Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Marian Pilc

Model Problems of the Theory of Gravitation

Institute of Theoretical Physics

Supervisor of the doctoral thesis: prof. RNDr. Jifi Bicak, DrSc., dr. h. c.
Study programme: P1701
Specialization: 4F1

Prague 2013



Dedicated to my mum in memoriam.



I declare that I carried out this doctoral thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In..... date ............ signature of the author



Nézev prace: Modelové problémy tedrie gravitace
Autor: Marian Pilc
Katedra: Ustav teoretické fyziky MFF UK

Vedouci disertacni prace: prof. RNDr. Jifi Bicak, DrSc., dr. h. c.
Ustav teoretické fyziky MFF UK

Abstrakt: Pohybové rovnice pro obecnou gravitaéni konexi a ortonormélni korepér
jsou odvozeny pro Einstein-Cartanovu teorii z Einstein-Hilbertovského typu ucinku.
Kalibra¢ni volnost plynouci z obecnosti gravitatni konexe je geometricky interpre-
tovina. NaSe formulace nefixuje ortonormdlni korepér jako dotykovym k prostorovému
fezu a proto umoZiiuje, aby Lorentzova grupa byla soucasti kalibra¢ni volnosti. 3+1
rozklad promémnych zavadi dotykovou Minkowskiho strukturu a Hamilton-Diractv
pfistup k dynamice pracuje s Lorentzovskou konexi nad prostorovym fezem. Vazby
druhého druhu jsou analyzovany a Diracova zdvorka je zavedena. Fazovy prostor je
zredukovan a popsdn kanonickymi proménnymi.

Druha ¢ast disertacni prace se vénuje kvantové formulace Einstein-Cartanové teorie.
Bodova formulace fazového prostoru je zavedena. Zdkladni promémné, dilezité pro
kvantovou formulaci, jsou odvozeny pomoci akci grup na fazovém prostoru a jejich
samosdruZend reprezentace je sestrojena. Pomoci nekonecného tensorového soucinu
bodovych Hilbertovych prostord je sestrojena reprezentace zakladnich proménnych
Einstein-Cartanové teorie.
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Introduction

One of the open problems in the theory of gravitation is the difficulty with adding
the spinors into the theory. There are two physically nonequivalent formulations of a
system including gravity and Dirac’s field. In the first one the gravitational connec-
tion ®LOV is strictly geometrical called Riemann-Levi-Civita (RLC), i.e. connection
is compatible with metric and its torsion vanishes, and action of our system is a sum of
Einstein-Hilbert and Dirac’s actions [1]. In Dirac Langrangian the external derivative
operator d should be replaced by ®XOV in order to have a final theory locally Lorentz
invariant. The variation of action is taken with respect to “metric”’ and Dirac field
(metric should be expressed in terms of orthonormal coframe e“ and (RLCYY depends
on e“). In the second model the orthonormal coframe e“ remains unchanged and grav-
itational connection V is now general, i.e. without any restriction like compatibility
with metric, etc. These two families of variables represent our configuration space
and variations of the action with respect to both of them are independent. These two
formulations are equivalent in the case of pure gravity. But if one adds a Dirac field
with Lagrangian depending on connection V these two theories give different physical
results in the region of Planck densities and higher, e.g. bing bang or black hole singu-
larities resolutions occur in the presence of fermionic matter [2]. Another example of
Lagrangian which depends on connection is given by Bi¢dk’s vector field [3].

We will focus on the second model in this thesis. The motivation for this choice is
taken from loop quantum gravity, where Ashtekar connection A on spatial section X
is defined by RLC connection of q (q is a metric on X induced from a 4-dimensional
metric g of spacetime M) and external curvature of 4-dimensional RLC connection.
Ashtekar originally began with complex connection A but problems with reality con-
ditions or hermiticity of inner product of quantum Hilbert space caused that Barbero-
Immirzi parameter enters theory and A becomes real. This parameter plays no role
on classical level, but after quantization it causes ambiguity and must be fixed by
comparison of Hawking-Bekenstein entropy with entropy computed from loop the-
ory. Fermionic matter was successfully added to loop gravity only on kinematical
level and problems of dynamics remain unresolved. And last but not least, problem is
that general theory is SO(g) invariant what is still true in the case of complex Ashtekar
connection but the real loop theory broke down this explicit invariance to SO(q) [5].
If one does not fix coframe to be tangential to X in opposite to loop gravity then all
degrees of freedom enters the theory which can then be expressed as SO(g) gauge the-
ory. As is shown in appendix this leads to a theory where torsion appears as the first
class constraint in the case of 2+1 dimensional gravity which is good news for 2+1 di-
mensional theoretical physicists, because one can work with SO(g) gauge connection
instead of 2+1 analogue of Ashtekar connection and problem of vanishing torsion can
be solved on quantum level as one wishes. Unfortunately in the case of 3+1 dimen-
sional Einstein-Cartan theory the condition of vanishing torsion is split in two parts
where one is the first class and the other is the second class constraints. Therefore new
potential problems like introduction of ghosts should be solved on quantum level.

In this thesis, we will focus on the derivation of Hamiltonian-Dirac formulation of
our physical system. The work is organized as follows. In section 1.1, Lagrangian
formulation of the Einstein-Cartan theory is formulated in the the language of forms
valued in the tangent tensor algebra on M. Equations of motion (EOM) are derived



and equivalence between theory of General Relativy and Einstein-Cartan theory is al-
so shown in this section. In section 1.2, geometrical interpretation of general solution
of gravitational connection given by the equations of motion is done. 3+1 decomposi-
tion is performed in section 1.3 and also some useful formulas are evaluated there. In
section 1.4, the Hamiltonian of the theory is written and separation of constraints into
the first and second class is performed. In section 1.5, Dirac brackets are introduced
and coordinates on reduced phase space are defined.

In the second part of this thesis we will focus on the quantum formulation of
Einstein-Cartan theory. We will try to construct the kinematical Hilbert space of
Einstein-Cartan theory, where selfadjoint representation of certain family of observ-
ables can be defined. We will start with point version of the phase space, which can be
interpreted as the phase space of the coframe settled in the point of spatial manifold.
There are several groups acting on this space. Their existence will be used for correct
definition of selfadjoint operators related to classical observables. In the next section
basic ideas of von Neumann’s [12] construction of tensor product of the infinite family
of Hilbert spaces is briefly summarized. Then it is used for final construction of Hilbert
space of Einstein-Cartan theory.The final result appears not very satisfactory, since the
construction leads to too large family of irreducible representations of the algebra of
kinematical variables which makes the quantization procedure rather ambigous at its
present stage of construction.



1. Hamiltonian Formulation of
Einstein-Cartan Theory

1.1 Lagrangian of Einstein-Cartan Theory

Let (M = R[7]XZ, g) be a spacetime manifold equipped with metric g (signature(g) =
(+,—,—,—)). Geroch’s theorem [6] says that spinor structure over the manifold M ex-
ists iff there exists global orthonormal frame e, over M and M is orientable. These
two conditions restrict possible topological shapes of M and Z, e.g. if the spacetime
manifold is given by the product M = RX”3-dimensional sphere” then Geroch’s con-
ditions are not fulfilled and spinor structure can not be defined over such manifold, in
other words, if one considers Friedman’s models then the closed model violates the
Geroch’s conditions. We assume Geroch’s conditions already now in the case of pure
gravity since spinors should be added into the theory later so there is no loss of gener-
ality '. The first nice simplification is that the coframe e“ is defined globally and thus
every useful geometrical or gravitational variable can be written in a global manner.
Let us look at the basic quantities:
metric

g =npe’ e,

4-volume form

A 1 .
= 4786{[7“19“ A eb A€ A ed,

o . £ b
gravitational connection 1-form I" ,
o ~ b
Vue, =1 (w)e,
or its curvature 2-form
A AAnd Ad AC
Foy=dl' ,+T" AT ,.

General Relativity sets the connection V to be geometrical and the Einstein-Hilbert
action of GR is

1
Sen = f_ 1671/<ngg

where R, is Ricci scalar related to the RLC connection of metric tensor g, w, =
+/—det|g|d*x is its volume form and « is Newton’s constant (c=1). Action written
in this form explicitly depends on the choice of coordinates and one should overlap
few coordinate’s neighbourhoods and solve boundary terms if one wants to cover the
whole manifold M in general case. But using our assumption on e one can rewrite the
Einstein-Hilbert action into the following geometrical form

_ 1 by @ c d
SEH—f_ﬁgubcdn RgBAe ne, (L.1)

'One may say that we can define spinor structure locally and work with such structure. But there
some certain type of phatologic features occur. We will not focus our attention to this problem. There-
fore ’no loss of generality”.



where Rgab is curvature 2-form of RLC connection. The action (1.1) is a functional of
basic variables e“ = e;dx* and one should make variation of the action with respect to

them. The idea of Einstein-Cartan theory is very simple, gravitational connection V is
no more geometrical. In Einstein-Cartan action being of Einstein-Hilbert type

1 bbra c d
S :f_%(sabc‘dn FE/\e Ae (12)
Q

variation should be made independently in both variables e’ and f‘ab. Q is a timelike
compact set, i.e. Q =< ;1 > XX. For simplicity we assume in this work that X is
compact manifold, e.g. torus. Let us decompose variable f“ab into O(g)-irreducible
parts

~ab

I = 71", = A + By + C* (1.3)

where A% is antisymmetric and C* is symmetric and traceless 1-form, respectively.
Curvature F¢, can be expressed as

Fab — nchac — Rab + aﬁnab + Z")Cab + ncdéac A Cdb

where D is metric connection defined by Du® = du® + 7, A% A u¢ and R? is its
curvature. If & = 0“,e’ is a new coframe with 0, being Lorentz transformation, then
A transforms as

Rab _ a Ab Rab a . ab b
A% = 0,00 AT 4 07 dOP

while B and C* transform like tensors in their indices. The Einstein-Cartan action can
be written in new variables (e?, A%, B, C%) as

1 A 1 AL = AT
S = f ———&waR” N € A€+ f ———158acaCP A CP A A e (1.4)
321k 32k
M M

Notice that variable B does not enter the action (1.4). Thus variation of (1.4) with
respect to B vanishes identically and no corresponding equation of motion arises, 1.e.

