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Abstrakt: Pohybové rovnice pro obecnou gravitačnı́ konexi a ortonormálnı́ korepér
jsou odvozeny pro Einstein-Cartanovu teorii z Einstein-Hilbertovského typu účinku.
Kalibračnı́ volnost plynoucı́ z obecnosti gravitačnı́ konexe je geometricky interpre-
tována. Naše formulace nefixuje ortonormálnı́ korepér jako dotykovým k prostorovému
řezu a proto umožňuje, aby Lorentzova grupa byla součástı́ kalibračnı́ volnosti. 3+1
rozklad proměmných zavádı́ dotykovou Minkowskiho strukturu a Hamilton-Diracův
přı́stup k dynamice pracuje s Lorentzovskou konexı́ nad prostorovým řezem. Vazby
druhého druhu jsou analyzovány a Diracova závorka je zavedena. Fázový prostor je
zredukován a popsán kanonickými proměnnými.
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samosdružená reprezentace je sestrojena. Pomocı́ nekonečného tensorového součinu
bodových Hilbertových prostorů je sestrojena reprezentace základnı́ch proměnných
Einstein-Cartanové teorie.

Klı́čová slova: Einstein-Cartanova teorie, Hamiltonovská formulace, Kvantová gravi-
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Introduction
One of the open problems in the theory of gravitation is the difficulty with adding

the spinors into the theory. There are two physically nonequivalent formulations of a
system including gravity and Dirac’s field. In the first one the gravitational connec-
tion (RLC)∇̂ is strictly geometrical called Riemann-Levi-Civita (RLC), i.e. connection
is compatible with metric and its torsion vanishes, and action of our system is a sum of
Einstein-Hilbert and Dirac’s actions [1]. In Dirac Langrangian the external derivative
operator d̂ should be replaced by (RLC)∇̂ in order to have a final theory locally Lorentz
invariant. The variation of action is taken with respect to ”metric” and Dirac field ψ
(metric should be expressed in terms of orthonormal coframe ea and (RLC)∇̂ depends
on ea). In the second model the orthonormal coframe ea remains unchanged and grav-
itational connection ∇̂ is now general, i.e. without any restriction like compatibility
with metric, etc. These two families of variables represent our configuration space
and variations of the action with respect to both of them are independent. These two
formulations are equivalent in the case of pure gravity. But if one adds a Dirac field
with Lagrangian depending on connection ∇̂ these two theories give different physical
results in the region of Planck densities and higher, e.g. bing bang or black hole singu-
larities resolutions occur in the presence of fermionic matter [2]. Another example of
Lagrangian which depends on connection is given by Bičák’s vector field [3].

We will focus on the second model in this thesis. The motivation for this choice is
taken from loop quantum gravity, where Ashtekar connection A on spatial section Σ
is defined by RLC connection of q (q is a metric on Σ induced from a 4-dimensional
metric g of spacetime M) and external curvature of 4-dimensional RLC connection.
Ashtekar originally began with complex connection A but problems with reality con-
ditions or hermiticity of inner product of quantum Hilbert space caused that Barbero-
Immirzi parameter enters theory and A becomes real. This parameter plays no role
on classical level, but after quantization it causes ambiguity and must be fixed by
comparison of Hawking-Bekenstein entropy with entropy computed from loop the-
ory. Fermionic matter was successfully added to loop gravity only on kinematical
level and problems of dynamics remain unresolved. And last but not least, problem is
that general theory is SO(g) invariant what is still true in the case of complex Ashtekar
connection but the real loop theory broke down this explicit invariance to SO(q) [5].
If one does not fix coframe to be tangential to Σ in opposite to loop gravity then all
degrees of freedom enters the theory which can then be expressed as SO(g) gauge the-
ory. As is shown in appendix this leads to a theory where torsion appears as the first
class constraint in the case of 2+1 dimensional gravity which is good news for 2+1 di-
mensional theoretical physicists, because one can work with SO(g) gauge connection
instead of 2+1 analogue of Ashtekar connection and problem of vanishing torsion can
be solved on quantum level as one wishes. Unfortunately in the case of 3+1 dimen-
sional Einstein-Cartan theory the condition of vanishing torsion is split in two parts
where one is the first class and the other is the second class constraints. Therefore new
potential problems like introduction of ghosts should be solved on quantum level.

In this thesis, we will focus on the derivation of Hamiltonian-Dirac formulation of
our physical system. The work is organized as follows. In section 1.1, Lagrangian
formulation of the Einstein-Cartan theory is formulated in the the language of forms
valued in the tangent tensor algebra on M. Equations of motion (EOM) are derived
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and equivalence between theory of General Relativy and Einstein-Cartan theory is al-
so shown in this section. In section 1.2, geometrical interpretation of general solution
of gravitational connection given by the equations of motion is done. 3+1 decomposi-
tion is performed in section 1.3 and also some useful formulas are evaluated there. In
section 1.4, the Hamiltonian of the theory is written and separation of constraints into
the first and second class is performed. In section 1.5, Dirac brackets are introduced
and coordinates on reduced phase space are defined.

In the second part of this thesis we will focus on the quantum formulation of
Einstein-Cartan theory. We will try to construct the kinematical Hilbert space of
Einstein-Cartan theory, where selfadjoint representation of certain family of observ-
ables can be defined. We will start with point version of the phase space, which can be
interpreted as the phase space of the coframe settled in the point of spatial manifold.
There are several groups acting on this space. Their existence will be used for correct
definition of selfadjoint operators related to classical observables. In the next section
basic ideas of von Neumann’s [12] construction of tensor product of the infinite family
of Hilbert spaces is briefly summarized. Then it is used for final construction of Hilbert
space of Einstein-Cartan theory.The final result appears not very satisfactory, since the
construction leads to too large family of irreducible representations of the algebra of
kinematical variables which makes the quantization procedure rather ambigous at its
present stage of construction.
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1. Hamiltonian Formulation of
Einstein-Cartan Theory

1.1 Lagrangian of Einstein-Cartan Theory
Let (M = �[t]×Σ, g) be a spacetime manifold equipped with metric g (signature(g) =

(+,−,−,−)). Geroch’s theorem [6] says that spinor structure over the manifold M ex-
ists iff there exists global orthonormal frame ea over M and M is orientable. These
two conditions restrict possible topological shapes of M and Σ, e.g. if the spacetime
manifold is given by the product M = �×”3-dimensional sphere” then Geroch’s con-
ditions are not fulfilled and spinor structure can not be defined over such manifold, in
other words, if one considers Friedman’s models then the closed model violates the
Geroch’s conditions. We assume Geroch’s conditions already now in the case of pure
gravity since spinors should be added into the theory later so there is no loss of gener-
ality 1. The first nice simplification is that the coframe ea is defined globally and thus
every useful geometrical or gravitational variable can be written in a global manner.
Let us look at the basic quantities:
metric

g = ηabea ⊗ eb,

4-volume form

Σ̂ =
1
4!
εabcdea ∧ eb ∧ ec ∧ ed,

gravitational connection 1-form Γ̂
b

a

∇̂uea = Γ̂
b
a(u)eb

or its curvature 2-form

F̂a
b = d̂Γ̂

a
b + Γ̂

a
c ∧ Γ̂

c
b.

General Relativity sets the connection ∇̂ to be geometrical and the Einstein-Hilbert
action of GR is

S EH =

∫
− 1

16πκ
Rgωg

where Rg is Ricci scalar related to the RLC connection of metric tensor g, ωg =√
− det |g|d4x is its volume form and κ is Newton’s constant (c=1). Action written

in this form explicitly depends on the choice of coordinates and one should overlap
few coordinate’s neighbourhoods and solve boundary terms if one wants to cover the
whole manifold M in general case. But using our assumption on ea one can rewrite the
Einstein-Hilbert action into the following geometrical form

S EH =

∫
− 1

32πκ
εabcdη

bb̄R a
g b̄
∧ ec ∧ ed, (1.1)

1One may say that we can define spinor structure locally and work with such structure. But there
some certain type of phatologic features occur. We will not focus our attention to this problem. There-
fore ”no loss of generality”.
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where R a
g b is curvature 2-form of RLC connection. The action (1.1) is a functional of

basic variables ea = ea
µdxµ and one should make variation of the action with respect to

them. The idea of Einstein-Cartan theory is very simple, gravitational connection ∇̂ is
no more geometrical. In Einstein-Cartan action being of Einstein-Hilbert type

S =
∫
Ω

− 1
32πκ

εabcdη
bb̄F̂a

b̄ ∧ ec ∧ ed (1.2)

variation should be made independently in both variables ea and Γ̂
a
b. Ω is a timelike

compact set, i.e. Ω =< ti; t f > ×Σ. For simplicity we assume in this work that Σ is
compact manifold, e.g. torus. Let us decompose variable Γ̂

a
b into O(g)-irreducible

parts

Γ̂
ab
= ηbcΓ̂

a
c = Âab + B̂ηab + Ĉab (1.3)

where Âab is antisymmetric and Ĉab is symmetric and traceless 1-form, respectively.
Curvature F̂a

b can be expressed as

F̂ab = ηbcF̂a
c = R̂ab + d̂B̂ηab + D̂Ĉab + ηcdĈac ∧ Ĉdb

where D̂ is metric connection defined by D̂ua = dua + ηbcÂab ∧ uc and R̂ab is its
curvature. If ẽa = Oa

āeā is a new coframe with Oa
b being Lorentz transformation, then

Âab transforms as

˜̂Aab = Oa
āOb

b̄Âāb̄ + Oa
āη

āb̄dOb
b̄

while B̂ and Ĉab transform like tensors in their indices. The Einstein-Cartan action can
be written in new variables (ea, Âab, B̂, Ĉab) as

S =
∫
M

− 1
32πκ

εabcdR̂ab ∧ ec ∧ ed +

∫
M

− 1
32πκ

ηāb̄εabcdĈaā ∧ Ĉb̄b ∧ ec ∧ ed (1.4)

Notice that variable B̂ does not enter the action (1.4). Thus variation of (1.4) with
respect to B̂ vanishes identically and no corresponding equation of motion arises, i.e.

δB̂S = 0. (1.5)

Now if one makes variation with respect to Ĉab then one gets

δĈS =
∫
− 1

16πκ
ηāb̄εabcdδĈaā ∧ Ĉbb̄ ∧ eced = 0 (1.6)

for ∀δĈab: δĈab = δĈba and ηabδĈab = 0. Equation (1.6) is equivalent to

Ĉab = 0. (1.7)

If one uses this fact then action (1.4) can be written as

S ′ =
∫
Ω

− 1
32πκ

εabcdR̂ab ∧ ec ∧ ed, (1.8)
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its variation (see, e.g., [7]) is

δÂ,eS
′ =

∫
Ω

(
1

16πκ
εabcdδÂab ∧ ec ∧ D̂ed − 1

16πκ
εabcdδea ∧ R̂bc ∧ ed

)

and equations of motion are

0 =
1

8πκ
εabcdec ∧ D̂ed = − 1

8πκ

(
T̂ c

ab + T̂ d
daδ

c
b − T̂ d

dbδ
c
a

)
Σ̂c, (1.9)

0 = − 1
16πκ

εabcdR̂bc ∧ ed = − 1
8πκ

Ĝc
aΣ̂c, (1.10)

where the torsion components are given by

D̂ea = T̂a =
1
2

T̂ a
bce

b ∧ ec,

3-volume forms

Σ̂a =
1
3!
εabcdeb ∧ ec ∧ ed, (1.11)

and Ĝa
b is the Einstein tensor

Ĝa
b = R̂ca

cb −
1
2

R̂cd
cdδ

a
b,

R̂ab =
1
2

R̂ab
cdec ∧ ed.

Equation (1.9) implies that connection D̂ is torsion-free and together with metricity of
D̂ we have that D̂ is geometrical connection. Equations (1.10) are Einstein equations
of General Relativity. Solution for general gravitational connection Γ̂

ab
is

Γ̂
ab
= Âab + B̂ηab, (1.12)

where B̂ is an arbitrary 1-form and Âab, ea are given by equations (1.9) and (1.10).
Connection of type (1.12) is called Cartan connection. Ambiguity of Γ̂

ab
due to B̂

represents a gauge freedom in Γ̂
ab

[8]. Spacetime is given by topology of Σ which is
established initially and metric g = ηabea⊗eb. The metric is given just by knowledge of
ea, hence B̂ does not affect geometry. Thus General Relativity and the Einstein-Cartan
Theory are physically equivalent, at least in the case of pure gravity.

