that the current observation
depends to some degree on the previous observations. However this dependence can be
assumed to diminish as the (time) distance between the observations increases. This is
a basic idea of the so-called weak dependence.

The concept of weak dependence is well known for many years and over the past
decades has been formalized in many ways. Perhaps the most popular are various
mixing conditions (see Doukhan [1994], Bradley [2005]), but in recent years several
other approaches have also been introduced (see Doukhan and Louhichi [1999], Wu
[2007], and Hörmann and Kokoszka [2010] among others).
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Among the mixing conditions the two probably most used in statistical context are
the strong and uniformly strong mixing which we now recall. Let us assume that {Yi}i
is a sequence of random elements on a probability space (Ω,F , P ). For sub-σ-fields
A,B ⊆ F , we define

α(A,B) := sup
A∈A,B∈B

|P (A ∩B) − P (A)P (B)|, (1.20)

ϕ(A,B) := sup
A∈A,B∈B,P (A)>0

|P (B|A) − P (B)|. (1.21)

Intuitively it is clear that α,ϕ measure the dependence of the events in B on those in
A. Therefore, considering a filtration Fk

j := σ(Yi, j ≤ i ≤ k), we can describe the fading
dependence between the observations in a following way:
A sequence {Yi}i of random elements is said to be strong mixing (α-mixing) if

α(n) := sup
k∈N

α(Fk
1 ,F∞

k+n) → 0, n→ ∞,

and analogously for uniformly strong mixing (ϕ-mixing).

It is clear that for stationary sequence {Yi}i we can omit the supk∈N in the definition.
The coefficients α(n) and ϕ(n) measure how much dependence exists between events
which are at least n observations or time periods apart. The rate of decay of α(n), ϕ(n)
(often called mixing rate) is usually characterized by summability of powers of the
mixing coefficients i.e. that for some δ > 0 is

∞∑

n=1

α(n)δ <∞.

The concept of the uniformly strong mixing was introduced by Rosenblatt [1956] and
it holds that the uniformly strong mixing implies the strong mixing (see Lin and Lu
[2010] for the proof), which was introduced later on by Ibragimov [1959].

This concept of the weak dependence has proven itself very useful in statistics as it
effectively deals with the most common dependence structures. Indeed, it was shown
in Anderson [1958] that m-dependent processes as well as finite order ARMA processes
with innovations satisfying Doeblin’s condition (Billingsley [1968], p. 168) are ϕ-mixing.
Finite order processes, which do not satisfy Doeblin’s condition were showed to be
α-mixing instead (see Ibragimov and Linik [1971]). Moreover, Rosenblatt [1971] pro-
vides general conditions for stationary Markov Processes to be α-mixing as well.

In Withers [1981] and Davidson [1994] (Section 14.3) one can find conditions for linear
processes to be α-mixing, which, in general, are smoothness of density of innovations
and the coefficients of the process going to zero sufficiently fast. The smoothness is really
important, as a famous example of Andrews [1984] shows that even AR(1) sequence
with Bernoulli innovations needs not to be α-mixing. This is however not a serious
drawback since in applications we usually have continuous data.

As a more serious drawback of mixing approach is sometimes pointed out the fact,
that it is quite hard to verify that the sequence is mixing (either strong or uniformly
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strong). This is one of the reasons why other approaches to weak dependence arose
and we introduce the one of Hörmann and Kokoszka [2010] at the end of this section.
Nevertheless we have chosen to work under the mixing condition in this thesis and we
concentrate on the α-mixing as it is weaker than ϕ-mixing.

All the classical results, such as law of large numbers (LLN) and central limit theorem
(CLT) are available under the α-mixing framework. We present here only the weak
invariance principle (WIP) which will be needed later several times. Weak invariance
principle, also known as a functional central limit theorem, states a weak convergence
of the partial sum process to the standard Wiener process. Thus we put

Sn :=
n∑

i=1

Yi and σ2
n := varSn

and define random elements on Skorokhod space D[0, 1] as follows

Wn(t) :=
S⌊nt⌋
σn

, 0 ≤ t ≤ 1,

where ⌊·⌋ denotes the integer part function.

Theorem 1.1 (WIP for α-mixing). Let {Yn}n be a sequence of zero mean α-mixing
random variables with

sup
n∈N

E |Yn|2+δ <∞ and
∞∑

n=1

α(n)δ/(2+δ) <∞

for some δ > 0. Suppose further that

ES2
n/n→ σ2, n→ ∞

for some σ > 0. Then

Wn(·)
D[0,1]−→ W (·), n→ ∞,

where {W (t), 0 ≤ t ≤ 1} is a standard Wiener process.

Proof. See Lin and Lu [2010] (Corollary 3.2.1).
Since the central limit theorem is just a special case of the WIP it can be obtained as
a simple corollary of the previous theorem. Moreover as described in Davidson [1994]
Section 13.4, a stationary strong mixing sequence is mixing in ergodic theory sense
(this explains the name ’strong mixing’) and this further implies ergodicity. Thus for
stationary α-mixing sequences we can use the ergodic theorem. Another, more technical
results on α-mixing are formulated in Appendix in Lemmas I and II.

We finish the part on mixing with an obvious but very useful observation about
functions of mixing sequences. Since the (uniformly) strong mixing is property of
σ-algebras generated by random elements, any Borel measurable function of these
elements is also (uniformly) strong mixing with the same rate. More generally we have
the following theorem.
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Theorem 1.2. Let Xt = f(Yt, . . . , Yt−p) be a measurable function for p finite. If Yt is
α-(ϕ-)mixing then Xt is also and the rate is the same.

Proof. See Theorem 14.1 of Davidson [1994].

Another weak dependence framework called Lp −m-approximability was developed in
Hörmann and Kokoszka [2010]. It is based on approximation of the original sequence
by an m-dependent one. Verification of this approximability is usually simpler than
verifying the mixing condition, but there is no analogue of theorem above. Moreover this
property is restricted to sequences admitting representation Yn = f(εn, εn−1, . . . ). And
thus, they conclude, Lp −m-approximability is not directly comparable with classical
mixing coefficients as introduced above. However it provides an interesting alternative.

1.6 State of Art

First we briefly summarize important contributions to recent development of sequential
monitoring. The problem was treated in a number of papers. The pivotal one of
Chu et al. [1996] provided a framework for others who followed.

Chu et al. considered regression setup which is briefly outlined in Section 1.3 and
developed test procedures based on CUSUM (cumulative sums) type test statistic
calculated from recursive residuals and a fluctuation test based on difference between
estimates of the regression parameters from historical and monitoring periods.

The later test statistic was generalized in Leisch et al. [2000] to the so-called generalized
fluctuation test. CUSUM type test statistics generally lose power when a change occurs
long after the start of monitoring. Therefore Zeileis et al. [2005] suggested MOSUM
(moving sums) type test statistic based on only last h ordinary residuals, which performs
better in this respect. This was confirmed also by a simulation study they performed,
comparing the three above mentioned test statistics. Both articles above assume a
martingale difference structure for the errors.

A paper by Horváth et al. [2004] influenced majority of the ones mentioned below. They
suggested two new kinds of test statistics to detect a change in a regression parameter
working under the independence assumptions on error terms. The test statistic is based
either on ordinary residuals or on the recursive ones. Both residuals are calculated from
respective least squares estimates of the regression parameter. The disadvantage of these
testing procedures is that they cannot detect changes in the regression coefficients which
are orthogonal to the first column of the matrix limm→∞

∑m
i=1XiX

T
i , where Xi is a

vector of regressors for time i. This problem is overcome by the procedures developed by
Hušková and Koubková [2005], where the test statistic is a quadratic form of weighted
residuals.

Although the assumptions of independent identically distributed errors is very con-
venient from a mathematical point of view, it is typically violated in practice as
was discussed earlier. Towards this issue, Aue et al. [2006] showed that the results of
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Horváth et al. [2004] holds also for some dependent sequences including heteroskedas-
tic augmented GARCH processes. The augmented GARCH model is a unification of
numerous extensions of the popular and widely used (G)ARCH process and thus can
be applied in various situations.

All the above mentioned methods use a least squares estimation. This can cause
problems when outliers are present or data are heavy-tailed. Thus there was an effort
to design more robust procedures. Koubková [2006] considered procedures based on
least absolute deviation (LAD) estimation and also on general M-estimation, all for
i.i.d. errors.

Possibility of change was studied not only for the location or regression parameter
but also for other ones. For example Chochola [2008] considered change in scale.
General change in distribution (i.e. infinite dimensional parameter) was considered in
Hušková and Chochola [2010]. The test procedure used empirical distribution function
and it was studied for both independent as well as dependent observations.

Another two papers relating to a sequential monitoring in a special regression model
are recalled in Chapter 4. They deal with multivariate (one even functional) data.

There are even more papers and books devoted to the retrospective change-point
analysis. For basic references see, e.g. Andrews [1993] or Csörgő and Horváth [1997].
As the retrospective analysis is not the main topic of the thesis we give not so much
details about a past development and mention only papers closely related to robust
procedures considered in Chapter 5. An M-estimation in the context of change-point
analysis was studied in e.g. Antoch and Hušková [1989] or Hušková and Antoch [2001].
Hušková and Marušiaková [2012] extended some of known results on M-procedures for
detection of changes in a location model to the situation with dependent observations,
particularly when the error terms fulfill α-mixing condition. Prášková and Chochola
[2013] studied a change in regression parameter when both the regressors and errors
are weakly dependent in the sense of Lp −m-approximability.

1.7 Aim and Structure of the Thesis

Our aim is to extend some known results in change-point analysis towards more robust
methods. We focus mainly on the sequential monitoring. The methods assume a stable
historical period and thus it is desirable to have also robust retrospective procedures.
Therefore we explore this area a bit as well. The robustness of the procedures with
respect to outliers and heavy tailed observations is introduced via use of M-estimation
instead of classical least squares estimation.

Another extension is towards dependent and multivariate data. It is assumed that the
observations are weakly dependent, more specifically they fulfil strong mixing condition.

Our goal is to propose appropriate test statistics and study their asymptotic properties
both under the null hypothesis of no change as well as under the alternatives, in order to
derive proper critical values and show consistency of the tests. Finite sample properties
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of the tests need to be also examined. This is done in a simulation study and by
application on some real data as well.

The thesis is structured as follows. In the next three chapters we develop the robust
monitoring procedures in different models. Starting with a simple location model, which
is generalized to a multivariate one and finishing with a special case of multivariate
regression model.

Chapter 5 deals with the retrospective change-point analysis. Some results of an exten-
sive simulation study are presented in Chapter 6, where one can also find an illustration
of applications of the proposed methods. Derivation and tables of critical values for all
the proposed procedures are presented in Chapter 7. Short conclusion follows after-
wards.



Chapter 2

Monitoring in Location Model

In this chapter we propose robust sequential monitoring procedures for a detection
of change in mean in a simple location model. The test statistic together with the
assumptions is presented in Section 2.1 and its theoretical properties are studied in
Section 2.2, their proofs are postponed to Sections 2.3 and 2.4. Finally, in Section
2.5, an estimator of the long-run variance is developed and is shown to have required
properties.

2.1 Model, Assumptions and Test Statistic

We consider a location model

Yi = µi + ei, i = 1, 2, . . . , (2.1)

where {Yi}i are the observed data, {µi}i the location parameters and {ei}i the random
errors fulfilling the assumptions specified below. Our goal is to monitor a change in
mean in a robust way.

The setting was introduced in Section 1.3. The stability of the training data (non-
contamination assumption) can be written as

µ1 = . . . = µm = µ0. (2.2)

We test the null hypothesis of no change

H0 : µi = µ0, 1 ≤ i ≤ m+mT, (2.3)

against the alternative that at some time-point m+ k∗ the model changes

H1 : there exists k∗m = k∗ < mT such that

µi = µ0, 1 ≤ i ≤ m+ k∗, µi = µ∗, m+ k∗ < i <∞, µ0 6= µ∗,
(2.4)

where the values of µ0, µ∗ and k∗ are unknown.

20
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As was discussed earlier, the test procedures are typically based on the least squares
estimation. Here we would like to develop a more robust procedure and therefore we
will consider the detector based on CUSUM of M-residuals.

The M-residual ψ(êi) for the score function ψ is defined as

ψ(êi) = ψ(Yi − µ̂m(ψ)), (2.5)

where µ̂m(ψ) is an M-estimate of µ0 based on the training data as defined by (1.12)
i.e. the solution of the minimization problem

arg min
t∈R

m∑

i=1

ρ(Yi − t),

where ρ is a convex loss function such that ρ′ = ψ a.e.

Then we can define

Ŝψ(k,m) =
1

m1/2

m+k∑

i=m+1

ψ(êi), k = 1, . . . ,mT (2.6)

and a standardized test statistics

Q̂ψ(m, k) =

∣∣Ŝψ(k,m)
∣∣

σ̂m(ψ)
, k = 1, . . . ,mT, (2.7)

where σ̂m(ψ) is a proper standardization. Since we have dependent data, σ̂2
m(ψ) is

an estimate of the so-called long-run variance (LRV) of the test statistic, i.e. of the
quantity

σ2(ψ) = lim
m→∞

var
( 1√

m

m∑

i=1

ψ(ei)
)

= Eψ2(e1) + 2
∞∑

i=1

Eψ(e1)ψ(e1+i). (2.8)

We consider a class of boundary functions introduced in Horváth et al. [2004], namely

qγ(t) = (1 + t)

(
t

1 + t

)γ
, t ∈ (0,∞), γ ∈ [0, 1/2). (2.9)

The constant γ is called a tuning parameter as it allows us to tailor the procedure
according to our expectation of possible time of change. More details are presented in
Section 6.1.2.

As was already written in the general setup at the end of Section 1.3, the monitoring
scheme is described through the stopping time τm,T defined as

τm,T = inf{1 ≤ k ≤ mT : Q̂ψ(m, k) > cm,T (α) qγ(k/m)}, (2.10)

and the null hypothesis is rejected and the observation is stopped, whenever the ratio
of Q̂ψ(m, k) and qγ(k/m) exceeds the critical value.
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Assumptions

Now we discuss the assumptions under which we will be working:

(A.1) {ei}i is a strictly stationary α-mixing sequence with coefficients {α(i)}i and with
a distribution function F such that for some ∆ > 0:

∞∑

k=0

α(k)∆/(2+∆) <∞. (2.11)

The score function ψ, the function λ(t) = −
∫
ψ(e− t)dF (e), t ∈ R and the distribution

function F satisfy:

(A.2) ψ is non-decreasing; the derivative λ′(·) of the function λ(·) exists and is Lipschitz
in a neighborhood of zero, λ(0) = 0 and λ′(0) > 0.

(A.3)
∫
|ψ(x)|2+∆dF (x) <∞ and

∫
|ψ(x+ t2) − ψ(x+ t1)|2+∆dF (x) ≤ D1|t2 − t1|a, |tj | ≤ D2, j = 1, 2

for 1 ≤ a ≤ 2 + ∆, constant ∆ > 0 from assumption (A.1) and some positive
constants D1, D2 depending on ∆.

(A.4) It holds
0 < σ2(ψ) <∞.

From Section 1.5 follows that the assumption (A.1) is satisfied for a quite large spectrum
of situations. Due to the α-mixing property of {ei}i, {ψ(ei)}i is also α-mixing with the
same coefficients. Assumptions (A.2) – (A.3) are standard assumptions imposed on the
score function ψ and the error distribution F . Theorem 1.1 asserts that under (A.1) is
σ2(ψ) <∞ i.e. it is enough to assume just positivity in (A.4).

These assumptions are similar to the one considered in Hušková and Marušiaková [2012]
in the retrospective setting, however it will be shown that we do not need their stronger
assumption on the mixing rate, which can be relaxed to (2.11). This is however a
standard condition for CLT to hold for strong mixing sequence and thus the assumptions
are not overly restrictive.

Now, we look more specifically on the assumptions for typical choices of ψ’s introduced
in Section 1.4:

(a) For ψ(x) = x, x ∈ R, the procedures reduce to classical L2 ones. Assumptions (A.2)
- (A.3) reduce to the (2 + ∆) moment restrictions, a = 2 + ∆.

(b) For ψ(x) = signx, x ∈ R, the procedures reduce to L1 procedures. Assumptions
(A.2) - (A.3) are satisfied if the error distribution F is symmetric with a continuous
density f in a neighborhood of 0 with f(0) > 0. In this case a = 1 for any ∆ > 0.

(c) For Huber ψ function (see (1.19) ) assumptions (A.2) - (A.3) are satisfied if the
distribution function F is symmetric and if there exists a continuous density f in
a neighborhood of ±K with f(±K) > 0. In this case a = 2 + ∆.



CHAPTER 2. MONITORING IN LOCATION MODEL 23

2.2 Main Results

Here we formulate assertions on limit behavior of the test statistic under both null and
alternative hypotheses.

Theorem 2.1. Assume that Y1, Y2, . . . follow the model (2.1), assumptions (A.1) –
(A.4) are satisfied. Further let σ̂2

m(ψ) be a consistent estimator of σ2(ψ), i.e.

σ̂2
m(ψ) − σ2(ψ) = oP (1). (2.12)

Then under the null hypothesis (2.3) holds

lim
m→∞

P

(
max

1≤k≤mT
|Ŝψ(k,m)|

σ̂m(ψ)qγ(k/m)
≤ c

)
= P

(
sup

0≤t≤T/(T+1)

|W (t)|
tγ

≤ c

)
(2.13)

for all c > 0, where {W (t), t ∈ [0, 1]} is Wiener process and the test detector is defined
in (2.6)–(2.9) with T > 0 fixed.

The limit distribution can be used for approximation of the critical value cm,T (α)
introduced in (1.5). We can choose it as a value cT (α, γ) such that

P

(
sup

0≤t≤T/(T+1)

|W (t)|
tγ

> cT (α, γ)

)
= α, (2.14)

where the dependence on the tuning parameter γ from the boundary function qγ(·)
is also denoted. Details, together with a table of these critical values can be found in
Chapter 7.

Another way of finding the critical values is applying a suitable version of resampling
methods. Particularly, the block bootstrap studied in Kirch [2006] can be adjusted to
our situation.

Theorem 2.1 also accounts for the range of constant γ, since for γ ≥ 1/2 the random
process W (t)/tγ converges to infinity as t → 0+ almost surely. As Aue et al. [2008]
indicates γ = 1/2 can be also used in the boundary function, but it leads to a different
asymptotic distribution of the detector and therefore we will consider only γ ∈ [0, 1/2).

Now we consider asymptotic behavior of the test statistic under local alternatives.

Theorem 2.2. Assume that Y1, Y2, . . . follow the model (2.1) under the alternative
(2.4) with k∗ = k∗m = ⌊mτ⌋ for some τ ∈ [0, T ) and µ∗ = µ0 + θδm. Let assumptions
(A.1) – (A.4) be satisfied and test detector is defined in (2.6)–(2.9) with T > 0 fixed.
Further let σ̂2

m(ψ) be a consistent estimator of σ2(ψ), i.e. σ̂2
m(ψ) − σ2(ψ) = oP (1).

(i) If δm = m−1/2, then

max
1≤k≤mT

Q̂ψ(m, k)

qγ(k/m)

D−→ sup
0≤t≤T/(T+1)

∣∣W (t) + θλ′(0)σ−1(ψ)p(t, τ)
∣∣

tγ
, (2.15)

where {W (t), 0 ≤ t ≤ 1} is a Wiener process and

p(t, s) = (t− s(1 − t))+, 0 ≤ t ≤ T/(T + 1), 0 ≤ s < T, (2.16)
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with (x)+ = max(0, x).

(ii) If δm → 0 and |δm|m1/2 → ∞, then

max
1≤k≤mT

Q̂ψ(m, k)

qγ(k/m)

P→ ∞.

Theorem 2.2 (i) deals with the so-called contiguous alternatives. The asymptotic dis-
tribution is a maximum of absolute value of shifted Wiener process, where the shift
depends on the change-point, the amount of change and also on the choice of the loss
function via λ′(0).
Theorem 2.2 (ii) ensures that the requirement (1.7) is fulfilled i.e. that the true change
will be detected with probability tending to 1 as m→ ∞.

2.3 Auxiliary Results

Key tool in proving previous theorems is an asymptotic representation of M-estimate
similar to (1.18). To show that under the assumptions (A.1)–(A.4) we proceed similarly
as in Hušková and Marušiaková [2012], just assuring that our slightly weaker assump-
tions are sufficient and giving more detailed reasoning. Following Lemmas 2.1 – 2.4 are
slight modifications of those of Hušková and Marušiaková [2012], Lemma 2.5 is new as
it deals with the monitoring period.

In the sequel, C > 0 is a generic constant, which may vary from case to case. We also
use Am and similar to denote different variables in different lemmas.

Lemma 2.1. Let assumptions (A.1) – (A.3) be satisfied. Then

sup
|t|≤D

1√
m(

√
mam)

∣∣∣∣∣

m∑

i=1

(
ψ(ei − tam) − ψ(ei) − Eψ(ei − tam)

)
∣∣∣∣∣ = OP (m−η) (2.17)

for some η > 0, any D > 0 and any m−1/2 ≤ am ≤ D2, where D2 is from assumption
(A.2).

