
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Petr Onderka

.NET library for the MediaWiki API

Department of Theoretical Computer Science
and Mathematical Logic

Supervisor of the bachelor thesis: Tomáš Petř́ıček
Study programme: Computer Science

Specialization: General Computer Science

Prague 2012

I would like to thank to my supervisor, Tomáš Petř́ıček, for his help with writing
this thesis. I would also like to thank to my family for their unending support
and patience during my studies.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 paragraph 1 of the
Copyright Act.

In Prague, date signature of the author

Název práce: .NET knihovna pro MediaWiki API

Autor: Petr Onderka

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı bakalářské práce: Mgr. Tomáš Petř́ıček, University of Cambridge

Abstrakt:

Wiki běž́ıćı na systému MediaWiki poskytuj́ı svým uživatel̊um API, které lze
použ́ıt k př́ıstupu k dané wiki z poč́ıtačového programu. Toto API je rozsáhlé,
často se měńı a může se lǐsit wiki od wiki, takže může být náročné napsat knihovnu
pro př́ıstup k tomuto API.

Tato práce popisuje LinqToWiki, knihovnu pro př́ıstup k MediaWiki API ze C#
nebo jiných jazyk̊u na platformě .NET. Dı́ky použit́ı LINQu a generovańı kódu
pomoćı Roslynu, kód napsaný s použit́ım této knihovny je čitelný, objevitelný,
silně typovaný a flexibilńı.

Kĺıčová slova: Wiki, C#, LINQ, Generováńı kódu, Roslyn

Title: .NET library for the MediaWiki API

Author: Petr Onderka

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Tomáš Petř́ıček, University of Cambridge

Abstract:

MediaWiki wikis provide their users an API, that can used to programmatically
access the wiki. This API is large, changes frequently and can be different from
wiki to wiki, so it can be a challenge to write a library for accessing the API.

This thesis describes LinqToWiki, a library that can be used to access the Me-
diaWiki API from C# or other .NET languages. Thanks to the use of LINQ
and code generation through Roslyn, code written using this library is readable,
discoverable, strongly-typed and flexible.

Keywords: Wiki, C#, LINQ, Code generation, Roslyn

Contents

Introduction 3
Key contributions . 4
Structure of this work . 4

1 Problem analysis 5
1.1 Alternatives . 7

2 Background 9
2.1 MediaWiki API . 9

2.1.1 Paging . 14
2.1.2 The paraminfo module . 16

2.2 LINQ and expression trees . 18
2.3 Roslyn . 21

3 MediaWiki improvements 24

4 The LinqToWiki library 27
4.1 The LinqToWiki.Core project . 28

4.1.1 QueryTypeProperties . 28
4.1.2 WikiQuery . 28
4.1.3 PagesSource . 30
4.1.4 QueryParameters . 31
4.1.5 ExpressionParser . 32
4.1.6 PageExpressionParser 33
4.1.7 Other types . 34

4.2 The LinqToWiki.Codegen project 35
4.2.1 Naming of generated types and members 36
4.2.2 Structure of generated code 37
4.2.3 Wiki . 38
4.2.4 ModuleSource . 39
4.2.5 ModuleGenerator . 39
4.2.6 SyntaxEx . 40

4.3 The linqtowiki-codegen application 41
4.4 Samples of queries . 42

5 Future work 43

6 Related work 44

Conclusion 45
Sample queries . 46

Bibliography 47

List of Figures 48

List of Abbreviations 49

1

A Contents of the enclosed CD 50
A.1 Using the library . 50

2

Introduction
Wiki websites running on the MediaWiki software (such as Wikipedia) offer
an Application Programming Interface (API) for programmatic access to their
database. Since MediaWiki contains many functions, the API is extensive too: the
core installation contains over seventy “modules” and more are available through
extensions. Each module represents a function available from the API. Modules
accept parameters in the form of key-value pairs and return a structured response
in one of the supported formats, including XML.

Because of the size of the API, accessing it from programming languages is
not easy. Two basic approaches are possible: static and dynamic:

• The dynamic approach is to create a thin library around the API modules:
let the user specify the names of the parameters and their types and return
the response in a dynamic manner, possibly as an associative array, or
something like XML Document Object Model (DOM).
This way, the user is responsible for the correctness of his query and for
correct processing of the response. Also, it is hard to discover what the
possible parameters are, what values can they have and what form of response
to expect. This can lead to excessive use of the documentation or a “trial
and error” approach.

• The static approach is to create an extensive (or “thick”) library that contains
methods tailored for every module, each returning a different statically-typed
result.
This way, many of the errors the user could make will result in a compile-
time error and the development environment can also advise the user what
options are available.
But this approach is also inflexible: if the user wants to use something the
library was not made for, he cannot. Differences like this can be caused by
different versions of the software, different sets of installed extensions, or
just by different configuration.
Another question with the static approach is how to represent the parameters
in code. Most modules have many optional parameters, and so presenting
them to the user in an understandable manner might be a challenge.
One more problematic part is how to represent choosing which properties
to return in the result. A list of strings representing the chosen properties
might be suitable for the dynamic approach, but not so much for the static
one.

This work introduces the LinqToWiki library and related tools that try to
solve all those problems using the C# language and the .NET platform.

The dynamic vs. static issues are solved by automatically generating statically
typed code based on the metadata the API provides about itself. The code
generation is performed using Roslyn, which is a new implementation of a compiler
for the C# language written in C#.

3

The problems specific to the static approach are solved by using Language
Integrated Query (LINQ): a set of features of the C# language and the .NET
Framework, that is useful for representing queries and their translation into
another form.

The library also abstracts away some other aspects of the API, like paging of
the results.

Key contributions
The key characteristics that make the LinqToWiki library novel, when compared
with similar querying libraries are:

• Using different types in different LINQ operators (specifically in select,
where and orderby)

• Allowing different operators for different queries (i.e. allowing sorting and
generator queries only for some modules and disallowing sorting twice in
one query)

• Using code generation to achieve statically-typed queries

Another important aspect of this work was creating a patch for MediaWiki to
describe results of API modules, which was accepted by MediaWiki developers
and is now running on all Wikimedia wikis, including Wikipedia.

Structure of this work
Chapter 1 explains what is the goal of the LinqToWiki library. Chapter 2 describes
libraries and APIs that were important for creating this work. Specifically, those
are the MediaWiki API (Section 2.1), LINQ (Section 2.2) and Roslyn (Section 2.3).
Chapter 3 talks about changes that were made to MediaWiki, to make LinqToWiki
possible. Chapter 4 describes the library itself, and the projects it consists of.
Chapter 5 mentions some ways in which the library could be further improved.
Chapter 6 describes other libraries for accessing MediaWiki API.

Appendix A describes the contents of the enclosed CD.

4

1. Problem analysis
The goal of the LinqToWiki library is to be able to express requests using the
MediaWiki API in a way that is readable, discoverable, checked by the compiler
for correctness as much as possible and also flexible with regards to changes.

This is achieved by generating classes specific for each module and using them
in LINQ queries.

Querying data in C# LINQ is a way of querying various data sources from
the C# language. The two most commonly used variants are LINQ to Objects,
and various versions of LINQ for Structured Query Language (SQL) databases.
LINQ to Objects is used for querying in-memory data, like arrays. There are
several widely-used libraries for accessing SQL databases using LINQ, including
LINQ to SQL, LINQ to Entities and NHibernate.

In all versions of LINQ, the queries look the same. For example:
from product in products
where product.Price > 500

&& product.InStock
join category in categories on product.Category equals category
orderby product.Price
select product.Name

A query like this is translated into a sequence of method calls that take their
parameters in the form of lambda expressions.1 For example, the where part of
the above query is translated into:
products.Where(product => product.Price > 500 && product.InStock)

The commonalities between LINQ to Objects and SQL LINQ libraries are that
the full range of operators is available and that all properties of the queried type
are available in all of them.

Querying MediaWiki The situation with the MediaWiki API is different in
several ways:

1. It does not support queries represented by many of the LINQ operators,
including join and group by.

2. Some of the modules do not support sorting, some do. Of those that do
support sorting, some allow specifying the sort key, others only the direction.

3. The sets of properties that are available for filtering, sorting and selecting
are all different.
For example, the blocks module does support specifying the direction, but
not the property to sort by. Its set of properties that can be used for filtering
includes Ip (the Internet Protocol (IP) address of the blocked user), but not

1 Lambda expressions are a way to create unnamed (anonymous) functions. Parameter list
of the function is specified on the left side of the => operator, result of the function is computed
by the expression on its right side. Types of the parameters and the return type do not have to
be specified, if they can be inferred.

5

ById. On the other hand, properties that can be used for selecting include
ById (ID of the user who performed the block), but not Ip.

4. There are modules used for queries about a set of pages. Those pages can
be from a hard-coded list or a result from some other module.
An example of such module is categories, which returns the list of cate-
gories of each page specified in the input list.

5. There are also parameters that do not fit into the LINQ model well. Some
of them are required, some are not.
These parameters usually modify which items appear in the output, but
they are not just a filter from some larger lists. Examples of such pa-
rameters are the required parameter search of the search module (which
specifies what string to search for) or the optional parameter title of the
categorymembers module (which decides what category to enumerate; this
parameter is not required, because the parameter pageid can be used instead
of it).

The goal is to be able to represent all valid queries, while invalid queries should
cause a compile-time error.

Specifically, unsupported operators (like join and group by) should cause an
error for all modules, while the orderby clause should cause an error only for the
modules that do not support sorting.

Also, all operators should support only those properties that are actually
supported by the API. So, for example for the blocks module, the following
query should compile and execute fine:
from block in wiki.Blocks()
where block.Ip == "8.8.8.8"
orderby block descending
select block.ById

This is because
• limiting the query by the blocked IP address,
• sorting without specifying the key and
• selecting the ID of the user who performed the block

are all allowed, while the following query should cause three errors:
from block in wiki.Blocks()
where block.ById == 1234
orderby block.Expiry descending
select block.Ip

Here,
• limiting by the ID of the user who performed the block,
• sorting by the expiration date and
• selecting the IP address

are all impossible. (Actually selecting the IP address of the blocked user is possible,
but the information is contained in properties with different names.)