1.2 Geometrical interpretation of the gravitational con-
nection

Let V be a four-dimensional real vector space. Two different frames in V are related
by a linear transformation g ∈ GL(V). The first nontrivial irreducible representations
of GL(V) are given by T1V = V and T1V = V∗ (V∗ - dual of V). Next candidates
for representations are spaces built by tensor products T2V = V ⊗ V , T2V = V∗ ⊗ V∗

and T1
1V = V ⊗ V∗ which is isomorphic with V∗ ⊗ V . Anyway, these spaces are not
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irreducible. In order to see this, let us consider a general element t ∈ T2V . t can be
written as

t = tabga ⊗ gb, (1.13)

where ga is a base of V . Thus t can be expressed as a matrix tab. As we know, any
matrix can be written as a sum of symmetric and antisymmetric matrices

t =
1
2

(tab − tba)ga ⊗ gb +
1
2

(tab + tba)ga ⊗ gb = aabga ⊗ gb + sabga ⊗ gb (1.14)

and since g∗aab = −g∗aba and g∗sab = g∗sba we can see that T2V is reducible. g∗ means
an action of g ∈ GL(V). T2V can be decomposed as T2V = A2V ⊕ S2V , where A2V
or S2V means antisymmetric or symmetric part of T2V . Of course this is not a proof
of irreducibility of X2V (X ∈ {A,S}) but these facts about GL(V) are well known and
we will not go further into details. Similar analysis can be done on T2V and we can
also write T2V = A2V ⊕ S2V . Now, let us focus on T1

1V . General element t ∈ T1
1V is

t = ta
bga⊗gb where ga is dual base and ta

b can be expressed as sum of trace and traceless
parts

t =
1
4
δa

bδ
d
c tc

d ga ⊗ gb +

(
δa

cδ
d
b −

1
4
δa

bδ
d
c

)
tc
d ga ⊗ gb. (1.15)

Trace part transforms like scalar while traceless part gives us another representation of
GL(V).

Let M be a four-dimensional orientable manifold. We also suppose that LM =M×
GL(M), where LM is a frame bundle over M (see, e.g.,[7]) and GL(M) ≡ GL(T1M).
This is a nontrivial assumption. In the case of the metric manifolds (M, g), it is equiva-
lent to the first Geroch’s condition of a global section of a bundle OM of all orthonor-
mal frames over (M, g). Together with the orientability of M we have a generalized
version of both Geroch’s conditions . Thanks to these assumptions we can represent
T1M as ×4

i=1F(M), where F(M) is a space of functions over M. Let us denote this
representation as T̂1M and let ĝa be a base coresponding with ga, etc. Thus we have a
representation T̂M of tensor algebra TM. We can define an algebra ΛTM = ΛM⊗ T̂M
where ΛM is Cartan algebra of forms over M. A product ∧ on ΛTM is defined via
formula

â ∧ b̂ = (aa1...an
b1...bm

∧ bc1...cn′
d1...dm′

)ĝa1 ⊗ · · · ⊗ ĝcn′ ⊗ ĝb1 ⊗ · · · ⊗ ĝdm′ (1.16)

and an exterior derivative operator d̂ on ΛTM is given by d̂ = d̂ ⊗ id, where d̂ on the
left-hand side is operator on ΛTM while d̂ on the right-hand side is the usual exterior
derivative operator onΛM. One can also define a covariant exterior derivative operator
for some general connection ∇̂ in similar way on ΛTM. From now we will omit basis
(co)vectors and will write just indexed forms instead of whole expressions.

Let tab ∈ ΛM × T̂2M ≡ ΛT2M ⊂ ΛTM and aab or sab be its antisymmetric
or symmetric parts, respectively. We have immediately from the linearity of ∇̂ that
∇̂aab ∈ ΛA2M and ∇̂sab ∈ ΛS2M. Similar results can be obtained for ΛT2M and its
antisymmetric and symmetric parts. Since contraction of indices and ∇̂ commute, the
covariant derivative operator ∇̂ respects decomposition of the spaces ΛT2M, ΛT2M
and ΛT1

1M into the irreducible subspaces of O(g).
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Now we are going to explore what happens if we equip M with a metric. As before
we start with the real four-dimensional vector space V and g is the metric with signa-
ture (+,−,−,−) which can be written as g = gabga ⊗ gb. There exists canonical way
how to pick up a certain subgroup called orthonormal group O(g) ⊂ GL(V) given by

O(g) = {g ∈ GL(V) : g∗gab = gab} . (1.17)

Because V is equipped with the metric then there exists a canonical isomorphism be-
tween V and V∗ given by g : V → V∗. This map can be easily extended into isomor-
phisms between tensor spaces of the same rank. Examples for rank=2 are given by
maps to T2V , let t∗ ∈ T2V and t̄ ∈ T1

1V and g∗ be an action of such isomorphism

g∗t∗ = gacgbd t∗cd ga ⊗ gb, (1.18)
g∗t̄ = gac t̄b

c ga ⊗ gb. (1.19)

We already know that T2V and T2V can be split into the symmetric and antisymmetric
parts while the decomposition of T1

1V is given by trace and traceless parts. These
spaces generate irreducible representations of GL(V). Since there exist isomorphisms
between the tensor spaces of rank=2 and O(g) is subgroup of GL(V) there should
exist some common decompositions of spaces T2M, T2M and T1

1M into the irreducible
representations of O(V). Indeed, the space T2V can be decomposed into the three
subspaces A2V , B2V and C2V by the following projections

PA
2V ab

cd
tcd =

1
2

(δa
cδ

b
d − δa

dδ
b
c) tcd,

PB
2V ab

cd
tcd =

1
4

gabgcd tcd, (1.20)

PC
2V ab

cd
tcd =

(
1
2

(δa
cδ

b
d + δ

a
dδ

b
c) − 1

4
gabgcd

)
tcd.

A2V is our well known antisymmetric subspace, B2V is trace part and C2V is symmet-
ric traceless subspace of T2V . Similar projections work on T2V

PA2V cd
ab

tcd =
1
2

(δc
aδ

d
b − δd

aδ
c
b) tcd,

PB2V cd
ab

tcd =
1
4

gabgcd tcd, (1.21)

PC2V cd
ab

tcd =

(
1
2

(δc
aδ

d
b + δ

d
aδ

c
b) − 1

4
gabgcd

)
tcd

and on T1
1V

PA
1
1V ad

bc
tc
d =

1
2

(δa
cδ

d
b − gadgbc) tc

d,

PB
1
1V ad

bc
tc
d =

1
4
δa

bδ
d
c tc

d, (1.22)

PC
1
1V ad

bc
tc
d =

(
1
2

(δa
cδ

d
b + gadgbc) −

1
4
δa

bδ
d
c

)
tc
d.

These spaces XV (X ∈ {A2,B2,C2,A1
1, . . . ,C2}) are irreducible 2 representations of the

group O(g). B-spaces are equivalent to trivial � but the rest of X are representations
2Recall that we are working with real representations of O(g). If we work with complex tensors and

SO(g) then AV representation is reducibile into self and antiselfdual antisymmetric matrices. Thus in
terms of (n,m) counting of complex irreducible representation of SO(g) AV is (1, 0) ⊕ (0, 1) while CV
is (1, 1).
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of higher degree than V . Now we are in a point where our vector space preparation is
over and we can finally turn our attention to the metric manifold (M, g).

We have seen few lines above that general connection ∇̂ preserves structure of
irreducible representations of GL(V) on tensor spaces of rank=2. But the situation is
different in the case of group O(g). Since generally ∇̂PXM ad

bc , 0 then e.g. ∇̂A1
1 * A

1
1.

The question is how does general connection preserving irreducible structure of O(g)
look like? Necessary conditions for such connection are given by ∇̂PXM ad

bc = γ
XPXM ad

bc
(no summation over X!). Thanks to (1.20)-(1.22) we have that these equations are
equivalent to

∇̂(gabgcd) = γgabgcd, (1.23)

where γX = αXγ and αX are constants while γ is arbitrary function. Let us fix the
frame ga to be an orthonormal ea then the metric is g = ηabea ⊗ eb. We can use the
decomposition (1.3) and obtain

∇̂(ηabηcd) = 2Ĉabηcd − 2ηabηcc̄ηdd̄Ĉc̄d̄ = γηabηcd. (1.24)

Necessary condition for existence of solution of (1.24) is given by

ηab∇̂(ηabηcd) = −8ηcc̄ηdd̄Ĉc̄d̄ = 4γηcd. (1.25)

This equation has solution only if γ = 0 and then the solution is Ĉab = 0 which is also
the solution of (1.24) if γ = 0. Thus general shape of connection preserving irreducible
structure of O(g) on tensor spaces with rank=2 is given by Γ̂

ab
= Âab + B̂ηab and con-

sidering (1.12) we figure out that this is exactly the same type like Cartan connection
given by solution of equations of motion in Einstein-Cartan theory. From now until the
end of this section ∇̂ is Cartan connection.

Another possible interpretation of Cartan connection is based on notion of sym-
metrization and antisymmetrization. Space Tp

qM is g∗-isomophic to T0
p+qM. Let t ∈

Tp
qM then g∗t ∈ T0

p+qM. (Anti)symmetric projections on Tp
qM are defined by

ΠAt = (g∗)−1Π̂Ag∗t, (1.26)
ΠS t = (g∗)−1Π̂Sg∗t, (1.27)

where

Π̂Ag∗t(u1, . . . , up+q) =
1

(p + q)!

∑
σ

sgn(σ)g∗t(σ(u1, . . . , up+q)),

Π̂Sg∗t(u1, . . . , up+q) =
1

(p + q)!

∑
σ

g∗t(σ(u1, . . . , up+q)),

σ means permutation, sgn(σ) = 1 if σ is even and sgn(σ) = −1 if σ is odd. Since
∇̂Π̂X = 0 (X ∈ {A, S}) because Π̂X are linear combinations of δ-s and (g∗)−1Π̂Xg∗t con-
tains p-times multiplied expressions of type ηabηcd we have immediately that ∇̂ΠX = 0.

It should be noted that since in general ∇̂g∗ , g∗∇̂ for metric isomorphism between
two tensor spaces of the same rank, there is no physical reason for such a feature,
the B-part of Γ̂

ab
should represent a gauge degree of freedom and physical connection

should be compatible with metric g which reflects a well known fact from General
Relativity.
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1.3 3+1 Decomposition
We have already assumed that the spacetime M is given by the product � × Σ. This
assumption is equivalent to the existence of a global Cauchy surface and hence solution
of equations (1.9) and (1.10) can be evolved from initial data on Σ uniquely upto gauge
transformation3. Our basic variables ea, B̂ and Ĉab belong to the algebra ΛTM while
Âab are connection forms on M, so it will be useful to preserve this structure even in
Hamiltonian formulation. Since we assume that Geroch’s conditions are valid, there
exists a global orthonormal frame ea. Let x ∈ Σ then Mx = Span

{
ea

∣∣∣
x

}
together with

the metric g
∣∣∣

x
define a tangent Minkowski space settled at the point x. Since x is the

arbitrary point of Σ then space M = ∪x∈ΣMx plays analogous role as T1Σ but it is
little bit bigger since M contains even non tangential vectors. Important thing is that
M can be represented as M̂ = ×dimMF(Σ) and it is also equipped with Minkowski
metric ηab. Hat over M will be omitted from now and space M and its representation
will be identified. M is vector space and we can define its tensor algebra TM and
algebra of forms on Σ valued in this space ΛTM = ΛΣ × TM . Let ea and ẽa be
two orthonormal frames in M . Then due to Geroch’s conditions there exists just one
g ∈ O(g) × Σ such that ẽa = g∗ea. Thus, we can see that there exists a trivial principal
bundle O(g)M = Σ × O(g) over Σ, where part of gauge freedom is given by Lorentz
group O(g). Now we can start detail analysis of 3+1 decomposition of our variables.

Let T̂ ∈ ΛTM be a p-form valued in T̂M, then T̂ can be uniquelly decomposed into
pure spatial (p − 1)-form Ť and p-form T valued in M

T̂ = Ť ∧ dt + T.

Another important geometric object is an external derivative operator. Let us denote
by d̂ external derivative on M while we keep d for Σ. Anyway we still write dt with the
hope that this will not cause any problem. Let us apply d̂ on T̂ to obtain

d̂T̂ = dŤ ∧ dt + dt ∧ Ṫ + dT

where dot means action of Lie derivate along ∂t which is just simple time derivative of
components, e.g. for spatial 1-form Ṫ = ∂tTαdxα, etc. So one can project spacetime
p-form onto pure spatial p-form and (p-1)-form on Σ and even 3 + 1 dimensional ex-
ternal derivative is also writen in language of spatial forms and their time and spatial
derivatives.

Let us explore what happens with orthonormal coframe ea. We can write

ea = λadt + Ea = λadt + Ea
αdxα, (1.28)

where α, β, γ, . . . = 1, 2, 3 are spatial coordinate indices while a, b, c, . . . = 0, 1, 2, 3
are reserved for tensors on M . It is useful for our purposes to decompose even frame
ea into tangential and time parts

ea = λa∂t + Ea = λa∂t + Eα
a∂α. (1.29)

It should be noted that λa , ηabλ
a. We hope that this notation is not confusing since

if we need to in/de-crease indices then it will be explicitly written using metric tensor.
3One equation is still missing as we will see at the end of this section. But this equation is conserva-

tion of constraints given by (1.9) and (1.10).
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We have ea(eb) = δa
b what is(

λa Ea
α

) (
λb

Eα
b

)
= λaλb + Ea

αEα
b = δ

a
b, (1.30)

thus matrices (λa, Ea
α) and (λa, Eα

a )T are mutually inverse and since they are finite di-
mensional we also have (

λa

Eα
a

) (
λa Ea

β

)
=

(
1 0
0 δαβ

)
, (1.31)

or

λaλ
a = 1, λaEa

α = 0,
Eα

aλ
a = 0, Eα

a Ea
β = δ

α
β .