538 = 0. (1.5)

Now if one makes variation with respect to C*” then one gets
5¢S = f —ﬁm—l;sﬂbwa@“a ACY” Aee? =0 (1.6)
for Y6C*: 5C* = §C and 1,,6C* = 0. Equation (1.6) is equivalent to
C* =0. (1.7)
If one uses this fact then action (1.4) can be written as

1 .
S’ = f ——— &R A €€ A€, (1.8)
32k
Q



its variation (see, e.g., [7]) is

’ 1 A c 7 1 a W
6A,eS = f(ﬁsabcdéAab Ae A Z)ed - ﬁsabcdée A Rb A ed)

Q

and equations of motion are

1 S U o mt o e
0 = c—suue A De? :_%(TaﬁTjaéb—Tjhéa)zc, (1.9
1 N 1 A«
0 = —Jo—EwaR" el = -G 2, 1.10
16 el ¢ 8mk ¢ (1.10)

where the torsion components are given by
z’\) a _ Ta _ ljm b (&
e —_— —_ E bce /\ e )
3-volume forms

. 1 )
3, = gsabcdeh A€ A e, (1.11)

and G“b is the Einstein tensor

A A 1.

a _ ca cd a
G b R ch ER cd(sb’
N 1 )

R = —R® e ne’

2

Equation (1.9) implies that connection 9 is torsion-free and together with metricity of
P we have that 9 is geometrical connection. Equations (1.10) are Einstein equations

of General Relativity. Solution for general gravitational connection s
P = A% 4 By, (1.12)

where B is an arbitrary 1-form and A“®, e are given by equations (1.9) and (1.10).
Connection of type (1.12) is called Cartan connection. Ambiguity of I due to B

represents a gauge freedom in [8]. Spacetime is given by topology of X which is
established initially and metric g = 7,,e°®e”. The metric is given just by knowledge of
%, hence B does not affect geometry. Thus General Relativity and the Einstein-Cartan
Theory are physically equivalent, at least in the case of pure gravity.

1.2 Geometrical interpretation of the gravitational con-
nection

Let V be a four-dimensional real vector space. Two different frames in V are related
by a linear transformation g € GL(V). The first nontrivial irreducible representations
of GL(V) are given by T'V = V and T,V = V* (V* - dual of V). Next candidates
for representations are spaces built by tensor products T2V = V@V, T,V = V* @ V*
and T}V = V ® V* which is isomorphic with V* ® V. Anyway, these spaces are not

6



irreducible. In order to see this, let us consider a general element t € T2V. t can be
written as

t=1"g,®g, (1.13)

where g, is a base of V. Thus t can be expressed as a matrix **. As we know, any
matrix can be written as a sum of symmetric and antisymmetric matrices

1 1
t= E(t“” -"g, ® g+ E(t“” +1"g, ®g =a’g, ®g, +s"g, ®g,  (1.14)

and since g*a® = —g*a" and g*s% = g*s"* we can see that T?V is reducible. g* means

an action of g € GL(V). T?V can be decomposed as T>V = A2V & S*V, where A%V
or S?V means antisymmetric or symmetric part of T?V. Of course this is not a proof
of irreducibility of X?V (X € {A, S}) but these facts about GL(V) are well known and
we will not go further into details. Similar analysis can be done on T,V and we can
also write T,V = A,V & S,V. Now, let us focus on T}V. General element t € T%V 1S
t=18, ®g” where g is dual base and f; can be expressed as sum of trace and traceless
parts

1 _ 1 .
t= 15;;55 e, ®g + (535;,’ —~ Zagaf) te.0g. (1.15)

Trace part transforms like scalar while traceless part gives us another representation of
GL(V).

Let M be a four-dimensional orientable manifold. We also suppose that LM = M x
GL(M), where LM is a frame bundle over M (see, e.g.,[7]) and GL(M) = GL(T'M).
This is a nontrivial assumption. In the case of the metric manifolds (M, g), it is equiva-
lent to the first Geroch’s condition of a global section of a bundle OM of all orthonor-
mal frames over (M, g). Together with the orientability of M we have a generalized
version of both Geroch’s conditions . Thanks to these assumptions we can represent
T'M as x;‘le (M), where F(M) is a space of functions over M. Let us denote this
representation as T'M and let §, be a base coresponding with g,, etc. Thus we have a
representation TM of tensor algebra TM. We can define an algebra ATM = AM®TM
where AM is Cartan algebra of forms over M. A product A on ATM is defined via
formula

AAD =@, ADTY, 8§08, 8 8 0g (110

and an exterior derivative operator d on ATM is given by d = d ® id, where d on the
left-hand side is operator on ATM while d on the right-hand side is the usual exterior
derivative operator on AM. One can also define a covariant exterior derivative operator
for some general connection V in similar way on ATM. From now we will omit basis
(co)vectors and will write just indexed forms instead of whole expressions.

Let t» € AM x T°M = AT?M c ATM and a® or s* be its antisymmetric
or symmetric parts, respectively. We have immediately from the linearity of V that
Va® € AA2M and Vs € AS?M. Similar results can be obtained for AT,M and its
antisymmetric and symmetric parts. Since contraction of indices and V commute, the
covariant derivative operator v respects decomposition of the spaces AT°M, AT,M
and AT{M into the irreducible subspaces of O(g).



Now we are going to explore what happens if we equip M with a metric. As before
we start with the real four-dimensional vector space V and g is the metric with signa-

ture (+,—, —, —) which can be written as g = g,,8° ® g”. There exists canonical way
how to pick up a certain subgroup called orthonormal group O(g) c GL(V) given by
O(g) = {g € GL(V) : g"8ab = g} - (1.17)

Because V is equipped with the metric then there exists a canonical isomorphism be-
tween V and V* given by g : V — V*. This map can be easily extended into isomor-
phisms between tensor spaces of the same rank. Examples for rank=2 are given by
maps to T2V, let t* € T,V and t € T}V and g be an action of such isomorphism

gt = g g, 2,98, (1.18)
gt = ¢t g0 (1.19)

We already know that T2V and T,V can be split into the symmetric and antisymmetric
parts while the decomposition of T}V is given by trace and traceless parts. These
spaces generate irreducible representations of GL(V). Since there exist isomorphisms
between the tensor spaces of rank=2 and O(g) is subgroup of GL(V) there should
exist some common decompositions of spaces T*M, T,M and T M into the irreducible
representations of O(V). Indeed, the space T2V can be decomposed into the three
subspaces A2V, B>V and C?V by the following projections
g 1
PRV g 5(5@*5@ — 5467) 1,
1
B2V ab 4d _ _ _ab ed
pere 1= 78" 8aa 17, (1.20)

1 1
C?V ab  4d _ |~ (cash asby _ — jab cd
PEV e _(2(565d+5d5c) 78 gcd) .

AV is our well known antisymmetric subspace, B2V is trace part and C?V is symmet-
ric traceless subspace of T?V. Similar projections work on T,V

S 1 ; ’
praved o 5(5255 —6%65) teq,

ab
PRV g = igabg"d feds (1.21)
PRV gy = (%(6;655 + 8403) — igabg“’) fea
and on T}V
P = 0] - 8 £
T %5255 . (1.22)

CiVad . 1 a a 1 a ¢
P = (5(505;,’ +8“pe) — 151,5?) £

These spaces XV (X € {A%,B?, C?, Al,...,C,}) are irreducible ? representations of the
group O(g). B-spaces are equivalent to trivial R but the rest of X are representations

ZRecall that we are working with real representations of O(g). If we work with complex tensors and
SO(g) then AV representation is reducibile into self and antiselfdual antisymmetric matrices. Thus in
terms of (n,m) counting of complex irreducible representation of SO(g) AV is (1,0) & (0, 1) while CV
is (1, 1).



of higher degree than V. Now we are in a point where our vector space preparation is
over and we can finally turn our attention to the metric manifold (M, g).

We have seen few lines above that general connection V preserves structure of
irreducible representations of GL(V) on tensor spaces of rank=2. But the situation is
different in the case of group O(g). Since generally VP*™ @ £ 0 then e.g. VA! ¢ Al
The question is how does general connection preserving irreducible structure of O(g)
look like? Necessary conditions for such connection are given by VPM ad = % pM ad
(no summation over X!). Thanks to (1.20)-(1.22) we have that these equations are

equivalent to

V(g gea) = Y8 8eas (1.23)

where v* = oy and o are constants while vy is arbitrary function. Let us fix the
frame g, to be an orthonormal e, then the metric is g = 7,,e* ® ¢’. We can use the
decomposition (1.3) and obtain

V0™ nea) = 2Cneq = 20 0een0aC = Y™ nea. (1.24)

Necessary condition for existence of solution of (1.24) is given by

1oV 01 ea) = =87e14aC = dyneq. (1.25)

This equation has solution only if y = 0 and then the solution is C* = 0 which is also
the solution of (1.24) if y = 0. Thus general shape of connection preserving irreducible

structure of O(g) on tensor spaces with rank=2 is given by P = A% Br and con-
sidering (1.12) we figure out that this is exactly the same type like Cartan connection
given by solution of equations of motion in Einstein-Cartan theory. From now until the
end of this section V is Cartan connection.

Another possible interpretation of Cartan connection is based on notion of sym-
metrization and antisymmetrization. Space T;M is g*-isomophic to Tg M. Lett €
T, M then g't € Tp +M. (Anti)symmetric projections on T/ M are defined by

Mat = (g") 'Tlag't, (1.26)
Mgt = (g") 'Tleg't, (1.27)
where
ﬁAg*t(ul, ceUprg) = o q)' Z sgn(o)g t(o(uy, . .., Upig)),
Hsg t(ub ceey up+q) = (p + q)' ; g t(O—(l/ll, e up+q))7
o means permutation, sgn(o) = 1 if o is even and sgn(o) = —1 if o is odd. Since

@ﬁx =0 (X e{A, S}) because [1y are linear combinations of 6-s and (g*)‘lﬁxg*t con-
tains p-times multiplied expressions of type 7* 1.4 we have immediately that VI = 0.

It should be noted that since in general Vg* # g*V for metric isomorphism between
two tensor spaces of the same rank, there is no physical reason for such a feature,
the B-part of £ should represent a gauge degree of freedom and physical connection
should be compatible with metric g which reflects a well known fact from General
Relativity.



1.3 341 Decomposition

We have already assumed that the spacetime M is given by the product R X 2. This
assumption is equivalent to the existence of a global Cauchy surface and hence solution
of equations (1.9) and (1.10) can be evolved from initial data on X uniquely upto gauge
transformation®. Our basic variables ¢, B and C* belong to the algebra ATM while
A“ are connection forms on M, so it will be useful to preserve this structure even in
Hamiltonian formulation. Since we assume that Geroch’s conditions are valid, there
exists a global orthonormal frame e,. Let x € X then .Z, = Span{ea } together with

the metric g|x define a tangent Minkowski space settled at the point x. Since x is the
arbitrary point of X then space .# = U,x.#, plays analogous role as T'Z but it is
little bit bigger since .# contains even non tangential vectors. Important thing is that
M can be represented as M = XammF(Z) and it is also equipped with Minkowski
metric 1,,. Hat over .# will be omitted from now and space .# and its representation
will be identified. .# is vector space and we can define its tensor algebra T.# and
algebra of forms on X valued in this space AT.#Z = AX X T.#. Let e, and €, be
two orthonormal frames in .#. Then due to Geroch’s conditions there exists just one
g € O(g) x X such that €, = g"e,. Thus, we can see that there exists a trivial principal
bundle O(g).# = X x O(g) over X, where part of gauge freedom is given by Lorentz
group O(g). Now we can start detail analysis of 3+1 decomposition of our variables.