6

1.1 Alternatives
Using statically typed methods and custom LINQ provider is not the only way a
library like this could be built in C#. Some of the alternatives include:

• Using strings for everything
This is probably the simplest way to write a library for MediaWiki API. It
means parameters and their names (including those specifying which module
to use) are specified as a collection of string key-value pairs.
For example, the query from the previous section would look something like:
wiki.Query(new Dictionary<string, string>

{
{ "list", "blocks" },
{ "bkip", "8.8.8.8" },
{ "bkdir", "older" },
{ "bkprop", "byid" }

})

The main disadvantage of this approach is there is no checking of the query:
any mistake in the query won’t be found out until the query is actually
executed. It also means autocompletion cannot help the user in finding out
which parameters are available.
In such implementation, the result of the query will be also some sort of
dictionary (indexed by names of result properties), which has the same kind
of problems as using strings for parameter names.
Some modifications are possible, for example having a special parameter for
the module prefix (bk in the above example), which would make the code
less repetitive. But such changes will not fix the fundamental problems with
this approach.

• Using dynamic

C# 4.0 supports dynamic typing using the special type dynamic. When
using that, C# acts similarly as dynamic languages. This means methods
and their parameters do not have to be declared before they can be used.
For example, the same query used previously could look like this using
dynamic:
dynamic wiki = ...;
wiki.ListBlocks("bk", ip:"8.8.8.8", dir:"older", prop:"byid")

For this query to work, the library does not need any knowledge about the
blocks module or its parameters.
This query is much more succinct than the string version (although part of
that is because of extracting the prefix, which could be done with strings
too, as mentioned). But it suffers from the same issues: mistakes cannot be
detected at compile time and autocomplete will not be able to help.
In this case, the returned object will be also dynamic, with the same
advantages and disadvantages.

7

One interesting consequence of using dynamic is that it means LINQ cannot
be used. Some of the reasons for this are that dynamically invoked methods
cannot have lambdas as their arguments (at least not directly) and that
expression trees do not support dynamic.

• Manually written code for each module
Here, code for each module would be written manually, instead of using code
generation. This would be a significant amount of code which would have
to be updated with every change of the API. Another problem is that each
wiki can have different set of extensions, which add their own API modules,
so distinct versions for some wikis would have to be maintained.
The biggest advantage of this approach is that a human can understand the
documentation of a module, so they can write code for a module better than
a code generator such as LinqToWiki.Codegen could. This is because not
all details of how a module works can be encoded into its machine readable
description.

• Using IQueryable instead of custom LINQ provider
The IQueryable interface is often used for implementing custom LINQ
sources, especially those for querying SQL databases.
The biggest disadvantage of using this approach is that IQueryable supports
all LINQ operators and all operators use the same set of properties. This is
not suitable for MediaWiki API, because it does not support several LINQ
operators, because ordering is available only for some modules and because
filtering, sorting and projection all use different sets of properties.

8

2. Background

2.1 MediaWiki API
MediaWiki [1] is an open source wiki system. It is written in the PHP programming
language and uses a relational database to store its data, usually MySQL. It is
maintained by the Wikimedia Foundation, who also runs some of the biggest wiki
sites (or “wikis” for short), including Wikipedia and Wiktionary. It is also used by
many others, including Wikia, who runs many small wikis for various interests and
the unofficial wiki of the Faculty of Mathematics and Physics, ωικι.matfyz.cz.

Acessing MediaWiki There are several ways to programmatically access the
database of some MediaWiki wiki. First, it is possible to directly access the
database using SQL. This usually requires access to the server that runs the
database, so it is not available in many cases. For Wikimedia wikis, this data
is accessible through the Toolserver. The Toolserver is a cluster of servers that
contains replicated read-only databases of Wikimedia wikis, primarily for use by
various tools. These copies of the databases do not contain article texts. The
Toolserver is run by Wikimedia Deutschland.

Mostly specific to Wikimedia wikis is also another option: database dumps.
These are files that contain dumps of some tables of the wikis. Their disadvantages
are that the newest dump is usually several days or weeks old and that the files
can be huge, which is impractical for getting information about a small number
of pages.

Last, but not least, is the MediaWiki API [2]. It can be used to remotely
access any MediaWiki wiki (unless the API is disabled in the configuration) using
Hypertext Transfer Protocol (HTTP).

API request and response Parameters for an API request are given in the
query string of a GET request or in the body of a POST request (modules that
perform modifications require the use of POST). The body of the POST request
is usually formatted as application/x-www-form-urlencoded, but file uploads
require the use of multipart/form-data.

Some parameters can accept multiple values at once. In these cases, the values
are separated by a pipe character (|). For example, to retrieve information about
the articles “LINQ” and “MediaWiki” from some module, the parameter would
be titles=LINQ|MediaWiki.

There are some parameters that are common to many modules:

• The prop parameter is used to determine what properties will be present
in the response. The values of this parameter don’t map directly to the
properties of the response, so for example specifying prop=ids might cause
the property pageid to appear in the result.

• The sort parameter decides which property will be used to order the results
of the query.

• The dir parameter is used to determine the order of the results: whether it
should be ascending or descending.

9

The response can be in one of the several available formats, the most widely
used ones are Extensible Markup Language (XML) and JavaScript Object Notation
(JSON).

The representation of most data types in the response is standard: strings
are formatted as strings, integers as decimal numbers, timestamps are formatted
according to ISO 8601. Only booleans have an unexpected representation: if the
property is false, it is not present in the result at all, and if its value is true, it
is represented as an empty string.

If there is some problem executing a request, for example if a parameter has
an invalid value, a warning will be returned along with the result of the operation.
In the case of a fatal problem, such as when the user doesn’t have the right to
perform an action, an error is returned, without any results.

API modules The API is divided into modules and there are two kinds of
modules: “normal” modules (called “non-query modules” in this work) and query
modules.

Non-query modules are usually used to perform some action. For example the
edit module can be used to edit a page and the block module can be used to
block another user (it can be used only by users with sufficient privileges).

Query modules are used for retrieving information about the wiki. There are
three types of query modules:

• list modules: Return contents of various lists. For example the all-
categories module can be used to list all categories on a wiki, while the
categorymembers module can be used to list members of a certain category.

• prop modules: Return information about a set of pages. For example, the
categories module can be used to retrieve the categories for each page in
a given set.

• meta modules: Return meta information that are not directly associated
with pages. For example the userinfo module can be used to retrieve
information about the currently logged-in user.

For prop modules, the set of pages they operate on can be specified directly
using page titles or page IDs.

Another option is to use some other module (usually a list module) as a so
called “generator”. This way, one can for example retrieve all categories of pages
in a specific category, by using the categorymembers module as a generator for
the categories module.

Because more than one module can be used in one request, the parameters
for each module are distinguished by using prefixes. For example, the prefix for
the categorymembers module is cm. So, setting its limit parameter to the value
of 5 can be achieved by adding cmlimit=5 to the query string of a GET request
or to the body of a POST request.

The API is also extensible: MediaWiki extensions can add their own modules
and modify some behavior of existing modules.

Examples of API requests and responses are in Figures 2.1 through 2.4.

10

POST: http://en.wikipedia.org/w/api.php
format = xml & action = edit & token = %2B%5C & title = Wikipedia:Sandbox &
section = new & sectiontitle = Hello & text = Hello%20world!˜˜˜˜ &
summary = greeting%20the%20world

<?xml version="1.0"?>
<api>

<edit result="Success" pageid="16283969"
title="Wikipedia:Sandbox" contentmodel="wikitext"
oldrevid="526507943" newrevid="526508868"
newtimestamp="2012-12-05T13:10:24Z" />

</api>

Figure 2.1: API request to add a “Hello” section to the page Wikipedia:Sandbox,
using the non-query module edit and its response

GET: http://en.wikipedia.org/w/api.php ? format = xml & action = query &
list = categorymembers & cmtitle = Category:Query%20languages &
cmprop = title & cmtype = page & cmdir = descending & cmlimit = 5

<?xml version="1.0"?>
<api>

<query>
<categorymembers>

<cm ns="0" title="Yahoo! Query Language" />
<cm ns="0" title="XQuery" />
<cm ns="0" title="XPath" />
<cm ns="0" title="XBase++" />
<cm ns="0" title="XBase" />

</categorymembers>
</query>
<query-continue>

<categorymembers cmcontinue="page|57454220434f5645524147..." />
</query-continue>

</api>

Figure 2.2: API request to list the last five pages
from the category Category:Query languages

using the list module categorymembers and its response

11

GET: http://en.wikipedia.org/w/api.php ? format = xml & action = query &
titles = LINQ|MediaWiki & prop = categories & cllimit = 5

<?xml version="1.0"?>
<api>

<query>
<pages>

<page pageid="11904240" ns="0" title="LINQ" />
<page pageid="323710" ns="0" title="MediaWiki">

<categories>
<cl ns="14" title="Category:2002 software" />
<cl ns="14" title="Category:All articles with spec..." />
<cl ns="14" title="Category:All articles with unso..." />
<cl ns="14" title="Category:Articles with specific..." />
<cl ns="14" title="Category:Articles with unsource..." />

</categories>
</page>

</pages>
</query>
<query-continue>

<categories clcontinue="323710|Commons_category_template..." />
</query-continue>

</api>

Figure 2.3: API request to list categories of the pages LINQ and MediaWiki
using the prop module categories and its response

12

GET: http://en.wikipedia.org/w/api.php ? format = xml & action = query &
generator = categorymembers & gcmtitle = Category:Query%20languages &
gcmtype = page & gcmdir = descending & gcmlimit = 2 & prop = categories &
cllimit = 5

<?xml version="1.0"?>
<api>

<query-continue>
<categorymembers gcmcontinue="page|58504154480a585041544..." />
<categories clcontinue="23742879|Query_languages" />

</query-continue>
<query>

<pages>
<page pageid="22672444" ns="0" title="Yahoo! Query Language">

<categories>
<cl ns="14" title="Category:Query languages" />
<cl ns="14" title="Category:World Wide Web stubs" />
<cl ns="14" title="Category:Yahoo! Development" />

</categories>
</page>
<page pageid="23742879" ns="0" title="XQuery">

<categories>
<cl ns="14" title="Category:4GL" />
<cl ns="14" title="Category:Functional languages" />

</categories>
</page>

</pages>
</query>

</api>

Figure 2.4: API request to list categories of pages from the end of Category:
Query languages using the list module categorymembers as a generator for

the prop module categories and its response

13

2.1.1 Paging
Because the results of the API queries can contain thousands and sometimes even
millions of entries, the responses are limited. For most modules, the default limit
(when it is not specified as a parameter) is ten entries per page and the default
maximum is 500 entries for normal users. For users with the apihighlimits right,
the limits are raised, usually to 5000 entries per page.

