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Abstract 
 

In forest ecosystems, substantial part of carbon enters soil in the form of plant litter. The 

decomposition of litter and soil organic matter represents an important process affecting 

nutrient cycling and carbon balance in soils. Fungi are considered the primary 

decomposers in terrestrial ecosystems due to the production of wide range of 

extracellular enzymes that allow them to attack the lignocellulose matrix in litter. Even 

if fungi represent key players in organic matter decomposition, the information about 

the structure and diversity of their communities is still limited and the roles of 

individual fungal taxa in forest soils remain unclear. 

 This Ph.D. thesis focused on the characterization of fungal communities in 

forest soils and their potential to decompose plant litter. The method for in-depth 

analysis of complex microbial communities from environmental samples was 

established and used. In addition, single eukaryotic functional gene was analysed in soil 

for the first time at a depth that allowed reliable estimation of diversity. 

It was demonstrated that microbial community composition differs among 

horizons of forest soil profile. Despite similar diversity, significant differences in 

microbial community composition were observed between the DNA and RNA. Several 

microbial groups highly abundant in RNA pool showed only low abundance in DNA 

community indicating that low-abundance species make an important contribution to 

decomposition processes in soils. During plant litter decomposition, fungal community 

undergoes rapid succession with dramatic changes in its composition and most of the 

abundant taxa only temporarily dominate in the substrate. In forest soil, fungal activity, 

biomass and diversity decrease substantially with depth. The structure of fungal 

community in forest soil is distinctively influenced by the seasonal effects which are 

most apparent in the litter horizon. In the litter horizon, saprotrophic genera reached 

their seasonal maxima in autumn but summer typically saw the highest abundance of 

ectomycorrhizal taxa. While the composition of the litter community changed over the 

course of the year, the mineral soil rather showed changes in fungal biomass. Non-

basidiomycetous fungi isolated from forest soil differed from saprotrophic 

basidiomycetes in their ability to decompose biopolymers present in litter and soil. Non-

basidiomycetous fungi likely do not play significant role in lignin degradation but are 

able to produce a range of cellulolytic and chitinolytic enzymes giving the evidence that 
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they are actively engaged in decomposition of lignocellulose and dead fungal biomass. 

Concerning the effect of chemical composition of litter on its decomposition rate, it was 

demonstrated that litter nitrogen content positively correlates with litter mass loss while 

lignin content does not have any effect neither on the litter mass loss nor the activity of 

ligninolytic enzymes. This result suggests that the activity of ligninolytic enzymes is 

probably a less suitable indicator of lignin decomposition than expected. 
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Abstrakt 
 

V lesních ekosystémech vstupuje významná část uhlíku do půdy ve formě rostlinného 

opadu. Dekompozice opadu a půdní organické hmoty je proto důležitým procesem 

ovlivňujícím bilanci živin a toky uhlíku v půdě. Houby jsou v terestrických 

ekosystémech pokládány za nejvýznamnější rozkladače a to díky své schopnosti 

produkovat řadu extracelulárních enzymů, které jim umožňují rozkládat biopolymery. I 

když houby zastávají klíčovou roli v procesu dekompozice, jen málo je známo o 

struktuře a diverzitě jejich společenstev a jejich přesná funkce v lesních půdách zůstává 

mnohdy nejasná. 
Tato disertační práce byla zaměřena na charakterizaci houbových společenstev v 

lesních půdách a jejich schopností týkajících se dekompozice rostlinného opadu. 

Součástí této práce bylo vypracovat metodiku pro podrobnou analýzu komplexních 

mikrobiálních společenstev a využít ji pro analýzu environmentálních vzorků. Dále se 

podařilo kvantifikovat diverzitu genu pro exocelulázu v půdním vzorku. 

Výsledky této práce ukázaly, že struktura mikrobiálního společenstva se liší 

mezi horizonty lesního půdního profilu. Významné rozdíly ve složení společenstva byly 

pozorovány mezi DNA a RNA komunitou navzdory jejich podobné diverzitě. Několik 

mikrobiálních taxonů vysoce abundantních v RNA vykazovalo jen velmi nízkou 

abundanci v DNA, což indikuje, že tyto druhy přes svoji nízkou početnost významně 

přispívají k dekompozičním procesům v půdách. Během dekompozice rostlinného 

opadu dochází k rychlým sukcesním změnám společenstva hub, přičemž většina 

abundantních druhů v substrátu dominuje pouze dočasně. Aktivita, množství biomasy a 

diverzita hub výrazně klesá s hloubkou půdy. Složení houbových společenstev v lesní 

půdě je výrazně ovlivněno sezónními vlivy, což je nejvíce patrné v nejsvrchnějším 

opadovém horizontu. V opadovém horizontu dosahují saprotrofní rody svého sezónního 

maxima na podzim, zatímco pro léto je typický nejvyšší výskyt ektomykorhizních hub. 

Minerální půdní horizont vykazuje významné sezónní změny v množství houbové 

biomasy. Houby izolované z lesní půdy se navzájem lišily schopností rozkládat půdní 

biopolymery. Houby nepatřící mezi saprotrofní basidiomycety pravděpodobně nehrají 

důležitou roli v rozkladu ligninu, ale jsou schopny produkovat řadu celulolytických a 

chitinolytických enzymů, což je předurčuje k aktivní roli při rozkladu lignocelulózy 

nebo mrtvé houbové biomasy. Při studiu vlivu chemického složení opadu na rychlost 
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jeho degradace, bylo ukázáno, že rychlost dekompozice stoupá s obsahem dusíku v 

opadu, zatímco obsah ligninu nemá vliv ani na úbytek hmotnosti, ani na aktivitu 

ligninolytických enzymů. Tento výsledek naznačuje, že aktivita ligninolytických 

enzymů je pravděpodobně méně vhodným indikátorem dekompozice ligninu než se 

předpokládalo.  
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1  Introduction 
 

1.1 Temperate forest ecosystems 

 

Temperate forests belong among the major biomes on Earth, covering the area of 570 

million ha (FAO and JRC, 2012). In forest ecosystems, important part of carbon enters 

the soil in form of plant litter (Berg and McClaugherty, 2003) which accumulates on the 

forest ground and is composed of leaves, needles, stalks, seeds and related organs, twigs 

and bark. For example in temperate deciduous forests, the mean annual plant litter input 

is estimated to be 3.5 t.ha-1 (Bray and Gorham, 1964). Moreover, considerable 

proportion of the organic material is incorporated into soil as belowground input in the 

form of dead roots or by rhizodeposition (Kögel-Knabner, 2002).  

Deciduous forests represent native vegetation in temperate zone and their trees 

are characterized by seasonally limited abscission of senescent leaves that is limited into 

autumn, when fresh litter with easily available nutrients accumulates on the forest floor 

(Šnajdr et al., 2011). On the other hand, coniferous forests are widely distributed in 

higher altitudes of temperate zone or represent a plantation forests in the same zone. In 

contrast to deciduous forests, coniferous trees tend to be evergreen, thus they shed 

needles throughout the year. The seasonal occurrence and changing intensity of 

photosynthetic activity of trees have been found to result in seasonality of belowground 

carbon flow and carbon availability to microbes in forest soil (Högberg et al., 2010; 

Kaiser et al., 2010). The rate of photosynthesis increases during the vegetative season 

and trees thus allocate higher amounts of assimilated carbon to underground in the 

autumn (Högberg et al., 2010). 

In forest soils, as a consequence of new litter input and microbial activity, it is 

possible to recognize three main compartments of soil profile: litter horizon, containing 

almost exclusively organic matter derived from dead plant biomass (L), organic (humic) 

horizon, representing a mixture or processed plant-derived organic matter and soil 

components (H) and mineral soil horizon with low content of organic matter originating 

both from the organic matter decomposition and root exudation (Ah). The vertical 

position of organic material within the soil profile changes as decomposition progresses 

and the material moves downward. This is accompanied by the changes in its chemical 
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composition and particularly by the decrease of the content of utilizable carbon 

compounds (Šnajdr et al., 2008). 

 

1.2 Plant litter composition 

 

Plant litter consists of several major classes of organic compound. The relative amounts 

of the compounds vary among plant species as well as plant parts. In general, 

quantitatively the most common components in plant litter are polymer carbohydrates 

such as cellulose and hemicelluloses and the complex aromatic polymer lignin. 

Cellulose is the most abundant biopolymer on Earth (Schurz, 1999) and in plant litter it 

may constitute 10 - 50% of the litter mass. It is a polysaccharide consisting of a linear 

chain of several hundreds to over twenty thousands of β(1→4) linked D-glucose units. 

In contrast to cellulose, hemicelluloses are often heteropolymers derived from several 

monosaccharides most often glucose, xylose, mannose, galactose and arabinose. 

Hemicelluloses consist of shorter chains (between 70 - 200 sugar units) which are linear 

or branched. They make up as much as 20-40% of the plant litter (Berg and 

McClaugherty, 2003). Lignins are very heterogeneous and complex polymers, their 

molecules are linked by several different linkages and most of them are not readily 

hydrolysable. Lignins form heavily branched aromatic macromolecules containing 

phenolic constituents (p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol). After 

cellulose, lignin is the second most abundant biopolymer (Boerjan et al., 2003) and 

comprises 15-40% of litter mass (Berg and McClaugherty, 2003). The molecule of 

lignin is water-insoluble, non-hydrolysable and highly resistant to microbial degradation 

in comparison with polysaccharides and other biopolymers. Lignin is closely associated 

with cellulose and hemicelluloses in plant cell walls and all of these compounds 

together form a complex referred to as lignocellulose (Evans and Hedger, 2001). 

Furthermore, variable proportion of plant litter is comprised of other compounds 

including pectins, tannins, cutin and proteins. These have various functions including 

protection of living leaves. Fresh litter also contains low-molecular-weight substances, 

such as amino acids, simple sugars and short-chain fatty acids.  
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1.3 Plant litter decomposition 

 

Plant litter decomposition is the primary route through which nutrients return to the soil 

(Berg et al., 2001). It is a process involving mineralization and transformation including 

humus formation. Because most of the plant biomass-derived carbon in forests is 

mineralised in the litter and upper part of the soil, an understanding of this process and 

the microorganisms involved is the key for the identification of factors that affect global 

carbon fluxes. Furthermore, recycling of carbon and nutrients during the decomposition 

has an impact on the nutrient availability and consequently plant growth and community 

structure. Plant litter is a main source of energy and matter for a diverse community of 

soil microorganisms.  

Litter decomposition in natural ecosystems is mainly driven by fungi, bacteria, 

and invertebrates (Hattenschwiler et al., 2005). In temperate forests fungi play a pivotal 

role in this process and especially saprotrophic basidiomycetes are considered to be the 

most important group of microorganisms involved in the breakdown and chemical 

conversion of litter components (Baldrian, 2008). 

 

1.4 Decomposition of plant biopolymers by fungi 

 

Fungi are able to produce large sets of extracellular degradative enzymes allowing them 

to attack the recalcitrant lignocellulose matrix. Cellulose and hemicellulose can serve as 

a sole source of energy and carbon. Lignin is a poor source of energy and 

polysaccharides serve as a co-substrate for its decomposition (Kirk et al., 1976). The 

decomposition of lignin opens the access to cellulose for microorganisms, exposes it to 

degradation and also leads to faster colonization of lignocellulotic substrate.  

Fungal system of hydrolytic enzymes for efficient cellulose degradation usually 

consists of three enzymes: endo-1,4-β-glucanase (EC 3.2.1.4), cellobiohydrolase (EC 

3.2.1.91) and 1,4-β-glucosidase (EC 3.2.1.21) (Baldrian and Valášková, 2008). 

Endoglucanases belong to endo-cleaving enzymes attacking long chains of cellulose and 

also shorter oligosaccharides. Exo-type enzymes cellobiohydrolases cleave cellulose 

fibers and release the disaccharide cellobiose which can be further hydrolysed by β-

glucosidases into two glucose units. The resulting cellobiose and glucose molecules can 

be absorbed by fungal mycelium. Hemicellulose degradation is similar to cellulose 
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hydrolysis but it requires a larger set of different enzymes, because of the complex 

structure of hemicellulose. Endo-cleaving enzymes cleave long hemicellulose chains 

and release shorter fragments which are further degraded by exo-cleaving enzymes into 

small soluble compounds (Baldrian, 2008). 

Lignin is highly resistant to the microbial decomposition and only a limited 

group of fungi is able to perform its complete decomposition however range of fungal 

strains can induce structural changes in lignins macromolecules (Hatakka, 1994). The 

fungal enzymatic system for lignin degradation in based on oxidative enzymes with 

wide substrate specificity. Ligninolytic set of enzymes is composed of oxidases, 

peroxidases and enzymes producing hydrogen peroxide. Laccases (EC 1.10.3.2) are 

copper-containing oxidases catalyzing oxidation of phenolic compounds. These 

enzymes are found in many fungal taxa (Baldrian, 2006). Class II peroxidases are 

secreted by several groups of basidiomycetous fungi (Hatakka, 1994) and include 

enzymes lignin peroxidases (EC 1.11.1.14), Mn-peroxidases (EC 1.11.1.13) and 

versatile peroxidases (EC 1.11.1.16) that catalyze oxidation of wide variety of aromatic 

macromolecules (including lignin and its related compounds). In addition, accessory 

enzymes such as glyoxalate oxidase (EC 1.2.3.5), glucose-1-oxidase (EC 1.1.3.4) and 

aryl alcohol oxidase (EC 1.1.3.7) generating hydrogen peroxide required by peroxidases 

have been found to be involved in lignin degradation (Martinez et al., 2005). 

Lignocellulose can be also degraded by nonenzymatic system - Fenton reaction, where 

hydroxyl radicals are produce and attack lignocellulose molecules, that leads into 

cellulose and hemicellulose degradation and modification of lignin molecule. The 

nonenzymatic system is important for group of wood-associated fungi that do not 

produce ligninolytic enzymes (Arantes et al., 2011). 

Extracellular enzyme production in environmental samples is often analysed by 

enzyme assays that indicate the activity of microbial community. It is, however, not 

possible to directly link these observations to the activity of individual microbial taxa. 

Analysis of genes and transcripts encoding for degradative enzymes provides a tool for 

assessment of the role of individual taxa during the decomposition process. Moreover, it 

allows the determination of expression level, assessment of gene or transcript diversity 

and characterization of their spatial and temporal distribution. Several recent studies 

showed that genes and transcripts encoding for laccase, Mn-peroxidase, class II 

peroxidases, cellulolytic and other hydrolytic and oxidative enzymes can be analysed in 

environmental samples (Bodeker et al., 2009; Damon et al., 2012; Edwards et al., 2008; 
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Kellner and Vandenbol, 2010; Luis et al., 2005a; Luis et al., 2004; Uroz et al., 2013). 

For example genes and transcripts encoding for laccase have been widely studied by 

Luis et al. (2005a) who demonstrated that less than 30% of laccases genes is expressed 

in forest soil. Edwards et al. (2008) examined the diversity and distribution of the genes 

encoding for cellobiohydrolase (cbhI), the rate-limiting enzyme for the decomposition 

of cellulose, in forest soils. 

 

1.5 Fungi in forest soils 

 

Fungi are very diverse group of organisms playing a key role in many of the major 

processes in terrestrial ecosystems including organic matter decomposition, nutrient 

recycling and regulation of biogeochemical cycles that have subsequently an impact on 

bacterial, plant and animal communities. Fungi exhibit variety of growth forms and 

trophic strategies including saprotrophs obtaining organic compounds from dead 

organic matter, parasites (pathogens) attacking living tissues and symbionts with 

different strategies. Despite the fundamental role of fungi in many ecosystem processes, 

most of the available information concerning soil fungal communities is based on 

culture dependent approaches which are considered to be unrepresentative and selective 

because only a small fraction of total microbial population occurring in environmental 

samples is cultivable (Amann et al., 1995). The method of direct extraction of nucleic 

acids from environmental samples followed by PCR-based amplification of fungal 

ribosomal DNA, cloning of PCR fragments and subsequent sequence analysis has been 

used for characterization of fungal communities is forest soil ecosystems (Lindahl et al., 

2007; O'Brien et al., 2005; Rosling et al., 2003). However, these methods underestimate 

community richness in complex populations and may omit rare but important species. 

Recently high-throughput sequencing technologies have opened up new dimension for 

study of soil fungal ecology. These methods have become widespread and are 

increasingly applied in environmental studies for assessment of fungal community 

composition e.g.: Buée et al. (2009), Hartmann et al. (2012) and Jumpponen et al. 

(2010). In addition, the knowledge of microbial communities in environment was until 

recently largely derived from the studies of DNA and no information is available on the 

relationships between the structure and diversity of this total community and 

community of active microbes assessed, for example, by targeting RNA molecules 
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(Anderson et al., 2008; Urich et al., 2008).  The comparison of the DNA and RNA 

communities can also help to answer the question how well are the metabolically active 

microbial taxa represented in the common studies using the sequencing of soil DNA. 

Saprotrophic fungi in forest soils are primarily responsible for degradation of 

organic matter. They are better adapted for plant litter decomposition than bacteria due 

to their metabolism, production of extracellular lignocellulolytic enzymes and capability 

to readily colonize new substrate as a result of their filamentous (hyphal) growth. A 

small group of saprotrophic basidiomycetes represents the exclusive organisms with the 

ability to completely degrade lignin molecules. On the other hand, the degradation of 

plant polysaccharides such as cellulose and hemicelluloses can be performed by many 

fungi belonging to multiple phyla (Chávez et al., 2006; Lynd et al., 2002; Štursová et 

al., 2012). However, the information about the involvement of nonbasidiomycetous 

fungi in organic matter decomposition remains still limited, even if these fungi represent 

highly abundant group in forest soils (O'Brien et al., 2005) and prevail during initial 

stages of litter decomposition (Osono, 2007). 

In contrast to saprotrophs, mycorrhizal fungi are obligate symbionts obtaining 

carbon compounds derived from the photosynthates due to the association with the roots 

or other underground organs of autotrophic host plants (Hobbie, 2006). On the other 

hand, plants benefit from this association by obtaining soil-derived nutrients (mainly 

phosphorus and nitrogen) which are absorbed by fungi from the soil (van der Heijden 

and Horton, 2009). As a result, plants that are colonized by mycorrhizal fungi often 

grow much faster (Hoeksema et al., 2010), have a higher biodiversity (van der Heijden 

et al., 1998) or higher resistance to pathogens (Azcón-Aguilar and Barea, 1997). 

Clemmensen et al. (2013) have recently reported that mycorrhizal fungi contribute 

directly to the carbon enrichment of soils by mediating the belowground allocation of 

carbon from plant roots to soil. We can recognize several various types of mycorrhiza 

that differ in anatomy and physiology. Endomycorrhizas are characterized by 

penetration of fungus into the root cells and include arbuscular, orchid and ericoid 

mycorrhizas. Unlike other mycorrhizal relationships, ectomycorrhizal fungi typically do 

not penetrate into the plant host cells. 

Arbuscular mycorrhiza (AM) is the most ancient and the most common form of 

mycorrhiza. Fungi involved in arbuscular mycorrhiza have been placed into a recently 

established monophyletic phylum, the Glomeromycota (Schüler et al., 2001). They are 

completely dependent on the sources of carbon from plants and their host plant range is 
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very wide. It is expected that AM could be found in 95% of vascular plant species in 

existence today (Gryndler et al., 2004) however they are most frequently associated 

with herbaceous plants and certain tropical trees. Glomeromycota form typical branched 

structures called arbuscules that penetrate into the plant root cells. 

 Ectomycorrhiza (ECM) is mainly formed between fungi belonging to 

Basidiomycota or Ascomycota and forest trees especially in temperate and boreal 

ecosystems. This type of mycorrhiza is characterized by a presence of a thick sheath of 

fungal tissue developed around terminal branches of plant roots. Fungal hyphae invade 

the plant roots and form there an intercellular network between the root cortical cells. 

Even if mycorrhizal fungi are conventionally regarded as symbionts, their 

abilities to degrade organic matter and thus act as saprotrophs have been widely 

discussed (Baldrian, 2009; Cullings and Courty, 2009; Talbot et al., 2013). Several 

studies have reported genes encoding for degradative enzymes in genomes of 

mycorrhizal fungi (Bodeker et al., 2009; Luis et al., 2005b; Martin et al., 2008). 

Furthermore, Hibbett et al.(2000) showed that range of switches have occurred between 

symbiotic lifestyle and saprotrophy during evolution and both strategies can be 

represented in closely related fungal taxa, thus these two fungal groups can be more 

functionally similar than previously expected. For example Courty et al. (2006) and 

Vaario et al. (2012) have reported that mycorrhizal fungi are able to degrade some litter 

components due to the production of extracellular enzymes however enzymatic 

activities of the tested ectomycorrhizal strains were lower in comparison with 

saprotrophic fungi (Colpaert and vanTichelen, 1996). Although mycorrhizal fungi do 

not probably represent fundamental decomposers, it has been suggested that they might 

have an essential role in organic matter decomposition in forest ecosystems (Talbot et 

al., 2013). Mycorrhizal fungi in forest soil may affect litter decomposition due to the 

competition with saprotrophs for carbon and nutrients, especially for nitrogen. Nitrogen 

insufficiency in litter restricts the activity of litter decomposing fungi, thus the presence 

of mycorrhizal fungi may negatively influence decomposition rate (Gadgil and Gadgil, 

1971). 
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1.6 Temporal and spatial succession of fungi in forest soil 

 

Soil represents a complex environment inhabited by a wide range of microorganisms 

whose diversity is supposed to be extraordinarily high (Prosser, 2002). The structure 

and activity of fungal communities in forest soils is dependent on the occurrence of 

nutrients and varies during the process of degradation as the quality of the substrate 

changes (Osono, 2007). In forest soils the availability of nutrients distinctively differs 

through the soil profile (Šnajdr et al., 2008) thus the vertical stratification is 

characteristic feature of forest soils. The vertical position of litter-derived organic 

material in topsoil layer changes and its age increases with soil depth - old litter of 

uppermost horizon is replaced by that more recently fallen. This process leads to 

increasing recalcitrance of organic matter and the formation of humic compounds in the 

deeper horizons. The vertical distribution of fungal community in boreal and temperate 

forests has been well described by Lindahl et al. (2007) and O'Brien et al. (2005) who 

showed distinct spatial separation of saprotrophic and mycorrhizal communities. 

Saprotrophs were primarily confined to the surface of forest floor where carbon is 

mineralized, while mycorrhizal fungi dominated in the underlying more decomposed 

litter and humus where they mobilize nitrogen and make it available to plants (Lindahl 

et al., 2007; O'Brien et al., 2005). 

Decomposition of leaf litter is a sequential process that initially involves the loss 

of the less recalcitrant components (for example, oligosaccharides, organic acids, 

hemicellulose and cellulose) followed by the degradation of the remaining highly 

recalcitrant compounds such as lignin. Litter quality changes during the course of its 

transformation and so does the activity of litter-associated microorganisms (Dilly et al., 

2001) reflecting the varied catabolic capabilities that are sequentially required to 

complete the process of litter decomposition (Frankland, 1998; Osono, 2006). The 

knowledge about in situ fungal decomposition of plant litter is mainly based on isolation 

and identification of fungal decomposers (Koide et al., 2005b; Osono, 2005; Osono et 

al., 2009; Zhang et al., 2008). Using these cultivation-based approaches, fungi involved 

in the decomposition of litter have been divided into early, intermediate and late 

decomposers (Frankland, 1998; Tang et al., 2005). This observation has been recently 

supported by Šnajdr et al., (2011) who distinguished three phases of litter 

decomposition based on the differences in the activity of extracellular enzymes and the 
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rates of decomposition of the individual litter constituents. In previous culture-based 

studies fungi belonging to Ascomycota dominated during the initial stages of litter decay 

(Koide et al., 2005a) as they preferentially removed cellulose (Osono et al., 2003). Also 

a few basidiomycetes were found in the early stages of litter decomposition (Kubartova 

et al., 2009). The abundance of ascomycetous fungi decreased during the process of 

decomposition to be replaced by basidiomycetes in the later stages (Frankland, 1998; 

Osono, 2007). The degradation of plant leaves is not limited only to the litter layer on 

the forest floor. Indeed, the decomposition process already begins on attached plant 

leaves (Stone, 1987). Phyllosphere fungi that are established in the interior or on the 

surfaces of live leaves have the advantage of gaining access to readily available 

nutrients in live leaves and later, after senescence, to the dead leave biomass. There is 

some evidence that at least some of these fungi participate in litter decomposition 

(Korkama-Rajala et al., 2008; Žifčáková et al., 2011) but their importance in this 

process is still unclear.  

Observations from diverse forest soils suggest that environmental factors such as 

temperature, water availability and substrate quality may be important factors affecting 

microbial community composition (Aponte et al., 2010; Kaiser et al., 2010; Kuffner et 

al., 2012; Landesman and Dighton, 2011). In deciduous forests, where the litterfall is 

limited to autumn, the irregular litter input is another factor influencing seasonal 

variations in microbial community composition. Moreover, seasonally fluctuating 

photosynthetic activity of trees leads to the seasonality of soil carbon allocation and its 

different availability to the soil biota in course of the year (Högberg et al., 2010; Kaiser 

et al., 2010). Prior studies concerning seasonal variations of fungal community were 

mainly based on traditional approaches such as enzyme assays or assessment of 

microbial biomass content (Baldrian et al., 2013; Criquet et al., 2002). There have thus 

far only been reports concerning specific functional groups of fungi (Courty et al., 2010; 

Courty et al., 2008) or comparing fungal communities on specific sampling occasions 

with limitations in particular soil or litter horizons (Coince et al., 2013; Davey et al., 

2012; Dumbrell et al., 2011; Jumpponen et al., 2009). However, the knowledge of 

seasonal changes in overall fungal communities in temperate forest soil with respect to 

vertical stratification remains largely limited. 

 

 



 26 

1.7 Influence of litter composition on its degradation 

 

The chemical composition of litter varies among plant species and is known to affect 

rates of its decomposition (Hattenschwiler and Gasser, 2005). The differences in the 

decomposition rate are attributed to the litter quality such as leave tensile strength, 

lignin, carbon, nitrogen content, the carbon/nitrogen and lignin/nitrogen ratios and their 

impact on activity of microbes (Osono and Takeda, 2006; Pérez-Harguindeguy et al., 

2000). The carbon: nitrogen ratio and concentration of lignin are regarded as the most 

important indicators of litter degradability by microorganisms (Liu et al., 2010; Zhang 

et al., 2008) because high carbon: nitrogen ratio and lignin content may prevent or slow 

down the microbial colonization of substrate. For instance beech (Fagus sylvatica), oak 

(Quercus petraea) and maple (Acer campestre) leaves with carbon:nitrogen ratios 60, 

52 and 47 and lignin contents 10.2%, 10.0% and 10.9% (Hattenschwiler and Gasser, 

2005) are considered to be slowly decomposing species in comparison with hornbeam 

(Carpinus betulus), wild cherry (Prunus avium) and lime (Tilia platyphyllos) leaves 

with carbon:nitrogen ratios 37, 45 and 30 and lignin contents 8.0%, 8.2% and 8.9% 

(Hattenschwiler and Gasser, 2005) which are species with faster decomposition rates. 

Dead plant organic matter is characterised by the relative excess of carbon and 

relatively low nitrogen and phosphorus contents. During the process of decomposition, 

carbon from freshly fallen litter is released as CO2 and if the N is retained its relative 

proportion increases. For example, fresh Quercus petraea litter has a C/N ratio of 25, 

compared with 13-17 after in vitro degradation by saprotrophic fungi (Steffen et al., 

2007). Under natural conditions these changes in litter quality are accompanied by 

changes in microbial community composition (see above). The development of 

microbial community composition has general pattern of fungal functional group 

(Osono, 2007; Šnajdr et al., 2011). Nevertheless, the successional series of dominant 

fungal species can be litter-type specific (Frankland, 1998; Koide et al., 2005b; Osono 

and Takeda, 2006) thus it is not simple to find the influence of litter composition on its 

degradation. In order to assess the relation between litter chemistry and decomposition 

without the effect of successive changes in microbial community composition, several 

studies followed the litter decomposition by single fungal species under defined 

laboratory conditions (Osono and Takeda, 2002, 2006; Steffen et al., 2007). However, 
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broader information about relationship between the roles of individual litter components 

on the decomposition rate remains still largely limited. 
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2  Aims 
 

My Ph.D. thesis focuses on characterization of fungal communities in forest soils and 

their abilities to decompose plant litter. In order to get in-depth characterization of 

microbial communities in forest soils, it was aimed to establish the method of targeted 

amplicon library preparation for 454 pyrosequencing. Using this approach the 

biodiversity and structure of DNA and RNA-derived community of fungi and bacteria 

in spruce forest soil were analyzed (Paper I). Furthermore, it was demonstrated how the 

DNA and RNA communities differ and what part of the total community is 

metabolically active at a given moment. Because the soil sampling was performed under 

freshly fallen snow, in the period when decomposition processes in soil prevail, it was 

expected that decomposer microorganisms will be transcriptionally more active. It was 

also aimed to specifically target the important rate-limiting step in the process of 

cellulose decomposition by analyzing the genes and transcripts of the cbhI 

cellobiohydrolase (exocellulase). The experiment described in Paper II was aimed to 

provide a detailed characterization of the process of litter decomposition in forest soil. 

For this purpose the changes in fungal community composition and diversity were 

studied during 24 months of oak litter in situ decomposition. To specifically address the 

decomposition of cellulose, the composition of the gene pool of the cbhI was monitored. 

In order to evaluate the role of phyllosphere fungi in litter decomposition, fungal 

communities associated with live oak leaves and senescent leaves before their 

abscission were also analysed. It was expected that the structure of fungal community 

would reflect the availability of nutrients and the fungal diversity would increase during 

the process of decomposition as a consequence of the increase of substrate 

heterogeneity and the formation of new niches containing the dead biomass of early 

decomposers. Paper III studied the seasonal changes of fungal community in a forest 

soil. Considering the sharp and distinct vertical stratification, it was hypothesised that 

the structure of the fungal community would reflect the availability of nutrients in the 

horizons of soil profile. Based on the results obtained in Paper II, where considerable 

temporal shifts in fungal community structure during the decomposition of oak litter 

were observed, similar changes in the litter horizon were anticipated because the last 

year’s litter represents a considerable percentage of the total litter mass. In the deeper 

horizons, a shift from a high relative abundance of ectomycorrhizal taxa during the 
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vegetative season to a high proportion of saprotrophic taxa in the absence of root C 

allocation was expected because Paper I showed that saprotrophic taxa were more 

metabolically active in the absence of  photosynthesis carbon allocation belowground. 