(1.32)

As we expected, variables λa, λa, Ea and Ea are not independent and we can express
vector coefficients using covectors via well known formula for inverse matrix

eλa =
∂ e
∂λa , (1.33)

eEα
a =

∂ e
∂Ea

α

, (1.34)

where

e =
1
3!
εabcdε̄

αβγλaEb
αEc

βE
d
γ (1.35)

is determinant of matrix (λa, Ea
α). Coordinates’ (co)vectors can be written with the help

of previous formulas as

dt = λaea dxα = Eα
a ea

∂t = λ
aea ∂α = Ea

αea
(1.36)

thus we see that vector ∂t ∈ T1M is represented by vector λa ∈ M and similar for
dt ∈ T1M we have λa ∈ T1M .

Since M is isomorphic to T1M and there exists a natural decomposition of T1M
into subspaces collinear with embedding of Σ and ∂t there should also exist similar
structure on space M . We have immediately from relation (λaλc)(λcλb) = λaλb that
λaλb is projection on M . We can rearrange equation (1.30) as

Ea
b = Ea(Eb) = Ea

αEα
b = δ

a
b − λaλb (1.37)

and another supplemental projection Ea
b on M appears. It is clear from (1.36) that λaλb

maps a general vector va ∈M on that part of va which is proportional to ∂t and Ea
b on

that tangent to Σ.
We were working with a general orthonormal frame until now. From this moment

ea is supposed to be righthanded and future oriented. This assumption restricts our
variables λa, Ea and following conditions should be fulfilled

λ0 > 0 (1.38)
ηabλ

aλb > 0, (1.39)
e > 0, (1.40)

q = ηabEa ⊗ Eb < 0, (1.41)
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where q is spatial metric and q < 0 means that this tensor on Σ is strictly negative, i.e
∀v , 0 ∈ T1Σ : q(v, v) < 0. Let SO(g) be a subgroup of O(g) preserving conditions
(1.38)-(1.41). If one wants to work with the whole O(g) then configuration manifold
splits into four disjoint parts given by future/past and right/left hand orientation and
this discrete structure should be taken into account on quantum level, but this is far at
the moment.

Decomposition of variables B̂ab, Ĉab is given by

B̂ab = Babdt + Bab, (1.42)
Ĉab = Cabdt + Cab (1.43)

and we can now focus on the metric connection variable Âab. We can write

Âab = Λabdt + Aab. (1.44)

It should be noted that Λab transforms like tensor under g ∈ SO(g)×Σ. Let ˜̂ea = g∗êa =

Oa
bêb be a new coframe4 on T1M then transformation law for Aab is given by formula

Ãab = Oa
āOb

b̄Aāb̄ + Oa
āη

āb̄dOb
b̄.

Let v̂a = v̌a ∧ dt + va ∈ ΛTM then D̂v̂a can be written as

D̂v̂a = Dv̌a ∧ dt + dt ∧ Ḋva +Dva, (1.45)

whereD is spatial covariant external derivative operator on SO(g)M given by

Dva = dva + ηbcAab ∧ vc (1.46)

and Ḋ is covariant time derivative

Ḋva = v̇a + ηbcΛ
abvc. (1.47)

Since Λab and Aab are antisymmetric in their indices we have immediately that

Dηab = 0 (1.48)

and

Ḋηab = 0. (1.49)

Thus operatorsD and Ḋ are compatible with metric ηab on M .
Let us summarize our situation. We started with connection D̂ on M with gauge

group SO(g). 3 + 1 decomposition of space ΛTM leads us to pure spatial connection
D on Σ with the same group SO(g) which is good news for us. Since as we wanted
or expected the SO(g) structure is preserved even in the language of spatial forms on
Σ. This is to be contrasted with standard ADM/real Loop formulation5 where gauge
group is only SO(q). So far we are still working with real variables which is again in
contrast with complex Loop theory where gauge group is SO(g) but the prize paid for

4 ea is coframe on T1M, êa is its representation on T1M
5Of course ADM formalism works with spatial metric q and therefore there are no coframe variables.

For example in the Loop gravity Hamiltonian formulation starts with ADM, then orthonormal coframe
ei on Σ is introduced and metric is expressed by orthonormality of this coframe, i.e. q (i, j = 1, 2, 3).
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that is the loss of reality of variables.
In general theory of gauge connections a notion of a curvature is well known.

Vanishing of the curvature expresses the condition that a horizontal subspace in a fi-
bre bundle over given manifold is integrable. In usual words this means that parallel
transport along closed path of a given object (the object should be valued in nontrivial
representantion space of the gauge group) is given by identity (see details in ,e.g., [7]).
That is why the curvature plays an important role even for the general gauge group G
(recall F̂ = d̂Â in Maxwell theory or more complicated objects in Standard Model).
For our purposes it is sufficient to write down an explicit formula which is

Rab = DAab = dAab + ηcdAac ∧ Adb

for our SO(g) connection Aab on ΛTM . Spacetime curvature R̂ab can be decomposed
as

R̂ab = Rab + dt ∧ Ȧab +DΛab ∧ dt. (1.50)

Next geometrical object on M which plays important role in the Einstein-Cartan
Theory is torsion T̂a = D̂ea. How does its spatial counterpart look like? Coframe ea

is not object from ΛTM because it contains dt. We can project ea with Ea
b and have

Ea = Ea
beb what is already the object from ΛTM . Thus, let us define SO(g)-torsion by

formula

Ta = DEa. (1.51)

Since we are not and will not be working with the 3-dimensional SO(q)-connection let
us call for simplicity Ta as torsion on places where no confusion can arise. Another
motivation for its name appears if we write spacetime torsion T̂a in 3 + 1 manner

D̂ea = DEa +Dλa ∧ dt + dt ∧ ḊEa. (1.52)

As we can see, spatial part of spacetime torsion T̂a is just SO(g)-torsion Ta.
It will be useful in a while and also in next sections to have derived few formulas.

In order to do this, let us consider 2-form Pab which is antisymmetric in its indices ab,
i.e.

Pab =
1
2

P̃α
abεαβγdxβ ∧ dxγ. (1.53)

Pab can be decomposed in its tensor indices into tangential and time parallel parts as

Pab = 2P
⊥

[aλb] + P̂ab, (1.54)

where

P
⊥

a = Pabλ
b, (1.55)

note that P⊥aλa = 0, and

P̂ab = Eā
aEb̄

bPāb̄. (1.56)

Let us focus on the tangential part P̂ab. We can multiply it by Ea

Kc
ab = P̂ab ∧ Ec (1.57)
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It is easy to show that there is a one to one correspondence between P̂ab and Kc
ab iff

λcKc
ab = 0, Kc

ab = −Kc
ba and λaKc

ab = 0. Let Kc
ab = K̃c

abd3x, then K̃c
ab =

ˆ̃Pα
abEc

α and due
to λcKc

ab = 0 we can express ˆ̃Pα
ab = K̃c

abEα
c . Equation (1.57) can be rearranged without

any loss of information by multiplying it with ε̄ab̄c̄d̄λb̄, since bottom indices are spatial
and antisymmetric, into the 3-form

Kab =
1
2
ε̄ab̄c̄d̄λb̄Kb

c̄d̄ =
1
2
ε̄ab̄c̄d̄λb̄Pc̄d̄ ∧ Eb, (1.58)

which can be written as a sum of symmetric and antisymmetric parts

Kab = K(ab) +K[ab]. (1.59)

Antisymmetric part can be rewritten as

P
||

a = εbcdaλ
bK[cd] = −1

2
εabcdε̄

cb̄c̄d̄λbλb̄P̂c̄b̄ ∧ Ed = . . .

P
||

a = Eb
aPbc ∧ Ec. (1.60)

Thus whole information about Pab is encoded in three independent components
P⊥a − 2-form spatial covector,
P||a − 3-form spatial covector,
σab − spatial symmetric 3-form,

where (sign and 2 is just convention)

σab = −2K(ab) =
1
2

Pāb̄λc̄ ∧
(
ε̄āb̄c̄aEb + ε̄āb̄c̄bEa

)
.

Let us consider linear map of Pab given by the integral

P(B) =
∫
Σ

1
2

Pab ∧ Bab, (1.61)

where Bab is 1-form antisymmetric in its indices. Since we can decompose Pab into
three parts we expect that similar decomposition works for its dual Bab. We can write

1
2

Pab ∧ B
⊥ab = P

⊥

a ∧ Ba =
1
2

Pab ∧ 2B[aλb], (1.62)

thus B⊥ab = 2B[aλb]

1
2

Pab ∧ B
||ab = P

||

aBa =
1
2

Pab ∧ 2BāE[a
āEb], (1.63)

thus B||ab = 2BāE[a
āEb] and

1
2

PabB
Mab = σabMab =

1
2

Pabλāε̄
abāb̄ ∧ Ec̄Mb̄c̄, (1.64)

thus BMab = ε̄abāb̄Ec̄λāMb̄c̄. In other words we can decompose dual to Pab as

Bab = 2B[aλb] + 2BāE[a
āEb]
+ ε̄abāb̄Ec̄λāMb̄c̄, (1.65)

14



where Ba is arbitrary 1-form vector, Ba is 0-form vector and Mab is symmetric matrix.
We already derived equations of motion of the Einstein-Cartan theory from La-

grangian in section 1.1 and now it is the right time to explore them in details. Anyway,
we present here only brief description and leave the rest to the next chapters where
Hamiltonian-Dirac formalism is explored in full details. Recall that torsion equation
(1.9) sets connection to be just geometrical; in other words Âab, can be written as func-
tion(al) of the metric gµν = ηabea

µe
b
ν (µ, ν = t, α are spacetime coordinate indices) and

initial value formulation for Einstein equations (1.10) written using gµν is well known
and understood problem (see, e.g. [10]). If we follow ideas of Einstein-Cartan theory
and work with our variables Aab, Ea, etc. then the set of equations given by (1.9) and
(1.10) is not complete. Missing equations should be derived from the condition pre-
serving the constraints given by parts of equation (1.9) and (1.10). Let us look what
happens here. Decomposition of (1.9) leads to

0 =
1

8πκ
εabcdEc ∧DEd, (1.66)

0 =
1

8πκ
εabcd

(
λcDEd + Ec ∧Dλd − Ec ∧ ḊEd

)
. (1.67)

Equations (1.10) can be rewritten similarly as

0 = − 1
16πκ

εabcdRbc ∧ Ed, (1.68)

0 = − 1
16πκ

εabcd

(
Rbcλd + Ȧbc ∧ Ed −DΛbc. ∧ Ed

)
(1.69)

The expression on the right-hand side of (1.67) is a 2-form with antisymmetric indices
and we can use decompositon (1.65). We obtain an evolution equation and a constraint

0 = ḊEa −Dλa, (1.70)
0 = E(aEb)

c ∧DEc. (1.71)

Here is no problem with ambiguity. The equation (1.69) is a 2-form with one tensor
index that expresses 4× 3 = 12 conditions for Ȧab with 6× 3 = 18 degrees of freedom.
We see that we are not able to determine connection velocities and some equation(s)
is(are) still missing. We will see later that conditions (1.68) and (1.66) represent the
first class contraints while equation (1.71) is the constraint of the second class. The
missing equation can be obtained by applying the time derivative on (1.71). Since
(1.68) and (1.66) are the first class constraints no new conditions appear and we have
closed system of equations determining Ea and Aab. The variables λa and Λab are
arbitrary. The missing equation is

0 = E(aEb)
c ∧ (Rcāηāb̄λ

b̄ +Hcāηāb̄ ∧ Eb̄), (1.72)

where Hab = Ȧab − DΛab. Now we can determine Hab as a certain function(al) of
λa, Ea, Aab but we will not do that because we do not need it anywhere. It is enough
for our purposes to know that our set of equations determines uniquely, up to gauge
transformation, evolution of our system.