In the limit parameter, one can specify either the exact value, or the special
value max, which means the maximum allowed for the current user.

To get the data from the following page, one has to use a value specified in
the query-continue element in the result (see Figure 2.2 again). The value in
this element is a transparent identifier of the next page.

The advantage of this system when compared with the conventional paging
systems of numbering pages or using numeric offsets is that it avoids missing
entries and duplicates when the result changes while retrieving the pages.

The API has no notion of transactions, so it is not possible to get fully
consistent results that would correspond to an exact moment in time. But thanks
to this paging system, one can be certain that an entry that should be in the
result set during retrieving of all of the pages will actually be present in the result
set exactly once.

Paging with prop modules The situation gets more complicated when using
a prop module with another module as a generator (see Figure 2.4 again for an
example). That is because both modules have their own paging.

When such a request is made, the first response will contain a limited number
of items from the generator and a limited number of results from the prop module
for those items. To retrieve the next set of items from the generator, one has to
use the query-continue for the generator (called “primary paging” in this work).
To retrieve the next set of results for the items from the first result, one has to
use the query-continue for the prop module (called “secondary paging” here).

For an example, see Figure 2.5. It shows how the paging might work when using
the allpages module as a generator, together with the prop module categories.
The query-continue elements in the figure are just examples, actual values would
be more complicated.

Paging with the revisions module The situation is even more complicated
with the prop module revisions. It can be used to retrieve information about
revisions of pages, including their text and it is the only module that can be used
to get the text of a set of pages.

For this module, not specifying the limit parameter means that only the most
recent revision will be shown and no query-continue will be present. Also, when
limit is specified, the module can operate only on one page at a time, so for
example one has to set the limit of a module used as a generator to 1.

But for other modules, when no limit parameter is specified, a default value
is used (usually 10) and a query-continue element is present in the response, to
access the remaining items.

14

<query>
<pages>

<page title="A" />
<page title="B">

<categories>
<cl title="X" />
<cl title="Y" />

</categories>
</page>

</pages>
<query-continue>

<categorymembers
gcmcontinue="A|X" />

<allpages
apcontinue="C" />

</query-continue>
</query>

<query>
<pages>

<page title="A">
<categories>

<cl title="X" />
<cl title="Y" />

</categories>
</page>
<page title="B" />

</pages>
<query-continue>

<categorymembers
gcmcontinue="A|Z" />

<allpages
apcontinue="C" />

</query-continue>
</query>

. . .

<query>
<pages>

<page title="C">
<categories>

<cl title="X" />
<cl title="Y" />

</categories>
</page>
<page title="D" />

</pages>
<query-continue>

<categorymembers
gcmcontinue="C|Z" />

<allpages
apcontinue="E" />

</query-continue>
</query>

<query>
<pages>

<page title="C">
<categories>

<cl title="Z" />
</categories>

</page>
<page title="D">

<categories>
<cl title="X" />

</categories>
</page>

</pages>
<query-continue>

<allpages
apcontinue="E" />

</query-continue>
</query>

. . .

Figure 2.5: Example of primary and secondary paging

15

2.1.2 The paraminfo module
The meta query module paraminfo is of a special importance for this work. It can
be used to retrieve information about modules, which is necessary for generating
code to access those modules in a static fashion.

Prior to an improvement implemented in our work, the paraminfo module
provided only general information about the module and, most importantly, for
each parameter information about its data type and a short description.

The data type of a parameter is either a simple type (e.g. integer or string),
or an enumeration of possible values. And the description is useful as a documen-
tation for the generated code.

A shortened example of a response from the paraminfo module for the
categorymembers module is in Figure 2.6.

For code generation in LinqToWiki, another piece of information is necessary:
knowing the properties of the response and how do they map to the values of the
prop parameter (which determines what properties are included in the response).
For information about how we added them, see Chapter 3.

16

<module name="categorymembers" prefix="cm" querytype="list"
generator="" listresult="" description="List all pages in a ...">
<parameters>

<param name="title" type="string"
description="Which category to enumerate (required). ..." />

<param name="pageid" type="integer"
description="Page ID of the category to enumerate. ..." />

<param name="prop" default="ids|title" multi=""
description="What pieces of information to include ...">
<type>

<t>ids</t>
<t>title</t>
<t>sortkey</t>
<t>sortkeyprefix</t>
<t>type</t>
<t>timestamp</t>

</type>
</param>
<param name="namespace" multi="" type="namespace"

description="Only include pages in these namespaces" />
<param name="continue" type="string"

description="For large categories, give the value ..." />
<param name="limit" default="10" max="500" type="limit"

description="The maximum number of pages to return." />
<param name="sort" default="sortkey"

description="Property to sort by">
<type>

<t>sortkey</t>
<t>timestamp</t>

</type>
</param>
<param name="dir" default="ascending"

description="In which direction to sort">
<type>

<t>ascending</t>
<t>descending</t>

</type>
</param>

</parameters>
</module>

Figure 2.6: Shortened response of the paraminfo module
for the categorymembers module

17

2.2 LINQ and expression trees
LINQ, short for Language Integrated Query, is a feature of the C# programming
language1 and the .NET Framework that can be used for querying various data
sources and appeared in the version 3.0 of the language [3]. It uses higher-order
functions and lambda expressions to achieve a readable declarative syntax.

LINQ consists of a set of so called “standard query operators”: methods that
are used to perform the query operations on a given source. Also, a special
syntax (called “query expressions”), similar to SQL queries, is available for some
of those operators. The compiler translates a query expression into a set of calls
to standard query operators, using lambda expressions and anonymous types.

Anonymous types are types that do not have to be explicitly declared; they
are used in similar situations as tuples in functional programming. An instance of
an anonymous type is created by using the new keyword without specifying the
type of the object to create.

Query translation For example the following query expression (as seen in
Chapter 1):

from product in products
where product.Price > 500

&& product.InStock
join category in categories on product.Category equals category
orderby product.Price
select product.Name

Is translated into the following method calls:

products
.Where(product => product.Price > 500 && product.InStock)
.Join(

categories,
product => product.Category,
category => category,
(product, category) => new { product, category })

.OrderBy(t => t.product.Price)

.Select(t => t.product.Name)

The parameter t is called “transparent identifier”. It is used to transfer a set
of variables from one method call to another.

The LINQ library also contains methods that do not have a corresponding
representation in query expressions. Some examples of those are Aggregate(),
Sum() and ToList().

Relationship with functional programming Many of the basic query op-
erators also correspond to well-known higher-order functions from functional
programming. See Figure 2.7 for comparison of some of the LINQ query operators,
query expression clauses, and higher-order functions.

1Visual Basic .NET (VB.NET) also supports LINQ, with slightly different syntax and
capabilities, but uses the same types.

18

query operator query expression clause functional name
Select() select, let map
Where() where filter
SelectMany() second and following from bind
Aggregate() fold
Join() join
OrderBy(),
OrderByDescending() orderby sort
GroupBy() group by
Sum()
First() head
ToList()

Figure 2.7: Comparison between LINQ query operators, query expression clauses
and functions in functional languages

Expression trees Usually, lambda expressions are compiled into normal meth-
ods and passed to the query operator methods as delegates (which are similar to
function pointers in C or first-class functions in functional languages). But this
would not be suitable for querying of sources that are not in-memory collections.
This is because the query has to be translated into another form, like an SQL
query or a set of parameters for the MediaWiki API.

Because of this, a lambda expression in C# can be also compiled into another
form: an expression tree. Expression tree is an object that represents the given
lambda expression in a form similar to an abstract syntax tree. This object can
be programmatically accessed and manipulated, which allows translation of LINQ
queries into other forms, such as SQL queries. An expression tree can also be
compiled into a delegate and then executed.

For an example of an expression tree, see Figure 2.8.

Binary: AndAlso

Left Right

Binary: GreaterThan

Left Right
Member: InStock

Expression

Member: Price

Expression

Constant: 500 Parameter: product

Parameter: product

Figure 2.8: The body of the expression tree for the lambda expression
product => product.Price > 500 && product.InStock

19

Implementing the LINQ pattern The .NET Framework contains two imple-
mentations of the query expression pattern: the interfaces IEnumerable<T> and
IQueryable<T>. This means that any object that implements one of these two
interfaces can be used in a LINQ query.

These two types implement the query expression pattern completely, so they
can be used with any LINQ operator. Other custom types can implement only
part of the query expression pattern, which would mean only a subset of the LINQ
operators are available for such types.

The IEnumerable<T> interface usually represents an in-memory collection, so
its implementation of the LINQ operators use delegates. The IQueryable<T>
interface is usually used to represent a remote collection (such as a table in a
relational database), so its version of the LINQ operators use expression trees.