In Paper IV it was aimed to compare the decomposition abilities of basidiomycetous 

and non-basidiomycetous fungi. Non-basidiomycetous fungi were isolated from the 

same study site that was studied in Paper II and Paper III because the direct analysis of 

DNA from this ecosystem showed that nonbasidiomycetous fungi represented 

considerable proportion of the entire fungal community. Paper V focused on the 

relationships between chemical composition of plant litter and its decomposition under 

laboratory conditions. To assess the relationships between litter chemistry and 

decomposition without the effects of temporary changes in microbial community 

composition, single fungal species (Hypholoma fasciculare) was grown on different 

types of litter that differed in chemical composition. It was hypothesized that the 

content of lignin in litter would cause high production of ligninolytic enzymes to 

increase the availability of carbohydrates while a high N content would inhibit lignin 

decomposition. 
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3  Materials and Methods 
 

List of methods: 

 

Soil sample collection 

Cultivation of fungi 

Enzyme assays 

Quantification of fungal biomass 

Taxonomic identification of fungal strains 

Library preparation for tag-encoded amplicon pyrosequencing 

Bioinformatic analysis of pyrosequencing data 

Diversity and statistical analysis 
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4  Discussion 
 

In order to get deeper insight into the fungal and bacterial community composition in 

forest soil the method of targeted amplicon library preparation for 454 pyrosequencing 

platform was established. This method comprises two-step PCR which is important for 

successful library preparation from complex DNA (cDNA) templates, such as nucleic 

acids extracted from soil samples (Paper I). Using this cultivation-independent deep 

sequencing approach, the biodiversity and structure of DNA as well as RNA-derived 

community of fungi and bacteria along with the diversity estimation of a functional 

eukaryotic gene involved in decomposition in spruce (Picea abies) forest soil was 

analyzed for the first time. Analysis of DNA-derived 16S rRNA and 18S rRNA gene 

sequences represents all bacteria and fungi present in the sample. RNA-derived 

sequences of bacteria represent the active part of the community that produce and 

contain ribosomes. In contrast to bacterial rRNA, analysis of fungal rRNA-ITS region 

offers a unique opportunity to target the precursor rRNA molecules. ITS regions are 

removed during the rRNA processing so this approach allow us to identify the species 

synthesizing ribosomes at a given moment and those which are likely metabolically 

active (Anderson et al., 2008). In order to specifically target an important 

decomposition process the gene and transcript pools of the gene cbhI (Edwards et al., 

2008), encoding for cellobiohydrolase, which is an enzyme that catalyses the rate-

limiting step in the decomposition of cellulose, were also analyzed and assigned to their 

producers. In Paper I it was demonstrated that diversity of bacterial community is 

considerably higher than the diversity of fungal population. When 1000 randomly 

selected sequences were analysed, 302-366 OTUs were found in bacteria, compared 

with 141-236 in fungi. Abundances of the major bacterial and fungal OTUs in different 

soils have been reported to be 2-3% and 7-17%, respectively (Buée et al., 2009; Fierer 

et al., 2007). In our study, where bacterial and fungal populations from the same soil 

were analyzed, bacterial communities were also more even than fungal ones and 

showed lower relative abundance of dominant species. While dominant bacterial species 

were distributed across the studied ecosystem, distribution of dominant fungi was often 

spatially restricted as they were only recovered at some locations. When comparing the 

uppermost litter horizon and underlying organic horizon of spruce forest soil, the litter 

horizon showed significantly higher fungal as well as bacterial biomasses in contrast to 
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deeper one (Figure 1, Paper I) that is in accordance with previous studies (Baldrian et 

al., 2013; Enowashu et al., 2009; Šnajdr et al., 2008). Microbial community 

composition differed among horizons of soil profile, thus bacteria and especially fungi 

together with cbhI clusters were often distinctly associated with a particular soil 

horizon. Bacterial sequences belonging into Proteobacteria, Acidobacteria and 

Actinobacteria were predominant in both horizons. In the litter horizon, the RNA 

community was enriched in Acidobacteria and Firmicutes, while in the organic horizon 

Actinobacteria were more abundant in the RNA community. The most abundant fungal 

orders in DNA-derived sequences were Atheliales, Agaricales, Helotiales, 

Chaetothyriales and Russulales. Members of Botryosphaeriales, Lecanorales and 

Eurotiales in the litter horizon and Tremellales and Capnodiales in the organic horizon 

were infrequent in the DNA communities but highly abundant among the RNA 

sequences (Figure 3, Paper I). Despite similar diversity of microbial communities based 

on DNA and RNA analysis, several microbial groups highly abundant in RNA pool, 

showed only low abundance in DNA pool suggesting that DNA-based surveys likely 

miss considerable portions of active microbial populations. Fungal community 

composition as well as cbhI clusters profoundly differed between the studied horizons 

of spruce forest soil in contrast to bacterial communities that showed less distinct 

vertical stratification. This observation thus highlight the importance of fungi in shaping 

the vertical structure of the forest soil. The among-horizon differences in fungal 

communities have been previously reported by Clemmensen et al. (2013), Lindahl et al. 

(2007), O'Brien et al. (2005) and Rosling et al. (2003). Substantial differences in fungal 

community assemblage among horizons of oak forest soil were also demonstrated in 

Paper III. In oak forest soil it was observed that the relative proportion of 

ectomycorrhizal taxa increased with soil depth however analysis of spruce forest soil 

showed that ectomycorrhizal fungi were highly abundant in both studied horizons, most 

likely due to the shallow rooting of P. abies. The most abundant genera of 

ectomycorrhizal fungi found in the spruce forest, Piloderma and Tylospora spp., are 

also the most abundant in the boreal P. abies forests in Finland and Sweden (Korkama-

Rajala et al., 2008; Rosling et al., 2003; Wallander et al., 2010). In Paper I single 

eukaryotic functional gene at a depth that allowed diversity estimations was analysed 

for the first time. PCR amplicon sequencing represents the only feasible way to assess 

the diversity and distribution of functional genes because the proportion of these genes 

is very small in total DNA or RNA extracted directly from soil. For example, only nine 
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gene clusters of denitrification genes were obtained from 77 000 metagenome-derived 

clones (Demanèche et al., 2009). It was demonstrated that cellulose decomposition is 

mediated by highly diverse fungal populations which show distinct association with 

either the litter or organic horizons, indicating only a minor overlap of cellulolytic 

fungal communities between horizons. Litter horizon exhibited higher diversity and 

higher proportion of expressed sequences in contrast to humic horizon. Some of the 

most abundant cbhI sequences were transcribed by fungi with low abundances in the 

DNA-pool suggesting important contribution of low-abundance species to the 

decomposition processes in the soil. Distribution of amino-acid composition obtained 

by translation of cbhI sequences detected in spruce forest soil showed that internal 

peptide of cbhI varied in length and contained both conserved and highly variable 

regions (Figure 6, Paper I). Thus the deep amplicon sequencing of functional genes in 

environmental samples may improve the understanding of structure-function 

relationships and also contribute to the construction and evaluation of better primers and 

qPCR probes for targeting of these genes.  

The decomposition of plant litter in forest floor is mainly mediated by fungal 

communities. Succession of fungi during litter decomposition was repeatedly studied by 

cultivation based methods e.g. Koide et al. (2005b), Osono et al. (2009) and Shirouzu et 

al. (2009). However, these successive changes have never been reported using 

cultivation independent deep sequencing approach. During 24 months of Q. petraea 

leaves decomposition, approximately 70 % of the total mass was lost (Figure 1, Paper 

II). Fungal biomass increased from low values in the live and senescent leaves to a 

maximum at month 2 and remained lower but constant until the end of the experiment. 

The activity of cellulolytic enzymes was detected in live and senescent leaves which 

indicate that decomposition started before leaf abscission (Figure 1, Paper II). Three 

distinct decomposition phases have been distinguished that are characterised by the 

sequential mass loss of extractables and hemicelluloses, cellulose, and lignin 

(Supplementary Figure 2, Paper II; Šnajdr et al. (2011)) In Paper II it was demonstrated 

that live oak leaves harboured a relatively rich fungal community with its diversity 

comparable to previous reports from Quercus macrocarpa (Jumpponen and Jones, 

2009a). In senescent leaves the fungal community showed distinctive decrease of its 

diversity that was followed by rapid increase of number of fungal OTUs after the 

litterfall caused by the invasion of new colonizers. Fungal diversity continued to 

increase until month 4, indicating the arrival of new species on the substrate (Figure 1, 
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Paper II). Contrary to our expectations, the increase of substrate heterogeneity and the 

formation of new niches containing the dead biomass of early decomposers in later 

stages did not lead to the further increase of fungal diversity despite the dramatic 

changes in the community composition (Figure 2, Paper II). Live and senescent leaves 

on the trees were dominated by phyllosphere fungi belonging to Ascomycota (Figure 3, 

Paper II) which is in accordance with previous culture-based studies (Osono, 2002; 

Santamaría and Bayman, 2005) as well as with pyrosequencing analyses of live Q. 

macrocarpa leaves (Jumpponen and Jones, 2009a, b). In our study we showed that 

phyllosphere fungi were still quantitatively important during the subsequent stages of 

decomposition at least until month 4 (Figure 2 and 4, Paper II). The fact that some live 

leaf-associated fungi are able to produce extracellular enzymes or decompose sterile 

senescent leaves (Korkama-Rajala et al., 2008; Žifčáková et al., 2011) led to the 

hypothesis that certain taxa may change from comensalism to a saprotrophic strategy. 

The first year of our experiment in Paper II was characterised by a relatively rapid loss 

of litter mass, a decrease in the C/N ratio and the cellulose content, and a relatively high 

activity of cellulolytic enzymes which caused faster decomposition of cellulose 

(Supplementary Figure 2, Paper II). These conditions were associated with the 

continuous dominance of fungi from the Ascomycota phylum which are mostly able to 

degrade cellulose and hemicelluloses, while their ability to convert lignin is limited 

(Martinez et al., 2005). Dominance of ascomycetous fungi in the early stages of beech 

litter decomposition was recently also demonstrated using metaproteomic approach 

(Schneider et al., 2012). During the second year, the rate of litter mass loss was 

relatively slow and the activity of cellulolytic enzymes decreased which indicated that 

the easily accessible polysaccharides were depleted. Also, the substrate was richer in the 

recalcitrant lignin and nitrogen and characteristic with the increased activity of 

ligninolytic enzymes (Supplementary Figure 2, Paper II). Fungi from the Basidiomycota 

phylum distinctively prevailed over fungi from the Ascomycota phylum at month 24. In 

previous studies, basidiomycetous species have often been demonstrated to be dominant 

in the late stages of litter decomposition (Duong et al., 2008; Osono, 2007) because of 

their capability to synthesize enzymes required for the degradation of complex polymers 

remaining in decomposed litter (Baldrian, 2008). Relatively high diversity of cbhI genes 

was demonstrated in senescent leaves (58 observed and >200 predicted OTUs). Later in 

decomposition, estimates of cbhI richness were approximately 200 in number which 

indicate that there may be some 100 cellulolytic fungal species when multiple copies of 
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the gene per fungal genome are considered (Edwards et al., 2008; Weber et al., 2011). 

The overall fungal diversity did not correlate with the diversity of fungi harbouring the 

cbhI gene suggesting that the proportion of cellulolytic fungi changed during 

decomposition. In Paper II it was demonstrated that fungal succession during litter 

decomposition was much faster than so far expected from the culture-based studies 

(Frankland, 1998; Osono, 2007; Osono and Takeda, 2001; Tang et al., 2005) that 

divided fungi only into early, intermediate and late decomposers. The fast appearance–

disappearance of fungal taxa seems to contrast with the reported persistence of DNA 

from inactive fungi in decaying wood (Rajala et al., 2011) and to support the rapid 

turnover of saprotrophs associated with various decomposition stages (Lindahl and 

Finlay, 2006). Distinct successive changes were also apparent in the community of 

cellulolytic fungi even if cellulose represents a substrate that is present in the litter 

during the entire decomposition process. Successional changes are thus likely governed 

not only by the relatively slow changes of the polysaccharides, lignin and nitrogen 

content in litter but possibly by other factors including more subtle changes in litter 

chemistry or interspecific fungal interactions.  

Nutrients obtained due to the litter decomposition are not the sole energy source 

for fungal communities. Also photosynthates that are allocated belowground represent 

important resource (Högberg et al., 2008). Changes in photosynthetic activity of trees, 

the amount and quality of litter as well as other environmental factors differ across the 

seasons of the year and thus likely impact the structure of soil communities. 

Considering the sharp and distinct vertical stratification of temperate forest soil, it was 

hypothesised that the structure of the fungal community would reflect the availability of 

nutrients in the horizons of soil profile. Based on the study in Paper II where 

considerable temporal shifts in fungal community structure during the decomposition of 

oak litter were observed, similar changes in the litter horizon were anticipated because 

the last year’s litter represents a considerable percentage of the total litter mass. In the 

deeper horizons, a shift from a high relative abundance of ectomycorrhizal taxa during 

the vegetative season to a high proportion of saprotrophic taxa in the absence of root C 

allocation was expected because in Paper I it was shown that saprotrophic taxa are more 

metabolically active during the period when photosynthesis does not occur. In Paper III 

it was demonstrated that fungal community in forest soil shows considerable vertical 

stratification; its activity, biomass and diversity substantially decreased with soil depth 

and its structure distinctively differed among the three horizons studied. As 
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demonstrated in Paper V, C/N ratio decreases during the process of decomposition. In 

previous study of Yang and Luo (2011) the decrease of C/N ratio with soil depth has 

been reported. However, in our study the highest C/N ratio was observed in the Ah 

horizon (the deepest studied horizon), a fact that might support the importance of the 

allocation of C from tree roots and thus considerable enrichment of deeper soil as 

proposed by Clemmensen et al., (2013) who demonstrated that 70% of soil carbon in 

boreal forest was root-derived and immobilized in the soil by mycorrhizal fungi. 

Interestingly, our study showed a substantial and significant decrease in community 

diversity: the amount of OTUs representing 80% of the fungal community was in 

average 90 in the litter horizon, 51 in the organic horizon and 25 in the Ah horizon 

(Figure 1, Paper III). It is in contrast with Paper I and study of O'Brien et al. (2005) 

where no significant changes in fungal diversity among horizons were observed. 

Comparing the relative abundance of major functional fungal groups among soil 

horizons, the litter horizon was predominantly colonized by saprotrophic fungi. The 

relative abundance of ectomycorrhizal basidiomycetes increased with soil depth (Figure 

2, Paper III), even if their proportion in deciduous forest soil studied was lower than in 

spruce forest soil (Paper I). Our results concerning vertical distribution of fungal 

functional groups are in accordance with previous studies (Clemmensen et al., 2013; 

Lindahl et al., 2007; O'Brien et al., 2005). However, interestingly, if the absolute 

amount of fungal biomass is considered, the highest ECM biomass per g of soil dry 

mass, despite its lower proportion, was present in the litter horizon. Fungal community 

in deciduous forest soil also showed distinct seasonal variation. The majority of studied 

enzymes showed the highest activity in winter in all horizons but being most 

pronounced in the litter (Figure 1, Paper III). It is not surprising because temperate 

deciduous forests are characterised by seasonal input of large amount of fresh litter, 

which is limited to autumn, representing nutrient-rich substrate for microbial 

communities (Šnajdr et al., 2011). High enzyme activities in winter were followed by 

the increase of fungal biomass in the spring with a relative increase in the proportion of 

non-mycorrhizal taxa (Figure 1, Paper III). Fungal community composition in the litter 

horizon was distinctively more affected by the season than the deeper layers. In litter 

horizon saprotrophic fungal genera Mycena, Mycosphaerella and Naevala showed 30×, 

200× and 350× differences in abundance among seasons. This result partly reflects 

succession on oak litter described in Paper II, for example Mycosphaerella, which 

peaked in autumn, is typical of senescent and freshly fallen oak leaves. Additionally, the 
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fungi that increased in winter, Naevala, Rhodotorula and Cryptococcus, were found to 

be associated with litter decomposition approximately 4 months after abscission (Paper 

II) and thus seem to be supported nutritionally by the last year’s litter. The most 

abundant genera in litter layer represented saprotrophic Mycena which significantly 

peaked its abundance in spring when nutrient-rich substrate is available. Summer was 

characterised by dramatic increase of ectomycorrhizal fungi, for example Amanita, 

Lactarius and Russula increased their abundance 68x, 20x and 7x, respectively, if 

compared with spring. ECM fungi that were predominant in summer or autumn samples 

from litter horizon are known to produce large sporocarps which require high nutrients 

input. Högberg et al. (2010) recently reported that the production of sporocarps of ECM 

fungi is directly dependent on allocation of photosynthates in the late summer. Thus 

sporocarp formation and subsequent sporulation, which occur on the forest floor, can 

explain seasonal shifts of ECM community in litter horizon and relatively invariable 

ECM community in soil layer. Increasing abundance of ECM fungi in late summer or 

autumn in organic and soil horizons of boreal forest has been previously reported by 

Wallander et al. (2001) as well as by Davey et al., (2012) who studied bryophyte-

associated fungal communities. In contrast to litter horizon, which showed profound 

seasonal changes in fungal community composition, Ah horizon rather responded in 

changes in fungal abundance however still approximately 30 % of the dominant fungal 

taxa exhibited seasonal patterns of occurrence. Contrary to our expectations, the relative 

proportion of saprotrophic fungi in Ah horizon did not increase during winter even 

though the increase of enzyme activities was detected in this season.  One of the 

possible explanations might be the temporal switch of certain ECM taxa to a 

saprotrophic lifestyle allowing them to preserve their biomass. The fungal biomass 

content in the Ah horizons increased approximately threefold from spring to summer 

which corresponds with the expected increase in photosynthate allocation belowground. 

The unexpected observation that the proportion of ECM fungi does not increase during 

this season might indicate that root-supplied carbon can be used by both ECM and by 

saprotrophs in the soil. The findings in Paper III indicate that both litter decomposition 

and photosynthate allocation represent important factors contributing to the seasonal 

changes in fungal communities. Thus it was demonstrated that our understanding of the 

fungal community composition in ecosystems where environmental factors show 

seasonal variation is limited if this phenomenon is not considered. 



 40 

Even if saprotrophic basidiomycetes are considered to be the most important 

litter decomposers (Baldrian, 2008), non-basidiomycetous fungi also likely play 

significant role in this process, if it is taken into account that they represent considerable 

proportion of litter-associated fungal community. Based on direct extraction of DNA 

from environmental samples and its subsequent analysis Ascomycota distinctively 

prevailed during the initial stages of litter decomposition (Paper II) and represented 42 

% and 25 % of fungal community in litter and organic horizon, respectively, in oak 

forest soil (Paper III); the same study site that was used for isolation of fungal strains in 

Paper IV. More than half of the isolates belonged to the genus Penicillium, 

Acremonium, Cladosporium, Geomyces, Mucor and Trichoderma. These fungi have 

been repeatedly isolated from both forest and agricultural soils (De Bellis et al., 2007; 

Grishkan, 1996; Keller and Bidochka, 1998). However, contrary to our expectation, 

isolated fungal genera represented only a small fraction of ascomycetes detected in 

Paper III. In Paper IV only six non-basidiomycetous isolates from 29 tested showed 

phenol oxidation activity which was low and all of the non-basidiomycetous strains 

showed lack of ligninolytic peroxidases that sharply contrasted with the high activity of 

ligninolytic enzymes in all tested basidiomycete strains. For example, Claus and Filip 

(1998) and  Zheng et al. (1999) have previously reported that ascomycetous 

Cladosporium cladosporoides and a Penicillum strain may be able to degrade lignin-

like compounds however the identity of the enzymes involved remained unanswered. In 

Paper IV only limited production of hemicellulose-degrading enzymes by non-

basidiomycetous fungi was reported that is in contrast with relatively high production of 

these enzymes by saprotrophic basidiomycetes (Steffen et al., 2007; Valaskova et al., 

2007). On the other hand, non-basidiomycetous fungi were able to produce cellulolytic 

enzymes and the production of chitinases was in average higher than in basidiomycetes 

(Table 1 and Figure 1, Paper IV). Paper IV also demonstrated that the levels of 

production of cellulolytic enzymes differ greatly among strains of the same genus. 

Cellulose degradation has been previously demonstrated for isolates of ascomycetous 

Penicillim sp., Acremonium sp. and Trichoderma sp. (Hao et al., 2006). The occurrence 

of one or more cellulolytic enzymes was reported in individual members of 

ascomycetous genera Acremonium, Cladosporium, Mucor, Myrothecium, Penicillium 

and Trichoderma (Bhiri et al., 2008; Ikeda et al., 2007; Skare et al., 1975; Somkuti, 

1974; Whitaker, 1951) and fungi belonging to the genera Geomyces and Hypocrea were 

found to be able to utilize cellulose (Štursová et al., 2012). Also chitinases have been 
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previously purified from ascomycetous Mucor, Myrothecium, Penicillium and 

Trichoderma (de la Cruz et al., 1992; Rast et al., 1991; Vyas and Deshpande, 1989). 

Considering the growth rates on individual substrates, the most important components 

of cellulose, hemicelluloses and chitin (cellobiose, xylose and N-

acetylglucosaminidase) supported rapid growth of most of the non-basidiomycetous 

isolates (Figure 2, Paper IV).  

Plant litter decomposition is performed by complex microbial communities that 

rapidly change during succession, as demonstrated in Paper II. However, the differences 

in litter composition lead to the differences in microbial community (Frankland, 1998; 

Osono and Takeda, 2006) thus it is difficult to find the relative role of individual 

chemical quality parameters on decomposition. The use of a single species in a 

decomposition test provides an experimental tool to assess the relationships between 

litter chemistry and decomposition without the effects of temporary changes in 

microbial community composition. It was hypothesized that the content of lignin in 

litter would cause high production of ligninolytic oxidases and peroxidases to increase 

the availability of carbohydrates while a high N content would inhibit lignin 

decomposition. In Paper V it was shown that during 12-week growth of the saprotrophic 

basidiomycete Hypholoma fasciculare on 11 types of litter with variable chemical 

composition, the litter mass loss ranged from 16% to 34% (Figure 1, Paper V). These 

values are comparable with 19-44%  litter mass loss in birch litter after 3 months 

decomposition by Mycena and Collybia species (Osono and Takeda, 2006) or several 

litter-decomposing fungi on Quercus petraea litter (Steffen et al., 2007; Valaskova et 

al., 2007). During early decomposition stages increasing initial N content of the litter 

positively correlated with litter mass loss and ergosterol content (Figure 3, Figure 4, 

Paper V). However, contrary to our expectation lignin content did not affect litter mass 

loss and was not an important factor determining fungal growth. Positive corelation of 

N content with litter mass loss and ergosterol content is in contrast with earlier 

observations on synthetic media where both organic and mineral N inhibited the growth 

of certain saprotrophic basidiomycetes (Keyser et al., 1978) but in agreement with a 

previous study on Mycena epipterygia on pine litter where N addition increased 

substrate use efficiency and C addition had no effect (Boberg et al., 2008). In addition to 

litter mass loss, a significant part of the litter up to >30 % of the decomposed litter mass 

was transformed into fungal biomass in Paper V which is in agreement with in situ 

studies of Frankland (1998) and Frey et al. (2003). The initial loss of litter mass 



 42 

significantly positively correlated with the activities of arylsulfatase, cellobiohydrolase, 

endoxylanase and phosphatase, the highest activity of ligninolytic enzymes were mostly 

detected at the beginning of the experiment (Supplementary Material, Paper V). Thus 

contrary to our expectation activities of most studied enzymes did not reflect the 

changes in litter quality as demonstrated in Paper II (Figure 1) and in the study of 

Šnajdr et al. (2011) where cellulolytic enzymes peaked at the beginning of litter 

decomposition while later stages of decomposition were characterized by high activities 

of ligninolytic enzymes. In Paper V it was shown that neither nitrogen nor lignin 

content has an impact on the activities of ligninolytic enzymes. The loss of lignin was 

not correlated with laccase or Mn-peroxidase activity even if these enzymes are 

considered to play crucial role in lignin decomposition (Baldrian, 2006; Hofrichter, 

2002). Low lignin removal in litters with high Mn-peroxidase activity might have been 

caused by low activity of auxiliary enzymes that are responsible for H2O2 production 

whereas high lignin removal rates in litters with low activity of ligninolytic enzymes 

indicates that other mechanisms of lignin decomposition, possibly based on the 

production of reactive oxygen radicals (Baldrian and Valaskova, 2008), may be active 

in Hypholoma fasciculare. Thus in this study it was demonstrated that the activity of 

ligninolytic enzymes is probably a less suitable indicator of lignin decomposition then 

previously expected. 
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5  Conclusions 
 

This work consists of 5 papers that contribute to the understanding of the 

composition of soil fungal communities and their role in the process of plant litter 

decomposition. The method for in-depth analysis of complex microbial communities 

from environmental samples was established and for the first time single eukaryotic 

functional gene at a depth that allowed diversity estimations was analysed in soil 

samples. 

 In a spruce forest it was demonstrated that microbial community composition 

differs among horizons of soil profile and certain bacteria and especially fungi together 

with cbhI gene clusters are often associated with a particular soil horizon. Despite 

similar diversity of microbial communities based on DNA and RNA analysis, 

significant differences in community composition were observed. Several microbial 

groups highly abundant in RNA pool showed only low abundance in DNA community 

indicating that low-abundance species make an important contribution to decomposition 

processes in soils.  

Plant litter decomposition is highly complex process mediated by various fungal 

groups that undergo rapid succession with dramatic changes in the community 

composition. Furthermore, most of the abundant taxa only temporarily dominate in the 

substrate. Phyllosphere fungi comprise a significant proportion of the community during 

early decomposition. 

Activity, biomass and diversity of fungal community decreases substantially 

with soil depth and its structure distinctively differs among the three horizons studied. 

The litter community exhibits profound seasonal changes. Abundance of the 

saprotrophic genera reaches their seasonal maximum in autumn, while summer typically 

saw the highest abundance of ectomycorrhizal taxa. While the composition of the litter 

community changes over the course of the year, the mineral soil shows changes in 

biomass. It seems that fungal community composition is mainly affected by the progress 

off litter decomposition together with phytosynthate allocation. 

 Soil non-basidiomycetous fungi differ from saprotrophic basidiomycetes in their 

ability do decompose soil biopolymers. Nonbasidiomycetous fungi do not likely play 

significant role in lignin degradation but are able to produce wide range of cellulolytic 

and chitinolytic enzymes giving the evidence that they are actively engaged in 
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decomposition of lignocellulose and dead fungal biomass. In a decomposition 

experiment including a single saprotrophic basidiomycete, decomposition rate depended 

on litter nitrogen content. Lignin content did not have any effect neither on the 

decomposition rate nor the activity of ligninolytic enzymes indicating that the activity 

of these enzymes is probably a less suitable indicator of lignin decomposition then 

expected. 
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Active and total microbial communities in forest
soil are largely different and highly stratified
during decomposition
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Soils of coniferous forest ecosystems are important for the global carbon cycle, and the identifica-
tion of active microbial decomposers is essential for understanding organic matter transformation
in these ecosystems. By the independent analysis of DNA and RNA, whole communities of bacteria
and fungi and its active members were compared in topsoil of a Picea abies forest during a period of
organic matter decomposition. Fungi quantitatively dominate the microbial community in the litter
horizon, while the organic horizon shows comparable amount of fungal and bacterial biomasses.
Active microbial populations obtained by RNA analysis exhibit similar diversity as DNA-derived
populations, but significantly differ in the composition of microbial taxa. Several highly active taxa,
especially fungal ones, show low abundance or even absence in the DNA pool. Bacteria and
especially fungi are often distinctly associated with a particular soil horizon. Fungal communities
are less even than bacterial ones and show higher relative abundances of dominant species. While
dominant bacterial species are distributed across the studied ecosystem, distribution of dominant
fungi is often spatially restricted as they are only recovered at some locations. The sequences
of cbhI gene encoding for cellobiohydrolase (exocellulase), an essential enzyme for cellulose
decomposition, were compared in soil metagenome and metatranscriptome and assigned to their
producers. Litter horizon exhibits higher diversity and higher proportion of expressed sequences
than organic horizon. Cellulose decomposition is mediated by highly diverse fungal populations
largely distinct between soil horizons. The results indicate that low-abundance species make an
important contribution to decomposition processes in soils.
The ISME Journal (2012) 6, 248–258; doi:10.1038/ismej.2011.95; published online 21 July 2011
Subject Category: microbial population and community ecology
Keywords: bacteria; cellulose decomposition; forest soil; fungi; RNA; transcription

Introduction

Most terrestrial ecosystem functions occur in the
soil, which possesses the greatest amount of bio-
diversity on Earth. Yet, the understanding of how
ecosystem functions are influenced by soil bio-
diversity is far behind our understanding of how
aboveground organisms contribute to these func-
tions (Bowker et al., 2010). Soil microorganisms
represent a considerable fraction of the living bio-
mass on Earth, with 103–104 kg of microbial biomass
per hectare of surface soils (Fierer et al., 2007).
In addition, microbial community composition is

now recognised as an important determinant of
ecosystem process rates (Reed and Martiny 2007;
Strickland et al., 2009). Understanding the structure
and function of soil microbial communities is thus
central to predicting how ecosystems will respond
to future environmental conditions.

While several recent studies have used deep
sequencing approaches to assess the diversity of
soil bacterial components (Roesch et al., 2007;
Lauber et al., 2009), the number of such studies
addressing fungal diversity is still limited. This is
true despite the fact that fungi comprise a large
proportion of soil microbial biomass and have
a dominant role in decomposition and nutrient
cycling in soil (Bailey et al., 2002; Buée et al.,
2009). Only a minor fraction of the estimated
1.5 million fungal species worldwide have been
described (Hawksworth, 2001), and the ecological
roles of most fungal taxa are poorly understood
since the complexity of fungal communities has
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so far limited our ability to estimate diversity and
distinguish individual taxa (McGuire and Treseder,
2010). In order to understand the soil ecosystem
processes, it is essential to address the fungal and
bacterial community at the same time. In addition,
the ecology of total microbial communities is so
far largely derived from the studies on DNA and
no information is available on the relationships
between the diversity of this total community
and community of active microbes assessed, for
example, by targeting the RNA molecules (Anderson
and Parkin, 2007; Urich et al., 2008).