Let T € ATM be a p-form valued in TM, then T can be uniquelly decomposed into
pure spatial (p — 1)-form T and p-form T valued in .#

T=TAdr+T.

Another important geometric object is an external derivative operator. Let us denote
by d external derivative on M while we keep d for . Anyway we still write dr with the
hope that this will not cause any problem. Let us apply d on T to obtain

dT =dT Adt+dt AT +dT

where dot means action of Lie derivate along d, which is just simple time derivative of
components, e.g. for spatial 1-form T = 9,T,dx®, etc. So one can project spacetime
p-form onto pure spatial p-form and (p-1)-form on X and even 3 + 1 dimensional ex-
ternal derivative is also writen in language of spatial forms and their time and spatial
derivatives.

Let us explore what happens with orthonormal coframe e“. We can write

e’ = %t + E* = Adr + Edx”, (1.28)

where «,f,7v, ... = 1,2,3 are spatial coordinate indices while a,b,c, ... = 0,1,2,3
are reserved for tensors on .Z . It is useful for our purposes to decompose even frame
e, into tangential and time parts

e, = 1,0, +E, = 2,0, + E;0,. (1.29)

It should be noted that 4, # n,,4*. We hope that this notation is not confusing since
if we need to in/de-crease indices then it will be explicitly written using metric tensor.

3One equation is still missing as we will see at the end of this section. But this equation is conserva-
tion of constraints given by (1.9) and (1.10).
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We have e“(e;) = 67 what is

@ EQ@Q:%@+Q@:%, (1.30)
b

thus matrices (1%, E%) and (4,, E*)" are mutually inverse and since they are finite di-

mensional we also have
A\ (2 Eg) _(1 0
) #-f 3}

a

or

=1,  AE =0,

@ )a — @ ra — (03 (1'32)
EA“=0, ESES =45

As we expected, variables 14, 1,, E* and E, are not independent and we can express
vector coefficients using covectors via well known formula for inverse matrix

de
A, = —, 1.33
e EyY (1.33)

de
EY = , 1.34
E; = oo (1.34)

where
1

e = —&uaE” V' ELESES (1.35)

31

is determinant of matrix (14, E). Coordinates’ (co)vectors can be written with the help
of previous formulas as

dr = e dx® = E%"

0, = A%, 0, = Ee, (1.36)

thus we see that vector 8, € T'M is represented by vector 2 € .# and similar for
dt € T M we have 1, € T\ . .

Since .# is isomorphic to T'M and there exists a natural decomposition of T'M
into subspaces collinear with embedding of £ and 0, there should also exist similar
structure on space .#. We have immediately from relation (144.)(1°4,) = A%A,, that
A%4, is projection on .# . We can rearrange equation (1.30) as

E! = E(Ey) = E°EY = 6% — A°4, (1.37)

and another supplemental projection Ef on .# appears. It is clear from (1.36) that 1“4,
maps a general vector v* € . on that part of v* which is proportional to ¢, and E{ on
that tangent to X.

We were working with a general orthonormal frame until now. From this moment
e’ is supposed to be righthanded and future oriented. This assumption restricts our
variables 4, E and following conditions should be fulfilled

°>0 (1.38)

NapA°2° > 0, (1.39)
e>0, (1.40)
q=1,E®E’ <0, (1.41)
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where ( is spatial metric and q < 0 means that this tensor on X is strictly negative, i.e
Vv # 0 € T'Z : q(v,v) < 0. Let SO(g) be a subgroup of O(g) preserving conditions
(1.38)-(1.41). If one wants to work with the whole O(g) then configuration manifold
splits into four disjoint parts given by future/past and right/left hand orientation and
this discrete structure should be taken into account on quantum level, but this is far at
the moment.

Decomposition of variables B, C% is given by

B? = 8%dr+ B, (1.42)
C?® = C%dr+ C® (1.43)

and we can now focus on the metric connection variable A“. We can write
A% = A%dr + A, (1.44)

It should be noted that A® transforms like tensor under g € SO(g) X X. Let & = g*é* =
O“béb be a new coframe* on T|.# then transformation law for A® is given by formula

A? = 0°,0"A™ + 0°*dO";.
Let ¥ = V% A df + v¢ € ATM then Dv* can be written as
DV = DV A dt + dt A DV + DV, (1.45)
where D is spatial covariant external derivative operator on SO(g).# given by
DV = dv* + 17, A AV (1.46)
and 9 is covariant time derivative
DV = v + 1, AV (1.47)
Since A%’ and A* are antisymmetric in their indices we have immediately that
Dy =0 (1.48)
and
Dnay = 0. (1.49)

Thus operators D and D are compatible with metric 7., on ./ .

Let us summarize our situation. We started with connection 9 on M with gauge
group SO(g). 3 + 1 decomposition of space ATM leads us to pure spatial connection
D on X with the same group SO(g) which is good news for us. Since as we wanted
or expected the SO(g) structure is preserved even in the language of spatial forms on
Y. This is to be contrasted with standard ADM/real Loop formulation’ where gauge
group is only SO(q). So far we are still working with real variables which is again in
contrast with complex Loop theory where gauge group is SO(g) but the prize paid for

4 e is coframe on T;M, & is its representation on T|.Z

0f course ADM formalism works with spatial metric q and therefore there are no coframe variables.
For example in the Loop gravity Hamiltonian formulation starts with ADM, then orthonormal coframe
e’ on X is introduced and metric is expressed by orthonormality of this coframe, i.e. q (i, j = 1,2, 3).
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that is the loss of reality of variables.

In general theory of gauge connections a notion of a curvature is well known.
Vanishing of the curvature expresses the condition that a horizontal subspace in a fi-
bre bundle over given manifold is integrable. In usual words this means that parallel
transport along closed path of a given object (the object should be valued in nontrivial
representantion space of the gauge group) is given by identity (see details in ,e.g., [7]).
That is why the curvature plays an important role even for the general gauge group G
(recall F = dA in Maxwell theory or more complicated objects in Standard Model).
For our purposes it is sufficient to write down an explicit formula which is

Rab — .Z)Aab — dAah + nchac A Adh

for our SO(g) connection A”” on AT.# . Spacetime curvature R* can be decomposed
as

R = R® + dt A A® + DA A dr. (1.50)

Next geometrical object on M which plays important role in the Einstein-Cartan
Theory is torsion T¢ = De”. How does its spatial counterpart look like? Coframe e?
is not object from AT.# because it contains d. We can project e with E{ and have
E“ = E¢e” what is already the object from AT.#. Thus, let us define SO(g)-torsion by
formula

T = DE“. (1.51)

Since we are not and will not be working with the 3-dimensional SO(q)-connection let
us call for simplicity T“ as torsion on places where no confusion can arise. Another
motivation for its name appears if we write spacetime torsion T¢ in 3 + 1 manner

De” = DE + DA* A dt + dt A DE-. (1.52)

As we can see, spatial part of spacetime torsion T¢ is just SO(g)-torsion T.

It will be useful in a while and also in next sections to have derived few formulas.
In order to do this, let us consider 2-form P, which is antisymmetric in its indices ab,
1.e.

1.
P, = 5Pgb(c;c,ﬂydxﬂ Adx”. (1.53)

P, can be decomposed in its tensor indices into tangential and time parallel parts as

P, = 2P, A, + Py, (1.54)
where
P, =P, 1", (1.55)
note that P, 1% = 0, and
P, = E°E'P,;. (1.56)

Let us focus on the tangential part P,,. We can multiply it by E

K¢, =P, AE° (1.57)
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It is easy to show that there is a one to one correspondence between P, and K¢, iff
- _ - _ - - _ - _ r e 3 r e _ £ -

K¢, =0,K, = -Kj and /lfKZh =0. LetK!, = K¢, d’x, then K, = P}, Ef, and due

to A.K¢, = 0 we can express P, = K¢, E¢. Equation (1.57) can be rearranged without

any loss of information by multiplying it with &% ;, since bottom indices are spatial
and antisymmetric, into the 3-form

1 .-
—g ;P ANEP, (1.58)

1—a_E_
Kab — _de/lBK?J — 5

2

which can be written as a sum of symmetric and antisymmetric parts
K = K“ + K. (1.59)

Antisymmetric part can be rewritten as

I 1 e .
Pa = Sbcda/le[Cd] = —EsabcdSCde/lb/ll}PEB A Ed =...

P, = E’P,. AE‘ (1.60)

a

Thus whole information about P, is encoded in three independent components
PZ — 2-form spatial covector,

Pl — 3-form spatial covector,

o — spatial symmetric 3-form,

where (sign and 2 is just convention)
1
a.ab — _2K(ab) — 5Pm_7 A A (éabcaEb + é“beE“) )
Let us consider linear map of P, given by the integral

1
P(B):szab/\B“b, (1.61)
>

where B? is 1-form antisymmetric in its indices. Since we can decompose P, into
three parts we expect that similar decomposition works for its dual B*. We can write

1 . . 1
5Pub AB =P, AB" = EPab A 2BlAY, (1.62)
thus B* = 2Ble "]
1 1 ]
7P B =P g = P N 2B'EE, (1.63)

thus B' = 28°E“E" and

1 " 1 o
EPabB @ = gM, = EPabxlaé“b”b A E*M;,, (1.64)

thus B"% = é“baZ’EE/laM,-,g. In other words we can decompose dual to P, as

B® = 2Bl2” + 28°EYE" + 8 E° A, M;,, (1.65)
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where B¢ is arbitrary 1-form vector, 8¢ is 0-form vector and M,;, is symmetric matrix.

We already derived equations of motion of the Einstein-Cartan theory from La-
grangian in section 1.1 and now it is the right time to explore them in details. Anyway,
we present here only brief description and leave the rest to the next chapters where
Hamiltonian-Dirac formalism is explored in full details. Recall that torsion equation
(1.9) sets connection to be just geometrical; in other words Adb , can be written as func-
tion(al) of the metric g,, = nabeZeﬁ (u,v = t,a are spacetime coordinate indices) and
initial value formulation for Einstein equations (1.10) written using g, is well known
and understood problem (see, e.g. [10]). If we follow ideas of Einstein-Cartan theory
and work with our variables A%, E¢, etc. then the set of equations given by (1.9) and
(1.10) is not complete. Missing equations should be derived from the condition pre-
serving the constraints given by parts of equation (1.9) and (1.10). Let us look what
happens here. Decomposition of (1.9) leads to

1
0 = —&uE° N DEY, (1.66)
8k
1 , . L
0 = — &y (M)Ed +E°A DA —E° A Z)Ed) . (1.67)
8k

Equations (1.10) can be rewritten similarly as

1
0 = ———&,R* AE?, (1.68)
167k
1 .
0 =—— &, (wa’ + AP AR — DAY A E") (1.69)
167k

The expression on the right-hand side of (1.67) is a 2-form with antisymmetric indices
and we can use decompositon (1.65). We obtain an evolution equation and a constraint

0 =DE'- D, (1.70)
0 =E“E? A DE“. (1.71)

Here is no problem with ambiguity. The equation (1.69) is a 2-form with one tensor
index that expresses 4 x 3 = 12 conditions for A%’ with 6 x 3 = 18 degrees of freedom.
We see that we are not able to determine connection velocities and some equation(s)
is(are) still missing. We will see later that conditions (1.68) and (1.66) represent the
first class contraints while equation (1.71) is the constraint of the second class. The
missing equation can be obtained by applying the time derivative on (1.71). Since
(1.68) and (1.66) are the first class constraints no new conditions appear and we have
closed system of equations determining E* and A*. The variables A% and A®’ are
arbitrary. The missing equation is

0 = E“E? A Ry,51" + H5 A EP), (1.72)

where H? = A — DA®. Now we can determine H* as a certain function(al) of
A4, E*, A? but we will not do that because we do not need it anywhere. It is enough
for our purposes to know that our set of equations determines uniquely, up to gauge
transformation, evolution of our system.