The IQueryable<T> interface does not perform any translation of expression
trees into the target query language. Instead, it combines the whole query into one
expression tree, which is then passed to an implementation of IQueryProvider.

The query provider is then responsible for processing the expression tree and
translating it into its target query language. If the query is not valid, the query
provider will throw an exception at runtime.

20

2.3 Roslyn
Microsoft Roslyn is a new implementation of the C# compiler written in C# (and
a VB.NET compiler written in VB.NET) [4]. Its main distinguishing characteristic
is that it is “open”: it can be used for example to convert between text and a
syntax tree, to manipulate the syntax tree or to retrieve semantic information.

It also integrates itself into the Microsoft Visual Studio Integrated Development
Environment (IDE), where it can be used to perform custom refactoring actions
or to produce custom errors and warnings at compile-time.

Roslyn is currently under development and so far it had three public releases.
All of them were in the form of Community Technology Preview (CTP), the first
one from October 2011, the second one from June 2012 and the third one from
September 2012.

In the CTPs, the syntactic part of the library in completely implemented, so
for example the syntax tree can represent any construct of C# and any syntax
tree can be translated to and from source code. On the other hand, the semantic
part of the library is not fully implemented, which means that for example some
syntax trees will not successfully compile, even if they represent valid C# code.

Because of its close relation with Visual Studio, Roslyn syntax tree is able to
represent every feature of C# with down to character precision. This includes
“trivia”: parts of code that are not significant for the compiler, such as whitespace
and comments.

Trivia can also be “structured”, that is, it can form a small syntax tree of its
own. An example of structured trivia are XML documentation comments, that
can be used to provide documentation for a piece of code, which can then be
automatically processed.

For an example of a Roslyn syntax tree, see Figure 2.9

public abstract CategoryInfoResult CategoryInfo { get; }

Property
Declaration

Public
Keyword

Abstract
Keyword

Identifier
Name

Identifier
Token:

CategoryInfo

Accessor
List

Identifier
Token:

CategoryInfoResult

OpenBrace
Token

GetAccessor
Declaration

CloseBrace
Token

Get
Keyword

Semicolon
Token

Figure 2.9: Example of piece of C# code and its Roslyn syntax tree
(trivia not shown)

21

Roslyn syntax trees are immutable and can be created using factory methods
from the Syntax class. And while not all elements of the syntax tree have to be
specified (like braces of a property accessor list), creating a syntax tree can be
quite cumbersome.

The exact syntax for creating syntax trees changed between the first two CTPs.
In the October 2011 CTP, methods with many optional parameters were used. In
the June 2012 CTP, the situation somewhat improved: the factory method now
has parameters only for required children of the created node and optional child
nodes can be added in a fluent manner using With* methods. The syntax used
did not change in the September 2012 CTP.

For an example of code to manually create the syntax tree from Figure 2.9, see
Figure 2.10 for the October 2011 CTP version and Figure 2.11 for the September
2012 CTP version.

22

Syntax.PropertyDeclaration(
modifiers:

Syntax.TokenList(
Syntax.Token(SyntaxKind.PublicKeyword),
Syntax.Token(SyntaxKind.AbstractKeyword)),

type: Syntax.ParseTypeName("CategoryInfoResult"),
identifier: Syntax.Identifier("CategoryInfo"),
accessorList:

Syntax.AccessorList(
accessors:

Syntax.List(
Syntax.AccessorDeclaration(

SyntaxKind.GetAccessorDeclaration,
semicolonTokenOpt:

Syntax.Token(SyntaxKind.SemicolonToken)))))

Figure 2.10: Sample code to manually create a Roslyn syntax tree
using October 2011 CTP

Syntax.PropertyDeclaration(
Syntax.ParseTypeName("CategoryInfoResult"),
"CategoryInfo")
.WithModifiers(

Syntax.TokenList(
Syntax.Token(SyntaxKind.PublicKeyword),
Syntax.Token(SyntaxKind.AbstractKeyword)))

.WithAccessorList(
Syntax.AccessorList(

Syntax.List(
Syntax.AccessorDeclaration(

SyntaxKind.GetAccessorDeclaration)
.WithSemicolonToken(

Syntax.Token(SyntaxKind.SemicolonToken)))))

Figure 2.11: Sample code to manually create a Roslyn syntax tree
using September 2012 CTP

23

3. MediaWiki improvements
As mentioned in Section 2.1.2, to generate types for each module of the API, it is
necessary to know the properties contained in the module response and how do
they map to the values of the prop parameter.

This information was not available, in MediaWiki previously. For this reason,
we extended the paraminfo module to be able to provide information about
result properties of the API modules, using the same type system already used to
describe parameters. Also, most of the API modules were changed so that they
provide this information to the paraminfo module.

Specifically, this meant adding getResultProperties() function to the Api-
Base class, which is a base class for all module classes, and then overriding it in
each module’s class. This function is then called from the ApiParamInfo class, so
that the provided information shows in the output of the paraminfo module. For
an example implementation of getResultProperties(), see Figure 3.1.

Of the 73 modules present in the MediaWiki core (that is, without any
extensions), 5 are not suitable for having their result properties described, because
their result looks different than the result of other modules (for example, there are
modules that produce RSS feeds). Further 5 modules do use the same response
format as the other modules, but their response cannot be described in the type
system used. There are also 17 modules that can be partially represented using
this type system, but not completely.

The patch that adds this ability to the paraminfo module and the necessary
information to most other modules was reviewed by MediaWiki developers and
merged into the official repository on 12 June 2012. On 2 July 2012, MediaWiki
version 1.20wmf6, which includes changes from this patch, was deployed to all
Wikimedia sites, including Wikipedias.

An example of the added result information to the paraminfo response (here
for the categorymembers module) is in Figure 3.2.

During this work, we also noticed several bugs and inconsistencies in the API.
Because of this, we reported eight bugs to the WikiMedia bug-tracking system.
Three of them turned out to be duplicates of already reported bugs and, as of
December 2012, three of them are still waiting to be fixed.

We also submitted eight additional patches to the MediaWiki code review
system. Although only three of them actually fix behavior of the MediaWiki API,
the rest are only fixes in documentation and other mostly insignificant changes.
Of those three patches, one is still waiting for review, because it is a breaking
change, and most likely will not be accepted.

24

public function getResultProperties() {
return array(

’ids’ => array(
’pageid’ => ’integer’

),
’title’ => array(

’ns’ => ’namespace’,
’title’ => ’string’

),
’sortkey’ => array(

’sortkey’ => ’string’
),
’sortkeyprefix’ => array(

’sortkeyprefix’ => ’string’
),
’type’ => array(

’type’ => array(
ApiBase::PROP_TYPE => array(

’page’,
’subcat’,
’file’

)
)

),
’timestamp’ => array(

’timestamp’ => ’timestamp’
)

);
}

Figure 3.1: Implementation of getResultProperties()
in the ApiQueryCategoryMembers class

25

<props>
<prop name="ids">

<properties>
<property name="pageid" type="integer" />

</properties>
</prop>
<prop name="title">

<properties>
<property name="ns" type="namespace" />
<property name="title" type="string" />

</properties>
</prop>
<prop name="sortkey">

<properties>
<property name="sortkey" type="string" />

</properties>
</prop>
<prop name="sortkeyprefix">

<properties>
<property name="sortkeyprefix" type="string" />

</properties>
</prop>
<prop name="type">

<properties>
<property name="type">
<type>

<t>page</t>
<t>subcat</t>
<t>file</t>

</type>
</property>

</properties>
</prop>
<prop name="timestamp">

<properties>
<property name="timestamp" type="timestamp" />

</properties>
</prop>

</props>

Figure 3.2: Result properties information for the categorymembers module

26

4. The LinqToWiki library
The LinqToWiki library consists of one Visual Studio solution, that contains the
following projects:

• LinqToWiki.Core

• LinqToWiki.Codegen

• LinqToWiki.Codegen.App

• LinqToWiki.ManuallyGenerated

• LinqToWiki.Samples

The LinqToWiki.Core project contains the core of the library: types that access
the API, convert to and from the representation of data in the API, represent
parameters of various types of queries, represent query results or those that process
LINQ expression trees. This project can be used together with code generated
using LinqToWiki.Codegen, or with manually written code.

The LinqToWiki.Codegen project handles generating code based on information
from the paraminfo module. It contains types that represent the results of that
module, process them, generate C# code and compile this code. This project also
contains helper types for easier creating of Roslyn syntax trees.

The LinqToWiki.Codegen.App project compiles down to a simple console
application called linqtowiki-codegen, that uses functionality from the LinqToWiki.
Codegen project.

The LinqToWiki.ManuallyGenerated project is a sample of how one could
write code to access a wiki using LinqToWiki without using LinqToWiki.Codegen
to generate the code.

Finally, the LinqToWiki.Samples project contains samples showing how to use
various API modules using LinqToWiki. It uses code generated by LinqToWiki.
Codegen.App.

Usage The intended usage of LinqToWiki is this: First run the linqtowiki-
codegen application to generate a Dynamic-Link Library (DLL) tailored for a
certain wiki. Then use the generated library together with LinqToWiki.Core in
your C# (or VB.NET) application to access that wiki.

An alternative is to get the generated DLL from someone else and then use
that. An advantage of this approach is that the user does not have to have Roslyn
installed.

Other options are possible, though. For example, the LinqToWiki.Codegen
library can be used to generate the code as a set of files containing C# source
code. Those files can then be modified and manually compiled.

27

4.1 The LinqToWiki.Core project
The LinqToWiki.Core project contains shared code that can be used when querying
any MediaWiki wiki that has the API enabled. It can be used together with code
generated through LinqToWiki.Codegen, but it can also be used without it.

In fact, LinqToWiki.Codegen internally uses LinqToWiki.Core to access the
paraminfo module using manually written code.

