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Abstract
Neurons communicate by action potentials. This process can be described by
very detailed biochemical models of neuronal membrane and its channels, or
by simpler phenomenological models of membrane potential (integrate-and-
fire models) or even by very abstract models when only time of spikes are
considered.

We took one particular description — stochastic leaky integrate-and-fire
model — and compared it with recorded in-vivo intracellular activity of the
neuron. We estimated parameters of this model, compared how the model
simulation corresponds with a real neuron. It can be concluded that the data
are generally consistent with the model.

At a more abstract level of description, the spike trains are analyzed
without considering exact membrane voltage and one asks how the external
stimulus is encoded in the spike train emitted by neurons. There are many
neuronal codes described in literature and we focused on the open problem
of neural code responsible for spatial hearing in mammals. Several theories
explaining the experimental findings have been proposed and we suggest a
specific variant of so called slope-encoding model. Neuronal circuit mimick-
ing auditory pathway up to the first binaural neuron was constructed and
experimental results were reproduced. Finally, we estimated the minimal
number of such parallel circuits needed to reproduce results obtained in psy-
choacoustic experiments and it is sufficient for estimated number of fibers
entering the centers for spatial hearing.

Keywords: binaural hearing in mammals, integrate-and-fire model, neural
coding
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Abstrakt
Neurony spolu komunikují pomocí posloupností akčních potenciálů. Celý
tento proces může být popsán detailními biochemickými modely membrány a
iontových kanálů na neuronu nebo jednoduššími fenomenologickými modely
(typickým představitelem jsou tzv. “integrate-and-fire” modely) nebo pří-
padně ještě více abstraktními modely sledu akčních potenciálů bez přihléd-
nutí k dynamice membrány neuronu.

Vybrali jsme konkrétní variantu stochastického “leaky integrate-and-fire”
modelu a porovnali jí s aktivitou biologického neuronu (nitrobuněčný záz-
nam pořízený in-vivo). Provedli jsme statistický odhad parametrů modelu
a na základě počítačových simulací úspěšně srovnali modelovaný záznam se
záznamem z reálného neuronu.

Při abstraktnější úrovni popisu je sled akčních potenciálů analyzován
pouze jako množina bodových událostí v čase a základní otázka zní, jakým
způsobem je vnější podnět kódován v zaznamenané posloupnosti akčních po-
tenciálů. Bylo navrženo mnoho odlišných kódů pro řešení rozmanitých úloh
v neuronových sítích. My jsme se zaměřili na otevřený problém neuronál-
ního kódu v úloze prostorového slyšení u savců. V současnosti je zvažováno
několik teorií vysvětlujících experimentální nálezy. V naší práci navrhujeme
specifickou variantu modelu založeného na frekvenčním kódu. Zkonstruovaný
neuronový obvod, který simuluje zvukovou dráhu až do úrovně prvního bin-
aurálního neuronu, umožňuje reprodukovat experimentální výsledky. Dále
jsme odhadli počet takto paralelně zapojených obvodů potřebných pro repro-
dukci výsledků známých z psychoakustických experimentů. Získaná hodnota
je dostatečná pro odhadovaný počet nervových vláken vstupujících do center
prostorového slyšení.

Klíčová slova: prostorové slyšení savců, model “integrate-and-fire”, neu-
ronální kód
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1 INTRODUCTION

1 Introduction
Starting with the work of Santiago Ramón y Cajal, neuronal cells in the brain
were recognized as independent units which communicate via the contact of
axons to dendrites and the body of nerve cells, and create neuronal circuits
through branching of their fibers (Ramon y Cajal, 1899), English translation
Ramon y Cajal (1995).

Simultaneously to Cajal’s morphological findings, a larger group of scien-
tists discovered the existence of action potentials (impulses, spikes) traveling
through nerve fibers. Since these impulses are similar in duration and shape,
this naturally lead to the binary all-or-none concept. As part of what would
be later called the neuronal doctrine, Cajal proposed unidirectional trans-
mission of nerve impulses from dendrites through soma to axon and called it
the law of dynamic polarization.

In the same way as Cajal postulated the neuron as a basic anatomical unit,
McCulloch and Pitts postulated the neuron as a basic unit of information
processing and used the all-or-none concept for modeling nervous activity
on the basis of logical calculus. In their seminal work a formal model of
the neuron was formulated and it was even indicated that a network of such
formal neurons is Turing-complete (McCulloch and Pitts, 1943).

With experimental research developing, such level of formal description
of information processing in a neuron was no more adequate. No later than
in 1959 it was observed that many electrical events on the membrane are
of a continuous nature and that there exists some background spontaneous
activity (Bullock, 1959). The following decades added new findings, which
were either beyond neuronal doctrine or even contradicting it and the whole
picture became more complicated (Bullock et al., 2005). Similarly the ques-
tion where and on which scale (or level of description) information processing
takes place became problematic. For example glia cells were found to com-
municate with each other via transmitters and gap junctions (Fields and
Stevens-Graham, 2002), chemical synapses between glia cells and neurons
were found as well (Bergles et al., 2000). Thus, it is possible that there is
parallel information processing going on at slower time scales.