Proof. For proving the uniform result we make use of the monotonicity of ψ function.
The interval [−D,D] is split into segments [tj−1, tj ], defined by

−D = t0 < t1 < · · · < tN = D, tj − tj−1 = m−κ, j < N and D − tN−1 ≤ m−κ,

where κ > 0 is appropriately chosen.

Denote yi(t) := ψ(ei − tam) − ψ(ei), t ∈ R. Since ψ(·) is nondecreasing then yi(·) is
nonincreasing and thus we have for t ∈ [tj−1, tj ]

yi(tj) − E yi(tj−1) ≤ yi(t) − E yi(t) ≤ yi(tj−1) − E yi(tj).

From here easily follows
(
yi(tj) − E yi(tj)

)
−
(
E yi(tj−1) − E yi(tj)

)
≤

≤ yi(t) − E yi(t) ≤
≤
(
yi(tj−1) − E yi(tj−1)

)
+
(
E yi(tj−1) − E yi(tj)

)
.
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Since
(
E yi(tj−1) − E yi(tj)

)
≥ 0 we get from previous that

sup
|t|≤D

∣∣∣∣∣

m∑

i=1

(yi(t) − E yi(t))

∣∣∣∣∣ ≤ max
1≤j≤N

∣∣∣∣∣

m∑

i=1

(yi(tj) − E yi(tj))

∣∣∣∣∣+ max
1≤j≤N

m∑

i=1

E
(
yi(tj−1)−yi(tj)

)
.

(2.18)
Clearly, for the second term on RHS holds

m∑

i=1

E
(
yi(tj−1) − yi(tj)

)
= m

(
λ(tjam) − λ(tj−1am)

)
= mλ′(0)am(tj − tj−1)(1 + o(1)) ≤

≤ Camm
1−κ(1 + o(1)) (2.19)

uniformly in j = 1, . . . , N . Thus the second term on RHS in (2.18) divided by
√
m(

√
mam)

is surely OP (m−η) for some η > 0.

For the first term on RHS in (2.18) we have

P

(
mη max

1≤j≤N

∣∣∣∣∣

m∑

i=1

(yi(tj) − E yi(tj))

∣∣∣∣∣ ≥ A
√
m(

√
mam)

)
≤

≤
N∑

j=1

P

(∣∣∣∣∣

m∑

i=1

(yi(tj) − E yi(tj))

∣∣∣∣∣ ≥ Am1/2−η(
√
mam)

)
≤

≤
N∑

j=1

E

(∣∣∣∣∣

m∑

i=1

(yi(tj) − E yi(tj))

∣∣∣∣∣

)2

A−2m−1+2η(
√
mam)−2 (2.20)

By Lemma II

E

(∣∣∣∣∣

m∑

i=1

(yi(tj) − E yi(tj))

∣∣∣∣∣

)2

≤ Cm ‖yi(tj) − E yi(tj)‖2
2+∆ , (2.21)

where the Lp norm is defined as ‖X‖p = (E |X|p)1/p.
Moreover by the assumptions on ψ and λ we get

‖yi(tj) − E yi(tj)‖2+∆ = ‖ψ(ei − tjam) − ψ(ei) − Eψ(ei − tjam)‖2+∆ ≤
≤ ‖ψ(ei − tjam) − ψ(ei)‖2+∆ + |Eψ(ei − tjam)| ≤
≤ C(tjam)a/(2+∆) + Cλ′(0)tjam ≤ Caa/(2+∆)

m (2.22)

uniformly in j ∈ 1, . . . , N .
Thus from (2.21) and (2.22), RHS of (2.20) can be estimated from above by

C

A−2
m1+κ a2a/(2+∆)

m m−1+2η(
√
mam)−2 =

C

A−2
mκ+2η−1a−2(1−a/(2+∆))

m . (2.23)

RHS of (2.23) is maximal for am = m−1/2 and a = 1. This is however still only
O(mκ+2η−1/(2+∆)) and thus (2.23) can be made small enough for properly chosen κ
and η, which concludes the proof.
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Lemma 2.1 has few useful consequences, which are formulated in the following corollary.

Corollary 2.2. Let assumptions (A.1) – (A.3) be satisfied. Then, for some η > 0

(i) sup
|t|≤D

1√
m

∣∣∣∣∣

m∑

i=1

ψ(ei − tm−1/2) − ψ(ei) − Eψ(ei − tm−1/2)

∣∣∣∣∣ = OP (m−η) (2.24)

(ii) sup
|t|≤D

1√
m

∣∣∣∣∣

m∑

i=1

ψ(ei − tm−1/2) − Eψ(ei − tm−1/2)

∣∣∣∣∣ = OP (1) (2.25)

(iii)
1√
m

m∑

i=1

|ψ(ei − am) − Eψ(ei − am)| = OP (1), where |am| ≤ D2. (2.26)

Proof. The proof is very easy.
(i) is just Lemma 2.1 with am = m−1/2.
(ii) follows from (i) and 1√

m

∑m
i=1 ψ(ei) = OP (1).

(iii) can be easily seen from the proof of Lemma 2.1.

Previous Corollary provides the key part for the proof of Proposition 1.3 and thus this
proposition gives us the root consistency of our estimate i.e.

√
m(µ̂m(ψ) − µ0) = OP (1). (2.27)

Now we prove that even for the general definition of M-estimates (1.12), the sum∑m
i=1 ψ(Yi − µ̂m(ψ)) is small in probability. For the ease of writing the score function

ψ is dropped from the notation of the M-estimate and without loss of a generality
(WLOG) it is assumed that µ0 = 0.

Lemma 2.3. Let assumptions (A.1) – (A.3) be satisfied. Then

1√
m

m∑

i=1

ψ(ei − µ̂m) = OP (m−η)

for some η > 0.

Proof. Let am > 0 with maximal order of O(m−1/2), the precise one will be specified
later. Due to monotonicity of ψ we have

1√
m

m∑

i=1

ψ(ei − µ̂m − am) ≤ 1√
m

m∑

i=1

ψ(ei − µ̂m) ≤ 1√
m

m∑

i=1

ψ(ei − µ̂m + am),
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where the lower bound is ≤ 0 and the upper one is ≥ 0 by the definition of µ̂m. Thus

∣∣∣∣∣
1√
m

m∑

i=1

ψ(ei − µ̂m)

∣∣∣∣∣ ≤
1√
m

m∑

i=1

ψ(ei − µ̂m + am) − 1√
m

m∑

i=1

ψ(ei − µ̂m − am) =

=

[
1√
m

m∑

i=1

(
ψ(ei − µ̂m + am) − ψ(ei) +

√
mλ(µ̂m − am)

)
]

−
[

1√
m

m∑

i=1

(
ψ(ei − µ̂m − am) − ψ(ei) +

√
mλ(µ̂m + am)

)
]

+
[√
mλ(µ̂m + am) −√

mλ(µ̂m − am)
]

=: A−
m −A+

m +Am.

To show that A−
m = OP (m−η) we use

P (mη|A−
m| > K) = P (mη|A−

m| > K,
√
m|µ̂m| ≤ K̃) + P (mη|A−

m| > K,
√
m|µ̂m| > K̃).

(2.28)
Since

√
m|µ̂m| = OP (1), we can for every ε > 0 find K̃ such that the second probability

on RHS of (2.28) is smaller than ε. For the first part we can use Corollary 2.2 (i) to
find K such that for m large enough the probability is again smaller than ε. Similarly
we obtain A+

m = OP (m−η).

Previous reasoning is a standard way of treating functions of M-estimates and will not
be presented in such a detail further. We see that the key ingredient is the uniformity
of the result, the rest is straightforward.

Towards Am we have by assumption (A.2)

0 ≤ λ(µ̂m+am)−λ(µ̂m−am) =

∫ µ̂m+am

µ̂m−am

λ′(x)dx =

∫ µ̂m+am

µ̂m−am

(λ′(x)−λ′(0))dx+2λ′(0)am ≤

≤
∫ µ̂m+am

µ̂m−am

C xdx+ 2λ′(0)am = 2Cµ̂mam + 2λ′(0)am ≤ Cam(1 + oP (1)).

Choosing am = m−1/2−η we get that Am = OP (m−η), which concludes the proof.

Lemma 2.4 (Asymptotic representation). Let assumptions (A.1) – (A.3) be satisfied.
Then

√
mµ̂m =

1

λ′(0)
√
m

m∑

i=1

ψ(ei) +OP (m−η) (2.29)

for some η > 0.

Proof. Define

Am :=
1√
m

m∑

i=1

(ψ(ei − µ̂m) − ψ(ei) + λ(µ̂m)) . (2.30)

Recall that we use notation λ(t) = −Eψ(ei − t), which is especially useful when the
argument is random.
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First we show that
Am = OP (m−η). (2.31)

Using the fact that µ̂m = OP (m−1/2) similarly as in Lemma 2.3 it is enough to
concentrate on the set where |µ̂m| < Km−1/2. And thus we can conclude by Corollary
2.1 (i) that (2.31) holds.

On the other hand using Lemma 2.3 we have

Am =
1√
m

(
−

m∑

i=1

ψ(ei) +mλ(µ̂m)

)
+OP (m−η) =

=
−1√
m

m∑

i=1

ψ(ei) +
√
m
(
λ′(0)µ̂m +OP (m−1)

)
+OP (m−η) =

=
−1√
m

m∑

i=1

ψ(ei) +
√
mλ′(0)µ̂m +OP (m−η) (2.32)

for some η > 0. Combining (2.31) and (2.32), the asymptotic representation easily
follows.

Now we can formulate an analogue of Lemma 2.1 focusing however on the monitoring
period.

Lemma 2.5 (Monitoring period). Let assumption (A.1) – (A.3) be satisfied. Then for
γ < 1/2 holds

sup
|t|≤D

max
1≤k≤mT

1
√
m
(
k
m

)γ

∣∣∣∣∣

m+k∑

i=m+1

ψ(ei − tm−1/2) − ψ(ei) − Eψ(ei − tm−1/2)

∣∣∣∣∣ = OP (m−ζ),

for some ζ > 0.

Proof. Analogous to Lemma 2.1. We define again auxiliary variables zi(t), but now only
with m−1/2 instead of general am and shifted index, i.e.

zi(t) = ψ(em+i − tm−1/2) − ψ(em+i), i = 1, . . . ,mT, t ∈ R

and also the grid

−D = t0 < t1 < · · · < tN = D, tj − tj−1 = m−κ, j < N and D − tN−1 ≤ m−κ,

for some κ > 0. The analogue of (2.18) is

sup
|t|≤D

∣∣∣∣∣

k∑

i=1

(zi(t) − E zi(t))

∣∣∣∣∣ ≤ max
1≤j≤N

∣∣∣∣∣

k∑

i=1

(zi(tj) − E zi(tj))

∣∣∣∣∣+ max
1≤j≤N

k∑

i=1

|E (zi(tj) − zi(tj−1))|

(2.33)
and similarly to (2.19) we have uniformly in 1 ≤ j ≤ N that

|E (zi(tj) − zi(tj−1))| ≤ Cm−ζm−1/2.
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Thus if we split the LHS of the statement of this Lemma according to (2.33), we get
for the second part that

max
1≤j≤N

max
1≤k≤mT

1
√
m
(
k
m

)γ
k∑

i=1

|E (zi(tj) − zi(tj−1))| ≤ C max
1≤k≤mT

km−κ−1/2

√
m
(
k
m

)γ = O(m−κ).

And for the first part

P

(
max

1≤j≤N
max

1≤k≤mT
1

√
m
(
k
m

)γ

∣∣∣∣∣

k∑

i=1

(zi(tj) − E zi(tj))

∣∣∣∣∣ ≥ A

)
≤

≤
N∑

j=1

P

(
max

1≤k≤mT
k−γ

∣∣∣∣∣

k∑

i=1

(zi(tj) − E zi(tj))

∣∣∣∣∣ ≥ Am1/2−γ
)

≤

≤ C
N∑

j=1

E

(
max

1≤k≤mT
k−γ

∣∣∣∣∣

k∑

i=1

(zi(tj) − E zi(tj))

∣∣∣∣∣

)2

m−(1−2γ). (2.34)

From Lemma II we have

E
(

max
1≤k≤mT

k−γ
∣∣∣
k∑

i=1

(zi(tj) − E zi(tj))
∣∣∣
)2

≤ D(log 2Tm)2
mT∑

k=1

k−2γ
(
‖zi(tj) − E zi(tj)‖2+∆

)2
.

Since

N = O(mκ),
mT∑

k=1

k−2γ = O(m1−2γ) for γ < 1/2

and from (2.22) is

(
‖zi(tj) − E zi(tj)‖2+∆

)2
= O(m−a/(2+∆)),

we have that RHS of (2.34) is of order O
(
(logm)2mκ−a/(2+∆)

)
. Thus there surely exists

ζ > 0 such that

max
1≤j≤N

max
1≤k≤mT

1
√
m
(
k
m

)γ

∣∣∣∣∣

k∑

i=1

(zi(tj) − E zi(tj))

∣∣∣∣∣ = OP (m−ζ),

which concludes the proof.

The next lemma allows us to approximate the M-residuals with their theoretical coun-
terparts.

Lemma 2.6. Let the assumptions of Theorem 2.1 be satisfied. Then

max
1≤k≤mT

1

m1/2qγ(k/m)

∣∣∣∣∣∣

m+k∑

i=m+1

ψ(êi) −




m+k∑

i=m+1

ψ(ei) −
k

m

m∑

j=1

ψ(ej)



∣∣∣∣∣∣
= oP (1). (2.35)
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Proof. One can find constants 0 < c1 < c2 <∞ such that

c1 < max
1≤k≤mT

m1/2
(
k
m

)γ

m1/2qγ(k/m)
< c2.

Thus it is sufficient to prove the lemma with m1/2
(
k
m

)γ
instead of m1/2qγ(k/m).

Recall that êi = ei − µ̂m. We make use of the fact that
√
mµ̂m = OP (1) similarly as in

Lemmas 2.3 and 2.4 and thus it is enough to concentrate on the event {|µ̂m| ≤ Km−1/2}.
This allows us to use Lemma 2.5. For

Am := max
1≤k≤mT

1

m1/2
(
k
m

)γ
m+k∑

i=m+1

ψ(êi)

we thus get

Am = max
1≤k≤mT

1

m1/2
(
k
m

)γ
( m+k∑

i=m+1

ψ(ei) + kEψ(ei − z)
∣∣∣
z=µ̂m

)
+OP (m−ζ) (2.36)

for some ζ > 0. Further

Eψ(ei− z)
∣∣∣
z=µ̂m

= −λ(µ̂m) = −λ′(0)µ̂m +OP (m−1) = −m−1
m∑

j=1

ψ(ei) +Op(m
−1/2−η),

where we used the properties of λ and the asymptotic representation of µ̂m derived in
Lemma 2.4. Since

max
1≤k≤mT

k

m1/2
(
k
m

)γOp(m−1/2−η) = OP (m−η),

we get

Am = max
1≤k≤mT

1

m1/2
(
k
m

)γ
( m+k∑

i=m+1

ψ(ei) −
k

m

m∑

j=1

ψ(ej)

)
+OP (m−η) +OP (m−ζ),

which concludes the proof.

2.4 Proofs of Main Results

Proof of Theorem 2.1. Lemma 2.6 implies that the limit behavior of

max
1≤k≤mT

1

m1/2qγ(k/m)

∣∣∣∣∣

m+k∑

i=m+1

ψ(êi)

∣∣∣∣∣

is the same as that of

max
1≤k≤mT

1

m1/2qγ(k/m)

∣∣∣∣∣∣

m+k∑

i=m+1

ψ(ei) −
k

m

m∑

j=1

ψ(ej)

∣∣∣∣∣∣
.
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Now we use the WIP for mixing sequence (see Theorem 1.1), i.e. the fact that the
process

{
1

σ(ψ)
√
m

⌊mt⌋∑

i=1

ψ(ei), t ∈ [0, T + 1]

}

converges to a Wiener process {W (t), t ∈ [0, T+1]} in Skorokhod topology onD[0, T+1]

(denoted by
D[0,T+1]−→ ). Thus defining a process {Zm(t), t ∈ [0, T ]} as

Zm(t) =
1

σ(ψ)
√
m

(m+⌊mt⌋∑

i=m+1

ψ(ei) − t
m∑

j=1

ψ(ej)
)

(2.37)

we get

{Zm(t), t ∈ [0, T ]} D[0,T ]−→ {W (1 + t) −W (1) − tW (1), t ∈ [0, T ]}.

Using the properties of Wiener process we can write

{W (1 + t) −W (1) − tW (1), t ∈ [0, T ]} D
= {W1(t) − tW2(1), t ∈ [0, T ]},

where {W1(t), t ∈ [0, T ]} and {W2(t), t ∈ [0, T ]} are two independent Wiener processes.
Computing the covariance functions one can easily verify that

{W1(t) − tW2(1), t ∈ [0, T ]} D
=

{
(1 + t)W

(
t

1 + t

)
, t ∈ [0, T ]

}
,

where {W (t), t ∈ [0, 1]} is again a Wiener process. Hence

sup
0≤t≤T

|W1(t) − tW2(1)|
(1 + t)

(
t

1+t

)γ
D
= sup

0≤t≤T

∣∣∣W
(

t
1+t

)∣∣∣
(

t
1+t

)γ
D
= sup

0≤t≤T/(T+1)

|W (t)|
tγ

, (2.38)

since |W (t)|
tγ is continuous at t = 0 a.s. for all γ ∈ [0, 1/2). Thus finally, since we assume

σ̂2
m(ψ) − σ2(ψ) = oP (1), we get

max
1≤k≤mT

|Ŝψ(k,m)|
σ̂m(ψ)qγ(k/m)

D→ sup
0≤t≤T/(T+1)

|W (t)|
tγ

,

which concludes the proof.

Proof of Theorem 2.2. Assume WLOG again that µ0 = 0. Then

êi =

{
ei − µ̂m i ≤ m+ k∗m,

ei + θδm − µ̂m i > m+ k∗m.

(i)
Since δm = m−1/2, i.e. is of the same order as µ̂m, we can proceed as in Lemma 2.6.
The main part within the brackets of (2.36) is now

( m+k∑

i=m+1

ψ(ei) −
m+k∑

i=m+1

λ
(
µ̂m − θδmI{i > m+ k∗m}

))
.
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Focusing on the second term for k ≥ k∗m we have

m+k∑

i=m+1

λ
(
µ̂m − θδmI{i > m+ k∗m}

)
= k∗mλ(µ̂m) + (k − k∗m)λ(µ̂m − θδm) =

= kλ′(0)µ̂m − θδmλ
′(0)(k − k∗m) + Cm,

where the remainder term Cm can be treated as in Lemma 2.6. Thus the analogue of
(2.35) is

max
1≤k≤mT

∣∣∣
∑m+k

i=m+1 ψ(êi) −
(∑m+k

i=m+1 ψ(ei) − k
m

∑m
j=1 ψ(ej) + θδmλ

′(0)(k − k∗m)+
)∣∣∣

m1/2qγ(k/m)
= oP (1).

(2.39)
Following the lines of proof of Theorem 2.1 we define the analogue of process {Zm(t)}
as

Z∗
m(t) = Zm(t) +

1

σ(ψ)
√
m
θδmλ

′(0)(t− τ)+m = Zm(t) +
1

σ(ψ)
θλ′(0)(t− τ)+,

t ∈ [0, T ], with Zm(t) from (2.37). The term after the first
D
= in (2.38) thus becomes

sup
0≤t≤T

∣∣∣(1 + t)W
(

t
1+t

)
+ θλ′(0)(t− τ)+ σ−1(ψ)

∣∣∣

(1 + t)
(

t
1+t

)γ
D
=

D
= sup

0≤x≤T/(T+1)

∣∣W (x) + θλ′(0)(x− τ(1 − x))+ σ−1(ψ)
∣∣

xγ
,

where making the transformation t/(t+ 1) = x as is used in Theorem 2.1 leads to

(t− τ)+

(1 + t)(t/(t+ 1))γ
=

(x/(1 − x) − τ)+

xγ/(1 − x)
=

(x− τ(1 − x))+

xγ
, (2.40)

giving us the function p(·, τ) from (2.16) and thus concluding the first part of the proof.

(ii)
Choose k0 far enough after the change, i.e. with k0−k∗m = ⌊mε⌋ for some ε > 0. Divide
the detector on a part before and after the change. The part before the change is OP (1)
according to Theorem 2.1.
After the change is êi = ei + θδm − µ̂m. Since µ̂m = OP (m−1/2) and m1/2δm → ∞, δm
dominates. Therefore we can consider only

m+k0∑

i=m+k∗m+1

ψ(ei + θδm)

for the part after the change.
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Since qγ(t) = (1 + t) (t/(1 + t))γ ≤ (1 + T ) for t ∈ (0, T ], we have

1

qγ(k0/m)
√
m

∣∣∣∣∣∣

m+k0∑

i=m+k∗m+1

ψ(ei + θδm)

∣∣∣∣∣∣
≥ 1

(T + 1)
√
m

∣∣∣∣∣∣

m+k0∑

i=m+k∗m+1

ψ(ei + θδm)

∣∣∣∣∣∣
≥

≥ k0 − k∗m√
m

|Eψ(e1 + θδm)|−
√
⌊mε⌋√
m

1√
k0 − k∗m

∣∣∣∣∣∣

m+k0∑

i=m+k∗m+1

ψ(ei + θδm) − Eψ(ei + θδm)

∣∣∣∣∣∣
.

