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Abstract

Dependency parsing is an integral part of Natural Language Process-

ing (NLP) research for many languages. Research in dependency pars-

ing has mainly dealt with improving accuracy for a limited number

of languages. Current dependency parsing algorithms have developed

mainly for languages with an ample amount of training data. Most

of this data has been collected for shared tasks at conferences and are

available mainly for European and resource-rich languages. New re-

searchers into the area may not know which algorithm and techniques

work best with a new, untested, language.

To address this issue, we will look at ensemble approaches to depen-

dency parsing. More specifically, we look at three methods. First,

stacking parsers’ outputs into a weighted graph and extracting a tree

structure using simple voting. Second, analyzing each parsers’ er-

rors distribution and using that as an input into the weighted graph

through fuzzy clustering methods. Third, using a meta-classifier to

choose the best parser for each and every word in our input. The

parsers in each situation may come from a variety of techniques such

as graph-based, transition-based, and constituent conversion. Using

a variety of parsers allows us to study the errors associated with the

parsers and choose the best combination or individual parser for each

situation.

Even though many tools exist for these European and resource-rich

languages, dependency parsing techniques are most commonly only

tested using accuracy scores, both unlabeled and labeled. If a new

technique is developed for a high accuracy such as English or Japanese,

the results are often equivalent to existing techniques or sometimes
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worse. Due to this, research is often only concerned with a very

specific linguistic construction, domain, or localized feature. This

often leads to a scenario, where one size does not fit all, particularly

for under-resourced languages.

To make sure our techniques are useful for most languages, we an-

alyzed them on large and small language data sets from a variety

of language families. We want to give special attention to under-

resourced languages, so we additionally show techniques on semi-

supervised training via self-training. For under-resourced languages,

self-training can be an important tool both for parser accuracy and for

creating new annotated data. When using ensemble parsers, a funda-

mental self-training question arises on whether the individual parsers

should be retrained on their own data or on ensemble data. Whether

under-resourced or resource-rich, we feel that limiting the analysis to

accuracy scores does not fully determine whether a technique is useful

or not. To test our techniques down a typical NLP pipeline, we turn

to machine translation.

Machine translation is often the first task people want solved for their

language but often the last step in the process. Many components go

into a successful system. These systems come in a variety of forms,

whether rule-based or statistically based. One concern for machine

translation is whether the early components of the pipeline are accu-

rate. A 2% error in part-of-speech tagging may lead to a much higher

percentage of parsing errors which in turn ends up in a double figure

error rate in the final translation. Reducing the errors in early pipeline

components is a prime concern so that researchers in machine trans-

lation can focus on the actual translation and not generalize earlier

errors.

To examine the effects of dependency parsing down the NLP pipeline.

Our dependency models will be evaluated using the Treex system and

TectoMT translation system. This system, as opposed to other popu-

lar machine translation systems, makes direct use of the dependency
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structure during the conversion from source to target languages via

a tectogrammatical tree translation approach. We will compare UAS

accuracy to corresponding NIST and BLEU scores from the start to

finish of the machine translation pipeline.

Unfortunately any current approach to test dependency parsing’s ef-

fect on machine translation is going to run into one major road block.

There is no gold data for English dependency trees that has a corre-

sponding gold standard translation. For the vast majority of English

dependency parsers, the status quo is to train with data automat-

ically converted from constituent trees. This leads to a final parse

with at least an 8% error rate in UAS. This is too high of a rate

to truly test the dependency’s effect on the final output of the NLP

pipeline. To address this issue we have hand annotated dependency

trees for the WMT 2012 data set, commonly used to judge machine

translation systems. Additionally, to improve future parser training

and constituent conversions, we have hand corrected the dependency

trees in one section of the Penn Treebank.

Within this dissertation, we aim to show both improvements to de-

pendency parsing using ensemble methods for a variety of languages

including under-resourced and resource-rich and show how these new

dependency parsers effect the overall result in a machine translation

pipeline. In addition to these results, we have developed new gold

standard dependency trees for the purpose of machine translation.