1.1 Level of description
Another ambiguity stems from the choice of the proper level of description.
We can distinguish the level of large neural networks, simple circuits, indi-
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1.1 Level of description

vidual neurons, the sub-cellular level, membranes and the underlying bio-
chemistry. Traditionally the community around artificial neuronal networks
does not use a detailed description of neurons and is satisfied with abstract
models not much different from the original McCulloch-Pitts neuron. This
abstraction would be hardly acceptable for the community studying the fea-
tures of single neurons and their membrane for its drastic simplification since
it would be impossible to mimic many of the effects observed in physiological
experiments. However, it does not automatically follow that a more detailed
description opens up a better understanding of the system as a whole.

One such example is Hopfield’s work on the neural network for content-
addressable memory (Hopfield, 1982). According to the critics of this paper,
the neurons should have continuous input-output relations, moreover real
neurons and circuits have integration time delays due to the capacitance of
the neuronal membrane. Therefore, the time evolution of the state of such
systems should be represented by a continuous time representation. In his
response Hopfield showed that the important properties of the original model
remain intact when these two simplifications of the model are eliminated
(Hopfield, 1984).

On the other hand, a more detailed model can completely change the
way how information processing is implemented. For example in order to
compute a certain formula from logical calculus, the classical McCulloch-
Pitts approach needs to assemble a circuit from neurons in a similar fashion
as when logical gates are assembled in modern digital computers. However,
when we stop to look at a neuron as a simple one-point integrator of incoming
signal and make a detailed model of a branching dendritic tree, we get a very
different picture of possible computations within a single neuron only. De-
composing the dendritic tree of the neuron into subunits (Koch et al., 1982)
shows that the combination of a specific branching topology, and the precise
timing of excitatory and inhibitory inputs implements the approximation of
logical gates (AND NOT, OR, AND) and even multiplicative arithmetical
operations. Since all logical operations can be defined via AND and AND
NOT gates, any logical operation can be synthesized by local circuits consist-
ing of synapses between the dendrites of two or more neurons (Koch et al.,
1983).

The discussion about the level of detail and precision in the modeling
of information flow inside the nervous system does not necessarily end at
the level of membrane biophysics. In a series of papers Hjelmfelt showed
that even enzymatic reactions inside cells can be interpreted as information
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2 THEORY AND METHODS

processing and he also showed that it is possible to construct a universal
Turing machine based on such reactions (Hjelmfelt et al., 1991; Hjelmfelt
and Ross, 1992, 1993).

While the advantages of a more detailed description are clear, there is also
a price to be paid. Firstly, more details of the model usually require more
parameters and it is often hard or even impossible to obtain such parameters
from experimental setup. Secondly, a more detailed description might be
intractable from a mathematical point of view, and no deeper insight about
the dynamics of the system can be obtained. Thirdly, when we are interested
in dynamics of large scale networks, the simulation of detailed models can
be very demanding on the computational power. To sum up, there is no
“proper” level of description unless we take into account the aim and context
of the study.

1.2 Aims of the thesis
We will focus on stochastic descriptions of the neuronal activity. First, we
will have a look at the class of simplified models of the neuronal membrane.
Then we will inquire into possible encoding schemes of the action potential
sequences (“spike-trains”) generated by the neurons (or by their models re-
spectively). Finally we will concentrate on the problem of spatial hearing
and the different neuronal coding mechanisms used to explain animal sensi-
tivity of sound localization. The aim is to estimate parameters of the chosen
models and understand how they influence the neural coding dynamics of
information processed in neurons or small neuronal networks.

2 Theory and methods

2.1 Integrate and Fire neuronal model
2.1.1 Types of Integrate and fire model

Three basic types of models of a single neuron can be distinguished - digital
(all-or-none) and continuous, which can be subsequently modeled either as a
single point in a space or with more unit compartments simulating morphol-
ogy of the real neuron and its branching structure (Segev, 1992). We shall
focus on the single-point continuous models only.
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2.1 Integrate and Fire neuronal model

Generally, the family of continuous models is described by an electrical
circuit representing the iso-potential patch of a membrane. The simplified
model of a neuron membrane as an electrical circuit consisting of capaci-
tor with leak was first proposed by Lapicque (1907), translation and review
Lapicque (2007); Brunel and van Rossum (2007). It was, however, before the
mechanisms of the action potential firing were understood and the first for-
mulations of the whole leaky-integrate-and-fire (LIF) model appeared later
(Stein, 1965; Knight, 1972).

The most simple version of the model circuit consists of capacitor C only
(representing lipid layers of the membrane) and is called perfect integrator
(Koch, 2005). Membrane voltage V (t) can be written in this case as

C
dV (t)
dt

= I(t) , (1)

where I(t) represents the current from synaptic input at time t (or intracel-
lular electrode). The spiking mechanism is missing in this model and it is
usually described just as a complete reset after certain voltage threshold S is
reached; switch through which the accumulated voltage is discharged would
implement such behaviour inside electrical circuit.

If the neuronal membrane consists only of a twofold lipid layer, the volt-
age would increase no matter how slowly the incoming current arrives since
the membrane functions as a perfect insulator. In biological reality the mem-
brane contains also proteins which form specific channels through which var-
ious ions can flow and leak the charge. In such case the voltage on the
membrane does not integrate as above and additional resistor R implement-
ing this leakage is added in parallel to capacitor in the electric circuit thus
forming leaky-integrate-and-fire (or forgetful) model. The current through
the resistor follows Ohm’s law and the equation (1) can be rewritten as

C
dV (t)
dt

+ V (t)
R

= I(t) . (2)

Again, the voltage is integrated in subthreshold regimen (see section 2.1.2)
and once threshold S is reached, voltage is reset to its initial value and
integration starts anew.