1.4 Hamiltonian

In the section 1.1 we have introduced the Lagrangian of the Einstein-Cartan theory.
The next step towards its quantum formulation should be done by its conversion into
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Table 1.1: Basic variables

Variables Momenta Velocities
A4 x, = #,d°x where &, = 0.2 /0A° V= A
E‘ = E4dx" | p, = $P%Eapydx® A dx? where p¢ = 8.2 /OE b = k¢
A I, = I1,,d*x where I1,, = 0.Z/0A® e = A®
A% = Adx® | pap = 1P% EapydX® A XY where PO, = 0.L/0AY | B = A
B ¢ = pd*x where ¢ = 0.2/08B Y=8

B = B,dx” U = 3ii7€,4,dxX* A dx” where ii* = 0.4 /0B, Y=B
c® ®,, = ©,,d>x where d,, = 6. /0C® X = Cab
C = Cdx" | Uy = 107 645,dx° A dx? where U, = 0.2/9C% | X = C*

the canonical form. Since our system contains velocities of basic variables at best lin-
early, standard Hamilton procedure can not be used. Therefore we must use Dirac pro-
cedure for constrained dynamic [9]. In the standard and even in the Dirac approach to
dynamics the notion of momentum for variable ¢* is introduced by p, = 8%, where L

is the Lagrangian of a system. Since the actionis S = f drL we can see that action and

Lagrangian for field theory can be written within 4-form L called Lagrangian form as

S = f Land L = f is, L, where L = #d*x and .& is Lagrangian density. If we suppose
Q z

that configuration space is built just by generalized n-forms Q* = Q) XA AdA,

e.g. E“, A% in our system, all variables in Standard Model, etc., then we can see that

their momenta ﬁj“'ﬁ = (SQ% = 62-2? transform like densities under coordinate transfor-
.. ..

mation and therefore objects p4 = m ﬁj‘"ﬂ Ea. py.sdx” A -+ Adx” are (3 — n)-forms

and even more py AQ* = # ﬁZ"'ﬁ Qﬁnﬂd‘%x what is exactly the first term in the definition

of Hamiltonian H = f pa A Q* — L. Recall that Qg...,e and ﬁj"‘ﬁ are antisymmetric in
x

their coordinate indices therefore every term in ﬁj‘“ﬁ Q';‘__.ﬁ is n!-times repeated while
every velocity should enter the Hamiltonian just once. Our configuration space is de-
scribed by variables 1, .., C® and its velocities (see table 1.1 for details). Variables
B,...,C% enters the Lagrangian (1.75) in a certain special way. We can decompose it

as sum of two Lagrangians L = L + L®Y where

1 3bh e 3\ Cbb A e
LE = —d A —— 6ﬂknm-,subcd(caac”b ANESAE +CUACY AXED)  (1.73)

and L© does not depend on C**, C* while as we already know, the whole Lagrangian
L does not depend on B, B. Thus we can consider this subsystem independently.
Hamiltonian HR® is given by

1 1
H®ResH — (p/\y+ll/\Y+Eq)ab/\Xab+§UabAX%+

1 - o
+ Fnazsabcd(C““Cbb AESAE? £ COACY AXEY  (1.74)
TTK

with primary constraints ¢ = u = ®, = U, = 0. Secondary constraints are
c* = C®% = 0. Since ®,,, U, and C*, C* are canonical variables their Pois-
son bracket is an identity. They are thus the second class constraints and we must
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use the Dirac procedure. Dirac bracket for this subsystem is just Poisson bracket
on canonical variables B, B and its momenta ¢, u while its reduced Hamiltonian is
H®esY = o A Y +u AY. Hence we can focus ourselves for a while just on LE® and its
hamiltonization. Final Hamiltonian will be obtained by sum H = HE® + HResY,

Let us substitute the decomposition of variables e?, A%’ into Langrangian L&)

1 1
is LEO = ——— £, AR AE? + ——&,d DA’ AEC AE!
167k 32nk

1 .
———&uaA” NEC AE (1.75)
32nk
We use this in definition of Hamiltonian. Our procedure then yields the following

result

HEC = f HEO = 7(v) + IT) + p(b) + P(B) + R(A) + T(A), (1.76)
z
where
n(v) = fﬂ'a AV,
z

p(b) =fpa/\b”,

>
1
nr) = f 5r[ab/\r“”,
>

1 1 - a 1 a.
P(B) :fi (pab + 167<8abchL A Ed) AB? = fipah A B?,
) 3

1
R() = f —— &' R AE? = f AR,
167«
> >

167«
> T )

1 1 1
T(A) = f —%gabcdz)zvb AESAE? = f ——— &N NES A DE? = f EA“”Ta;,,

_ 1 - d _ 1 be d
where Py, = pup + 15 8avcaE N EY, Ry = 1.—80pcaR” A E and

T, = —ﬁsabch” A DE“. The existence of the primary constraints represents the fact
that we are working with a degenerated Lagrangian and therefore we are not able to
express velocities as function(al)s of momenta (they are given by conditions 2 = 0).
. . . . o

Our system is degenerated and primary contraints are given by

n(v)=0 YWe AT < =, =0,

p(b) =0 Vb e A\T.#4 & p,=0,

InaI) =0 VI e AT & My =0,

1 :
PB)=0 VB?ecATAH & Puy=pp+-—=ewsE AE!=0.

167«

Since these constraints should be valid through the whole time evolution of our physi-
cal system their time derivatives should vanish too and this implies further conditions
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which should be fulfilled®,

dn(v) _ ~

el {ﬂ(v); H(EC)} =-R(¥) =0, (1.77)
dr) . =

= (@), &} = —1(D) = 0, (1.78)
dp(b) :

= (p(b):H) =

) f ﬁsabcdﬁa A (B AE + PR — DA™ AEY) =0, (1.79)

dP(B) .

= )

f Lsa,,cdfsab A (b AE! + 5 A“E? A B! - DAED) = 0. (1.80)
167k

The first two of them are secondary constraints. It is clear that (1.79) is equal to (1.69),
while (1.80) is connected with (1.67); they determine Lagrange multipliers b?, B®. As
we have already promised in previous section we will show how to do this now. Since
these equations are same one can also use the same procedure there (recall that b* = E¢
and B® = A“). We can express equations (1.79), (1.80) as:

1

0 = ——&upa(H* AE? + R*29), (1.81)
167k
1
0 = —&uh AE! = 1°DEY), (1.82)
8k

where H®? = B? — DA and h* = b* + A%y ;EP — DA, Let us focus on the sec-
ond equation (1.82). We can multiply it again by general 1-form B% and since it is
antisymmetric in its indices we can decompose it as (1.65)

1 - - 1 ‘
8—(B”/1” + BE‘E’ + Eé"b“bE“/laMl;E) A Egpeah AEY = 1°DEY) = 0. (1.83)
JTK

This expression can be split into three independend equations

1 :
—&uead’h AEY = 0, (1.84)
8k
1
— & BCEY A (W AE? — 1°DE?) = 0, (1.85)
8k
1 :
~—E“EY A DE° = 0. (1.86)
8k

We can use constraint T,;, = 0 in the second equation which together with the first one
implies that h* = 0, while the third equation is another secondary constraints,

1 ,
S(M) = f @MQbEaEI;Az)E‘ = f M,S% =0, (1.87)
z z

where S = ﬁE(“Ef) A DE€ and M, is arbitrary function symmetric in its indices.
Let us substitute the decomposition

H® = 2H“2") + 2HEYE"” + 8K A,y;, (1.88)

%We omitted writing of details like ¥#“ ... in constraint expressions.
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into equation (1.81). We obtain

1 A i
——EueaQH A AE? + 2HPEES AEY + R*2%) = 0. (1.89)
167k b
If we multiply it by A¢ then we have immediately that E{7H b = 0 while A,H* is arbi-

trary but we do not need it since it does not enter H*”. Hence this equation is reduced
as

1
—— & CH A AR + R %) = 0, (1.90)
16k

which can be rewritten after some algebraic manipulations as
2HY + 2H 62 = —2R AP, (1.91)

where R, = ig,ig, R and H{ = ig,H". Constraint R,A“ = 0is equivalentto R’ , = 0
and if we sum the previous equation over a = d then H{ = 0 and we finally have

2HU AP = —2ip R (1.92)
or
H? = —2ig R 4+ 8"PE y5., (1.93)

where y,;, = ¥, 1s not determined yet. But there is no need to worry since our anal-
ysis is not over. We have just finished the first level of the Dirac procedure, however
conservation of the secondary constraints should be analyzed too and there will appear
the missing equation for y,,. In order to do this let us compute time derivatives of
secondary constraints (1.77), (1.78) and (1.87)

dR(ﬂ) — (EO)| —

o = (R.HEO =
= f Toom Sabea H YR Ab? + DB AEY) =0, (1.94)

dT(@) EO)| _

= {T(@),H b=
= f = sabcd(D“b(Ec/\Z)bd+EC/\Bd“nab/\Eb)— , (1.95)

aSm) EC)| _

= = {S(a), HEO} =

1
f — a,, E”Eb A Db + E“E> A B3 A Eb) =0, (1.96)
8k

D

where the terms obviously proportional to the constraints are omitted. We can sub-
stitute the expression for b* from h* = b® + A%y ;E? = 0 into (1.94) and thanks to
generalized Bianchi DR® = 0 and Ricci DDA = R¥; A% + RP15.; A% identities
we have immediately

D ( €Eabed (RbL /ld + HbL A Ed)) Eabed Rbc Ada Eb Eabed R Abc A Ed 0.
16k 167k 8k
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The first term Vanishes due to (1.81). The last term can be transformed with the help
of identity R® = lg#abg . R into expression

Eabe Eabe . a b
b dR Abc A Ed bed RbcAdan_EEb

1 .
» A Rbc Ed )
87K 167K a T v\ Eabed

Hence no new condition appears from equation (1.94) since last term is proportional
toR, =0.