We have also determined an improved standard for constituent con-

versions through empirical means discovered from manual annotation

of a part of the Penn Treebank.
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1

Introduction

1.1 Improve Current Tools with Existing Data

and Annotation

Problem: The focus of much of dependency parsing is on creating new model-

ing techniques and examining new feature sets for existing dependency models.

Often these new models are lucky to achieve equivalent results with the current

state-of-the-art results and often perform worse. These approaches are for lan-

guages that are often resource-rich and have ample training data available for

dependency parsing. For this reason, the accuracy scores are often quite high.

This, by its very nature, makes it quite difficult to create a significantly large

increase in the current state-of-the-art. Research in this area is often concerned

with small accuracy changes or very specific localized changes, such as increasing

accuracy of a particular linguistic construction. With so many modeling tech-

niques available to languages with large resources the problem exists on how to

exploit the current techniques with the use of ensemble techniques along with

this plethora of data.

With advancements in text and data mining, many languages in the world fall

into a middle ground where they have some monolingual data resources but not

a large amount of other types data. Often they will have little parallel data and

often neither resource will have many linguistic annotations. For these languages,

1



1. INTRODUCTION

we can expect a small amount of annotation or a small treebank to be constructed

by interested researchers. However, the techniques that are applied for resource-

rich languages might not be applicable to these languages. New techniques need

to be applied to get the maximal gain from the resources that do exist, while

exploiting unannotated resources as well.

Research Questions: There are many questions to be examined when look-

ing at state-of-the-art models and resource-rich languages. Models have similar

accuracy but are they significantly different in their approach so that their con-

struction of both correct and incorrect parse structures supply useful knowledge

to an ensemble parse structure? Can the differences in parsers be exploited in

both an ensemble system and in a discrete classification system? Not only can we

determine the usefulness of a particular model, but can these differences be com-

bined or selected in a fashion that still allows a system to construct a legitimate

and logical dependency parse. Even with a logical parse, many systems falter

when the domain of text is changed. Examination of whether ensemble systems

can be weighted and constructed to aid in domain adaptation has yet to be fully

researched.

With many languages in the world and few dependency treebanks, supervised

techniques are not an optimal solution for the majority of languages. For many

languages it is reasonable to assume enough labor or funds to create a very small

treebank, but where do we go from there? Semi-supervised techniques have be-

come increasingly popular due to the dichotomy of having very little information

in a vast world of data, primarily due to the growth of the Internet in a variety of

languages. Can lightly trained models use unannotated data in an ensemble way

to help bootstrap parsers for new languages? Can using more than handful of

parsers boost performance by giving a complementary view of the data? Given

a seemingly unlimited amount of unannotated data that is growing daily, can

self-training be used within an ensemble system?

Research Approach: To examine whether parser outputs can be combined in

an effective manor, we look at creating one ensemble parse from any N amount

2



1.1 Improve Current Tools with Existing Data and Annotation

of parsers, whether they are constituent-based, transition-based, or graph-based

parsers. Looking at different combinations of these parser types will allow us

to see how they differ both structurally and as well the differences in their er-

ror types. Given that the part-of-speech (POS) error distribution differs in each

dependency technique, the ensemble weights can be learned from these distribu-

tions. To do this we will use fuzzy clustering of POS errors per dependency model

to obtain our ensemble weights. While ensemble systems improve the overall per-

formance through a combination of approaches, we examine further whether a

classifier can determine the appropriate model to use on a per token level. To do

this we implement an SVM classifier.

To address issues around under-resourced languages we examine the use of semi-

supervised training methods with both dependency parsers and with our ensemble

dependency parsers.

Contributions:

• We show that combining dependency parsers of different techniques in an

ensemble framework, in particular constituency to dependency converted

and traditional dependency techniques, leads to improved UAS for English

dependency parsing.