Specific integrate-and-fire (IF) models which employ spike generation as
integral and emergent part of the model have been proposed, for example by
Fitzhugh (1961) who suggested simplification of the Hodgkin-Huxley model
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2 THEORY AND METHODS

(see below) and Nagumo et al. (1962) who formulated a corresponding elec-
tronic circuit. The system is described by two coupled differential equations
and its advantage compared to the Hodgkin-Huxley model is that the math-
ematical properties can be understood quantitatively.

Because of the random nature of incoming synaptic signal, a stochastic
version of integrate-and-fire model has been developed. Initial work was
done by Gerstein and Mandelbrot (1964) who used random walk to mimic
excitatory and inhibitory input pulses. The random walk counterpart of the
leaky model has been formulated by Stein (1965, 1967). Subsequently, a
continuous model can be obtained as a limit case thus obtaining Ornstein-
Uhlenbeck model (Uhlenbeck and Ornstein, 1930; Ricciardi and Sacerdote,
1979), which can be written as the equation

C
dV (t)
dt

+ V (t)
R
− Cσξ(t) = I(t) , (3)

where ξ represents white noise from the synaptic input and σ its variability.
A plethora of integrate-and-fire model variants can be found in a recent

review of Burkitt (2006a,b).

2.1.2 The parameters of LIF

Because IF models have been widely employed in neuronal modeling, there
is always question whether these models are sophisticated enough to mimic
the behaviour of biological neurons (Feng, 2001). Despite of wide usage of
IF models in the theoretical literature there has never been an attempt to
check IF models accuracy and assumption against intracellular recordings of
the membrane voltage (the traditional attempts were more focused on the
interspike intervals (ISI) statistics obtained from extracellular recordings).
In a couple of papers we compared in-vivo intracellular neuronal recordings
and stochastic variant of LIF model (3)

dV (t)
dt

= −β(V (t)− x0) + µ+ σξ(t), V (0) = x0 (4)

with few modifications, namely we assume that input µ is constant in time
and the process starts at the resting level x0. The (constant) parameters
C,R form the so-called membrane time constant τ = RC, which we use here
inversely as β = 1

RC
to conform with notation used later in our work and

let the reader directly delve into it. As in other LIF models spike is not
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2.2 Neural code

intrinsic part of description and membrane potential is reset to x0 whenever
V (t) reaches the threshold S.

Parameters of such model are traditionally divided into those, which de-
pend on membrane properties (β – inverse of the membrane time constant, S
– threshold, x0 – resting level) and those, which depend on the input signal
(µ – mean signal, σ – signal variability).

The asymptotic mean depolarization derived from (4) as E(V (∞)) =
x0 + µ/β determines three regimes of neuronal firing — the subthreshold
regimen (µ/β � S − x0), the threshold regimen (µ/β ≈ S − x0), and the
suprathreshold regimen (µ/β � S − x0). The firing regime determines the
form of the eventual spike train and thus distribution of ISIs.

The currently dominating opinion is that for neural coding the evolution
details of the membrane potential are not important. What matters is just
the time when the potential reaches the threshold for firing and the question
is whether such simplified models can reliably predict occurrence of spiking
times. The ability to predict spiking behaviour has been shown for particular
types of neurons in this class of models (Kistler et al., 1997; Keat et al., 2001;
Jolivet et al., 2006; Kobayashi et al., 2009).

2.2 Neural code
2.2.1 Types of neural code

Let us now abstract from the underlying spiking mechanisms and focus only
on the resulting sequence of spikes. Such spike train is often considered
as a code through which information is conveyed across the neural system.
Beginning with the pioneering work of Lord Adrian who showed the relation
between the frequency of spikes of frog muscle receptors and the stretching
the muscle with different weights (Adrian and Zotterman, 1926), the idea of
firing rate code became the textbook model of neural coding.

This idea suggests that there is continuous function f(t) according to
which resulting spike train is produced, more precisely p =

´ t0+∆t

t0
f(t)dt

determines the number of spikes expected to occur in the interval [t, t + t0].
In case ∆t is sufficiently small so that p ≤ 1 we can interpret p as a probability
that the spike occurs in [t, t+t0] . Of course such rate function is not directly
visible and we experimentally observe only realization of spikes sampled from
f . The conventional way of estimating such background rate function is
recording multiple trials with identical stimuli and average the rate over all
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2 THEORY AND METHODS

recorded trials into post-stimulus time histogram. Another approach which
has the advantage of creating smooth function even for single recorded trial
is kernel smoothing (Nawrot et al., 1999). In this method the spike train is
convolved with kernel of a particular shape and width. Common problem
of both post-stimulus time histogram and kernel based method is ad-hoc
choice of the histogram bin-size/kernel width which results in different firing
rate estimates. In series of papers Shimazaki and Shinomoto (2007, 2010)
suggested method for determining optimal width, based on the assumption
that the underlying spike generation process is Poissonian. We employed
the kernel optimization method for the analysis of experimental recordings
of olfactory neurons and found it computationally demanding. In order to
speed up the width determination we analyzed the algorithm and transformed
it into the parallel one which allowed online interactive work with the data.
The details are covered in Šanda (2010).