Equation (1.95) can be rewritten with the help h* = 0 and due to the fact that
constraints Ty, = S = 0 imply DE* = 0 as

1

_ - 1 _ _
——&wedR NE 3" + — a0 E” A i, RPA° AES = 0, (1.97)
32nk 8k g

where (1.93) has been already substituted. Since any 4-form on the three-dimensional

manifold vanishes identically we have that E* A R A E¢ = 0. We can apply interior

product on it ig, (E* A R* A E?) = E{R”* A E? — E* A ig, R AE? — E* AR”E{ = 0

and now we can express from this the term proportional to ig, R” and substitute 1t into

previous equation. If we use again R = 1g%%g,; ;R° then we finally find out that

(1.97) 1s proportional to DE®. Hence again no new constraint appears from (1.95).
Equation (1.96) can be rewritten as

LE“‘E? A R52" + H .5 A EP) = 0. (1.98)
8k

This is the equation which determines 7y, entering (1.93). However, we do not need
explicit expression. For our purposes it is sufficient to show that this equation deter-
mines y,, uniquely. In order to see this we should substitute the expression (1.93)
instead of H* into this equation. Since (1.98) is linear in H* it is also linear in
YVabs 1.6, Cq + QﬁyB:O, where A, B = (ab), and hence it is sufficient to show that
Q¢ is invertible. The first observation is that (1.98) actually represents 6 equations for
6 pieces E“E”yab hence we can consider only the term proportional to y,, which is

Ap A E*E ”)b“’y ; = Gy, - and as we will see in the next section the expression
G’ standing in front of vy, is invertible on spatial subspace.

Let us summarize this section. We have built the Hamiltonian formulation of
Einstein-Cartan theory. The Hamiltonian is given by the sum of two Hamiltonians

H = HEO+HRSY = 7(y)+IL(T)+p(b)+P(B)+R(u)+T(O)+S(M)
+o(Y)+u(Y). (1.99)

Constraints given by m(v), II(T'), R(u), T(®), ¢(Y) and u(Y) do not determine any
Lagrange multipliers, therefore they are the first class constraints. The remaining con-
straints p(b), P(B) and S(M) are of the second class. Lagrange multipliers b and B*
are

b = DA — A K, (1.100)
B? = DAY +H®, (1.101)

where H*” does not depend on A and it is the solution of (1.81) and (1.98). We will
continue with Dirac analysis in the next section where we will introduce Dirac brackets
and consider the reduced phase space of our physical system.
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1.5 Dirac Brackets

The first level of the Hamilton-Dirac approach to the dynamics has been complet-
ed in previous section. In the case when physical system possesses the second class
constraints C4 standard Poisson brackets can not be quantized by the usual rule

ino ({A, BY) ) = [0(A), o(B)] ),

where o is a representation of basic variables, since in the case when A, B are the
constraints C, then there is zero vector (0(C4)o(Cp) —0(Cp)o(Cy)) |¢) on the right-
hand side while the operator on the left-hand side o ({C4, Cp}) is invertible. Hence
there exists only one possibility for all physical states solving quantum analogue of
classical constraints represented by quantum equation o(Cy)ly) = 0 given by [y) = 0.
Dirac solved this problem by introducing new brackets and quantization is formulated
by the representation of the Dirac instead of the Poisson algebra (See details in [9]).
Let C4 be the second class contraints and so {C4, Cy} = Uyup is invertible; then Dirac
brackets are defined by

{A, B)* = {A, B} — {A, C,)U*B{C}, B), (1.102)

where U,3U”¢ = 65. We divide our job in two parts. In the first part we define certain
simple brackets {, }' and then we use these partial brackets in the definition of the final
Dirac brackets {, }*.

Let us define weak equivalence before we start our analysis of constraints. We say
that two variables A, A" are weakly equivalent, A=A’, if their difference is proportional
to the second class constraints. The second class constraints for our system are (b“,
B, M, are arbitrary)

pb) = f Po A b7 = f b,

z z
PB) = [ 5 (bu+ 1oeul AE B = [ Ry a8 = [P ms
2 “ 167k ane 2 a 2 ab™a ’
z z z

1 , -
S(M) = f 8—MahE“E’j/\Z)E‘ = f M8 = f M8 dx.
TTK
z z z

We start the analysis by their decompositions

L

p =p.° — U=,

p. = Elp «—  po=Eip,

P, =P, —s P =po2,

P, = E°P,, AE’ «— P =EPE

o = P A éaBa(aEb) — 5% — pg}_} A E&Eé(a EZ)-

. .. . Lol <y . . U

Now we are going to eliminate constraints p , p, and their canonical friends” P,

P'lll by introducing “partial Dirac bracket” {, }’. This bracket plays important role even
in the context of full Dirac brackets. In order to introduce them we need the following

21



expressions

{P(B), p(b)}

1
—&,.aB? Ab° AE?
fl6m<8bd

>

)
Do ~ 1 = d
{Pab(x), pf(Y)} = ﬁsabc‘d‘g ﬁyEy(Sxy-

Hence nontrivial Poisson brackets are

1 ‘
f ——EupeaB AP A AES
8mk

>

{P(B"), p(b)}

)
0
=1 _ . 1 By e N
{P aa(X)’ Pf(Y)} = _ﬁgabcdg ﬁyﬂ Ez(sxy = Ualljdxy,
n 1 .
(PB"),pb)} = f e EarcBD N VE N E
K
>
0

1
=aBy b e pd _ @
o EaciE "V EG Gy = Ujdy,

>

(P (x).5 W)}

It is easy to find that the matrix U], (inverse to Uy) is
4mk
U=—-—E% where U'Uf=E! and U'U?=¢. (1.103)
e
Next step is to look for the inverse matrix to Ujf . We can use ansatz ng = AEZEE +
BEZE!, and the result is given by the expression

4mk
U = —7(EZE§ —2ESE!),  where  USUY =E:6). (1.104)

Now we have prepared everything what we need in order to define the partial Dirac
bracket as follows

(A,BY = (A, B} + f Ex(A, P I @) UL (x), B)

2

f &x(B, P20} U015 (x), A)
&x{A, P (0} U5 (%), B}

&x(B, P ) UL (5 (%), A).

/
/

The final Dirac brackets are going to be introduced within partial brackets and remaing
constraints 0*?, S%°, First of all we should mention the following property of the partial
bracket. Let A be an arbitrary variable on full phase space; then

{o(m), AY o (m), A},
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since {o(m), p(b)} = {P(B™), p(b)}= f — L 6%h9 1umz. AEF AEP = 0 and we have also

4k~ ab

{o(m),P(B)} = {P(B™),P(B)} = 0. Hence we have as a consequence
{o(m), oc(m )20 > {F(x),5(y)}20
The next important classical commutator is
1
{o(m), S(M)} 2{o(m), S(M)} = f g — MaaMypeeAad 8" w,  (1.105)
TTK
z

where @ = 3;8m0A°E? AEC AE? = e d*x. Now it is time to pay debt from the previous
section where we have stated that G**” is invertible. We are going to do even more.
We are going to calculate inverse of U% = £GP We can write

~ 8k
1 ~aabb
{O-(m)a S(M)} = ﬁmaaMw}G w
z
)
(9(x), §P(y)) = é{ (Giaabb Say = [/4abb Sy
and
b 1
Gaabb — _Encc/ld/ld( abcd abcd + E—;abcdgabcd) (1106)

Let us transform U“?” into more suitable form. In order to do so we need to use the
spatial metric tensor which is due to our choice of signature strictly negative

q = 1,EOF" = q,E* ® B’ = g,5dx” ® d¥, (1.107)

where q, = na,;EZEi, its inverse matrix is ¢**gp, = 0 or q*°qy. = E¢ and determinant

GEapy = GaadppdyyE™”
It should be noted that q“* # EgEgn‘_‘B. Now we can write
12

Ua[zbE — (zqaa bb qabqﬁl; _ qal;q‘_lb)’ (1.108)

where we have used formula g = —1% and 17 = ™ A,1,. Now we are looking for
inverse matrix to U%"" in the form U ;5 = AQuaQpj + B(Qus925 + q.59a5) and the result
is given by the expression

47TK FYAA a
UaabB = /1*2 (qaaQbE — Qarlzp — an(Iab), where Uaabb UbBcE = EE-QEE)' (1109)
e

Finally we can define the full Dirac bracket as
(A,BY = {ABY+ f Ex{A, (%)Y Uap((S (%), BY -
- f X{B, 7 (X)) U (S (x), AY' =
f Exd® WA, 7)Y U a5 (%), S “0)Y U, caaWHF*(y). BY .
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In order to finish the phase space reduction we need to describe a reduced manifold.
Let us start with the full phase space I" described by canonical variables A%, 7, ...,
U, (check table 1.1). As we have seen in section 1.4 the first reduction is given by
Cc®* = C* = ®, = U, = 0 while conditions ¢ = u = 0 are the first class contraints.
These contraints mean that B, B are arbitrary and physics does not depend on them.
Hence we can write I| =T x AX, where AX is Cartan algebra of all forms on X of

et

varibles B, ..., u and [ is described by variables A4, ..., p,. Whole dynamics takes
place in I". We totally ignore topological properties at this moment, but if one wishes
then one can imagine that all variables are, for example, differentiable functions with
their standard topology. Let us consider a set’

Conf = {Xyes(1°X), E(X)); VX € Z: e > 0, A°2° >0, 2°> 0, q < 0}.

Hence due to condition e > 0 we have Conf € (GL*(.#))* = XysGL" (. #). However
Conf is not a group. Nevertheless for every sufficiently small change (A1, AE?) the
new element is again from Conf, i.e. (1 +AA%, E*+AE?) € Conf; in other words Conf is
a manifold. Hence we can construct canonically its cotangent bundle T*Conf = T, Conf
with symplectic structure wg,,; on it. T*Conf is described by canonical coordinates (A%,
E“, 7., p.). Another structure of I is given by space

G = (AgAZZ X A3ALY) X (AAZZ X ALALY) (1.110)

described by variables (A%?, I; A%, pa). Hence I' = T*Conf x 6.
Since A% is antisymmetric matrix 1-form we can decompose it as

A? = 2AL 2P 4 QD ATEYED 1 g PPES ,a,. (1.111)
Relevant information about A% and A“ is encoded in the variable

1 i 1
F, = seuaA” AE! — F(K) = f SEacK AAMAES (1112)

2

while «,, does not enter F,. Since {o(m), F(K)}'=0 and {o(m), E(Q)}=0, where
EQ) = f Q. N E* we have that
>

{E(Q), FK)}'=E(Q), F(K)}' = —871'/<an A K" (1.113)
z

Analogously, we obtain the rest of Dirac brackets for our variables on I". The nontrivial
results are

>

{A%, m(u)}* ue, (1.114)
AT 2 T (1.115)

The reduction of I is almost finished. We can express @, from the condition S = 0
as function(al) of A%, E* and F,. The remaining second class contraints are trivially

7If one wants to work with C! forms then one must replace Cartesian product X with ”C'-Cartesian

d o Cl . . I . ’ . ’ PY) 1_
product” x“ , i.e. one must change in definition of Cartesian product “all functions” by all C
functions”. Anyway all familiar theorems about Cartesian product are not valid anymore, hence
whole theory about C'-Cartesian product has to be built from beginning. Similarly for any C, where
w=1,...,00,analytic.
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soluble. Since variables 8, ..., u do not describe any dynamics we can cast them
away by additional fixation 8 = 0 and B = 0. Similar, we can proceed with A® but
for different reason. Hence we have the final reduced phase space

T = T*Gonf (1.116)

described by variables (1, E¢, ,, F,) with symplectic structure defined by (1.113)
and (1.114). The reason for excluding A* is very simple. Since II,, = 0, we have that
A“ plays the role of a Lagrange multiplier which in our notation is given by I'*”.