• The same ensemble framework can be used for non-English languages for

a similar improvement in most situations. These languages might lack the

constituency to dependency conversion so in some cases the ensemble system

needs to be augmented with additional models of the same dependency

techniques.

• The ensemble framework not only improves UAS scores but also improves

the overall dependency error rate for each individual part-of-speech

• Part-of-speech error distribution can successfully be used via fuzzy clus-

tering to learn the weights of an ensemble system, leading to greater UAS

scores and reduced dependency error rate for each part-of-speech.
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1. INTRODUCTION

• An SVM classifier can improve dependency parsing using model agreement

features.

• Self-training is perhaps the most frequent use of semi-supervised training

and one of the most successful. While this has been examined for parsing,

the effects of using an ensemble parser or many models combined from

different

Impact:

The benefit of these techniques do not simply stop with dependency parsing. A

dependency parse tree is often an input into other natural language processes.

While under-resources languages may not be examining an entire NLP pipeline,

resource-rich languages that take advantage of these approaches should addition-

ally measure success in applications further down the NLP pipeline. For instance,

when UAS accuracy is reduced with a new parser, can machine translation accu-

racy be improved with statistical significance?

Semi-supervised training like previous techniques, can be used in the NLP pipeline.

However when discussing under-resourced languages the issue becomes a little

more cloudy. First, there may not be the resources available for the rest of the

NLP pipeline. Parsing is part of the founding steps in a BLARK (Basic Language

Resource Kit) (27). Second, for an under-resourced language the main goal is of-

ten to get more annotated resources. Semi-supervised parsing can be used to this

effect as semi-supervised annotation. Every percentage point of UAS improve-

ment is one more percentage point that a human annotator does not have to

correct. For both reasons, semi-supervised parsing for under-resourced languages

is a worthy goal and will have impact on the under-resourced community.

1.2 Dependency Parsing Down the Pipeline

Dependency parsing is typically evaluated by its labeled and unlabeled accuracy

scores for a particular parse tree. The models are rarely used to evaluate perfor-

mance on other NLP tasks. Although rarely evaluated, they are often used, as

parsing is a main component of many NLP tasks. We will evaluate our ensemble
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models on one particular task, machine translation.

Problem: Dependency parsers are almost ubiquitously evaluated on their ac-

curacy scores, these scores say nothing of the complexity and usefulness of the

resulting structures. The structures may have more complexity due to the depth

of their coordination or noun phrases. As dependency parses are a basic struc-

tures in which other systems are built upon, it would seem more reasonable to

judge these parsers down the NLP pipeline. The types of parsing errors that

cause significant problems in other NLP applications is currently an unknown.

Research Questions:

While a coordination error and a modifier error are treated as equal in severity in

unlabeled accuracy scores, the effect on NLP systems may be greater. Two basic

questions on annotation structures occur: First, can we minimize the types of

errors that are most egregious when propagated to other NLP systems. Second,

is there any relation between UAS accuracy and performance found in a trans-

lation system? While we have shown improvement with ensemble systems, the

question still remains whether this has an overall positive increase in a machine

translation system.

Research Approach:

To examine the effects of dependency parsing down the NLP pipeline, we now

turn to a specific machine translation system. Our dependency models will be

evaluated using the Treex system and TectoMT translation system (60). This

system, as opposed to other popular machine translation systems, makes direct

use of the dependency structure during the conversion from source to target lan-

guages via an interlingua-like approach with tectogrammatics. We will compare

UAS accuracy to corresponding BLEU and NIST scores from the start to finish

of the machine translation pipeline. Alternatively we examine the number of

changes an average sentence goes through when our new ensemble models are

used as opposed to a single dependency model from one technique.
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To examine these behaviors we must first have gold standard data. To do this we

manually annotated two sets of data. First we annotated gold translation data

so that we have an overlap between the data used for dependency evaluation and

data used to judge machine translation. Second we corrected dependency annota-

tions on one section of Penn Treebank which is typically used to train dependency

parsers. Using the annotated Penn Treebank section, we are able to determine

the best conversion procedure to get near gold data to train our parsers with.