The relationship between the mean firing rate and the conveyed infor-
mation has been found in various systems. For some time it was assumed
that such code captures all relevant information because the firing-rate cod-
ing scheme was robust against unreliability and noise observed in neuronal
activity. Later decades brought experimental findings which showed that
what was often considered as erratic behaviour was rather misunderstanding
of the code transmitted and neurons can be thought as a reliable unit of
transmission (Barlow, 1972).

In an influential workshop report by Perkel and Bullock (1968) it was
concluded that one should not expect universal coding principle independent
of the context and an extensive list of possible neuronal codes was given.
Experimental evidence of codes which depend on precise timing of individual
spikes started to appear at that time (Segundo et al., 1963; Chung et al.,
1970). Moreover, it was shown that spiking mechanism can be very reliable
(Bryant and Segundo, 1976; Mainen and Sejnowski, 1995). Subsequently the
term temporal coding was coined for the situation when precise timing of
spikes matters, however, a precise definition is missing and the term may be
used to refer to different concepts.

One important concept is that of synchronous firing across neurons at
the same time leading to the coherent firing of spatially distributed neurons
(Bialek et al., 1991). Although a vast body of work focuses on the visual
system, this type of coding has been found both in auditory (deCharms and
Merzenich, 1996) and in olfactory systems (Wehr and Laurent, 1996; Laurent
et al., 1996). Compared to rate coding where fundamental operation would
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2.2 Neural code

be the temporal integration, basic operation for this type of code would be
coincidence detection for spikes coming from different inputs. Such summa-
tion based on the activity of synchronized inputs would be more effective
than code based on the firing rate (Singer and Gray, 1995).

Another type of coding given by topographic position of a neuron is not
characterized by the type of neural firing activity but by the spatial position
of the active neuron in the brain tissue alone. An example of such “code” is
the mapping human anatomy in motor cortex (Penfield and Boldrey, 1937) or
representation of sound source spatial azimuth in nucleus laminaris in birds
(Carr and Konishi, 1988).

From the point of view of the whole network more codes can be used
simultaneously and even single spike train can encode multiple features, for
example Keat et al. (2001) shows how three different features – what, when,
how much, are assembled into waveform shape, precise latency and firing
rate of action potentials. Another example is our proposal of a neural circuit
computing sound azimuth in mammals (Sanda and Marsalek, 2012) which
uses a combination of topographic code (auditory nerve fibers are sensitive
to narrow range of frequencies), time coding (coincidence detection of appro-
priate spikes from ipsi- and contra-later fibers) and rate code (capturing the
final azimuth), details are depicted in section 2.2.4.

After introducing basic types of neural code we will focus on a particular
topic of binaural hearing, where most types of the aforementioned codes
occur in parallel.

2.2.2 Spatial hearing

In order to determine the direction of a sound source the neural circuit needs
to compute azimuth and elevation of the sound source given then input signal.
The important auditory cues are interaural time differences (ITD1), inter-
aural intensity differences (IID) and spectral content of the signal. We will
focus on the computational processing of auditory cues occurring in initial
parts of auditory pathway.

Historically two mechanisms of localization in the horizontal plane were
proposed by Békésy (von Békésy, 1930; van Bergeijk, 1962) and Jeffress
(1948). Von Békésy model assumes neurons in unspecified brain nucleus on
which fibers from left and right ear converge. The first arriving signal from

1Sound arrives at different times on the left and right ear. This difference defines ITD
and is dependent on the sound source position and the head size.
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2 THEORY AND METHODS

left/right (L/R) defines tuning of the neuron (channel) to be L or R respec-
tively. L/R signals traveling through the nucleus tune the whole population
of the neurons and higher centers integrate the number of L/R-tuned neu-
rons. In parallel more intensive stimuli from one side is able to excite larger
population of neurons tuned to that side. The final azimuth is determined
by the ratio of L/R tuned neurons.

Later and more widespread concept of delay lines (Jeffress, 1948) assumes
array of neurons each acting as a coincidence detector for the signal from left
and right side. The axonal fibers have systematically different lengths so that
additional time needed for the action potential to traverse fiber from one side
exactly compensates ITD. Thus each neuron is tuned to narrow sector of the
azimuthal space and the array of such neurons create a whole topographical
map of the azimuthal space.

The research on barn owls (Carr and Konishi, 1990) convincingly showed
that Jeffress delay lines are employed in birds and although it is known that
binaural hearing evolved independently in different species (birds, reptiles
and mammals in particular) the Jeffress model became textbook model for
binaural hearing. Last decade, however, brought controversy over the mech-
anism of binaural hearing in mammals.