From the global viewpoint, the understanding of
fungal and bacterial diversity is highly important
in the biomes of coniferous forests, where fungi
quantitatively dominate bacteria in decomposing
litter material, while the importance of bacteria
increases with soil depth (Bååth and Anderson
2003). Coniferous forest ecosystems have a promi-
nent role in the global carbon cycle (Myneni et al.,
2001), and knowledge of microbially mediated soil
functions is thus required for estimating global C
fluxes and their potential future changes. Forests
dominated by spruce (Picea spp.) constitute large
ecosystems in boreal forest biomes and are also
widely distributed in higher altitude forests and
plantation forests in the northern temperate zone.

It was recently proposed that the analyses of soil
microbial community composition should be based
on direct analysis of total RNA to avoid PCR bias
(Urich et al., 2008). While this approach may be
feasible for bacterial community analyses, the
sequence information contained in fungal rRNA
molecules is insufficient for species discrimination;
thus, internal transcribed spacer (ITS) regions of the
rRNA are used instead. Because there are 103–104

times fewer fungal ITS sequences than bacterial 16S

rRNA gene sequences in soil (Figure 1), amplifica-
tion of fungal ITS is inevitable to achieve reasonable
sampling depth. Here, we combined the analysis of
DNA-derived bacterial 16S rRNA gene sequences
representing all bacteria present and the RNA-
derived sequences representing the content of
bacterial ribosomes reflecting thus the active part
of the total community. The analysis of fungal ITS1
and ITS2 sequences offers a unique opportunity to
target the precursor rRNA molecules with fast
turnover, thus identifying these species synthe-
sising ribosomes at a given moment and thus likely
metabolically active (Anderson and Parkin, 2007).
The comparison of the DNA and RNA communities
can also help to answer the question how well
are the metabolically active microbial taxa repre-
sented in the common studies using the sequencing
of soil DNA.

The aim of this work was to demonstrate how the
DNA and RNA communities differ and what part of
the total community is metabolically active at a
given moment. The study was performed at the
beginning of winter under freshly fallen snow to
target the period when decomposition processes in
soil prevail. In a mountainous Picea abies forest in
central Europe where mycorrhizal fungi have a
major role, the winter period without photosynthate
flow is expected to show increased activity of
decomposer fungal species. Litter and the organic
horizons were studied separately because fungal
and bacterial communities were previously found to
differ between these horizons due to the differences
in nutrient availability and the presence of root-
associated microorganisms (O’Brien et al., 2005;
Lindahl et al., 2007; Šnajdr et al., 2008).

We expected that during the decomposition period,
decomposer microorganisms will be transcriptionally

L

horizon

H

horizon

L H

pH 3.7 ± 0.0 3.8 ± 0.1

dry mass % 73.9 ± 1.4 46.0 ± 6.5 ***

organic matter % 94.5 ± 0.5 23.5 ± 4.6 ***

C % 51.6 ± 0.3 14.1 ± 4.4 ***

N % 1.93 ± 0.08 0.62 ± 0.22 ***

C : N molar 26.8 ± 1.2 23.0 ± 1.1 ***

C : H molar 0.77 ± 0.02 1.00 ± 0.06 ***

PLFA bacteria nmol g
-1

486.6 ± 106.1 205.3 ± 48.8 **

PLFA fungi nmol g
-1

189.0 ± 32.3 26.7 ± 7.1 ***

fungi / bacteria (PLFA) 0.39 ± 0.03 0.13 ± 0.03 ***

ergosterol µg g
-1

0.509 ± 0.257 0.020 ± 0.012 ***

rDNA bacteria 10
3
 x copy / ng DNA 18.4 ± 3.3 11.3 ± 1.0 ***

rDNA fungi 10
3
 x copy / ng DNA 19.5 ± 4.4 3.4 ± 0.7 ***

fungi / bacteria (rDNA) 1.11 ± 0.27 0.30 ± 0.06 ***

rRNA bacteria 10
5
 x copy / ng cDNA 58.4 ± 23.6 3.8 ± 1.8 ***

ITS fungi 10
3
 x copy / ng cDNA 9.61 ± 0.80 0.11 ± 0.06 ***

β-glucosidase µmol min
-1

g
-1

DM

µmol min
-1

g
-1

DM

µmol min
-1

g
-1

DM

µmol min
-1

g
-1

DM

µmol min
-1

g
-1

DM

µmol min
-1

g
-1

DM

µmol min
-1

g
-1

DM

26.5 ± 10.4 11.0 ± 6.6 ***

α-glucosidase 3.2 ± 1.1 1.0 ± 0.7 ***

cellobiohydrolase 5.3 ± 2.2 2.4 ± 2.2 **

β-xylosidase 6.7 ± 1.8 8.1 ± 1.9

N-acetylglucosaminidase 11.4 ± 5.4 4.9 ± 5.6 *

arylsulfatase 0.6 ± 0.1 1.3 ± 0.6 **

phosphomonoesterase 114.4 ± 24.7 90.3 ± 22.4 *

* Significant differences among soil horizons (one-way ANOVA followed by Tukey

post-hoc test, * P < 0.05, ** P < 0.01, *** P < 0.001).

Figure 1 Properties of Picea abies forest soil, abundance of microorganisms and activity of extracellular enzymes involved in organic
matter decomposition in the L and H horizons. The data represent mean values and s.d. from four studied sites.
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active and a large proportion of decomposition-
related genes will be expressed by dominant taxa
of microbial decomposers. In order to specifically
target an important decomposition process, the gene
and transcriptome pools of the fungal cellobiohy-
drolase (exocellulase) gene cbhI sequences were
compared, as its gene product catalyses the rate-
limiting step in the decomposition of cellulose, the
most abundant biopolymer in the ecosystem (Bal-
drian and Valášková, 2008). The cbhI gene occurs
in both Ascomycota and Basidiomycota, and it is
also common in the genomes of saprotrophic fungi
(Edwards et al., 2008; Ohm et al., 2010). While some
recent studies showed that expression of eukaryotic
decomposition-related genes in soils can be ana-
lysed (Luis et al., 2005; Kellner and Vandenbol,
2010), only the DNA/RNA approach can answer the
questions on the diversity of decomposer commu-
nities and the proportion of expressed genes. Since
cellulose is present in both the litter and soil organic
horizon (Šnajdr et al., 2011), the same cellulose-
decomposing microorganisms can be present and
potentially active in both horizons. However, the
higher amount of cellulose in litter likely supports
higher diversity of cellulose decomposers.

Materials and methods

Study site, sample collection and soil analysis
Study area was located in the highest altitudes
(1170–1200m) of the Bohemian Forest mountain
range (Central Europe) and was covered by an
unmanaged spruce (P. abies) forest (49102.64 N,
13137.01 E). Sampling was performed in late
October 2009 under freshly fallen snow (8–12 cm,
3 days after the snowfall) at �5 1C. At four sites,
located 250m from each other, six topsoil samples
located around the circumference of a 4-m-diameter
circle were collected. Litter horizon (L) and organic
(humic) horizon (H) material were separately
pooled. After removal of roots, L material was cut
into 0.5 cm pieces and mixed; H material was passed
through a 5-mm sterile mesh and mixed. Aliquots
for nucleic acids extraction were immediately frozen
and stored in liquid nitrogen. Samples for phospho-
lipid fatty acid and ergosterol analysis were frozen
and stored at �45 1C until analysis. Enzyme assays
were performed within 48h in samples kept at 4 1C
in soil homogenates (Štursová and Baldrian, 2011).
Dry mass content was measured after drying at
85 1C, organic matter content after burning at 650 1C
and pH was measured in distilled water (1:10). Soil
C and N content was measured using an elemental
analyser.

Quantification of microbial biomass
Phospholipid fatty acid was extracted by chloroform–
methanol–phosphate buffer, subjected to alkaline
methanolysis and free methyl esters were analysed

by GC-MS (Šnajdr et al., 2008). Fungal biomass was
quantified based on 18:2o6,9 content, and bacterial
biomass as the sum of bacteria-specific phospho-
lipid fatty acid (Bååth and Anderson, 2003). Total
ergosterol was extracted with 10% KOH in methanol
and analysed by HPLC (Šnajdr et al., 2008). Partial
bacterial and fungal rDNAs were quantified by
qPCR using 1108f and 1132r primers for bacteria
(Wilmotte et al., 1993; Amann et al., 1995) and ITS1/
qITS2* primers for fungi (White et al., 1990; Šnajdr
et al., 2011).

Nucleic acid extraction and reverse transcription
RNA and DNA were co-extracted using the RNA
PowerSoil Total RNA Isolation Kit and DNA
Elution Accessory Kit (MoBio Laboratories, Carls-
bad, CA, USA) combined with the OneStep PCR
Inhibitor Removal Kit (Zymo Research, Irvine, CA,
USA). Three soil aliquots (3� 3 g of material) were
extracted per sample. Extracted RNA was treated
with DNase I and 1 mg was reverse transcribed using
M-MLV Reverse Transcriptase (Invitrogen, Carlsbad,
CA, USA) and random hexamer primers. Samples
were designated as LD¼ litter DNA, LR¼ litter
cDNA, HD¼humic horizon DNA and HR¼humic
horizon cDNA.

Tag-encoded amplicon pyrosequencing and
sequence analysis
The eubacterial primers eub530F/eub1100aR (modi-
fied from Dowd et al., 2008) were used to amplify
the V4–V6 region of bacterial 16S rDNA and the
fungi-specific primers ITS1/ITS4 (White et al., 1990)
were used to amplify the ITS1, 5.8S rDNA and ITS2
regions of fungal rDNA. Primers cbhIF and cbhIR
(Edwards et al., 2008) were used to amplify a partial
sequence of fungal cellobiohydrolase I. Primers for
tag-encoded 454-Titanium pyrosequencing contained
in addition sample tags separated from primers by
spacers and Titanium A or B adaptors (Roche, Basel,
Switzerland). Spacer sequences were designed to
contain a trinucleotide, absent in all GenBank
sequences at this position to avoid preferential
amplification of some targets (Parameswaran et al.,
2007). Primer pairs were designed using OligoCalc
(http://www.basic.northwestern.edu/biotools/oligocalc.
html) and tested by cloning/sequencing. Tags and
spacer sequences of all composite primers used for
tag-encoded amplicon pyrosequencing in this study
can be found in Supplementary Information.

PCR amplifications were performed in two steps.
In the first step, each of three independent 50 ml
reactions per DNA/cDNA sample contained 5 ml of
10� polymerase buffer, 3 ml of 10mgml�1 bovine
serum albumin, 2 ml of each primer (0.01mM), 1 ml of
PCR Nucleotide Mix (10mM), 1.5 ml polymerase
(2U ml�1; Pfu DNA polymerase:DyNAZyme II DNA
polymerase, 1:24) and 2 ml of template DNA. Cycling
conditions were 94 1C for 5min; 35 cycles of 94 1C
for 1min, 62 1C for 50 s, 72 1C for 30 s, followed by
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72 1C for 10min for primers eub530F/eub1100aR;
94 1C for 5min; 35 cycles of 94 1C for 1min, 55 1C for
1min, 72 1C for 1min, followed by 72 1C for 10min
for primers ITS1/ITS4; 94 1C for 3min; 40 cycles of
94 1C for 30 s, 51 1C for 45 s, 72 1C for 1min 30 s,
followed by 72 1C for 15min for primers cbhIF/
cbhIR. Pooled PCR products were purified using
the Wizard SV Gel and PCR Clean-Up System
(Promega, Madison, WI, USA). In all, 100 ng DNA
was used as template in the second PCR performed
under the same conditions except that fusion
primers were used and cycle number was 10. PCR
products were separated by electrophoresis and gel
purified using the Wizard SV Gel and PCR Clean-Up
System. DNA was quantified using ND1000 (Nano-
Drop, Wilmington, DE, USA), an equimolar mix of
PCR products from all samples was made for
each primer pair and the pooled products were
mixed in a molar ratio of 12:4:1 (bacterial:fungal:
cbhI amplicons). The mixture was subjected to
sequencing on a GS FLX Titanium platform (Roche).

The pyrosequencing resulted in 329 820 reads of
sufficient quality and a length 4200 bases. Pyro-
sequencing noise reduction was performed using
the Denoiser 0.851 (Reeder and Knight, 2010) and
chimeric sequences were detected using UCHIME
(Edgar, 2010) and deleted. In fungal community
analyses, sequences 4380 bases were used that
contained the ITS1 region, 5.8S rDNA and a
significant part of the ITS2 region. These sequences
were truncated to 380 bases, clustered using CD-HIT
(Li and Godzik, 2006) at 97% similarity (O’Brien
et al., 2005) to yield Operational Taxonomic Units
(OTUs) and consensus sequences were constructed
for all OTUs. PlutoF pipeline (Tedersoo et al., 2010)
was used to generate best species hits. In bacterial
analysis, sequences of 350 bases were clustered at a
97% similarity and Ribosomal Database Project
(Cole et al., 2009) as well as BLASTn hits against
GenBank were used to generate best hits (Altschul
et al., 1997). DNA/RNA ratio was calculated as sum
of sequences derived from DNA divided by the sum
of all sequences, and the L/H ratio was calculated
similarly. Clusters of cbhI sequences were con-
structed using 400-base sequences at 96% similarity.
Intron positions were recorded and introns removed
from the DNA-derived sequences and DNA and
cDNA-derived clusters were merged. For identifica-
tion, cbhI sequences were retrieved from GenBank
and also obtained by the analysis of isolates or
cultured strains from the studied ecosystem by
cloning/sequencing. Nucleotide sequences of OTUs
with abundances over 0.3% were translated into
amino-acid sequences in Bionumerics 7.0 (Applied
Maths, Sint-Martens-Latem, Belgium).

Rarefaction and diversity analyses on OTUs/
clusters were performed at 8500 bacterial, 1000
fungal or 350 cbhI sequences per sample, to
eliminate the effect of sampling effort and used for
clustering as described above. Richness and diver-
sity indices were calculated using EstimateS 8.00

(http://viceroy.eeb.uconn.edu/estimates) and quality
of Chao1 estimates was evaluated according to Kemp
and Aller (2004).

One-way analysis of variance (ANOVA) with the
Fisher’s LSD post hoc test was used to analyse the
statistical differences among treatments. To analyse
the differences in bacterial and fungal communities
and the cbhI sequences, principal component
analysis was run with abundance data of all OTUs
or clusters with 40.3% abundance. PC1 and PC2
loads were subjected to ANOVA with the Fisher’s
LSD post hoc test. Differences at Po0.05 were
regarded as statistically significant.

Results and discussion

Microbial communities in P. abies topsoil are
diverse and vertically stratified
The topsoil of the P. abies forest was strongly acidic
(pH 3.7–3.8) and consisted of a 1–4-cm-thick litter
horizon (L) and a 2–4-cm-thick organic (humic)
horizon (H). The horizons were significantly differ-
ent with respect to organic matter and C and N
contents, and decreasing nutrient availability was
reflected by a decrease in both bacterial and fungal
biomass contents with depth. The results of qPCR
showed a decrease of fungal-to-bacterial rDNA copy
number ratio from 1.11 in the L horizon to 0.30 in
the H horizon. The cDNA contained 105–106 copies
of the bacterial 16S rRNA gene per nanogram cDNA,
but only 102–104 copies per nanogram cDNA of
fungal ITS region (Figure 1). More rapid organic
matter transformation occurred in the L horizon
than in the H horizon, as documented by higher
activities of several extracellular enzymes, espe-
cially those hydrolysing glucans (a- and b-glucosi-
dase and cellobiohydrolase; Figure 1).

Bacterial communities analysed at 8500 sequences
per sample showed about 1500 OTUs per sample
in the L and H horizon-derived DNA (LD and HD)
and in the L-derived RNA (LR) samples, about 1200
OTUs were identified in the H-derived RNA (HR).
Also, the Chao1 estimator predictions were lower
for HR. The RNA-derived communities were less
diverse and less even than the DNA-derived commu-
nities, particularly in the H horizon (Supplementary
Table 1). Principal component analysis followed by
ANOVA showed significant differences in commu-
nity composition among LD, HD, LR and HR
(Po0.00001 for differences among L and H as well
as among DNA/RNA).

In the DNA community, Steroidobacter (OTU4)
was the most abundant in all L samples. In the
H horizon, Gp1 Acidobacterium (OTU1) was the
most abundant at three sites and Gp2 Acidobacte-
rium (OTU5) at one site (Supplementary Table 2;
Figure 1). Members of 505 genera were found in
the entire pooled community, with most of the
sequences belonging to Gp1, Gp3 and Gp2 Acido-
bacteria (on average 17.2%, 11.2% and 8.4%,
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respectively), the Actinobacteria Actinoallomurus
(7.1%), Conexibacter (1.3%) and Iamia (1.1%), and
Proteobacteria Steroidobacter (5.4%), Rhodoplanes
(3.3%), Phenylobacterium (2.1%), Desulfomonile
(1.7%) and Burkholderia (1.5%; Supplementary
Table 2). Of the most abundant OTUs, 33 (Chondro-
myces), 53 and 20 (Phenylobacterium) and 39
(Caulobacteraceae) were identified as highly en-
riched in the RNA-derived community and several
taxa showed preferential association with either
the L or the H horizon (Figure 2; Supplementary
Table 2).

Bacterial sequences belonged to 21 phyla, but
only 8 were recorded with abundances over 0.1%. In
both horizons, Proteobacteria, Acidobacteria and
Actinobacteria were dominant, comprising 80–90%
of all sequences; this dominance was even stronger
in the RNA (Figure 3). In the L horizon, the RNA
community was enriched in Acidobacteria and

Firmicutes, while most of the minor phyla were less
represented. In the H horizon, Actinobacteria were
more abundant in the RNA community (Supple-
mentary Table 2; Supplementary Figure 1).

Bacterial abundance and diversity have been
reported to decrease with decreasing soil pH (Lauber
et al., 2009; Rousk et al., 2010). Despite this, a highly
diverse bacterial community was found in our strongly
acidic soil. Compared with other soils with pH o4, in
which a high degree of dominance by Acidobacteria,
around 63%, was previously reported (Lauber et al.,
2009), the phyla Proteobacteria, Actinobacteria, Firmi-
cutes and Verrucomicrobia were more represented in
the P. abies forest. The bacterial community in the
soil of the study area is specific in several aspects.
The genus Chitinophaga, which was abundant in a
previous study that compared different soils (Fulthorpe
et al., 2008), was found at a frequency of only 0.1% in
this study; the genera Actinoallomurus and Steroido-
bacter, ranked among the five most abundant genera in
the P. abies forest, were not recovered in the previous
study.

Deep sequencing analyses of bacterial commu-
nities associated with litter have not previously
been reported. Here, we show that the litter hori-
zon exhibited higher phylogenetic diversity and a
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Figure 2 Distribution of major bacterial and fungal OTUs and
cbhI clusters from Picea abies forest topsoil between the L and H
horizons and between DNA and RNA. The data represent mean
values from four sampling sites. Symbol areas correspond to
relative abundance in the combined set of DNA and RNA
sequences from both horizons. (a) Bacteria, identifications:
0¼Actinoallomurus; 1¼Gp1 Acidobacterium; 2¼Rhodoplanes;
3¼Rhodospirillales; 4¼Steroidobacter; 5¼Gp2 Acidobacterium;
6¼Gp1 Acidobacterium; 7¼Rhizobiales; 8¼Gp2 Acidobacterium;
10¼Gp1 Acidobacterium; 11¼Frankineae; 12¼Gp3 Acidobac-
terium; 13¼Afipia; 14¼Gp2 Acidobacterium; 15¼Burkholderia;
16¼Actinomycetales; 19¼Gp3 Acidobacterium; 20¼Phenylobacte-
rium; 21¼Desulfomonile; 22¼Gp3Acidobacterium; 23¼Gp3Acido-
bacterium; 24¼Ferrithrix; 25¼Acetobacteraceae; 26¼Rhizobiales;
27¼Gp3 Acidobacterium; 28¼Gp1 Acidobacterium; 30¼Gp3
Acidobacterium; 31¼Acidisphaera; 32¼Actinoallomurus; 33¼Gp1
Acidobacterium; 34¼Sporomusa; 35¼Chondromyces; 36¼Aceto-
bacteraceae; 37¼Steroidobacter; 38¼Chitinophagaceae; 39¼Caulo-
bacteraceae; 40¼Rhizobiales; 41¼Mycobacterium; 48¼Gp1 Acido-
bacterium; 59¼Phenylobacterium. (b) Fungi, OTU identifications:
1¼Ascomycete; 2¼Tylospora fibrillosa; 3¼Piloderma; 4¼Pilo-
derma; 5¼Ascomycete; 6¼Tylospora asterophora; 7¼Cenococ-
cum geophilum; 8¼Verrucaria; 9¼Hygrophorus olivaceoalbus;
10¼Russula cyanoxantha; 11¼Cortinarius biformis; 13¼ Lecanora;
14¼Tylospora fibrillosa; 18¼Cladophialophora minutissima;
20¼Auriculoscypha; 22¼ Inocybe; 23¼Ascomycete; 24¼Basi-
diomycete; 25¼Ascomycete; 27¼Cryptococcus podzolicus;
28¼Mycocentrospora acerina; 29¼Ascomycete; 30¼Asco-
mycete; 32¼Meliniomyces vraolstadiae; 33¼Amanita spissa;
44¼Phellopilus; 45¼Chytridiomycete; 47¼Alternaria alter-
nata; 49¼Cenococcum geophilum; 50¼Cortinarius gentilis;
52¼Piloderma; 55¼Neofusicoccum; 60¼Russula cyanoxantha;
62¼Trichosporon porosum; 67¼Pseudotomentella; 69¼Russula
cyanoxantha; 70¼Mycoarthris; 88¼Elaphocordyceps; 94¼
Tomentella sublilacina. (c) cbhI, clusters with sequence simi-
larities to genes of known cbhI producers: 0¼Mycena;
1¼Xylariales spp.; 16¼Phacidium; 18¼Mycena; 25¼Phacidium;
28¼Xylariales spp.; 42¼Phialophora; 53¼Xylariales spp.;
72¼Phialophora; 75¼Ceuthospora and 84¼Phialophora sp.
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reduced proportion of Acidobacteria in the total
community. In the most abundant phylum, Acido-
bacteria, the members of Gp1, Gp2 and Gp3
detected were also reported to occur in other low
pH soils (Jones et al., 2009). Genome sequencing of
Gp1 and Gp3 Acidobacteria and isolate culturing
showed that these bacteria are able to decompose
a variety of polysaccharides, including cellulose,
xylan and chitin, and thus may be involved in
decomposition (Ward et al., 2009). Indeed, in our
study, the Gp3 Acidobacteria were preferentially
detected in the RNA, which indicates their activ-
ity during the decomposition period. The ecology
of the other most abundant bacterial genera is
unclear. Members of the genus Actinoallomurus
(formerly belonging to Actinomadura) were repeat-
edly isolated from soils or litter, and some species

from this genus are root endophytes. The genus
Phenylobacterium contains bacteria from upper
aerobic soil horizons capable of phenolic compound
degradation.

Fungal communities sampled at 1000 randomly
selected sequences per sample had between 150 and
220 OTUs with no significant differences between
the DNA and RNA samples. The Chao1 estimates
predicted higher diversity in LD and HD than in
LR and HR (Supplementary Table 1). Principal
component analysis followed by ANOVA showed
significant differences in community composition
among LD, HD, LR and HR (Po0.0005 for differ-
ences among L and H and Po0.044 for DNA/RNA).

In the DNA community, Piloderma sp. (OTU3)
was dominant at two sites and Tylospora fibrillosa
(OTU2) and Cortinarius biformis (OTU11) were each
dominant at one site in the L horizon. In the H
horizon, each of the sites was dominated by a differ-
ent OTU (Tylospora fibrillosa, OTU2; Tylospora
asterophora, OTU6; Russula cyanoxantha, OTU10;
and Piloderma sp., OTU4). OTUs with the closest
similarity to 422 different genera were recorded,
the most abundant being Tylospora (14.8% of all
sequences), Piloderma (12.8%), Russula (4.4%),
Cenococcum (4.2%), Cortinarius (3.9%), Hygro-
phorus (2.9%), Cladophialophora (2.4%), Amanita
(1.8%), Cadophora (1.7%), Mortierella (1.6%) and
Verrucaria (1.6%; Supplementary Table 3). The
distribution of the abundant OTUs among the L
and H horizons and the DNA and RNA communities
shows a strict confinement of many OTUs to either
the L or the H horizon (Figure 2; Supplementary
Table 3). Several of the most abundant OTUs were
highly enriched in the RNA community (Supple-
mentary Table 3).

Fungal sequences belonged mainly to Dikarya
(53.5% Basidiomycota and 41.1% Ascomycota).
Glomeromycota were represented by 2.24% of the
sequences, Mucoromycotina by 1.77%, and Chytri-
diomycota by 0.73 (Supplementary Table 3). For
several groups of phylogenetically related OTUs
abundant in the ecosystem, no close sequence of an
isolated strain was available. Some of these, including
also the putative members of basal fungal lineages,
exhibited high abundance in the RNA samples
(Supplementary Figure 2). Members of the orders
Atheliales, Agaricales, Helotiales, Chaetothyriales
and Russulales were most abundant in the soil
DNA; several minor orders, including Botryosphaer-
iales, Lecanorales and Eurotiales in the L horizon and
Tremellales and Capnodiales in the H horizon, were
infrequent in the DNA communities but highly
abundant among the RNA sequences (Figure 3).

The composition of fungal communities has been
previously shown to differ substantially between
litter and organic horizons, while deeper soil hori-
zons showed greater similarity (O’Brien et al., 2005;
Lindahl et al., 2007). In several forest types, this is
due to the higher abundance of saprotrophic fungi in
litter and the dominance of ectomycorrhizal species
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in deeper soil (Lindahl et al., 2007; Edwards and
Zak, 2010). Although our results showed that ecto-
mycorrhizal fungi were highly dominant in both
horizons (most likely due to the shallow rooting of
P. abies), we also confirmed profound differences
between the two horizons; 42% of abundant species
were only recovered from either the L or the H
horizon (Figure 4). The most abundant genera of
ectomycorrhizal fungi found in this study, Pilo-
derma and Tylospora spp., are also the most
abundant in the boreal P. abies forests in Finland
and Sweden (Rosling et al., 2003; Korkama et al.,
2006; Wallander et al., 2010).

Ecological functions could be reliably assigned
to 64–94% of the abundant members of the fungal
community (Supplementary Table 3). Among these,
ectomycorrhizal fungi dominated all communities,
representing 83% of the sequences in LD, 95% in
HD, 66% in LR and 69% in HR (Supplementary
Figure 2C). During a period when decomposition
processes prevail, a substantial reduction in the
activity of ectomycorrhizal fungi compared with
saprotrophs is expected (Yarwood et al., 2009;
Lindahl et al., 2010). Saprotrophic and parasitic
species were indeed significantly more represented
in the RNA communities, the ratio of mycorrhizal/
saprotrophicþparasitic fungi being 6.9 and 2.9

in the LD and LR and 21.2 and 2.3 in the HD and
HR, respectively. Notably, we found many fungal
sequences belonging to lichen-forming fungi and
detected these preferentially in the RNA community
(9.3% in LR).

Ecology of soil bacteria and fungi is largely different
In agreement with previous studies on the vertical
stratification of soil decomposition processes (Witt-
mann et al., 2004; Šnajdr et al., 2008), we show that
the L and H horizons differ significantly in both the
total and relative amounts of bacterial and fungal
biomasses (Figure 1). According to the phospholipid
fatty acid/biomass C conversion factors (Anderson
and Parkin 2007), the L horizon contained 2.9 times
more fungal than bacterial biomass (10.7 and 3.7mg
biomass C per gram, respectively). In the H horizon,
fungal and bacterial biomasses were equal (1.50 and
1.58mg g�1). The diversity of bacterial populations
was considerably higher than that of fungal popula-
tions. When 1000 randomly selected sequences
were analysed, 302–366 OTUs were found in
bacteria, compared with 141–236 in fungi.

While the diversity estimates for DNA- and RNA-
derived communities of bacteria were similar, the
Chao1 estimators for fungal communities surpris-
ingly showed that a more diverse community is
revealed when RNA is analysed (Supplementary
Table 1). The DNA- and RNA-derived communities
of bacteria largely overlapped, and among the
abundant OTUs none was found exclusively either
in DNA or RNA. By contrast, 18% of fungal OTUs
were found only in the RNA community, and 2%
were found exclusively in the DNA community.
Among cbhI sequences, indicating the presence of
cellulolytic members of the fungal community, 27%
were found only in DNA and 15% only in RNA
(Figure 4). These data show that the DNA sequen-
cing approaches miss a significant and functionally
relevant part of microbial communities and our
current knowledge largely based on this approach is
incomplete. The high RNA/DNA ratios for some
microbial taxa show that species with low abun-
dance can be highly active.

Abundances of the major bacterial and fungal
OTUs in different soils have been reported to be
2–3% and 7–17%, respectively (Fierer et al., 2007;
Buée et al., 2009). In this study, the first to report
on bacteria and fungi from the same soil, bacterial
communities also showed higher evenness than
fungal communities. The most abundant bacterial
OTU accounted for 5–7% of all sequences, while
the dominant fungal OTU in our ectomycorrhiza-
dominated ecosystem represented up to 430% of
all sequences. Between 30 and 60 of the most
abundant bacterial and 6 and 22 of the most
abundant fungal OTUs made up 50% of their
respective communities (Supplementary Table 1).

Most bacterial OTUs with abundance 40.3%
were recovered from all study sites. In contrast,
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majority of fungal OTUs and cbhI clusters were
found only at one to three sites (Figure 5). Also, the
abundance of bacteria across study sites varied
considerably less than that of fungi; the mean
coefficient of variation was 0.56 for bacteria and
1.30 for fungi. This applied even in the case of the
most abundant fungal taxa, for example, the second-
most abundant fungal OTU was absent at one study
site. The uneven spatial distribution of fungi in the
ecosystem is likely a consequence of a combination
of factors including the size of organisms, mobility
and the association of many taxa with large nutrient
patches or plant roots. This is supported by the fact
that fungi forming large mycelial systems (for
example, Russulales and Agaricales) showed higher
variation in abundance than species with limited
mycelia (for example, Mortierellales and Archae-
osporales).