(2.41)

The last term in (2.41) is OP (1) analogically to Corollary 2.2 (iii). Further assume
WLOG that θ > 0, δm > 0. Then

0 ≤ Eψ(e1 + θδm) = −λ(−θδm) = λ′(0)θδm + o(δm)

and thus
⌊mε⌋√
m

Eψ(e1 + θδm) ≥ C
√
mδm → ∞,

which finishes the proof of part (ii).

2.5 Estimation of Long-run Variance

Now we will focus on finding a suitable consistent estimator of the long-run variance
σ2(ψ) defined in (2.8).
We consider a Bartlett type estimator

σ̂2
m(ψ) = R̂m(0, ψ) + 2

Λm∑

k=1

w(k/Λm)R̂m(k, ψ), (2.42)

where

R̂m(k, ψ) =
1

m

m−k∑

i=1

ψ(êi)ψ(êi+k), (2.43)

w(t) = (1 − |t|)I{|t| ≤ 1}, t ∈ R. (2.44)

To prove the consistency we need an additional assumption:

(A.5) For some q > 4

E |ψ(ei)|q <∞,
∞∑

j=1

α(j)1−4/q <∞.

Theorem 2.3. Let Y1, . . . , Ym follow model (2.1) under the non-contamination
assumption (2.2). Let assumptions (A.1) – (A.5) be satisfied and let, as m→ ∞

Λm → ∞, Λmm
−ν → 0, where ν = min

(
1

3
,

a

2(2 + ∆)

)
.
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Then for σ̂2
m(ψ) defined in (2.42) is

σ̂2
m(ψ) − σ2(ψ) = oP (1).

Remark 2.1. Instead of the Bartlett kernel (2.44) we can use also other types of kernels
w, e.g., a flat top kernel

w(t) =





1 |t| ≤ 1/2
2(1 − |t|) 1/2 < |t| < 1
0 |t| ≥ 1,

and Theorem 2.3 remains true. More information on suitability of the respective esti-
mators can be found is Section 6.1.1.

Proof of Theorem 2.3. The proof is done in two steps. In the first step we show that
we can replace ψ(êi) by ψ(ei) in the definition of σ̂2

m(ψ) i.e. that

σ̂2
m(ψ) − σ̃2

m(ψ) = oP (1), (2.45)

where

σ̃2
m(ψ) = R̃(0, ψ) + 2

Λm∑

k=1

w(k/m)R̃m(k, ψ),

R̃m(k, ψ) =
1

m

m−k∑

i=1

ψ(ei)ψ(ei+k).

In the second step we show that

σ̃2
m(ψ) − σ2(ψ) = oP (1). (2.46)

We start the first step by decomposition

R̂m(k, ψ) − R̃m(k, ψ) = Ak(ψ) +Bk(ψ) + Ck(ψ),

where

Ak(ψ) =
1

m

m−k∑

i=1

(ψ(êi) − ψ(ei))(ψ(êi+k) − ψ(ei+k)),

Bk(ψ) =
1

m

m−k∑

i=1

(ψ(êi) − ψ(ei))ψ(ei+k),

Ck(ψ) =
1

m

m−k∑

i=1

(ψ(êi+k) − ψ(ei+k))ψ(ei).

Towards estimating Ak(ψ) we first consider

E sup
|t|≤K

1

m

∣∣∣∣∣

m−k∑

i=1

(
ψ(ei − tm−1/2) − ψ(ei)

)(
ψ(ei+k − tm−1/2) − ψ(ei+k)

)∣∣∣∣∣ ≤

≤ E sup
|t|≤K

1

m

m−k∑

i=1

∣∣∣ψ(ei − tm−1/2) − ψ(ei)
∣∣∣
∣∣∣ψ(ei+k − tm−1/2) − ψ(ei+k)

∣∣∣ . (2.47)
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Since ψ(.) is nondecreasing we can estimate RHS of (2.47) by

E

{
1

m

m−k∑

i=1

(∣∣∣ψ(ei −Km−1/2) − ψ(ei)
∣∣∣+
∣∣∣ψ(ei +Km−1/2) − ψ(ei)

∣∣∣
)
·

·
(∣∣∣ψ(ei+k −Km−1/2) − ψ(ei+k)

∣∣∣+
∣∣∣ψ(ei+k +Km−1/2) − ψ(ei+k)

∣∣∣
)}

=: E

{
1

m

m−k∑

i=1

(∣∣Z−
i

∣∣+
∣∣Z+

i

∣∣) (∣∣Z−
i+k

∣∣+
∣∣Z+

i+k

∣∣)
}
.

Now considering for example the term E
(∣∣Z−

i

∣∣ ∣∣Z−
i+k

∣∣) we get by assumption (A.3)

E
(∣∣Z−

i

∣∣ ∣∣Z−
i+k

∣∣) ≤
∥∥Z−

i

∥∥
2+∆

∥∥Z−
i+k

∥∥
2+∆

≤ C
(
m−a/2(2+∆)Ka/(2+∆)

)2
≤

≤ Cm−a/(2+∆) (2.48)

uniformly in k = 1, . . . ,Λm, i = 1, . . . ,m− k.

Using the fact that
√
m(µ̂m(ψ) − µ0) = OP (1) similarly as in Lemma 2.3 we get

uniformly in k = 1, . . . ,Λm Ak(ψ) = OP (m−a/(2+∆)). Thus we can easily conclude
that

A0(ψ) + 2

Λm∑

k=1

w(k/m)Ak(ψ) = OP (m−a/(2+∆)Λm) = oP (1).

Quite analogously, we get (using now both parts of assumption (A.3)) that

B0(ψ) + 2

Λm∑

k=1

w(k/m)Bk(ψ) = OP (m−a/2(2+∆)Λm) = oP (1),

C0(ψ) + 2

Λm∑

k=1

w(k/m)Ck(ψ) = OP (m−a/2(2+∆)Λm) = oP (1).

Note that the power of m is half compared to Ak(ψ), this is due to fact that only one
factor is a difference in the definition of Bk(ψ) and Ck(ψ). Then assertion (2.45) follows
directly.

It remains to show (2.46). Since

E σ̃2
m(ψ) = E

(
1

m

m∑

i=1

ψ2(ei) + 2
1

m

Λm∑

k=1

(
1 − k

Λm

)m−k∑

i=1

ψ(ei)ψ(ei+k)

)

= Eψ2(e1) + 2

Λm∑

k=1

Eψ(e1)ψ(e1+k)

(
1 − k

Λm

)
m− k

m

= σ2(ψ) + o(1)

it suffices to show
σ̃2
m(ψ) − E σ̃2

m(ψ) = oP (1). (2.49)
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Towards this,

σ̃2
m(ψ) − E σ̃2

m(ψ) =
1

m

m∑

i=1

(
ψ2(ei) − Eψ2(ei)

)
+

+ 2
1

m

Λm∑

k=1

(
1 − k

Λm

)m−k∑

i=1

(
ψ(ei)ψ(ei+k) − Eψ(ei)ψ(ei+k)

)
. (2.50)

By Lemma II with gn(ei) = ψ2(ei) − Eψ2(ei) and 2 + ξ = q/2 > 2,

E

(
1

m

m∑

i=1

(
ψ2(ei) − Eψ2(ei)

)
)2

≤ Dm−1
∞∑

j=1

α(j)(q−4)/q → 0

and thus the first term on RHS of (2.50) is oP (1). For the second part

E

∣∣∣∣∣
1

m

Λm∑

k=1

(
1 − k

Λm

)m−k∑

i=1

(ψ(ei)ψ(ei+k) − Eψ(ei)ψ(ei+k))

∣∣∣∣∣ ≤

≤ 1

m

Λm∑

k=1

(
1 − k

Λm

)
E

(
m−k∑

i=1

(ψ(ei)ψ(ei+k) − Eψ(ei)ψ(ei+k))

)2



1/2

. (2.51)

Due to the stationarity

E

(m−k∑

i=1

(
ψ(ei)ψ(ei+k) − Eψ(ei)ψ(ei+k)

))2

=: I1(k) + 2I2(k) + 2I3(k),

where

I1(k) = (m− k) E
(
ψ(e1)ψ(e1+k) − Eψ(e1)ψ(e1+k)

)2
,

I2(k) =
m−k∑

i1=1

∑

{i2;0<i2−i1≤Λm}
E
{(
ψ(ei1)ψ(ei1+k) − Eψ(ei1)ψ(ei1+k)

)
·

(
ψ(ei2)ψ(ei2+k) − Eψ(ei2)ψ(ei2+k)

)}
,

I3(k) =
m−k∑

i1=1

∑

{i2;i2−i1>Λm}
E
{(
ψ(ei1)ψ(ei1+k) − Eψ(ei1)ψ(ei1+k)

)
·

(
ψ(ei2)ψ(ei2+k) − Eψ(ei2)ψ(ei2+k)

)}
.

Since we assume that q > 4 moment of ψ(e1) is finite, we easily get

I1(k) ≤ Cm, I2(k) ≤ CmΛm,

uniformly in k. For I3(k) we apply Lemma I with

Z1 = ψ(ei1)ψ(ei1+k) − Eψ(ei1)ψ(ei1+k) and Z2 = ψ(ei2)ψ(ei2+k) − Eψ(ei2)ψ(ei2+k)
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and thus get uniformly in k

I3(k) ≤ Cm
∞∑

j=1

(α(j))(q−4)/q.

Therefore RHS of (2.51) is of the same order as

1

m

Λm∑

k=1

(
1 − k

Λm

)√
mΛm = O

(√
Λ3
m/m

)
→ 0,

which finishes the proof of (2.49) and thus (2.46), completing the proof.

�



Chapter 3

Monitoring in Multivariate

Location Model

In this chapter we consider a multivariate generalization of the monitoring procedure
from the previous chapter. We use again the M-residuals which are now based on
multivariate M-estimates. We also show how the multiple comparison can be used to
detect which component of the data is responsible for the alarm.

3.1 Model, Assumptions and Test Statistic

We consider sequentially arriving d-dimensional observations following model

Y i = µi + ei, i = 1, 2, . . . , (3.1)

where Y i = (Yi1, . . . , Yid)
T are observed data, µi = (µi1, . . . , µid)

T the location pa-
rameters and ei = (ei1, . . . , eid)

T strictly stationary random errors forming α-mixing
sequence with properties specified bellow. (Vector (matrix) quantities are denoted with
bold symbols.)

Both the non-contamination assumption and the hypotheses are the same as in the
univariate case, referring now to the multivariate parameters. Thus it is assumed to
have stable historical period with

µ1 = . . . = µm = µ0 (3.2)

and we are testing stability of the multivariate location parameter in the monitoring
period

H0 : µi = µ0, 1 ≤ i ≤ m+mT,

against the alternative

H1 : ∃k∗m = k∗ < mT such that µi = µ0, 1 ≤ i ≤ m+ k∗,

µi = µ∗, m+ k∗ < i ≤ m+mT, µ0 6= µ∗,

38
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where µ0,µ∗ and k∗ are unknown. We consider the closed-end monitoring procedure
with T > 0 fixed again.

Monitoring scheme is described through the stopping time τm,T defined as

τm,T = inf{1 ≤ k ≤ mT : |Q̂ψ(m, k)| > cm,T (α) g(k/m)}, (3.3)

where the detector Q̂ψ(m, k) is a quadratic form of cumulative sums of M-residuals,
g(·) is a boundary function described later and cm,T (α) is a critical value, which we
need to find. Thus we can follow the decision rule described at the end of Section 1.3,
i.e. we reject the null hypothesis as soon as the critical value is crossed.

For the multivariate M-estimate a component-wise version of the definition is used, i.e.
the estimate µ̂m(ψ) of the location parameter µ0 is defined as

µ̂m(ψ) = arg min
t∈Rd

d∑

j=1

m∑

i=1

ρj(Yij − tj),

using possibly different convex loss functions ρj and respective a.e. derivatives ψj for
each component. Similarly as indicated in Section 1.4, finding the minimum usually
reduces to solving the following set of equations

m∑

i=1

ψj(Yij − µj) = 0, j = 1, . . . , d,

w.r.t. µj , j = 1, . . . , d.

The M-residual is then defined as

ψ(êi) = (ψ1(êi1), . . . , ψd(êid))
T with êij = Yij − µ̂jm(ψj), j = 1, . . . , d. (3.4)

Finally this leads us to the test statistic

Q̂ψ(m, k) =

(
1√
m

m+k∑

i=m+1

ψ(êi)

)T
Σ̂

−1

m

(
1√
m

m+k∑

i=m+1

ψ(êi)

)
, (3.5)

where Σ̂m is an estimator of the asymptotic (long-run) variance matrix

Σ = lim
m→∞

var

(
1√
m

m∑

i=1

ψ(ei)

)
=
∑

i∈Z

Eψ(e0)ψ(ei)
T (3.6)

based on the training data. Details will be discussed later. Dependence on the score
function ψ is not indicated but this should not bring any ambiguity.

We again make use of class of functions from (2.9), i.e.

qγ(t) = (1 + t)
(
t/(1 + t)

)γ
, γ ∈ [0, 1/2)

and define the boundary function g(·) as a square of it.
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Assumptions

The assumptions are analogous to those considered in Chapter 2, therefore they are
denoted by *.

(A*.1) {ei}i is a strictly stationary α-mixing sequence with coefficients {α(i)}i such
that ∞∑

k=0

α(k)∆/(2+∆) <∞ for some ∆ > 0. (3.7)

Next two assumptions are considered coordinate-wise, for j = 1, . . . , d. The score
function ψj , the distribution function Fj and the function λj(t) := −

∫
ψj(ej−t)dFj(ej)

are assumed to satisfy:

(A*.2) ψj is non-decreasing; the derivative λ′j(·) of the function λj(·) exists and is
Lipschitz in a neighborhood of zero, λj(0) = 0 and λ′j(0) > 0.

(A*.3)
∫
|ψj(x)|2+∆dFj(x) <∞ and

∫
|ψj(x+ t2)−ψj(x+ t1)|2+∆dFj(x) ≤ D1|t2 − t1|a, |tl| ≤ D2, l = 1, 2 (3.8)

for 1 ≤ a ≤ 2 + ∆ and some positive constants D1, D2 depending on ∆.

(A*.4) The long run variance matrix Σ defined in (3.6) is positive definite and finite.

A nice property of α-mixing is that the assumption (A*.1) gives us that {ψj(eij)}i is
also α-mixing with the same rate for every j = 1, . . . , d.

3.2 Main Results

Now we formulate assertions on limit behavior of the test statistic both under the null
and alternative hypotheses. Proofs are deferred to the next section.

Theorem 3.1. Assume that Y 1,Y 2, . . . follow the model (3.1), assumptions (A*.1) –
(A*.4) are satisfied and test statistic is defined in (3.5). Further let Σ̂m be a consistent
estimate of Σ.
Then under the null hypothesis H0 it holds

max
1≤k≤mT

Q̂ψ(m, k)

q2γ(k/m)

D→ sup
0≤t≤T/(T+1)

∑d
j=1W

2
j (t)

t2γ
,

where {Wj(t), t ∈ [0, 1]}, j = 1, . . . , d, are independent Wiener processes.

The situation under local alternatives is described in the next theorem.

Theorem 3.2. Assume that Y 1,Y 2, . . . follow the model (3.1), assumptions (A*.1) –
(A*.4) are satisfied and test statistic is defined in (3.5). Further let Σ̂m be a consistent
estimate of Σ.
Finally assume that for the alternative hypothesis H1 holds µ∗ = µ0 + δm θ, θ 6= 0 and
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k∗m = ⌊mτ⌋, 0 < τ < T .
(i) If δm = m−1/2, then

max
1≤k≤mT

Q̂ψ(m, k)

q2γ(k/m)

D→ sup
0≤t≤T/(T+1)

∑d
j=1

(
Wj(t) + hj(t, τ)

)2

t2γ
,

where h(t, s) = (t − s(1 − t))+ Σ−1/2
(
λ′1(0)θ1, . . . , λ

′
d(0)θd

)T
, 0 ≤ t ≤ T/(T + 1),

0 ≤ s < T and Σ1/2 is square root matrix of Σ.

(ii) If δm → 0 and |δm|m1/2 → ∞, then

max
1≤k≤mT

Q̂ψ(m, k)

q2γ(k/m)

P→ ∞.

Remark 3.1. (i) Theorem 3.1 provides a way to approximate the critical value so that
the test procedure fulfills (1.6) under H0. Critical value cm,T (α) is approximated by c
such that

P

(
sup

0≤t≤T/(T+1)

∑d
j=1W

2
j (t)

t2γ
> c

)
= α.

For more details, together with a table of these critical values, please refer to Chapter 7.

(ii) Theorem 3.2 (i) deals with the contiguous alternatives. As expected the asymptotic
distribution a maximum of weighted sum of squares of shifted Wiener processes, where
the shifts depend on the change-point, the amount of change and also on the choice of
the loss functions ρ1, . . . , ρd (through λ′1(0), . . . , λ′d(0)). A time dependent part of the
shift is the same as in the univariate case, i.e. p(t, τ) from (2.16).

(iii) Theorem 3.2 (ii) implies the consistency of the test, i.e., the validity of (1.7)
(asymptotic power of test procedure is 1).

Now we focus our attention on estimation of the long run variance matrix Σ defined in
(3.6). We use the Bartlett type estimator

Σ̂m =

Λm∑

k=−Λm

w(k/Λm)R̂m(k), (3.9)

where R̂m(k) is the k-th lag sample covariance

R̂m(k) =





1
m

∑m−k
i=1 ψ(êi)ψ(êi+k)

T , k ≥ 0,

R̂m(−k)T , k < 0,
(3.10)

and w(t) = (1 − |t|)I{|t| ≤ 1}, t ∈ R is again the Bartlett kernel.

Theorem 3.3. Assume that Y 1,Y 2, . . . follow the model (3.1) with non-contamination
assumption (3.2), assumptions (A*.1) – (A*.4) are satisfied and Σ̂m is defined in (3.9).
Let further for some q > 4

E|ψj(eij)|q <∞, j = 1, . . . , d,

∞∑

k=1

α(k)1−4/q <∞



CHAPTER 3. MONITORING IN MULTIVARIATE LOCATION MODEL 42

and as m→ ∞

Λm → ∞, Λmm
−ν → 0 where ν = min

(
1

3
,

a

2(2 + ∆)

)
. (3.11)

Then Σ̂m − Σ = oP (1), m→ ∞.

As can be seen from the proof, the theorem remains valid also for the flat top kernel
instead of the Bartlett one.

3.3 Proofs

Proof of Theorem 3.1. We make use of the facts that have been already shown in the
univariate case. Similarly as in Lemma 2.6 we have for j = 1, . . . , d

max
1≤k≤mT

1

m1/2qγ(k/m)

∣∣∣∣∣

m+k∑

i=m+1

ψj(êij) −
(

m+k∑

i=m+1

ψj(eij) −
k

m

m∑

l=1

ψj(elj)

)∣∣∣∣∣ = oP (1).

Denoting

Ŝ(k,m) :=
1

m1/2

m+k∑

i=m+1

ψ(êi)

and

S̃(k,m) :=
1

m1/2

(
m+k∑

i=m+1

ψ(ei) −
k

m

m∑

l=1

ψ(el)

)
, (3.12)

we have that the limit behavior of

max
1≤k≤mT

Q̂ψ(m, k)/q2γ(k/m)

is the same as that of
max

1≤k≤mT
Q̃ψ(m, k)/q2γ(k/m),

where
Q̃ψ(m, k) = S̃(k,m)TΣ−1S̃(k,m),

since

max
1≤k≤mT

∣∣∣Q̂ψ(m, k) − Q̃ψ(m, k)
∣∣∣

q2γ(k/m)
≤ max

1≤k≤mT

∣∣∣Ŝ(k,m)T (Σ̂
−1

m − Σ−1)Ŝ(k,m)
∣∣∣

q2γ(k/m)
+

+ max
1≤k≤mT

∣∣∣Ŝ(k,m)TΣ−1(Ŝ(k,m) − S̃(k,m))
∣∣∣+
∣∣∣(Ŝ(k,m) − S̃(k,m))TΣ−1S̃(k,m))

∣∣∣
q2γ(k/m)

=

= op(1).

Now we turn to the limit behavior of the partial sum process

Zm(t) =
1√
m

⌊mt⌋∑

i=1

ψ(ei), 0 ≤ t ≤ T + 1.
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We show that

Zm(·) Dd[0,T+1]−→ WΣ(·), (3.13)

where {WΣ(t), 0 ≤ t ≤ T +1} is a centered Gaussian process with covariance function

E[WΣ(t)W T
Σ(s)] = min(t, s)Σ

and
Dd[0,T+1]−→ denotes weak convergence in the Skorokhod space Dd[0, T + 1] (see

Appendix for further details).