2.2.3 Neural code for spatial hearing of mammals

Experimenting and theorizing about the mechanism of (human) spatial hear-
ing dates back to the psychoacoustic works of Thompson (1882) and Rayleigh
(1907) who formalized the duplex theory. In this theory low frequency sounds
are localized by ITD while high frequency sounds by IID. In general contours
this distinction holds even nowadays, anatomical and physiological findings
confirmed this distinction on physiological and anatomical level (Yin, 2002;
Tollin, 2003). Additionally, research showed that spectral cue is actively used
for sound source elevation (Davis et al., 2003). There seems to be agreement
on the general mechanism of IID processing (roughly speaking subtraction of
excitatory signal from ipsilateral side and inhibitory signal from contralateral
side (Covey et al., 1991)). The mechanisms of ITD processing particularly
in low frequencies is a matter of discussions and poses open problem.
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2.2.4 Low frequency ITD cues and modeling

While the anatomical evidence for delay lines in birds is solid, there is a
weak anatomical evidence for delay lines in mammals. Moreover there are
contradictions in physiological recordings on small mammals, which show
rather broadly tuned neurons (channels) and bring back the attention to the
Békésy concept (McAlpine et al., 2001; McAlpine and Grothe, 2003).

In series of experiments the key role of synaptic inhibition on the first
binaural neuron in MSO was elucidated (Brand et al., 2002; Grothe, 2003;
Pecka et al., 2008). The key finding is that synaptic inhibition on the critical
neuron shifts maximum of the broad ITD curve out of physiological range
relevant for the animal. It was suggested that azimuth is in this case encoded
in the slope part within physiological range of the ITD curve by the firing
rate of binaural neuron. Marsalek and Lansky (2005) took this concept
and proposed stochastic model for the spike interaction in this first binaural
neuron. We expanded this model by employing small circuit representing
auditory pathway up this neuron, results can be found in the next section.

3 Summary of main results
In the first part of our work we concentrated on the description of neuronal
membrane potential by the LIF model (3). Initially, in Lansky et al. (2006),
we obtained parameters and compared different estimation methods for the
spontaneous part of the experimental recordings and checked basic assump-
tions of the model. We found, that in general the data are consistent with
the model. The spontaneous part is in subthreshold noise-driven regimen
and ISIs are exponentially distributed, which suggests they are generated in
accordance with Poisson process. There were, however, also inconsistencies
with the model. The model assumes that spectra of the input signal should
be flat, while we found characteristic hump around the frequency of 2200 Hz
in data, which was subsequently eliminated by filtering. Next, the subthresh-
old regime requires the asymptotic depolarization far below the threshold. In
our case the asymptotic threshold is below the threshold, but it is less than
two-standard-deviations envelope. The model also assumes a fixed value of
the reset depolarization x0, which did not hold, the effect of this discrepancy
for the model performance is negligible, however.
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3 SUMMARY OF MAIN RESULTS
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Figure 1: The accuracy of the model simulation compared with the recorded
data. The simulation of the model (4) used parameters estimated from the
data. The middle line shows the mean difference of the membrane poten-
tial between simulations and experimental recordings, while the surrounding
lines are 2 standard-deviations envelope. In ideal case we would obtain flat
line at 0. Left panel is comparison of the spontaneous part of the record,
right panel shows comparison of (acoustically) stimulated part of the record.
Different time axis is due to the fact that stimulation brings the neuron to
the suprathreshold regime where interspike intervals are much shorter.

In the second analysis (Lansky et al., 2010), we compared activity and
estimated parameters for spontaneous and stimulated part of the recordings
and discussed their firing regimes. The simulation based on the estimated
parameters fits well with the course of the membrane depolarization (see
Fig. 1). The parameters dependent on the input signal µ and σ were larger
than in spontaneous part and the overall firing regimen is suprathreshold as
expected. Despite the assumptions that x0 is not dependent on input signal
our data shows that its value is actually influenced by the stimulation.

To summarize, external stimulation affects input parameters and thus
time evolution of membrane voltage in model (4) and it has direct conse-
quence on the ISI statistics, since the stimulated intervals will be generally
much shorter.

In the second part of our work we picked-up the stochastic description
from of the first binaural neuron in the auditory pathway (Marsalek and
Lansky, 2005), which participates on the ITD detection in the task of spatial
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hearing. First, in Sanda and Marsalek (2012), we built circuit representing
the whole auditory pathway up to the first binaural neuron, endowed it with
small number of parameters and then explored the parameter space in order
to understand the circuit dynamics. Second, we compared the performance
of such neuron with known results in psychophysics by employing the concept
of ideal observer located at the final stages of the circuit — such observer
measures time consumed by the circuit until reliable azimuth estimate is
reached.

There are currently two areas of spatial hearing research which usually do
not coincide much. Either electro-physiological recording of critical (MSO)
neurons on small rodents which provides knowledge about the shape of ITD
tuning curves and let us theorize about the neural code used. Or psychophys-
ical experiments on human subjects, which provide us information about spa-
tial accuracy and measurements about minimal time needed for solid azimuth
estimate. Providing electro-physiological recording from human subjects or
psychological estimates of sound location from small rodents is difficult task
from obvious reasons. Our model connects these two separated fields of re-
search.

The first part of the model we proposed can be seen as formalization of
available anatomical and physiological data, while the second “observer” part
directly connects its result with psychophysics.

As a short summary the model is able to reproduce the shape and po-
sition of ITD tuning curves known from experiments as well as inhibition
related results causing tuning curve shift. We identified the main parame-
ter responsible for this shift as coincidence window width. Next, we found
that certain amount of jitter actually improves efficiency of the circuit and
explored more thoroughly impact of jitter on time efficiency of the circuit in
Šanda (2011). Thanks to the observer module and data from psychophysics
we estimated value of minimal number of parallel circuits needed to repro-
duce psychoacoustic experiments.