The affinity of microbial taxa and cbhI clusters for
either the L or H horizon and their differential
abundance in DNA versus RNA points to their
different niches and ecological roles (Supplemen-
tary Tables 2–4). Over 60% of dominant fungal
OTUs and as much as 74% of cbhI clusters showed
10-fold enrichment in either the L or H horizons.
In contrast, vertical stratification was less distinct in
bacterial OTUs (Figure 4). This observation further
stresses the importance of fungi in shaping the
spatial structure of the forest floor.

Cellobiohydrolase genes exhibit high diversity in the
soil metagenome and metatranscriptome
Total RNA extracted from soils contains o10%
mRNA (Urich et al., 2008); even after mRNA

enrichment it still contains both rRNA and tran-
scripts of abundant genes such as those encoding
ribosomal proteins (Bailly et al., 2007). This leads to
low recovery of targeted sequences of functional
genes by shotgun sequencing approaches. For
example, only nine gene clusters of denitrification
genes were obtained from 77 000 metagenome-
derived clones (Demaneche et al., 2009). Amplifica-
tion of target sequences is thus the only way to
assess the diversity of functional genes.

Here, we show for the first time that a single
eukaryotic functional gene can be analysed at a
depth that allows diversity estimation; a reliable
Chao1 diversity prediction of 46±9 cbhI clusters per
sample was obtained for the HR sample. When
samples from all sites were analysed together, a total
of 456 clusters were predicted for LD, 344 for HD,
201 for LR and 99 for HR, with sufficient sampling
effort for LR and HR. Approximately 40% and 25%
of sequences present in the DNA were being
transcribed in the L and H horizons, respectively.
Because most of the analysed fungi harbour more
than one cbhI gene (Baldrian and Valášková, 2008;
Edwards et al., 2008), the diversity of cellulolytic
fungi in forest topsoil can be estimated only roughly
at 50–300. This means that a considerable proportion
of the fungal community transcribes or at least
harbours the cbhI gene. Almost all cbhI clusters
showed distinct association with either the L or H
horizons, indicating only a minor overlap of cellulo-
lytic fungal communities between horizons. Princi-
pal component analysis followed by ANOVA showed
significant differences in cbhI pool composition
among LD, HD, LR and HR (Po0.0019 for differences
among L and H and Po0.0054 for DNA/RNA).

Current attempts to assign fungal producers to the
sequences of functional genes derived from soil
metagenomes suffer from a lack of sequence in-
formation in public databases. Because of this, the
closest hits for most cbhI clusters in public data-
bases were rather distant, with only three clusters
showing 496% similarity. By sequencing cbhI
genes from fungi occurring in the soil, we were able
to identify the taxonomic affiliation of producers for
13 additional clusters (Supplementary Table 4).
Some of the most abundant cbhI sequences were
transcribed by fungi with low abundances in the
ecosystem (for example, Mycena sp. and Xylariales),
showing the importance of low-abundance species
for cellulose hydrolysis. Phylogeny trees con-
structed using cDNA and peptide sequences (Sup-
plementary Figure 3) allowed coarse taxonomic
placement of producers for 24–90% of dominant
cbhI clusters into either Ascomycota or Basidiomy-
cota (Figure 3). In the H horizon, where 75–90% of
sequences were assigned, genes of both taxa were
equally present, but the transcripts were mainly of
ascomycetous origin (495% of assigned sequences).

To match the sequences of genes and transcripts,
introns were removed from DNA sequences (Sup-
plementary Figure 3). There were 28 DNA clusters
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containing one intron and one containing four
introns. The internal peptide of cbhI obtained after
intron removal varied in length and contained both
conserved and highly variable regions (Figure 6).
The consensus sequence derived from this study
differed from the one based on published cbhI
sequences from isolated fungal strains at 4 amino-
acid positions out of 101 (Edwards et al., 2008).
Thus, the depth of environmental amplicon sequen-
cing may contribute to the construction and evalua-
tion of better primers and qPCR probes for targeted
functional genes.

Conclusions

Much of what is currently known about the ecology
of soil microbial communities has been inferred
from studies targeting DNA. Despite similar diver-
sity of microbial communities based on DNA and
RNA analysis, the fact that several major fungal
OTUs were found exclusively in the RNA pool and
that several active bacterial OTUs exhibited low
abundance in the DNA pool demonstrates the
limitations of DNA-based surveys, which likely
miss considerable portions of active microbial
populations. In the soil ecosystem, bacterial and
fungal communities differ in their spatial distribu-
tions with fungal taxa more distinctly confined to
either the litter or the organic horizon of soil and
more heterogeneously distributed in the ecosystem.
The diversity and distribution of functional genes
responsible for important biogeochemical processes
and consequently of their producers can be effi-
ciently targeted by amplicon sequencing. Low
abundance of several fungal taxa highly expressing
the cbhI gene suggests that these species are highly
important for decomposition.
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Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z,
Miller W et al. (1997). Gapped BLASTand PSI-BLAST:
a new generation of protein database search programs.
Nucleic Acids Res 25: 3389–3402.

Amann RI, Ludwig W, Schleifer KH. (1995). Phylogenetic
identification and in situ detection of individual
microbial cells without cultivation. Microbiol Rev 59:
143–169.

Anderson IC, Parkin PI. (2007). Detection of active soil
fungi by RT-PCR amplification of precursor rRNA
molecules. J Microbiol Methods 68: 248–253.
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ORIGINAL ARTICLE

Fungal community on decomposing leaf litter
undergoes rapid successional changes

Jana Vořı́šková and Petr Baldrian
Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha 4,
Czech Republic

Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems.
However, current knowledge regarding the successive changes in fungal communities during litter
decomposition is limited. Here we explored the development of the fungal community over 24
months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-
pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI)
genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the
involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and
leaves immediately before abscission were also analysed. The results showed rapid succession of
fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the
abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf
senescence, increased until month 4 and did not significantly change during subsequent
decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months
before abscission, and these phyllosphere taxa comprise a significant share of the fungal
community during early decomposition up to the fourth month. Sequences assigned to the
Ascomycota showed highest relative abundances in live leaves and during the early stages of
decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota

phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available
in the litter during all stages of decomposition, the community of cellulolytic fungi changed
substantially over time. The results indicate that litter decomposition is a highly complex process
mediated by various fungal taxa.
The ISME Journal (2013) 7, 477–486; doi:10.1038/ismej.2012.116; published online 11 October 2012
Subject Category: microbial population and community ecology
Keywords: fungi; litter decomposition; cellulose; endophyte; temperate forests

Introduction

Plant litter represents a major source of organic
carbon in forest soils. Its decomposition is a
complex process that involves mineralisation and
transformation of organic matter. Decomposition of
plant litter is a key step in nutrient recycling (Berg
et al., 2001). As most of the plant biomass-derived
carbon in the temperate and boreal forests is
mineralised in the litter layer, an understanding of
this process and the microorganisms involved is
essential for the identification of factors that affect
global carbon fluxes.

Fungi are considered to be the key players in litter
decomposition because of their ability to produce a
wide range of extracellular enzymes, which allows
them to efficiently attack the recalcitrant lignocellu-
lose matrix that other organisms are unable to

decompose (Kjoller and Struwe, 1982; de Boer
et al., 2005). Biochemical decomposition of leaf
litter is a sequential process that initially involves
the loss of the less recalcitrant components (for
example, oligosaccharides, organic acids, hemicel-
lulose and cellulose) followed by the degradation of
the remaining highly recalcitrant compounds (for
example, lignin or suberin). Litter quality changes
during the course of its transformation and so does
the activity of litter-associated microorganisms
(Dilly et al., 2001). These changes are accompanied
by a succession of microbial litter decomposers that
reflect the varied catabolic capabilities that are
sequentially required to complete the process of
litter decomposition (Frankland, 1998; Osono et al.,
2006).

The ability of fungi to decompose leaf litter has
been investigated many times under laboratory
conditions (for example, Osono, 2007; Baldrian
et al., 2011). Furthermore, many studies have
combined litterbag techniques with cultivation-
based methods followed by the isolation and
identification of fungal decomposers (Koide et al.,
2005; Osono, 2005; Zhang et al., 2008; Osono et al.,

Correspondence: J Vořı́šková, Laboratory of Environmental Micro-
biology, Institute of Microbiology of the ASCR, v.v.i., Vı́deňská
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2009). Using these methods, fungi involved in the
decomposition of litter have been divided into early,
intermediate and late decomposers (Frankland,
1998; Tang et al., 2005). This observation was
supported by a recent study performed by Šnajdr
et al. (2011), as these three phases were distin-
guished during oak litter decomposition based on
the differences in the activity of extracellular
enzymes and the rates of decomposition of the
individual litter constituents. In most previous
studies, fungi from the Ascomycota phylum were
found to dominate during the initial stages of litter
decay along with a few basidiomycetous fungi. The
abundance of fungi from the Ascomycota phylum
decreases during the process of degradation as they
are gradually replaced by fungi from the Basidio-
mycota phylum, especially the saprotrophic cord
formers, during the later stages of decomposition
(Frankland, 1998; Osono, 2007).

Plant organic matter transformation leads to the
disappearance of easily utilisable compounds and to
the formation of recalcitrant ones. As a conse-
quence, the chemical and spatial heterogeneity of
the substrate changes with time. This process can
theoretically result in the formation of novel niches
and a potential increase in fungal diversity or to the
creation of more uniform environment with a
potential decrease in diversity. Both scenarios have
been reported from litter or wood (Melillo et al.,
1989; Dickie et al., 2012) but the actual development
of fungal community on decaying litter is so far
unknown. Culture-dependent approaches are typi-
cally selective because only a small fraction of
microbial taxa grow under the conditions used for
strain isolation (Amann et al., 1995). Molecular
methods, such as community fingerprinting or
direct sequencing of cloned PCR sequences that
have recently been applied to litter (Aneja et al.,
2006; Kubartova et al., 2009) suffered from limited
resolution. Therefore, next-generation sequencing
approaches currently represent the only technique
that can be used to sufficiently describe the devel-
opment of fungal community composition during
succession.

The degradation of plant leaves is not limited to
the litter layer on the forest floor. Indeed, the
decomposition process begins as soon as the leaf is
formed (Stone, 1987). Phyllosphere fungi that are
established in the interior or on the surfaces of live
leaves have the advantage of gaining access to
readily available nutrients in live leaves and later,
after senescence, to the dead leave biomass.
Recently, 454-pyrosequencing was used to assess
fungal diversity in live oak leaves and demonstrated
the presence of a diverse fungal community
(Jumpponen and Jones, 2009a, b). It is highly
probable that at least some of these fungi participate
in litter decomposition. There is some evidence that
certain phyllosphere fungi are able to transform
various components of litter because they produce
the extracellular enzymes that are involved in

decomposition in pure culture and their ability to
decompose litter material has been described
(Korkama-Rajala et al., 2008; Žifčáková et al.,
2011). Although potential leaf endophytes have
been isolated from litter in various stages of
decomposition (Osono, 2002; Koide et al., 2005),
their importance in the community of litter-
associated fungi is currently unknown.

The aim of this study was to characterise the
development of the fungal community composition
over 24 months following litterfall in a temperate
forest dominated by Quercus petraea. As some litter
components, including cellulose, remain present in
a considerable quantity during the entire 24-month
period (Šnajdr et al., 2011), the fungi capable of
cellulose decomposition may be present during all
phases of decomposition. To address this possibility,
the composition of the gene pool of the cbhI
exocellulase gene, which is an enzyme that catalyses
the rate-limiting step in the decomposition of
cellulose (Baldrian and Valášková, 2008; Edwards
et al., 2008), was monitored at various stages of litter
decomposition. To evaluate the role of phyllosphere
fungi in litter decomposition, fungal communities
associated with live Q. petraea leaves and senescent
leaves immediately before abscission were also
analysed. The results of this study are discussed in
light of previously published data derived from the
same experiment where litter decomposition (mass
loss), fungal and bacterial biomass content based on
ergosterol and phospholipid fatty acid analysis, and
the activity of the extracellular enzymes in the
litterbags were explored by Šnajdr et al. (2011).

Materials and methods

Study site and sample collection
The study site was an oak (Q. petraea) forest in the
Xaverovský Háj Natural Reserve, near Prague, Czech
Republic (5015038"N, 14136048"E). The site was
previously explored with respect to the activity of
decomposition-related extracellular enzymes in the
forest topsoil (Šnajdr et al., 2008) and during the
successive transformation of Q. petraea litter
(Šnajdr et al., 2011). In this study site, the
saprotrophic fungi were characterised (Valášková
et al., 2007; Baldrian et al., 2011). The soil was
acidic cambisol with a litter thickness of 0.5–1.5 cm,
a pH of 4.3, a C content of 46.2% and an N content of
1.76%. The mean annual temperature at the soil
surface was 9.3 1C (winter mean 1.3 1C, summer
mean 16.6 1C; Baldrian et al., in press).

The litterbag experiment was run as described
previously (Šnajdr et al., 2011). Litter material (Q.
petraea leaves, tree age 100–120 years) for litterbag
construction was collected immediately after abscis-
sion and allowed to air dry at 20 1C. Litterbags
containing 5 g of air-dried leaves (10� 20 cm, 1mm
nylon mesh size) were placed on the top of the litter
horizon at the study site at the end of the litterfall
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season. To prevent extensive desiccation, litterbags
were overlaid with freshly fallen oak leaves. Litter-
bags were removed after 2, 4, 8, 12 and 24 months of
incubation, three litterbags were collected at each
sampling time for DNA extraction. For the analysis
of the phyllosphere fungal community composition,
live Q. petraea leaves were collected 2 months
before abscission (August) by hand-picking (month
� 2), and senescent leaves were collected during the
litterfall period by gently shaking oak twigs and
collecting falling leaves before their contact with the
soil (month 0). Collected material was transferred to
the laboratory and processed immediately. Leaves or
litter were cut into 0.25 cm2 pieces and used
immediately for DNA extraction. The same material
was also used for chemical analyses, measurement
of enzyme activities and quantification of microbial
biomass as described in Šnajdr et al. (2011).

454-Pyrosequencing of fungal internal transcribed
spacer (ITS) and cellobiohydrolase I (cbhI) genes
The total genomic DNA was extracted from 300mg
of material using the Powersoil Kit (MoBio, Carlsbad,
CA, USA). The primers ITS1/ITS4 (White et al., 1990)
were used to amplify the ITS1 region, the 5.8S
ribosomal DNA and the ITS2 region of the fungal
ribosomal DNA. The primers cbhIF and cbhIR
(Edwards et al., 2008) were used to amplify a partial
sequence of the fungal cbhI gene. These primers
amplify cbhI genes belonging to the GH7 family of
fungi from the Basidiomycota, Ascomycota and
Mucoromycotina unless the template contains
intron in the primer sequence (Štursová et al., 2012).

A two-step PCR amplification using composite
primers containing multiplex identifiers was per-
formed to obtain amplicon libraries for 454-pyrose-
quencing following a previously described method
(Baldrian et al., 2012). PCR amplicons were quanti-
fied using the Quant-iT PicoGreen Kit (Invitrogen,
Grand Island, NY, USA). An equimolar mix of PCR
products was prepared for each primer pair, and the
pooled products were sequenced on a GS FLX
Titanium platform (Roche, Basel, Switzerland).
Fungal ITS sequences were analysed from all
sampling times, and the cbhI gene diversity was
analysed in the samples collected at � 2, 0, 4 and 12
months.

Bioinformatic analysis
The pyrosequencing data were processed as
described previously (Baldrian et al., 2012). Pyro-
sequencing noise reduction was performed using
the Denoiser 0.851 (Reeder and Knight, 2010) and
chimeric sequences were detected using UCHIME
(Edgar, 2010) and deleted. Fungal sequences were
shortened to 380 bases and clustered using cd-hit
(Li and Godzik, 2006) at a 97% similarity level
(O’Brien et al., 2005) to obtain the operational
taxonomical units (OTUs). Consensus sequences were

constructed for each cluster, and the closest hits were
identified using the PlutoF pipeline (Tedersoo et al.,
2010). For the cbhI gene, the sequences were
truncated to 300 bp and clustered at a 96% similar-
ity level (Baldrian et al., 2012) to obtain the OTUs.
Consensus sequences were constructed, and the
introns were removed. Data sets containing the cbhI
sequences representing the OTUs and sequences
retrieved from GenBank were aligned using SeaView
4 (http://pbil.univ-lyon1.fr/software/seaview.html)
with MUSCLE (http://www.drive5.com/muscle/).
Maximum likelihood phylogenetic trees were com-
puted with the GTR substitutions model using
GARLI (http://www.molecularevolution.org/sofware/
phylogenetics/garli/garli_create_job). The OTUs of
cbhI genes that clustered with sequences of known
fungal taxa from the GenBank with bootstrap support
470% were taxonomically assigned to fungal phyla.

Sequence data have been deposited in the MG-
RAST public database (http://metagenomics.anl.gov/,
data set numbers 4497081.3 for fungal ITS region and
4497080.3 for cbhI genes).

Diversity and statistical analyses
Owing to the fact that the sampling depth achieved
in this study did not allow to make realistic
estimates of total diversity and since next-genera-
tion sequencing derived data were demonstrated to
be affected by artefacts (Tedersoo et al., 2010), the
only measure of diversity of OTUs used was the
amount of the most abundant OTUs that represented
80% of all sequences. This metric in our opinion
fairly represents the diversity of the quantitatively
important part of the fungal or cbhI community. To
avoid possible effects of variable sampling depth,
these estimates were calculated for a data set
containing 700 randomly chosen ITS sequences or
495 cbhI sequences from each litterbag. The sequences
were clustered again as described above. The OTU
richness and Chao1 were calculated using EstimateS
8.00 (http://viceroy.eeb.uconn.edu/estimates).

One-way analysis of variance with the Fisher’s
least significant difference post hoc test was used to
analyse the significant differences in relative abun-
dance of individual OTUs or fungal taxa among
sampling times. Principal component analysis was
performed with the relative abundance data of the
50 most abundant fungal genera. PC1 and PC2 loads
were subjected to analysis of variance with the
Fisher’s least significant difference post hoc test.
Differences with a Po0.05 were regarded as statis-
tically significant.

Results

Fungal communities associated with oak leaves
In total, 23 760 sequences of the fungal ITS region
with4380 bp were used for analysis after denoising
and removal of the chimeric sequences and
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sequences not belonging to fungi (o0.6%). These
sequences clustered into 1874 OTUs (including
1193 singletons) at a 97% similarity level. Although
80% of all sequences at month � 2 were represented
by 23 dominant OTUs, at month 0 70–90% of
sequences belonged to the single most abundant
OTU (assigned to Mycosphaerella punctiformis).
Within a relatively short time (month 4), the
diversity peaked with 30 OTUs representing 80%
of the total fungal community at month 8 and then
levelled off (Figure 1).

A total of 387 fungal genera were identified as the
closest hits of individual OTUs. Mycosphaerella,
Naevala, Troposporella and Trichosporon were the
most abundant fungi in the amplicon pool. The 50
most abundant fungal OTUs with their closest
identified hits and abundances are listed in
Supplementary Table 1. In all, 40 of the 50 most
abundant fungal OTUs and 27 of the top 33 genera
demonstrated significant changes in abundance over
time (Supplementary Table 1, Figure 2). Altogether,
the ascomycetous OTU 0 (closest hit: Mycosphaer-
ella punctiformis) and OTU 1 (Naevala minutis-
sima) were the most abundant fungi. OTU 0 was
predominant during the early stages of succession
(month � 2 and 0) but disappeared almost

completely during later stages. OTU 1 and OTU 4
(Athelia) were highly abundant during the initial
stages of litter decomposition (months 2 and 4).
However, OTU 3 and OTU 11 (both Troposporella
fumosa) dominated the later stages of decomposi-
tion (months 8 and 12) but were almost absent in
other samples. The latest stages of litter decomposi-
tion were dominated by OTU 2 (Trichosporon
porosum) and OTU 5 (Trichosporon miniliiforme)
(Supplementary Table 1).

The majority of fungal sequences were assigned to
the Ascomycota (71%) and Basidiomycota (26%)
phylum. Glomeromycota were represented by 1.8%
of all sequences, and fungi from Mucoromycotina
comprised 0.76% of all sequences. Fungi from the
Ascomycota phylum dominated in the live and
senescent leaves, which is in contrast to month 24
when fungi from the Basidiomycota phylum repre-
sented 60% of the amplicons. Glomeromycota and
Mucoromycotina sequences were rare until month 4
and then rapidly increased until month 8 and 24
when they represented 8.6% and 2.2% of the
amplicon pool, respectively (Figure 3). The most
abundant fungal orders were Capnodiales (22% of
sequences), Helotiales (20%) and Tremellales (12%).
Members of the Helotiales order were present during
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Figure 1 Loss of dry mass, activity of extracellular enzymes, development of fungal and bacterial biomass and estimates of fungal
diversity in Q. petraea live leaves and leaves at different stages of decomposition. Fungal biomass is expressed as ergosterol content. The
ratio of fungal and bacterial biomass is based on the ratio of ergosterol content and the content of bacteria-specific phospholipid fatty
acids. Data on leaf chemistry and microbial biomass are derived from Šnajdr et al. (2011). 80% OTU represents the number of the most
abundant OTUs, which represent 80% of all sequences. The data are shown as the means and s.e. from three litterbags.
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all phases of succession and peaked at month 2 and
4 together with fungi from the Atheliales family.
Fungi belonging to the ascomycetous order Capno-
diales dominated among amplicons from the live
and senescent leaves, whereas the basidiomycetous
order Tremellales predominated at later stages
(Figure 3).

Each sampling time was characterised by a
specific fungal community, which was different
from the community in the previous or the next
stage. When the abundance of the top 50 fungal

genera was analysed by principal component ana-
lysis, the first two canonical axes explained 20.70%
and 14.85% of the total variability (Figure 2). The
analysis of variance of the PC1 and PC2 loadings
demonstrated that community changes over time
were significant between any two dates except
between months 2 and 4 (Po0.015). This is
supported by the fact that most of the fungi that
were highly abundant at a certain time only
dominated for a short period. Among the 28 genera
that represented 43% of the sequences at any
particular sampling time, 20 did not exceed 1% at
any other time (Figure 2).

The amplicons from live Q. petraea leaves were
dominated by the Ascomycota (88.5%) fungi, and
Capnodiales, Helotiales, Dothideales and Pleospor-
ales were the major orders. The Basidiomycota
phylum (10.6%) was mainly represented by Tremel-
lales (Figure 3). The fungal community on senescent
leaves was dominated by the same OTUs that were
dominant on live leaves, and the fungi that were
highly abundant on live leaves comprised approxi-
mately 50% of all fungi until month 4 (Figure 4).

Cellulose-decomposing fungi associated with oak
leaves
The gene cbhI encoding for cellobiohydrolase was
used as a marker for the cellulolytic members of the
fungal community. In total, 3351 denoised, non-

8

-10 -8 -6 -4 -2 0 2 4 6 8

PC 1: 20.70%

-8

-6

-4

-2

0

2

4

6

8

Mycosphaerella

Naevala

Troposporella

Trichosporon

Athelia

Cryptococcus

Sistotrema

Guignardia

Helminthosporium

Aureobasidium

Clavariopsis

Allantophomopsis

Dimelaena

Rhodocollybia

Davidiella

Cladosporium

Sympodiella

Ambispora

Ramariopsis

Hymenoscyphus

Holwaya Raffaelea

Polydesmia

Polyscytalum

Pseudeurotium

Devriesia

Gigaspora

Tirmania

Melanotaenium

Mrakia

Cylindrosympodium

Rhodotorula

Mortierella

Phlogicylindrium

Articulospora

Helicoma

Calycina

Bensingtonia Venturia

Epicoccum

Sporobolomyces

Pyrenochaeta

Trichoderma

Teratosphaeria

Tremella

Trechispora

Bullera

Scutellospora

Varicosporium

Candelariella

Devriesia*

Allantophomopsis*

-2 0 2 4 812 24

Relative abundance

0 0.1 1 10 100  %

8

8

12

1212

000

24
24

24

-2-2

-2

4

4
4

2 2
2

Mycosphaerella*

Holwaya*

Cladosporium*

Aureobasidium*

Davidiella*

Mrakia

Athelia*

Naevala*

Cryptococcus*

Rhodotorula*

Clavariopsis

Polyscytalum

Pseudeurotium*

Sympodiella*

Cylindrosympodium*

Guignardia*

Ramariopsis*

Hymenoscyphus*

Troposporella*

Melanotaenium*

Mortierella*

Sistotrema

Rhodocollybia

Dimelaena

Polydesmia*

Gigaspora*

Trichosporon*

Helminthosporium*

Ambispora*

Raffaelea*

Tirmania*

P
C

 2
: 
1

4
.8

5
%

Figure 2 (a) Principal component analysis of the relative abundance of the 50 most abundant fungal genera in Q. petraea live leaves and
leaves at different stages of decomposition. Ascomycota—red, Basidiomycota—blue, Glomeromycota—yellow, Mucoromycotina—green.
Green circles with numbers indicate the positions of individual samples (litterbags) with ages in months. (b) Time course of the relative
abundance of dominant fungal genera in Q. petraea live leaves and leaves at different stages of decomposition. Mean abundances are
shown for each time point. A statistically significant effect of time on abundance is indicated by an asterisk (Po0.05, analysis of variance
(ANOVA) followed by Fisher’s post hoc test).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-2 0 2 4 8 12 24

Glomeromycota
Other fungi

Other basidiomycota
Mucoromycotina

Agaricales
Atheliales
Corticiales
Cystofilobasidiales
Tremellales
Urocystales
otherAscomycota
Botryosphaeriales
Capnodiales
Dothideales
Helotiales
Hypocreales
Lecanorales
Microascales
Ophiostomatales
Pezizales
Pleosporales

B
a
s
id

io
m

y
c
o

ta
A

s
c
o

m
y
c
o

ta

Figure 3 Phylogenetic assignment of fungal sequences from Q.
petraea live leaves and leaves at different stages of decomposi-
tion. The data are represented as the mean values from three
litterbags.

Fungal succession on litter
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chimeric sequences of cbhI were analysed. The
sequences clustered into 235 OTUs (including 107
singletons). The diversity of the cellulolytic fungal
community increased between months 4 and 12:
80% of the cbhI gene sequences were represented by
only 7±1 and 8±1 dominant OTUs during months
0 and 4 while it was 26±2 at month 12.

The most abundant OTUs were OTU 4 and OTU 0,
which represented 28% and 12.5% of all sequences,
respectively. OTU 4 dominated during month � 2
where it represented over 90% of all sequences.
Among the other abundant OTUs, OTU 0, OTU 1
and OTU 2 predominated during months 0 and 4 but
were almost absent at month 12. In contrast, OTU 3
was the most abundant at month 12 (Figure 5). This
observation indicates that, despite the fact that
cellulose was available during the entire decom-
position process, specific cellulolytic fungi were
present during different stages of decomposition.
The abundance of one-half of the 30 most abundant
OTUs significantly changed over time (Supplement-
ary Table 2).

Phylogenetic analysis of the cbhI gene sequences
showed that 38% of all sequences clustered with
sequences of known fungal taxa with 470% boot-
strap support (Supplementary Figure 1). Of these
sequences, the majority belonged to the Basidiomy-
cota (29%) phylum, which was represented by two
OTUs, and the other 9% belonged to seven ascomy-
cetous OTUs. Sequence similarities 497% allowed
us to determine the taxonomic affiliation of OTU 11
to the ectomycorrhizal basidiomycete Russula palu-
dosa and OTU 46 to the ascomycete Aureobasidium
pullulans.

Discussion

During the decomposition of Q. petraea leaves used
in this study, approximately 70% of the total mass

was lost within 24 months (Figure 1; Šnajdr et al.,
2011). The C/N ratio decreased from 49 to 22 within
12 months and remained constant later. Fungal
biomass increased rapidly from low values in the
live and senescent leaves to a maximum at month 2
and remained lower but constant until the end of the
experiment. The activity of cellulolytic enzymes
was detected in live and senescent leaves, which
indicates that decomposition started before leaf
abscission (Figure 1; Šnajdr et al., 2011). Three
distinct decomposition phases have been distin-
guished that are characterised by the sequential
mass loss of extractables and hemicelluloses, cellu-
lose, and lignin (Supplementary Figure 2; Šnajdr
et al., 2011). This seems to be consistent with the
culture-based observations that divided fungi into
early, intermediate and late decomposers
(Frankland, 1998; Osono and Takeda, 2001; Tang
et al., 2005; Osono, 2007). The culture-dependent
studies, however, tend to underestimate the total
diversity of fungi and are biased towards rapidly
growing species (Hering, 1967; Frankland, 1998).
Thus, they do not provide reliable information about
fungal communities associated with leaves/litter
during its degradation. Despite several limitations
(see for example Amend et al., 2010), next-genera-
tion sequencing seems to be better suitable to
explore the fungal community because it can deliver
information at higher quantitative resolution and is
not biased towards easily culturable and fast grow-
ing taxa.

The live oak leaves used in this study harboured a
relatively rich and even fungal community with its
diversity comparable to previous reports from
Quercus macrocarpa (Jumpponen and Jones,
2009a, b). The low biomass of the fungi on live
leaves is possibly a consequence of the action of the

Figure 4 The persistence of fungal OTUs recorded in live
Q. petraea leaves (endophytes) during subsequent decomposition
of litter. Data represent the sum of the relative abundances of
dominant endophytes with abundances 45% in live leaves (open
circles) and abundant endophytes (41%; black squares).

0

20

40

60

80

100

-2 0 2 4 6 8 10 12

Time (months)

R
e

la
ti
ve

 a
b
u

n
d

a
n

c
e

 (
%

)
Figure 5 Time course of the relative abundance of dominant
cellulolytic fungi represented by the cbhI gene OTUs in
Q. petraea live leaves and leaves at different stages of decom-
position. The data are shown as the mean values from three
litterbags.

Fungal succession on litter
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protective mechanisms of the plant. After leaf
senescence, rapid proliferation of opportunistic
Mycosphaerella spp. resulted in a sevenfold
increase in fungal biomass but a rapid decrease in
diversity. The rapid increase in fungal diversity after
the litterfall was caused by the invasion of new
colonisers and was detected during month 2
(Figure 1). Fungal diversity continued to increase
until month 4, which indicates the arrival of new
species on the substrate. However, the abundance of
the most common fungal genera did not change
significantly (Figure 2).