25



2. Kinematical Hilbert Space for
Einstein-Cartan Theory

2.1 Preliminaries

We have successfully constructed the phase space T*Conf of Einstein-Cartan theory
in the previous part of this thesis. Now it is time to build a quantum algebra of the
basic variables. Before we start let us focus our attention to the following simple
excersice well known from the quantum mechanics of the particle moving on the half
line. Canonical variables of this system are x and p, where x is a position of the particle
on the half line x > 0 and p is its canonical momentum. We can naively represent them
on s = L*(R*,dx) as o(x) = x, o(p) = —id,. The operators o(x) and o(p) are
symmetric but o(p) can not be extended into the selfadjoint operator on 7. In order
to see this let us compute its deficiency indices n., where € = +1 (See details about
extensions of the symmetric operators in [13]). Equations

—i0.y® —iey® =0
have solutions
w(e) = A®e 8

Solution ¢! belongs to the space L*(R*, dx) while /" is not square integrable func-
tion on R*. Since n, = 1 and n_ = 0 we have n, # n_. Thus we can not construct the
selfadjoint extenstion of the operator —id,. Hence if one wants to describe the quan-
tum particle on the half line then one has to choose different set of basic variables.
The first observation is that R* is a group GL*(R). Invariant measure on GL*(R)
1S WeL*(R) = df hence the good candidate for the "momentum” operator is given by
o(xp) = —ixd,. Indeed, the operator o(xp) is symmetric on L*(R*, %).

Waletoown) = [ @000 = [ ST = Celeplin)
R* R*
and its deficiency indices are determined by the following equations
—ix0® —igy®@ =0
with solutions
WO =A@y,

which do not belong to L*(R*, df). Hence n, = n_ = 0 and the operator o(xp) is es-
sentially selfadjoint. The algebra of the basic variables is a space spanned on operators
o(x), o(xp) with nontrivial commutator

[o(x), 0(xp)] = o ({x, xp}) = io(x).

As we have seen on this simple exercise the choice of the basic variables plays the
crucial role in the context of quantization. In the next section we will try to understand
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a point version of Einstein-Cartan phase space. We will find there a reprepresentation
of the basic variables, which seperate points in the phase space. The third section of
this part is dedicated to a brief summary of von Neumann construction of tensor prod-
uct of infinite sequence of Hilbert spaces. In the last section of this part we will find
a representation of basic variables of Einstein-Cartan theory. Anyway this representa-
tion is highly reducible and cannot be used in quantum formulation of Einstein-Cartan
theory for reasons explained in conclusion.

2.2 Point Algebra of Basic Variables

We will focus in this section on the introduction of a Hilbert space .77 associated
with an arbitrary point x in the spatial section £. We will define a point representation
of the basic variables related to the canonical coordinates on the phase space T*Conj.
Let us mention that all canonical variables 1¢(x), E*(x), ,(x), G,(X) = —ﬁFa(x) are
local functions of the point x. No derivatives, no complicated integrals or any kind of
dislocation are presented, hence we can explore them in the single point x. Before we
start, we will introduce spacetime notation'

ez = (ef = A% e, = E),

‘= (p! =t pY = GY).

A Y

Since we are working with the point variables, their canonical relations are given by
{ess Py} = 0,0,

and the phase space is defined in accordance to the Einstein-Cartan phase space as
T*conf, where

conf = {(€f); e = det(ef) > 0, nuefe] > 0, e > 0, nuehe; < 0},

Thanks to the positivity of the determinant e we can see that conf ¢ GL*(R*) = GL*,
anyway the subset conf is not a group. Now we will try to construct a representation
of the basic variables. Let us define a Hilbert space J% = ¢ as a space of square
integrable functions over conf

S =2 (conf, d—f) (2.1)
e

where % is left/right-invariant* Haar’s measure on the GL*, which is unique up to the
multiplicative constant. de = de}de) . .. de]de; is Lebesgue measure on the coordinates
(e) € R of the space conf. The representation o of e, 1s given by trivial multiplication

(e (el = e(e?).

It is well known fact that such operators can be extentended into the selfadjoint oper-
ators. The problems occure with variables py, since the action of o(p) = —id.. given
by the “unitary” transformation

iﬂ/‘j (pa) ay _ a a
eiery (et = (el + 9°)

'Explicit writing of the point x is omitted till the end of this section.
%In the case of the general noncompact group it may happen that left and right invariant measures
are not equal.
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maps vectors from .7 out of this space, therefore the operators o(p),) are not selfadjoint
(they are neither symmetric). What we can do with that? We know, thanks to the
Stone’s theorem, that every one-parametric strongly continuous unitary group is related
to the selfadjoint operator and vice versa. This implies that if we wish to find the
selfadjoint operators for the momenta or their functions, we need to find certain groups
acting on the space conf. Indeed, a following statement is valid.

Statement 1. Ler X C R” and dx be the Lebesgue measure on R". If U(t) is one-
parametric unitary group acting on the Hilbert space 3¢ = L? (X, gdx), where g > 0
is locally integrable function on X, and if ®, is a continuous flow on X associated with
U(t), then U(t) is strongly continuous.

A proof of the statement is based on the fact that function /(7) : R — R, defined as

1) = f fdx,

@7 (K)

is continuous, where @, : X X R — X is continous mapping, K is compact subset of
X and f is locally integrable function. It is sufficient to prove that [[(1 — U(¢))y|| is
continuous in ¢ = 0 for all € D, where D is some dense subset in L? (¥, gdx), since
for any convergent sequence ¥, € D — i, € L2 (X, gdx) we have

(1 = U@)oll < I(L = U@) o = Yl + I(1 = U)Wl < 2o = vl + [I(1 = U@)hall.

The set of simple functions is dense in L? (X, gdx), hence for the general simple func-

tion
£= fixs
i=1

where m € N, f; are complex constants, K; C X are compacts and K? = K; \ K; are
mutually disjoint, we have

(1= U@)fIF = Z f gdx fif; (XK;XK,- + Yoy (k) X@; (k) — XD (KnXK; — XK;chi(Kj))

ij=1

= ngdx|fi|2(XK,-+X(D;‘(Ki))_
i=1

what is continuous in ¢. Hence U(?) is strongly continuous.

Now we can try to find group(s) acting on the space conf. The positive linear
group GL™ is not a good candidate, since, as before in the case of p), there exists
transformation g from GL" which does not preserve the space conf, e.g. rotation in
a plane spaned on €?, e/ maps ¢’ — —¢” and ¢/ — —e!. The problem is caused by
the fact that group GL" ignores a metric 7,,. Indeed, if we consider a Lorentz group
acting on e;; via

Z fg dx fif; (ch,*(K,-)mK_,- + Xchp;‘(K,-)) )

ij=1

et — (eA”)Z e, (2.2)
where (An){ = A“n,, and A = —AP, then we have that e*"(conf) C conf and even
more the transformation (2.2) is continuous. We can define an operator

L, Aab a An\¢ b
U Ay =y (™), ¢5). 2.3)
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which is, thanks to the invariance of the measure % unitary. Let A be arbitrary, but
fixed, then

Un(?) = UF(AD)

is the one-parametric strongly continuous unitary group and, due to the Stone’s theo-
rem, we have that its generator is a selfadjoint operator. We have fixed arbitrary A,
hence we have for every A% its own generator. A% has six degrees of freedom, thus
there are six independent generators L, and we can write

UN(A%) = el s A Lab

Let y(ey) € CZ(conf) € A, where CZ(conf) is the set of all co-times differentiable
functions with compact support on conf, which is dense in .77, then we can use Taylor
expansion

WS e = o (&), 1) = (65 + (™), = ) =
= U(el) + tA“npeldui(el) + Folt, € (2.4)

where o(7, e;) is some C*-function on R X conf with compact support on conf for every
t given by Taylor’s expansion remainder. The remainder o(z, ¢%) can be restricted for
|t < 6 as lo(z, e}l < Myg,, where

Ks = U|,|<5K,,

K, is a support of o(z, € in conf for given ¢. Since the closure of Uy s{t} X K, is compact
in R X conf we have that closure Kj is also compact in conf. Now we can compute the
generator L(A") = $A“’L,;, as a limit# — 0

UL(tA®) — 1
(tA?) "

. ab T
L =l =

If we use expansion (2.4), then we have

1 a NI | . L de
~[(uraaty - 1)y -t = ?f|”\ ekt + Polt. e - LA & <
conf
< tM? d—f,
e
Ks
iff
1 ~ . - . .
LA™Y = SA™Lay = <IN mee0g, = —IA"mped Do —IN" 0y By (2.5)

Thus we have as a final conclusion that the operator L(A“?), given by previous expres-
sion, with domain D(L(A%)) = CZ(conf) is essentially selfadjoint for every A,

This is not everything what the Lorentz group can show us. There exists another
transformation of Lorentz group acting on coordinate indices u. The metric g can be
written as

g= ﬂabezelﬁd#‘ ®dx" = g,,dx" ® dx”, (dx* = dr,dx")
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and its inverse matrix g*'g,, = &) as g"* = n?ete. The transformation prescribed as

ezﬁ(efg"); e (rg-l);= g and T, =-T, (2.6)

Vo

. . . -1 -1
preserves inverse metric g, while e$ ' preserves g,,. Therefore e'¢ conf C conf.
Thanks to the similar arguments as in the previous case, we have that the operators

UQ(F,W)I//(«EZ) _ ei%Fqu“V(//(eZ) = lﬁ((ergl); 63) 2.7)

are unitary with selfadjoint generators

1 .
Q(r,uv) = EF;WQIW = _Irpvnabezaeﬁ- (28)

We are not finished yet with the Lorenz Group. Let us use again 3+1 decomposition
e, = (1% E3). As we already know A are components of vector d, in the frame e,.
Since the time vector can be choosen arbitrary there is no reason to have tied variables
A%, E¢ together. Hence we can work with A%, EY, independently. Let us consider Lorentz
group acting on A“, then the generators of this action are given by

) . . . .
LY = —ingped0e + i0c A0
We obtain similar result for the Lorentz action on E¢
Lflb) = _InbcE;aE(‘i + InacE(LzaEg
Let us compare this results with (2.5), we can see that
—_ 1@ (E)
Lo =L, +L,

as one expected. Generators Lﬁ), Lg;i) play an important role, since, as we will see in a

while, their classical analogues can be used as coordinates on the phase space.
Lorentz group does not change lengths of the vectors, while d; can be arbitrary long.
We need to cover this featur of d,. Let us define a following transformation

A—eV1,  E°— E°
Let U™(N) be its unitary operator defined via
UM (N (A%, Ef) = y(eV A%, Ey)
and its selfadjoint generator is
T =—id"0. (2.9)

A final transformation acting on the space conf is given by group GL*(R?) = GL*? act-
ing on the spatial indices «a. Let 6 be an arbitrary real matrix, then the transformation
given by

Xt B () E (2.10)
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represents the change of spatial frame 9, — (ee)ﬁ()ﬁ. Since the transformation does not

change a signature of g,5 = nabE(‘iEZ, we have that e®conf C conf and operators

Ut £ =y (20, (e"), E)
are unitary and their selfadjoint generators are
Ag = —IEg0gq.