1.4 Hamiltonian
In the section 1.1 we have introduced the Lagrangian of the Einstein-Cartan theory.
The next step towards its quantum formulation should be done by its conversion into
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Table 1.1: Basic variables

Variables Momenta Velocities
λa πa = π̃ad3x where π̃a = ∂L /∂λ̇a νa = λ̇a

Ea = Ea
αdxα pa =

1
2 p̃αaεαβγdxβ ∧ dxγ where p̃αa = ∂L /∂Ėa

α ba = Ėa

Λab Πab = Π̃abd3x where Π̃ab = ∂L /∂Λ̇ab Γab = Λ̇ab

Aab = Aab
α dxα pab =

1
2 p̃αabεαβγdxβ ∧ dxγ where p̃αab = ∂L /∂Ȧab

α Bab = Ȧab

B φ = φ̃d3x where φ̃ = ∂L /∂Ḃ Y = Ḃ
B = Bαdxα u = 1

2 ũαεαβγdxβ ∧ dxγ where ũα = ∂L /∂Ḃα Y = Ḃ
Cab Φab = Φ̃abd3x where Φ̃ab = ∂L /∂Ċab Xab = Ċab

Cab = Cab
α dxα Uab =

1
2Ũα

abεαβγdxβ ∧ dxγ where Ũα
ab = ∂L /∂Ċab

α Xab = Ċab

the canonical form. Since our system contains velocities of basic variables at best lin-
early, standard Hamilton procedure can not be used. Therefore we must use Dirac pro-
cedure for constrained dynamic [9]. In the standard and even in the Dirac approach to
dynamics the notion of momentum for variable qA is introduced by pA =

∂L
∂q̇A , where L

is the Lagrangian of a system. Since the action is S =
∫

dtL we can see that action and
Lagrangian for field theory can be written within 4-form L called Lagrangian form as
S =

∫
Ω

L and L =
∫
Σ

i∂tL, where L = L d4x and L is Lagrangian density. If we suppose

that configuration space is built just by generalized n-forms QA = 1
n! Q

A
α...βdxα∧· · ·∧dxβ,

e.g. Ea, Aab in our system, all variables in Standard Model, etc., then we can see that
their momenta p̃α...βA = δL

δQ̇A
α...β

= ∂L
∂Q̇A

α...β

transform like densities under coordinate transfor-

mation and therefore objects pA =
1

n!(3−n)! p̃α...βA εα...βγ...δdxγ ∧ · · · ∧ dxγ are (3 − n)-forms
and even more pA∧ Q̇A = 1

n! p̃α...βA Q̇A
α...βd

3x what is exactly the first term in the definition
of Hamiltonian H =

∫
Σ

pA ∧ Q̇A − L. Recall that QA
α...β and p̃α...βA are antisymmetric in

their coordinate indices therefore every term in p̃α...βA Q̇A
α...β is n!-times repeated while

every velocity should enter the Hamiltonian just once. Our configuration space is de-
scribed by variables λa, . . . ,Cab and its velocities (see table 1.1 for details). Variables
B, . . . ,Cab enters the Lagrangian (1.75) in a certain special way. We can decompose it
as sum of two Lagrangians L = L(EC) + L(Rest) where

L(Rest) = −dt ∧ 1
16πκ

ηāb̄εabcd(CaāCbb̄ ∧ Ec ∧ Ed + Caā ∧ Cbb̄ ∧ λcEd) (1.73)

and L(EC) does not depend on Cab, Cab while as we already know, the whole Lagrangian
L does not depend on B, B. Thus we can consider this subsystem independently.
Hamiltonian H(Rest) is given by

H(Rest) = φ ∧ Y + u ∧ Y +
1
2
Φab ∧ Xab +

1
2

Uab ∧ Xab +

+
1

16πκ
ηāb̄εabcd(CaāCbb̄ ∧ Ec ∧ Ed + Caā ∧ Cbb̄ ∧ λcEd) (1.74)

with primary constraints φ = u = Φab = Uab = 0. Secondary constraints are
Cab = Cab = 0. Since Φab, Uab and Cab, Cab are canonical variables their Pois-
son bracket is an identity. They are thus the second class constraints and we must

16



use the Dirac procedure. Dirac bracket for this subsystem is just Poisson bracket
on canonical variables B, B and its momenta φ, u while its reduced Hamiltonian is
H(Rest) = φ∧Y+ u∧Y. Hence we can focus ourselves for a while just on L(EC) and its
hamiltonization. Final Hamiltonian will be obtained by sum H = H(EC) +H(Rest).

Let us substitute the decomposition of variables ea, Âab into Langrangian L(EC)

i∂tL
(EC) = − 1

16πκ
εabcdλ

aRbc ∧ Ed +
1

32πκ
εabcdDΛab ∧ Ec ∧ Ed

− 1
32πκ

εabcdȦab ∧ Ec ∧ Ed. (1.75)

We use this in definition of Hamiltonian. Our procedure then yields the following
result

H(EC) =

∫
Σ

H(EC) = π(ν) +Π(Γ) + p(b) + P(B) + R(λ) + T(Λ), (1.76)

where

π(ν) =
∫
Σ

πa ∧ νa,

p(b) =
∫
Σ

pa ∧ ba,

Π(Γ) =
∫
Σ

1
2
Πab ∧ Γab,

P(B) =
∫
Σ

1
2

(
pab +

1
16πκ

εabcdEc ∧ Ed

)
∧ Bab =

∫
Σ

1
2

Pab ∧ Bab,

R(λ) =
∫
Σ

1
16πκ

εabcdλ
aRbc ∧ Ed =

∫
Σ

λaRa,

T(Λ) =
∫
Σ

− 1
32πκ

εabcdDΛab ∧ Ec ∧ Ed =

∫
Σ

− 1
16πκ

εabcdΛ
ab ∧ Ec ∧DEd =

∫
Σ

1
2
ΛabTab,

where Pab = pab +
1

16πκεabcdEc ∧ Ed, Ra =
1

16πκεabcdRbc ∧ Ed and
Tab = − 1

8πκεabcdEc ∧DEd. The existence of the primary constraints represents the fact
that we are working with a degenerated Lagrangian and therefore we are not able to
express velocities as function(al)s of momenta (they are given by conditions ∂L

∂Q̇A = 0).
Our system is degenerated and primary contraints are given by

π(ν) = 0 ∀νa ∈ Λ0TM ⇔ πa = 0,
p(b) = 0 ∀ba ∈ Λ1TM ⇔ pa = 0,
Π(Γ) = 0 ∀Γab ∈ Λ0TM ⇔ Πab = 0,

P(B) = 0 ∀Bab ∈ Λ1TM ⇔ Pab = pab +
1

16πκ
εabcdEc ∧ Ed = 0.

Since these constraints should be valid through the whole time evolution of our physi-
cal system their time derivatives should vanish too and this implies further conditions
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which should be fulfilled6,

dπ(ν̃)
dt

=
{
π(ν̃); H(EC)

}
= −R(ν̃) = 0, (1.77)

dΠ(Γ̃)
dt

=
{
Π(Γ̃); H(EC)

}
= −T(Γ̃) = 0, (1.78)

dp(b̃)
dt

=
{
p(b̃); H(EC)

}
=

=

∫
1

16πκ
εabcdb̃a ∧

(
Bbc ∧ Ed + λbRcd −DΛbc ∧ Ed

)
= 0, (1.79)

dP(B̃)
dt

=
{
P(B̃); H(EC)

}
=

=

∫
1

16πκ
εabcdB̃ab ∧

(
bc ∧ Ed + ηāb̄Λ

cāEb̄ ∧ Ed −D(λcEd)
)
= 0. (1.80)

The first two of them are secondary constraints. It is clear that (1.79) is equal to (1.69),
while (1.80) is connected with (1.67); they determine Lagrange multipliers ba, Bab. As
we have already promised in previous section we will show how to do this now. Since
these equations are same one can also use the same procedure there (recall that ba = Ėa

and Bab = Ȧab). We can express equations (1.79), (1.80) as:

0 =
1

16πκ
εabcd(Hbc ∧ Ed + Rbcλd), (1.81)

0 =
1

8πκ
εabcd(hc ∧ Ed − λcDEd), (1.82)

where Hab = Bab − DΛab and ha = ba + Λaāηāb̄Eb̄ − Dλa. Let us focus on the sec-
ond equation (1.82). We can multiply it again by general 1-form B̃ab and since it is
antisymmetric in its indices we can decompose it as (1.65)

1
8πκ

(B̃aλb + B̃āEa
āEb +

1
2
ε̄abāb̄Ec̄λāM̃b̄c̄) ∧ εabcd(hc ∧ Ed − λcDEd) = 0. (1.83)

This expression can be split into three independend equations

1
8πκ
εabcdλ

bhc ∧ Ed = 0, (1.84)

1
8πκ
εabcdEa

āEb ∧ (hc ∧ Ed − λcDEd) = 0, (1.85)

− 1
8πκ

E(aEb)
c ∧DEc = 0. (1.86)

We can use constraint Tab = 0 in the second equation which together with the first one
implies that ha = 0, while the third equation is another secondary constraints,

S(M) =
∫
Σ

1
8πκ

MabEaEb
c ∧DEc =

∫
Σ

MabSab = 0, (1.87)

where Sab = 1
8πκE

(aEb)
c ∧ DEc and Mab is arbitrary function symmetric in its indices.

Let us substitute the decomposition

Hab = 2H[aλb] + 2H āE[a
ā Eb]
+ ε̄abāb̄Ec̄λāγb̄c̄ (1.88)

6We omitted writing of details like ∀ν̃a . . . in constraint expressions.
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into equation (1.81). We obtain

1
16πκ

εabcd(2Hbλc ∧ Ed + 2H b̄Eb
b̄Ec ∧ Ed + Rbcλd) = 0. (1.89)

If we multiply it by λa then we have immediately that Ea
bHb = 0 while λaHa is arbi-

trary but we do not need it since it does not enter Hab. Hence this equation is reduced
as

1
16πκ

εabcd(2Hbλc ∧ Ed + Rbcλd) = 0, (1.90)

which can be rewritten after some algebraic manipulations as

2H[a
d λ

b]
+ 2Hc

cδ
[a
dλ

b]
= −2Rc[a

cdλ
b], (1.91)

where Rab
cd = iEd iEcRab and Ha

b = iEbHa. Constraint Raλ
a = 0 is equivalent to Rab

ab = 0
and if we sum the previous equation over a = d then Ha

a = 0 and we finally have

2H[aλb] = −2iEcR
c[aλb] (1.92)

or

Hab = −2iEcR
c[aλb] + ε̄abāb̄Ec̄λāγb̄c̄, (1.93)

where γab = γba is not determined yet. But there is no need to worry since our anal-
ysis is not over. We have just finished the first level of the Dirac procedure, however
conservation of the secondary constraints should be analyzed too and there will appear
the missing equation for γab. In order to do this let us compute time derivatives of
secondary constraints (1.77), (1.78) and (1.87)

dR(µ)
dt

=
{
R(µ),H(EC)

}
=

=

∫
Σ

1
16πκ

εabcd µ
a(Rbc ∧ bd +DBbc ∧ Ed) = 0, (1.94)

dT(Θ)
dt

=
{
T(Θ),H(EC)

}
=

=

∫
Σ

− 1
16πκ

εabcdΘ
ab(Ec ∧Dbd + Ec ∧ Bdāηāb̄ ∧ Eb̄) = 0, (1.95)

dS(M)
dt

=
{
S(M),H(EC)

}
=

=

∫
Σ

1
8πκ

Mab

(
EaEb

c ∧Dbc + EaEb
c ∧ Bcāηāb̄ ∧ Eb̄

)
= 0, (1.96)

where the terms obviously proportional to the constraints are omitted. We can sub-
stitute the expression for ba from ha = ba + Λaāηāb̄Eb̄ = 0 into (1.94) and thanks to
generalized Bianchi DRab = 0 and Ricci DDΛab = Raāηāb̄Λ

āb + Rbāηāb̄Λ
ab̄ identities

we have immediately

D
(εabcd

16πκ
(Rbcλd +Hbc ∧ Ed)

)
− εabcd

16πκ
RbcΛdāηāb̄Eb̄+

εabcd

8πκ
Rbāηāb̄Λ

b̄c ∧ Ed = 0.
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The first term vanishes due to (1.81). The last term can be transformed with the help
of identity Rab = 1

4 ε̄
abāb̄εāb̄c̄d̄Rc̄d̄ into expression

εabcd

8πκ
Rbāηāb̄Λ

b̄c ∧ Ed =
εabcd

16πκ
RbcΛdāηāb̄Eb̄ − 1

16πκ
ηabΛ

bāεāb̄c̄d̄Rb̄c̄Ed̄.

Hence no new condition appears from equation (1.94) since last term is proportional
to Ra = 0.

Equation (1.95) can be rewritten with the help ha = 0 and due to the fact that
constraints Tab = Sab = 0 implyDEa = 0 as

1
32πκ

εabcdRcd ∧ Eāηāb̄λ
b̄ +

1
8πκ

ηā[aεb]cb̄c̄Eā ∧ iEd̄
Rd̄ b̄λc̄ ∧ Ec = 0, (1.97)

where (1.93) has been already substituted. Since any 4-form on the three-dimensional
manifold vanishes identically we have that Ea ∧ Rbc ∧ Ed = 0. We can apply interior
product on it iEb(Ea ∧ Rbc ∧ Ed) = Ea

bRbc ∧ Ed − Ea ∧ iEbRbc ∧ Ed − Ea ∧ RbcEd
b = 0

and now we can express from this the term proportional to iEbRbc and substitute it into
previous equation. If we use again Rab = 1

4 ε̄
abāb̄εāb̄c̄d̄Rc̄d̄ then we finally find out that

(1.97) is proportional toDEa. Hence again no new constraint appears from (1.95).
Equation (1.96) can be rewritten as

1
8πκ

E(aEb)
c ∧ (Rcāηāb̄λ

b̄ +Hcāηāb̄ ∧ Eb̄) = 0. (1.98)

This is the equation which determines γab entering (1.93). However, we do not need
explicit expression. For our purposes it is sufficient to show that this equation deter-
mines γab uniquely. In order to see this we should substitute the expression (1.93)
instead of Hab into this equation. Since (1.98) is linear in Hab it is also linear in
γab, i.e. cA + QB

AγB=0, where A, B = (ab), and hence it is sufficient to show that
QA

B is invertible. The first observation is that (1.98) actually represents 6 equations for
6 pieces Ea

āEb
b̄
γab hence we can consider only the term proportional to γab which is

λbλb̄ηcc̄ε̄
dcb(aε̄ā)b̄c̄d̄γdd̄ = G̃aābb̄γbb̄ and as we will see in the next section the expression

G̃aābb̄ standing in front of γbb̄ is invertible on spatial subspace.
Let us summarize this section. We have built the Hamiltonian formulation of

Einstein-Cartan theory. The Hamiltonian is given by the sum of two Hamiltonians

H = H(EC)+H(Rest) = π(ν)+Π(Γ)+p(b)+P(B)+R(µ)+T(Θ)+S(M)
+φ(Y)+u(Y). (1.99)

Constraints given by π(ν), Π(Γ), R(µ), T(Θ), φ(Y) and u(Y) do not determine any
Lagrange multipliers, therefore they are the first class constraints. The remaining con-
straints p(b), P(B) and S(M) are of the second class. Lagrange multipliers ba and Bab

are

ba = Dλa − Λaāηāb̄Eb̄, (1.100)
Bab = DΛab +Hab, (1.101)

where Hab does not depend on Λab and it is the solution of (1.81) and (1.98). We will
continue with Dirac analysis in the next section where we will introduce Dirac brackets
and consider the reduced phase space of our physical system.