Using these new parsers, we are able to evaluate the effect of dependencies more

thoroughly.

Contributions:

• The first analysis of dependencies errors’ effects on Machine Translation in

TectoMT

• Results of ensemble dependency parsers when used in the machine transla-

tion pipeline

• Create the first gold standard data that ties both gold dependency struc-

tures with gold translation

• Empirically discover the most appropriate conversion methods from con-

stituency to our new gold dependency structures

• Show the correlation between dependency structure and NIST and BLEU

scores

• Results of new dependency models trained on gold data and gold converted

data

Impact: Often new annotation or new parsing techniques are tried and aban-

doned if they do not give an immediate boost to UAS. It is our goal and the

hopeful impact that parsing models will be evaluated on NLP systems other than

just parsing. Increasing UAS scores is more equated to a learning problem while

increasing the results of an NLP system are the result of adding additional detail

and information to your early level NLP structures. The latter we find to be a
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more convincing argument for research.

A primary driver of much NLP research is the access to interesting and new train-

ing data. With the release of our dependency annotations on machine translation

data, new work can be done on gaining more value out of dependency parsers

and tools in a full NLP pipeline.

1.3 Structure of the Dissertation

Before delving into ensemble parsing and machine translation, we will first cover

the basic terminology and background material in Chapter 2. Ensemble parsing

will be covered in Chapter 3 along with semi-supervised techniques for under-

resourced languages in Section 3.3. Using these parsing techniques, we will ex-

amine their overall effects on machine translation in Chapter 4. After the initial

results, we will look at how we annotated gold dependency data for machine trans-

lation in Section 4.2. Following that, we will see how the changes correspond to

NIST and BLEU scores. Chapter 5 will conclude.
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Background and Terminology

2.1 The Machine Learning Cycle

Machine learning is ubiquitous in our everyday life. We observe machine learning

in many ways, for example, every time shoppers purchase an item with their club

discount cards, product data is collected to help a machine learn the shoppers’

purchase habits. A machine trained on this information may then be able to

predict which items should be located near each other in the store or which ad

promotions a particular shopper may respond to. Machine learning is often a

task dealing with images; for example, when passengers walk through security

in an airport they may be being screened via facial recognition software. This

software has most likely been trained on a large number of predetermined faces so

that the software can recognize eyes, noses, and other facial parts. Perhaps, the

largest section of machine learning deals with text analysis. This textual learning

may be machine translation, email spam filtering, or named entity recognition.

Advancements in machine learning affect our lives whether we are aware of its

presence or not.

However, advancements in machine learning are largely hampered by the lack

of data on which the machine can be trained to learn patterns of interest. This

data in machine learning is commonly called training data. An example of train-

ing data may include sentences with tags assigned to words and word phrases re-

lating to part-of-speech (POS) (35) or the training data may be sentence aligned

translations, also referred to as parallel corpora (50).
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2. BACKGROUND AND TERMINOLOGY

Figure 2.1: Overview of 1 iteration of a machine learning cycle

2.1.1 Typical Iterative Process Flow

Looking at machine learning from a bird-eye view will help us get some of the

basic terms in order. The basic view can be seen in Figure 2.1. We start with raw

data, generally speaking this data is not useful for higher end tools. Commonly

raw data can be used to learn lexicons, spelling errors, and language models.

To add information to this data we need to impose structure, more commonly

referred to as annotations. These annotations may take many forms depending

on the type of media, it may be ontological categorization, textual part-of-speech,

or audio transcription. We focus particularly on syntactic annotation in the form

of dependency relationships, later in the dissertation.