Let us summarize our situation. We have constructed family of unitary transformation
with action in the space conf. Now it is a time to find classical variables associated with
their generator. We can suppose that formal relation o(p),) = —id,q will lead us to the
final representation. Let us focus on the last four families of the generators. We have

L(A)(A) = Aubnbc/lcﬂaa
n(N) = NAm,,
L®A) = Ay, E°AG,,
A(®) = O(E") AG,.
Quantum commutators and their classical analogues are
[1(k), T(N)] = iA(Nk)
200, L) = iadkAn)
|LD(A), LYA) | = —ILD(ARA’ = A'nA)
[E(h), A(0)] = iE(O(h))
[E(h), L®/(A)| = iE(Anh)
[LPA), LBA)| = ILPARA - AnA)

{A(k), 7(N)} = ANK)

{A0), LY} = AkAp)

{LY(A), LY(N)} = -LY(ARA" — A'nA)
{E(h), A(6)} = E(6(h))

{E(h), L™(A)} = E(Anh)

{

177 170

As we can see we have constructed a selfadjoint representation of the variables on the
space 7 = L? (conf, %) The question is whether these variables seperate points of the
phase space. Now, we will show that the answer is affirmative. The variables 1, E¢

are clear, so let us turn our attention on Lﬁ), T, LzEb), Ag. We have

LONE, = —(PRES + X TapelESs
o= m,A%

LONE, = qupGhr - nuA"ESGPED,
Ag = EEGZ,

where (1)? = 1,41, I:Ej))de = Lyl:), Z;Eb)d3x = LElEb). As we can see, we can in-
vert these equations and we can express canonical momenta x,, G, as functions of
new variables. The projected variables L%)EZEZ, Li_{l;)EZEZ are not independent. They
play similar roles like angular momenta in quantum mechanincs. So, we have found
representation of algebra of new variables.

2.3 Tensor Product Hilbert Space

In the previous section we have constructed the Hilbert space .77 associated with
the point x € X as % = L2 (confy, ¢y), where ¢ = % and x means that it is taken at the

31

L®(A), LP(A)} = -L®(AgA’ - A'nA)



point X. A main goal of this section is to briefly summarize ideas of von Neumann’s
article on tensor product of family of Hilbert spaces labeled by index set of arbitrary
cardinality (details can be found in [12]). In our case we can formally write

3202 = ®xe2j£(-

We have a set {7 }xes of Hilbert spaces’s labeled by points of X. A sequence of the
states {¢/x}xex belongs to the Cartesian product 5 = Xyez7%, but this space is too
large, we need to pick up a certain subset of JZ*. Let us call {{y}xes a C-sequence iff
a product

Ix)xesll = H llrxlx (2.11)

XEX

converges. Let Cy = {{¥x}xes: C-sequence} be a set of all C-sequences. A value of the
product limit (2.11) can be positive or zero. We need some criteria for convergence of
such limits. They can be found in ([12]).

Citation(a - index and [ is an index set with arbitrary cardinality):
Lemma 2.4.1.(p.13):

If all z,, are real and > O, then

(D [luer zo converges if and only if either ) ,.; Max(z, — 1,0) converges, or some
7 =0
(IT) [14es 2o converges and is # O if and only if )., |z, — 1| converges and all z, # 0.

Lemma 2.4.2.(p.15):

If the z, are arbitrary complex numbers, then [] z, converges if and only if
(D) either [],¢; Izo| converges and its value is 0,
(II) or [],e; zo| converges and its value is # 0, and Y, |arcus z,| converges®

Definition 2.5.1.(p.18):

[Toes 2o 18 quasi-convergent if and only if [],e; 1Z.| is convergent. Its value is
(D) the value of [],¢; 2, if it is even convergent
(II) 0, if it is not convergent.

End of citation.

The reason why we need a notion of quasi-convergence is that if {¥y}xes, {Px}xes €
Cs then product [ ], (¥xlmx)x 1s Only quasi-convergent in general.
Now we can define a functional 5 associated with {4}xes On the set Cys of all C-
sequences as

l//Z({(bx }XEE) = l_[ <¢x |wX>X7

XeX

sz # 0, z = |zle? with -7 < 6 < x, then arcusz = 6
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where {¢x}xex € Cs and product is taken in the sence of quasi-convergence. It should be
noted that , does not imply that {/x = O}xes, €.g. for C-sequence {Yry, = 0, {¥x}xes\(xo}}
its associated functional vanishes on whole Cs. Let us define a complex linear space
A of such functionals, where

(alﬁz + b¢2)({wx}x62) = awZ({wx}er) + b¢2({wx}x62)-

We can define an inner product on 7% as follows

Wslgs) = | [Walpx. (2.12)

xex

The closure J75 = ?Eo in the topology defined via inner product (2.12) is a Hilbert
space and we call it as a tensor product of the sequence {77 }xes

s = @xex Hx. (2.13)

We wish to characterize the space .75 is some way. In order to do so we need to
introduce a notion of Cy-sequence and classes of equivalence on them. A sequence
{Ux)xex 18 @ Cy-sequence iff ) s |||lﬂx||x - 1| converges. Every Cy-sequence is a C-
sequence and every C-sequence {{/x}xes 1S a Cy-sequence iff its functional yy # 0. We
will say that two Cy-sequences are equivalent {{/x}xes ~ {Px}xes Iff Dges |<¢/X|¢X>x - 1|
converges, what is equivalent to the mutual convergence of both series Y, cs |[x — ¢xl%,
D xes. |5 ((Uxldx)x)|, where 3(z) is the imaginary part of z. Hence we see immediately
that if {¥x}xes, {@Px}xex differ in finite number of points of X then they are equivalent.
Let us label equivalence classes by y and a set of all equivalence classes on .77 by
C(H5).

Now we can finish this bries summary of [12] with the following statement. If
two Cy-sequences {Yx}xes, {Px}xes OF their functional Y5, ¢y belong to two equivalence

classes y(z) # y(¢x), then (Yxlgs) = 0. If y(¥x) = y(¢x) and (Yslés) = O then there
exists Xo where (i, |¢x,)x, = 0. Hence we see that .7 can be decomposed as

I = @7@@(%)%, (2.14)

where 7, is a Hilbert space associated with .

We will use a following example later. Let Ky = {Ky}xes be sequence of compact
sets where Ky C conf,. Ky can be identified with Cartesian product XycsKx. Let us
define a sets of all sequences of compact sets with unit measure as

J'(Conf) = {Ky = {Keher : VX € Z; ex(Ky) = 1
We can associate with K5 € J!'(€onf) an element in J& via

Yks = Ky Ixex- (2.15)

Let K5, K5 € J'(Conf) and o= C X be a set of all x where Ky # K,. We will use a
notation e = (€), ex = (ey] ). Lete € Kz \ Ky. If we suppose that for Vx € o exists an

open neighbourhood of e, € Uy with property U, C Ky \ K; and ¢x(Uy) > 6 € (0,1)
and o is not a finite set then

Gl = | [ e N KD =0,

XeX

since 1 > 1-0>1-e(Kx\Kj) = e(Kx NKY).
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2.4 Quantum Algebra of Basic Variables

Now it is time to construct a representation of the basic variables of the Einstein-
Cartan theory. Inspired by the point version of the phase space we will not work with
canonical variables, but we will construct a representation of the following variables

(k) = k%,
LYA) = f Ay AT,
b3
ﬂ(N) = fN/laﬂch
T
E.(h) = h, A E‘ |
1
L®nA) = f A“bnbcEc A G,, (where G, = —F))
8k
>
A©) = f O(E) A G,
>

with similar algebra as in the point version (trivial brackets are not written)

Ax(NK),
Ax(kA),

(), 7))
{0, LY@
[LOQ),LOAY] = —LOARA - A'pA),
(Exh), A©)}

(Eh), LB}
{L(E)(A)’L(E)(A')}*

E«(8(h)),

Ex(Anh),

~LE(AgA = A'gA),

Before we start to costruct a representation of this algebra, we need to discuss prop-
erties of a certain family of operators. Let A, be a selfadjoint operator with action
on % with dense domain D(A,). We wish to represent it on the space 7%. Since
s, = Ay ® )\ x) we can use theory of finite tensor product of bounded operator and
we see that expression

Uz(t)l,bz = {Ux(t)wx; {wy}yix}, (216)

where Y5 is C-sequence, defines an unitary operator on whole 7%, which is strongly
continuous at t. Usx(f)yx determines a generator Ay associated with it and D(Ag) D
D,(Ax) = Span{yx ® Ys\ix); ¥x € D(Ax), ¥s\ix) € j‘é(i{x}}. Restricted operator Ay - is
essentially selfadjoint and acts on C-sequences ¢z € D,(Ay) as -

Az| Uy = {Ax, Wy lsy -

Do (Ax)
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Let us start with variables A(k), Ex(h). Both of them are acting on the space /7,
hence we can represent them via previous construction on the space .7 by formula for
C-sequence Y5 € Cy

() )z = {ABY(e): Wy hyenm -
o(Ex(h))yrz = {Ex(h)ys(e); (ylyex -

We have used the actions of the groups SO (1) for 1%, SO* () for E4, R* and GL**
on the space conf. Now, we wish to generalize this idea to Einstein-Cartan theory. Let
Gy be one, same for all x, of the previous groups acting on the space conf, and let OF
be flow associated with some one parametric subgroup of G4. Then we have a group
G* = X, Gy acting on the space Conf = X,csconf, by the flow ®*(e) = {®¥(ex)}xes .
Let 5 be a C-sequence, then an operator defined for any ¥ € %’EO

meN meN
U0¥ = ) U 0w = 3 ci{wl(@len) .
j=1 Jj=1

where ¥ = ZT:E{N c jlﬁé and Wé are C-sequences, can be extended to the one-parametric
unitary grup acting on whole Z5. We know nothing about its continuity at the moment.
Let Ky € J'(Conf) be a constant sequence of compact sets, i.e. Vx Ky = K, and let

¥ = @, for Vx € o C X and ®F = id for Vx € X \ 0. Let us explore an expression

u(t) = H (1-U)1xe 2

It is clear by definition, that #(0) = 0. Let ¢ # 0, then we can write

(1 - UE,) (1 - U?)qu) =2- <XK; UE;XKZ> - <XKZ UzZXK2>-

The last two terms are zero in the case when o is not finite due to the arguments from
the end of the previous section. Hence we have, as a consequence, that operator U*(¢)
is not strongly continuous in the general case. Therefore there does not exist selfadjoint
generator of U*(¢) in the general case.