20



1.5 Dirac Brackets
The first level of the Hamilton-Dirac approach to the dynamics has been complet-

ed in previous section. In the case when physical system possesses the second class
constraints CA standard Poisson brackets can not be quantized by the usual rule

i~ϱ ({A, B}) |ψ⟩ = [
ϱ(A), ϱ(B)

] |ψ⟩,
where ϱ is a representation of basic variables, since in the case when A, B are the
constraints CA then there is zero vector (ϱ(CA)ϱ(CB) − ϱ(CB)ϱ(CA)) |ψ⟩ on the right-
hand side while the operator on the left-hand side ϱ ({CA,CB}) is invertible. Hence
there exists only one possibility for all physical states solving quantum analogue of
classical constraints represented by quantum equation ϱ(CA)|ψ⟩ = 0 given by |ψ⟩ = 0.
Dirac solved this problem by introducing new brackets and quantization is formulated
by the representation of the Dirac instead of the Poisson algebra (See details in [9]).
Let CA be the second class contraints and so {CA,CB} = UAB is invertible; then Dirac
brackets are defined by

{A, B}∗ = {A, B} − {A,CA}UAB{CB, B}, (1.102)

where UABUBC = δC
A . We divide our job in two parts. In the first part we define certain

simple brackets { , }′ and then we use these partial brackets in the definition of the final
Dirac brackets { , }∗.

Let us define weak equivalence before we start our analysis of constraints. We say
that two variables A, A′ are weakly equivalent, A=̂A′, if their difference is proportional
to the second class constraints. The second class constraints for our system are (ba,
Bab, Mab are arbitrary)

p(b) =

∫
Σ

pa ∧ ba =

∫
Σ

p̃αaba
αd3x,

P(B) =
∫
Σ

1
2

(
pab +

1
16πκ

εabcdEc ∧ Ed

)
∧ Bab =

∫
Σ

1
2

Pab ∧ Bab =

∫
Σ

1
2

P̃α
abBab

α d3x,

S(M) =
∫
Σ

1
8πκ

MabEaEb
c ∧DEc =

∫
Σ

MabSab =

∫
Σ

MabS̃ abd3x.

We start the analysis by their decompositions

p
⊥
= paλ

a ←→ p̃
⊥α = p̃αaλ

a,

p
||

a = Eā
apā ←→ p̃

||α
a
= Eā

a p̃αā ,

P
⊥

a = Pabλ
b ←→ P̃

⊥α
a = P̃α

abλ
b,

P
||

a = Eā
aPāb ∧ Eb ←→ P̃

||

a = Eā
aP̃α

ābEb
α,

σab = Pāb̄λc̄ ∧ ε̄āb̄c̄(aEb) ←→ σ̃ab = P̃α
āb̄λc̄ε̄

āb̄c̄(aEb)
α .

Now we are going to eliminate constraints p⊥ , p||a and their ”canonical friends” P⊥a ,
P||a by introducing ”partial Dirac bracket” { , }′. This bracket plays important role even
in the context of full Dirac brackets. In order to introduce them we need the following
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expressions

{P(B),p(b)} =
∫
Σ

1
16πκ

εabcdBab ∧ bc ∧ Ed

↕

{P̃α
ab(x), p̃βc(y)} = 1

8πκ
εabcdε̄

αβγEd
γδxy.

Hence nontrivial Poisson brackets are

{P(B
⊥
),p(b

||
)} =̂

∫
Σ

− 1
8πκ
εabcdBa ∧ bbλc ∧ Ed

↕

{P̃⊥αa (x), p̃
||β

b
(y)} =̂ − 1

8πκ
εabcdε̄

αβγλcEd
γδxy = Uαβ

ab δxy,

{P(B
||
),p(b

⊥
)} =̂

∫
Σ

1
8πκ
εabcdBab ∧ λbEc ∧ Ed

↕

{P̃||a(x), p̃
⊥α(y)} =̂ 1

8πκ
εabcdε̄

αβγλbEc
βE

d
γδxy = Uα

a δxy.

It is easy to find that the matrix Ua
α (inverse to Uα

a ) is

Ua
α = −

4πκ
e

Ea
α, where Ua

αUα
b = Ea

b and Ua
αUβ

a = δ
β
α. (1.103)

Next step is to look for the inverse matrix to Uαβ
ab . We can use ansatz Uab

αβ = AEa
αEb

β +

BEa
βEb

α and the result is given by the expression

Uab
αβ = −

4πκ
e

(Ea
αEb

β − 2Ea
βEb

α), where Uab
αβU

βγ
bc = Ea

cδ
γ
α. (1.104)

Now we have prepared everything what we need in order to define the partial Dirac
bracket as follows

{A, B}′ = {A, B} +
∫
Σ

d3x{A, P̃⊥αa (x)}Uab
αβ(x){ p̃

||β

b
(x), B}

−
∫
Σ

d3x{B, P̃⊥αa (x)}Uab
αβ(x){ p̃

||β

b
(x), A}

+

∫
Σ

d3x{A, P̃||a(x)}Ua
α(x){ p̃⊥α(x), B}

−
∫
Σ

d3x{B, P̃||a(x)}Ua
α(x){ p̃⊥α(x), A}.

The final Dirac brackets are going to be introduced within partial brackets and remaing
constraintsσab, Sab. First of all we should mention the following property of the partial
bracket. Let A be an arbitrary variable on full phase space; then

{σ(m), A}′=̂{σ(m), A},
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since {σ(m),p(b)} = {P(Bm),p(b)}=̂
∫
− 1

4πκδ
āb̄
abbaλāmb̄c̄ ∧Ec̄ ∧Eb = 0 and we have also

{σ(m),P(B)} = {P(Bm),P(B)} = 0. Hence we have as a consequence

{σ(m),σ(m′)}′=̂0 ←→ {σ̃ab(x), σ̃cd(y)}=̂0.

The next important classical commutator is

{σ(m), S(M)}′=̂{σ(m), S(M)} =
∫
Σ

− 1
8πκ

maāMbb̄ηcc̄λdλd̄ε̄
abcdε̄āb̄c̄d̄ω, (1.105)

where ω = 1
3!εabcdλ

aEb∧Ec∧Ed = e d3x. Now it is time to pay debt from the previous
section where we have stated that G̃aābb̄ is invertible. We are going to do even more.
We are going to calculate inverse of Uaābb̄ = e

8πκG̃
aābb̄. We can write

{σ(m),S(M)} =
∫
Σ

1
8πκ

maāMbb̄G̃
aābb̄ω

↕
{σ̃aā(x), S̃ bb̄(y)} = e

8πκ
G̃aābb̄δxy = Uaābb̄δxy

and

G̃aābb̄ = −1
2
ηcc̄λdλd̄

(
ε̄abcdε̄āb̄c̄d̄ + ε̄ābcdε̄ab̄c̄d̄

)
. (1.106)

Let us transform Uaābb̄ into more suitable form. In order to do so we need to use the
spatial metric tensor which is due to our choice of signature strictly negative

q = ηabEa ⊗ Eb = qabEa ⊗ Eb = qαβdxα ⊗ dxβ, (1.107)

where qab = ηāb̄Eā
aEb̄

b, its inverse matrix is qαβqβγ = δαβ or qabqbc = Ea
c and determinant

qεαβγ = qαᾱqββ̄qγγ̄ε̄ᾱβ̄γ̄.

It should be noted that qab , Ea
āEb

b̄
ηāb̄. Now we can write

Uaābb̄ =
λ
∗2

16πκ
(2qaāqbb̄ − qabqāb̄ − qab̄qāb), (1.108)

where we have used formula q = −e2λ
∗2 and λ

∗2
= ηabλaλb. Now we are looking for

inverse matrix to Uaābb̄ in the form Uaābb̄ = Aqaāqbb̄ + B(qabqāb̄ + qab̄qāb) and the result
is given by the expression

Uaābb̄ =
4πκ

λ∗2 e
(qaāqbb̄ − qabqāb̄ − qab̄qāb), where Uaābb̄Ubb̄cc̄ = E(a

c Eā)
c̄ . (1.109)

Finally we can define the full Dirac bracket as

{A, B}∗ = {A, B}′ +
∫

d3x{A, σ̃aā(x)}′Uaābb̄(x){S̃ bb̄(x), B}′ −

−
∫

d3x{B, σ̃aā(x)}′Uaābb̄(x){S̃ bb̄(x), A}′ −

−
∫

d3xd3y{A, σ̃aā(x)}′Uaābb̄(x){S̃ bb̄(x), S̃ cc̄(y)}′Ucc̄dd̄(y){σ̃dd̄(y), B}′.

23



In order to finish the phase space reduction we need to describe a reduced manifold.
Let us start with the full phase space Γ̃ described by canonical variables λa, πa, . . . ,
Uab (check table 1.1). As we have seen in section 1.4 the first reduction is given by
Cab = Cab = Φab = Uab = 0 while conditions φ = u = 0 are the first class contraints.
These contraints mean that B, B are arbitrary and physics does not depend on them.
Hence we can write Γ̃

∣∣∣
red
= Γ̂ × ΛΣ, where ΛΣ is Cartan algebra of all forms on Σ of

varibles B, . . . , u and Γ̂ is described by variables λa, . . . , pab. Whole dynamics takes
place in Γ̂. We totally ignore topological properties at this moment, but if one wishes
then one can imagine that all variables are, for example, differentiable functions with
their standard topology. Let us consider a set7

Conf = {×x∈Σ(λa(x),Ea(x)); ∀x ∈ Σ : e > 0, ηabλ
aλb > 0, λ0 > 0, q < 0}.

Hence due to condition e > 0 we have Conf ⊂ (GL+(M ))Σ = ×x∈ΣGL+(Mx). However
Conf is not a group. Nevertheless for every sufficiently small change (∆λa,∆Ea) the
new element is again from Conf, i.e. (λa+∆λa,Ea+∆Ea) ∈ Conf; in other words Conf is
a manifold. Hence we can construct canonically its cotangent bundle T∗Conf = T1Conf

with symplectic structure ωConf on it. T∗Conf is described by canonical coordinates (λa,
Ea, πa, pa). Another structure of Γ̂ is given by space

G = (Λ0A
2Σ × Λ3A2Σ) × (Λ1A

2Σ × Λ2A2Σ) (1.110)

described by variables (Λab, Πab; Aab, pab). Hence Γ̂ = T∗Conf ×G.
Since Aab is antisymmetric matrix 1-form we can decompose it as

Aab = 2A[aλb] + 2AāE[a
ā Eb]
+ ε̄abāb̄Ec̄λāαb̄c̄. (1.111)

Relevant information about Aa andAa is encoded in the variable

Fa =
1
2
εabcdAbc ∧ Ed ←→ F(K) =

∫
Σ

1
2
εabcdKa ∧ Abc ∧ Ed, (1.112)

while αab does not enter Fa. Since {σ(m),F(K)}′=̂0 and {σ(m),E(Q)}′=̂0, where
E(Q) =

∫
Σ

Qa ∧ Ea we have that

{E(Q),F(K)}∗=̂{E(Q),F(K)}′ = −8πκ
∫
Σ

Qa ∧Ka. (1.113)

Analogously, we obtain the rest of Dirac brackets for our variables on Γ̂. The nontrivial
results are

{λa,π(µ)}∗ =̂ µa, (1.114)
{Λab,Π(Γ)}∗ =̂ Γab. (1.115)

The reduction of Γ̂ is almost finished. We can express αab from the condition Sab = 0
as function(al) of λa, Ea and Fa. The remaining second class contraints are trivially

7If one wants to work with C1 forms then one must replace Cartesian product × with ”C1-Cartesian
product” ×C1

, i.e. one must change in definition of Cartesian product ”all functions” by ”all C1-
functions”. Anyway all familiar theorems about Cartesian product are not valid anymore, hence
whole theory about C1-Cartesian product has to be built from beginning. Similarly for any Cω, where
ω = 1, . . . ,∞, analytic.
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soluble. Since variables B, . . . , u do not describe any dynamics we can cast them
away by additional fixation B = 0 and B = 0. Similar, we can proceed with Λab but
for different reason. Hence we have the final reduced phase space

Γ = T∗Conf (1.116)

described by variables (λa, Ea, πa, Fa) with symplectic structure defined by (1.113)
and (1.114). The reason for excluding Λab is very simple. Since Πab = 0, we have that
Λab plays the role of a Lagrange multiplier which in our notation is given by Γab.
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2. Kinematical Hilbert Space for
Einstein-Cartan Theory

2.1 Preliminaries
We have successfully constructed the phase space T∗Conf of Einstein-Cartan theory

in the previous part of this thesis. Now it is time to build a quantum algebra of the
basic variables. Before we start let us focus our attention to the following simple
excersice well known from the quantum mechanics of the particle moving on the half
line. Canonical variables of this system are x and p, where x is a position of the particle
on the half line x > 0 and p is its canonical momentum. We can naively represent them
on H = L2(�+, dx) as ϱ(x) = x, ϱ(p) = −i∂x. The operators ϱ(x) and ϱ(p) are
symmetric but ϱ(p) can not be extended into the selfadjoint operator on H . In order
to see this let us compute its deficiency indices nε, where ε = ±1 (See details about
extensions of the symmetric operators in [13]). Equations

−i∂xψ
(ε) − iεψ(ε) = 0

have solutions

ψ(ε) = A(ε)e−εx.