Toward this we use Lemma III to transform the multivariate problem to the univariate
one. The Lemma states that in order to show (3.13) it is enough to show that, for any
set of constants c = (c1, . . . , cd)

T , we have

cTZm(·) D[0,T+1]−→ cTWΣ(·).

For LHS we have

cTZm(t) =
d∑

j=1

cj
1

m1/2

⌊mt⌋∑

i=1

ψj(eij) =
1

m1/2

⌊mt⌋∑

i=1

d∑

j=1

cjψj(eij).

Since {ei}i is strong mixing then {∑d
j=1 cjψj(eij)}i is also strong mixing (with the

same rate) and we can thus use the WIP for strong mixing sequences - Theorem 1.1.
By definition of Σ

lim
m→∞

var(cTZm(1)) = cTΣc,

thus we can conclude that (3.13) holds true.

In the next step, we study the process {Hm(t), 0 ≤ t ≤ T} defined as

Hm(t) = Zm(t+ 1) −Zm(1) − tZm(1) = Zm(t+ 1) − (t+ 1)Zm(1), (3.14)

which is closely related to (3.12).

Since Σ is symmetric positive definite matrix, there exists the so-called square root
matrix C such that Σ = CCT . This matrix is therefore regular and will be denoted
also Σ1/2. Via the continuous mapping theorem,

C−1Hm(·) Dd[0,T ]−→ W̃ (·),

where {W̃ (t), 0 ≤ t ≤ T} is a centered Gaussian process with covariance function

E[W̃ (t)W̃
T
(s)] = (t+ 1)s · Id, for 0 ≤ s ≤ t ≤ T , with Id denoting the d-dimensional

unity matrix. Thus, via another application of the continuous mapping theorem,

C−1Hm(·)/( · + 1)
Dd[0,T ]−→ W̃ (·)/( · + 1) = W ∗(·),

for which by computing covariance function is easy to checked that

{W ∗(t), 0 ≤ t ≤ T} D
= {W

(
t/(t+ 1)

)
, 0 ≤ t ≤ T}, (3.15)
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with {W (t), t ≥ 0} denoting a standard d-dimensional Brownian motion (i.e. having
independent components).

To complete the proof we recall that qγ(t) = (1 + t)(t/(t+ 1))γ and thus in view of the
law of iterated logarithm for a Brownian motion (see Csörgő and Horváth [1993])

W
( t

t+ 1

)/( t

t+ 1

)δ
→ 0 a.s. as t→ 0+,

for every 0 ≤ δ < 1/2. Since 0 ≤ γ < 1/2, by yet another application of continuous
mapping theorem

C−1Hm(·)/qγ(·)
Dd[0,T ]−→ W

( ·
· + 1

)/( ·
· + 1

)γ
.

Finally realizing that
sup

0≤t≤T
|⌊mt⌋/m− t| → 0 and

sup
1/m≤t≤T

∣∣∣ qγ(t)

qγ(⌊mt⌋/m)
− 1
∣∣∣→ 0,

we get that

C−1Hm(⌊m ·⌋/m)/qγ(⌊m ·⌋/m)
Dd[0,T ]−→ W

( ·
· + 1

)/( ·
· + 1

)γ
, (3.16)

where the argument of the process runs from 0 to T . The asymptotic distribution of
supremum of quadratic form is now clear. �

Proof of Theorem 3.2. (i) We again use the facts already known from the univariate
case and keep the notation from the previous proof. Thus similarly as in (2.39) we have
for j = 1, . . . , d

max
1≤k≤mT

∣∣∣
∑m+k

i=m+1 ψj(êij) −
(∑m+k

i=m+1 ψj(eij) − k
m

∑m
l=1 ψj(elj) + δmθjλ

′
j(0)(k − k∗m)+

)∣∣∣
m1/2qγ(k/m)

= oP (1)

Defining
H∗

m(t) = Hm(t) +m1/2δm(t− τ)+(θ1λ
′
1(0), . . . , θdλ

′
d(0))T

with Hm(t) from (3.14), we get similarly as in (3.16)

C−1H∗
m(⌊m ·⌋/m)

qγ(⌊m ·⌋/m)

Dd[0,T ]−→ W
(
·/(· + 1)

)
(
·/(· + 1)

)γ +C−1(θ1λ
′
1(0), . . . , θdλ

′
d(0))T

(· − τ)+

qγ(·)
.

(3.17)

The term (t−τ)+
qγ(t) was already treated in (2.40) and is thus give us the p(t, τ) part of the

function h(t, τ). Therefore the proof of part (i) is finished.

(ii) There exists at least one coordinate l such that θl 6= 0 and according to Theorem
2.2 (ii) we know that

max
1≤k≤mT

∣∣∑m+k
i=m+1 ψl(êil)|√
m
√
σ̂llqγ(k/m)

P→ ∞,

where Σ̂m = (σ̂kl)kl. Thus the same divergence in probability is true for our detector.
�
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Proof of Theorem 3.3. The idea of the proof is the same as in the univariate case. It
consists of 2 steps.

Firstly one shows that Σ̂m − Σ̃m = oP (1), where

Σ̃m =

Λm∑

k=−Λm

w(k/Λm)R̃m(k)

with

R̃m(k) =
1

m

m−k∑

i=1

ψ(ei)ψ(ei+k)
T , k ≥ 0 and R̃m(k) = R̃m(−k)T , k < 0.

Then it is shown that Σ̃m − Σ = oP (1).

We consider the previously mentioned matrices Σ, Σ̂m, Σ̃m element-wise. For the (j, l)
element of the matrix Σ we have

σjl =
∑

i∈Z

Eψj(eij)ψl(eil) = Eψj(e1j)ψl(e1l) + 2

∞∑

i=2

Eψj(e1j)ψl(eil)

and the key parts of (j, l) elements of matrices Σ̂m, Σ̃m are

r̂jl(k) =
1

m

m−k∑

i=1

ψj(êij)ψl(êi+k, l)

and r̃jl(k) which is defined accordingly.

Realizing that {ψj(eij)ψl(eil)}i, 1 ≤ j, l ≤ d is strong mixing sequence we can follow
the proof of Theorem 2.3 line by line to show both above mentioned assertions. �

3.4 Multiple Comparison

In case when the procedure signals a change it is of interest to find out which of the
components has changed. Towards this we can use a variant of the well known Scheffé
method used in multiple comparison of ANOVA. We first recall the underlying theorem,
see Anděl [1985] (p.147, Lemma 1) for example.

Theorem 3.4 (Scheffé). Let A be a d×d positive definite matrix. Then for every c > 0

[xTA−1x ≤ c] ⇔ [(hTx)2 ≤ chTAh for all h ∈ R
d]. (3.18)

Now recall that our test detector has a form

sup
1≤k≤mT

U(m, k)T Σ̂
−1

m U(m, k),
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where we denoted

U(m, k) :=
1√

mqγ(k/m)

m+k∑

i=m+1

ψ(êi).

Moreover the procedure signals a change as soon as for some k = 1, . . . ,mT

U(m, k)T Σ̂
−1

m U(m, k) > c
(d)
T (α, γ),

where c
(d)
T (α, γ) is a the critical value for level α and d-dimensional data introduced in

Section 7.1. Under the null hypothesis this happens with probability α asymptotically
and by Theorem 3.4 it is equivalent to the fact that there exists h ∈ R

d such that

(hTU(m, k))2 > c
(d)
T (α, γ)hT Σ̂mh. (3.19)

When we choose h as a canonical vector hj having one in j-th coordinate and zeros
otherwise, equation (3.19) transforms to

1√
mqγ(k/m)

√
σ̂jj

∣∣∣∣∣

m+k∑

i=m+1

ψj(êij)

∣∣∣∣∣ >
√
c
(d)
T (α, γ), (3.20)

where the elements of Σ̂m are denoted again as σ̂jk. Note that LHS is exactly the same
as the test detector from the univariate case (since σ̂2

m(ψ) corresponds to σ̂jj), only
the critical value differs. Moreover (3.20) happens for any coordinate j = 1, . . . , d with
probability smaller than α asymptotically and thus we can use it to determine which
component has caused the alarm.

It is also of interest to compare the obtained critical values for multiple comparison
with those coming from simple Bonferroni correction. This is done in Table 3.1 for
d = 5 dimensions. Since the Bonferroni method does not cover so many alternatives, it
gives even sharper results.

\γ 0 0.15 0.25 0.45 0.49

Bonferroni c∞(0.01, γ) 2.79 2.85 2.94 3.30 3.57

Scheffé

√
c
(5)
∞ (0.05, γ) 3.53 3.59 3.65 4.02 4.36

Table 3.1: Critical values for multiple comparison with Bonferroni and Scheffé methods,
d = 5, α = 5%.



Chapter 4

Monitoring in Capital Asset

Pricing Model

In this chapter we consider robust sequential monitoring in a situation of Capital Asset
Pricing Model (CAPM), which is one of the famous models used in econometrics. In
fact, this procedure is an elaborate extension of the one considered in the previous
chapter to a multivariate simple regression model. Naturally analogous robust sequen-
tial monitoring procedures can be designed for general linear regression models, the
proofs become however more technical. Thus we restrict ourselves to this special case,
which is due to its widespread application of interest on its own. As the main interest of
CAPM lies in the so-called portfolio betas, we test for a change in the slope parameter
only.

This robust monitoring was already considered in Chochola et al. [2013], however under
different assumptions on the dependence structure of observations. Since we want to
have unified approach to modeling dependence structures in the thesis, we consider
again the α-mixing as opposed to Lp−m-approximability concept used in Chochola et al.
[2013]. The main obtained results are naturally the same, however the technique of the
proofs differs.

CAPM, introduced by Sharpe [1964] and subsequently modified by many authors (see,
e.g. Lintner [1965] and Merton [1973]), is an important and widely used model for eval-
uating the risk of a portfolio of assets with respect to the market risk. Despite of some
shortcomings pointed out by theoreticians and practitioners as well, the wide-spread
use of the CAPM is also well-documented (cf., e.g., the report of Martin and Simin
[2003]). A main advantage of the model is its simplicity in describing the sensitivity
of an asset’s risk against the market risk, which is essentially expressed through one
parameter, the portfolio beta.

On the other hand, it is also well-known that the corresponding pricing of a portfolio
asset heavily relies on the constancy of the betas over time. Confer, for example, the
discussion in Ghysels [1998] and recently Caporale [2012]. Therefore, it may be of great
interest to find out whether portfolio betas change significantly over time or not. This
was a main motivation in Aue et al. [2012] for constructing a sequential monitoring

47
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procedure for testing the stability of portfolio betas, taking high-frequency nature of
data also into account. Along the lines of Chu et al. [1996], the corresponding stopping
rules of Aue et al. [2012] are based on comparing the (ordinary) least squares estimate
(OLS) of the beta from a historical data set (training period) to that from sequentially
incoming new observations. A structural break (change) in the model is then confirmed
when the beta significantly changes, that is, when the newly estimated beta exceeds a
critical distance from the historical one.

However, it is well-known that OLS estimators are sensitive with respect to outliers
and deviations from normality assumptions. Concerning the possible application of
the CAPM this has led to an extensive discussion and numerous suggestions for “ro-
bustifying” the use of beta estimates in the prediction of portfolio risks (confer, e.g.,
Genton and Ronchetti [2008] and Martin and Simin [2003] together with the works
mentioned therein).

Indeed, this robustification lead us to the idea of applying procedure similar to the ones
considered in previous chapters for testing the stability of CAPM portfolio betas. Thus
we use the M -estimates (and M-residuals) in order to reduce the sensitivity against
outliers and non-normality assumptions. Moreover we suggest a multivariate approach
allowing for dependencies within the portfolio and also for possible dependencies over
time.

4.1 Model, Assumptions and Test Statistic

In the sequel our statistical framework will be as follows. We consider the model

ri = αi + βiriM + εi, i = 1, 2, . . . , (4.1)

where ri = (ri,1, . . . , ri,d)
T is a d-dimensional vector of daily log-returns at time i,

riM is the log-return of the market portfolio at time i, and εi = (εi,1, . . . , εi,d)
T is

a d-dimensional error term. The αi’s and βi’s are d-dimensional unknown parameters,
and the βi’s are the parameters of interest, the “portfolio betas”.

We assume the non-contamination condition. i.e. that a training sample of size m with
no instabilities is available

α1 = . . . = αm =: α0, β1 = . . . = βm =: β0, (4.2)

where α0 and β0 are unknown parameters. The problem of the instability of the
portfolio betas is formulated as a testing problem, that is, we want to test the null
hypothesis

H0 : β1 = . . . = βm = βm+1 = . . .

of no change versus the alternative

H1 : β1 = . . . ,= βm+k∗ 6= βm+k∗+1 = . . .

of a structural break at an unknown change-point k∗ = k∗m in the monitoring period.
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For later convenience we reformulate our model as follows:

ri,j = α0
j + β0

j r̃iM + (α1
j + β1

j r̃iM )δmI{i > m+ k∗} + εi,j , j = 1, . . . , d, i = 1, 2, . . . ,
(4.3)

where k∗ = k∗m is the change-point, α0
j , β

0
j , α

1
j , β

1
j , δm are unknown parameters, and

r̃iM = riM − rmM , with rmM =
1

m

m∑

i=1

riM . (4.4)

The M-estimates are similarly as in Section 3.1 generated by convex loss functions
ρ1, . . . , ρd with a.e. derivatives ρ′j = ψj (score functions) having further properties to
be specified later. We only have to take the regressors r̃iM into account. Thus the
estimators α̂jm = α̂jm(ψj), β̂jm = β̂jm(ψj) of α0

j , β
0
j based on the training sample are

defined as minimizers of
m∑

i=1

ρj(ri,j − aj − bj r̃iM ) (4.5)

w.r.t. aj , bj for j = 1, . . . , d.

The M-residuals are then defined as

ψ(ε̂i) = (ψ1(ε̂i,1), . . . , ψd(ε̂i,d))
T (4.6)

with

ε̂i = (ε̂i,1, . . . , ε̂i,d)
T ,

ε̂i,j = ri,j − α̂jm − r̃iM β̂jm. (4.7)

A test statistic based on the first m+ k observations is a quadratic form of CUSUM of
weighted M-residuals

Q̂Cψ(k,m) =
( 1√

m

m+k∑

i=m+1

r̃iMψ(ε̂i)
)T

Σ̂
−1

m

( 1√
m

m+k∑

i=m+1

r̃iMψ(ε̂i)
)
, (4.8)

where the matrix Σ̂m is an estimator of the long-run variance matrix

Σ = lim
m→∞

var
{ 1√

m

m∑

i=1

(riM − E riM )ψ(εi)
}

(4.9)

based on the first m observations. Details will be discussed later.

We reject the null hypothesis as soon as the detector exceeds a critical level for the first
time, i.e., when

Q̂Cψ(m, k)/q2γ(k/m) > c

for an appropriately chosen critical value c, where qγ(·) is a boundary (weight) function
defined in (2.9). In this case we stop the procedure and confirm a structural break,
otherwise we continue monitoring at most up to time mT , i.e. we design again the
closed-end procedure.
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The associated stopping rule is thus given by (3.3) with the test statistic (4.8). We
only need to choose the critical value c such that (1.6) and (1.7) hold true, i.e. the
test has asymptotic level α and is asymptotically consistent. Towards this we use the
asymptotic behavior of the test statistic which is derived in the next section.

Assumptions

The assumptions on ψj , distribution function Fj of εi,j and the derived function λj ,

j = 1, . . . , d are the same as in Chapter 3, i.e. (A*.1)– (A*.4), where in (A*.4) we now
consider the long run variance matrix Σ defined in (4.9).
Moreover we introduce one assumption on {riM}i
(B) {riM}i is a strictly stationary α-mixing sequence independent of {εi}i with the

same mixing rate, i.e.
∑∞

k=0 αM (k)∆/(2+∆) < ∞, where ∆ is from assumption

(A*.1) and {αM (i)}i are mixing coefficients of {riM}i. Moreover E |riM |2+∆ <∞.

Remark 4.1. a) In formula (3.8) of (A*.3) the upper bound is |t2−t1|a, for 1 ≤ a ≤ 2+∆
and |tl| ≤ D2, l = 1, 2 . Thus |t2− t1| is small and in proofs the least favorable situation
is for a = 1. Therefore it suffices to consider a = 1 and it is not a problem to use the
symbol a in different context in this chapter.
b) Due to the independence and equal mixing rate of {εi}i and {riM}i we have that
{riMψ(εi)}i is also α-mixing with the same rate.

4.2 Main Results

We present and discuss our results on the limit behavior of the test procedures both
under the null hypothesisH0 as well as under the alternativeH1. The proofs of theorems
are postponed to Section 4.4.

Theorem 4.1. Let the observations follow model (4.3) and assumptions (A*.1)–(A*.4),
(B) be satisfied. Further let Σ̂m be a consistent estimate of Σ

Σ̂m − Σ = oP (1). (4.10)

Then, under the null hypothesis H0

max
1≤k≤⌊mT ⌋

(
Q̂Cψ(m, k)

q2γ(k/m)

)
D−→ sup

0≤t≤T/(T+1)

(∑d
j=1W

2
j (t)

t2γ

)
,

where {Wj(t), t ∈ [0, 1]}, j = 1, . . . , d, are independent (standard) Wiener processes.

Now we consider local alternatives, i.e. the model (4.3) with δm → 0 and k∗ < ⌊mT ⌋.
Theorem 4.2. Let the observations follow model (4.3) and assumptions (A*.1)–(A*.4),
(B) be satisfied. Further let Σ̂m be a consistent estimate of Σ. Then

(i) under (4.3) with δm = m−1/2 and k∗ = ⌊ms⌋, 0 ≤ s < T ,

max
1≤k≤⌊mT ⌋

(
Q̂Cψ(m, k)

q2γ(k/m)

)
D−→ sup

0≤t≤T/(T+1)

(∑d
j=1(Wj(t) + hj(t, s))

2

t2γ

)
,
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where {Wj(t), t ∈ [0, 1]}, j = 1, . . . , d, are independent Wiener processes,

h(t, s) = (t− s(1 − t))+ var{r0M}Σ−1/2(λ′1(0)β1
1 , . . . , λ

′
d(0)β1

d)
T ,

h(t, s) = (h1(t, s), . . . , hd(t, s))
T , 0 ≤ t ≤ T/(T + 1), 0 ≤ s < T.

(ii) under (4.3) with δm → 0, |δm|m1/2 → ∞, lim infm→∞(⌊mT ⌋ − k∗)/m > 0, and
β1
j 6= 0 for at least one j,

max
1≤k≤⌊mT ⌋

(
Q̂Cψ(m, k)

q2γ(k/m)

)
P−→ ∞.

Remark 4.2. (i) By Theorem 4.1 the asymptotic behavior of the test statistic under
the null hypothesis is the same as the corresponding one in Chapter 3. Thus we can
use the same critical values (see Chapter 7) to ensure that (1.6) is fulfilled.

(ii) Notice also that the limit distribution in Theorem 4.2 (i) is only sensitive w.r.t.
a change in the βj ’s, but not w.r.t. a change in the αj ’s. Moreover, on checking the
proof one can conclude that, in case of a contiguous change in the αj ’s only, the limit
distribution is the same as under H0 .

(iii) A time dependent part of the shift is again the function p(t, s) from (2.16). Note
that there is a misprint in Chochola et al. [2013] in this regard.

Estimation of the variance matrix

In this section we deal with an estimator of the long-run variance matrix Σ given in

(4.9). Notice that

Σ =
∞∑

k=−∞
Γk,

where Γk = E[(r0M − E r0M )(rkM − E rkM )ψ(ε0)ψ(εk)
T ] for k ≥ 0 and Γ−k = ΓTk for

k < 0.

We consider again a kernel type estimator of Σ based on the firstm observations defined
as

Σ̂m =
∑

|k|<Λm

w(k/Λm)Γ̂k (4.11)

where Γ̂k is the k-th lag sample covariance corresponding to Γk, i.e.,

Γ̂k =





1
m

∑m−k
i=1 r̃iM r̃i+k,Mψ(ε̂i)ψ(ε̂i+k)

T , k ≥ 0,

Γ̂
T

−k, k < 0,
(4.12)

with r̃iM given in (4.4) and ψ(ε̂i) in (4.6).

We work with the Bartlett kernel again, i.e.,

w(t) = (1 − |t|) I{|t| < 1}, t ∈ R, (4.13)

same results can be however also obtained for the flat-top kernel.
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Theorem 4.3. Let Assumptions (A*.1)–(A*.4), and (B) be satisfied and moreover for
some q > 4 holds

E |riMψj(eij)|q <∞, j = 1, . . . , d,

∞∑

k=1

α(k)1−4/q <∞,

∞∑

k=1

αM (k)1−4/q <∞,

Let
Λm → ∞, Λmm

−1/(2(2+∆)) → 0.

Then for Σ̂m given in (4.11) with the kernel (4.13)

Σ̂m = Σ + oP (1).