Once structure/annotation has been added, we define the data as “training

data”. We use this training data as an input into machine learning algorithms

which will learn patterns in the annotation and data. The goal of this process is

to create a model which will be able to add structure/annotations to new unseen

data without human interaction. Once we predict information about unseen data,

we combine those predictions into a final output. If our annotation is part-of-

speech, we may predict a POS for each word; if our annotation is ontologically

based, we may predict a genre or class for the text, etc. Typically this process

ends with the output stage. The output is then judged by a human or by some

automatic metric. Although common, this is not always the case. A second

option is available in which the training data is used to make several different

models using different learning algorithms. Figure 2.2 demonstrates this process

from a birds eye view.

2.1.1.1 Supervised

Taking Figure 2.1 as described is an example of supervised learning. This means

that we know the annotation labels and structure ahead of time. This allows
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2.1 The Machine Learning Cycle

our output to use the same labels as the input. On the downside, this does not

allow the system to generalize outside of its current knowledge. In particular, for

supervised machine learning, we will be making use of Support Vector Machines

(SVM). SVMs are a linear classifier that maximize the area between two sets of

data points. SVMs can use hyperplanes for mapping to higher dimensional spaces

as well (6).

2.1.1.2 Unsupervised

Alternatively, instead of having hand labeled annotations, there are a set of learn-

ing algorithms that are unsupervised. This means the labels are not known, so

the annotation stage is skipped and the raw data is used for training. One in-

stance of this is clustering. The output of the system gives each input a label,

this label is normally not understandable though. This is simply a grouping in

which someone must later look at to determine what it means. In almost all sit-

uations unsupervised learning performs worse than supervised. Even with lower

performance, it is often an enticing option since under-resourced languages can

use these techniques without manual annotation, which can be quite expensive.

2.1.1.3 Semi-supervised

Semi-supervised learning is a combination of supervised and unsupervised. It

assumes some annotation has been done, but normally not as many as a typical

supervised system. A model is trained off of these annotations and applied to

unseen data. The results of the model can then be used to retrain the model.

Additionally, data does not have to be used as direct training data. The addi-

tional data is often used to tune the parameters of existing supervised models,

essentially being a form of domain adaptation. Since supervised performs better

than unsupervised in most situations, the term semi-supervised might be mis-

leading in its performance. Typically it does not perform in the middle of the

two, but actually performs better than the supervised system. This is typically

due to extra unannotated data used for parameter tuning or because using its

own output allows for better domain adaptation through self-training.
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2.1.1.4 Ensemble

We use ensemble methods for stacking and combining dependency parsers through-

out this dissertation. The idea behind this is to take the best features of each

predictive model and combine them with other models. For instance, one parser

may perform well on a particular part-of-speech, while another does not. We

would want to, on a node by node level, decide which parser is most likely cor-

rect. This may be for any number of factors including part-of-speech, sentence

length, arc length, genre, n-grams, or one what we will use regularly in this doc-

ument, model agreement features. For instance, if we make our decision based

on part-of-speech as in Table 2.1, assume parser A predicts dependencies at 60%

for Nouns (NN) and 30% for Verbs (VB) and vice versa for parser B, the optimal

goal for an ensemble system would be to predict 60% across the board.

Model POS Accuracy

A NN 60%

A VB 30%

B NN 30%

B VB 60%

Table 2.1: Hypothetical ensemble scenario

The obvious drawback of this method is in the processing time. If not parallel,

we increase our processing time linearly for each of the N parsers. So having an

ensemble parser with 5 parsers will logically take much longer, so these methods

are generally not a good idea for real time, consumer based systems. However, if

accuracy is the most important, as it is in semi-supervised annotation, the extra

processing time may be worth the effort. If time is an issue, closer attention

should be paid to slowest system as well as making the process parallel.