Solution ψ(+1) belongs to the space L2(�+, dx) while ψ(−1) is not square integrable func-
tion on �+. Since n+ = 1 and n− = 0 we have n+ , n−. Thus we can not construct the
selfadjoint extenstion of the operator −i∂x. Hence if one wants to describe the quan-
tum particle on the half line then one has to choose different set of basic variables.
The first observation is that �+ is a group GL+(�). Invariant measure on GL+(�)
is ωGL+(�) =

dx
x hence the good candidate for the ”momentum” operator is given by

ϱ(xp) = −ix∂x. Indeed, the operator ϱ(xp) is symmetric on L2(�+, dx
x ).

⟨ψ2|ϱ(xp)ψ1⟩ =
∫
�+

dx
x

(ψ2)(−ix∂xψ1) =
∫
�+

dx
x

(−ix∂xψ2)ψ1 = ⟨ϱ(xp)ψ2|ψ1⟩

and its deficiency indices are determined by the following equations

−ix∂xψ
(ε) − iεψ(ε) = 0

with solutions

ψ(ε) = A(ε)x−ε,

which do not belong to L2(�+, dx
x ). Hence n+ = n− = 0 and the operator ϱ(xp) is es-

sentially selfadjoint. The algebra of the basic variables is a space spanned on operators
ϱ(x), ϱ(xp) with nontrivial commutator

[ϱ(x), ϱ(xp)] = iϱ ({x, xp}) = iϱ(x).

As we have seen on this simple exercise the choice of the basic variables plays the
crucial role in the context of quantization. In the next section we will try to understand
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a point version of Einstein-Cartan phase space. We will find there a reprepresentation
of the basic variables, which seperate points in the phase space. The third section of
this part is dedicated to a brief summary of von Neumann construction of tensor prod-
uct of infinite sequence of Hilbert spaces. In the last section of this part we will find
a representation of basic variables of Einstein-Cartan theory. Anyway this representa-
tion is highly reducible and cannot be used in quantum formulation of Einstein-Cartan
theory for reasons explained in conclusion.

2.2 Point Algebra of Basic Variables
We will focus in this section on the introduction of a Hilbert space Hx associated

with an arbitrary point x in the spatial section Σ. We will define a point representation
of the basic variables related to the canonical coordinates on the phase space T∗Conf.
Let us mention that all canonical variables λa(x), Ea(x), πa(x), Ga(x) = − 1

8πκFa(x) are
local functions of the point x. No derivatives, no complicated integrals or any kind of
dislocation are presented, hence we can explore them in the single point x. Before we
start, we will introduce spacetime notation1

ea
µ = (ea

t = λ
a; ea

α = Ea
α),

pµa = (pt
a = π̃a; pαa = G̃α

a ).

Since we are working with the point variables, their canonical relations are given by

{ea
µ, pνb} = δa

bδ
ν
µ

and the phase space is defined in accordance to the Einstein-Cartan phase space as
T∗conf, where

conf = {(ea
µ); e = det(ea

µ) > 0, ηabea
t eb

t > 0, e0
t > 0, ηabea

αeb
β < 0}.

Thanks to the positivity of the determinant e we can see that conf ⊂ GL+(�4) ≡ GL+,
anyway the subset conf is not a group. Now we will try to construct a representation
of the basic variables. Let us define a Hilbert space Hx ≡ H as a space of square
integrable functions over conf

H = L2
(
conf,

de
e4

)
, (2.1)

where de
e4 is left/right-invariant2 Haar’s measure on the GL+, which is unique up to the

multiplicative constant. de = de0
t de0

x . . . de3
yde3

z is Lebesgue measure on the coordinates
(ea
µ) ∈ �16 of the space conf. The representation ϱ of ea

µ is given by trivial multiplication

ϱ(ea
µ)ψ(ea

µ) = ea
µψ(ea

µ).

It is well known fact that such operators can be extentended into the selfadjoint oper-
ators. The problems occure with variables pa

µ, since the action of ϱ(pa
µ) = −i∂ea

µ
given

by the ”unitary” transformation

eiϑa
µϱ(pµa)ψ(ea

µ) = ψ(ea
µ + ϑ

a
µ)

1Explicit writing of the point x is omitted till the end of this section.
2In the case of the general noncompact group it may happen that left and right invariant measures

are not equal.
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maps vectors from H out of this space, therefore the operators ϱ(pµa) are not selfadjoint
(they are neither symmetric). What we can do with that? We know, thanks to the
Stone’s theorem, that every one-parametric strongly continuous unitary group is related
to the selfadjoint operator and vice versa. This implies that if we wish to find the
selfadjoint operators for the momenta or their functions, we need to find certain groups
acting on the space conf. Indeed, a following statement is valid.

Statement 1. Let X ⊂ �n and dx be the Lebesgue measure on �n. If U(t) is one-
parametric unitary group acting on the Hilbert space H = L2 (X, gdx), where g ≥ 0
is locally integrable function on X, and if Φt is a continuous flow on X associated with
U(t), then U(t) is strongly continuous.

A proof of the statement is based on the fact that function I(t) : �→ �, defined as

I(t) =
∫
Φ∗t (K)

f dx,

is continuous, where Φt : X × � → X is continous mapping, K is compact subset of
X and f is locally integrable function. It is sufficient to prove that ∥(1 − U(t))ψ∥ is
continuous in t = 0 for all ψ ∈ D, where D is some dense subset in L2 (X, gdx), since
for any convergent sequence ψn ∈ D→ ψ0 ∈ L2 (X, gdx) we have

∥(1 − U(t))ψ0∥ ≤ ∥(1 − U(t))(ψ0 − ψn)∥ + ∥(1 − U(t))ψn∥ ≤ 2∥ψ0 − ψn∥ + ∥(1 − U(t))ψn∥.

The set of simple functions is dense in L2 (X, gdx), hence for the general simple func-
tion

f =
m∑

i=1

fiχKi ,

where m ∈ �, fi are complex constants, Ki ⊂ X are compacts and Ko
i = Ki \ ∂Ki are

mutually disjoint, we have

∥(1 − U(t)) f ∥2 =
m∑

i, j=1

∫
g dx f̄i f j

(
χKiχK j + χΦ∗t (Ki)χΦ∗t (K j) − χΦ∗t (Ki)χK j − χKiχΦ∗t (K j)

)
=

m∑
i=1

∫
g dx | fi|2

(
χKi + χΦ∗t (Ki)

)
−

n∑
i, j=1

∫
g dx f̄i f j

(
χΦ∗t (Ki)∩K j + χKi∩Φ∗t (K j)

)
,

what is continuous in t. Hence U(t) is strongly continuous.
Now we can try to find group(s) acting on the space conf. The positive linear

group GL+ is not a good candidate, since, as before in the case of pµa, there exists
transformation g from GL+ which does not preserve the space conf, e.g. rotation in
a plane spaned on e0

t , e1
t maps e0

t → −e0
t and e1

t → −e1
t . The problem is caused by

the fact that group GL+ ignores a metric ηab. Indeed, if we consider a Lorentz group
acting on ea

µ via

ea
µ →

(
eΛη

)a

b
eb
µ, (2.2)

where (Λη)a
b = Λ

acηcb and Λab = −Λba, then we have that eΛη(conf) ⊂ conf and even
more the transformation (2.2) is continuous. We can define an operator

UL(Λab)ψ(ea
µ) = ψ

((
eΛη

)a

b
eb
µ

)
, (2.3)
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which is, thanks to the invariance of the measure de
e4 , unitary. Let Λab be arbitrary, but

fixed, then

UΛ(t) = UL(tΛab)

is the one-parametric strongly continuous unitary group and, due to the Stone’s theo-
rem, we have that its generator is a selfadjoint operator. We have fixed arbitrary Λab,
hence we have for every Λab its own generator. Λab has six degrees of freedom, thus
there are six independent generators Lab and we can write

UL(Λab) = ei 1
2Λ

abLab.

Let ψ(ea
µ) ∈ C∞C (conf) ⊂ H , where C∞C (conf) is the set of all ∞-times differentiable

functions with compact support on conf, which is dense in H , then we can use Taylor
expansion

UL(tΛab)ψ(ea
µ) = ψ

((
etΛη

)a

b
eb
µ

)
= ψ

(
ea
µ +

((
etΛη

)a

b
eb
µ − ea

µ

))
=

= ψ(ea
µ) + tΛacηcbeb

µ∂ea
µ
ψ(ea

µ) + t2o(t, ea
µ) (2.4)

where o(t, ea
µ) is some C∞-function on �× conf with compact support on conf for every

t given by Taylor’s expansion remainder. The remainder o(t, ea
µ) can be restricted for

|t| < δ as |o(t, ea
µ)| ≤ MχK̄δ

, where

Kδ = ∪|t|<δKt,

Kt is a support of o(t, ea
µ) in conf for given t. Since the closure of ∪|t|<δ{t}×Kt is compact

in � × conf we have that closure K̄δ is also compact in conf. Now we can compute the
generator L(Λab) = 1

2Λ
abLab as a limit t → 0

iL(Λab)ψ = lim
t→0

UL(tΛab) − 1
t

ψ.

If we use expansion (2.4), then we have

1
t

∥∥∥∥(UL(tΛab) − 1
)
ψ − itL(Λab)ψ

∥∥∥∥2
=

1
t

∫
conf

∣∣∣tΛacηcbeb
µ∂ea

µ
ψ + t2o(t, ea

µ) − itL(Λab)ψ
∣∣∣2 de

e4 ≤

≤ tM2
∫
Kδ

de
e4 ,

iff

L(Λab) =
1
2
ΛabLab = −iΛabηbcec

µ∂ea
µ
= −iΛabηbcλ

c∂λa − iΛabηbcEc
α∂Ea

α
. (2.5)

Thus we have as a final conclusion that the operator L(Λab), given by previous expres-
sion, with domain D(L(Λab)) = C∞C (conf) is essentially selfadjoint for every Λab.

This is not everything what the Lorentz group can show us. There exists another
transformation of Lorentz group acting on coordinate indices µ. The metric g can be
written as

g = ηabea
µe

b
νdxµ ⊗ dxν = gµνdxµ ⊗ dxν, (dxµ = dt, dxα)
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and its inverse matrix gµλgλν = δ
µ
ν as gµλ = ηabeµeν. The transformation prescribed as

ea
µ →

(
eΓg

−1)ν
µ

ea
ν;

(
Γg−1

)ν
µ
= Γµλgλν and Γµλ = −Γλµ, (2.6)

preserves inverse metric gµν, while eg−1Γ preserves gµν. Therefore eΓg
−1
conf ⊂ conf.

Thanks to the similar arguments as in the previous case, we have that the operators

UQ(Γµν)ψ(ea
µ) = ei 1

2ΓµνQ
µν

ψ(ea
µ) = ψ

((
eΓg

−1)ν
µ

ea
ν

)
(2.7)

are unitary with selfadjoint generators

Q(Γµν) =
1
2
ΓµνQµν = −iΓµνηabeνb∂ea

µ
. (2.8)

We are not finished yet with the Lorenz Group. Let us use again 3+1 decomposition
ea
µ = (λa, Ea

α). As we already know λa are components of vector ∂t in the frame ea.
Since the time vector can be choosen arbitrary there is no reason to have tied variables
λa, Ea

α together. Hence we can work with λa, Ea
α independently. Let us consider Lorentz

group acting on λa, then the generators of this action are given by

L(λ)
ab = −iηbcλ

c∂λa + iηacλ
c∂λb .

We obtain similar result for the Lorentz action on Ea
α

L(E)
ab = −iηbcEc

α∂Ea
α
+ iηacEc

α∂Eb
α
.

Let us compare this results with (2.5), we can see that

Lab = L(λ)
ab + L(E)

ab

as one expected. Generators L(λ)
ab , L(E)

ab play an important role, since, as we will see in a
while, their classical analogues can be used as coordinates on the phase space.
Lorentz group does not change lengths of the vectors, while ∂t can be arbitrary long.
We need to cover this featur of ∂t. Let us define a following transformation

λa → eNλa, Ea
α → Ea

α.

Let Uπ(N) be its unitary operator defined via

Uπ(N)ψ(λa, Ea
α) = ψ(eNλa, Ea

α)

and its selfadjoint generator is

π = −iλa∂λa . (2.9)

A final transformation acting on the space conf is given by group GL+(�3) ≡ GL+3 act-
ing on the spatial indices α. Let θαβ be an arbitrary real matrix, then the transformation
given by

λa → λa, Ea
α →

(
eθ

)β
α

Ea
β (2.10)
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represents the change of spatial frame ∂α → (eθ)βα∂β. Since the transformation does not
change a signature of qαβ = ηabEa

αEb
β, we have that eθconf ⊂ conf and operators

U∆(θ)ψ(λa, Ea
α) = ψ

(
λa,

(
eθ

)β
α

Ea
β

)
are unitary and their selfadjoint generators are

∆αβ = −iEa
β∂Ea

α
.