4.3 Auxiliary Results

Let us recall that C > 0 is a generic constant, which may vary from case to case.

At first we gather some properties of the sequence {riM}. From now on let us denote

r0iM := riM − E riM . (4.14)

Lemma 4.1. Let Assumption (B) be satisfied. Then,

(i) there is a constant D > 0 such that, for every ℓ ∈ Z and m ∈ N,

E
∣∣∣
ℓ+m∑

i=ℓ+1

r0iM

∣∣∣
2
≤ Dm,

and, for b1 ≥ b2 ≥ . . . ≥ bm > 0,

E max
1≤k≤m

∣∣∣bk
ℓ+m∑

i=ℓ+1

r0iM

∣∣∣
2
≤ C

m∑

k=1

b2k; (4.15)

(ii)

m∑

i=1

r0iM = OP
(
m1/2

)
,

max
1≤i≤m

|r0iM | = OP
(
m1/(2+∆)

)
,

m∑

i=1

|r0iM |a = OP
(
mmax(1,a/(2+∆))

)

for a > 0;

(iii) for some D > 0 and 0 ≤ γ < 1/2,

E

(
max

1≤k≤⌊mT ⌋

|∑m+k
i=m+1 r

0
iM |√

m (k/m)γ

)2

≤ D;
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(iv)

sup
0≤t≤T

∣∣∣∣
∑m+⌊mt⌋

i=m+1 (r0iM )2∑m
i=1(r

0
iM )2

− t

∣∣∣∣
P−→ 0.

Proof. (i) It follows directly from Lemma II.

(ii) By Chebyshev’s inequality and assertion (i) above

P
(∣∣∣

m∑

i=1

r0iM

∣∣∣ ≥ λ
)
≤ D

λ2
m.

Next, note that

max
1≤i≤m

|r0iM | ≤ D
( 1

m

m∑

i=1

|r0iM |2+δ
)1/(2+δ)

m1/(2+δ)

for any δ ≥ 0. Since the sequence {riM} is stationary and ergodic, also {g(riM )} is
stationary and ergodic, where g is a measurable function, and, if E|g(riM )| < ∞, the
ergodic theorem implies

1

m

m∑

i=1

g(riM ) → Eg(riM ) a.s. (4.16)

Hence,

1

m

m∑

i=1

|r0iM |2+∆ → E|r00M |2+∆ a.s.,

and therefore
max

1≤i≤m
|r0iM | = OP

(
m1/(2+∆)

)
,

which easily implies

m∑

i=1

|r0iM |a = OP

( m∑

i=1

|r0iM |min(a,2+∆) max
1≤i≤m

|r0iM |max(0,a−(2+∆))
)

=

= OP
(
mmax(1,a/(2+∆))

)
.

(iii) It follows immediately from (4.15) since
∑⌊mT ⌋

k=1 k−2γ = O(m1−2γ).

(iv) Note that, by (4.16),

1

m

m∑

i=1

(r0iM )2 → var(r0M ) a.s.,

hence, due to the strict stationarity, also

sup
0≤t≤T

∣∣∣∣
1

m

{m+⌊mt⌋∑

i=m+1

(r0iM )2 − ⌊mt⌋ var(r0M )
}∣∣∣∣

P−→ 0. (4.17)

On combining the above two assertions, the proof of (iv) can be completed.
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Remark 4.3. The following two lemmas are crucial assertions for the proof of the limit
behavior of the estimators α̂jm, β̂jm, j = 1, . . . , d. It is however convenient to introduce

auxiliary estimators α̂∗
jm and β̂∗jm as minimizers of

m∑

i=1

ρj
(
εi,j − (a∗j + b∗j r̃iM )/

√
m
)

(4.18)

w.r.t. a∗j and b∗j for j = 1, . . . , d, since their theoretical counterparts are equal to zero.
Clearly,

α̂∗
jm =

√
m(α̂jm − α0

j ), β̂∗jm =
√
m(β̂jm − β0

j ). (4.19)

Usually, the estimators α̂∗
jm and β̂∗jm can be obtained as solutions of the equations

m∑

i=1

ψj(εi,j − (a∗j + b∗j r̃iM )/
√
m) = 0, (4.20)

m∑

i=1

ψj(εi,j − (a∗j + b∗j r̃iM )/
√
m)r̃iM = 0, (4.21)

w.r.t. a∗j , b
∗
j for j = 1, . . . , d.

We would like to use the theory of α-mixing, but the problem is that r̃iM is not α-mixing
due to the centering by rmM . Therefore we introduce one more reparametrization and
define α̂′

jm and β̂′jm as minimizers of

m∑

i=1

ρj(εi,j − (a′j + b′jr
0
iM )/

√
m) (4.22)

w.r.t. a′j and b′j for j = 1, . . . , d. Since rmM − E riM does not depend on i and r̃iM =

r0iM − (rmM − E riM ) one can easily see that

β̂′jm = β̂∗jm and α̂′
jm = α̂∗

jm − β̂∗jm(rmM − E riM ).

By Lemma 4.1 is rmM −E riM = OP (m−1/2) and thus these estimators are sufficiently
close to each other. Therefore the results derived for primed estimates holds also for
the starred ones.

In Lemmas 4.2, 4.3 and 4.4 we omit the index j, i.e., we write εi, ψ, . . . instead of
εij , ψj , . . .. In the following E∗ denotes the conditional expectation given riM , i =
1, . . . ,m.
Lemma 4.2. Let the assumptions of Theorem 4.1 be satisfied. Then, for arbitrary
D > 0

sup
|a|+|b|≤D

∣∣∣Zm(a, b) − λ′(0)

2

(
a2 + b2

1

m

m∑

i=1

(r0iM )2
)∣∣∣ = OP (m−η),

for some η > 0, where

Zm(a, b) =
m∑

i=1

(
ρ(εi − (a+ br0iM )/

√
m) − ρ(εi) + ((a+ br0iM )/

√
m)ψ(εi)

)
.
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Proof. Uniformity of the result will be treated similarly as in Lemma 2.1, i.e. discretizing
the situation to a maximum over a finite number of points. Then, for fixed a, b, we just
need to derive a proper approximation for the conditional expectation and variance of
Zm(a, b).

First note that due to Lemma 4.1 (ii) we have

P
(

sup
|a|+|b|≤D

max
i=1,...,m

|a+ br0iM |/√m ≤ D2

)
→ 1,

where D2 is from Assumption (A*.3), and thus we can restrict ourselves to this set
only.

Now we introduce some convenient short-hand notations

di := a+ br0iM and f(εi, x, di) := sign di
(
−ψ(εi−x sign di) +ψ(εi)

)
, x > 0. (4.23)

Note that, for any δ ∈ R, x > 0 and i ∈ Z, we have f(εi, x, δ) ≥ 0 and

ρ(εi−δ)−ρ(εi)+δψ(εi) =

∫ |δ|

0
sign δ

(
−ψ(εi−x sign δ)+ψ(εi)

)
dx =

∫ |δ|

0
f(εi, x, δ)dx ≥ 0.

Thus

Zm(a, b) =
m∑

i=1

∫ |di|/
√
m

0
f(εi, x, di)dx =:

m∑

i=1

Yi(a, b).

We can start with the conditional expectation. Direct calculations in combination with
Lemma 4.1 result in

E∗ Zm(a, b) = E∗
m∑

i=1

sign di

∫ |di|/
√
m

0
f(εi, x, di)dx =

m∑

i=1

∫ |di|/
√
m

0
λ(x sign di)dx =

=
m∑

i=1

λ′(0)d2
i

1

2m
+OP

( m∑

i=1

|di|3
1

m3/2

)
=

=
1

2
λ′(0)

(
a2 + b2

1

m

m∑

i=1

(r0iM )2
)

+OP
(
m−1/2|a|3 + |b|3m−3/2+max(1, 3/(2+∆))

)
,

(4.24)

uniformly in |a| + |b| ≤ D, where we used the fact that for δ small enough holds
∣∣∣∣
∫ δ

0
λ(x) dx−

∫ δ

0
λ′(0)x dx

∣∣∣∣ = O(|δ|3).

Now we study the uniformity of the result. Define a grid of points (aj , bk), j, k =
0, . . . , N , such that a0 = b0 = −D, aN = bN = D, (0, 0) is part of the grid and
aj − aj−1 = bk − bk−1 = m−ξ for some ξ > 0, j, k = 1, . . . , N − 1 and distance is not
more than m−ξ for the first and last pair.

Now assume we have aj−1 ≤ a ≤ aj , bk−1 ≤ b ≤ bk for j, k fixed. Since f(εi, x, di) ≥ 0,
the estimation of Yi(a, b) (and thus also of Zm(a, b) ) from below and above is equivalent
to estimation of |di| =

∣∣a+ br0iM
∣∣.
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We need to distinguish four cases:

i) a+ br0iM ≥ 0, r0iM ≥ 0 : aj−1 + bk−1r
0
iM ≤

∣∣a+ br0iM
∣∣ ≤ aj + bkr

0
iM

ii) a+ br0iM ≥ 0, r0iM < 0 : aj−1 + bkr
0
iM ≤

∣∣a+ br0iM
∣∣ ≤ aj + bk−1r

0
iM

iii) a+ br0iM < 0, r0iM ≥ 0 :
∣∣aj + bkr

0
iM

∣∣ ≤
∣∣a+ br0iM

∣∣ ≤
∣∣aj−1 + bk−1r

0
iM

∣∣
iv) a+ br0iM < 0, r0iM < 0 :

∣∣aj + bk−1r
0
iM

∣∣ ≤
∣∣a+ br0iM

∣∣ ≤
∣∣aj−1 + bkr

0
iM

∣∣

For the ease of further writing denote

dUUi := aj+bkr
0
iM , dLLi := aj−1+bk−1r

0
iM , dULi := aj+bk−1r

0
iM , dLUi := aj−1+bkr

0
iM ,

where U means the upper boundary and L the lower one in turns for a, b. Also note
that since (0, 0) is part of the grid, the sign a+ br0iM can change only on the grid itself.

Lets focus on i)

Yi(a, b) − E∗ Yi(a, b) ≤
∫ |dUU

i |/√m

0
f(εi, x, d

UU
i )dx− E∗

∫ |dLL
i |/√m

0
f(εi, x, d

UU
i )dx =

= Yi(aj , bk) − E∗ Yi(aj , bk) + E∗
∫ |dUU

i |/√m

|dLL
i |/√m

f(εi, x, d
UU
i )dx

(4.25)

and similarly

Yi(a, b) − E∗ Yi(a, b) ≥ Yi(aj−1, bk−1) − E∗ Yi(aj−1, bk−1) − E∗
∫ |dUU

i |/√m

|dLL
i |/√m

f(εi, x, d
UU
i )dx.

(4.26)

We estimate now the last term present both in (4.25) and (4.26), which will be useful
for us later

E∗
∫ |dUU

i |/√m

|dLL
i |/√m

f(εi, x, d
UU
i )dx =

∫ |dUU
i |/√m

|dLL
i |/√m

λ(x)dx =

=
λ′(0)

2m

[
(dUUi )2 − (dLLi )2 +OP (m−1/2)

]
≤

≤ Cm−1−ξ(1 + r0iM + (r0iM )2), (4.27)

where the constant C can be chosen the same for all i = 1, . . . ,m and all cases i) – iv).

By (4.25),(4.26) and (4.27)

sup
|a|+|b|≤D

|Zm(a, b) − E∗Zm(a, b)| ≤ max
0≤j,k≤N

|Zm(aj , bk) − E∗Zm(aj , bk)|+

+ Cm−1−ξ
(
m+

m∑

i=1

∣∣r0iM
∣∣+

m∑

i=1

(r0iM )2
)
. (4.28)
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By Lemma 4.1 we have
∑m

i=1

∣∣r0iM
∣∣ = OP (m) and

∑m
i=1(r

0
iM )2 = OP (m) thus the last

term on RHS in (4.27) is of order OP (m−ξ). Thus the supremum can be reduced to
maximum over the finite grid, which we will treat now.

Assume that (a, b) is a fixed point of the grid, i.e. a = aj , b = bk for some 0 ≤ j, k ≤ N .
Towards estimation of |Zm(a, b)−E∗Zm(a, b)| it is enough to calculate the variance of
Zm since

E(Zm − E∗ Zm)2 ≤ E(Zm − EZm)2.

Moreover by Lemma 4.1 we have max1≤i≤m
∣∣r0iM

∣∣ = OP (m1/(2+∆)) and thus we can
make

P
(

max
1≤i≤m

∣∣r0iM
∣∣ ≥ Km1/(2+∆)

)
(4.29)

arbitrary small by choosing K large enough. Thus it is sufficient to focus on trimmed
version Ẑm(a, b) of Zm(a, b)

Ẑm(a, b) :=

m∑

i=1

Yi(a, b)I
{ ∣∣r0iM

∣∣ ≤ Km1/(2+∆)
}
.

We will further use notation Ii := I
{ ∣∣r0iM

∣∣ ≤ Km1/(2+∆)
}

for the trimming term. Since
Yi(a, b)Ii is α-mixing we can use Lemma II and thus

E(Ẑm(a, b) − E Ẑm(a, b))2 ≤ Cm
∞∑

j=1

(α(j))
∆

2+∆

(
E |Yi(a, b)Ii|2+∆

) 2
2+∆

. (4.30)

So we need to study E |Yi(a, b)Ii|2+∆ and due to monotonicity of ψ we have

E

∣∣∣∣∣

∫ |di|/
√
m

0
sign di

(
−ψ(εi − x sign di) + ψ(εi)

)
dx Ii

∣∣∣∣∣

2+∆

≤

≤ C E

∣∣∣∣∣

∫ |di|/
√
m

0

(
−ψ(εi − |di| /

√
m) + ψ(εi)

)
dx Ii

∣∣∣∣∣

2+∆

+

+ C E

∣∣∣∣∣

∫ |di|/
√
m

0

(
ψ(εi + |di| /

√
m) − ψ(εi)

)
dx Ii

∣∣∣∣∣

2+∆

=: Am1 +Am2,

where both integrands on RHS are non-negative constants. Thus

Am1 ≤ C E
[
(|di| /

√
m)2+∆

∣∣−ψ(εi − |di| /
√
m) + ψ(εi)

∣∣2+∆
Ii

]
≤

≤ C E

[(∣∣a+ br0iM
∣∣

√
m

)2+∆
∣∣a+ br0iM

∣∣
√
m

Ii

]
≤

≤ Cm− 3+∆
2

(
|a|3+∆ + |b|3+∆ E

(∣∣r0iM
∣∣3+∆

Ii
))

and the similar upper bound holds also for Am2. Since
∑∞

j=1(α(j))
∆

2+∆ < ∞ by the
assumptions, we have from (4.30)

E(Ẑm(a, b)−E Ẑm(a, b))2 ≤ Cm
[
m− 3+∆

2+∆ |a|2
3+∆
2+∆ +|b|2

3+∆
2+∆ m− 3+∆

2+∆

(
E
(∣∣r0iM

∣∣3+∆
Ii
)) 2

2+∆
]
.

(4.31)
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Since E
∣∣r0iM

∣∣2+∆
<∞ we can estimate

(
E
(∣∣r0iM

∣∣3+∆
I
[ ∣∣r0iM

∣∣ ≤ m
1

2+∆
])) 2

2+∆ ≤ Cm
1

2+∆
2

2+∆ = O(m2/(2+∆)2)

and thus the order of the term with |b| in (4.31) is m
− 1

2+∆
+ 2

(2+∆)2 = m
− ∆

(2+∆)2 and of

the one with |a| is m− 1
2+∆ . Thus we can choose ξ > 0 (the grid parameter) such that

m2ξ
∣∣∣Ẑm(a, b) − E Ẑm(a, b)

∣∣∣ = OP (m−η)

for some η > 0, where the term m2ξ comes from treating

max
1≤j,k≤N

∣∣∣Ẑm(aj , bk) − E Ẑm(aj , bk)
∣∣∣

similarly as in Lemma 2.1. Due to definition of the trimming, the same is true for the
Zm(a, b) and we can thus conclude that

max
1≤j,k≤N

|Zm(aj , bk) − EZm(aj , bk)| = OP (m−η)

which finishes the proof of Lemma 4.2.

Lemma 4.3. Let the assumptions of Theorem 4.1 be satisfied. Then, for arbitrary
D > 0

sup
|a|+|b|≤D

∣∣∣Mm(a, b) + λ′(0)(a, b
1

m

m∑

i=1

(r0iM )2)T
∣∣∣ = OP

(
m−η)

for some η > 0, where

Mm(a, b) =
1√
m

m∑

i=1

(1, r0iM )T
(
ψ(εi − (a+ br0iM )/

√
m) − ψ(εi)

)
.

Proof. The idea of the proof is similar to that of the previous lemma, therefore we
will not give all the details here. We concentrate on the key part only. Again one has
to get suitable approximations for the conditional expectation of Mm(a, b) and the
(2 × 2)-variance matrix

E
(
Mn(a, b) − E∗Mn(a, b)

)(
Mn(a, b) − E∗Mn(a, b)

)T
. (4.32)

We start with the conditional expectation. Keeping the notation di = a+ br0iM we get
similarly as in (4.24)

E∗MT
m(a, b) = =

1√
m

m∑

i=1

(1, r0iM )(−λ(di/
√
m)) =

= − 1√
m
λ′(0)

m∑

i=1

(1, r0iM )
(
di/

√
m+OP

(
|di/

√
m|2

))
=

= −λ′(0)
(
a, b

1

m

m∑

i=1

(r0iM )2
)

+OP
(
(a2 + b2)m−1/2 + b2m−3/2+max(1,3/(2+∆))

)
,
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uniformly in |a| + |b| ≤ D.

For estimation the variance matrix (4.32) we introduce again the trimming with the
same notation Ii = I

{ ∣∣r0iM
∣∣ ≤ Km1/(2+∆)

}
. Similarly as earlier we can substitute the

inner conditional expectation in (4.32) by the unconditional one. As all the elements of
the matrix are similar we focus on one specific only. By Lemma II

var
{ 1√

m

m∑

i=1

r0iM
(
ψ(εi − di/

√
m) − ψ(εi)

)
Ii

}
≤

≤ C
m

m

∞∑

j=1

(α(j))
∆

2+∆

(
E
∣∣r0iM

(
ψ(εi − di/

√
m) − ψ(εi)

)
Ii
∣∣2+∆

) 2
2+∆

, (4.33)

where we used the fact that for any p ≥ 1

E |X − EX|p ≤ 2p−1 E(|X|p + |EX|p) ≤ 2p E |X|p .

Hence again it suffices to estimate

E
∣∣r0iM

(
ψ(εi − di/

√
m) − ψ(εi)

)
Ii
∣∣2+∆ ≤ Cm−1/2 E

(∣∣r0iM
∣∣2+∆ ∣∣a+ br0iM

∣∣ Ii
)
≤

≤ Cm−1/2
(
|a| + |b|E

[∣∣r0iM
∣∣3+∆

Ii
])

≤ Cm−1/2(|a| + |b|m1/(2+∆))

≤ C(|a| + |b|)m−∆/(2(2+∆)) (4.34)

uniformly in |a| + |b| ≤ D.

Coming back to (4.33) we have that the RHS is if order m−∆/(2+∆)2 , which concludes
the proof.

Remark 4.4. Proceeding in a standard way, Lemmas 4.2 and 4.3 ensure that α̂′
jm =

OP (1) and β̂′jm = OP (1) and, moreover, we get the asymptotic representations

α̂′
jm =

1√
mλ′j(0)

m∑

i=1

ψj(εi,j) +OP (m−η), (4.35)

β̂′jm =

√
m

λ′j(0)

1∑m
i=1(r

0
iM )2

m∑

i=1

ψj(εi,j)r
0
iM +OP (m−η), (4.36)

for some η > 0. Note that due to Remark 4.3 the same asymptotic representation holds
as well for

α̂∗
jm =

√
m(α̂jm − α0

j ), and β̂∗jm =
√
m(β̂jm − β0

j ).

Lemma 4.4. Let the assumptions of Theorem 4.1 be satisfied. Then, for any T > 0,
as m→ ∞,

max
1≤k≤⌊mT ⌋

∣∣∣∣Nk,m(α̂′
m, β̂

′
m)+λ′(0)

1

m

(
α̂′
m

m+k∑

i=m+1

r0iM+β̂′m

m+k∑

i=m+1

(r0iM )2
)∣∣∣∣
/

(k/m)γ = OP (m−η),
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for some η > 0, where

Nk,m(a, b) =
1√
m

m+k∑

i=m+1

r0iM
(
ψ(εi − a/

√
m− br0iM/

√
m) − ψ(εi)

)

and α̂′
m, β̂

′
m represent the proper coordinate of estimators defined in (4.22).

Proof. The proof is based on the uniform result for Nk,m(a, b) over |a| + |b| ≤ D for
any D > 0, i.e.

sup
|a|+|b|≤D

max
1≤k≤⌊mT ⌋

∣∣∣∣Nk,m(a, b)+λ′(0)
1

m

(
a
m+k∑

i=m+1

r0iM+b
m+k∑

i=m+1

(r0iM )2
)∣∣∣∣
/

(k/m)γ = OP (m−η).