4.1.1 QueryTypeProperties
The QueryTypeProperties class holds basic information about a “query type”,
which corresponds to an API module. This information includes the prefix this
module uses in its parameters, what type of module it is or mapping of its result
properties to values accepted by the prop parameter. It is also able to parse XML
elements this module returns.

4.1.2 WikiQuery
Probably the most often used and certainly the most interesting queries are those
using list query modules. Such queries are represented in LinqToWiki by a
group of types whose names start with WikiQuery.

Specifically, there are four such types: WikiQuery, WikiQuerySortable, Wiki-
QueryGenerator and WikiQuerySortableGenerator. If a module supports sort-
ing, it is represented by a type with Sortable in its name and if it supports being
used as a generator for prop queries, it is represented by a type with Generator
in its name.

There is also a fifth type: WikiQueryResult. This type by itself represents a
query that cannot be modified anymore, but can be used to execute it and get
the results. All of the four preceding types inherit from WikiQueryResult, so it
is possible to execute the query using any one of them too.

The type governs what operations are available. For example, if a type is one
of the two Sortable types, it will have an OrderBy() method, but no other type
has this method. Each method can also return a different type, as is necessary to
form queries.

WikiQuery and generics All of the WikiQuery-related types are generic and
their type parameters are used to decide what properties can be used in each
operation. For example, the type parameter TOrderBy of WikiQuerySortable
decides what properties can be used in the parameter of the OrderBy method.

The way this is achieved is that TOrderBy is a type that contains the properties
that can be used for sorting in the module WikiQuerySortable represents and
the OrderBy method accepts lambda expressions whose parameter is of this type.

For example, if some module supported sorting by PageId and Title, then
TOrderBy would be a type that contains two properties with those names. Because
of this, a query like source.OrderBy(x => x.Title) would compile and execute
fine, but source.OrderBy(x => x.Name) would fail to compile.

Because of the way lambda expressions work, queries like source.OrderBy(x
=> x.Title.Substring(1)) or source.OrderBy(x => random.Next()) would
compile fine. But because there is no way to efficiently execute such queries

28

using the MediaWiki API, they will fail with an exception at runtime. This is
a well-known problem with LINQ that also affects LINQ to SQL [5] and other
LINQ providers.

WikiQuery operations The standard query operators available on the Wiki-
Query types are:

• Where() only sets some parameter or parameters of a query, it always returns
the same type.
It is available on all four of the basic WikiQuery types and uses the generic
type parameter TWhere.

• Select() is used to choose how the elements in the resulting collection
should look like and what properties should they contain. Because the result
of the lambda passed into this method can be an arbitrary type, it doesn’t
make sense to modify the query after calling this method. Because of that,
Select() returns WikiQueryResult. This also follows query expression
syntax, where select is the last clause of each query.
It is available on all four of the WikiQuery types and uses the type parameter
TSelect.

• ToEnumerable() and ToList() are used to actually execute the query. The
distinction between the two methods is that ToEnumerable() returns an
IEnumerable, that lazily loads new pages of results on demand. ToList(),
on the other hand, returns a List, that is immediately loaded with all of
the results, possibly from many pages.
These two methods are available on all of the WikiQuery types, includ-
ing WikiQueryResult and return the result based on the type parameter
TSource for most of the types. An exception is WikiQueryResult, which
uses a separate TResult type parameter.

• OrderBy() (and OrderByDescending()) sets the ordering. Because it does
not make sense to sort the same query multiple times and because no
module supports sorting by multiple keys, this method returns the type
with Sortable removed.
This method is available on the two Sortable types and uses the type
parameter TOrderBy.

• Pages is a property that returns a PagesSource that can then be used in a
prop query. See Section 4.1.3 for more information.
This property is available on the two Generator types and uses the type
parameter TPage.

For a state diagram of transitions between the WikiQuery types and other
related types, see Figure 4.1.

29

WQSortable WQ

WQResult

WQSortableGenerator WQGenerator

PagesSource WQPageResult

Where
OrderBy

Select

Where

Select

Where
OrderBy

Select

Where

Select

Pages
Pages

Select

Figure 4.1: State diagram of WikiQuery-related types
(WikiQuery is shortened to WQ to save space)

4.1.3 PagesSource
The PagesSource type represents a collection of pages that can be used in prop
queries, to get information about those pages. This information can be for example
a list of categories for each page in the collection.

There are two kinds of PagesSources: generator-based and list-based:

• List-based sources use a static list of pages, given as a collection of page
titles, page IDs or revision IDs.
Because the number of pages given this way in a single API request is
fairly limited (usually to 50), large lists have to be queried multiple times.
PagesSource handles this transparently, so the user can input as many
pages as he wants and does not have to worry about the limit.
One exception is if the limit is different than the default of 50 for the current
user on the current wiki. In that case, the user should change the limit by
setting the property PagesSourcePageSize on the Wiki object.1

If the collection used to create a PagesSource is lazy, it is iterated in a lazy
manner. For example, it could be the result of another LinqToWiki query,
with additional processing by LINQ to Objects, that is not possible using
LinqToWiki alone. Or it could the result of a query from another wiki. In

1In all other cases where limits are important in this library, they limit the output, not the
input. That is why simply setting limit=max works in those other cases, but does not work
here.

30

such cases, the original query will only make as many requests as necessary
for the follow-up query.

• Generator-based sources represent a dynamic list of pages that is the result
of another API query, like the list of all pages on a wiki from the allpages
module. This way, the list of pages does not have to be retrieved separately,
only to be sent back.
Generator queries also have to handle paging, as described in Section 2.1.1,
including the exception for the revisions module.

Thanks to the fact that both kinds of page sources for prop queries are
represented by the same (abstract) type, the user of this library can use the same
code to work with any source, thus avoiding repetitive code.

Structure of prop query To actually create a prop query for a page source,
one uses the Select() method. Its parameter is a lambda, whose parameter is
the type parameter TPage of PagesSource. This type is the same for all queries
on the same wiki, but could be different for different wikis.

Inside the lambda, properties and methods of the TPage type can be ac-
cessed. Each of them represents a prop module and all of the methods return
one of the WikiQuery types, which can then be queried as usual, with one con-
dition: the WikiQuery types can’t “leak” outside of the query, so one has to use
ToEnumerable() or ToList() inside the lambda.

There is a special case for the revisions module: it can be also used with
the FirstOrDefault() method, which means only the most recent revision for
each page is selected.

If a prop module has a single result (not a collection), it is represented as a
property that directly returns this result, no querying is possible.

The methods of these prop queries are inside a lambda expression, so they
are not actually executed unless the expression was compiled and the resulting
delegate invoked. Because of this, processing them is not as simple as with normal
queries. For more details, see Section 4.1.6.

For an example of PagesSource query, see Figure 4.2.

4.1.4 QueryParameters
The QueryParameters type contains the parameters of a query:

• sort direction and parameter by which to sort,

• list of properties to select and a delegate that uses them to construct the
result object,

• list of other parameters, as key-value pairs.

QueryParameters is an immutable type, so that an initial subquery can be
safely used repeatedly, as is the case with LINQ to Objects. The list of other
parameters is a functional-style immutable linked list.

The PropQueryParameters type derives from QueryParameters and is used
to store information about a single module in a prop query. Apart from inherited

31

pagesSource.Select(
p =>
new
{

p.Info,
Categories =

p.Categories()
.Where(c => c.Show == Show.NotHidden)
.Select(c => new { c.Title, c.SortKeyPrefix })
.ToEnumerable()
.Take(10)

}
)

Figure 4.2: Example of PagesSource query
that uses info and categories modules

members, it also contains the name of the module and a special value indicating
whether to retrieve only the first item, which corresponds to the usage of the
FirstOrDefault() method.

A related type is PageQueryParameters, which represents a whole prop query.
That means it contains a list of PropQueryParameters objects and also informa-
tion about the source of the query.

4.1.5 ExpressionParser
The ExpressionParser static class is used to process expression trees from LINQ
methods and store the processed query parameters in QueryParameters.

Common for all expression tree processing is that closed-over local variables
contained in the processed lambda, which are represented as members of a compiler-
generated closure class, have to be first replaced by their actual value. This is
done using PartialEvaluator written by Matt Warren [6].

Also, some property names have to be translated from their C# version to their
API version. For details and the reason why this is necessary, see Section 4.2.1.

Each of the methods requires different processing. Specifically:

• Expression trees from Where() are first split into one or more subexpressions
that are anded together (x => subexpr1 && subexpr2 && ...; or is not
supported by the API) and each of the subexpressions is then added as a
key-value pair to the result.
Each subexpression has to be in the form x.Property == Value, where
Value is a constant, possibly from an evaluated closed-over variable. The
reverse order (Value == obj.Property) is also allowed. An alternative
for boolean properties is accessing the property directly (x.Property) or
negated (!x.Property).

• Processing OrderBy() expression trees is simple: they can either be identities
(x => x), which means default sorting will be used (which is the only

32

possibility for some modules), or they can be simple property accesses
(x => x.Property), which means the result will be sorted by that property.
The order of sorting (ascending or descending) is decided by the method
used: whether it was OrderBy() or OrderByDescending().

• Expression trees from Select() are processed in two steps. First, the
expression is scanned for usages of its parameter. If any of its properties are
used, it means those properties have to be retrieved from the API. If the
parameter is used directly, without accessing its properties, it means all of
the properties have to be retrieved, because it is impossible to say which of
them will be used.
For example, the expression x => new { x.Property1, x.Property2 }
means only Property1 and Property2 have to be retrieved. On the other
hand, x => SomeMethod(x) means all of the properties have to be retrieved.
Second step is compiling the expression into a delegate, which will then be
executed for each item coming from the API.
Put together, these two steps mean that Select() can be used with any
expression and only properties that are actually needed will be returned by
the API.

4.1.6 PageExpressionParser
The class PageExpressionParser is used to process the Select() lambda in
PagesSource queries. The difficulty there is that the direct approach of building
the query step-by-step, used in normal queries, will not work. That is because
the expression has to be analyzed before there is any page object that it expects
as its parameter.