What we can do is to explore the case when the group G* acts on Conf nontrivially
only on some finite subset oo C X. Let us start with o = {x}. This case were explored
few rows above and point generators Ty of such action were found in section 2.2.
Generalization to the case when o = {xy, ..., X,} is clear and the resulting generator is
To = 2xes Tx-

Now we can write explicitly the generators of our groups acting on the Conf. They
are

u(t) = (k.

AN) = ) —INGOA (X)),
XeX

LYA) = D =DM A (XD e,
XeX

AB) = D =0l ®EHX)Ikw,

xXeX

LEWA) = > —iACmeEL(X)xs00,

xex

4No summation over x! ey is a point in the manifold confy.

35



where N(x), A”(x), Gﬁ(x) has support on a finite set. Commutator algebra of basic
quantum observables is generated by

|o(Axk)) . m(V) | io(Ax(NK)),
|o(Ax(K)), LOA)| io(Ax(kAn)),
[LOA)LLDAN] = —ILDYARA" ~ A'pA),
|o(Exh)). AO)] io(Ex(0(h))).
|o(E«),LPA)] = io(Ex(Anh)),
LB, LB SIL®(ARA’ = A'pA).

Hence we see that we found representation of classical variables of Einstein-Cartan
theory.

Now, let us explore a reducibility of this representation. As we already know, space
¢ can be decomposed into the mutually orthogonal subspaces labeled by class of
equivalences of Cy-sequences €(.7%). Our representation does not mix this decompo-
sition hence it is reducible. Number of irreducible representation in .77 is equal to the
number of equivalence classes on .75, what is ”huge” infinite, e.g. for every element
of L2 (conf, %) there exists its own equivalence class, etc. One may partially save the
situation by using unitary version of basic variables and represents operators Uéz &),
where § = N for R*, etc., instead of its generators T(E), with action on whole Conf
which mix orthogonal decomposition of .J&. Anyway for K., K3 € J'(Conf), where
K] is built by simple connected sets and K3 is built by union of two simple connected
sets, there is no element of Gy which mixes their equivalence classes and reducibility
of unitary representation is still to huge. Hence some additional superselection rules
should be used if one wants to quantize Einstein-Cartan theory with this representation.
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Conclusion

In section 1.1 we have started with the orthonormal coframe e and general gravi-
. e . . e ab = .
tational connection V described by its forms " = nbbr“l-,. We have derived the equa-

tions of motion which have fixed I’ = A® + Br® where A is related to the metric
connection 9 and B is arbitrary 1-form. Torsion of 9 vanishes as a consequence of
EOM, hence A% can be expressed as a functional of coframe e? which is given by the
solution of Einstein equations. Algebraic interpretation of such kind of connection,
as described in section 1.2, is given by the condition that operator V preserves (an-
ti)symmetric structures on ATM which in special case AT, M, where p +¢ = 2, means
that V does not mix irreducible structures AAJM, AB/M and AC/M on AT;M. The
author have not found any reference in the literature about such interpretation of the
Cartan connection. We have induced the geometrical structure on the spatial section
¥ inherited from spacetime M and hence SO(g) is still (part of) gauge freedom which
is opposite to the standard loop formulation of gravity where the orthonormal coframe
e’ is fixed to be tangential to X and its time vector is normal to X. Then we have used
the SO(g) structure in the Hamilton-Dirac formulation of the Einstein-Cartan theory.
Since our system is degenerated and it contains both classes of constraints the Dirac
bracket has been introduced. The Dirac procedure has been finished by introducing the
reduced phase space described by coordinates (14, E¢, «r,, F,).

The loop theory (LQG) is successful theory of quantum gravity. But there exist
some unresolved problems in this theory. One of them is Barbero-Immirzi parameter
which causes ambiguity in the LQG and this parameter should be fixed by Hawking-
Bekenstein(HB) entropy. Honestly, we do not know yet whether HB entropy is in
accordance with nature or not. Also this procedure resembles derivation of the Stefan-
Boltzmann law of the black body radiation from classical thermodynamics where the
Stefan-Boltzmann constant appears like an integration constant and should be fixed by
experiment. Only the Planck derivation of this law based on quantum theory predicts
this constant from the first principles. In fact, observables like entropy of a black hole
have to be predicted by full quantum theory of gravitation. Our approach does not con-
tain such parameter, but there is another problem, one may say a huge problem, caused
by the high degree of reducibility of the representation of basic variables constructed
in 2.4. Its origin lies in the kernel of the method of construction of % used here.
Similar thing happens if one wants to represent basic variables @, II of scalar fied ®
on the space 75" given by infinite tensor product of spaces .7". Hence it seems that
this problem of huge ambiguity is not caused by the choise of the kinematical variables
on the phase space, but by the choice of method of construction of 7. This problem
should be solved in the future. A one possible solution of this problem is represented
by the following idea. If G is a topological group, then there always exists its Bohr
compactification G based on the notion of almost periodical functions over G. Since
Gisa compact group there always exists unique left/right invariant® measure wf 'R ON

G with propery wf /R(E) = 1. Of course the space Conf is not a group, but it is a subset

of GL* and there exist actions of the groups SO(77), R* and GL** on €onf. Hence the
idea is to construct (if it possible, unique, etc.) the space of .75 by analogous compact-
ification of the space Conf by using the almost periodicity defined via groups SO(1),

5Since G is not a Lie group, left and right invariant measures may differ in general.
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R* and GL*? acting on €onf. But this must be explored in detail in future.
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Appendix

2+1 Dimensional Einstein-Cartan Theory

If we already start with metric® connection then Lagrangian for 2+1 dimension-

al Einstein-Cartan theory can be written as

|
L=—-&,.R?A¢e.
28b €

EOM:
R® = 0,
T 0
Using 2+1 decomposition
e’ = Q%dr+E“,

Aab — Aabdl+ Aab
leads to Hamiltonian:

H=n(v) + IIT) + p(b) + P(B) + R(1) + T(A),

w(v) :fva/\ﬂ'a,

where

>
1
II(I) :firab/\nab,
>
p(b) =fb“/\pa,
>
1
P(B) :szab/\(pab_sabcEc)a
>
1 ap bc
R(/l) = _Esahc/lR s
>
1 .
T(A) = f —EsahcA“”DE‘.
>

Momenta and velocities variables are given by table 2.1.
Primary constraints are

n(v) =0,
p(b) =0,
nrT) =0,
PB) =0.
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(2.18)
(2.19)

(2.20)

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)



Table 2.1: Table of basic variables

Variables Momentum Velocities
A n, = it,d°x where 7, = 0.£ /01" Vo= ¢
E? = E4dx? | p, = p2eqpd® where p? = 0.L/0E¢ | b* = E1
A I, = I1,,d*x where I1,, = 0.Z/0A® | T = A%
A% = A%Ax? | pu, = P Eapdx® where p?, = 0.2 /0A% | B = A

Poisson brackets between Hamiltonian and p(b) or P(B) lead to Lagrange multi-

pleirs

Bab — DAab,
b = DI — naEAaZlEb’

while z(v) and II(T") give new constraints

1 N
R(V) = f__gachaRbc,

2
>
1 b
TM) = | —5euw I DE
>

No other new constraints appear and p, P are the second class constrains. Next step is
the definition of Dirac bracket thus we need evaluate

what is equal with

(P(B), p(b)} = f —%sabcfs“bABC,

2

{Pgb(x)a ﬁf@)} = _sabcéaﬁ6x37-

Dirac bracket is defined as

{A,BY* ={A,B} + f %C{A,ﬁgb}é”bcgaﬁ{ﬁf,B}

dx D =abc ~
- f?{B’ PZ]?}S b 8(lﬁ{l)f9A}

and constraints algebra is given by commutators

{R(w), RV} =0,
{R@w), TN} = —R(Anp),
{T(A), T(D)}" = T(A),

(2.27)

(2.28)
(2.29)
(2.30)

where A® = 26ZgAﬁEnEJF‘77’ and (Anu)* = Any.u¢. We see that constraints algebra in
2+1 dimensional Einstein-Cartan theory is Poincaré algebra.

6Similar analysis of general connection can be done as in 3+1 case, but for simplicity we fix con-
nection to be compatible with metric already now.
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List of Abbreviations

Manifold structure and indices:
M - spacetime, X - spatial sectionof M = R X X

a,b,---=0,1,2,3 - frame indices

a,B,--- =1,2,3 - spatial coordinates indices

Na» - Minkowski metric with signature (+, —, —, —)
Groups:

GL(V) - general linear group over (real) vector space V

O(g) - orthonormal group over metric vector space (V, g) or manifold (M, g)

E(g) c O(g) - special orthonormal group over vector space (V, g) or manifold (M, g)
SO(g) C @(g) - proper Lorentz group over vector space (V,g) or manifold (M, g)
preserving righthand and future time orientation

(Anti)symmetrization:

A[ab] — %(Aab _Aba)

ab) _ 1 a ba
st = I(gab 4 gha)
etc.

Antisymmetric delta and Levi-Civita symbol:

a.b _ gla bl _ ca b _ dla b)
gub = 6§ =68 =6l o)
Eabed = Elapea), €74 = &l and £1p3 = &

Eapy = Elapyl> g% = gloPl and g3 = 1P = 1

0123 _ |

Cartan algebra and exterior product:

(AM, A) - Cartan algebra of all spacetime forms. A,M - space of spacetime p-
forms.

(AZ, A) - Cartan algebra of all spatial forms. A,X - space of spatial p-forms.
Ifa,fe AMorAiZthena A =a®B-F@a

Interior product:
@)y, .., up_y) = a(v,uy, ..., up_) Yo € AyMor A X

Derivative operators:

d - exterior derivative operator on spacetime M. Anyway we write df = dr

d - spatial exterior derivative operator on

V - general covariant exterior derivative operator on M, or general connection as-
sociated with [,

D - SO(g)- covariant exterior derivative operator on M, or SO(g) connection asso-
ciated with A“b = m,cA“C

D - spatial SO(g)- covariant exterior derivative operator on X, or spatial SO(g)
connection associated with A¢, = 1, A%
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