(4.37)

Plugging in the estimators is then accomplished similarly as in proof of Lemma 2.3, since
by Remark 4.4 we know that α̂′

m = OP (1) and β̂′m = OP (1), i.e. P
(
|α̂′
m| + |β′m| > D

)

can be made arbitrary small by choosing D large.

Towards (4.37) we proceed similarly to the proof of Lemma 4.3. We need now however
conditional expectation given riM , i = m+1, . . . ,m(T +1), which we denote again E∗.
Direct calculations give

E∗Nk,m(a, b) = − 1√
m

m+k∑

i=m+1

r0iMλ
(
(a+ br0iM )/

√
m
)

=

= −λ′(0)
1

m

(
a

m+k∑

i=m+1

r0iM + b
m+k∑

i=m+1

(r0iM )2
)

+OP
(
m−η),

uniformly for |a| + |b| ≤ D, with some η > 0.

Next we want to find an upper bound for

E
(

max
1≤k≤⌊mT ⌋

(m/k)γ |Nk,m(a, b) − E∗Nk,m(a, b)|
)2
.

We proceed as in previous proof, only have to take the maximum of the cumulative
sums into account. Using Lemma II we have

var
{

max
1≤k≤⌊mT ⌋

(m/k)γNk,m(a, b)
}
≤ C log2(2⌊mT ⌋)m2γ−1

⌊mT ⌋∑

k=1

k−2γ ·

·
(
E
∣∣r0iM

(
ψ(εi − di/

√
m) − ψ(εi)

)
Ii
∣∣2+∆

) 2
2+∆

. (4.38)

The expected value part of RHS was already studied in (4.34) and thus we can conclude
that RHS of (4.38) is O(log2(m)m−∆/(2(2+∆))). This similarly as in Lemma 4.2 finishes
the proof.
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4.4 Proofs

Proof of Theorem 4.1. The proof will proceed in two steps.
1. First we show that the limit behavior of the weighted partial sums

Ĥ(m, k) = (Ĥ1(m, k), . . . , Ĥd(m, k))
T =

1√
m

m+k∑

i=m+1

r̃iMψ(ε̂i), k = 1, . . . , ⌊mT ⌋

is the same as that of

H̃(m, k) =
1√
m

( m+k∑

i=m+1

r0iMψ(εi) −
∑m+k

i=m+1(r
0
iM )2∑m

i=1(r
0
iM )2

m∑

i=1

r0iMψ(εi)
)
. (4.39)

Using Lemma 4.4 we have for every j = 1, . . . , d

max
1≤k≤⌊mT ⌋

∣∣∣
m+k∑

i=m+1

r0iMψj
(
εi,j − (α̂′

jm + β̂′jmr
0
iM )/

√
m
)
−

m+k∑

i=m+1

r0iMψj(εi,j)+

+ λ′(0)
1√
m

(
α̂′
jm

m+k∑

i=m+1

r0iM + β̂′jm

m+k∑

i=m+1

(r0iM )2
)∣∣∣
/(√

m(k/m)γ
)

= OP (m−η) (4.40)

for some η > 0. Since 1√
m
α̂′
jm = OP (m−1/2) and by Lemma 4.1

max
1≤k≤⌊mT ⌋

|∑m+k
i=m+1 r

0
iM |√

m (k/m)γ
= OP (1),

we can simplify (4.40) accordingly. Using the asymptotical representation (4.36) of β̂′jm
we arrive at

max
1≤k≤⌊mT ⌋

∣∣∣
m+k∑

i=m+1

r0iMψj(ε̂i,j)−
( m+k∑

i=m+1

r0iMψj(εi,j)−
∑m+k

i=m+1(r
0
iM )2∑m

i=1(r
0
iM )2

m∑

i=1

r0iMψj(εi,j)
)∣∣∣
/

√
m

(
1 +

k

m

)(
k

m

)γ
= OP (m−η).

By Remark 4.3

Ĥ(m, k) =
1√
m

m+k∑

i=m+1

r0iMψ(ε̂i) +OP (m−η)

and thus the asymptotic equivalence of Ĥ(m, k) and H̃(m, k) is proven. This together
with Assumption (4.10) further implies that the limit behavior of

max
1≤k≤⌊mT ⌋

Q̂Cψ(m, k)/q2γ(k/m),

is the same as that of
max

1≤k≤⌊mT ⌋
Q̃Cψ(m, k)/q2γ(k/m),
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where
Q̃Cψ(m, k) = H̃(m, k)TΣ−1H̃(m, k). (4.41)

2. Now we study the limit behavior of

m+k∑

i=m+1

r0iMψ(εi), k = 1, . . . , ⌊mT ⌋,

and that of the related maximum of weighted quadratic forms

max
1≤k≤⌊mT ⌋

Q̃Cψ(m, k)/q2γ(k/m).

The proof follows lines of the one of Theorem 3.1. Define

Zm(t) =
1√
m

⌊mt⌋∑

i=1

r0iMψ(εi), 0 ≤ t ≤ T + 1.

Since {r0iMψ(εi)} is α-mixing we can show similarly to (3.13) that

Zm(·) Dd[0,T+1]−→ WΣ(·),

where {WΣ(t), t ∈ [0, T + 1]} is a centered Gaussian process with covariance function

E[WΣ(t)W T
Σ(s)] = min(t, s)Σ

and Σ is defined in (4.9). Recall that
Dd[0,T+1]−→ denotes weak convergence in the

Skorokhod space Dd[0, T + 1]. Next we study the process

H(m, ⌊mt⌋) = Zm(t+ 1) −Zm(1) − tZm(1) = Zm(t+ 1) − (t+ 1)Zm(1), 0 ≤ t ≤ T.

Following the lines from (3.14) to (3.15) we can conclude that

Σ−1/2H(m, ⌊m ·⌋)/( · + 1)
Dd[0,T ]−→ W

( ·
· + 1

)
, (4.42)

with {W (t), t ≥ 0} denoting a standard Brownian motion.

By Lemma 4.1

sup
0≤t≤T

∣∣∣∣
∑m+⌊mt⌋

i=m+1 (r0iM )2∑m
i=1(r

0
iM )2

− t

∣∣∣∣
P−→ 0,

which implies that (4.42) holds also with H̃(m, ⌊m ·⌋) in place of H(m, ⌊m ·⌋). The rest
of the proof is exactly the same as the one of Theorem 3.1. �

Proof of Theorem 4.2. Recall that the model under the considered alternative has the
form

ri,j = α0
j + β0

j r̃iM + (α1
j + β1

j r̃iM )δmI{i > m+ k∗} + εi,j , j = 1, . . . , d, i = 1, 2, . . . ,



CHAPTER 4. MONITORING IN CAPITAL ASSET PRICING MODEL 63

where δm → 0. Notice that in this situation we have, for k∗ < k ≤ ⌊mT ⌋,

m+k∑

i=m+1

r̃iMψj(ε̂i,j) =

m+k∑

i=m+1

r̃iMψj
(
εi,j − (α̂′

jm + β̂′jmr
0
iM )/

√
m+ (α1

j + β1
j r̃iM )δmI{i > m+ k∗}

)
(4.43)

with
α̂′
jm = OP (1), β̂′jm = OP (1),

based on the training sample only. Moreover

α1
j + β1

j r̃iM = α1
j − β1

j (rmM − E riM ) + β1
j r

0
iM =: α11

j + β1
j r

0
iM ,

where α11
j can be conditionally on (r1M , . . . , rmM ) treated as a constant.

Similar to the proof of Theorem 4.1 we need to study

L̂j(α̂
′
jm, β̂

′
jm,m, k) :=

1√
m

m+k∑

i=m+1

r̃iMψj(ε̂i,j),

where the notation is based on the formula below. Towards this we define similarly to
Lemma 4.4

Lj(a, b,m, k) :=
1√
m

m+k∑

i=m+1

r0iMψj
(
εi,j−(a+br0iM )/

√
m+(α11

j +β1
j r

0
iM )δmI{i > m+k∗}).

Along the lines of the proof of Lemma 4.4 we get that

max
1≤k≤⌊mT ⌋

(
|{Lj(a, b,m, k) − E∗(Lj(a, b,m, k)}|

(k/m)γ

)
= OP (m−η),

uniformly in |a| + |b| ≤ D for some η > 0 and arbitrary D > 0, where E∗ denotes the
conditional expectation given riM , i = m+ 1, . . . ,m(T + 1).

The conditional expectation of Lj(a, b,m, k) has to be calculated carefully. Using again
the notation di = a+ br0iM

E∗ Lj(a, b,m, k) =
1√
m

m+k∑

i=m+1

r0iM E∗ ψj(εi,j − di/
√
m+ (α11

j + β1
j r

0
iM )δmI{i > m+ k∗}) =

= − 1√
m

m+k∑

i=m+1

r0iM

(
λ′j(0)(di/

√
m− (α11

j + β1
j r

0
iM )δmI{i > m+ k∗})+

+OP

((
(a+ br0iM )/

√
m+ (α11

j + β1
j r

0
iM )δmI{i > m+ k∗}

)2)
,

uniformly in |a| + |b| ≤ D and in 1 ≤ k ≤ ⌊mT ⌋.
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(i) Then, in case of δm = m−1/2, an application of Lemma 4.1 results in

E∗ Lj(a, b,m, k) = − bλ′j(0)
1

m

m+k∑

i=m+1

(r0iM )2 + β1
jλ

′
j(0)

1

m

m+k∑

i=m+k∗+1

(r0iM )2 I{k > k∗}

− aλ′j(0)
1

m

m+k∑

i=m+1

r0iM + α11
j λ

′
j(0)

1

m

m+k∑

i=m+k∗+1

r0iM I{k > k∗}

+OP
(
{a2 + b2 + (α11

j )2 + (β1
j )

2}m−ξ),

uniformly in |a| + |b| ≤ D and in 1 ≤ k ≤ ⌊mT ⌋, for some ξ > 0.

Now, since α̂′
jm = OP (1) and β̂′jm = OP (1), we can plug-in the estimates α̂′

jm and β̂′jm
for a and b in a standard way and similarly as in proof of Theorem 4.1 we get that the
limit behavior of

{
L̃j(α̂

′
jm, β̂

′
jm,m, ⌊mt⌋)

/
(qγ(⌊mt⌋/m), t ∈ [1/m, T ]

}

is the same as that of

{( 1√
m

⌊mt⌋∑

i=m+1

r0iMψj(εi,j) −
∑⌊mt⌋

i=m+1(r
0
iM )2∑m

i=1(r
0
iM )2

m∑

i=1

r0iMψj(εi,j) + λ′j(0)β1
j

1

m

m+⌊mt⌋∑

i=m+k∗+1

(r0iM )2
)/

qγ(⌊mt⌋/m), t ∈ [1/m, T ]
}

=:
{
H∗
j (m, ⌊mt⌋)/qγ(⌊mt⌋/m), t ∈ [1/m, T ]

}

for 0 ≤ γ < 1/2. Note that

H∗
j (m, ⌊mt⌋) = H̃j(m, ⌊mt⌋) + λ′j(0)β1

j

1

m

m+⌊mt⌋∑

i=m+k∗+1

(r0iM )2,

where H̃j is j-th coordinate of H̃ defined in (4.39). Thus we know the asymptotics of

H̃j from Theorem 4.1. Regarding the last term of H∗
j we use (4.17) of Lemma 4.1, i.e.

sup
0≤t≤T

∣∣∣∣∣∣
1

m

m+⌊mt⌋∑

i=m+k∗+1

(r0iM )2 − (t− s)+ var{r0M}

∣∣∣∣∣∣
P−→ 0,

which leads to the shift

(t− s)+

qγ(t)
var{r0M}Σ−1/2(λ′1(0)β1

1 , . . . , λ
′
d(0)β1

d)
T

in an analogue of (3.17) in the proof of Theorem 3.2. Thus we can follow the lines there
to see the form of the function h(t, s). Then the rest of the proof of (i) is clear.

(ii) In case of
√
m |δm| → ∞ and lim infm→∞(⌊mT ⌋ − k∗)/m > 0, the term with β1

j in
E∗ Lj(a, b,m,mT ) dominates. More precisely,

|E∗ Lj(a, b,m,mT )| =
√
m |δm|λ′j(0)|β1

j |
1

m

m+⌊mT ⌋∑

i=m+k∗+1

(r0iM )2
(
1 + oP (1)

) P−→ ∞,
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uniformly in |a|+ |b| ≤ D, if β1
j 6= 0. Therefore also the test statistic converges to ∞ in

probability, which proves (ii) and completes the proof of Theorem 4.2.

Proof of Theorem 4.3. The proof follows lines of the one of Theorem 3.3. Only in addition
we have to deal with the regressors r̃iM . Thus we need one extra step in estimation.

Define, for k ≥ 0,

Γ̃k =
1

m

m−k∑

i=1

r0iMr
0
i+k,Mψ(εi)ψ(εi+k)

T ,

Γk =
1

m

m−k∑

i=1

r0iMr
0
i+k,Mψ(ε̂i)ψ(ε̂i+k)

T ,

and, for k < 0, put Γ̃k = Γ̃
T

−k and Γk = Γ
T
−k, respectively.

Further let
Σ̃m =

∑

|k|<Λm

w(k/Λm)Γ̃k, Σm =
∑

|k|<Λm

w(k/Λm)Γk.

Thus we get following decomposition

Σ̂m = (Σ̂m − Σm) + (Σm − Σ̃m) + (Σ̃m − Σ) + Σ.

According to Remark 4.3, the first term can be shown to be op(1) similarly as in
Theorem 4.1. The second and the third term can be treated as in Theorem 3.3 (using
the techniques of this chapter) and thus shown to be op(1) as well. �



Chapter 5

Retrospective Analysis

In this chapter we explore the robust retrospective change-point analysis which is a
crucial prerequisite to online monitoring since it enables to check the stability of the
historical (training) data. This fact leads us to denote the sample size m as compared
to standard n.

The topic of robust retrospective change-point analysis in a univariate location model
with dependent data based on M-estimation was studied in Hušková and Marušiaková
[2012] under slightly more restrictive assumptions than we have presented in Section 2.1.
However their conclusions hold under Assumptions (A.1) - (A.5) as well. Their results
are summarized in next section and are generalized to a multivariate location model
in Section 5.2 and to CAPM in Section 5.3. Due to the similarity to the procedures of
previous chapters, the presentation will be shorter.

5.1 Location Model

It is assumed that the one dimensional observations Y1, . . . , Ym follow the model:

Yi = µ0 + δmI{i > k∗m} + ei, i = 1 . . . ,m, (5.1)

where k∗m (≤ m), µ0 and δm 6= 0 are unknown parameters and e1, . . . , em are random
errors. Function I{A} denotes again the indicator of the set A.

The hypothesis testing problem introduced in Section 1.2 thus transforms to

H̃0 : k∗m = m versus H̃1 : k∗m < m. (5.2)

The test statistic is again based on the cumulative sums of ψ-residuals

Ŝm,ψ(k) =
1

m1/2

k∑

i=1

ψ(êi), k = 1, . . . ,m, (5.3)

where ψ(êi) is defined by (2.5).
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Hušková and Marušiaková [2012] chose to use max-type test and thus defined

Tm,ψ = max
1≤k≤m

|Ŝm,ψ(k)|
σ̂m(ψ)

(5.4)

and the trimmed version

Tm,ψ(η) = max
ηm≤k≤m(1−η)

√
m2

k(m− k)

|Ŝm,ψ(k)|
σ̂m(ψ)

, (5.5)

where η ∈ (0, 1/2) and σ̂m(ψ) is a proper standardization.

The asymptotic behavior of the test statistics is summarized in following two theorems.

Theorem 5.1. Let Y1, . . . , Ym follow model (5.1). Let assumptions (A.1) – (A.4) from
Section 2.1 be satisfied and let σ̂2

m(ψ) be a consistent estimator of σ2(ψ) defined by
(2.8). Then under H̃0, as m→ ∞,

Tm,ψ
D−→ sup

0<t<1
|B(t)| (5.6)

and

Tm,ψ(η)
D−→ sup

η<t<1−η

|B(t)|√
t(1 − t)

, (5.7)

where {B(t), t ∈ (0, 1)} is a Brownian bridge and 0 < η < 1/2.

Theorem 5.2. Let Y1, . . . , Ym follow model (5.1) with k∗m = ⌊mτ⌋ for some τ ∈ (0, 1).
Let assumptions (A.1) – (A.4) from Section 2.1 be satisfied and let σ̂2

m(ψ) be a consistent
estimator of σ2(ψ) defined by (2.8). If δm = θm−1/2 then Tm,ψ and Tm,ψ(η) have the
same limit distribution as

sup
0<t<1

∣∣B(t) − θλ′(0)p̃(t, τ)/σ(ψ)
∣∣

and
sup

η<t<1−η

{∣∣B(t) − θλ′(0)p̃(t, τ)/σ(ψ)
∣∣ /
√
t(1 − t)

}
,

respectively, where {B(t), t ∈ (0, 1)} is a Brownian bridge, 0 < η < 1/2 and

p̃(t, τ) = min(t, τ)(1 − max(t, τ)), t ∈ (0, 1), τ ∈ (0, 1). (5.8)

For proofs please see Hušková and Marušiaková [2012] or the following remark for the
main ideas.

Remark 5.1. (i) Proof of Theorem 5.1 is similar (even simpler) than the one of Theorem
2.1, one need to use just Corollary 2.2 instead of Lemmas 2.5 and 2.6 and realize that
{W (t) − tW (1), t ∈ [0, 1]} is Brownian bridge for {W (t), t ∈ [0, 1]} being Wiener
process.
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(ii) Under the alternative a situation is a bit more complicated compared to the online
monitoring. The problem is that the estimate µ̂m(ψ) is influenced by the amount of
change. Therefore instead of the asymptotic representation (2.29), i.e.

√
m(µ̂m(ψ) − µ0) =

1

λ′(0)
√
m

m∑

i=1

ψ(ei) + oP (1),

we have for δm = m−1/2

√
m(µ̂m(ψ) − µ0) =

1

λ′(0)
√
m

m∑

i=1

ψ(ei) + (1 − τ) + oP (1). (5.9)

Otherwise the proof goes similarly to the one of Theorem 2.2 and thus give us the form
of the shift function p̃(t, τ).

(iii) As an estimate of the long run variance σ2(ψ), we can take σ̂2
m(ψ) defined in

(2.42). Under the additional assumption (A.5) it is consistent not only under the null
hypothesis, but also under the local alternatives, which can be checked going through
the proof of Theorem 2.3. Estimators of σ2(ψ) can be modified to take into account a
possible change in order to improve the power, confer Hušková and Kirch [2010]. The
idea is that we calculate the residuals differently before and after the supposed change,
which is estimated as

k̂∗m = arg max
1≤k≤m

∣∣∣Ŝm,ψ(k)
∣∣∣

and analogously for Tm,ψ(η).

(iv) The boundary function of (5.5) is derived from the standard deviation of limit
distribution as can be seen in (5.7) and thus the procedure should have better properties.
However the trimming is needed at both ends. Another possibility is to use function
(t(1 − t))ξ for some ξ ∈ (0, 1/2) cf. Antoch et al. [2002] for example. For simplicity we
restrict ourselves to analogue of detector (5.4) in further generalizations.

5.2 Multivariate Location Model

Results from previous section are generalized here to the multivariate model, which
allow to test stability of training data for online monitoring studied in Chapter 3.

Thus the d-dimensional observations are assumed to follow model

Y i = µi + δmI{i > k∗m} + ei, i = 1, . . . ,m, (5.10)

where again δm 6= 0. Hypotheses of (5.2) remain the same, referring now to the model
(5.10).

The test statistic is again a quadratic form of ψ-residuals

T ∗
m,ψ = max

1≤k≤m

(
1√
m

k∑

i=1

ψ(êi)

)T
Σ̂

−1

m

(
1√
m

k∑

i=1

ψ(êi)

)
,
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where M-residual ψ(êi) is defined in (3.4) and Σ̂m is an estimator of the asymptotic
variance matrix Σ defined in (3.6).

Under the assumptions (A*.1)–(A*.4) from Chapter 3 we have the following asymptotic
behavior of the test statistic.

Theorem 5.3. Let Y 1, . . . ,Y m follow model (5.10). Let assumptions (A*.1) – (A*.4)
from Section 3.1 be satisfied and let Σ̂m be a consistent estimator of Σ. Then under
H̃0, as m→ ∞,

T ∗
m,ψ

D−→ sup
0<t<1

d∑

j=1

B2
j (t), (5.11)

where {Bj(t), t ∈ (0, 1)}, j = 1, . . . , d are independent Brownian bridges.