The result of this analysis is twofold: the set of parameters needed for all of
the prop queries, as a collection of PropQueryParameters, and a delegate that
can be used to get the result object for each page in the API response.

Because the subquery for each prop module has to end with a call to To-
Enumerable() or ToList(), the parameters can be extracted by invoking the part
of the subquery before that call. At the beginning of each subquery is invoking a
module-specific method on the page object. But because there is no page object
to use, that invocation is first replaced by an appropriate WikiQuery object.

For example, for the query in Figure 4.2, the invoked code is (where wikiQuery
is the appropriate WikiQuery object):
wikiQuery.Where(c => c.Show == Show.NotHidden)

.Select(c => new { c.Title, c.SortKeyPrefix })

To get the delegate, all calls to Where() and OrderBy() are removed, because
their only purpose is to modify the query parameters. Then the single parameter
of type TPage is replaced by a parameter of type PageData and calls to module
methods are replaced by calls to GetData(), with a type parameter specifying
the type of the result and a parameter specifying the name of the module.

The GetData() method returns a collection, so for modules that return only
a single item, like info, a call to SingleOrDefault() is also added.

33

For example the expression in the query in Figure 4.2 is transformed into:
pageData =>
new
{

Info = pageData.GetData<InfoResult>("info")
.SingleOrDefault(),

Categories =
pageData.GetData<CategoriesSelect>("categories")

.Select(c => new { c.Title, c.SortKeyPrefix })

.Take(10)
}

4.1.7 Other types
The QueryProcessor type manages downloading the result and transforming it
from XML to objects. For queries whose result is a collection, it also handles
returning the pages in a lazy manner and downloading the follow-up pages when
necessary.

The QueryPageProcessor type does the same for PagesSource queries.
The Downloader type takes care of forming the query string, executing the

request and returning the result as an XDocument. XDocument is a part of LINQ
to XML, a part of .NET Framework for manipulating XML documents.

Downloader always uses POST and formats its requests as application/x-
www-form-urlencoded. This means that all modules work, including those that
require POST. On the other hand, uploads of files do not work, because they
require multipart/form-data.

The decision to use application/x-www-form-urlencoded follows from the
fact that multipart/form-data is very inefficient when sending multiple param-
eters with short values, which is common when making requests to the API.

34

4.2 The LinqToWiki.Codegen project
The LinqToWiki.Codegen project contains code that retrieves information about
API modules in some wiki, then uses that information to generate C# code to
access those modules using Roslyn and finally compiles the code into a library.

Alternatives to Roslyn Roslyn was chosen, because it is superior when com-
pared with common approaches for code generation in .NET, namely Reflec-
tion.Emit and CodeDOM.

Reflection.Emit [7] is a set of types that allow generation of code at runtime.
The generated code can then be directly executed or saved as an assembly (.dll
or .exe) to disk. The distinguishing feature is that it uses the low-level Common
Intermediate Language (CIL), which means writing any code beyond the simplest
methods can be very tedious and error-prone.

CodeDOM [8] can be used to generate code and compile it to an assembly.
It uses language-independent model, which can be converted to various .NET
languages, including C# and VB.NET. This model is also the biggest disadvantage
of CodeDOM, because it means it doesn’t support all features of C#. For example,
even such basic feature as writing a static class is impossible in the CodeDOM
model without using “hacks”.

Detailed description of Roslyn is in Section 2.3.

What to generate? At this point, we have a library (LinqToWiki.Core) that
can be used to access the MediaWiki API the way we want from the final generated
library. We can also use the same library to get the information we need about
the modules of the API from the paraminfo module. And we have decided we
want to use Roslyn to generate the final library. What remains is to decide what
code to generate, how exactly to map the modules, their parameters and their
results into the model of LinqToWiki.Core.

There are some decisions that were already made in LinqToWiki.Core (the
sort and dir parameters should map to OrderBy(); the prop parameter maps
to Select()), but several other decisions still remain:2

• How should the remaining parameters be mapped? Should they all go into
Where() or somewhere else? Where?

• How should the modules that do not return lists be mapped? LINQ methods
are not suitable for them, because they are meant to work with collections.

• How to name the generated types and members? Specifically, how to
represent names that cannot be used (like those containing special characters)
and names that are undesirable (those that conflict with C# keywords).
Also, should the generated members follow .NET naming conventions?

Our answers to these questions are in the following couple of sections.
2 Obviously, both libraries were written alongside each other, to work well together, not one

after the other. But we think it is better to describe them this way, separately.

35

4.2.1 Naming of generated types and members
Let us start with the last question: Should the generated members follow .NET
naming conventions? The .NET naming guidelines [9], that are widely followed
by various .NET libraries and the .NET Framework itself, state that names
of types and public members should use PascalCase, that is, each word of an
identifier should start with a capital letter and the identifier should not contain
any delimiters (such as underscores).

We would prefer to follow these naming conventions, but, unfortunately, it is
not possible. That is because the names of modules, parameters, result properties
and almost all enumerated types in the API use names that are all lowercase,
without delimiters between words. That means there is no way to figure out which
letters in an identifier should be capitalized (apart from the first one).

As one of the more extreme examples, one of the possible values of the rights
parameter of the allusers module on the English Wikipedia is collectionsave-
ascommunitypage. A human can see that the proper name for that value using
PascalCase would be CollectionSaveAsCommunityPage, but a computer cannot.
(Actually, it is possible that the words could be reliably separated using natural
language processing, but doing that is outside the scope of this work.)

Reserved names Because different .NET languages have different sets of re-
served identifier names (usually, those are the language keywords) and because
libraries written in one language should be usable from other languages, .NET
languages provide a way to use their keywords as identifiers. In the case of C#,
this is done by prefixing the identifier with an at sign. So, for example, to use
new as an identifier, one has to write @new.

Thanks to this, using keyword-named identifiers is still possible, although
slightly less convenient than with normal identifiers. Also, the naming guidelines
suggest avoiding keywords as identifiers.

In MediaWiki core API modules, there are four identifiers that are also C#
keywords: namespace, new, true, false. Out of these, we decided to shorten
namespace to ns, which is a common abbreviation, so the meaning should not be
lost. The other three have to be written with @ (@new, @true and @false) in C#,
because we did not find a reasonable alternative for them.

Special characters The characters hyphen (-), slash (/) and space appear
in some names in the API, but are not allowed in .NET identifiers, so they are
replaced by underscores ().

Some names also start with an exclamation mark (!), to indicate negation.
Such names are translated by prefixing not_. So for example, !minor (which
means that an edit is not a minor edit) is translated into not_minor.

One more special case is that some enumerated types allow an empty value.
Such value is then represented by the identifier none.

Naming types Another question is how to name the generated types. There
are two kinds of generated types: those that represent some enumerated type and
those that represent parameters or results of some module.

For the latter kind, it is simple to come up with a convention like naming them
by the module name, suffixed by the specific kind of the type (e.g. blockResult for

36

the result of the block module or categorymembersWhere for the type representing
Where() parameters for the categorymembers module).

But for the former kind, the situation is more complicated. Enumerated
types do not have names by themselves, they are part of a parameter or property
that has a name. The problem is that different modules often have parameters
and properties with the same name, while their type sometimes is the same and
sometimes it is not.

So, there are two options: either let the types that look the same actually be
the same generated type, or let each parameter and property have its own distinct
type. If we merge the types that look the same, we should not use the module
name in their name, because one type can be used with different modules. But
that means we need to distinguish different types in another way, like a number.
But names like token5 are not very helpful for the user.

Because of that, we chose the other option, which means including the name
of the module in the type name. But doing it this way does not eliminate conflicts
completely: In the case when a module has a parameter and a property with the
same name, their types still have to be distinguished. An example of such type
name is recentchangestype2.

4.2.2 Structure of generated code
At the start of each query is the Wiki type. It contains methods for non-query
modules as well as methods to create list-based PagesSources. It also contains
the property Query that returns an object that contains methods for list and
meta query modules. (prop query modules work differently, for more information,
see Section 4.1.3.)

Simple modules With modules that do not return lists, the situation is mostly
simple: there are no parameters to sort or filter the result (because it is not a
list) and most of those modules also do not have parameters to choose the result
properties.

Because of that, a method for each such module, that directly returns the result
object is enough. This method has parameters corresponding to the parameters
of the module, where required parameters of the module are mapped as normal
method parameters and parameters that are not required are mapped as optional
parameters. The code of this method builds QueryParameters from the method
parameters and then executes the query using QueryProcessor.

List modules On the other hand, list modules can have several kinds of pa-
rameters:

• Those that affect order of the items in the list. They are naturally mapped
as OrderBy(). The parameters sort and dir belong here.

• Those that choose what properties appear in the result. They are naturally
mapped as Select(). Only the parameter prop belongs here.

• Those that filter what items appear in the result. They are naturally mapped
as Where(). For example, the parameters namespace and startsortkey of
the categorymembers module belong here.

37

• Various other parameters. They do not naturally map to any LINQ method.
For example, the parameter title (that decides which category to enumer-
ate) of the categorymembers module belongs here.

The first two kinds are not a problem, because it is clear which parameters
belong to them. The second two kinds are a problem, because there is no clear
way to automatically distinguish between the two. One exception, where the
distinction is clear, is if a parameter is required (as indicated in its description),
because it then means it belongs among “other parameters”.

Required parameters are given as parameters of the module methods, but
we decided to treat all non-required parameters that do not belong to the first
two kinds, as if they were Where() parameters. Unfortunately, this means that
some queries do not logically make sense, if we consider that the Where() method
should only filter the results.

For example, consider this query:
wiki.Query.categorymembers()

.Where(cm => cm.title == "Category:Query languages")

Here, the title property does not actually represent filtering by the title of
the category member, it decides which category to enumerate. And without it, the
query would not even execute successfully (the parameter title is not marked as
required, because the parameter pageid can be used instead of it).