Fungi from the Ascomycota phylum prevailed in
the live and senescent leaves on the trees (88.5% and
99.5% of amplicons, respectively). These data are in
accordance with previous culture-based studies on
various trees (Osono, 2002; Santamarı́a and Bayman,
2005) and the pyrosequencing analyses of live
Q. macrocarpa leaves (Jumpponen and Jones,
2009a, b). However, the most common genera
recorded from a Q. macrocarpa phyllosphere in
North America were quite distinct on the genus
level. Of the major genera, Microsphaeropsis, Alter-
naria, Epicoccum, Aureobasidium, Phoma and Ery-
siphe were detected, and only Aureobasidium and
Epicoccum were recovered from live leaves in this
study with a 41% frequency, which demonstrates
that either the tree species, geographic distance or
different environmental conditions affect the com-
position of phyllosphere mycoflora.

Some fungi associated with living tree leaves are
also found in association with decomposing leaf
litter (Koide et al., 2005; Osono, 2006). The fact that
some live leaf-associated fungi are able to produce
extracellular enzymes or decompose sterile senes-
cent leaves (Korkama-Rajala et al., 2008; Žifčáková
et al., 2011) led to the hypothesis that certain taxa
may change from endophytism to a saprotrophic
strategy. In addition, molecular evidence indicates
that fungi cultured from live leaves and decaying
litter may indeed belong to the same taxa
(Promputtha et al., 2007). This study shows that
phyllosphere fungi are still quantitatively important
during the subsequent stages of decomposition, at
least until month 4 (Figures 2 and 4). Establishment
in live, nonsenescent leaves created an opportunity
for these fungi to readily exploit leaf-derived
nutrients during decomposition after leaf senes-
cence. Fungi belonging to the genera Holwaya,
Cladosporium, Aureobasidium, Davidiella and
Cryptococcus were predominant in living oak
leaves, in senescent leaves nearly disappeared and
their abundance rose again in early phases of litter
decomposition. The genera Aureobasidium and
Cladosporium contain well-known phyllosphere
fungi that have been repeatedly isolated from
various trees (Sadaka and Ponge, 2003; Slavikova
et al., 2007; Unterseher and Schnittler, 2009), and
their persistence until early decomposition has been
reported (Sadaka and Ponge, 2003). OTUs belonging
to the Mycosphaerella genus, which comprises

pathogenic and saprotrophic species (Suto, 1999),
were the most dominant in live leaves and made up
a significant portion of the population at month 0
where they represented 90% of sequences, which
indicates that they are both endophytes and efficient
early saprotrophs.

The first year of our experiment was characterised
by a relatively rapid loss of litter mass, a decrease in
the C/N ratio and the cellulose content, and a
relatively high activity of cellulolytic enzymes,
which causes faster decomposition of cellulose
(Supplementary Figure 2). These conditions were
associated with the continuous dominance of fungi
from the Ascomycota phylum, which are generally
known to selectively decompose cellulose over
lignin. Dominance of ascomycetous fungi in the
early stages of beech litter decomposition was
currently also demonstrated using metaproteomic
approach (Schneider et al., 2012). Similar results
were obtained when 8-week-old Fagus sylvatica
litter was analysed, except that it also contained a
significant proportion of fungi from the Mucoromy-
cotina phylum (Aneja et al., 2006). Despite the fact
that the Mucoromycotina fungi are often considered
to be opportunistic microorganisms that are asso-
ciated with nutrient-rich substrates, their abun-
dance in Q. petraea litter was low until month 8.
Among the fungal genera that were dominant during
month 2, Naevala, Cryptococcus and Mycosphaer-
ella were detectable in the live leaves, and the
basidiomycetous genera Athelia and Mrakia
appeared anew during month 2 and immediately
became dominant, which demonstrates their ability
to rapidly proliferate on fresh litter. Naevala, Athelia
and Cryptococcus fungi maintained their prevalence
until month 4, whereas Mrakia fungi nearly dis-
appeared and were replaced by Polyscytalum and
Rhodotorula fungi. Month 8 was characterised by an
entirely different fungal community, which was
most likely caused by a depletion of the majority
of the readily available organic compounds and was
associated with a sharp decrease in the phyllosphere
fungi. Fungi belonging to the Glomeromycota and
the Mucoromycotina phyla were detectable on litter
beginning at month 8, and their abundances gradu-
ally increased until the end of the experiment. The
fungal genera Troposporella, Guignardia, Ramariop-
sis, Sympodiella and Cryptococcus prevailed at
month 8. Troposporella fungi have been recorded
in seasonally flooded soil ecosystems (Carrino-
Kyker and Swanson, 2008), where they were most
likely involved in the decomposition of allochtho-
nous carbon input. Troposporella remained frequent
until month 12, whereas basidiomycetous Sisto-
trema and Rhodocollybia and lichenised ascomyce-
tous Dimelaena fungi appeared for the first time at
this stage. Rhodocollybia is a typical saprotroph
(Valášková et al., 2007), and the polyphyletic genus
Sistotrema contains both ectomycorrhizal and
decomposer fungal species (Di Marino et al., 2008;
Boberg et al., 2011).
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During the second year, the rate of litter mass loss
was relatively slow and the activity of cellulolytic
enzymes decreased, which indicated that the easily
accessible polysaccharides were depleted. Also, the
substrate was richer in the recalcitrant lignin and
nitrogen and characteristic with the increased
activity of ligninolytic enzymes (Supplementary
Figure 2). Fungi from the Basidiomycota phylum
distinctively dominated over fungi from the Asco-
mycota phylum at month 24. In previous studies,
basidiomycetous species, particularly the sapro-
trophic cord formers, have often been demonstrated
to be late litter decomposers (Osono, 2007; Duong
et al., 2008) because of their capability to synthesise
enzymes required for the degradation of complex
polymers (Baldrian, 2008). Interestingly, basidiomy-
cetous cord formers were not among the most
frequent taxa observed in our study. Instead, the
basidiomycetous yeast genus Trichosporon com-
prised 50% of all sequences at month 24. This is
consistent with a recent report that identified this
species as the second most abundant cellulose
decomposer in litter using stable isotope probing
(Štursová et al., 2012). Although the cellulose
content of the litter at this stage is relatively low
(Šnajdr et al., 2011), it may be still sufficient to
support the growth of yeasts and may not be
sufficient to support the growth of the large mycelia
of basidiomycetous cord formers. There is only a
small overlap of the fungal community in litter and
in the uppermost (organic) soil horizon at the site of
study (unpublished data) with 450% of fungi in soil
being ectomycorrhizal. Among the genera reported
in this study, Mortierella, Cryptococcus, Trichos-
poron, Ambispora and Naevala are also frequent in
soil, which can serve as a reservoir for their spread.

This study demonstrated that fungal succession
during litter decomposition is much faster than so
far expected from the culture-based studies
(Figure 2). The fast appearance–disappearance of
fungal taxa seems to contrast with the reported
persistence of DNA from inactive fungi in decaying
wood (Rajala et al., 2011) and to support the rapid
turnover of early/intermediate/late saprotrophs
(Lindahl and Finlay, 2006). The successional
changes are likely governed not only by the
relatively slow changes of the polysaccharide, lignin
and nitrogen content in litter but possibly by other
factors including more subtle changes in litter
chemistry and interspecific fungal interactions.

Cellulose is the major polysaccharide in plant
litter, and cellulose-degrading enzymes are thus an
obvious target for the study of the decomposing
microorganisms. Among these, cellobiohydrolases
(exocellulases), which catalyses the rate-limiting
step of cellulose decomposition (Baldrian and
Valášková, 2008), and the cbhI gene represent
suitable markers for the study of cellulolytic fungi
(Edwards et al., 2008; Weber et al., 2011; Baldrian
et al., 2012). Here, we show that several exocellu-
lase-producing fungi are present in the live leaves of

Q. petraea although the community is dominated by
a single species (Figure 5). This OTU of cbhI genes
was assigned to fungi from the Basidiomycota
phylum, which is surprising if we consider the
dominance of fungi from the Ascomycota phylum at
this stage. The diversity of cellulolytic fungi is high
in senescent leaves with 58 observed and 4200
predicted OTUs. As the leaves are still attached to
the trees, these fungi must have colonised the
substrate before its contact with soil. Later in
decomposition, estimates of cbhI richness were
approximately 200 in number, which indicates that
there are approximately 100 cellulolytic fungal
species when multiple copies of the gene per fungal
genome are considered (Edwards et al., 2008; Weber
et al., 2011). The overall fungal diversity did not
correlate with the diversity of fungi harbouring the
cbhI gene, which indicates that the proportion of
cellulolytic fungi changes during decomposition; no
clear link was observed between the diversity of the
cbhI genes and the activity of cellobiohydrolase.
Although cellulose represents a substrate that is
present in the litter during the entire decomposition
process, the community of cellulolytic fungi also
showed successive changes similar to those of the
total fungal community with dominant OTUs
appearing and disappearing (Figure 5). This may
indicate that the individual cellulolytic fungi have
specific additional nutritional requirements or com-
petitive abilities. Interestingly, the sequences dom-
inating in the cbhI gene pool at month 12 belonged
to the ectomycorrhizal genus Russula. Our results
are consistent with previous observations that
identified cellulases and class II peroxidases in
these fungi (Bodeker et al., 2009; Štursová et al.,
2012) that may combine the mycorrhizal and
saprotrophic lifestyle to some extent.

This study demonstrates that the composition of
the fungal community changes with changing litter
quality much faster than previously thought.
Furthermore, similar changes during the decompo-
sition process are observed among cellulolytic fungi,
which indicates that succession is not only driven
by the availability of the major nutrient sources but
also by other factors, perhaps other nutritional
requirements or the competitive abilities of indivi-
dual taxa. The initial steps of decomposition where
fungi dominate the decomposer community are
characterised by a high involvement of fungi that
occur on the live leaves of the tree. However, further
research on both the structural and functional
aspects of fungal community composition, for
example, use of the metatranscriptomic or metapro-
teomic approaches, are needed to better understand
the functional role of individual fungal taxa during
decomposition.
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Summary 

• Fungi are the agents primarily responsible for the transformation of plant-derived carbon in 
terrestrial ecosystems. However, little is known of their responses to the seasonal changes in 
resource availability in deciduous forests, including photosynthate allocation belowground 
and seasonal inputs of fresh litter. 
• Vertical stratification of and seasonal changes in fungal abundance, activity and community 
composition were investigated in the litter, organic and upper mineral soils of a temperate 
Quercus petraea forest using ergosterol and extracellular enzyme assays and amplicon 454-
pyrosequencing of the rDNA-ITS region. 
• Fungal activity, biomass and diversity decreased substantially with soil depth. The highest 
enzyme activities were detected in winter, especially in litter, where these activities were 
followed by a peak in fungal biomass during spring. The litter community exhibited more 
profound seasonal changes than did the community in the deeper horizons. In the litter, 
saprotrophic genera reached their seasonal maxima in autumn, but summer typically saw the 
highest abundance of ectomycorrhizal taxa. While the composition of the litter community 
changes over the course of the year, the mineral soil shows changes in biomass. 
• The fungal community is affected by season. Litter decomposition and phytosynthate 
allocation represent important factors contributing to the observed variations.

Introduction 

Temperate forests are one of the major 
biomes on earth, covering an area of 570 
million ha and thus playing an important 
role in the global C budget (FAO & JRC, 
2012). In forest ecosystems, carbon enters 
the soil in the form of plant litter (Berg & 
McClaugherty, 2003), through the 
belowground allocation of C fixed by plant 
photosynthesis (Högberg et al., 2010) and 
as a dead fungal and animal material. Fungi 

play the primary role in regulating the flow 
of C through all of these pathways. 
Saprotrophic fungi decompose organic 
matter due to their ability to produce a wide 
range of extracellular enzymes (Steffen et 
al., 2007; Baldrian et al., 2011), which 
allows them to efficiently attack the 
recalcitrant lignocellulose matrix that other 
organisms are unable to decompose (Boer
et al., 2005). Mycorrhizal fungi, as obligate 
symbionts, acquire access to the C 
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compounds derived from the 
photosynthates of their host plants (Hobbie, 
2006) in exchange for soil-derived nutrients 
(van der Heijden & Horton, 2009), and they 
also contribute directly to the carbon 
enrichment of soils by mediating the 
belowground allocation of C from plant 
roots to soil (Clemmensen et al., 2013). 

In temperate deciduous forests, as a 
consequence of the input of new litter and 
its transformation, it is possible to recognise 
three distinct compartments in the soil 
profile: (i) the litter (L horizon), containing 
organic matter derived from dead plant 
biomass almost exclusively; (ii) the organic 
(or humic) H horizon, representing a 
mixture or processed plant-derived organic 
matter and soil components; and (iii) the 
mineral soil horizon, with a lower content 
of organic matter originating both from the 
decomposition of organic matter and 
exudation from the abundant tree roots. If 
invertebrate mixing is limited, the age of 
the litter-derived organic material increases 
with soil depth as decomposition 
progresses, and this is accompanied by 
changes in its chemical composition, 
leading to increasing recalcitrance and the 
formation of humic compounds (Šnajdr et 
al., 2008).  The vertical distribution of the 
fungal community in boreal and temperate 
forests has been demonstrated to reflect soil 
stratification: saprotrophic taxa are more 
abundant close to the surface of the forest 
floor where most carbon is mineralised, 
while mycorrhizal fungi increase in 
abundance with soil depth, where they 
mobilise nitrogen to be supplied to the roots 
of plants (O'Brien et al., 2005; Lindahl et 
al., 2007).  
Observations from diverse forest soils 
suggest that environmental factors such as 
temperature, water availability and 
substrate quality may be important factors 
affecting microbial community composition 
(Aponte et al., 2010; Kaiser et al., 2010; 
Landesman & Dighton, 2011; Kuffner et 
al., 2012). Temperate deciduous forests are 
characterised by the photosynthetic activity 
of trees during the vegetative period and a 

short period of litterfall in autumn, when 
fresh litter with easily available nutrients 
accumulates on the forest floor (Šnajdr et 
al., 2011). These seasonal processes then 
underlie the seasonality of soil carbon 
allocation and its availability to the soil 
biota (Högberg et al., 2010; Kaiser et al., 
2010). Belowground carbon allocation via 
plant roots exhibits several-fold seasonal 
differences with a maximum during the late 
vegetative season (Högberg et al., 2010). 

Seasonal variations of fungal 
communities have been widely studied, 
however the methods used were unable to 
sufficiently characterize fugal community 
structure or authors focused only on 
particular soil horizon or group of fungi. 
Prior studies were mainly based on 
traditional approaches such as enzyme 
assays or assessment of microbial biomass 
(Šnajdr et al., 2008; Baldrian et al., 2013a; 
Berg et al., 1998; Björk et al., 2008). There 
have thus far been several reports 
concerning specific functional groups of 
fungi (Koide et al., 2007; Rosling et al.
2003; Courty et al., 2008; Courty et al., 
2010) or studies limited to particular soil or 
litter horizons (Jumpponen et al., 2009; 
Dumbrell et al., 2011; Davey et al., 2012; 
Coince et al., 2013). However the thorough 
knowledge of seasonal influences on fungal 
communities in temperate deciduous forest 
soil with respect to vertical stratification is 
missing. Understading of seasonal dynamic 
of fungal community and its functioning in 
forest soil ecosystem is necessary for 
prediction its response to global changes, 
considering soils as a sink of carbon 
dioxide. Moreover even if detailed 
descriptions of fungal communities by soil 
horizons exist for some ecosystems 
(Baldrian et al., 2012; Uroz et al., 2013), it 
is unclear how representative these studies 
might be based on a single sampling. 

In this study, an analysis of fungal 
community composition, abundance and the 
activity of extracellular enzymes was 
performed for the upper horizons of a 
deciduous Quercus petraea forest. The 
primary goal of this study was to describe 
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seasonal variations in the fungal community 
composition in the context of changing 
resource availability throughout the 
seasons. To achieve this, sampling was 
performed in spring (early May), shortly 
after leaf appearance; in summer (July), 
along with the highest temperatures and 
high photosynthetic production; in autumn 
(October), in the middle of the litterfall 
period; and in winter (February; Fig. 1). In 
addition to changes in tree productivity, the 
amount and quality of litter changed from 
the input of freshly fallen leaves (approx. 4 
t ha-1, unpublished results), whose 
composition supports fast decomposition 
(October), to a litter horizon depleted of 
easily decomposable compounds (July). We 
hypothesised that the structure of the fungal 
community would reflect the availability of 
nutrients in the soil profile horizons. Based 
on a previous study, where considerable 
temporal shifts in fungal community 
structure during the decomposition of oak 
litter were observed, we anticipated similar 
changes in the litter horizon because the last 
year’s litter represents a considerable 
percentage of the total litter mass 
(Voříšková & Baldrian, 2013). In the 
deeper horizons, we expected a shift from a 
high relative abundance of ectomycorrhizal 
taxa during the vegetative season to a high 
proportion of saprotrophic taxa in the 
absence of root C allocation because our 
previous study showed that saprotrophic 
taxa are more metabolically active during 
the period when photosynthesis does not 
occur (Baldrian et al., 2012). We also 
intended to answer questions concerning 
the suitability of the one-time surveys that 
are frequently reported for the description 
of fungal community composition within an 
ecosystem.  

Materials and methods  

Study site and sample collection 
The study site was an oak (Q. petraea) 
forest in the Xaverovský Háj Natural 
Reserve, near Prague, Czech Republic 
(50°5'38" N, 14°36'48" E). The site was 

previously studied with respect to 
decomposition-related extracellular 
enzymes in the forest topsoil (Šnajdr et al., 
2008; Baldrian et al., 2010; Baldrian et al., 
2013a), as well as the decomposition of 
litter and associated changes in fungal 
community composition (Voříšková & 
Baldrian, 2013). The soil was an acidic 
cambisol with developed L, H, Ah and A 
horizons. Sampling of the topsoil was 
performed in the spring (9 May, 
approximately two weeks after the 
emergence of leaves), summer (29 July), 
autumn (28 October, during the late phase 
of litterfall) and winter (19 February; Fig. 
1). Soil samples were collected in four 
defined plots (10 m2, approximately 100 m 
from each other) of the sampling site. Six 
soil cores (4.5 cm in diameter) were 
collected at each sampling plot and were 
divided into L horizon (~ 0.5-1 cm, 3.5), H 
horizon (~ 1-3 cm) and Ah - soil horizon 
(upper portion, up to a depth of 5 cm). 
Samples of the L horizon were cut into 
approx. 0.25 cm2 pieces, while the soil 
samples were sieved using a 2-mm sieve. 
The resulting material was combined to 
yield a composite sample from each 
horizon and plot. Subsamples for chemical 
analyses, quantification of microbial 
biomass and DNA extraction were frozen 
and stored at -45 °C, subsamples for 
enzyme analysis were stored at 4°C.  

Sample analysis 
Enzyme assays were performed within 48 h 
on samples extracted using 160 mM 
phosphate buffer, pH 7 and desalted using 
Sephadex columns, as previously described 
(Šnajdr et al., 2008). Briefly, laccase was 
assayed using the oxidation of 2,2´-
azinobis-3-ethylbenzothiazoline-6-sulfonic 
acid, manganese peroxidase using 3-
methyl-2-benzothiazolinone hydrazone and 
3,3-dimethylaminobenzoic acid in the 
presence of Mn and hydrogen peroxide, 
endocellulase, and endoxylanase (EC 
3.2.1.8) were measured using azo-dyed 
carboxymethyl cellulose and birchwood 
xylan and the activities of all other enzymes 
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with p-nitrophenyl-based substrates. All 
enzyme assays were performed at pH 5 
except for laccase where the pH of the 
buffer was 4.5. One unit of enzyme activity 
was defined as the amount of enzyme 
forming 1 mmol of reaction product per 
min.  

Dry mass content was measured 
after drying at 85 °C, organic matter 
content after burning at 650 °C, and pH was 
measured in distilled water (1:10). C and N 
contents were measured using an elemental 
analyser. 

Total ergosterol was extracted with 
10% KOH in methanol and analysed by 
HPLC (Šnajdr et al 2008) using a method 
modified from (Bååth, 2001).  

454-Pyrosequencing of fungal internal 
transcribed spacer (ITS) 
Total genomic DNA was extracted from 
300 mg of soil material using a modified 
method according to (Sagova-Mareckova et 
al., 2008). The primers ITS1/ITS4 (White
et al., 1990) were used to amplify the ITS1 
region, the 5.8S ribosomal DNA and the 
ITS2 region of the fungal ribosomal DNA. 
The primer pair used in this study is 
especially suitable for the analysis of 
Ascomycota, Basidiomycota, 
Mucoromycotina and Mortierellomycotina
while it may be biased against some 
members of the Glomeromycota and the 
Chytridiomycota. A two-step PCR 
amplification using composite primers 
containing multiplex identifiers (Baldrian et 
al., 2012) was performed to obtain 
amplicon libraries for 454-pyrosequencing. 
In the first step, each of three independent 
25 µl reactions per DNA sample contained 
2.5 µl of 10x polymerase buffer, 1 µl of 
each primer (0.01 mM), 0.5 µl of PCR 
Nucleotide Mix (10 mM) and 0.25 µl of 
polymerase (2 U µl-1; Pfu DNA 
polymerase:OmniTaq DNA polymerase, 
1:24). The cycling conditions were 94°C for 
5 min; 35 cycles of 94 °C for 1 min, 60 °C 
for 1 min and 70 °C for 1 min; followed by 
70 °C for 10 min. Pooled PCR products 
were purified using a MinElute PCR 

Purification Kit (Quiagen, Hilden, 
Germany). The product of the first PCR 
was used as a template for the second PCR. 
In the second step, one 50 µl reaction per 
DNA sample contained 5 µl of 10× 
polymerase buffer, 1.5 µl of DMSO for 
PCR, 0.4 µl of forward fusion primer (ITS1, 
tag sequence, 454-specific sequence), 0.4 µl 
of reverse fusion primer (ITS4, 454-specific 
sequence), 1 µl of PCR Nucleotide Mix, 1.5 
µl of polymerase (2 U µl-1; Pfu DNA 
polymerase:Dynazyme DNA polymerase, 
1:24) and 100 ng of template DNA. The 
cycling conditions were 94°C for 5 min; 10 
cycles of 94 °C for 1 min, 62 °C for 1 min, 
and 72 °C for 1 min; followed by 70 °C for 
10 min. PCR products were purified using 
Agencourt AMPure XP (Beckman Coulter, 
Beverly, MA).  The concentration of PCR 
products was quantified using the Qubit 2.0 
Fluorometer (Life Technologies, Carlsbad, 
CA), and an equimolar mix of PCR 
products from all samples was prepared. 
The mixture of PCR products was separated 
by electrophoresis and gel purified using 
the Wizard SV Gel and PCR Clean-Up 
System (Promega, Madison, WI, USA), 
followed by purification using Agencourt 
AMPure XP and a MinElute PCR 
Purification Kit to remove primer-dimers. 
The amplicons were subjected to 
sequencing on a GS Junior 454-
pyrosequencer (Roche, Basel, Switzerland). 

Bioinformatic analysis 
The pyrosequencing data were processed 
using the pipeline SEED with respect to the 
proposed procedures of standardized data 
analysis (Nilsson et al., 2011; Větrovský & 
Baldrian, 2013). Pyrosequencing noise 
reduction was performed using the 
Denoiser 0.851 (Reeder & Knight, 2010), 
and chimeric sequences were detected using 
UCHIME (Edgar et al., 2011) and deleted. 
The sequences were shortened to 380 bases 
and clustered using Usearch (Edgar, 2010) 
at a 97% similarity level. Consensus 
sequences were constructed for each 
cluster, and the OTUs were constructed by 
clustering these consensus sequences at 



5

97% identity (Lundberg et al., 2012). The 
abundance data reported in this paper are 
based on this dataset of sequence 
abundances and should be taken as proxies 
of taxon abundances only with caution 
(Lindahl et al., 2013). Closest hits were 
identified using the PlutoF pipeline 
(Tedersoo et al., 2010); non-fungal 
sequences (< 1% were disregarded). 
Sequence data have been deposited in the 
MGRAST public database 
(http://metagenomics.anl.gov/, data set 
number 4524551.3). 

Diversity and statistical analysis 
The Shannon-Wiener Index and the amount 
of the most abundant OTUs that 
represented 80% of all sequences were used 
as diversity estimates, providing combined 
information on species richness and 
evenness at particular sampling depths. 
These estimates were calculated for a data 
set containing 1,800 randomly chosen 
sequences from each sample. Since the 
fungal communities at individual plots 
differed and because these among-plot 
differences might have hidden the 
differences among seasons, comparisons of 
seasonal abundances were performed after 
normalisation of the abundances of each 
fungal taxon using the mean abundance in 
the particular plot and horizon during all 
seasons. Because the majority of taxa were 
represented by a very small number of 
reads and because such read counts were 
demonstrated to not be technically 
reproducible (Lundberg et al., 2012), only 
taxa with higher relative abundances  ≥
0.5% in ≥ 5 samples were tested for 
seasonal variations in abundance. The plot-
normalised abundances of these measurable 
taxa were also subjected to a PCA along 
with environmental variables. The Jaccard 
Index (JI) calculated for all OTUs with 
relative abundances ≥ 0.5% in at least one 
sample was used as a measure of 
community similarity (Koleff et al., 2003). 
The Jaccard Index is calculated as 
A/(A+B+C), where A is the number of 
species found in both of the samples, and B 

and C represent the number of species 
unique to either of the two samples 
analysed. The JI ranges from 0 (no species 
shared) to 1 (all species shared). The 
pipeline SEED (see above) was used for 
data pre-processing and diversity 
calculations and Statistica 7 (Statsoft, USA) 
was used for statistical analyses. A one-way 
analysis of variance with the Fisher’s least 
significant difference post hoc test was used 
to analyse the statistical significance of 
differences among groups of samples. 
Differences with a P < 0.05 were regarded 
as statistically significant. 

Results 

Soil properties, activity of extracellular 
enzymes and fungal biomass 
The soil properties changed substantially 
with soil depth: the organic matter content 
decreased from 82% in the L to 42% and 
16% in the H and Ah horizons, 
respectively, and N content showed similar 
inter-horizon trend. With depth, the soil dry 
mass content increased and the soil pH 
decreased. With decreasing organic matter 
content in the soil, the activity of 
extracellular enzymes also decreased, being 
4-40× lower in the Ah horizon than in the L 
horizon. Fungal biomass in the H horizon 
was 6×, and in the Ah, it was 23× lower 
than in the litter; the fungal biomass content 
per g organic matter decreased with depth 
from 188 µg g-1 to 76 µg g-1 and 50 µg g-1  
(Fig. 2). 

Fungal biomass was similar among 
the seasons in the H horizon, ranging 26-36 
µg g-1 soil dry mass. In the L horizon, the 
ergosterol content was highest in spring 
(272 µg g-1 compared to the minimum of 
128 µg g-1 in the autumn). In the Ah 
horizon, the ergosterol content was 
significantly increased in summer (14 µg g-

1), while it was only between 5-6 µg g-1

during the winter and spring (Fig. 1).  The 
majority of the enzymes studied showed 
their highest activity in winter, especially in 
the L and H horizons. The exception was 
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Fig. 1.: Seasonal properties of Quercus petraea forest soil by season in the L, H and Ah horizons. 
Seasonal trends of ectomycorrhizal community are based on their relative abundance in the entire 
community. Data represent means of four replicates with standard errors. Statistically significant 
differences among seasons are indicated by different letters. 
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laccase, whose activity was highest in 
summer (Fig. 1).   

Fungal community composition 
In total, 213,339 raw sequences 

were obtained from 454-pyrosequencing, of 
which 135,830 remained for analysis after 
quality-filtering, de-noising and the 
removal of short and chimeric sequences 
and sequences not belonging to fungi (the 
latter accounted for < 1% of the total). An 
average of 2,830 sequences were obtained 
(minimum 1,803) per sample. All of the 
sequences clustered into 8,264 OTUs 
(including 5,730 singletons) at a 97% 
similarity threshold (Supporting 
Information Table S1). Fungal diversity, 
expressed as the Shannon-Wiener index 
calculated at 1,800 sequences / sample, 
decreased from the L (4.51 ± 0.49) to the H 
horizon (4.05 ± 0.36, P = 0.003) and from 
the H to the Ah horizon (3.43 ± 0.40, P < 
0.0001). Seasonal differences were not 
observed except in the Ah horizon, where 
summer communities were marginally 
more diverse than winter communities (P = 
0.06). Community evenness, expressed as 
the number of the most abundant OTUs that 
represented 80% of all of the sequences in 
each sample, also decreased significantly 
with soil depth and did not show seasonal 
variations (Fig. 1). 

The fungal communities at each plot 
and season were more similar between the 
H and Ah horizons (mean Jaccard Index 
0.513) than between the L and H horizons 
(mean JI 0.451; P = 0.013 that the similarity 
expressed as the Jaccard Index between 
L/H and H/Ah samples from the same 
season and plot is the same). The L horizon 
communities were more similar among 
plots for each season than were the samples 
from the two deeper horizons (mean JI for 
L 0.488, H 0.402, and Ah 0.379; P < 0.001 
that the JI for each season across plots in L 
is the same as in H and Ah), and they were 
also more similar for each plot across 
seasons (JI 0.466, 0.422, and 0.397, P < 
0.017 that the for each plot across seasons 
in L is the same as in H and Ah). 

The overall fungal community was 
dominated by sequences assigned to the 
Basidiomycota (58%) and Ascomycota
(27%). The Mucoromycotina were 
represented in 7.9% of all sequences, and 
fungi from the Glomeromycota and 
Chitridiomycota comprised 3.4% and 2.2% 
of all sequences, respectively. Sequences 
from the Ascomycota and Basidiomycota
demonstrated comparable counts in the L 
horizon – 42% and 48%. With soil depth, 
the abundances of the ascomycetous 
sequences decreased and those of the 
basidiomycetous fungi increased to reach 
15% and 71%, respectively, in the Ah 
horizon (Fig. 2). The most abundant fungal 
orders were the basidiomycetous Russulales
(25%), Agaricales (11%) and Tremellales
(8.7%). Members of the orders Agaricales, 
Helotiales and Tremellales dominated in 
samples from the L horizon. The 
abundances of the Agaricales and 
Tremellales did not change significantly 
with increasing soil depth, while the 
abundance of the Helotiales decreased. In 
contrast, the H and Ah horizons contained 
more sequences belonging to the 
ectomycorrhizal Russulales, their relative 
abundance in the Ah being 6 times higher 
than in the L horizon.  