Theorem 5.4. Let Y 1, . . . ,Y m follow model (5.1) with δm = θm−1/2, θ 6= 0 and
k∗m = ⌊mτ⌋ for some τ ∈ (0, 1). (A*.1) – (A*.4) from Section 3.1 be satisfied and let
Σ̂m be a consistent estimator of Σ. Then

T ∗
m,ψ

D−→ sup
0<t<1

d∑

j=1

(Bj(t) − sj(t, τ))
2, (5.12)

where {Bj(t), t ∈ (0, 1)}, j = 1, . . . , d are independent Brownian bridges,

s(t, τ) = p̃(t, τ)Σ−1/2
(
λ′1(0)θ1, . . . , λ

′
d(0)θd

)T
,

with p̃(t, τ) defined in (5.8) and Σ1/2 is square root matrix of Σ.

Proofs of both previous theorems are a straight-forward combinations of Theorems 5.1
and 3.1, respectively 5.2 and 3.2. As an estimate of Σ we can use Σ̂m from (3.9), which
under additional assumptions of Theorem 3.3 is proven to be consistent under the null
hypothesis H̃0. This holds similarly under the local alternative of Theorem 5.4.

The limit distribution of Theorem 5.3 can be used to determine critical values such
that the test has required level. For more details see Chapter 7.

5.3 CAPM

Similarly as in previous section we design here a retrospective procedure for testing
stability of portfolio betas in CAPM by analogy with the monitoring procedure.

Instead of model (4.3) we consider

ri,j = α0
j + β0

j r̃iM + (α1
j + β1

j r̃iM )δmI{i > k∗m} + εi,j , j = 1, . . . , d, i = 1, . . . ,m
(5.13)

with β1 6= 0, where the notation comes from Chapter 4. For this model hypotheses
(5.2) need to be tested. Towards this we use test statistic

TCm,ψ = max
1≤k≤m

( 1√
m

m+k∑

i=m+1

r̃iMψ(ε̂i)
)T

Σ̂
−1

m

( 1√
m

m+k∑

i=m+1

r̃iMψ(ε̂i)
)
, (5.14)
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where M-residual ψ(êi) is defined in (4.6) and Σ̂m is an estimator of the asymptotic
variance matrix Σ defined in (4.9).

Limit distributions of this detector are analogous to those of T ∗
m,ψ thus we present them

only as a remark.

Remark 5.2. (i) With the assumptions (A*.1) – (A*.4), (B) as considered in Chapter
4, Σ̂m being a consistent estimator of Σ, the limit distribution of the detector TCm,ψ
under the null hypothesis is described by (5.11).

(ii) With the assumptions (A*.1) – (A*.4), (B) as considered in Chapter 4, Σ̂m being
a consistent estimator of Σ, the limit distribution of the detector TCm,ψ under the
contiguous alternative with k∗m = ⌊mτ⌋ for some τ ∈ (0, 1) is described by (5.12),
where the shift function s(t, τ) has now form

s(t, τ) = p̃(t, τ) var{r0M}Σ−1/2(λ′1(0)β1
1 , . . . , λ

′
d(0)β1

d)
T .



Chapter 6

Computational Aspects

Until now the behavior of monitoring procedures has beeb studied asymptotically – as
we have considered the length of training data m tending to infinity. However, for real
data problems this is always limited and thus it is important to investigate some finite
sample properties for the proposed procedures as well.

In this chapter we will focus on results of simulation studies conducted for each proce-
dure introduced, as well as a real data example. All programming work was provided
using the statistical software R 2.15.1.

6.1 Location Model

We start with the monitoring procedure for a change in location model described in
Chapter 2.

Let us first list different options we have used for the simulation study in order to be
able to describe the influence of particular parameters:

• ψ-functions corresponding to the L2, L1 and Huber estimators as described in
Section 1.4 (in the Huber case with constant K = 1.345 which is the default
value in the R-package);

• length of historical period m = 80, 200, 400;

• multiple T for monitoring period T = 10;

• tuning constant γ = 0, 0.25, 0.45;

• type of dependence: AR(1) or MA(1) with coefficient ρ = −0.5,−0.25, 0, 0.25, 0.5, 0.75;

• distribution of random errors (innovations): N(0, 1), t3, t1, Laplace, contaminated
normal ones;

• µ0 = 0, δ = 1/2, 1, 2;

• k∗ = 10, 80, 200, 400.
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One important parameter choice is missing in the previous list. It is the estimator
σ̂2
m(ψ) of the long-run variance (LRV), square root of which is used for normalizing the

test statistic (2.7). For dependent data it is crucial to have a good estimator, since it
generally influences significantly the whole test procedure (see e.g. Kirch [2006]).

In Section 2.5 we proposed a class of kernel estimators, namely Bartlett kernel and
the flat-top kernel variance estimators (shortly the Bartlett and FLT estimators).
Nevertheless the question of a proper choice of the number of lags Λm (i.e. bandwidth
of the kernel) remains to be addressed.

Since the choice of the LRV estimator is of great importance for our procedures, we
focus on this in the following subsection.

6.1.1 Long-run Variance Estimators

The Bartlett estimator used to be a traditional estimator of the LRV. Results of
Antoch et al. [1997] suggest using Λm = m/10. This setting was also adopted by
Hušková and Marušiaková [2012], which dealt with retrospective change-point analysis
using M-estimates, as described earlier.

Recently FLT estimator became more popular. This was also supported by Politis
[2003] who has shown that the bandwidth can be chosen adaptively in such a way that
it captures the theoretically optimal rates very well. This is not generally true if we use
this selection procedure with the Bartlett estimator.

We present the selection procedure as summarized in Hušková and Kirch [2010], where
it was used in large simulation study which compared the performance of respective
estimators in L2 setting.

Adaptive Selection of the bandwidth Λm:

Let ℓ be the smallest positive integer such that
∣∣∣R̂m(ℓ+ k, ψ)/R̂m(0, ψ)

∣∣∣ < c
√

log10m/m for k = 1, . . . ,Km,

where R̂m(k, ψ) is defined in (2.43), c > 0 is a fixed constant, log10 is the logarithm
to base 10 and Km is a positive, nondecreasing integer valued function of m such that
Km = o(logm). Then choose Λm = 2ℓ.

The choice of the parameters c and Km is left to practitioners. However, Politis [2003]
suggests to use c = 2 and Km = 5 for the usual sample sizes approximately between 100
and 1000. Results of Hušková and Kirch [2010] confirm that these values indeed give
good results. But different choices give very similar results showing that the procedure
is rather robust with respect to the choice of c and Km. For practical applications they
recommend the choice c = 1.4 and Km = 3, since it is a good compromise between
c = 2,Km = 5 which works best under positive correlation and c = 1,Km = 1 which
works best under negative correlation. Moreover, they showed that the adaptive FLT
estimator has better performance than the Bartlett or FLT estimator with a variety of
choices for Lm expressed as fractions of sample size m.
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It is also necessary to mention that, unlike the Bartlett estimator, FLT one can be
negative, especially if σ2(ψ) is small. On one side this can be an advantage since in
this case the Bartlett estimator usually overestimates σ2(ψ) (while for large values of
the LRV both estimators usually underestimate it). FLT estimator manages to capture
small σ2(ψ) quite well and large value still better than the Bartlett one. Nevertheless
it is not desirable for many applications to have the estimate too close to zero (or even
negative). For example in testing problems this estimate forms a part of a denominator
of the test statistic and thus the statistic becomes quite large leading to rejecting the
null hypothesis wrongly. This is why the FLT estimator is usually modified as follows

σ̃2
m(ψ) = max(σ̂2

m(ψ), 1/ log2m)

in order to assure that it stays bounded away from zero. We also use this modification.

In spirit of Hušková and Kirch [2010] we extend the study of the Bartlett, FLT and
adaptive FLT estimators to M-estimate setting, which deepens results published in
Hušková and Marušiaková [2012]. Moreover, we do not focus only on the LRV estima-
tors themselves, but we consider their influence on the testing procedure as well.

We consider five different parameters for each estimator, namely

• Λm = 4, 8, 10, 20, 40 for the Bartlett and FLT ones, and

• c = 1, 1.2, 1.4, 1.7, 2, with K = 1, . . . , 5 for adaptive FLT one (denoted FLT
adapt).

We believe that a proper chart conveys much more information than plentiful of
numbers in a table, therefore we try to present the results mainly in form of figures. As
the number of parameters of the simulation study is quite large, we present here the
typical representative of each figure only. The rest of figures can be found attached in
a supplementary file (reffered to as Attachment further) and we comment them in the
text when it is useful.

The influence of different estimators (and parameters) on the test procedure under the
null hypothesis is illustrated by the so-called size-power curve plots (SPC) introduced
by Kirch [2006]. SPC plot shows the empirical size and power (i.e. the empirical α-
errors resp. 1-(β-errors)) on the y-axis for the chosen nominal level on the x-axis. So,
the graph for the null hypothesis should be close to the diagonal (which is given by
the thick dash-and-dot line) and for the alternatives it should be as steep as possible.
The nominal levels correspond to asymptotic distribution of the test statistic, i.e. the
critical values for α = 1%, 2%, . . . , 20% are obtained in the same way as in Chapter 7.

Figure 6.1 presents SPC plots for a monitoring procedure using Huber ψ function
(shortly Huber procedure) because it can be viewed as a compromise between L1 and
L2 procedures, and the tuning parameter γ = 0.25 as it is generally the best choice -
more on this topic later. Plots are arranged in a matrix form, where in columns there
are the three different LRV estimators (the Bartlett, FLT and FLT adapt), whereas
row panels represent various degrees of dependence of random errors - they form AR(1)
sequence (of N(0, 1) innovations) with coefficient ρ listed at LHS of each panel. Each
chart is SPC under the null hypothesis (i.e. the empirical level against the nominal one),



CHAPTER 6. COMPUTATIONAL ASPECTS 74

0.05

0.10

0.15

0.20

0.25

0.05 0.10 0.15 0.20

Bart

−
0.

5

0.05 0.10 0.15 0.20

FLT

−
0.

5

0.05 0.10 0.15 0.20

FLT_adapt

−
0.

5

0.05

0.10

0.15

0.20

0.25

Bart

−
0.

25

FLT

−
0.

25

FLT_adapt

−
0.

25

0.05

0.10

0.15

0.20

0.25

Bart

0

FLT

0

FLT_adapt

0

0.05

0.10

0.15

0.20

0.25

Bart

0.
25

FLT

0.
25

FLT_adapt

0.
25

0.05

0.10

0.15

0.20

0.25

Bart

0.
5

FLT

0.
5

FLT_adapt

0.
5

0.05

0.10

0.15

0.20

0.25

Bart
0.

75
FLT

0.
75

FLT_adapt

0.
75

Figure 6.1: SPC for different LRV estimators, Huber procedure under H0, γ = 0.25,
errors being AR(1) of N(0, 1) innovations with ρ indicated at LHS of each panel.
Λm : 4 - black, 8 - red, 10- yellow, 20 - green, 40 - blue and accordingly for FLT adapt;
m : 80 - dotted, 200 - dashed, 400 - solid.
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where different line types (dotted, dashed and solid) correspond to the three chosen
lengths of historical period (m = 80, 200, 400) - this coding is used in all figures if not
specified otherwise. Black, red, yellow, green and blue colors correspond to the chosen
parameter of the LRV estimators from the list above. The empirical sizes are based on
1000 repetitions and we use the same sequence of innovations for each setting in order
to allow easier comparison.

We can see that the adaptive FLT estimator gives the best results among all the
three estimators considered. From the moderate size historical period of m = 200,
the empirical sizes follow the ideal diagonal line almost perfectly for all degrees of
dependence. For short training data m = 80 and high degree of dependence (both
positive and negative) the nominal level is not kept. Only here we can also see a
difference caused by different parameters used. It is in line with the above mentioned
choices of constants c and K regarding the sign of dependence.

The FLT estimator with a fixed number of lags gives the best results for Λm = 4 (except
for the very strong dependence, where this is clearly insufficient). When the training
period is long enough (i.e. m = 400), choices Λm = 8, 10 work even better - they
are not so conservative for a negative dependence and perform better for the strong
positive one.

Performance of the Bartlett estimator with recommended Λm is represented by solid
blue, dashed green and dotted red lines respectively. We can see that the nominal level
is not kept by far even under the independence. But it is hard to recommend any
other rule regarding the number of lags, as the nominal level is not kept for stronger
dependence by any combination of m and Λm. For small dependence the choices up to
Λm = 10 seem reasonable.

Results for other types of procedures are similar (although the differences for L1

procedures are smaller). Also the other types of dependence (MA(1) sequences) and
tuning constant γ = 0, 0.45 do not play any significant role.

Now we focus on the estimators of the LRV themselves. Figure 6.2 shows their estimated
density for the Huber procedure (using the standard R routine). The vertical line
indicates the true value of LRV being estimated. For L2 procedure this is easy to
find since the LRV of AR(1) sequence is

σ2(L2) =
s2

(1 − ρ)2
,

where s2 is the variance of innovations. For other procedures we adopt the approach
of Hušková and Marušiaková [2012], where the theoretical values σ2(ψ) were approxi-
mated via simulations. Since we need the LRV for different values of ρ, we repeated the
simulation. For each parameter ρ we generated 10 000 of AR(1) error sequences {ei}i
and for each such sequence we calculated

1

N

N∑

i=1

ψ2(ei) + 2

L∑

k=1

1

N

N−k∑

i=1

ψ(ei)ψ(ei+k), (6.1)
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Figure 6.2: Kernel density estimates of the LRV for different estimators, Huber
procedure, errors being AR(1) of N(0, 1) innovations with ρ indicated at LHS of each
panel. Vertical black line represent true LRV. (Note different scale of each chart.)
Λm : 4 - black, 8 - red, 10- yellow, 20 - green, 40 - blue and accordingly for FLT adapt;
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where N = 10 000 and number of lags L = 100. The mean of these quantities serves
as an approximation of the theoretical LRV. On the L2 procedure we verified that the
approximation is really very precise.

Lets get back to Figure 6.2. In columns we have again the three variance estimators and
the row panels represent various degrees of dependence in AR(1) sequence of standard
normal innovations. The line types and colors coding is the same as in Figure 6.1. Please
notice also different scale of each panel.

Again we can see that FLT adapt estimates the theoretical LRV in the best way. There
is not much difference between the parameters considered and the estimates naturally
gets better with increasing data available. (Recall that the LRV is estimated from the
historical period only and thus the sample sizes are 80, 200, 400.) For a strong positive
dependence FLT adapt underestimates the variance, however it is still much better
than the Bartlett estimator or FLT with fixed number of lags. FLT with Λm = 4
works well for negative and mild positive dependence, Λm = 8, 10 is fine for moderate
one. The choice of a proper bandwidth for the Bartlett estimator is more difficult.
Similar conclusions hold for L1 and L2 procedures as well, figures of which can be
found attached.

It is also interesting to know what number of lags the adaptive estimator usually selects.
By design it can be only a positive even number. Figure 6.3 shows histograms of number
of lags Λm selected by the adaptive FLT estimator for Huber procedure. We used the
recommended constants c = 1.4, K = 3, figures for the others are attached. Columns
of the figure represent various sample sizes, rows again different degree of dependence
expressed by the ρ coefficient of AR(1) sequence with standard normal innovations.
We see that for independent observations the adaptive procedure selects generally the
smallest number of lags possible. For the dependent data the number of lags selected
naturally grows with increasing dependence (both positive and negative) and also with
increasing sample size. However it usually does not exceed 8 even for m = 400 (except
for the case of extreme dependence).

6.1.2 Boundary Function

A boundary function was in general terms introduced in (1.8) and for the location
model procedures was specified in (2.9). The tuning parameter γ ∈ [0, 1/2) was also
introduced there and now we focus on its influence.

For better perspective we integrate the 1/
√
m from (2.6) into a new boundary function

g(m, k, γ) =
√
mqγ(k/m) =

√
m

(
m+ k

m

)(
k

m+ k

)γ
, k = 1, 2, . . . , (6.2)

thus leaving the detector to be only the (absolute value of) cumulative sum of ψ-
residuals (normalized by a square root of the LRV).

Figure 6.4 shows the boundary functions g(m, k, γ) multiplied by the proper asymptot-
ical critical values c10(0.05, γ) for m = 200, γ = 0, 0.25, 0.45 and k = 1, . . . , 1000. Left
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Figure 6.3: Histograms of number of lags Λm selected by the adaptive FLT estimator
for c = 1.4, K = 3. Length of training period m in columns, dependence coefficient ρ
in rows.
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Figure 6.4: Boundary function g(m, k, γ) multiplied by the corresponding critical values
c10(0.05, γ) for the choices γ = 0.00, 0.25, 0.45, m = 200.

chart presents the overall picture whereas the right one is zoomed on the beginning of
the monitoring period. We can see that for a large value of k (at least 2m) the smallest
boundary function is generated by γ = 0 and thus it is the most sensitive to detect
the change far in the monitoring period. On the other hand, for small k (smaller than
m/2 approximately) it is the best to use γ = 0.45. For the period between m/2 and
2m the most appropriate is to use γ = 0.25 and we can see that this choice is not much
worse than the previous recommendations also outside this interval. Thus if we have
some prior belief about the change-point, we can tune the procedure to suit it better.
Otherwise the middle choice of γ = 0.25 works reasonably well for all situations.

Location of the change point k∗ and the choice of parameter γ also determine how the
procedure reacts when we have longer training period available. Clearly then we have
more precise estimates of the mean and the LRV and the asymptotic approximations
work better, but we focus here only on the influence of the boundary function. Each
panel of Figure 6.5 shows for different γ = 0, 0.25, 0.45 the boundary functions g(m, k, γ)
with different lengths of the training period (critical value is asymptotical i.e. the
same for all m and thus it was not included). We see that for γ = 0.45, the effect
of prolongation of the training period is positive throughout the whole monitoring
period. For γ = 0.25 there is a short period on the beginning of the monitoring, where
the increase in m leads to a higher boundary function and thus to prolongation of
the detection delay for a change-point located short after the start of the monitoring.
However, the difference between the boundary functions (at the beginning) is not so
significant. For a change-point located at time at least m0/2, the prolongation of
m0 brings improvement also with regards to the boundary function. For γ = 0 the
improvement is visible from k∗ = 3/2m0 and it thus confirms the above mentioned
conclusion, that this value of the tuning parameter should be used only when expecting
a change late enough.
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Figure 6.5: Boundary function g(m, k, γ) for m = 80, 200, 400 and γ = 0.00, 0.25, 0.45
in respective charts.

6.1.3 Monitoring Procedures with Adaptive LRV Estimator

Now we get back to the monitoring procedures in the location model, where based
on Section 6.1.1 we chose the adaptive FLT estimator with c = 1.4, K = 3 for an
estimation of the LRV.

Null hypothesis

To summarize the behavior of the test procedure under the null hypothesis we present
once again the matrix of SPC plots in Figure 6.6. It shows side by side all considered
procedures (i.e. L1, Huber and L2) and various degrees of dependence (in AR(1)
sequence of N(0, 1) errors). We can see that the difference between the procedures
is not significant and for a moderate length of the training period they perform very
well also for the very strong dependence. Only for m = 80 and strongly dependent
errors the required level is not kept. Regarding the tuning constant, the performance
for γ = 0.45 is slightly worse than for the other two choices, however the difference is
not significant.

Now we focus on the robustness of the procedures. Towards this we present Figure 6.7
of SPC for independent errors having various heavy tailed distributions. We consider
Laplace, Student t3 and t1 (Cauchy) and also two contaminated standard normal ones.
The first, denoted Mix1, is contaminated with 2% N(0, 400) while the second Mix2 is
contaminated with 5% N(0, 100). The L1 and Huber procedures keep the required level
very well for all the distributions however the L2 fails to do so if the contamination
is strong or the data are really heavy tailed. Note that for Cauchy distribution, the
SPC is even for m = 400 out of the range of the plot (about 50% of cases are rejected
already for 1% nominal level). Thus we see that L2 procedure performs unsatisfactory
in a presence of outliers.

Alternative hypothesis

Now we concentrate on the alternative hypothesis where a change in mean of amount
δ happens at point k∗ in the monitoring period.

Since the procedures are designed to have power one (asymptotically), the SPC under
the alternative hypothesis does not convey much information as the power is one even
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Figure 6.6: SPC for different procedures with adaptive FLT estimator under H0, errors
being AR(1) of N(0, 1) innovations with ρ indicated at LHS of each panel.
γ : 0 - black, 0.25 - red, 0.45 - blue; m : 80 - dotted, 200 - dashed, 400 - solid.
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Figure 6.7: SPC for different procedures with adaptive FLT estimator under H0,
different distribution of errors in each panel, γ = 0.25.
m : 80 - dotted, 200 - dashed, 400 - solid.

for the smallest nominal sizes in the vast majority of cases considered. More informative
is to measure power (on y-axis again) with respect to detection delay k−k∗ (on x-axis)
for chosen nominal level (we chose as usual α = 5%). We can call this chart DPC
(Delay-Power Curve) by analogy of SPC. Procedures gain power quite quickly with
the number of out-of-control observations increasing, thus it is enough to consider a
maximum delay of 200 even in the most adverse cases.

Second way to illustrate the performance under the alternative hypothesis is via the
stopping time, sometimes also called the run length (RL). Usually the average run
length (ARL) is shown as a single number summary. As has been said already, graphical
representation delivers more information and thus we introduce the graph of density of
run length (DRL for short). From the charts we can see for example that the distribution
of the RL is not symmetric and thus it is sometimes argued that the median describes
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the distribution better that the classical mean.