2.1.2 Application Areas

Machine learning is widely spread throughout Natural Language Processing (NLP)

and other disciplines. It is used from the earlies stages in tokenization, alignment,

and spelling correction, all the way to the final stages of machine translation.
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Figure 2.2: Overview of 1 iteration of a machine learning cycle with Ensemble

Learning

However, it would be a fallacy to consider it solely for Natural Language Pro-

cessing. Machine learning has been very successful in other disciplines such as

Artificial Intelligence and Bioinformatics. There is an interesting cross over be-

tween NLP and Bioinformatics where analyzing the text of Biology papers using

NLP can lead to discovering new gene and protein interactions.

Ultimately much of research is judged on the final machine translation score,

however most of our work is done in the ensemble learning and annotations related

to dependency parsing. While typically a “solved” problem for English, with an

accuracy in the 90% range, dependency parsing is often as low as 60% for other

languages. Because of this further work is needed in the field. We choose this area

with the intent of improving these lower accuracy languages as well as increasing

the top accuracy languages such as English.

Whichever field is chosen, the aim of much of this dissertation is to show

two independent things not limited to the chosen field. One, ensemble methods

can be useful with fields and data sources with little or no information available.

Two, that no matter what field machine learning is applied to, great care should

be taken when choosing an annotation scheme, as it can greatly affect your final

product and products down the pipeline.
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2.2 PDT

For the annotation of our gold data, we used the standard set by the Prague

Dependency Treebank (PDT) (18). PDT is annotated on three levels, morpho-

logical, analytical, and tectogrammatical. Our focus will be primarily on the

analytical trees.

2.2.1 Analytical Trees

This work mainly deals with dependency trees, however we do address constituent

trees since we convert constituent data into dependency trees both for parsing

and for training data collection. We define a dependency tree as a rooted directed

tree which is acyclic and can only have a single head relation. The head is half of

a dependency relation which is a connecting arc between two nodes, referred to

as the head and the dependent. Determining the head/dependency relation can

be based on a number of criteria such as the following (30):

• The head determines the syntactic category of a construction, and can

sometimes replace the construction

• The head determines the semantic category of a construction, and the de-

pendent gives the semantic specification

• The head is obligatory, the dependent is optional

• The head selects the dependent and determines whether the dependent is

needed

• The form of the dependent depends on the head (agreement)

• The linear position of the dependent is specified with reference to the head

Constituent trees and dependency trees share many similarities but some im-

portant differences. Dependency trees are a much more efficient representation,

not needing the extra nodes for phrasal categories, instead groupings can be con-

sidered subtrees. While for constituent trees, each phrase group gets its own

node.
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Figure 2.3: Example of a dependency parse. Figure taken from (30)

Figure 2.4: Example of a constituent parse. Figure taken from (30)
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2.2.2 Annotation Standards and Differences

While there are many areas in which annotation can differ, we will mainly focus

on coordination structure and noun phrase structure. Coordination structure is

often dispute; some standards use the first component as the head, others use

the coordination itself, and others use the last component. You can see that

this can lead to many permutations. Two examples of coordination are shown in

Figure 2.5.

Figure 2.5: Example two coordinations annotations.

2.3 Dependency Parsing

Dependency parsing has been shown to be an important part of many NLP

applications. Contrary to its counterpart constituency structure, dependency

tree structure is often considered more useful in free word order languages. A

common problem parsers have in these languages is the phenomenon of non-

projectivity. This is when a subtree of a dependency graph is not contiguous, or

visually cannot be drawn without intersecting lines (31). Dependency structures

are better at showing agreement whereas constituency, or phrase based, trees
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typically show neighboring node groupings better due to the divide and conquer

approach that context free grammars impose on sentences.