Let us summarize our situation. We have constructed family of unitary transformation
with action in the space conf. Now it is a time to find classical variables associated with
their generator. We can suppose that formal relation ϱ(pµa) = −i∂ea

µ
will lead us to the

final representation. Let us focus on the last four families of the generators. We have

L(λ)(Λ) = Λabηbcλ
cπa,

π(N) = Nλaπa,

L(E)(Λ) = ΛabηbcEc ∧Ga,

∆(θ) = θ(Ea) ∧Ga.

Quantum commutators and their classical analogues are

[λ(k),π(N)] = iλ(Nk) ↔ {λ(k), π(N)} = λ(Nk)[
λ(k), L(λ)(Λ)

]
= iλ(kΛη) ↔

{
λ(k),L(λ)(Λ)

}
= λ(kΛη)[

L(λ)(Λ), L(λ)(Λ′)
]
= −iL(λ)(ΛηΛ′ − Λ′ηΛ) ↔ {L(λ)(Λ),L(λ)(Λ′)} = −L(λ)(ΛηΛ′ − Λ′ηΛ)
[E(h),∆(θ)] = iE(θ(h)) ↔ {E(h),∆(θ)} = E(θ(h))[

E(h), L(E)(Λ)
]
= iE(Ληh) ↔ {E(h),L(E)(Λ)} = E(Ληh)[

L(E)(Λ), L(E)(Λ′)
]
= iL(E)(ΛηΛ′ − Λ′ηΛ) ↔ {L(E)(Λ),L(E)(Λ′)} = −L(E)(ΛηΛ′ − Λ′ηΛ)

As we can see we have constructed a selfadjoint representation of the variables on the
space H = L2

(
conf, de

e4

)
. The question is whether these variables seperate points of the

phase space. Now, we will show that the answer is affirmative. The variables λa, Ea

are clear, so let us turn our attention on L(λ)
ab , π, L(E)

ab , ∆αβ . We have

L̃(λ)
ab λ

aEb
α = −(λ)2π̃aEa

α + λ
aπ̃aηbcλ

cEc
α,

π̃ = π̃aλ
a,

L̃(E)
ab λ

aEb
α = qαβG̃β

aλ
a − ηabλ

aEb
βG̃

β
c Eb

α,

∆αβ = Ea
βG̃

α
a ,

where (λ)2 = ηabλ
aλb, L̃(λ)

ab d3x = L(λ)
ab , L̃(E)

ab d3x = L(E)
ab . As we can see, we can in-

vert these equations and we can express canonical momenta πa, Ga as functions of
new variables. The projected variables L(λ)

āb̄
Eā

aEb̄
b, L(E)

āb̄
Eā

aEb̄
b are not independent. They

play similar roles like angular momenta in quantum mechanincs. So, we have found
representation of algebra of new variables.

2.3 Tensor Product Hilbert Space
In the previous section we have constructed the Hilbert space Hx associated with

the point x ∈ Σ as Hx = L2 (confx, ex), where e = de
e4 and x means that it is taken at the
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point x. A main goal of this section is to briefly summarize ideas of von Neumann’s
article on tensor product of family of Hilbert spaces labeled by index set of arbitrary
cardinality (details can be found in [12]). In our case we can formally write

HΣ = ⊗x∈ΣHx.

We have a set {Hx}x∈Σ of Hilbert spaces’s labeled by points of Σ. A sequence of the
states {ψx}x∈Σ belongs to the Cartesian product H ×

Σ
= ×x∈ΣHx, but this space is too

large, we need to pick up a certain subset of H ×
Σ

. Let us call {ψx}x∈Σ a C-sequence iff
a product

∥{ψx}x∈Σ∥ =
∏
x∈Σ
∥ψx∥x (2.11)

converges. Let CΣ = {{ψx}x∈Σ: C-sequence} be a set of all C-sequences. A value of the
product limit (2.11) can be positive or zero. We need some criteria for convergence of
such limits. They can be found in ([12]).

Citation(α - index and I is an index set with arbitrary cardinality):

Lemma 2.4.1.(p.13):

If all zα are real and ≥ 0, then
(I)

∏
α∈I zα converges if and only if either

∑
α∈I Max(zα − 1, 0) converges, or some

zα = 0
(II)

∏
α∈I zα converges and is , 0 if and only if

∑
α∈I |zα − 1| converges and all zα , 0.

Lemma 2.4.2.(p.15):

If the zα are arbitrary complex numbers, then
∏

zα converges if and only if
(I) either

∏
α∈I |zα| converges and its value is 0,

(II) or
∏

α∈I |zα| converges and its value is , 0, and
∑
α∈I |arcus zα| converges3

Definition 2.5.1.(p.18):∏
α∈I zα is quasi-convergent if and only if

∏
α∈I |zα| is convergent. Its value is

(I) the value of
∏

α∈I zα if it is even convergent
(II) 0, if it is not convergent.

End of citation.

The reason why we need a notion of quasi-convergence is that if {ψx}x∈Σ, {ϕx}x∈Σ ∈
CΣ then product

∏
x∈Σ⟨ψx|πx⟩x is only quasi-convergent in general.

Now we can define a functional ψΣ associated with {ψx}x∈Σ on the set CΣ of all C-
sequences as

ψΣ({ϕx}x∈Σ) =
∏
x∈Σ
⟨ϕx|ψx⟩x,

3Is z , 0, z = |z|eθ with −π < θ ≤ π, then arcus z = θ
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where {ϕx}x∈Σ ∈ CΣ and product is taken in the sence of quasi-convergence. It should be
noted that ψσ does not imply that {ψx = 0}x∈Σ, e.g. for C-sequence {ψx0 = 0, {ψx}x∈Σ\{x0}}
its associated functional vanishes on whole CΣ. Let us define a complex linear space
H 0
Σ

of such functionals, where

(aψΣ + bϕΣ)({ωx}x∈Σ) = aψΣ({ωx}x∈Σ) + bϕΣ({ωx}x∈Σ).

We can define an inner product on H 0
Σ

as follows

⟨ψΣ|ϕΣ⟩ =
∏
x∈Σ
⟨ψx|ϕx⟩x. (2.12)

The closure HΣ = H 0
Σ

in the topology defined via inner product (2.12) is a Hilbert
space and we call it as a tensor product of the sequence {Hx}x∈Σ

HΣ = ⊗x∈ΣHx. (2.13)

We wish to characterize the space HΣ is some way. In order to do so we need to
introduce a notion of C0-sequence and classes of equivalence on them. A sequence
{ψx}x∈Σ is a C0-sequence iff

∑
x∈Σ

∣∣∣∥ψx∥x − 1
∣∣∣ converges. Every C0-sequence is a C-

sequence and every C-sequence {ψx}x∈Σ is a C0-sequence iff its functional ψΣ , 0. We
will say that two C0-sequences are equivalent {ψx}x∈Σ ∼ {ϕx}x∈Σ iff

∑
x∈Σ

∣∣∣⟨ψx|ϕx⟩x − 1
∣∣∣

converges, what is equivalent to the mutual convergence of both series
∑

x∈Σ ∥ψx−ϕx∥2,∑
x∈Σ

∣∣∣ℑ(⟨ψx|ϕx⟩x)
∣∣∣, where ℑ(z) is the imaginary part of z. Hence we see immediately

that if {ψx}x∈Σ, {ϕx}x∈Σ differ in finite number of points of Σ then they are equivalent.
Let us label equivalence classes by γ and a set of all equivalence classes on HΣ by
C(HΣ).

Now we can finish this bries summary of [12] with the following statement. If
two C0-sequences {ψx}x∈Σ, {ϕx}x∈Σ or their functional ψΣ, ϕΣ belong to two equivalence
classes γ(ψΣ) , γ(ϕΣ), then ⟨ψΣ|ϕΣ⟩ = 0. If γ(ψΣ) = γ(ϕΣ) and ⟨ψΣ|ϕΣ⟩ = 0 then there
exists x0 where ⟨ψx0 |ϕx0⟩x0 = 0. Hence we see that HΣ can be decomposed as

HΣ = ⊕γ∈C(HΣ)Hγ, (2.14)

where Hγ is a Hilbert space associated with γ.
We will use a following example later. Let KΣ = {Kx}x∈Σ be sequence of compact

sets where Kx ⊂ confx. KΣ can be identified with Cartesian product ×x∈ΣKx. Let us
define a sets of all sequences of compact sets with unit measure as

J1(Conf) =
{
KΣ = {Kx}x∈Σ : ∀x ∈ Σ; ex(Kx) = 1

}
We can associate with KΣ ∈ J1(Conf) an element in HΣ via

χKΣ = {χKx}x∈Σ. (2.15)

Let KΣ,K′Σ ∈ J1(Conf) and σ ⊂ Σ be a set of all x where Kx , K′x. We will use a
notation e = (ea

µ), ex = (ea
µ

∣∣∣
x
). Let e ∈ KΣ \ K′

Σ
. If we suppose that for ∀x ∈ σ exists an

open neighbourhood of ex ∈ Ux with property Ux ⊂ Kx \ K′x and ex(Ux) > δ ∈ (0, 1)
and σ is not a finite set then

⟨χKΣ |χK′
Σ
⟩ =

∏
x∈Σ
ex(Kx ∩ K′x) = 0,

since 1 > 1 − δ > 1 − ex(Kx \ K′x) = ex(Kx ∩ K′x).
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2.4 Quantum Algebra of Basic Variables
Now it is time to construct a representation of the basic variables of the Einstein-
Cartan theory. Inspired by the point version of the phase space we will not work with
canonical variables, but we will construct a representation of the following variables

λx(k) = kaλ
a
∣∣∣
x
,

L(λ)(Λ) =
∫
Σ

Λabηbcλ
cπa,

π(N) =
∫
Σ

Nλaπa,

Ex(h) = ha ∧ Ea
∣∣∣
x
,

L(E)(Λ) =
∫
Σ

ΛabηbcEc ∧Ga, (where Ga = −
1

8πκ
Fa)

∆(θ) =
∫
Σ

θ(Ea) ∧Ga.

with similar algebra as in the point version (trivial brackets are not written){
λx(k) , π(N)

}∗
= λx(Nk),{

λx(k),L(λ)(Λ)
}∗

= λx(kΛη),{
L(λ)(Λ),L(λ)(Λ′)

}∗
= −L(λ)(ΛηΛ′ − Λ′ηΛ),{

Ex(h),∆(θ)
}∗

= Ex(θ(h)),{
Ex(h),L(E)(Λ)

}∗
= Ex(Ληh),{

L(E)(Λ),L(E)(Λ′)
}∗
= −L(E)(ΛηΛ′ − Λ′ηΛ),

Before we start to costruct a representation of this algebra, we need to discuss prop-
erties of a certain family of operators. Let Ax be a selfadjoint operator with action
on Hx with dense domain D(Ax). We wish to represent it on the space HΣ. Since
HΣ ≃Hx ⊗HΣ\{x} we can use theory of finite tensor product of bounded operator and
we see that expression

UΣ(t)ψΣ =
{
Ux(t)ψx; {ψy}y,x

}
, (2.16)

where ψΣ is C-sequence, defines an unitary operator on whole HΣ, which is strongly
continuous at t. UΣ(t)ψx determines a generator AΣ associated with it and D(AΣ) ⊃
Do(Ax) = Span{ψx ⊗ ψΣ\{x};ψx ∈ D(Ax), ψΣ\{x} ∈ H 0

Σ\{x}}. Restricted operator AΣ
∣∣∣
Do(Ax)

is
essentially selfadjoint and acts on C-sequences ψΣ ∈ Do(Ax) as

AΣ
∣∣∣
Do(Ax)

ψΣ =
{
Axψx, {ψy}Σ\{x}

}
.
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Let us start with variables λx(k), Ex(h). Both of them are acting on the space Hx,
hence we can represent them via previous construction on the space HΣ by formula for
C-sequence ψΣ ∈ CΣ

ϱ
(
λx(k)

)
ψΣ =

{
λx(k)ψx(e); {ψy}y∈Σ\{x}

}
,

ϱ
(
Ex(h)

)
ψΣ =

{
Ex(h)ψx(e); {ψy}y∈Σ\{x}

}
.

We have used the actions of the groups SO+(η) for λa, SO+(η) for Ea,�+ and GL+3

on the space conf. Now, we wish to generalize this idea to Einstein-Cartan theory. Let
Gx be one, same for all x, of the previous groups acting on the space confx and let Φx

t
be flow associated with some one parametric subgroup of Gx. Then we have a group
GΣ = ×x∈ΣGx acting on the space Conf = ×x∈Σconfx by the flow ΦΣt (e) = {Φx

t (ex)}x∈Σ 4.
Let ψΣ be a C-sequence, then an operator defined for any Ψ ∈H 0

Σ

UΣ(t)Ψ =
m∈�∑
j=1

c jUΣ(t)ψ
j
Σ
=

m∈�∑
j=1

c j

{
ψ

j
x(Φx

t ex)
}

x∈Σ
,

where Ψ =
∑m∈�

j=1 c jψ
j
Σ

and ψ j
Σ

are C-sequences, can be extended to the one-parametric
unitary grup acting on whole HΣ. We know nothing about its continuity at the moment.