Firstly we concentrate on the influence of the tuning parameter γ. Figure 6.8 shows
DRL for all procedures and all change-points k∗ considered. Each chart represents DRL
for different m and γ. For a very early change (k∗ = 10) the best performance is for
γ = 0.45. For an early change (e.g. k∗ = 80 for m = 400) γ = 0.45 still slightly
outperforms 0.25, the situation is reversed for a moderate change-point. For a later
change (e.g. k∗ = 400 for m = 200) γ = 0 and 0.25 clearly outperforms 0.45 and for
a very late change γ = 0 is the most appropriate. Thus the theoretical conclusions
about choices of the tuning constant γ from Section 6.1.2 are confirmed and we see
that γ = 0.25 performs almost as good as the best possible choice in all circumstances
considered. We can also see that the difference between the procedures is not large and
that the prolongation of the training period brings quite an improvement, especially
from m = 80 to 200 (with the exceptions described in the second paragraph of Section
6.1.2). The same conclusions follow from Figure 6.9 where the DPC are displayed in
the same layout as described above.

Figure 6.10 shows DRL in different arrangement, thus allowing for better comparison
of the procedures and also sizes of the change. We used the middle value of γ = 0.25.
Columns represent now the length of the training period m, rows again change-points
k∗. Performance of L2 and Huber procedure is quite similar even for a large change
δ = 2, whereas L1 is inferior. In case of smaller change δ = 1 the difference is not so large.
A comparison of powers is done in Figure 6.11, where we also included a small change
of 0.5. For that one, L1 procedure is better than L2 procedure. All the observations
regarding the amount of change are in line with the theoretical expectations resulting
from the boundedness of the residuals (for L1 procedure and small change, this is a
boundedness from below, as the ψ-residual is always at least 1 in absolute value).

Figure 6.12 illustrates the robustness aspect of the procedures. It shows DRL in the left
column and DPC in the right one for various heavy-tailed/contaminated distributions.
We see that the L2 procedure clearly fails in these situations, whereas L1 and Huber
procedures still perform well even for Cauchy distribution.

In the same setting Figure 6.13 illustrates influence of the dependence. Row panels
represent various degrees of dependence in AR(1) sequence of N(0, 1) innovations. We
see the procedures have the best performance for negatively correlated errors and with
growing positive dependence the performance decreases, however having still 80% power
at delay 200. These results are in line with those of Hušková and Marušiaková [2012].
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degrees of dependence (AR(1) sequences of N(0,1) innovations), k∗ = 200, γ = 0.25,
δ = 1.
Procedure: Huber - black, L1 - red, L2 - blue; m : 80 - dotted, 200 - dashed, 400 - solid.
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6.2 Multivariate Location Model

In this section we concentrate on the performance of the monitoring procedures in-
troduced in Chapter 3. A lot of aspects are similar to the univariate case (we used
an analogous setting) and thus the presentation will be omitted. For example the
relationship between the tuning parameter γ and the change-point k∗ is exactly the
same and thus only the central value γ = 0.25 is considered. Moreover we restrict
ourselves to d = 2 dimensional model with µ0 = (1, 1)T . For estimation we use the same
ψj function for both coordinates j = 1, 2 and thus refer to the monitoring procedures
as L1, Huber, L2 procedures again.

Lets start again with a choice of an estimator of the long-run variance matrix (LRV)
from (3.6). We are not aware of an analogue of the adaptive bandwidth choice procedure
for FLT estimator (from the previous section) in a multivariate case. Thus we use older
results of Andrews [1991] which are implemented in R package sandwich (see Zeileis
[2004]). There the adaptive bandwidth choice exists for several kernels, from which we
choose the Bartlett, Truncated and Quadratic Spectral (QS – this is recommended)
ones. We compare the performance of the monitoring procedure using this LRV esti-
mators with the ones using fixed lags Bartlett and FLT kernels, where Λm = 4, 10, 20
is chosen.

Figure 6.14 is an analogue of Figure 6.1 showing a matrix of SPC plots for the Huber
procedure, where in columns there are different LRV estimators (the Bartlett, FLT
with fixed number of lags and the above mentioned adaptive ones), whereas row
panels represent various degrees of dependence of random errors - they form a vector
autoregression VAR(1)

ei = A(ρ)ei−1 + ζi, (6.3)

with coefficient matrix A(ρ) =

(
ρ 0
0 ρ

)
, coefficient ρ listed at LHS of each panel

and i.i.d. innovations with two-dimensional normal distribution ζi ∼ N2(0,A(0.25)).
The empirical sizes are based on 1000 repetitions and we use the same sequence of
innovations for each setting in order to allow easier comparison.

We can see that the adaptive choice of bandwidth delivers the best results in general.
The Truncated kernel does not function for the negative dependence, otherwise the
performance of the three “adaptive” kernels is comparable. The FLT kernel with Λm = 4
works well except for the very strong dependence. For the Bartlett kernel the optimal
number of lags seems to be 10, however the performance is worse than for FLT kernel.
We can also see a big difference between the fixed number and the adaptive choice of
lags for the Bartlett kernel. Based on these conclusions we decided to use the Quadratic
Spectral kernel with an adaptive bandwidth choice in following figures. For comparison
we ran the same simulations with the FLT kernel with Λm = 4, figures can be found
attached. Results are based on 2000 repetitions.

Figure 6.15 is an analogue of Figure 6.7, where the SPC plots are presented for the L1,
Huber, L2 procedures with the adaptive QS kernel for various distributions of random
errors. We consider either independent components with i.i.d errors (heavy-tailed t1
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and two contaminated normal ones – Mix1, Mix2 introduced in the previous section)
or dependent ones (the vector autoregression (6.3) with ρ = 0, 0.25, 0.5).

We can see again that the L2 procedure performs unsatisfactory in a presence of outliers,
whereas the Huber and L1 procedures are not influenced by these. With a growing
dependence the procedure requires more training data to get close to the nominal level.
For the FLT kernel m = 80 is not enough in general (see Attachment).

For the alternative we consider a change δmθ = (1, 1)T at point k∗ = 200. In Figure 6.16
we can see DRL and DPC charts for all three procedures considered and previously
mentioned error distributions. The charts confirm the robustness of L1 and Huber
procedures and the inappropriateness of L2 procedure for heavy-tailed/contaminated
distributions. It also shows that the Huber procedure is not much worse than the L2

even for the normal errors. L1 procedure is a bit worse in this situation. When the
change occurs in just one coordinate the procedures lose power to a small degree.
The results are almost the same also for the FLT kernel LRV estimator. (See figures
attached.)

6.3 CAPM

In this section we focus on the monitoring procedure for the Capital Asset Pricing
Model. As the situation there is similar to the multivariate location model, the presen-
tation of results is analogical. Some results mainly in a form of a numerical summary
can be also find in Chochola et al. [2013], where the Bartlett kernel was used. Based
on the experience with the LRV estimators from the previous section, we use here the
adaptive Quadratic Spectral one instead. Also FLT with Λm = 4 was tried, figures for
which can be found attached.

We consider d = 2 dimensional model (4.3) with α0 = β0 = (1, 1)T , where both
the random errors as well as the market portfolio can be dependent. Similarly as in
the previous section the random errors form either vector autoregression (6.3) where
we use an autoregression AR(1) model with the same coefficient ρ for modelling the
market portfolios demeaned returns r̃iM ’s. Or we consider independent components of
heavy-tailed/contaminated distributions for random errors. In this case we used i.i.d.
standard normal distribution for the market portfolio returns. Notation in figures is
based on the distribution of random errors, which according to previous governs also
the one of market portfolio returns. We use the central value of the tuning parameter
γ = 0.25 in all figures.

Figure 6.17 is a direct analogue of Figure 6.15. Also the conclusions are the same and
thus are not discussed here. Use the FLT kernel instead of the adaptive QS one for
the estimation of LRV causes worse results of the procedures in respect of keeping the
nominal level. Especially when m is small.

Figure 6.18 presents the alternative, when α1 = 0 and δmβ
1 = (1, 1)T , i.e. a change

in both components of the portfolio beta occurs at k∗ = 200. We see that the robust
(L1 and Huber) procedures are again reasonably sensitive, whereas the L2 procedure
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Figure 6.17: SPC for different procedures with adaptive QS estimator under H0,
different distribution of errors in each panel, γ = 0.25.
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fails to detect the change soon (or at all in case of t1 distribution). For the normal
errors the Huber procedure performs not much worse than the L2 and thus it can be
recommended. In case when also the intercept changes, the procedures perform slightly
worse. A further bit worse is a situation when only one of the portfolio betas changes.
And for the sake of completeness we discuss also the situation when only the intercept
changes. According to Remark 4.2 the limit distribution of the test statistic is not
sensitive to this change, which was confirmed by the simulation as well. The results
for the FLT kernel are similar. Figures for all the above mentioned alternatives can be
found in Attachment.

Finally, as an illustration of a possible application, we investigated a data set of
MSCI Global Sector Indices (net prices) that can serve as a benchmark to conduct
relative valuations of sectors, industry groups and industries across countries and
regions. Three sector indices – NDWUCSTA-World Consumer Staples (food, beverages,
tobacco, prescription drugs and household products), NDWUFNCL-World Financials,
and NDWUHC-World Health Care have been studied, and we chose NDDUWI MSCI
World Index (a weighted index designed to measure the equity market performance of
24 developed country market indices) to represent the market portfolio. ∗

We have a sample of data from 29/12/2000 to 29/03/2011. The data from the period
31/12/2004 to 01/12/2006 (of length m = 500) were examined by a retrospective test of
Section 5.3. Since the test did not reject the null hypothesis of no change, we used this
data set as the (stable) historical period for our monitoring procedure. The length of
the monitoring period is 2m = 1000, that is, the monitoring terminates on 01/10/2010.
So, critical values were chosen for T = 2.

Since, as described earlier, the Huber-type procedure provides a good combination of
efficiency and robustness, we only present the results for this type of monitoring here.
Also, as we did not know where to expect the possible change, we used γ = 0.25 as
a compromise between detecting an early or late change. The Bartlett kernel variance
estimator with bandwidth of Λm = 4 was used. Moreover, we considered the portfolio
including all three indices as well as all pairwise combinations.

In Figure 6.19 the values of the test statistics are shown together with the critical values;
a solid line indicates the critical value for T = ∞ (i.e., for the open-end monitoring)
and a dashed line the one for T = 2 (closed-end monitoring). A solid vertical line marks
the date 01/08/2007, i.e., the date when the sub-prime mortgage crisis approximately
started. The figures, particularly the first three ones, demonstrate the high sensitivity
of the portfolio risk with respect to the financial sector.

∗Source: Bloomberg, 2011,
http://www.msci.com/products/indices/tools/tickers/bb−eod/bloomberg−tickers−eod−sector.html
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Figure 6.19: Test statistics and critical values for different combinations of indices.



Chapter 7

Critical Values

In this short chapter we gather the information about critical values of the procedures
proposed in the thesis. We show how the critical values can be obtained and also present
tables with these values available to use.

7.1 Online Monitoring

As it has been already written in Section 1.3 the critical values have to be chosen such
that the requirements on the type I and type II error rates, i.e., (1.6) and (1.7) are
satisfied. For approximation of the critical values cm,T (α) introduced in (1.5), we can
use the limit distribution derived in particular theorems.

For the univariate case Theorem 2.1 gives us that the critical value can be approximated
by value cT (α, γ) such that

P

(
sup

0≤t≤T/(T+1)

|W (t)|
tγ

> cT (α, γ)

)
= α, (7.1)

where the dependence on γ ∈ [0, 1/2) comes from the boundary function qγ(·).
By the time rescalling property of Wiener process

sup
0≤x≤T/(T+1)

|W (x)|
xγ

D
= sup

0≤t≤1

∣∣∣W
(
t T
T+1

)∣∣∣
(
t T
T+1

)γ
D
=
( T

T + 1

)1/2−γ
sup

0≤t≤1

|W (t)|
tγ

(7.2)

and thus we can further consider only the functional

sup
0≤t≤1

|W (t)|
tγ

(7.3)

which corresponds to the open-end monitoring procedure. We will denote the critical
values for this functional as c∞(α, γ). The relation between both critical values is by
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(7.2) easy to see, namely we have

cT (α, γ) =
( T

T + 1

)1/2−γ
c∞(α, γ). (7.4)

The problem is that an explicit formula for the distribution function of the functional
(7.3) is known only when γ = 0. Otherwise one has to use simulations. However
these simulations were already performed and the critical values are published in
Horváth et al. [2004] (Table 1). For convenience we present them also in Table 7.1
for various test levels α and tuning parameters γ.

γ \ α 0.1 0.05 0.025 0.01

0.00 1.9497 2.2365 2.4948 2.7912
0.15 2.0273 2.2996 2.5475 2.8516
0.25 2.1060 2.3860 2.6396 2.9445
0.35 2.2433 2.5050 2.7394 3.0475
0.45 2.5437 2.7992 3.0144 3.3015
0.49 2.8259 3.0722 3.2944 3.5705

Table 7.1: Simulated critical values c∞(α, γ).

To illustrate the influence of the closed-end monitoring we evaluate the mutliplicative

factor
(

T
T+1

)1/2−γ
of (7.4) for T = 1, 2, 5, 10 and some γ previously considered. These

are presented in Table 7.2. We can see that for T = 1 or 2 the influence is quite
significant.

γ \ T 1 2 5 10

0 0.7071 0.8165 0.9129 0.9535
0.25 0.8409 0.9036 0.9554 0.9765
0.45 0.9659 0.9799 0.9909 0.9952

Table 7.2: Multiplicative factors for cT (·, γ).

For the multivariate and the CAPM case the situation is similar. The asymptotic
distribution of the detectors derived in Theorems 3.1 and 4.1 is the same and the
functional corresponding to open-end procedure there is

sup
0≤t≤1

∑d
j=1W

2
j (t)

t2γ
.

We denote its critical values by c
(d)
∞ (α, γ). These are published in Chochola et al. [2013]

for d = 2, . . . , 5. For d = 1 we can easily obtain them from univariate case since

c
(1)
∞ (α, γ) = c2∞(α, γ). The critical values were obtained from simulations again as a

respective empirical quantile of suprema of the functional given above. This supremum
has been approximated by a maximum over a grid of 25,000 equidistant points, and
100,000 repetitions have been run in total. We present them in Table 7.3 .



CHAPTER 7. CRITICAL VALUES 101

d α \ γ 0 0.15 0.25 0.4 0.45 0.49

10% 5.83300 6.16964 6.54486 7.79693 8.90706 10.97680
2 5% 7.27319 7.62029 8.01801 9.24979 10.38189 12.51981

1% 10.47212 10.81526 11.18947 12.41796 13.58373 16.08758
10% 7.55347 7.91567 8.33422 9.69223 10.89566 13.24342

3 5% 9.15817 9.51428 9.92618 11.27827 12.47845 14.93875
1% 12.64423 12.97544 13.35888 14.71475 15.93770 18.61511
10% 9.15704 9.54268 9.96759 11.40482 12.68321 15.28504

4 5% 10.89252 11.26607 11.67221 13.12474 14.41193 17.05890
1% 14.65064 15.00585 15.43069 16.88893 18.13029 20.88200
10% 10.63242 11.04519 11.48214 12.97519 14.35397 17.13813

5 5% 12.47376 12.87663 13.31469 14.80208 16.16445 19.02006
1% 16.43966 16.84611 17.32441 18.86821 20.13233 23.11929

Table 7.3: Simulated critical values of c
(d)
∞ (α, γ).

Critical values for a closed-end monitoring c
(d)
T (α, γ) can be again easily obtained from

c
(d)
∞ (α, γ) as

c
(d)
T (α, γ) = c(d)∞ (α, γ)

( T

T + 1

)1−2γ
,

where the derivation is similar to one in (7.2).

7.2 Retrospective Analysis

For the univariate model the limit distribution (5.6) of the test statistic is well known,
and thus we focus on the multivariate and CAPM models. By Theorem 5.3 is it
necessary to find critical values for

sup
0<t<1

d∑

j=1

B2
j (t), (7.5)

where {Bj(t), t ∈ (0, 1)}, j = 1, . . . , d are independent Brownian bridges. The simu-
lated critical values for this functional are presented in Table 7.4 for d = 1, 2, 3, 4, 5 and
nominal levels α = 10%, 5%, 1%.

The supremum of the functional given in (7.5) has been approximated by a maximum
over a grid of 50,000 equidistant points, and 100,000 repetitions have been run. Thus
these critical values refine those of Lee et al. [2003], where the supremum was approx-
imated only on 1000 points.

α \ d 1 2 3 4 5

10% 1.49260 2.10796 2.62212 3.07204 3.50604
5% 1.83855 2.50356 3.04211 3.52956 3.98640
1% 2.64916 3.36212 3.98668 4.51394 5.02544

Table 7.4: Simulated critical values for functional (7.5).



Chapter 8

Conclusion

We proposed robust monitoring procedures for dependent and possibly multivariate
data. Critical values were derived from the asymptotic distribution of the test statistics.
Simulation studies showed that the asymptotic approximation works well, provided
that we have reasonably long period of stable historical data. We also commented on
retrospective change-point procedures, that allow one to verify this stability in a robust
way.

The simulation studies also showed that a key ingredient of the test detectors is an
estimator of the (long-run) variance (matrix). We therefore examined a class of kernel
variance estimators, especially the topic of a proper bandwidth choice. It was shown
that the adaptive choice of the bandwidth can significantly improve the monitoring
procedures. The question of variance estimators is usually not discussed in details in a
change-point literature, but it was shown to be quite important.

A generalization of the proposed methods to different models can be further studied.
For example to a multivariate regression model as an extension of the CAPM model of
Chapter 4. Or to consider high-dimensional (functional) data, which is challenging but
rather difficult. Another possibility is to focus on MOSUM type procedures instead of
CUSUM ones, which could provide faster detection of the change.
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Appendix A

Some Useful Results

Following two lemmas adopted from [Hušková and Marušiaková, 2012] provide useful
inequalities for α-mixing sequences.

Lemma I. Let {ei}i be a strictly stationary α-mixing sequence with coefficients {α(i)}i.
Denote by Fk

j the σ-fields generated by {ei}j≤i≤k. Let Z1 and Z2 be measurable w.r.t.

Fk
1 and F∞

k+n (n ≥ 1), respectively. Then,

|E(Z1Z2) − E(Z1) E(Z2)| ≤ 12 (α(n))1/s (E |Z1|p)1/p (E |Z2|q)1/q (A.1)

for all 1 ≤ p, q, s ≤ ∞ with 1/p+ 1/q + 1/s = 1.

Proof. Proof of (A.1) can be found, e.g., in Ibragimov [1962] and Davydov [1970].

Lemma II. Let {ei}i be a strictly stationary α-mixing sequence with coefficients {α(i)}i.
Let gn be a measurable function such that E gn(ei) = 0.

Then, for any ξ > 0

E

∣∣∣∣∣

n∑

i=1

gn(ei)

∣∣∣∣∣

2

≤ Dn
(
E |gn(e1)|2+ξ

)2/(2+ξ)
∞∑

j=1

(α(j))ξ/(2+ξ) (A.2)

and

E

(
max

1≤j≤n
bj

∣∣∣∣∣

j∑

i=1

gn(ei)

∣∣∣∣∣

)2

≤

≤ D(log(2n))2
( n∑

j=1

b2j

)(
E |gn(e1)|2+ξ

)2/(2+ξ)
∞∑

j=1

(α(j))ξ/(2+ξ) (A.3)

for any b1 ≥ . . . ≥ bn > 0 and some D > 0.

Proof. The assertion (A.2) follows from the proof of Theorem 1 in Yokoyama [1980]. The
assertion (A.3) is a consequence of Theorem B.4 in Kirch [2006] and the assertion (A.2).
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Now we focus on a weak convergence of vector valued processes. Theory is presented for
example in sections 27.7 and 29.5 of Davidson [1994] and is an obvious generalization of
one dimensional case. We will denote by Cd[0, T ] the space of continuous d-dimensional
vector functions defined on interval [0, T ] for some T > 0. Analogously we denote
Dd[0, T ] the space of d- dimensional vector cadlag functions defined on interval [0, T ].

Weak convergence in these spaces is denoted as
Dd[0,T ]−→ ,

Cd[0,T ]−→ respectively.

Following lemma gives a functional Cramer-Wold device, which allows one to transform
the vector case to the univariate case for which standard methods can be applied.

Lemma III. LetXn ∈ Dd[0, T ] be an d-vector of cadlag functions. ThenXn
Dd[0,T ]−→ X,

where P (X ∈ Cd[0, T ]) = 1, if and only if λTXn
D[0,T ]−→ λTX for every fixed λ with

λTλ = 1.

Proof. Can be found in Davidson [1994], Theorem 29.16.

Note that the lemma requires that the weak limit is almost surely continuous. As we
apply the lemma only to the situation whereX = W is a d-dimensional Wiener process,
the requirement is always fulfilled.
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