In (29), the authors confirm that two parsers, MSTParser and MaltParser, give

similar accuracy results but with very different errors. MSTParser, a maximum

spanning tree graph-based algorithm, has evenly distributed errors in terms of

sentence length while MaltParser, a transition based parser, has errors on mainly

longer sentences. This result comes from the approaches themselves. MSTParser

is globally trained so the best mean solution should be found, this is why errors on

the longer sentences are about the same as the shorter sentences. MaltParser on

the other hand uses a greedy algorithm with a classifier that chooses a particular

transition at each vertex. This leads to the possibility of the propagation of

errors further in a sentence (37). Both these algorithms are discussed below

along with a third technique, constituent transformation. It is important for all

future empirical experiments to look at each kind of parser as the different types

of errors may greatly change the resulting structures. Below is a brief overview

of the type of dependency parsing techniques. This document will not included

unsupervised dependency parsers, however we feel many of the approaches might

be applicable to unsupervised parsing as well.

2.3.1 Graph-Based

A dependency tree is a special case of a dependency graph that spawns from an

artificial root and is acyclic. Because of this we can look at a large history of work

in graph theory to address finding the best spanning tree for each dependency

graph. The most common form of this type of dependency parsing is called arc-

factored parsing and deals with the parameterization of the edge weights. The

main drawback of these methods is that for non-projective trees, the worst case

scenario for most methods is a complexity of O(n3) (8). However, for non-

projective parsing Chu-Liu-Edmond’s algorithm has a complexity of O(n2) (38).

The most common tool for doing this is MSTParser, which is also used in the

noun phrase bracketing experiments described later in Section 4.1.
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2.3.2 Transition-Based

Transition-based parsing creates a dependency structure that is parameterized

over the transitions used to create a dependency tree. This is closely related to

the shift-reduce constituency parsing algorithms. Due to the notion of picking

transitions in an abstract machine, the algorithms used for these systems tend

to be greedy. The benefit of this is that the algorithms have a linear time com-

plexity. However, due to the greedy algorithms, longer arc parses can cause error

propagation across each transition (29). The standard tool for transition-based

algorithms is MaltParser (42) which in the shared tasks was often tied with the

best performing systems. Additionally we will use Zpar (63) which is based on

MaltParser but with a different set of non-local features.

2.3.3 Constituent Transformation

While not a true dependency parser, one technique often applied is to take a

state-of-the-art constituent parser and transform its phrase based output into de-

pendency relations. This has been shown to also be state-of-the-art in accuracy

for dependency parsing in English. This method has also been applied to the

Czech language with Collin’s parser (5). This path of research has mainly been

applied for constituent treebanks that have been converted to dependency and

have not thoroughly been tested for treebanks specifically annotated for depen-

dency relations that might additionally have constituent annotations.

In most cases the models are built from the Penn Treebank, a constituent

based treebank (35), using a phrase based parser. Then to parse a sentence into a

dependency structure, the phrase based output is processed with a conversion tool

e.g. PennConverter (22) or Stanford Converter (36). Versions of these converters

were used in the CoNLL shared task to create dependency treebanks for a variety

of the languages. For my experiments we will make use of Charniak’s(4) and

Stanford Parser (24) for constituent trees. For our experiments, we only make

use of the PennConverter for the actual conversion.
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2.3.4 Tamil Parsing

In later experiments, we will make use of two different treebanks for dependency

parsing, Tamil and Indonesian. Previous parsing experiments in Tamil were done

using a rule based approach which utilized morphological tagging and identifi-

cation of clause boundaries to parse the sentences (48). The results were also

reported for MaltParser and MSTParser. When the morphological tags were

available during both training and testing, the rule based approach performed

better than Malt and MST parsers. We will be examining the combination of

both MST and Malt parsers.

2.3.5 Indonesian Parsing

There was research done on developing a rule based Indonesian constituency

parser applying syntactic structure to Indonesian sentences. It uses a rule based

approach by defining the grammar using PC-PATR (23). There was also research

that applied the above constituency parser to create a probabilistic parser (16).

To the best of our knowledge, no dependency parser has been created and publicly

released for Indonesian.

2.3.6 Ensemble Parsing

Ensemble learning (7) has been used for a variety of machine learning tasks and

recently has been applied to dependency parsing in various ways and with different

levels of success. (17, 55) showed a successful combination of parse trees through

a combination of trees with various weighting formulations. To keep their tree

constraint, they applied Eisner’s algorithm for reparsing (8).