Proper solution to this problem would require human interaction when gener-
ating the code, to choose which parameters belong to Where() and which do not.
As an alternative, the description of each parameter in the paraminfo module
could contain its kind.

Enumerated types One more question is how to represent enumerated types.
The answer is seemingly simple: make them enums and for those parameters or
properties that can have multiple values, use bit flags. But the largest type that
can be used as an underlying type for enum is ulong, which has 64 bits. That
means this will work only if there is no enumerated type in the API, that has more
than 64 values and can have multiple values at the same time. Unfortunately, the
English Wikipedia has one: the type of the rights parameter of the allusers
module has 106 values and the parameter can have multiple values at the same
time.

Because of that, each enumerated type is represented by immutable class
deriving from the common base class StringValue, with inaccessible constructor
and static field for each possible value. Combination of values can be represented
as a collection, like with other types.

4.2.3 Wiki
The top-level type that manages all code generation is Wiki (not to be con-
fused with the generated Wiki type from Section 4.2.2). It manages retrieving
information about API modules and generating code for them.

When the code generation is complete, it saves the generated C# files to a
temporary directory and compiles them using CodeDOM. CodeDOM is used for
the compilation, because its compiler is the full C# compiler and can handle all

38

features of C# (unlike the CodeDOM object model). The Roslyn compiler is not
able to compile some useful expressions, such as collection initializers (but the
object model of Roslyn is complete).

4.2.4 ModuleSource
The ModuleSource class is used to retrieve information about modules of the API
and transform it from XML to objects, like Module, Parameter and Parameter-
Type. This information comes from the paraminfo module and is fetched using
LinqToWiki.Core.

In fact, this code can be viewed as a sample on how to use LinqToWiki.Core
without code generated by LinqToWiki.Codegen. Generated code cannot be used
to work with the paraminfo module, because it is one of the modules, whose
response is complicated and does not fit into the simple type system used by
paraminfo.

Because the addition of result properties to paraminfo was made as a part of
this work (see Section 3) and so is quite recent, there is also another option to get
this information: ModuleSource can accept a “props defaults” file, that contains
the necessary information. The file looks the same as paraminfo response (in
XML format), except it contains only the added information. This file can be
created from another wiki that can already provide this information, or it can be
written by hand. It can be also useful to work with modules from extensions, that
currently don’t provide this information.

4.2.5 ModuleGenerator
ModuleGenerator and related types are the ones that actually generate code
for each module using Roslyn. Each type generates code for a certain kind of
module, so for example ModuleGenerator works with non-query modules, while
QueryModuleGenerator works with most query modules.

Each generator creates all the code that is necessary for that module. For
example, for a list query module, this includes generating Where, Select and
possibly OrderBy classes, method in the QueryAction class (which is returned by
the Query property of the Wiki class) and types for all its enumerated types.

Each of the generated types and methods also has XML documentation
comment attached, based on description from paraminfo. This means that a user
of this library does not have to guess what each method or property means, his
IDE can show him description for it.

These descriptions sometimes contain references to details of the API that this
library abstracts away. For example, the description for the unique parameter
of the alllinks module says: “Only show unique links. Cannot be used with
generator or alprop=ids.” The reference to alprop makes sense to someone who
uses the API directly, but would be very confusing for a user of LinqToWiki. Not
only does LinqToWiki abstract away module prefixes (al), it also doesn’t expose
the prop parameter directly (the Select() method is used instead).

39

4.2.6 SyntaxEx
As described in Section 2.3, creating Roslyn syntax trees can be cumbersome.
The SyntaxEx class makes doing that easier by adding simpler alternatives to the
factory methods in Roslyn’s Syntax class. The SyntaxEx methods do not handle
more complex cases, so for those, using Syntax is still necessary.

For example of how the code from Figure 2.11 can be written using SyntaxEx,
see Figure 4.3.

SyntaxEx.AutoPropertyDeclaration(
new[]
{

SyntaxKind.PublicKeyword,
SyntaxKind.AbstractKeyword

},
"CategoryInfoResult",
"CategoryInfo",
setModifier: SyntaxKind.PrivateKeyword,
isAbstract: true)

Figure 4.3: Sample code to manually create
a Roslyn syntax tree using SyntaxEx

Another improvement is that syntax nodes that represent declaration of
property, field, parameter or variable can be used to refer to them in later code, for
example when assigning the value of a parameter to a property. This is achieved
by using implicit conversions and a helper type NamedNode. In Roslyn without
this extension, it is necessary to extract the name of the syntax node and use that
to create IdentifierNameSyntax.

As with SyntaxEx, this can make simple cases simpler, but cannot handle
everything. Because of that, complex cases still have to directly use Roslyn.

40

4.3 The linqtowiki-codegen application
linqtowiki-codegen is a simple console application that can be used to access
the functionality of LinqToWiki.Codegen. In other words, it can generate a library
for accessing a specific wiki using LinqToWiki.

Using its command-line arguments, one can specify the Uniform Resource
Locator (URL) of the wiki, the directory to where the files will be generated, the
namespace of the generated types, the name of the generated assembly and the
location of the props default file.

Some of the more advanced features of LinqToWiki.Codegen, such as writ-
ing the generated C# code to a specific directory, are not available from this
application.

The application writes a short usage note when run without arguments, which
can be seen in Figure 4.4.

Usage: linqtowiki-codegen url-to-api [namespace [output-name]]
[-d output-directory] [-p props-file-path]
Examples: linqtowiki-codegen en.wikipedia.org LinqToWiki.Enwiki
linqtowiki-enwiki -d C:\Temp -p props-defaults-sample.xml

linqtowiki-codegen https://en.wikipedia.org/w/api.php

Figure 4.4: Usage note of the linqtowiki-codegen application

41

4.4 Samples of queries
The project LinqToWiki.Samples contains one class with methods that show
the usage of each available module of the API. It also contains one real-world
complex query that combines LinqToWiki with LINQ to Objects to search for
empty categories that are not redirects.

When run, it is a console application that shows the output of the selected
module. Selecting the module to use is done by changing which method is called
by the Main() method.

42

5. Future work
While the LinqToWiki library is fully functioning and could be considered complete,
there is still room for improvement. Some possible improvements were already
mentioned (proper capitalization in generated code; distinguishing Where() pa-
rameters from other parameters), but there are also other improvements that
could have larger impact on the usage of the library:

• F# implementation
The recent version 3.0 of the .NET-based functional language F# has its
own alternative to LINQ, called query expressions. Query expressions use
their own set of types, so they are incompatible with C# LINQ, but they
offer similar capabilities. Unlike C#, they also support creating custom
operators, which could provide better syntax for PagesSource queries.
Also, F# 3.0 supports type providers, which is a feature for automatic
creating of types just before they are used in code, that is, before compilation.
This would simplify the workflow of using LinqToWiki, because the code
generation would be automatic.

• Asynchrony
The current version of LinqToWiki is completely synchronous, which means
there is always a thread blocked, while an application waits for a network
response. Better support for asynchrony is the main feature of the new
C# 5.0, but LinqToWiki could be made asynchronous even without it. This
could be useful especially in Graphical User Interface (GUI) applications,
where the main thread should not be blocked for long periods of time.
A big part of LinqToWiki is working with modules that return lists, but there
is no single idiomatic way of representing asynchronous collections, with or
without C# 5.0 improvements. There are several possibilities, including a
lazy collection of Tasks, Rx IObservable or TPL Dataflow ISourceBlock.
Another way how asynchrony could be used in LinqToWiki is if the following
page was being retrieved even before the user finished processing the preced-
ing page. This could be especially useful for PagesSource queries, because
the following primary and secondary page could be fetched in parallel.

• Better compile-time checking
One of the features of Roslyn that is not currently used by LinqToWiki is
Visual Studio integration. What that means is that one can use Roslyn to
write various Visual Studio extensions, including enhanced compile-time
checking.
In the case of LinqToWiki, this could be used to verify that queries that
compile are actually correct. If not, a custom error would show in the list of
errors. Such checking would be also useful for other LINQ providers, such
as LINQ to SQL, but each provider has its own rules about what is an error
and what is a correct query.

43

6. Related work
Many libraries for accessing MediaWiki written in various languages already exist.
Some relevant examples are included below.

• wikitools [10]
wikitools is a library written in Python. It uses string-based dictionaries
for parameters and results. For example, the blocks sample query used in
Chapter 1 would look like this:
params = {

’action’:’query’,
’list’:’blocks’,
’bkip’:’8.8.8.8’,
’bkdir’:’older’,
’bkprop’:’byid’

}
request = api.APIRequest(site, params)
request.query()

This is basically identical to the string-based approach mentioned in Sec-
tion 1.1, so it also shares all of its disadvantages.

• WikiFunctions [11]
WikiFunctions is a .NET library used primarily in a semi-automated Medi-
aWiki editor AutoWikiBrowser. It uses the manual approach for a small
subset of available modules. This means the user does not have to know
much about the API, but on the other hand, the user cannot use all of the
functionality of the API.

• Linq to Wikipedia [12]
Linq to Wikipedia is a .NET library that contains a simple IQueryable
provider for two modules (search and opensearch) from the MediaWiki
API. A query using this library looks like this:
from wikipedia in datacontext.OpenSearch
where wikipedia.Keyword == "linq"
select wikipedia

This query provider is very limited in that it supports only Where(), Take()
and Skip() methods (the select clause in the above code is actually not
compiled into a call to the Select() method). Other LINQ methods are
attempted to be ignored and often cause exceptions at runtime.
Also, the where clause has to be in a very specific shape: it can use only
the Keyword property, even though the query object has other properties.
On the other hand, objects in the resulting collection have the Keyword
property, even though it is always null. This is because with IQueryable,
the type of the result is the same as the type used in where.

44

Conclusion
The goal of this work was to implement a C# library to access the MediaWiki
API in a way that is readable, discoverable, strongly-typed and flexible.