Let KΣ ∈ J1(Conf) be a constant sequence of compact sets, i.e. ∀x Kx = K, and let
Φx

t = Φt for ∀x ∈ σ ⊂ Σ and Φx
t = id for ∀x ∈ Σ \ σ. Let us explore an expression

u(t) =
∥∥∥∥ (

1 − UΣt
)
χKΣ

∥∥∥∥2
.

It is clear by definition, that u(0) = 0. Let t , 0, then we can write

u(t) =
⟨
χKΣ

∣∣∣∣ (1 − UΣ−t

) (
1 − UΣt

)
χKΣ

⟩
= 2 −

⟨
χKΣ

∣∣∣∣UΣ−tχKΣ

⟩
−

⟨
χKΣ

∣∣∣∣UΣt χKΣ

⟩
.

The last two terms are zero in the case when σ is not finite due to the arguments from
the end of the previous section. Hence we have, as a consequence, that operator UΣ(t)
is not strongly continuous in the general case. Therefore there does not exist selfadjoint
generator of UΣ(t) in the general case.

What we can do is to explore the case when the group GΣ acts on Conf nontrivially
only on some finite subset σ ⊂ Σ. Let us start with σ = {x}. This case were explored
few rows above and point generators Tx of such action were found in section 2.2.
Generalization to the case when σ = {x1, . . . , xn} is clear and the resulting generator is
Tσ =

∑
x∈Σ Tx.

Now we can write explicitly the generators of our groups acting on the Conf. They
are

π(N) =
∑
x∈Σ
−iN(x)λa(x)∂λa(x),

L(λ)(Λ) =
∑
x∈Σ
−iΛab(x)ηbcλ

c(x)∂λa(x),

∆(θ) =
∑
x∈Σ
−iθβα(x)Ea

β(x)∂Ea
α(x),

L(E)(Λ) =
∑
x∈Σ
−iΛab(x)ηbcEb

α(x)∂Ea
α(x),

4No summation over x! ex is a point in the manifold confx.
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where N(x), Λab(x), θβα(x) has support on a finite set. Commutator algebra of basic
quantum observables is generated by[

ϱ
(
λx(k)

)
, π(N)

]
= iϱ

(
λx(Nk)

)
,[

ϱ
(
λx(k)

)
, L(λ)(Λ)

]
= iϱ

(
λx(kΛη)

)
,[

L(λ)(Λ), L(λ)(Λ′)
]
= −iL(λ)(ΛηΛ′ − Λ′ηΛ),[

ϱ
(
Ex(h)

)
,∆(θ)

]
= iϱ

(
Ex(θ(h))

)
,[

ϱ
(
Ex(h)

)
, L(E)(Λ)

]
= iϱ

(
Ex(Ληh)

)
,[

L(E)(Λ), L(E)(Λ′)
]
= −iL(E)(ΛηΛ′ − Λ′ηΛ).

Hence we see that we found representation of classical variables of Einstein-Cartan
theory.

Now, let us explore a reducibility of this representation. As we already know, space
HΣ can be decomposed into the mutually orthogonal subspaces labeled by class of
equivalences of C0-sequences C(HΣ). Our representation does not mix this decompo-
sition hence it is reducible. Number of irreducible representation in H is equal to the
number of equivalence classes on HΣ, what is ”huge” infinite, e.g. for every element
of L2

(
conf, de

e4

)
there exists its own equivalence class, etc. One may partially save the

situation by using unitary version of basic variables and represents operators UΣGΣ(ξ),
where ξ = N for �+, etc., instead of its generators T(ξ), with action on whole Conf
which mix orthogonal decomposition of HΣ. Anyway for K1

Σ
,K2
Σ
∈ J1(Conf), where

K1
Σ

is built by simple connected sets and K2
Σ

is built by union of two simple connected
sets, there is no element of GΣ which mixes their equivalence classes and reducibility
of unitary representation is still to huge. Hence some additional superselection rules
should be used if one wants to quantize Einstein-Cartan theory with this representation.
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Conclusion
In section 1.1 we have started with the orthonormal coframe ea and general gravi-

tational connection ∇̂ described by its forms Γ̂
ab
= ηbb̄Γ̂

a
b̄. We have derived the equa-

tions of motion which have fixed Γ̂
ab
= Âab + B̂ηab where Âab is related to the metric

connection D̂ and B̂ is arbitrary 1-form. Torsion of D̂ vanishes as a consequence of
EOM, hence Âab can be expressed as a functional of coframe ea which is given by the
solution of Einstein equations. Algebraic interpretation of such kind of connection,
as described in section 1.2, is given by the condition that operator ∇̂ preserves (an-
ti)symmetric structures on ΛTM which in special case ΛTp

qM, where p+q = 2, means
that ∇̂ does not mix irreducible structures ΛAp

qM, ΛBp
qM and ΛCp

qM on ΛTp
qM. The

author have not found any reference in the literature about such interpretation of the
Cartan connection. We have induced the geometrical structure on the spatial section
Σ inherited from spacetime M and hence SO(g) is still (part of) gauge freedom which
is opposite to the standard loop formulation of gravity where the orthonormal coframe
ea is fixed to be tangential to Σ and its time vector is normal to Σ. Then we have used
the SO(g) structure in the Hamilton-Dirac formulation of the Einstein-Cartan theory.
Since our system is degenerated and it contains both classes of constraints the Dirac
bracket has been introduced. The Dirac procedure has been finished by introducing the
reduced phase space described by coordinates (λa,Ea, πa,Fa).

The loop theory (LQG) is successful theory of quantum gravity. But there exist
some unresolved problems in this theory. One of them is Barbero-Immirzi parameter
which causes ambiguity in the LQG and this parameter should be fixed by Hawking-
Bekenstein(HB) entropy. Honestly, we do not know yet whether HB entropy is in
accordance with nature or not. Also this procedure resembles derivation of the Stefan-
Boltzmann law of the black body radiation from classical thermodynamics where the
Stefan-Boltzmann constant appears like an integration constant and should be fixed by
experiment. Only the Planck derivation of this law based on quantum theory predicts
this constant from the first principles. In fact, observables like entropy of a black hole
have to be predicted by full quantum theory of gravitation. Our approach does not con-
tain such parameter, but there is another problem, one may say a huge problem, caused
by the high degree of reducibility of the representation of basic variables constructed
in 2.4. Its origin lies in the kernel of the method of construction of HΣ used here.
Similar thing happens if one wants to represent basic variables Φ, Π of scalar fied Φ
on the space H Φ

Σ
given by infinite tensor product of spaces H Φ

x . Hence it seems that
this problem of huge ambiguity is not caused by the choise of the kinematical variables
on the phase space, but by the choice of method of construction of HΣ. This problem
should be solved in the future. A one possible solution of this problem is represented
by the following idea. If G is a topological group, then there always exists its Bohr
compactification G based on the notion of almost periodical functions over G. Since
G is a compact group there always exists unique left/right invariant5 measure ωG

L/R on

G with propery ωG
L/R(G) = 1. Of course the space Conf is not a group, but it is a subset

of GL+ and there exist actions of the groups SO(η), �+ and GL+3 on Conf. Hence the
idea is to construct (if it possible, unique, etc.) the space of HΣ by analogous compact-
ification of the space Conf by using the almost periodicity defined via groups SO(η),

5Since G is not a Lie group, left and right invariant measures may differ in general.
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�+ and GL+3 acting on Conf. But this must be explored in detail in future.
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Appendix
2+1 Dimensional Einstein-Cartan Theory

If we already start with metric6 connection then Lagrangian for 2+1 dimension-
al Einstein-Cartan theory can be written as

L =
1
2
εabcR̂ab ∧ ec. (2.17)

EOM:

R̂ab = 0, (2.18)
T̂a = 0. (2.19)

Using 2+1 decomposition

ea = λadt + Ea,

Âab = Λabdt + Aab

leads to Hamiltonian:

H = π(ν) +Π(Γ) + p(b) + P(B) + R(λ) + T(Λ), (2.20)

where

π(ν) =

∫
Σ

νa ∧ πa, (2.21)

Π(Γ) =
∫
Σ

1
2
Γab ∧Πab, (2.22)

p(b) =
∫
Σ

ba ∧ pa, (2.23)

P(B) =
∫
Σ

1
2

Bab ∧ (pab − εabcEc), (2.24)

R(λ) =
∫
Σ

−1
2
εabcλ

aR̂bc, (2.25)

T(Λ) =
∫
Σ

−1
2
εabcΛ

abDEc. (2.26)

Momenta and velocities variables are given by table 2.1.
Primary constraints are

π(ν) = 0,
p(b) = 0,
Π(Γ) = 0,
P(B) = 0.
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Table 2.1: Table of basic variables

Variables Momentum Velocities
λa πa = π̃ad2x where π̃a = ∂L /∂λ̇a νa = λ̇a

Ea = Ea
αdxα pa = p̃αaεαβdxβ where p̃αa = ∂L /∂Ėa

α ba = Ėa

Λab Πab = Π̃abd2x where Π̃ab = ∂L /∂Λ̇ab Γab = Λ̇ab

Aab = Aab
α dxα pab = p̃αabεαβdxβ where p̃αab = ∂L /∂Ȧab

α Bab = Ȧab

Poisson brackets between Hamiltonian and p(b) or P(B) lead to Lagrange multi-
pleirs

Bab = DΛab,

ba = Dλa − ηāb̄Λ
aāEb̄,

while π(ν) and Π(Γ) give new constraints

R(ν) =
∫
Σ

−1
2
εabcν

aR̂bc,

T(Γ) =
∫
Σ

−1
2
εabcΓ

abDEc.

No other new constraints appear and p, P are the second class constrains. Next step is
the definition of Dirac bracket thus we need evaluate{

P(B̃), p(b̃)
}
=

∫
Σ

−1
2
εabcB̃ab ∧ b̃c,

what is equal with {
P̃α

ab(x), p̃βc(y)
}
= −εabcε̄

αβδxy.

Dirac bracket is defined as

{A, B}∗ = {A, B} +
∫

dx
2
{A, P̃α

ab}ε̄abcεαβ{ p̃βc , B}

−
∫

dx
2
{B, P̃α

ab}ε̄abcεαβ{ p̃βc , A} (2.27)

and constraints algebra is given by commutators

{R(µ),R(ν)}∗ = 0, (2.28)
{R(µ),T(Λ)}∗ = −R(Ληµ), (2.29)
{T(Λ),T(Γ)}∗ = T(Λ̃), (2.30)

where Λ̃ab = 2δab
āb̄
Λāc̄ηc̄d̄Γ

d̄b̄ and (Ληµ)a = Λabηbcµ
c. We see that constraints algebra in

2+1 dimensional Einstein-Cartan theory is Poincaré algebra.
6Similar analysis of general connection can be done as in 3+1 case, but for simplicity we fix con-

nection to be compatible with metric already now.
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List of Abbreviations
Manifold structure and indices:

M - spacetime, Σ - spatial section of M = � × Σ
a, b, · · · = 0, 1, 2, 3 - frame indices
α, β, · · · = 1, 2, 3 - spatial coordinates indices
ηab - Minkowski metric with signature (+,−,−,−)

Groups:
GL(V) - general linear group over (real) vector space V
O(g) - orthonormal group over metric vector space (V, g) or manifold (M, g)
SO(g) ⊂ O(g) - special orthonormal group over vector space (V, g) or manifold (M, g)
SO(g) ⊂ SO(g) - proper Lorentz group over vector space (V, g) or manifold (M, g)
preserving righthand and future time orientation

(Anti)symmetrization:

A[ab] = 1
2 (Aab − Aba)

S (ab) = 1
2 (S ab + S ba)

etc.

Antisymmetric delta and Levi-Civita symbol:

δa...b
c...d = δ

[a
c . . . δ

b]
d = δ

a
[c . . . δ

b
d] = δ

[a
[c . . . δ

b]
d]

εabcd = ε[abcd], ε̄abcd = ε̄[abcd] and ε0123 = ε̄
0123 = 1

εαβγ = ε[αβγ], ε̄αβγ = ε̄[αβγ] and ε123 = ε̄
123 = 1

Cartan algebra and exterior product:

(ΛM,∧) - Cartan algebra of all spacetime forms. ΛpM - space of spacetime p-
forms.

(ΛΣ,∧) - Cartan algebra of all spatial forms. ΛpΣ - space of spatial p-forms.
If α, β ∈ Λ1M or Λ1Σ then α ∧ β = α ⊗ β − β ⊗ α

Interior product:
(ivα)(u1, ..., up−1) = α(v, u1, ..., up−1) ∀α ∈ ΛpM or ΛpΣ

Derivative operators:
d̂ - exterior derivative operator on spacetime M. Anyway we write dt = d̂t
d - spatial exterior derivative operator on Σ
∇̂ - general covariant exterior derivative operator on M, or general connection as-

sociated with Γ̂
a
b

D̂ - SO(g)- covariant exterior derivative operator on M, or SO(g) connection asso-
ciated with Âa

b = ηbcÂac

D - spatial SO(g)- covariant exterior derivative operator on Σ, or spatial SO(g)
connection associated with Aa

b = ηbcAac
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