In total, 757 fungal genera were 
identified as being the best hits for the 
OTUs for the whole dataset. The most 
abundant fungal genera in the litter horizon 
were the saprotrophic Mycena, Sistotrema
and Cryptoccocus, while the deeper 
horizons were enriched with fungi 
belonging to the ectomycorrhizal genera 
Russula and Lactarius. The genus Russula
represented 18% of all the sequences in the 
H horizon and 31% in the Ah horizon; the 
most abundant OTUs across all samples 
also belonged to Russula (OTU133, 100% 
similarity to R. atropurpurea) and 
Lactarius (OTU002, 98% similarity to L. 
quietus; Supporting Information Table S1).  
Fungi in the litter were apparently more 
influenced by seasonal effects than were 
those in the deeper horizons: 59% of the 
abundant fungal genera (among them, 8  
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Fig. 2.: Characterisation of the L, H and Ah 
horizons of Quercus petraea forest soil. Mean 
abundances of higher fungal taxa and fungal 
life strategies (the area of the charts 
corresponds to the ergosterol content). Data on 
soil chemistry, activity of extracellular enzymes 
and ergosterol content are means of 16 
replicates with standard errors. Statistically 
significant differences among horizons are 
indicated by different letters. 

of the top 10) showed statistically 
significant differences in their seasonal 
abundance, compared with 29% and 32% in 
the H and Ah horizons, respectively 
(Supporting Information Table S2). 

The seasonal differences among the 
relative abundances of fungal genera in the 
L horizon were profound: the saprotrophic 
genus Mycena was represented by only 
0.5% of the sequences in winter, while it 
represented 16% in spring, Mycosphaerella
represented 0.04% in summer but 8% in 
autumn, and Naevala represented 0.01% in 
summer and 3.5% in winter. For most 
ectomycorrhizal fungi, low relative 
abundances were recorded in spring 
(Russula 1%, Lactarius 0.3%, Amanita 
0.05%), while high abundances were 

recorded in summer (Russula 7%, Lactarius 
6%, Amanita 3.4%; Supporting Information 
Table S2). These seasonal changes were 
also demonstrated in the PCA analysis 
where samples from winter clustered 
separately from the other seasons (Fig. 3). 
In the autumn, when fresh litter 
accumulated on the forest floor, the 
saprotrophic genera Mycosphaerella, 
Mucor, Geomyces, Umbelopsis and 
Lachnellula reached their seasonal maxima. 
The highest activity of most enzymes was 
recorded in winter, as well as the highest 
C/N ratio. This finding was accompanied 
by the highest abundances of the 
saprotrophic genera Cryptococcus, 
Rhodotorula, Naevala, Fulvoflamma and 
Kriegeria. The other saprotrophic genera 
Mycena, Cladophialophora and 
Meliniomyces were abundant during spring, 
the season with the highest fungal biomass 
in the litter. Finally, summer (the driest 
season, with high laccase activity) typically 
demonstrated the highest abundances for all 
ECM taxa: Russula, Lactarius, Tomentella, 
Amanita and Hygrocybe, except for 
Xerocomus, which was highest in autumn. 
Not surprisingly, the proportion of 
sequences for the ectomycorrhizal fungi 
was highest in summer at 28.6%, which 
was significantly higher than in spring 
(8.5%). 

In the H horizon, PCA showed a 
clear separation between winter and spring 
samples along the first axis. Winter was 
characterised by high activities of most 
extracellular enzymes and by the lowest 
proportion of ECM fungi (35%), while 
spring exhibited the highest proportion of 
ECM sequences (58%). In the Ah horizon, 
PCA separated summer samples from those 
of spring and winter. The proportion of 
ECM did not show significant fluctuations, 
but the proportions of individual ECM 
fungi varied seasonally. The highest 
activities of several enzymes, but the lowest 
fungal biomass, were observed in winter 
(Supporting Information Fig. S1).  
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Discussion 

Forest soils represent an environment that 
exhibits distinct and sharp vertical 
stratification. The ultimate cause is likely to 
be the decrease in organic matter with soil 
depth due to the accumulation of litter on 
the soil surface and its gradual 
decomposition together with temperature 
and moisture content differences. The 
decrease in soil organic matter content is 
accompanied by a decrease in microbial 
biomass and in the rates of microbial 
processes such as respiration and the 
activities of extracellular enzymes (Agnelli
et al., 2004; Šnajdr et al., 2008; Baldrian et 
al., 2013a). In this study, soil organic 
matter decreased by a factor of five 
between the L and Ah horizons. The fact 
that fungal biomass in the Ah horizon was 

23× lower than in the L likely reflects 
changes in the quality of the organic matter. 
Taking into account the ergosterol/fungal 
biomass ratio of 3.8 mg g-1 fungal biomass 
(Baldrian et al., 2013b), fungal biomass 
might represent as much as 6.1% of the 
organic matter in the litter horizon; in the H 
and Ah horizons, this biomass would be 
less, namely 2% and 1.2%, respectively. 
Previous studies have also shown that the 
C/N ratio decreases with soil depth in 
certain soils (Baldrian & Štursová, 2011; 
Yang & Luo, 2011). During the process of 
decomposition, carbon from freshly fallen 
litter is released as CO2, and if the N is 
retained, its relative proportion increases. 
For example, fresh Quercus petraea litter 
has a C/N ratio of 25, compared with 13-17 
after in vitro degradation by saprotrophic 
fungi (Steffen et al., 2007). Here, we

Fig. 3.: Principal component analysis of the plot-normalised relative abundances of fungal genera in 
the L horizon, seasonal loads and environmental variables. All genera with > 0.5% abundance in > 4 
samples were considered. Only environmental variables showing significant differences among 
seasons were considered; fungal genera with significant seasonal variations in abundance are 
underlined. Ectomycorrhizal fungi are indicated in green, arbuscular mycorrhizal fungi in yellow. bG –
β-glucosidase, DM – dry mass content, EC – endocellulase, EX – endoxylanase, Lac – laccase, MnP 
– Mn peroxidase, N – nitrogen, NAG – N-acetylglucosaminidase. Right panel shows the PCA loads of 
samples from individual seasons: spring – green; summer – yellow; autumn – brown; winter – black. 

observed the highest C/N ratio in the Ah 
horizon, a fact that might support the 
importance of the allocation of C from tree 
roots into deeper soil as proposed by 

Clemmensen et al. (2013), who 
demonstrated that 70% of soil carbon was 
root-derived and was thus allocated from 
plants into the soil by mycorrhizal fungi. 
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Alternatively, the increased C/N ratio in 
mineral soil might be due to the depletion 
of N in the bulk soil as a result of its 
allocation to plants by ECM fungi. 

The fungal community structure 
differed substantially among the three 
horizons studied. Litter-associated 
communities exhibited higher similarity 
among sampling plots than did soil 
communities. Within each plot, the 
communities of the deeper H and Ah 
horizons were more similar to each other 
than to the L horizon community, mainly 
due to the comparable abundances of 
ectomycorrhizal taxa. Interestingly, our 
study showed a substantial, significant 
decrease in community diversity: the 
amount of OTUs representing 80% of the 
fungal community was 90 in the L horizon, 
51 in the H horizon and 25 in the 
Ah horizon (Fig. 1). Similar reductions in 
fungal diversity had previously been 
demonstrated in prairie soils, but a 
reduction in the Shannon index was only 
observed over several tens of cm of soil 
depth (Jumpponen et al., 2010). In the 
forest ecosystems, the higher chemical 
heterogeneity of nutrient sources in the 
litter horizon (composed of material of 
various ages) might be the prerequisite for 
high diversity; the cause of higher diversity 
in the H horizon than in the Ah horizon 
might be the co-presence of organic 
substrates and mycorrhizal tree roots in the 
former. However, previous papers reporting 
on other forest ecosystems did not show 
differences in fungal diversity among 
horizons (O'Brien et al., 2005; Baldrian et 
al., 2012).  

With respect to the abundance of the 
major functional groups of fungi, our 
results are in accordance with previous 
studies from boreal and temperate forest 
soils in that the relative proportion of 
ectomycorrhizal taxa (and thus, the 
Basidiomycota) increases with soil depth 
(Lindahl et al., 2007; Edwards & Zak, 
2010; Baldrian et al., 2012; Clemmensen et 
al., 2013). However, interestingly, if we 
consider the absolute amounts of fungal 

biomass, the highest ECM biomass per g 
soil dry mass, despite its lower proportion, 
was present in the L horizon. The supply of 
C from trees to the ECM fungi thus 
contributes substantially to the formation of 
fungal biomass in the litter. The fact that 
the ECM biomass in litter is produced from 
root-supplied C and is not due to 
saprotrophic litter transformation is 
supported by the substantial increase in the 
proportion of ECM in the litter from spring 
to summer. Summer would then also be the 
season with the highest total ECM biomass 
when considering the whole soil profile. 

Despite the increasing evidence that 
enzyme activity shows seasonal variation 
(Wittmann et al., 2004; Baldrian et al., 
2013a), as does the C allocation 
belowground (Ekblad et al., 2013), the 
influence of these factors on soil fungal 
communities has never been addressed in 
sufficient detail. Several studies focused on 
seasonal variations of ECM fungi (Buée et 
al., 2005; Courty et al., 2008; Koide et al 
2007), moreover Parrent and Vilgalys 
(2007) showed their seasonality across 
several years. However little information is 
thus far available about the seasonality of 
entire fungal communities (Schadt et al., 
2003; Baldrian et al., 2013a). In this study, 
the activity of extracellular enzymes 
showed significant seasonal variation, with 
the highest activity for most enzymes being 
detected in winter in all horizons but being 
most pronounced in the litter (Figure 1). 
This result is not surprising because the 
fresh litter shed in late autumn contains 
easily degradable compounds, and its 
decomposition is rapid over the whole 
winter period (Šnajdr et al., 2011). 
Consistent with the high enzyme activities 
over winter, fungal biomass in litter in the 
spring increased, with a relative increase in 
the proportion of non-mycorrhizal taxa 
(Figure 1). 

The litter horizon also exhibited the 
highest proportion of fungal genera 
showing seasonal variation. This finding is 
in agreement with a previous study from a 
Mediterranean forest, where the extent of 
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the seasonal variations in microbial 
communities also decreased with soil depth 
due to higher seasonal variations in 
environmental conditions (Andreetta et al., 
2012). The changes in the fungal 
community in the litter were profound. The 
saprotrophic fungal genera Mycena, 
Mycosphaerella and Naevala showed 30×, 
200× and 350× differences in abundance 
among seasons. This result partly reflects 
succession on fresh litter: Mycosphaerella,
which peaked in autumn, is typical of 
senescent and freshly fallen oak leaves 
(Voříšková & Baldrian, 2013), and the 
other autumn fungal genera, e.g., Mucor, 
Umbelopsis and Lachnellula, also belong to 
taxa that grow rapidly in the nutrient-rich 
environment of fresh litter (Osono, 2006). 
Additionally, the fungi that increased in 
winter, Naevala, Rhodotorula and 
Cryptococcus are typical saprotrophs. 
These genera were found to be associated 
with litter decomposition approximately 4 
months after abscission (Voříšková & 
Baldrian, 2013) and thus seem to be 
supported nutritionally by the last year’s 
litter, which represents, in the ecosystem 
studied, approximately 40% of the total 
mass of the L horizon (data not shown). 
The summer was characterised by a 
dramatic increase in ectomycorrhizal 
abundance: compared with spring, the 
abundance of Amanita increased 68×, of 
Lactarius 20× and of Russula 7× 
(Supporting Information Table S2), and the 
relative abundance of ECM fungi increased 
from 9 to 29% (Figure 1). The increased 
abundance of ECM fungi in late summer or 
autumn has also been previously reported 
from boreal forests (Wallander et al., 2001; 
Högberg et al., 2010; Davey et al., 2012).  

In the H and Ah horizons, seasonal 
differences in abundance were recorded for 
30% of the dominant taxa. Both horizons 
exhibited higher enzyme activity during 
winter. Although in the H horizon this 
might partly have been due to the priming 
effect of nutrients leached from litter, the 
fact that the enzyme activity also increased 
in the Ah horizon would indicate instead 

the switch from the use of root-supplied 
photosynthates to the decomposition of 
organic matter. This switch was able to 
maintain a comparable fungal biomass 
content in spring as well as in winter. 
Contrary to our expectations, the relative 
proportion of saprotrophic fungi did not 
increase during winter-spring as a result of 
this switch to decomposition. One of the 
possible explanations might be the temporal 
switch of certain ECM taxa to a 
saprotrophic lifestyle, allowing them to 
preserve their biomass Although the 
saprotrophic abilities of ECM fungi are still 
debated (Ekblad et al., 2013), there is a 
growing evidence derived from enzymatic 
analyses and in vitro experiments that they 
are involved in decomposition of litter 
(Courty et al., 2010; Rineau et al., 2012). 
This explanation would be in agreement 
with observations that the enzymatic 
activities of ECM root tips increased before 
bud break in oak trees (Courty et al., 2007) 
and that litter-derived carbon is 
accummulated by oak roots via 
ectomycorrhizal mycelia (Bréda et al., 
2013). Recent evidence indicates that 
members of the genus Russula contain 
genes for both exocellulases and 
ligninolytic peroxidases (Bödeker et al., 
2009; Štursová et al., 2012; Voříšková & 
Baldrian, 2013). Their temporary 
saprotrophy is quite possible because the 
relative abundance of this genus during 
winter was less reduced than that of the 
other ECM fungi. The fungal biomass 
content in the Ah horizons increases 
approximately threefold from spring to 
summer, which corresponds with the 
expected increase in photosynthate 
allocation belowground. The unexpected 
observation that the proportion of ECM 
fungi does not increase during this season 
might indicate that root-supplied carbon can 
be used by both ECM and by saprotrophs in 
the soil.  

In this study, we demonstrate that 
the fungal community in a temperate forest 
soil is very dynamic, showing significant 
seasonal changes in the activity, biomass 
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content, composition and relative 
abundance of different fungal groups. The 
results showed that the litter community 
exhibited seasonal changes in composition, 
while the mineral soil responded rather by 
changes in fungal abundance. ECM and 
saprotrophic fungi were indicated as the 
major players in this respect. Both litter 
decomposition and photosynthate allocation 
represent important factors that contribute 
to the observed seasonal changes. The study 
was limited to the upper part of the soil 
profile, which may represent a limitation 
because it is well established that fungal 
communities are stratified even much 
deeper belowground (Rosling et al., 2003). 
Conclusions about the composition of the 
whole fungal community can be made, 
however, since deeper in the soil fungal 
biomass continues to decrease rapidly 
(Šnajdr et al., 2008) and the bulk of the 
community is thus contained within the 
depth analysed. To achieve a deeper 
understanding of the seasonal transitions in 
fungal community functions, it would be 
necessary, however, to complement the 
current data with a functional analysis of 
metatranscriptomes or metaproteomes that 
would answer important questions about 
seasonal changes in the physiology of 
individual taxa, including the extent of 
mycorrhizal saprotrophy. This study also 
shows that our understanding of the fungal 
community composition in those 
ecosystems where environmental factors 
show seasonal variation is limited if this 
phenomenon is not considered. 
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Abstract Production of extracellular enzymes partic-

ipating in the degradation of biopolymers was studied

in 29 strains of nonbasidiomycetous microfungi

isolated from Quercus petraea forest soil based on

the frequency of occurrence. Most of the isolates were

ascomycetes and belonged to the genera Acremonium,

Alternaria, Cladosporium, Geomyces, Hypocrea,

Myrothecium, Ochrocladosporium, and Penicillium

(18 isolates), and two isolates were zygomycetes. Only

six isolates showed phenol oxidation activity which

was low and none of the strains were able to degrade

humic acids. Approximately half of the strains were

able to degrade cellulose and all but six degraded

chitin. Most strains produced significant amounts of

the cellulolytic enzymes cellobiohydrolase and β-

glucosidase and the chitinolytic enzymes chitinase,

chitobiosidase, and N-acetylglucosaminidase. The

highest cellulase activities were found in Penicillium

strains, and the highest activity of chitinolytic enzymes

was found in Acremonium sp. The production of the

hemicellulose-degrading enzymes α-galactosidase, β-

galactosidase, and α-mannosidase was mostly low.

The microfungal strains were able to produce signif-

icant growth on a range of 41–87, out of 95 simple C-

containing substrates tested in a Biolog™ assay,

monosaccharides being for all strains the most rapidly

metabolized C-sources. Comparison with saprotro-

phic basidiomycetes from the same environment

showed that microfungi have similar cellulolytic

capabilities and higher chitinase activities which

testifies for their active role in the decomposition of

both lignocellulose and dead fungal biomass, impor-

tant pools of soil carbon.

Keywords Lignocellulose . Soil microfungi . Chitin .

Enzymes . Decomposition . Forest biogeochemistry

Abbreviations

ABTS 2,2′-azinobis-3-ethylbenzothiazoline-

6-sulfonic acid

AMC 7-aminomethyl-4-coumarin
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MEA Malt Extract Agar

MnP Mn-peroxidase

MUF 4-methylumbelliferol

Introduction

Biopolymers contained within the cell walls of plants

and fungi represent the major source of carbon in
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forest soils entering the environment either with dead

plant material during litterfall or as a result of fungal

growth. Actually, cellulose, lignin and chitin are the

three most abundant biopolymers in terrestrial biomes

and the transformation of carbon present within thus

represents an important process in the C-cycle.

Saprotrophic soil fungi are often considered to be

the most efficient decomposers of these biopolymers

(Kjoller and Struwe 2002; Baldrian 2008a) and some

authors hypothesize that fungi actually dominate

certain decomposition niches (de Boer et al. 2005).

While this seems to be justified for ligninolytic wood-

associated fungi that have been largely characterized

due to the biotechnology-related research (Hatakka

2001; Baldrian 2008b) and for the same reason the

production of cellulases is well understood in certain

fungi, e.g., Trichoderma (Hypocrea) spp. (Lynd et al.

2002), the abilities of several common groups of soil-

inhabiting fungi are not well-characterized in this

respect. Only recently, saprotrophic basidiomycetes

living in forest soil and litter have been characterized

with respect to the production of cellulose, hemicel-

lulose, and lignin-degrading enzymes (Steffen et al.

2000, 2007; Valášková et al. 2007). However, the

potential of nonbasidiomycetous microfungi, another

important group of soil and litter-associated fungi to

attack biopolymers in soil or litter, remains largely

unexplored. Unlike ectomycorrhizal fungi, where

biodegradative enzyme activities seem to be limited

(Baldrian 2009a), several microfungi are typical

saprotrophs that produce biopolymer-degrading

enzymes (Bhiri et al. 2008; Hayashi et al. 1997; Lynd

et al. 2002; Mamma et al. 2008).

In contrast to lignin decomposition which seems to be

exclusively performed by saprotrophic basidiomycetes

(Baldrian 2008a), degradation of polysaccharides—

cellulose, hemicelluloses and chitin—is performed by

many nonbasidiomycetous fungi (Chavez et al. 2006;

Lynd et al. 2002; Seidl 2008). The degradation of

cellulose as both the most abundant and rapidly

utilizable biopolymer of plant litter now attracts consid-

erable attention with respect to the understanding of the

rates of carbon cycle-related processes (Sinsabaugh et

al. 2008). The estimation of cellulose degradation

potential by a group of commonly occurring soil

microorganisms is thus important. Cellulose degrada-

tion is typically performed by the concerted action of

three classes of enzymes. Endocellulases cleave in the

middle of the cellulose chains while the exocellulases

produce cellobiose from either reducing or nonreduc-

ing ends. Ultimately, β-glucosidases cleave cellobiose

into two glucose molecules (Baldrian and Valášková

2008). However, the ability to produce the individual

components of this cellulolytic system varies among

cellulolytic fungi (Baldrian and Valášková 2008; Lynd

et al. 2002).

Chitin is the most important biopolymer in soils that

does not originate in the plant biomass. Full chitin

hydrolysis is typically performed by a three component

system consisting of endochitinase, chitobiosidase, and

N-acetylglucosaminidase. Endochitinases cleave in the

middle of the chitin chain while the chitobiosidase

(exochitinase) releases chitooligosaccharides from the

end of the polymer chain. N-acetylglucosaminidase

catalyzes the release of terminal, non-reducing N-

acetylglucosamine residues from chitin, with the highest

efficiency in cleaving the dimer diacetylchitobiose.

Recent genome sequencing data show that the genomes

of filamentous fungi typically contain between 10 and

25 different chitinases, compared to only two to four in

bacteria (Seidl 2008). This diversity indicates an

important role of this group of fungi in chitin

transformation in soils as well as the promise for a

future use in biotechnology.

The aim of this work was to describe the production

of extracellular enzymes by nonbasidiomycetous micro-

fungi isolated from forest soil. Although saprotrophic

basidiomycetes are capable to decompose litter more

rapidly than nonbasidiomycetous fungi (Osono 2007;

Osono and Takeda 2006), litter decomposing in situ

differs significantly from the litter decomposed by

basidiomycetes only (Valášková et al. 2007). This

indicates an important role for nonbasidiomycetous

fungi in its degradation. We wanted to answer the

following questions:

(1) How do the microfungi potentially contribute to

the degradation of cellulose, chitin, and lignin?

(2) What simple carbon compounds are they able to

use as substrates for growth? Is the utilization of

cellulose- and chitin-derived monomers related

to the ability of individual strains to perform

cellulose and chitin decomposition?

(3) Can a general conclusion be made on the extracel-

lular enzyme production by nonbasidiomycetous

microfungi compared to basidiomycetes?

To answer these questions, we isolated strains of

nonbasidiomycetous fungi in the Quercus petraea
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forest, in the same site where we previously studied

litter degradation by isolates of saprotrophic basidio-

mycetes (Valášková et al. 2007) and where the

activity of several enzymes active in biopolymer

degradation was detected in situ (Šnajdr et al. 2008).

Materials and methods

Study site, strain isolation and maintenance

The fungi were isolated from an oak (Quercus

petraea) forest floor (L and H horizons) in the

Xaverovský Háj Natural Reserve, near Prague, Czech

Republic. The soil was an acidic cambisol (inceptisol)

with developed L, H, Ah and A horizons: L—

thickness 0.5–1.5 cm, pH 4.3; 46.2% C; 1.76% N;

H—thickness 1.5–2.5 cm, pH 3.7; 21.5% C; 0.56%

N. High, but spatially variable activity of extracellular

ligninolytic and hydrolytic enzymes was found in the

soil of that site (Šnajdr et al. 2008) and basidiomycete

strains isolated there exhibited production of these

enzymes when grown on litter. However, analytical

pyrolysis showed significant differences between

litter decomposed by isolated basidiomycetes and that

decomposed in situ (Valášková et al. 2007).

Samples of forest floor material were collected for

isolation of nonbasidiomycete microfungi from early

spring to late autumn. Forest floor material was cut into

pieces (<2 mm) with sterile scissors and supplemented

with sterile distilled water (100 mL water per 1 g of

sample wet mass). Serial dilutions (10−3 to 10−5) were

prepared and plated onto agar plates with modified

Smith and Dawson (SD) medium (20 g L−1 malt

extract, 0.05 g L−1 Rose Bengal, 20 g L−1 agar,

30 μg L−1 streptomycin; Hršelová et al. 1999) and

cultivated at 25°C for three to seven days. Single colonies

from the plates were re-inoculated onto malt extract agar

(MEA) medium (20 g L−1 malt extract, 20 g L−1 agar).

The colonies were selected for isolation based on the

frequency of occurrence and colony morphology in order

to obtain a representative sample of the most frequently

present morphotypes (80 isolates in total). Fungal strains

were maintained on MEA at 25°C. For long term strain

maintenance, a working collection was established using

the Protect™ system (Technical Service Consultants,

United Kingdom). Radial growth rate was calculated as

the increase of maximal colony diameter during the linear

phase of colony extension on MEA medium.

All strains of litter-decomposing basidiomycete

fungi (Collybia maculata CCBAS 755, Flammulina

velutipes CCBAS 363, Gymnopus ocior CCBAS 287,

Hypholoma fasciculare CCBAS 283, Lepista nuda

CCBAS 136, Marasmius quercophilus CCBAS 290,

Mycena galopus CCBAS 139, Mycena pura CCBAS

280, Mycena rubromarginata CCBAS 299, Mycena

viridimarginata CCBAS 134, Pholiota flammans

CCBAS 229, Rhodocollybia butyracea CCBAS 286,

Stropharia hornemannii CCBAS 295, Stropharia

semiglobata CCBAS 144) were obtained from the

Culture Collection of Basidiomycetes of the Institute

of Microbiology of the ASCR, v.v.i. (Prague, Czech

Republic). The strains CCBAS 280, CCBAS 283,

CCBAS 286, and CCBAS 287 were previously

isolated from the same site as the microfungi

(Valášková et al. 2007), while the other species were

selected based on the observations of fruitbodies at

the same site or at other Quercus petraea forest sites

in Central Europe. Fungal strains were maintained on

MEA at 25°C.

Identification of strains

The identification of isolated strains was performed

using DNA sequencing. DNA was isolated from agar

cultures using the Powersoil Kit (MoBio, USA).

Isolated genomic DNA was used as a template in

PCR reactions using primers for parts of the fungal

rDNA region (Gardes and Bruns 1993; White et al.

1990): ITS-1f (5′-CTTGGTCATTTAGAGGAAG

TAA-3 ′) and NL4 (5 ′-GGTCCGTGTTTCAA

GACGG-3′). Each 50 μl reaction mixture contained

5 μl 10× buffer for DyNAzyme DNA Polymeraze

(Finnzymes), 3 μl of Purified BSA 100x (10 mg/ml,

New England Biolabs), 2 μl of each primer

(0.01 mM), 1.6 μl of PCR Nucleotide Mix (10 mM

each, Roche), 2 μl polymerase (2U μl−1, DyNAZyme

II DNA Polymerase, Finnzymes) and 1 µl of isolated

genomic DNA. PCRs were run on TGradient thermo-

cycler (Biometra, Germany), cycling conditions were

1× (95°C 3 min, 55°C 30 s, 72°C 1 min), 30× (95°C

30 s, 55°C 30 s, 72°C 1 min), 1× (95°C 30 s, 55°C

30 s, 72°C 10 min) (Valášková and Baldrian 2009).

PCR products were sequenced as a single extension

with primer ITS1f by Macrogen Inc. (Korea) using an

ABI 3730 XL DNA Analyzer (Applied Biosystems).

Sequences were manually edited and corrected

prior to BLAST (blastn) search against the nucle-
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otide database at NCBI (http://www.ncbi.nlm.nih.

gov/blast). Identification was based on the best

blastn match.

Due to low variability of the ITS region in the genus

Penicillium, new PCR reaction was performed for

strains identified as the members of this genus using

primers for part of the β-tubulin gene (Glass and

Donaldson 1995), Bt2a (5′-GGTAACCAAATCGGT

GCTGCTTTC-3 ′) and Bt2b (5 ′- ACCCTCA

GTGTAGTGACCCTTGGC-3′). PCR was performed

using the same protocol as above and the products were

sequenced as a single extension with primer Bt2a by

Macrogen, Inc. (Korea) using an ABI 3730 XL DNA

Analyzer (Applied Biosystems).

For the strains that showed higher than 98%

sequence similarity of the rDNA region (or, in the

case of Penicillium spp., of the β-tubulin gene), one

strain representing the >98% similarity group was

selected for further analysis. Additional tests of

carbon source assimilation patterns and enzyme

activity confirmed that the closely related strains were

also very similar physiologically (data not shown).

This selection yielded 29 representative strains which

were further used in the study.

Identification of the sequences was performed with

BLAST running against GenBank. Isolates showing

higher than 98% similarity with a sequence present in

GenBank were assigned to a species level, and other

strains were assigned to higher taxa. The identifica-

tion of strain 62 was performed using the Trichokey

online identification tool (http://www.isth.info/tools/

molkey/index.php). For all strains, the DNA sequence

containing part of the 18S ribosomal RNA gene, the

ITS1 region, and part of the 5.8S ribosomal RNA

gene has been deposited at GenBank; for the isolates

from the genus Penicillium, partial sequences of β-

tubulin genes were also deposited. The accession

numbers are given in Table 1.

Semi-quantitative assay of enzyme production

API ZYM™ (Bio Merieux, France), a laboratory kit

for semiquantitative analysis of production of hydro-

lytic enzymes by microorganisms was used for the

comparison of enzyme production in 29 strains of

nonbasidiomycetous micromycetes and 14 strains of

saprotrophic basidiomycetes. Fungal strains were

cultured on MEA medium at 25°C for 14 days.

Following incubation, a portion of 1 cm2 of agar with

approximately 7-day-old mycelium was removed,

supplemented with 2 mL distilled H2O, and homog-

enized with a mortar and pestle. An aliquot of 65 μL

of the resulting suspension was then delivered into the

API ZYM cupules and incubated at 37°C for 4 h as

described in the manufacturer’s instructions with

slight modifications (de la Cruz et al. 2006). One

drop each of ZYM A (25 g Tris-hydroxymethyl-

aminomethane, 11 mL 37% HCl, 10 g sodium lauryl

sulfate, 100 mL H2O) and ZYM B (0.12 g Fast Blue

BB, 50 mL methanol, 50 mL dimethyl sulfoxide)

reagents were added to the cupules. The color

reactions were read after 5 min of incubation and

compared with the color code provided by the

manufacturer. Results were recorded as zero (zero

nanomoles substrate hydrolysed), 1 (5 nanomoles

substrate hydrolysed), 2 (10 nanomoles substrate

hydrolysed), 3 (20 nanomoles substrate hydrolysed),

4 (30 nanomoles substrate hydrolysed), or 5 (≥40

nanomoles substrate hydrolysed).

Production of extracellular enzymes

Agar plate screening was performed as described by

Steffen et al. (2000) using Petri dishes (90 mm,

25 mL/plate) containing MEA supplemented with (1)

0.25 g L−1 2,2′-azinobis-3-ethylbenzothiazoline-6-

sulfonic acid (ABTS) for the detection of laccase

(phenoloxidase) activity, (2) 0.1 g L−1 MnCl2. 4H2O

for Mn-peroxidase activity or (3) 1 g L−1 of humic

acid to assay the humic acid decolorization potential.

Humic acid was prepared from the H horizon material

of the site of strain isolation as previously described

(Valášková et al. 2007). Plates were inoculated with a

7-mm agar plug containing fresh mycelium from an

MEA culture and incubated at 25°C. After two weeks,

ABTS plates were examined for the formation of green

rings around the fungal mycelia, indicating the presence

of extracellular radical-generating enzymes (laccase,

peroxidases). Mn plates were evaluated after six weeks

of incubation for the formation of black and dark brown

spots of MnO2 caused by the action of Mn-peroxidase.