The actual number of parallel fibers and their convergence on critical neu-
rons is not exactly known and technical difficulties of physiological recordings
in MSO neurons do not provide sufficient experimental data to decide the
underlying mechanism even after decades of research. Mathematical mod-
eling can thus elucidate restrictions of suggested mechanisms which can be
checked by additional experiments.
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4 CONCLUSIONS

4 Conclusions
It is widely believed that information processing in and between neurons is
mediated by action potentials (spikes) traveling along the neuronal mem-
brane. This process can be described at different levels — starting from
detailed biochemical models of membrane, continuing to its phenomenologi-
cal models (integrate-and-fire models being the typical example) and ending
with very abstract models, in which only spike times are considered.

One particular description was chosen — stochastic LIF model — and
compared with in-vivo intracellular activity of neuron (such analysis has not
been done before, only either extracellular or in-vitro data are usually avail-
able). We estimated parameters of the LIF model and tested in numerical
simulations (based on the estimated parameters) how model predictions cor-
respond to the real neuron. Additionally we characterized the difference
between spontaneous and acoustically stimulated behavior of the neuron. To
conclude, it was found that the data are consistent with the model.

As expected, we found that stimulation brings neuron into suprathreshold
regimen which causes the average interspike interval to be shorter than it is
in the spontaneous neuronal firing. This observation brings us directly to
the more abstract level of description, where we analyze spike trains without
considering exact membrane voltage between the spikes. In other words,
we ask how the external stimulus is encoded in the spike train emitted by
neurons.

There are many such neuronal codes described in the literature and we
focused on the open problem of neural mechanisms responsible for spatial
hearing in mammals. Several theories explaining the experimental findings
were proposed and we modeled a specific variant of so called slope-encoding
model. Stochastic neuronal circuit mimicking auditory pathway up to the
first binaural neuron was constructed. Considering this circuit we were able
to reproduce results found in experiments and identify parameters responsible
for various observed effects. We also estimate minimal number of parallel
circuits needed to reproduce results obtained psychoacoustic experiments on
binaural hearing.

18



REFERENCES

References
E.D. Adrian and Y. Zotterman. The impulses produced by sensory nerve-
endings: Part 2. The response of a single end-organ. Journal of Physiology,
61:151–171, 1926.

H.B. Barlow. Single units and sensation: a neuron doctrine for perceptual
psychology. Perception, 1:371–394, 1972.

D.E. Bergles, J.D.B. Roberts, P. Somogyi, and C.E. Jahr. Glutamatergic
synapses on oligodendrocyte precursor cells in the hippocampus. Nature,
405:187–191, 2000.

W. Bialek, F. Rieke, R.R. De Ruyter Van Steveninck, and D. Warland. Read-
ing a neural code. Science, 252:1854–1857, 1991.

A. Brand, O. Behrend, T. Marquardt, D. McAlpine, and B. Grothe. Precise
inhibition is essential for microsecond interaural time difference coding.
Nature, 417:543–547, 2002.

N. Brunel and M.C.W. van Rossum. Lapicque’s 1907 paper: from frogs to
integrate-and-fire. Biological Cybernetics, 97:337–339, 2007.

H.L. Bryant and J.P. Segundo. Spike initiation by transmembrane current:
a white-noise analysis. Journal of Physiology, 260:279–314, 1976.

T.H. Bullock. Neuron doctrine and electrophysiology. Science, 129:997–1002,
1959.

T.H. Bullock, M.V.L. Bennett, D. Johnston, R. Josephson, E. Marder, and
R.D. Fields. The neuron doctrine, redux. Science, 310:791–793, 2005.

A.N. Burkitt. A review of the integrate-and-fire neuron model: I. Homoge-
neous synaptic input. Biological Cybernetics, 95:1–19, 2006a.

A.N. Burkitt. A review of the integrate-and-fire neuron model: II. Inhomo-
geneous synaptic input and network properties. Biological Cybernetics, 95:
97–112, 2006b.

C. E. Carr and M. Konishi. Axonal delay lines for time measurement in the
owl’s brainstem. Proceedings of the National Academy of Sciences USA,
85:8311–8315, 1988.

19



REFERENCES

C.E. Carr and M. Konishi. A circuit for detection of interaural time dif-
ferences in the brain stem of the barn owl. Journal of Neuroscience, 10:
3227–3246, 1990.

S.H. Chung, S.A. Raymond, and J.Y. Lettvin. Multiple meaning in single
visual units. Brain, Behaviour and Evolution, 3:72–101, 1970.

E. Covey, M. Vater, and J.H. Casseday. Binaural properties of single units
in the superior olivary complex of the mustached bat. Journal of Neuro-
physiology, 66:1080–1094, 1991.

K.A. Davis, R. Ramachandran, and B.J. May. Auditory processing of spec-
tral cues for sound localization in the inferior colliculus. Journal of the
Association for Research in Otolaryngology, 4:148–163, 2003.

R.C. deCharms and M.M. Merzenich. Primary cortical representation of
sounds by the coordination of action-potential timing. Nature, 381:610–
613, 1996.

J. Feng. Is the integrate-and-fire model good enough? – a review. Neural
Networks, 14:955–975, 2001.

R.D. Fields and B. Stevens-Graham. New insights into neuron-glia commu-
nication. Science, 298:556–562, 2002.