These goals were successfully accomplished using a custom LINQ provider and
code generation with Roslyn CTP:

• Code written using LinqToWiki is readable: non-query modules are accessed
using simple methods, with parameters usually given as named parameters
of the method.
Query modules use LINQ methods or LINQ query expressions, which should
be readable to any C# programmer. Although the fact that even parameters
that do not filter the results go into Where() can be confusing.
The syntax for prop modules, with LINQ queries inside Select(), usually
following another LINQ query, can be quite complicated, but we believe
it describes the meaning of the code quite well, so it should still be fairly
readable.

• The various actions possible through LinqToWiki are highly discoverable:
every action begins in a single point – the Wiki class. An IDE, such as
Microsoft Visual Studio, can then show the user the available actions, along
with their description, through autocompletion (called IntelliSense in Visual
Studio).

• The whole library is strongly-typed: accessing modules, setting their param-
eters and then accessing their results never involves using string constants,
that would represent some module, parameter or result property. This is
because actual types with methods, method parameters and properties are
used.
Thanks to this, the chance for user error when using this library is greatly
lowered.

• The library is flexible: If some module in the API of a wiki changes (which
happens regularly), the library should be still usable. This is achieved by
regenerating code for the wiki.
The same principle also applies to different wikis. If the modules in several
wikis differ, code can be generated for each wiki separately.

Probably the biggest difference between the original goal and the final library
is naming. Names of types, methods, method parameters and properties should
follow the .NET naming guidelines, but this was not done, because we could not
separate names from the API into words.

45

Sample queries
Following are samples of queries of different modules using LinqToWiki. They
show how some of the goals of this work have been achieved.
string diff = wiki.compare(fromrev: 486474789,

torev: 487063697)
.value;

This query compares the text of two revisions and returns differences between
them. It shows that queries for modules that return a single item take their
parameters as named method parameters and directly return their result.
var pages = wiki.Query.querypage(querypagepage.Uncategorizedpages)

.ToList();

This query returns a list of uncategorized pages, as provided by the spe-
cial page Special:UncategorizedPages. It shows that required parameters to
list-returning modules are given as method parameters and that ToList() (or,
alternatively, ToEnumerable()) has to be called on the result before it can be
used.
var pages = (from cm in wiki.Query.categorymembers()

where cm.title == "Category:Query languages"
&& cm.type == categorymemberstype.subcat

select cm).Pages;

This query returns subcategories of the category Query languages. The result
is not directly usable, but it can be used in prop queries. The query shows how
LINQ can be used for querying list-returning modules and that the Pages property
is used to create source for further queries.
var result = pages.Select(

p =>
new
{

Info = p.info,
Images = p.images().ToEnumerable()

})
.ToEnumerable();

This query returns information about images present on a list of pages specified
by pages (see previous query). It shows how the result of one query can be used
as a source for a prop query, how the LINQ method Select() is used in such
queries, how anonymous types can be used to return the required information and
how ToEnumerable() (or ToList()) has to be also used inside prop queries.

46

Bibliography
[1] MediaWiki. MediaWiki.org. http://www.mediawiki.org/wiki/MediaWiki.

[2] MediaWiki API. MediaWiki.org. http://www.mediawiki.org/wiki/API.

[3] Skeet, Jon. C# in Depth. 2nd edition. Stamford: Manning, 2011. Part 3,
C# 3: Revolutionizing how we code. ISBN 978-1-935182-47-4.

[4] Microsoft “Roslyn” CTP. MSDN. http://msdn.microsoft.com/en-US/
roslyn.

[5] Data Types and Functions. LINQ to SQL Reference, MSDN Library. http:
//msdn.microsoft.com/en-us/library/bb386970.

[6] Warren, Matt. LINQ: Building an IQueryable Provider – Part III. The
Wayward WebLog. http://blogs.msdn.com/b/mattwar/archive/2007/
08/01/linq-building-an-iqueryable-provider-part-iii.aspx, 2 Au-
gust 2007.

[7] Emitting Dynamic Methods and Assemblies. MSDN Library. http://msdn.
microsoft.com/en-us/library/8ffc3x75.

[8] Dynamic Source Code Generation and Compilation. MSDN Library. http:
//msdn.microsoft.com/en-us/library/650ax5cx.

[9] Guidelines for Names. Design Guidelines for Developing Class Libraries,
MSDN Library. http://msdn.microsoft.com/en-us/library/ms229002.

[10] python-wikitools. Google Code. http://code.google.com/p/python-
wikitools/.

[11] WikiFunctions. Wikipedia. http://en.wikipedia.org/wiki/Wikipedia:
WikiFunctions.

[12] Linq to Wikipedia. CodePlex. http://linqtowikipedia.codeplex.com/.

47

http://www.mediawiki.org/wiki/MediaWiki
http://www.mediawiki.org/wiki/API
http://msdn.microsoft.com/en-US/roslyn
http://msdn.microsoft.com/en-US/roslyn
http://msdn.microsoft.com/en-us/library/bb386970
http://msdn.microsoft.com/en-us/library/bb386970
http://blogs.msdn.com/b/mattwar/archive/2007/08/01/linq-building-an-iqueryable-provider-part-iii.aspx
http://blogs.msdn.com/b/mattwar/archive/2007/08/01/linq-building-an-iqueryable-provider-part-iii.aspx
http://msdn.microsoft.com/en-us/library/8ffc3x75
http://msdn.microsoft.com/en-us/library/8ffc3x75
http://msdn.microsoft.com/en-us/library/650ax5cx
http://msdn.microsoft.com/en-us/library/650ax5cx
http://msdn.microsoft.com/en-us/library/ms229002
http://code.google.com/p/python-wikitools/
http://code.google.com/p/python-wikitools/
http://en.wikipedia.org/wiki/Wikipedia:WikiFunctions
http://en.wikipedia.org/wiki/Wikipedia:WikiFunctions
http://linqtowikipedia.codeplex.com/

List of Figures
2.1 API request to add a new section to a page and its response . . . 11
2.2 API request to list pages from a category and its response 11
2.3 API request to list categories of given pages and its response . . . 12
2.4 API request to list categories of pages from a category and its

response . 13
2.5 Example of primary and secondary paging 15
2.6 Shortened response of the paraminfo module for the category-

members module . 17
2.7 Comparison between LINQ query operators, query expression claus-

es and functions in functional languages 19
2.8 Example body of expression tree 19
2.9 Example of piece of C# code and its Roslyn syntax tree 21
2.10 Sample code to manually create a Roslyn syntax tree using October

2011 CTP . 23
2.11 Sample code to manually create a Roslyn syntax tree using Septem-

ber 2012 CTP . 23

3.1 Implementation of getResultProperties() in the ApiQueryCategory-
Members class . 25

3.2 Result properties information for the categorymembers module . 26

4.1 State diagram of WikiQuery-related types 30
4.2 Example of PagesSource query that uses info and categories

modules . 32
4.3 Sample code to manually create a Roslyn syntax tree using SyntaxEx 40
4.4 Usage note of the linqtowiki-codegen application 41

48

List of Abbreviations
API Application Programming Interface

CodeDOM Code Document Object Model

CIL Common Intermediate Language

CTP Community Technology Preview

DLL Dynamic-Link Library

DOM Document Object Model

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IP Internet Protocol

JSON JavaScript Object Notation

LINQ Language Integrated Query

PHP PHP: Hypertext Preprocessor

RSS Really Simple Syndication

Rx Reactive Extensions

SQL Structured Query Language

TPL Task Parallel Library

URL Uniform Resource Locator

VB.NET Visual Basic .NET

XML Extensible Markup Language

49

A. Contents of the enclosed CD
The main part of the enclosed CD is the directory LinqToWiki, which contains all
of the source code of the LinqToWiki library. The same code is also available from
the git repository of the library: https://github.com/svick/LINQ-to-Wiki/.

The CD also contains this document (thesis.pdf) and a short presentation
about the library (presentation.pdf).

A.1 Using the library
As described in Chapter 4, using LinqToWiki consists of several steps. Here, they
are described in detail:

1. Compile the lintowiki-codegen application.
To do this, you need Microsoft Visual Studio 2012 with the September 2012
CTP of Roslyn installed. In it, open LinqToWiki.sln and build the project
LinqToWiki.Codegen.App.
This step can be skipped, compiled version of lintowiki-codegen is includ-
ed in the Tools directory on the enclosed CD.

2. Run lintowiki-codegen to generate wiki-specific DLL.
Execute the application lintowiki-codegen.exe with a parameter speci-
fying which wiki to use and optionally also other parameters altering the
output. The application requires .Net 4.5. For further information, see
Section 4.3.
This step can also be skipped, the enclosed CD contains DLL generated for
the English Wikipedia in the directory Lib\LinqToWiki.Generated.

3. Use the generated DLL in your application.
The LinqToWiki.Samples application (more details in Section 4.4) is an
example of application that uses the generated DLL to perform queries.
To build, execute and possibly modify it, open the solution file LinqToWiki
no codegen.sln in Microsoft Visual Studio 2010 or 2012.

50

https://github.com/svick/LINQ-to-Wiki/

	Introduction
	Key contributions
	Structure of this work

	Problem analysis
	Alternatives

	Background
	MediaWiki API
	Paging
	The paraminfo module

	LINQ and expression trees
	Roslyn

	MediaWiki improvements
	The LinqToWiki library
	The LinqToWiki.Core project
	QueryTypeProperties
	WikiQuery
	PagesSource
	QueryParameters
	ExpressionParser
	PageExpressionParser
	Other types

	The LinqToWiki.Codegen project
	Naming of generated types and members
	Structure of generated code
	Wiki
	ModuleSource
	ModuleGenerator
	SyntaxEx

	The linqtowiki-codegen application
	Samples of queries

	Future work
	Related work
	Conclusion
	Sample queries

	Bibliography
	List of Figures
	List of Abbreviations
	Contents of the enclosed CD
	Using the library