Humic acid plates were examined after six weeks for

bleaching, indicating the transformation of humic acids

into low molecular mass fulvic acids.

Enzymes were extracted from fungal cultures

growing on MEA medium. Five 0.5 cm×0.5 cm

squares were cut from agar plates below 7-day-old

mycelium, cut into small pieces, mixed with 50 mM
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sodium acetate buffer, pH 5.0 (3 mL cm−2), and

extracted for 2 h at 4°C with constant mixing. Filtered

extracts were used for analyses.

The activities ofβ-glucosidase, cellobiohydrolase, N-

acetylglucosaminidase, chitobiosidase, endochitinase,

α-glucosidase, β-xylosidase, phosphomonoesterase,

phosphodiesterase, and arylsulfatase in the extracts were

assessed with 4-methylumbelliferyl(MUF)-β-D-gluco-

pyranoside, MUF-β-D-cellobioside, MUF-N-acetyl-β-

D-glucosaminide, MUF-N,N’-chitobioside, MUF-N,N’,

N”-chitotrioside, MUF-α-D-glucopyranoside, MUF-β-

D-xylopyranoside, MUF phosphate, bis-(MUF) phos-

phate, and MUF sulfate, respectively. Alanine- and

leucine aminopeptidases were assayed with L-alanine-

7-amido-4-methylcoumarin and L-leucine-7-amido-4-

methylcoumarin. Fluorescence of the released reaction

products was measured as previously described

(Baldrian 2009b) using a method modified from

Vepsäläinen et al. (2001). Substrates (100 μL in

DMSO) to give the final concentration of 500 μM were

combined with three technical replicates of 100 μL of

extracts in a 96-well multiwell plate. For the background

fluorescence measurement, 100 μL of 50 mM sodium

acetate buffer, pH 5.0 were combined with 100 μL of 4-

methylumbelliferol or 7-aminomethyl-4-coumarin

standards to correct the results for fluorescence quench-

ing (Vepsäläinen et al. 2001). The multiwell plates were

incubated at 40°C, and fluorescence was recorded from

5 min to 125 min using the Infinite microplate reader

(TECAN, Austria), using an excitation wavelength of

355 nm and an emission wavelength of 460 nm. The

quantitative enzymatic activities after blank subtraction

were calculated based on standard curves of 4-

methylumbelliferone and 7-amido-4-methylcoumarin.

One unit of enzyme activity was defined as the amount

of enzyme forming 1 nmol of 4-methylumbelliferone

and 7-amido-4-methylcoumarin liberated per min and

was expressed per square area of fungal culture.

Laccase activity in extracts was measured (but not

detected) by monitoring the oxidation of ABTS in

citrate-phosphate (100 mM citrate, 200 mM phos-

phate) buffer (pH 5.0) at 420 nm according to

previous methods (Bourbonnais and Paice 1990).

The activities of Mn-peroxidase and lignin peroxidase

were not measured because plate assays of Mn2+

oxidation and humic acid bleaching were negative

and because the presence of these enzymes is not

anticipated in nonbasidiomycetous fungi (Morgenstern

et al. 2008).

Degradation of cellulose and chitin was tested by

methods modified from Smith (1977) and Untereiner

and Malloch (1999). Briefly, 6 mL of basal medium

(1.25 g L−1 KH2PO4, 0.625 g L−1 MgSO4. 7H2O,

15 g L−1 agar) in 15-mL test tubes was overlaid with

0.6 mL of an overlay (2 g L−1 malt extract, 4.38 g L−1

cellulose azure or chitin azure, 15 g L−1 agar). The

tubes were inoculated by 7-mm agar plugs with

mycelia pre-cultivated on ME agar plates. Polysac-

charide degradation was monitored for 28 d as the

release of color into the basal medium and scored as

negative (−; no color change), positive (+; light blue

to blue color), and strongly positive (++; violet color).

All enzyme assays were performed in at least three

biological replicates.

Analysis of carbon source assimilation patterns

Carbon source utilization by fungal isolates was

examined using the BIOLOG Phenotype MicroArrays

as described by Druzhinina et al. (2006). Fungal

cultures were initially grown on 2% (w/v) Malt

Extract Agar until sporulation occurred. Inoculum

was prepared by rolling a sterile, wetted cotton swab

over the conidia-bearing colony and suspending it in

10 ml sterile phytagel solution (0.25% phytagel,

0.03% Tween 40) in disposable test tubes (15×

120 mm). The spore density was adjusted to 75±2%

transmission at 590 nmwavelength. An aliquot of 90μL

spore suspension was then dispensed into each well of a

presterilized Biolog FF MicroPlate (BIOLOG, USA)

which contained 95 wells of different prefilled sub-

strates plus one well with no substrate as a control. The

inoculatedmicrotiter plates were incubated in the dark at

25°C and the mycelial growth was measured after

intervals of 24, 48, 72, 96, and 168 h as the absorbance

at 750 nm using the Infinite microplate reader (Tecan,

Austria). Three biological replicates were run for each

fungal isolate.

Analysis of the Phenotype MicroArray was per-

formed on the absorbance measured at 750 nm, where

the values are directly proportional to mycelial

density. The data from the 72 h reading were used

since growth limitation and/or sporulation in wells

occurred during later readings. The data were cor-

rected for initial absorbance at time 0. To obtain the

relative substrate utilization, data were divided by

average well color development, i.e., the mean

absorbance in all wells of the plate. The ability to
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grow on a given substrate was defined as the ability to

cause a 1.5× higher increase in the absorbance of the

substrate well with respect to the control well.

Statistics

Statistical tests were conducted using the software

package Statistica 7 (StatSoft, USA). Differences

between groups were tested by a one-way analysis

of variance (ANOVA) followed by the Tukey post

hoc test. Principal component analysis was used to

analyze the variability of enzyme production among

saprotrophic basidiomycetes and microfungi. Source

data for the analysis were the values of the API ZYM

test plus the data from laccase and MnP activity from

agar plate screening (activity present or absent). In all

cases, differences at P<0.05 were regarded as

statistically significant.

Results

Identification of isolates

A relatively rich nutrient medium supplemented with

Rose Bengal as an inhibitor of bacterial growth was

used for isolation of microfungi in order to enrich for

fast growing nonbasidiomycetous species. Based on the

rDNA region containing the ITS sequence, most of the

isolates were identified as members of the genus

Penicillium (Eurotiales, Ascomycota). Isolates belong-

ing to the genus Penicillium, were identified based on a

partial sequence of the β-tubulin gene. Out of the total

of 18 sequences, six were assigned to a specific species

(Table 1). The other ascomycete strains belonged to

Hypocreales (the genera Acremonium, Hypocrea and

Myrothecium), Pleosporales (Alternaria and Ochrocla-

dosporium), Capnodiales (Cladosporium), Leotiomy-

cetes (Geomyces), and Dothideomycetes. Two strains

were zygomycetes, with one belonging to Mucorales

(Umbelopsis) (Table 1). None of the isolates obtained

by this method belonged to Basidiomycota. The radial

extension rate of all strains was relatively fast, at 40–

375 μm h−1 (Table 1).

Enzyme production by soil microfungi

Degradation of cellulose was detectable in 15 of the

29 strains, but was slow for all strains except strain 62

(Table 1). All but five strains were able to produce

cellobiohydrolase (exocellulase). All isolates except

strain 62 were able to produce β-glucosidase (Fig. 1)

and also exhibited fast growth on cellobiose. Strains

07, 18, 24, and 39 grew on this substrate at the same

rate as on glucose or even faster. Interestingly, the

production of endoglucanase was frequently accom-

panied by little or no cellobiohydrolase activity, and,

vice versa, several strains with high exocellulase

production did not produce endocellulase. Strains

with high cellobiohydrolase activity also exhibited

high β-glucosidase activity (P<0.001) .

These isolates had a low potential to act in lignin

degradation or the transformation of phenols. None of

the strains were able to either oxidize Mn2+ or

decolorize humic acids. Only six strains exhibited

some potential to oxidize ABTS (Table 1). All of

these strains were also tested for phenoloxidase

production in liquid culture with glucose or cellulose

as carbon sources, but did not produce detectable

activity (data not shown).

The potential to degrade chitin was widespread

among the isolates. Twenty strains were able to

degrade azo-dyed chitin, with strains 07, 19, 24, and

67 showing the fastest degradation. The same number

of strains was also able to produce endochitinase in

MEA medium, 22 strains produced chitobiosidase,

and all isolates produced N-acetylglucosaminidase,

although the level of production varied highly

(Fig. 1); the best producers of chitobiosidase were

strains 04 and 12 with 255 and 287 nmol min−1 cm−2,

and strain 12 also exhibited the highest endochitinase

activity (280 nmol min−1 cm−2). All strains were able

to grow rapidly on N-acetylglucosamine, the product

of N-acetylglucosaminidase action (Fig. 2); the

growth rates of strains 02, 07, 09, 13, 18, and 54

were comparable on N-acetylglucosamine and on

glucose, with both faster than on cellobiose. Interest-

ingly, the production of N-acetylglucosaminidase

negatively correlated with the growth rate on N-

acetylglucosamine (P=0.047).

Enzymes degrading hemicelluloses were produced

by all tested strains, but the production of individual

enzymes differed widely. When grown on MEA, all

but three strains (14, 19, and 62) produced β-

xylosidase, but the activities were usually 5–10×

lower than that of β-glucosidase; the activity of the

two hydrolases correlated strongly (P<0.001). α-

Galactosidase was produced by 18 strains and β-
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galactosidase by 17 strains, but α-mannosidase, α-

fucosidase, and β-glucuronidase were produced only

by 7, 5, and 2 strains, respectively, with all showing

low activities (Table 1).

Among the other enzymes tested, acid phosphatase

was produced by 28 strains, α-glucosidase (amylase)

by 22, phosphodiesterase by 21, leucine arylamini-

dase by 18, arylsulfatase by 15, lipase by 14, and

valine arylaminidase by four strains. Only strain 09

produced alanine and leucine aminopeptidases; both

were produced at high levels showing that they may

be important to this fungus.

In the comparison of activities of extracellular

hydrolytic enzymes included in the Api Zym test and

the ligninolytic enzymes laccase and Mn-peroxidase

among microfungi isolated in this work and sapro-

trophic basidiomycetes occurring in the same habitat,

substantial differences were found that clearly sepa-

rated these two groups (Fig. 3). Basidiomycete fungi

exhibited significantly higher activities of ligninolytic

enzymes: Mn-peroxidase was produced exclusively

by basidiomycetes, and laccase was produced by all

tested basidiomycete strains but only by six strains of

microfungi. Basidiomycetes also showed higher ac-

tivities of esterase, lipase, leucine and valine arylami-

nidases, α-mannosidase and β-glucuronidase.

Microfungi, on the other hand, exhibited significantly

higher N-acetylglucosaminidase activity.

Utilization of simple carbon substrates as growth

resources

Utilization of simple carbon substrates was tested

using the BIOLOG FF system containing 95 different

carbon substrates (Fig. 2). The analysis was per-

formed for 20 strains where the sporulation makes it

possible to prepare inoculum of a defined initial

biomass concentration. The metabolic diversity, i.e.,

the number of substrates from the set where a strain

was able to produce significant growth, ranged from

41 to 87, with 65% of strains able to grow on 70 or

more substrates (Table 1). In general, monosacchar-

14 Penicillium coprobium

19 sp.Umbelopsis

54 sp.Penicillium

62 Hypocrea semiorbis

67 sp.Mucoromycotina

20 sp.Penicillium

43 Penicillium glabrum

04 sp.Acremonium

03 sp.Penicillium

50 Penicillium glabrum

16 Myrothecium inundatum

07 sp.Penicillium

15 sp.Penicillium

05 sp.Penicillium

02 sp.Penicillium

39 Ochrocladosporium frigidarii

61 Penicillium bialowiesense

09 Geomyces pannorum

18 sp.Penicillium

66 sp.Penicillium

71 sp.Dothideomycetes

12 sp.Penicillium

41 Penicillium soppii

26 Cladosporium cladosporoides

13 sp.Penicillium

36 sp.Ochrocladosporium

40 Alternaria tenuissima

24 sp.Penicillium

30 Penicillium glandicola

01000200030004000

Activity (nmol min
-1

cm
-2
)

0 100 200 300 400 500

Activity (nmol min
-1

cm
-2
)

Fig. 1 Activity of cellulolytic and chitinolytic enzymes of fungal

isolates in 7-day-old mycelia on MEA medium. Left panel:

activity of β-glucosidase (open bars) and cellobiohydrolase

(black bars); right panel: activity of N-acetylglucosaminidase

(open bars), chitobiosidase (gray bars), and endochitinase (black

bars). These data represent the means of three replicates.

Standard errors (less than 30%) were omitted for clarity

Plant Soil (2011) 338:111–125 119



Fig. 2 Carbon source utili-

zation by fungal isolates

based on absorbance data

(turbidity) at 750 nm

following incubation of the

BIOLOG FF Microplates at

25°C for 72 h. Turbidity

data measure mycelial

growth, indicative of

substrate utilization. The

data are based on the mean

absorbance after growth on

individual carbon substrates

relative to average well col-

or development (AWCD).

Medians are represented by

large symbols that indicate

substrate type (full squares:

monosaccharides; open

squares: oligosaccharides or

saccharide derivatives; full

triangles: amino-acids or

derivatives; open triangles:

simple organic acids;

crosses: other compounds).

Interquantile ranges are rep-

resented by horizontal lines

and Q10 and Q90 by small

crosses. Numbers in paren-

theses for each substrate

indicate how many strains

(n=20) were able to grow

significantly on the sub-

strate (absorbance increase

at least 1.5× higher than that

in water)
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Fig. 3 Principal component

analysis of the activities of

selected extracellular

enzymes produced by fungi

inhabiting Quercus sp. for-

est topsoil. Panel A: Princi-

pal component loads of

individual fungal strains;

open symbols: saprotrophic

basidiomycetes; full

squares: Penicillium strains,

full circles: other microfun-

gal strains. Panel B: com-

ponent loads of individual

enzymes and fungal groups.

Abbreviations: AcP: acid

phosphatase; aFuc:

α-fucosidase; aGal: α-

galactosidase; aGlu:

α-glucosidase; AlP: alkaline

phosphatase; aMan:

α-mannosidase; bGal:

β-galactosidase; bGlu:

β-glucosidase; bGur: β-

glucuronidase; E: esterase;

EL: esterase lipase; Lac:

laccase; LeuAA: leucine

arylamidase; MnP:

Mn-peroxidase; Nac:

N-acetylglucosaminidase;

ValAA: valine arylamidase;

asterisks indicate signifi-

cantly higher activity in

saprotrophic basidiomycetes

than in microfungi

(* P<0.05, ** P<0.01;

*** P<0.001); circles

indicate significantly higher

activity in microfungi

(P<0.05)
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ides were the most rapidly metabolized group of

substrates. One notable exception was arabinose, one

of the major monosaccharide components of oak

litter, which was only utilized by eight strains, and

which only supported very slow growth (Fig. 2).

Several disaccharides and saccharide derivatives were

also commonly used by microfungi. Among amino

acids, alanine, glutamic acid, and proline were

utilized by all strains and supported rapid growth.

Organic acids usually supported only slow growth.

Discussion

Soil microfungi, taxonomically belonging to ascomy-

cetes and zygomycetes, represent an important group

of fungi in forest soils. Based on DNA analyses,

ascomycetes represented approximately 50% of the

total fungal community in the L horizon and approx.

25% in the H horizon in the soil used in this study

(Voříšková et al. 2009). In the L and H horizons,

Ascomycota may represent between 30–60% of the

total fungal community, and Zygomycota up to 5%

(O’Brien et al. 2005). In beech litter, 85–97% of

clones belonged to ascomycetes, with the rest mainly

zygomycetes (Aneja et al. 2006). In this study,

members of the genera Acremonium, Alternaria,

Cladosporium, Geomyces, Hypocrea, Myrothecium,

Ochrocladosporium, Penicillium, and Umbelopsis as

well as two unidentified clones of Mucoromycotina

and Dothideomycetes were isolated from the L and H

horizons ofQuercus petraea soil. More than half of the

isolates belonged to the genus Penicillium. Acremo-

nium, Cladosporium, Geomyces, Mucor, Penicillium,

and Trichoderma have been repeatedly isolated from

both forest and agricultural soils (De Bellis et al. 2007;

Grishkan 1996; Keller and Bidochka 1998). Penicilli-

um, Trichoderma, and Myrothecium were the most

common genera of ascomycetes revealed by DNA

sequencing in beech litter (Aneja et al. 2006), demon-

strating that the fungi isolated in this study represent

the total microfungal community relatively well.

We detected neither Mn2+ oxidation or humic acid

degradation in the studied strains which indicates the

lack of ligninolytic peroxidases. The low production

of Mn-peroxidase by nonbasidiomycetous microfungi

reported by (Řezáčová et al. 2006) is most likely due

to inaccurate methodology since the presence of this

enzyme seems to be limited to certain basidiomycete

genera (Morgenstern et al. 2008). Slow ABTS

oxidation was found in agar plates with Myrothecium

inundatum, Acremonium sp., Ochrocladosporium,

Cladosporium and one Pennicillium strain, and the

low or missing activity on ABTS is sharply contrast-

ing with the high activity in all tested basidiomycete

strains. ABTS oxidation by Myrothecium verrucaria

and probably also by Acremonium murorum was

probably due to bilirubin oxidase, another Cu-

containing oxidase (Baldrian 2006; Hoegger et al.

2006). Cladosporium cladosporoides and a Penicilli-

um strain were also previously reported to degrade

lignin-like compounds (Claus and Filip 1998; Zheng

et al. 1999) or humic acids (Gramss et al. 1999; Paul

and Mathur 1967), however, the identity of the

enzymes involved remains unclear.

The inability of microfungi to degrade lignin may

also be the reason for the slower litter transformation

by microfungi than by basidiomycetes. When decom-

position of Fagus crenata was compared for different

species of fungi, the loss of dry mass caused by cord-

forming basidiomycetes was 15–57%, and by Xylar-

iaceous ascomycetes it was 4–14% (Osono and

Takeda 2002). These strains were able to bleach the

decomposed litter, indicating polyphenol transforma-

tion. On the other hand, no bleaching activity was

detected in other ascomycete and zygomycete species

(including the genera Acremonium, Cladosporium,

Penicillium, Trichoderma, and Mucor), and the mass

loss was typically between 1% and 5% (Osono and

Takeda 2002). Similar results were obtained with

Betula litter (Osono and Takeda 2006). In the same

study, only less than 10% of carbohydrates were

mineralized by Penicillium glabrum and Trichoderma

viride compared to 15–60% in basidiomycetes

(Osono and Takeda 2006). This indicates that asco-

mycetes are likely able to utilize just a limited fraction

of the easily accessible compounds in litter and not

even cause significant polysaccharide degradation.

This study indicates that limited production of

hemicellulose-degrading enzymes may be another

explanation for lower utilization of polysaccharides

by nonbasidiomycetous microfungi. Activities of α-

mannosidase and β-glucuronidase were low in all

microfungi, and only a few of our isolates, most

notably Alternaria tenuissima, were able to produce

significant amounts of hemicellulases (Table 1). This

is in contrast to the relatively high production of

hemicellulases by saprotrophic basidiomycetes on
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lignocellulose, reported previously (Baldrian et al.

2005; Steffen et al. 2007; Valášková et al. 2007).

Most isolates were able to produce cellobiohydro-

lase and β-glucosidase, often in high quantities.

Strains with high cellobiohydrolase activities also

exhibited high β-glucosidase activities (P<0.001).

Approximately half of the strains were also able to

produce endocellulase and seem to possess the

complete system for cellulose hydrolysis. The pro-

duction of endocellulase was frequently accompanied

by low or no cellobiohydrolase activity (strains 04,

14, 19, 20, 43, and 62). This may indicate that these

strains are primarily oriented towards the degradation

of cellulose-containing cell walls in order to get

access into cells rather than to use the cellulose as a

source of carbon and energy. Interestingly, one of

these strains was identified as Hypocrea semiorbis,

belonging to the genus where cellobiohydrolases are

usually produced in high titers and whose members

possess an extensive set of cellulolytic enzymes;

Hypocrea jecorina whole genome sequence contains

two genes encoding cellobiohydrolases and eight

genes in five families of endoglucanases (Martinez

et al. 2008). It was previously reported that Penicil-

lium sp., Acremonium sp., and Trichoderma sp.

isolates from a subtropical forest degraded cellulose

(but not lignin) (Hao et al. 2006), and the production

of endocellulase was also detected in severalPenicillium

and Trichoderma strains from grasslands (Daynes et al.

2008; Deacon et al. 2006). The presence of one or

more cellulolytic enzymes was reported from

individual members of the genera Acremonium,

Cladosporium, Mucor, Myrothecium, Penicillium,

and Trichoderma (Bhiri et al. 2008; Ikeda et al.

2007; Skare et al. 1975; Somkuti 1974; Whitaker

1951). However, our results show that the production

levels of these enzymes vary greatly among strains of

the same genus. The best producers of cellobiohydrolase

and β-glucosidase were found among Penicillium

strains, and this genus may thus be an attractive target

for future biotechnological exploration.

Chitinases have been previously purified from

Mucor, Myrothecium, Penicillium, and Trichoderma

(de la Cruz et al. 1992; Rast et al. 1991; Vyas and

Deshpande 1989). In a study on grassland microfungi,

only a few chitin degraders were recorded (Deacon et

al. 2006). Using the same method, we demonstrated

that chitin degradation is widespread among micro-

fungi isolated from forest soil: most isolates were able

to degrade chitin, with the best producer being the

Acremonium isolate. Despite the fact that production

of chitinolytic enzymes was demonstrated in several

wood-decomposing basidiomycetes (Lindahl and

Finlay 2006), our results show that microfungi were

significantly better N-acetylglucosaminidase producers

than litter-decomposing basidiomycetes. There was a

strong correlation between the production of endochi-

tinase, chitobiosidase, and N-acetylglucosaminidase

(P≤0.001). The fact that the production of N-

acetylglucosaminidase negatively correlated with the

growth rate on N-acetylglucosamine might indicate

that the species hydrolyzing chitin are using the

enzyme to cross the cell wall of fungi or invertebrates

to get to more readily utilizable compounds rather than

using it as a growth source. The general use of N-

acetylglucosamine as a C source strongly contrasts with

the fact that none of the isolates were able to grow on N-

acetylgalactosamine and N-acetylmannosamine, amino-

sugars potentially providing comparable amounts of

carbon, nitrogen and energy. Microfungi turned out to be

metabolically versatile, with the ability to use many

different C sources.

With respect to the growth rates on individual

substrates, strains can be divided into two main

groups: (1) isolates growing rapidly on glucose but

significantly slower on most other substrates (e.g., the

mono- and oligosaccharides derived from cellulose,

hemicelluloses and chitin), and (2) strains growing

rapidly on many different substrates, often at rates

similar or even slightly higher than on glucose. This

division is supported by the fact that strains growing

faster on cellobiose than on glucose also grew faster

on N-acetylglucosamine (P<0.001).

The most important components of cellulose, hemi-

celluloses and chitin (cellobiose, xylose, and N-

acetylglucosamine) supported rapid growth of most

strains. The comparison of taxonomic similarity (ITS or

β-tubulin sequence similarity) and the metabolic profiles

showed that themost closely related strains (i.e., the pairs

05/12, 43/50 and 03/66 with >95% sequence identities)

also showed similar carbon utilization patterns. However,

this finding was not valid at greater taxonomic distances,

and the genus Penicillium was metabolically variable,

probably due to niche differentiation.

Our results show that soil microfungi differ from

saprotrophic cord-forming basidiomycetes in their

abilities to decompose soil biopolymers. They are

not likely to play an important role in lignin
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degradation. On the other hand, several strains are

able to produce cellulolytic enzymes, and the produc-

tion of chitinases seems to be widespread and higher

than in basidiomycetes. Forest soil microfungi can

thus actively participate in the transformation of both

litter and dead fungal biomass, both belonging to the

richest carbon sources of forest soils.
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a b s t r a c t

Chemical composition of litter has previously been reported to affect in situ decomposition.

To identify its effects on a single species level, the saprotrophic basidiomycete Hypholoma

fasciculare was grown on 11 types of litter with variable chemical composition (N content of

3.4e28.9 mg g�1), and the mass loss of litter and lignin, production of extracellular enzymes

and fungal biomass were followed. After 12 weeks, mass loss ranged from 16 % to 34 %.

During early decomposition stages, litter mass loss, fungal biomass production (estimated by

ergosterol content) as well as fungal substrate use efficiency all increased with increasing

initial N content of the litter. The initial litter decomposition rate was significantly positively

correlated with the activities of arylsulfatase, cellobiohydrolase, endoxylanase and phos-

phatase. Contrary to expectations, the lignin content did not affect litter mass loss, when

covariation with N content was accounted for. The ratio of lignin loss to total mass loss

depended on the litter type and did not reflect the activities of ligninolytic enzymes.

ª 2011 Elsevier Ltd and The British Mycological Society. All rights reserved.

Introduction

Leaf litter together with photosynthesis-derived carbon in

rhizodeposition are the main sources of organic matter in

hardwood forest soils (Bray & Gorham 1964; Litton et al. 2003).

Because a large amount of small-molecular-mass compounds

is withdrawn from leaves during senescence, the remaining

plant cell wall biopolymers, cellulose, hemicelluloses and

lignin represent the most important resources for soil

decomposer microorganisms present in leaf litter. Among

microorganisms, fungi are regarded as major decomposers of

lignocellulose and especially its polymeric fractions in the soil

(Kjoller & Struwe 2002; Baldrian 2008), and among fungi,

saprotrophic basidiomycetes represent an important group

whosemembers efficiently decompose both the plant cell wall

polysaccharides and lignin (Baldrian 2009a; �Snajdr et al. 2010;

Baldrian et al. 2011). This is due to the fact that these fungi

produce a wide variety of extracellular enzymes involved in

the decomposition of lignocellulose biopolymers (Steffen et al.

2000; Steffen et al. 2007; Val�a�skov�a et al. 2007). Among the

* Corresponding author.
E-mail address: baldrian@biomed.cas.cz (P. Baldrian).

ava i lab le at www.sc ienced i rec t . com
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doi:10.1016/j.funeco.2011.03.005
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extracellular enzymes produced by fungi, polysaccharide

hydrolases decomposing cellulose (endocellulase, cellobio-

hydrolase, and b-glucosidase), hemicelluloses (endoxylanase

and b-xylosidase) and other polysaccharides (a-glucosidase

and N-acetylglucosaminidase), deliver C and energy for the

growth of mycelium, while ligninolytic enzymes (laccase and

peroxidases) are considered responsible for liberating poly-

saccharides (mainly hemicelluloses) from covalent complexes

with lignin (Baldrian 2008; Baldrian & Val�a�skov�a 2008;

Thevenot et al. 2010). The supply of macronutrients to the

growing mycelium is provided by the action of hydrolytic

enzymes acting on organic N, P and S-containing molecules

(phosphatases, arylsulfatase, peptidases (Baldrian 2009b)).

Dead plant biomass e litter and wood e is characterised by

the relative excess of C and relatively lowN and P contents. As

such, it is more suitable for decomposition by fungi than by

bacteria. Indeed, highest fungal biomass in forest soils is

associated with litter layer with the highest C/N ratio while

the share of bacteria increases with soil depth (Berg et al. 1998;
�Snajdr et al. 2008). The initial stages of litter decomposition in

particular are dominated by fungi (�Snajdr et al. 2011). Cord-

forming basidiomycetes are often claimed as particularly

effective decomposers of N-limited lignocellulose litter due to

their ability to potentially translocate N from nutrient-rich

patches using their mycelial systems (Boddy 1999) which

allow them to decrease the N-limitation.

Decomposition of litter under natural conditions, however,

is a process involving not only basidiomycetes, but complex

communities composed of various fungal and bacterial taxa

that change during succession (�Snajdr et al. 2011; Kjoller &

Struwe 2002; Osono 2007). Although some fungal decom-

posers are generally present in different litter types, the

successional series of dominant fungal species are litter-type

specific (Frankland 1998; Koide et al. 2005; Osono & Takeda

2006), as are also the rates and limit values of decomposition

of different litter types (Berg 2000; Berg et al. 2010). One of the

proposed explanations of these observations is based on the

assumption that content of (or limitation by) nutrients, espe-

cially N and P, and susceptibility to decomposition (lignin

content) are the major determinants of fungal community

composition, and consequently the decomposition rates

(Treseder 2008; Gusewell & Gessner 2009). However, since the

differences in litter composition also imply differences in

microbial communities, it is difficult to find the relative role of

individual chemical quality parameters on decomposition. The

use of a single species in a decomposition test provides an

experimental tool to assess the relationships between litter

chemistry and decomposition without the effects of temporary

changes in microbial community composition. Furthermore,

the identification of the physiological responses of sapro-

trophic basidiomycetes to litter composition can help to

understand the factors that might potentially promote or limit

their dominance or competitive success in a given substratum.

Activity of extracellular enzymes is frequently used as

a proxy of decomposition. It remains unclear, however, which

of the extracellular enzymes are themost important for fungal

litter decomposition and consequently define the overall rate

of decomposition in general. Recent results show that hemi-

celluloses are decomposed faster than cellulose and lignin, at

least in some types of litter (�Snajdr et al. 2011) and cellulose

and hemicellulose-decomposing enzymes are thus likely

candidates for the rate-limiting determinants of litter

decomposition.

While most studies of litter decomposition consider mass

loss or enzyme activities, few quantify the production of fungal

mycelia in different types of litter, largely all due to the tech-

nical limitations of fungal biomass measurements in complex

substrata, e.g. by ergosterol measurements. The efficiency of

litter transformation into fungal biomass is, however, of

considerable importance as high biomass yields allow a fungus

to invest into exploratory growth of mycelial cords while low

yields will likely result in energy-dependent survival only. Only

a few papers have reported on fungal biomass (expressed

mostly as ergosterol content) in terrestrial environments

(Conway et al. 2000; Sinsabaugh et al. 2002; Gusewell & Gessner

2009; �Snajdr et al. 2011) and all of these studies consider

decomposition by mixed populations of both bacteria and

fungi. In single-species studies, chitin has been previously used

as a proxy of fungal biomass production (Boberg et al. 2008), but

ergosterolmeasurements,may contribute to the comparison of

results from single-species and complex microcosm studies.