R. Fitzhugh. Impulses and physiological states in theoretical models of nerve
membrane. Biophysical Journal, 1:445–466, 1961.

G.L. Gerstein and B. Mandelbrot. Random walk models for the spike activity
of a single neuron. Biophysical Journal, 4:41–68, 1964.

B. Grothe. New roles for synaptic inhibition in sound localization. Nature
reviews neuroscience, 4:540–550, 2003.

A. Hjelmfelt and J. Ross. Chemical implementation and thermodynamics
of collective neural networks. Proceedings of the National Academy of
Sciences USA, 89:388–391, 1992.

A. Hjelmfelt and J. Ross. Mass-coupled chemical systems with computational
properties. Journal of Physical Chemistry, 97:7988–7992, 1993.

20



REFERENCES

A. Hjelmfelt, E.D. Weinberger, and J. Ross. Chemical implementation of neu-
ral networks and Turing machines. Proceedings of the National Academy
of Sciences USA, 88:10983–10987, 1991.

J.J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences
USA, 79:2554–2558, 1982.

J.J. Hopfield. Neurons with graded response have collective computational
properties like those of two-state neurons. Proceedings of the National
Academy of Sciences USA, 81:3088–3092, 1984.

L.A. Jeffress. A place theory of sound localization. Journal of Comparative
and Physiological Psychology, 41:35–39, 1948.

R. Jolivet, A. Rauch, HR Lüscher, and W. Gerstner. Integrate-and-Fire mod-
els with adaptation are good enough: predicting spike times under random
current injection. Advances in Neural Information Processing Systems, 18:
595–602, 2006.

J. Keat, P. Reinagel, R.C. Reid, and M. Meister. Predicting every spike: A
model for the responses of visual neurons. Neuron, 30:803–817, 2001.

W.M. Kistler, W. Gerstner, and J.L. Hemmen. Reduction of the Hodgkin-
Huxley equations to a single-variable threshold model. Neural Computa-
tion, 9:1015–1045, 1997.

B.W. Knight. Dynamics of encoding in a population of neurons. Journal of
General Physiology, 59:734–766, 1972.

R. Kobayashi, Y. Tsubo, and S. Shinomoto. Made-to-order spiking neuron
model equipped with a multi-timescale adaptive threshold. Frontiers in
Computational Neuroscience, 3, 2009.

C. Koch. Biophysics of computation: information processing in single neu-
rons. Oxford University Press, USA, 2005.

C. Koch, T. Poggio, and V. Torres. Retinal ganglion cells: a functional
interpretation of dendritic morphology. Philosophical Transactions of the
Royal Society of London. B, Biological Sciences, 298:227–263, 1982.

21



REFERENCES

C. Koch, T. Poggio, and V. Torre. Nonlinear interactions in a dendritic tree:
localization, timing, and role in information processing. Proceedings of the
National Academy of Sciences USA, 80:2799–2802, 1983.

P. Lansky, P. Sanda, and J. He. The parameters of the stochastic leaky
integrate-and-fire neuronal model. Journal of Computational Neuro-
science, 21:211–223, 2006.

P. Lansky, P. Sanda, and J. He. Effect of stimulation on the input pa-
rameters of stochastic leaky integrate-and-fire neuronal model. Journal of
Physiology-Paris, 104:160–166, 2010.

L. Lapicque. Recherches quantitatives sur l’excitation électrique des nerfs
traitée comme une polarisation. Journal de Physiologie et de Pathologie
Générale, 9:620–635, 1907.

L. Lapicque. Quantitative investigations of electrical nerve excitation treated
as polarization. Biological Cybernetics, 97:341–349, 2007.

G. Laurent, M. Wehr, and H. Davidowitz. Temporal representations of odors
in an olfactory network. Journal of Neuroscience, 16:3837–3847, 1996.

Z.F. Mainen and T.J. Sejnowski. Reliability of spike timing in neocortical
neurons. Science, 268:1503–1506, 1995.

P. Marsalek and P. Lansky. Proposed mechanisms for coincidence detection
in the auditory brainstem. Biological Cybernetics, 92:445–451, 2005.

D. McAlpine and B. Grothe. Sound localization and delay lines - do mammals
fit the model? Trends in Neurosciences, 26:347–350, 2003.

D. McAlpine, D. Jiang, and A.R. Palmer. A neural code for low-frequency
sound localization in mammals. Nature Neuroscience, 4:396–401, 2001.

W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biology, 5:115–133, 1943.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line
simulating nerve axon. Proceedings of the IRE, 50:2061–2070, 1962.

22



REFERENCES

M. Nawrot, A. Aertsen, and S. Rotter. Single-trial estimation of neuronal
firing rates: from single-neuron spike trains to population activity. Journal
of Neuroscience Methods, 94:81–92, 1999.

M. Pecka, A. Brand, O. Behrend, and B. Grothe. Interaural time difference
processing in the mammalian medial superior olive: the role of glycinergic
inhibition. Journal of Neuroscience, 28:6914–6925, 2008.

W. Penfield and E. Boldrey. Somatic motor and sensory representation in
the cerebral cortex of man as studied by electrical stimulation. Brain, 60:
389–443, 1937.

D.H. Perkel and T.H. Bullock. Neural coding. Neurosciences Research Pro-
gram Bulletin, 6:221–350, 1968.

S. Ramon y Cajal. Textura del sistema nervioso del hombre y los vertebrados.
Imprenta y Librería de Nicolás Moya, Madrid, 1899.

S. Ramon y Cajal. Histology of the nervous system of man and vertebrates.
Oxford University Press, NY, 1995.

L. Rayleigh. On our perception of sound direction. Philosophical Magazine,
13:214–232, 1907.

L.M. Ricciardi and L. Sacerdote. The Ornstein-Uhlenbeck process as a model
for neuronal activity. Biological Cybernetics, 35:1–9, 1979.

P. Šanda. Speeding up the algorithm for finding optimal kernel bandwidth
in spike train analysis. European Journal for Biomedical Informatics, 6:
73–75, 2010.

P. Šanda. Jitter effect on the performance of the sound localization model
of medial superior olive neural circuit. European Journal for Biomedical
Informatics, 7:51–54, 2011.

P. Sanda and P. Marsalek. Stochastic interpolation model of the medial
superior olive neural circuit. Brain Research, 1434:257–265, 2012.

I. Segev. Single neurone models: oversimple, complex and reduced. Trends
in Neurosciences, 15:414–421, 1992.

23



REFERENCES

J.P. Segundo, G.P. Moore, L.J. Stensaas, and T.H Bullock. Sensitivity of
neurones in Aplysia to temporal pattern of arriving impulses. Journal of
Experimental Biology, 40:643–667, 1963.

H. Shimazaki and S. Shinomoto. A method for selecting the bin size of a
time histogram. Neural Computation, 19:1503–1527, 2007.

H. Shimazaki and S. Shinomoto. Kernel bandwidth optimization in spike rate
estimation. Journal of Computational Neuroscience, 29:171–182, 2010.

W. Singer and C.M. Gray. Visual feature integration and the temporal cor-
relation hypothesis. Annual Review of Neuroscience, 18:555–586, 1995.

R.B. Stein. A theoretical analysis of neuronal variability. Biophysical Journal,
5:173–194, 1965.

R.B. Stein. Some models of neuronal variability. Biophysical Journal, 7:
37–68, 1967.

S.P. Thompson. On the function of the two ears in the perception of space.
Philosophical Magazine, 13:406–416, 1882.

D.J. Tollin. The lateral superior olive: A functional role in sound source
localization. Neuroscientist, 9:127–143, 2003.

G.E. Uhlenbeck and L.S. Ornstein. On the theory of the Brownian motion.
Physical Review, 36:823–841, 1930.

W.A. van Bergeijk. Variation on a theme of Bekesy: a model of binaural
interaction. Journal of the Acoustical Society of America, 34:1431–1437,
1962.

G. von Békésy. Zur theorie des hörens. über das Richtungshören bei einer
Zeitdefferenz oder Lautstärkenungleichheit der beiderseitigen Schallein-
wirkungen. Physikalische Zeitschrift, pages 824–835, 1930.

M. Wehr and G. Laurent. Odour encoding by temporal sequences of firing
in oscillating neural assemblies. Nature, 384:162–166, 1996.

T. Yin. Neural mechanisms of encoding binaural localization cues in the
auditory brainstem. In Fay R.R. Oertel D., Popper A.N., editor, Integrative
functions in the mammalizan auditory pathway, pages 99–159. New York:
Springer-Verlag, 2002.

24



List of publications

Reviewed journals with impact factor
1. Lansky, P. and Sanda, P. and He, J., The parameters of the stochas-

tic leaky integrate-and-fire neuronal model, Journal of Computational
Neuroscience, 21:211–223, 2006. (Journal IF: 2.325)

2. Lansky P. and Sanda, P. and He J., Effect of stimulation on the in-
put parameters of stochastic leaky integrate-and-fire neuronal model,
Journal of Physiology - Paris, 104:160–166, 2010. (Journal IF: 3.030)

3. Sanda P. and Marsalek P., Stochastic interpolation model of the medial
superior olive neural circuit, Brain Research, 1434:257–265, 2012.

(Journal IF: 2.623)

Reviewed journals without impact factor
4. Šanda P., Speeding up the Algorithm for Finding Optimal Kernel Band-

width in Spike Train Analysis, European Journal for Biomedical Infor-
matics, 6:73–75, 2010.

5. Šanda P., Jitter Effect on the Performance of the Sound Localization
Model of Medial Superior Olive Neural Circuit, European Journal for
Biomedical Informatics, 7:51–54, 2011.

Publications out of the thesis scope
6. Lansky, P. and Sanda, P. and Weiss, M., Modeling the influence of non-

adherence on antibiotic efficacy: application to ciprofloxacin, The Inter-
national Journal of Clinical Pharmacology and Therapeutics, 45:438–
447, 2007. (Journal IF: 1.189)

25


	Abstract
	Abstrakt
	Introduction
	Level of description
	Aims of the thesis

	Theory and methods
	Integrate and Fire neuronal model
	Types of Integrate and fire model
	The parameters of LIF

	Neural code
	Types of neural code
	Spatial hearing
	Neural code for spatial hearing of mammals
	Low frequency ITD cues and modeling


	Summary of main results
	Conclusions
	References
	List of publications