The aim of this paper was to identify how chemical

composition of litter affects its decomposition by a saprotrophic

basidiomycete in terms of rates of themass and lignin loss, the

production of extracellular enzymes and formation of fungal

biomass. We hypothesized that the content of lignin in litter

would cause high production of ligninolytic oxidases and

peroxidases to increase the availability of carbohydrates while

a high N content would inhibit lignin decomposition. To test

this, the saprotrophic basidiomycete Hypholoma fasciculare was

grown on 11 types of litter differing in their chemical composi-

tion, and the mass loss of litter and specifically lignin, produc-

tion of extracellular enzymes and formation of fungal biomass

were followed as well, as changes in the available C and N

compounds, during decomposition. H. fasciculare is a wood-

associated saprotroph which also exploits litter and performs

slowandnonselective lignin decomposition andmineralization

(Val�a�skov�a et al. 2007; �Snajdr et al. 2010). Mycelia ofH. fasciculare

are frequently found in soils of forests with different dominant

tree species and its growth strategy in topsoil where it produces

exploitative mycelial systems (Kampichler et al. 2004) points to

extensive use of litter-derived nutrients during explorative

growth. The fungus may thus serves as a model saprotroph

capable of utilizing lignocellulose from both wood and litter.

Materials and methods

Fungal strains, materials and cultivation

The saprotrophic basidiomycete H. fasciculare CCBAS 281 was

obtained from the CCBAS collection (Institute of Microbiology

of the ASCR, v.v.i., Prague, Czech Republic). The strain was

originally isolated from a fruit body collected in an oak

(Quercus petraea) forest in the Xaverovsk�y H�aj Natural Reserve,

near Prague, Czech Republic (Val�a�skov�a et al. 2007). For prep-

aration of inocula, the fungus was grown in the dark at 25 �C

for 14 d in ME medium (20 g l�1 malt extract, 15 g l�1 agar).

Mycelial agar plugs (7 mm in diameter) were cut from the edge

of an actively growing colony and used as inocula.
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Litter of 11 tree species (Alnus glutinosa, Betula pendula, Fagus

sylvatica, Larix decidua, Picea abies, Pinus sylvestris, Pinus nigra,

Populus tremula, Q. petraea, Salix caprea and Tilia cordata) was

collected from the forest floor immediately after abscission in

the Sokolov region, Czech Republic, and air-dried before use.

The cultivation of fungi was performed in 100-ml Erlen-

meyer flasks containing 5 g air-dried ground litter (particle

size > 10 mm), corresponding to 4.50 g dry mass (85 �C). The

litter was moistened with 22.5 ml distilled water (final water

content 83 %). Theflaskswere autoclaved (2� 30 min at 121 �C)

and inoculated with two agar plugs of mycelium. The cultures

were incubated at 25 �C in the dark. For enzymeanalysis, three

flasks of each litter type were collected each sampling time

(weeks 2, 4, 6, 8, 10 and 12). For the analysis of fungal biomass

content, three flasks of each litter type were collected after 4,

8 and 12 weeks of incubation. Three flasks per litter type were

collected at the beginning of the experiment and after 4, 8 and

12 weeks of incubation, for the analysis of litter chemistry.

Litter analysis

Dry mass content was assessed by drying litter at 85 �C to

a constant mass and dry litter was milled before chemical

analyses. Klason lignin content was measured as dry weight

of solids after hydrolysis with 72 % (w/w) H2SO4 (Kirk & Obst

1988). Analysis of litter chemical composition was performed

as described previously (�Santr�u�ckov�a et al. 2006). Available

phosphorus extractable with oxalate (Pox) was determined

by extraction of 0.5 g of litter with 50 ml of acidic ammonium

oxalate solution (0.2 M H2C2O4þ 0.2 M (NH4)2 C2O4 at pH 3).

Water-extractable compounds were extracted from litter

step by step in cold water (water:litter, 10:1, v/w, 30 min at

20 �C) and hot water (water:litter, 10:1, v/w, 16 hr at 80 �C).

Extractable C and N were then determined on a TOC analyser

(Skalar FormacsHT, the Netherlands), and NH4 and NO3 using

flow injection analyser (Foss Tecator 5042, Sweden). The

elemental analyses (C, H and N) were performed for the

initial litter and for litter after decomposition (PerkineElmer

2400, MA, USA). All measurements were performed in

duplicates for each flask and mean values were used for

statistical evaluation. All results are expressed on actual dry

mass basis.

Quantification of fungal biomass

Ergosterol was used as a marker of fungal biomass. Total

ergosterol was extracted and analysed according to Nylund &

Wallander (1992). Mycelial samples from liquid culture (0.5 g)

were sonicated with 3 ml 10 % KOH in methanol at 70 �C for

90 min. Distilled water (1 ml) was added and the samples

were extracted three times with 2 ml cyclohexane, evapo-

rated under nitrogen, redissolved in methanol and analysed

isocratically using a Waters Alliance HPLC system (Waters,

USA) with methanol as a mobile phase at a flow rate of

1 mlmin�1. Ergosterol was quantified by UV detection at

282 nm.

Whole samples of fungal cultures on litter (w4 g dry mass)

were sonicated with 30 ml of 10 % KOH inmethanol and 10 ml

of cyclohexane at 70 �C for 90 min in Pyrex flasks. After soni-

cation, 10 ml of distilled water and 15 ml of cyclohexane were

added and themixtureswere shaken for 15 min and sonicated

until phase separation occurred. The supernatants were

collected, the cultures were twice re-extracted with 15 ml of

cyclohexane, as mentioned above, and supernatants from all

extractions were combined. After extraction, samples were

dried at 55 �C until constantmass. Themass of the added KOH

was subtracted from the total dry mass. The solvent was

evaporated using a vacuum pump RVO 200A (INGOS s.r.o.,

Czech Republic) and the residua after evaporation were

redissolved in 5 ml of methanol. The dissolved samples (1 ml)

were transferred to 1.5 ml microtubes, centrifugated for 3 min

at 6 000�g, and the supernatant was used as a sample for

HPLC.

To determine the relationship between ergosterol content

and fungal biomass in cultures on litter, H. fasciculare was

also cultivated on liquid medium, and the dry mass of fungal

mycelium and its ergosterol content were quantified. H. fas-

ciculare was grown in 250 ml Erlenmeyer flasks containing

40 ml of ME medium. Flasks were inoculated with two agar

plugs and incubated at 25 �C in the dark. To obtain mycelia

from exponential, early stationary and late stationary phase,

flasks were sampled after 7, 14 and 21 d of incubation (five

replicates). Since the ergosterol content in mycelia of

different growth stages did not show big differences

(1 364� 526, 1 609� 637, and 1 161� 396 mg/g of dry fungal

mycelia after 7, 14 and 21 d, respectively), the mean value of

1 379 mg ergosterol/g H. fasciculare mycelium was used for

calculations. Substrate use efficiency was calculated as

a ratio of fungal biomass after the experiment and the mass

of litter transformed into fungal biomassþ the mass of

mineralized litter.

Enzyme assays

At each sampling, the cultures in Erlenmeyer flasks were cut

into small pieces and soaked with 40 ml distilled water. The

homogenized substrata were extracted at 4 �C for 2 hr on

a shaker. Extracts were filtered through Whatman 5 filter

paper and the filtrates were kept frozen at �18 �C until anal-

ysis by spectrophotometry.

Laccase (EC 1.10.3.2) activity was measured by monitoring

the oxidation of ABTS (2,20-azinobis-3-ethylbenzothiazoline-

6-sulfonic acid) in citrateephosphate (100mM citrate, 200 mM

phosphate) buffer (pH5.0) at 420 nm(Bourbonnais&Paice 1990).

Manganese peroxidase (MnP, EC 1.11.1.13) activity was assayed

insuccinateelactate buffer (100mM,pH4.5) according to (Ngo&

Lenhoff 1980). MBTH (3-methyl-2-benzothiazolinone hydra-

zone) and DMAB (3,3-dimethylaminobenzoic acid) were oxida-

tively coupled by the enzymes, and the resulting purple

indamine dye was detected spectrophotometrically at 595 nm.

The results were corrected by the activities of the samples

without manganese (for MnP) e the addition of manganese

sulphate was substituted by an equimolar amount of ethyl-

enediaminetetraacetate (EDTA). Other ligninolytic peroxidases

are not produced by the studied fungal strain andwere thusnot

measured (Val�a�skov�a et al. 2007).

Endo-1,4-b-glucanase (endocellulase, EC 3.2.1.4) and endo-

1,4-b-xylanase (EC 3.2.1.8) activities were measured with azo-

dyed carbohydrate substrates (carboxymethyl cellulose and

birchwood xylan, respectively) as described previously
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(Val�a�skov�a et al. 2007). The reactionmixture contained 0.2 ml of

2 % dyed substrate in 200 mM sodium acetate buffer (pH 5.0),

and 0.2 ml sample. The reactionmixturewas incubated at 40 �C

for 60min and the reaction was stopped by adding 1 ml of

ethanol followed by 10 s vortexing and 10min centrifugation

(10 000�g). The amount of released dye was measured at

595 nm and the enzyme activity was calculated according to

standard curves correlating the dye release with the release of

reducing sugars.

Cellobiohydrolase (EC 3.2.1.91) activity was assayed in

microplates using p-nitrophenyl-b-D-cellobioside (PNPC). The

reaction mixture contained 0.16ml of 1.2 mM PNPC in 50mM

sodium acetate buffer (pH 5.0) and 0.04ml sample. Reaction

mixtures were incubated at 40 �C for 90e120 min. The reaction

was stopped by adding 0.1 ml of 0.5 M sodium carbonate, and

absorbance was measured at 400 nm. Activities of 1,4-b-gluco-

sidase (EC 3.2.1.21), 1,4-b-xylosidase (EC 3.2.1.37) and 1,4-b-

N-acetylglucosaminidase (chitinase; EC 3.2.1.52) were assayed

using p-nitrophenyl-b-D-glucoside, p-nitrophenyl-b-D-xyloside

and p-nitrophenyl-N-acetyl-b-D-glucosaminide respectively,

using the same method (Val�a�skov�a et al. 2007). Activities of

acidic phosphatase (EC 3.1.3.1) and arylsulfatase (EC 3.1.6.1)

were assayed using 2 g l�1 p-nitrophenylphosphate and 50mM

p-nitrophenylsulfate in the same buffer (Baldrian 2009b).

All spectrophotometric measurements were made using

a microplate reader (Sunrise, Tecan, Switzerland) or

a UVeVIS spectrophotometer (Lambda 11, PerkineElmer, MA,

USA). For the comparison of values obtained in a systemwith

changing water contents and dry mass, enzyme activities

were expressed per g of original dry mass of litter. One unit of

enzyme activity was defined as the amount of enzyme

forming 1 mmol of reaction product/min.

Statistical tests were conducted using the software package

Statistica 7 (StatSoft, USA). Statistical significance of differ-

ences among treatments was evaluated using one-wayANOVA

and Pearson’s correlation coefficients and t-values were

calculated for linear regressions. Differences and correlations

at P� 0.05 were regarded as statistically significant. Microcal

Origin 7.0 (Microcal, USA) was used to test the quality of linear

and nonlinear curve fits and to obtain the fit parameters.

Results

Chemical analysisof fresh litter showedthatcontentofNvaried

widely among litters ranging from 3.4 in P. abies up to

28.9 mg g�1 in A. glutinosa (Table 1). Litters also varied in the

amount of extractable phosphorus ranging between 0.06 and

0.59 mg g�1. F. sylvatica and L. decidua litters exhibited the

highest Klason lignin content. Generally, lignin content of litter

decreased with increasing N content, and the lowest lignin

contentwas found in theN-richest litter ofA. glutinosa (Table 1).

The extractable fractions of total C and N differed among litter

types.Mostof theextractableNwaspresent in theorganic form;

the mineral NH4 and NO3�fractions represented from 7 % to

53 % depending on litter type. At the end of the experiment,

organic fractions of extractable N largely exceeded the mineral

ones in all litter types, accounting for more than 90 % of

extractable N; the only exception was A. glutinosa where the

organic fraction accounted for 36 % only (Supplementary

Table 1). This indicates efficient utilization of mineral N by the

fungus in most litter types.

The initial rate of substratum decay by H. fasciculare during

the first 2 weeks of the experiment was slow in all types of

litter but accelerated later.Within 12weeks the fungus caused

the highest mass lost in A. glutinosa and L. decidua litter (34 %),

while the T. cordata, P. abies and P. nigra litterswere the slowest

to decompose (Fig 1). The ratio of Klason lignin loss to total

mass loss depended on the litter type; preferential lignin

decomposition was found in five litter types while preferential

decomposition of non-lignin structures was observed in the

others (Fig 2).

The content of ergosterol after 8 weeks incubation ranged

from 29 mg g�1 in the P. abies litter to 213 mg g�1 in P. tremula

litter (Fig 1). With the exception of P. nigra litter where fungal

biomass increased during the whole experiment, other litter

types exhibited a peak of ergosterol content at 4 weeks

(A. glutinosa) or 8 weeks (all the other litters), followed by

a more or less steep decrease. When the ergosterol/biomass

ratio of 1 379 mg ergosterol per g fungal biomass was used, the

amount of transformed litter could be defined as the sum of

Table 1 e Initial chemical composition of litter and loss of litter dry mass during 12-week incubation with Hypholoma
fasciculare. Data represent averages and standard errors of means

Litter Total C
(mg/g)

Extractable
C (%)

Total N
(mg/g)

Extractable
N organic

(%)

Extractable
N (NH4eN)

(%)

Extractable
N (NO3eN)

(%)

Pox
a

(mg/g)
C/Nb

week
0

C/Nb

week
12

Klason
lignin
(mg/g)

Loss of
dry mass

(%)

Alnus glutinosa 471� 2 17.7 28.9� 0.8 13.7 2.82 0.07 0.28� 0.01 16.3 10.3 337� 1 34.3� 0.5

Betula pendula 493� 1 15.8 7.9� 0.1 15.8 1.94 0.24 0.59� 0.01 62.7 39.4 507� 14 28.5� 1.0

Fagus sylvatica 477� 1 10.4 6.5� 0.3 14.0 2.98 0.39 0.18� 0.01 72.9 53.1 567� 14 24.2� 1.5

Larix decidua 481� 1 16.3 3.4� 0.0 7.4 3.19 0.64 0.44� 0.01 141.3 89.8 549� 18 32.9� 1.2

Picea abies 472� 1 11.1 4.1� 0.0 5.0 2.50 0.21 0.06� 0.01 114.0 94.6 447� 8 16.3� 0.5

Pinus nigra 505� 1 6.6 6.5� 0.1 5.6 0.47 0.18 0.12� 0.00 77.9 58.5 534� 8 16.5� 1.1

Pinus sylvestris 501� 1 7.3 5.4� 0.2 5.2 2.21 0.13 0.12� 0.00 92.0 71.1 512� 11 22.3� 0.4

Populus tremula 463� 2 20.9 17.5� 0.8 16.5 3.51 0.25 0.36� 0.03 26.4 17.7 418� 30 27.9� 0.9

Quercus petraea 467� 2 15.6 13.5� 0.2 12.7 1.78 0.20 0.38� 0.01 34.6 22.4 434� 27 22.9� 0.5

Salix caprea 463� 2 6.3 8.7� 0.2 5.3 2.08 0.14 0.54� 0.01 53.0 34.9 441� 14 19.0� 0.5

Tilia cordata 458� 2 13.3 8.0� 0.2 11.7 2.17 0.28 0.43� 0.00 57.2 45.3 462� 30 15.9� 0.5

a Pox: available phosphorus (extractable with oxalate).

b C/N ratio is based on total C and N content.
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the litter mass lost and the litter mass incorporated into

fungal biomass. Considering this, transformation of litter

went on in all litter types until week 8 when 13e38 % of litter

was transformed (the minimum andmaximum in P. abies and

A. glutinosa). During weeks 8e12, substantial litter

transformation only continued in the slowly decomposing

litters (P. abies, P. nigra, Pinus sylvatica, S. caprea and T. cordata)

while the transformation of the faster decomposing litters

slowed down substantially. The observed loss of mass

between 8 and 12 weeks in these litters occurred at the
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Fig 1 e Loss of dry mass (A) and ergosterol content (B) during a 12-week incubation of the saprotrophic basidiomycete

Hypholoma fasciculare on different litters. The data represent mean ± SEM (n[ 3).
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expense of the fungal biomass. At week 12, litter trans-

formation ranged from 18 % in P. abies to 38 % in A. glutinosa.

At the beginning of the experiment, there was an exponen-

tial relationship between total C/N of the litter and C/N in

water-extractable fraction. At the end of the experiment, this

relationshipwas linear, due to the fact that theC/N in thewater-

extractable fraction decreased, most likely due to the prefer-

ential mineralization of the water-extractable carbon fraction

(Fig 3).

Since the chemical composition of litter (Klason lignin

content, polysaccharide content and composition) changed

during the course of decomposition, and some of its compo-

nents were likely rapidly depleted from the litter, the effect of

litter chemical composition on enzyme production, fungal

biomass production and the relationships between loss of dry

mass and enzyme activities were also tested over the initial

decomposition period (until 4 weeks). Ergosterol content at

4 weeks was positively correlated with the initial content of

total N in litter (P¼ 0.000; Fig 4). Highestmass losswas from the

litters with a high initial N content (Fig 3). Ergosterol content

also negatively correlated with the initial content of lignin in

litter (P¼ 0.004). However, this was due to the fact that Klason

lignin content in litter decreased with increasing N content. A

composite linear model showed that N content in litter

explained 74 %of thevariation inergosterolproduction, and the

further effect of lignin in the model was quantitatively insig-

nificant. Thus, N content but not lignin content was important

for determining fungal growth. Substrate use efficiency

increased with the increasing initial litter N content with the

exception of A. glutinosa litter, where fungal biomass content

peaked early and decreased substantially until 12 weeks (Fig 3).

H. fasciculare produced all measured extracellular enzymes

in all types of litter. The activity of the enzymes, however,

differed substantially among litters (Fig 2; Table 2). The activity

of laccase in P. abies litter was distinctively higher than in the

rest of litter types, while the highest activity of Mn-peroxidase

was recorded in B. pendula, P. tremula, and P. nigra litter. In

contrast to that, laccase activity was negligible in T. cordata

litter and Mn-peroxidase was low in S. caprea, L. decidua and Q.

petraea litter. Activities of hydrolytic enzymes participating in

the decomposition of cellulose and hemicelluloses were highly

correlated with each other and also with the activities of

N-acetylglucosaminidase and phosphatase. This was particu-

larly apparent for endocellulase, cellobiohydrolase and

b-glucosidase; enzymes participating in the decomposition of

cellulose (Fig 2). The highest mean activities of endo-1,4-

b-glucanase, endo-1,4-b-xylanase, cellobiohydrolase, b-gluco-

sidase, b-xylosidase, N-acetylglucosaminidase and acid

phosphatase were detected in A. glutinosa litter (Fig 2; Table 2).

Enzyme activities showed similar time courses of activity

in individual litter types (Supplementary Table 1). The activity

of ligninolytic enzymes Mn-peroxidase and especially laccase

changed substantially with time, both enzymes being active

mainly during the first 4 weeks (Supplementary Table 1). Also

acid phosphatase was most active during the initial phases of

decomposition. The activity of endocellulase was initially low

but increased later. For all the other enzymes, no general

temporal trends of activity were observed.

The activity of four extracellular enzymes e arylsulfatase

(P¼ 0.001), cellobiohydrolase (P¼ 0.015), endoxylanase

(P¼ 0.044) and acid phosphatase (P¼ 0.044)ewere significantly

correlatedwithmass loss in the first 4weeks (Fig 4), but the best

Fig 3 e Relationships between initial N content, mass loss and substrate use efficiency (the proportion of decomposed

substrate allocated to fungal biomass production) during a 12-week incubation of the saprotrophic basidiomycete

Hypholoma fasciculare on different litters. Correlation of initial N content and mass loss (A); initial N content and substrate

use efficiency (B). Correlations of C/N ratio in total litter and in extractable litter fraction before the experiment (C) and at the

end of the experiment (D). Asterisks indicate statistical significance of linear correlations (*P £ 0.05, **P £ 0.001).
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predictor of enzyme activity was the total N concentration in

litter, which was closely correlated with activities of all hydro-

lytic enzymes except endoxylanase and arylsulfatase. Produc-

tion of ligninolytic enzymes was significantly affected only by

Pox, which decreased laccase activity (P¼ 0.027; Fig 4). The

relationships between mass loss after 12 weeks and litter

composition were generally weak. It seems that the litter

chemistry affected the rates of enzyme production and fungal

growth rather than the limit values fordecomposition: themass

loss of L. decidua litter after 12 weeks was similar to that of

A. glutinosa, despite the fact that L. decidua litter exhibited the

second highest lignin content and the lowest N content, while

A. glutinosa litter contained the most N and the least lignin.

Discussion

The chemical composition of dead litter, which varies among

plant species, is known to affect rates of decomposition

(H€attenschwiler & Gasser 2005). In our study, mass loss in

different litters ranged between 16e34 % after 12 weeks of

incubation with H. fasciculare. These values are comparable to

those obtained with other saprotrophic basidiomycetes:

19e44 % in birch litter after 3 months in the presence of

Mycena and Collybia species (Osono & Takeda 2006) or several

litter-decomposing fungi on Q. petraea litter (Steffen et al. 2007;

Val�a�skov�a et al. 2007). Previous observations suggested that

Fig 4 e Relationships among chemical parameters of litter (content of total N and available P), fungal biomass contents and

activities of extracellular enzymes during a 12-week incubation of the saprotrophic basidiomycete Hypholoma fasciculare on

different litters. Litters: A e Alnus glutinosa, B e Betula pendula, F e Fagus sylvatica, L e Larix decidua, Pc e Picea abies, Pn e Pinus

nigra, Po e Populus tremula, Ps e Pinus sylvestris, Q e Quercus petraea, S e Salix caprea, T e Tilia cordata.

Table 2 e Mean activities of extracellular enzymes during a 12-week cultivation of the saprotrophic basidiomycetes
Hypholoma fasciculare on different litters

Litter Endoxylanase
(U g�1)

b-xylosidase
(U g�1)

N-acetylglucosaminidase
(U g�1)

Acidic phosphatase
(U g�1)

Arylsulfatase
(U g�1)

Alnus glutinosa 130.3 35.2 204 486 4.3

Betula pendula 34.7 9.4 78 155 7.9

Fagus sylvatica 20.1 10.1 72 90 3.0

Larix decidua 4.4 6.0 79 101 5.3

Picea abies 4.4 1.7 16 34 1.0

Pinus nigra 7.0 6.7 68 86 2.1

Pinus sylvestris 7.0 2.3 61 70 2.1

Populus tremula 69.7 13.0 106 254 9.6

Quercus petraea 9.1 7.8 51 139 2.2

Salix caprea 31.1 3.9 63 85 1.8

Tilia cordata 1.1 8.4 32 64 2.6
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coniferous litters decompose in situ more slowly than litters

from broadleaved trees (Miyamoto et al. 2000; Osono & Takeda

2002; Osono et al. 2003; Osono & Takeda 2006) pointing at

potential differences among these groups of litters. Here we

show that this rule does not apply for single-species decom-

position by H. fasciculare: the coniferous litters of P. sylvestris

and especially L. decidua exhibited high mass losses while the

decomposition of T. cordata litter was slow.

A. glutinosa litter had distinctively higher N content and

extractable C and N compared to the other litter types. The

contents of extractable N or C did not decrease significantly

with time and thus did not limit nutrient availability during

decomposition. Total N content was the best predictor of

fungal biomass production in the beginning of the experiment.

This is in contrast with earlier observations on synthetic

media,where both organic andmineral N inhibited the growth

of certain saprotrophic basidiomycetes (Keyser et al. 1978) but

in agreement with a previous study on Mycena epipterygia on

Pinus litter, where N addition increased substrate use effi-

ciency and C addition had no effect (Boberg et al. 2008). This

observation reflects the fact that C/N ratio in the fungal

biomass is typically much lower than in most litters: typically

between 8 and 25 (Koide & Malcolm 2009).

Ergosterol content has been claimed to be an unreliable

estimator of fungal biomass in environmental samples (Mille-

Lindblom et al. 2004), based on the observation that ergosterol

added to samples as pure compound or as dead fungal biomass

decomposes slowly. Here we show that within a living fungal

mycelium, ergosterol concentrations may change rapidly,

increasing with biomass accumulation and decreasing during

senescence. In addition to litter mass loss, a significant part of

the litter e up to >30 % of the decomposed litter mass e can be

transformed into fungal biomass which is in agreement with in

situ studies (Frankland et al. 1978; Frey et al. 2003). The effect of

litter quality on the content of microbial biomass was also

confirmed in an in situ decomposition study showing 4e15�

higher biomass of soil organisms on ash litter compared to

beech (Bjornlund & Christensen 2005). The ability of H. fas-

ciculare to mineralize litters with low N content in our closed

system shows that its decomposition can be achieved even

without incorporation of external N by translocation e the

mechanismproposed to compensate for N deficiency (Frey et al.

2003).

We have demonstrated that initial loss of dry mass signifi-

cantly correlated with the activities of arylsulfatase, cellobio-

hydrolase, endoxylanase and phosphatase. Among these,

cellobiohydrolase is the best candidate for the rate-limiting

enzyme of fungal decomposition, since it catalyses the rate-

limiting step of cellulose decomposition (Baldrian & Val�a�skov�a

2008), while arylsulfatase and phosphatase activities most

likely correspond to the rate of decomposition by supplying the

P and S required by the growing mycelium.

The fact that activities of most extracellular enzymes did

not vary with time does not correspond with the expectation

that their production will reflect the changes in litter quality

as seen in situ in litterbag experiments (e.g. Sinsabaugh et al.

2002; �Snajdr et al. 2011). One of the explanations might be

that enzymes are constitutively produced, which is possible

considering that in the wood, the natural substratum of

H. fasciculare, the substrates of these enzymes are present in

large excess. Alternatively, the enzymes might have been

produced only at the beginning of the experiment before their

substrates became depleted, and remain active during long

periods of time, as suggested e.g. by the model of Schimel &

Weintraub (2003). The ligninolytic enzymes were mostly

active in the beginning of the experiment, which is in contrast

with previous observations from laboratory cultures and

in situ litterbag studies where ligninolytic enzymes were

mainly detected at later stages of culture development

(Hatakka 2001; �Snajdr et al. 2011). This might be due to the fact

that they contributed to selective delignification (Mn-peroxi-

dase) or to detoxification of low-molecular-mass phenolic

compounds present in litter by their polymerization (laccase).

The sharp decrease of their activity with time (and thus the

relatively fast turnover) is most likely due to the fact that the

oxidative enzymes are often a target of the reactive oxygen

species that they produce (Hiner et al. 2002). It has to be noted

that this study only reflected litter transformation in its initial

stages with mass losses less than 40 % and that it cannot be

compared with in situ decomposition that extends over long

periods and reaches high mass losses. It is thus possible that

further decomposition of litter in microcosms would also

result in changes in enzyme activities.

Laccase and especially Mn-peroxidase are thought to play

important roles in lignin decomposition (Hofrichter 2002;

Baldrian 2006). Laccase has been reported to act in lignin

decomposition, resulting in both fragmentation and re-

polymerization (Leonowicz et al. 2001). It was demonstrated

that only those litter-decomposing basidiomycetes producing

Mn-peroxidase were able to substantially mineralize synthetic

lignin in pure cultures (Steffen et al. 2000). However, in our

experiment the loss of ligninwas not correlatedwith laccase or

Mn-peroxidase activity. Selective delignification was found in

Q. petraea and L. decidua litters where low activities of laccase

and Mn-peroxidase were recorded. In contrast, lignin removal

was slow in P. tremula and P. nigra with high Mn-peroxidase

activities. Similar results were reported for Mycena inclinata

and Marasmius quercophilus that showed low Mn-peroxidase

activities, but high lignin loss (Steffen et al. 2007). The fact that

the ability of a ligninolytic fungus to perform selective deligni-

fication depends on litter type shows that it is difficult to draw

any conclusions on the preference of the fungus for lignin/

polysaccharide decompositione a property often claimed to be

inherent to certain wood-rotting or litter-decomposing fungi

(Hatakka 2001; Steffen et al. 2007; Val�a�skov�a et al. 2007). The

present study shows that neither N nor lignin content affected

the activities of ligninolytic enzymes; the cause of the negative

effect of P on laccase activity remains to be clarified.

While the low lignin removal in litters with high Mn-

peroxidase may be due to low production of H2O2 by auxiliary

enzymes, high lignin removal rates in litterswith lowactivity of

ligninolytic enzymes suggests that other mechanisms of lignin

decomposition, possibly based on the production of reactive

oxygen radicals (Baldrian&Val�a�skov�a 2008),may be active inH.

fasciculare. One of the possible mechanisms involves the action

of cellobiose dehydrogenase, an enzyme previously reported

from the white-rot fungi from the genera Irpex, Phanerochaete,

Pycnoporus, Schizophyllum and Trametes (Baldrian & Val�a�skov�a

2008). Current results show that a significant decrease of

Klason lignin during litter transformation can proceed also in
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the virtual absence of ligninolytic enzymes (�Snajdr et al. 2010),

which also points at the involvement of other processes in

lignin transformation.

It is difficult to predict the behaviour of complex microbial

communities of litter decomposers based on this simplistic

study of single species decomposition. Substrata with higher N

content are more suitable for bacterial growth; when litters of

different N content were combined with the same initial

microbial community, the relative abundance of fungi

decreased with increasing N content (Hossain et al. 2010). N

addition experiments generally tended to increase cellulose

decomposition, while the activity of ligninolytic enzymes was

unaffectedor slightlydecreased (Carreiro et al. 2000; Sinsabaugh

et al. 2002; Sjoberg et al. 2004). It is, however, difficult to assess if

this is also the case in the natural environment among the

patches of litter of different N content, where N is contained in

different chemical forms than after the treatments with inor-

ganic fertilizers. The current paper also shows that the activity

of ligninolytic oxidases andperoxidases probablyhas less effect

on decomposition then expected (Sinsabaugh 2010). The

observed correlations between decomposition rates and

activity of these enzymes may only be a coincidence reflecting

the fact that saprotrophic basidiomycetes producing these

enzymesbelong toefficient litter decomposers andproducersof

several hydrolytic enzymes. For a deeper understanding of the

effects of litter chemistry on in situ decomposition, it would be

necessary to address not only the litter transformation rates

and enzyme activities but also the effects of litter chemistry on

the fungal/bacterial biomass content and the fine composition

of microbial communities.
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