Parser combination with dependency trees have been examined in terms of

accuracy (52, 53, 61). However, the various techniques have generally examined

similar parsers or parsers which have generated various different models. To the

best of our knowledge, our experiments are the first to look at the accuracy and

part-of-speech error distribution when combining constituent and dependency

parsers of many different techniques together.
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Other methods of parse combinations have shown to be successful such using

one parser to generate features for another parser. This was shown in (43), in

which MaltParser was used as a feature to MSTParser. The result was a successful

combination of a transition-based and graph-based parser, but did not address

adding other types of parsers into the framework. While this thesis focuses on

statistical approaches to parsing, rule based parsing has been successfully used

to correct parsers trained via machine learning, creating a hybrid approach (1).

2.3.7 Dependency Errors

In (29) the authors confirm that two parsers, MSTParser and MaltParser, give

similar accuracy results but with very different errors. MSTParser, a maximum

spanning tree graph-based algorithm, has evenly distributed errors across sen-

tence lengths while MaltParser, a transition based parser, has errors on mainly

longer sentences. This result comes from the approaches themselves. MSTParser

is globally trained so the best mean solution should be found, this is why errors

on the longer sentences are about the same as the shorter sentences. MaltParser

on the other hand uses a greedy algorithm with a classifier that chooses a partic-

ular transition at each vertex. This leads to the possibility of the propagation of

errors further in a sentence.

2.3.8 Data Sets

CoNLL Data

Much of the current progress in dependency parsing has been a result of the avail-

ability of common data sets in a variety of languages, made available through the

CoNLL shared task (41). This data is in 13 languages and 7 language fami-

lies. Later shared tasks also released data in other genres to allow for domain

adaptation. The availability of standard competition gold level data has been an

important factor in dependency based research.

Throughout this document we use the English CoNLL data. This data comes

from the Wall Street Journal (WSJ) section of the Penn treebank (35). All parsers

are trained on sections 02-21 of the WSJ except for the Stanford parser which uses

sections 01-21. Charniak, Stanford and Zpar use pre-trained models ec50spfinal,
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wsjPCFG.ser.gz, english.tar.gz respectively. Additionally we make use of Italian

and Japanese from the CoNLL datasets as well for our ensemble experiments.

They were chosen due to their high baseline and different language families.

Tamil

Tamil belongs to Dravidian family of languages and is mainly spoken in southern

India and also in parts of Sri Lanka, Malaysia and Singapore. Tamil is aggluti-

native and has a rich set of morphological suffixes. Tamil has nouns and verbs as

two major word classes, and hundreds of word forms per lemma can be produced

by the application of concatenative and derivational morphology. Tamil’s rich

morphology makes the language free word order except that it is strictly head

final.

Only a few attempts were reported in the literature on the development of a

treebank for Tamil. Our experiments are based on the openly available treebank

(TamilTB) (49). Development of TamilTB is still in progress and the initial

results for TamilTB appeared in (48).

Table 2.2 shows the statistics of the TamilTB Treebank. The last two rows

indicate how many word types have unique tags and how many have two tags.

The table illustrates that most of the word types can be uniquely identified with

single morphological tag and only around 120 word types take more than one

morphological tag.

Description value

#Sentences 600

#Words 9581

#Word types 3583

#Tagset size 234

#Types with unique tags 3461

#Types with 2 tags 112

Table 2.2: TamilTB: data statistics

Indonesian

The Indonesian treebank is a collection of manually constructed dependency trees.
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StaA

NEN-3SN--
viwAyakar
Atr

NNN-3SN--
caTurTTi
Atr

NNN-3SN--
paNtikai
Obj

Jd-F----A
koNtAtum
AdjAtr

NND-3PA--
makkaLukku
Obj

NEN-3SN--
aTimuka
Atr

NNN-3SH--
poTucceyalar
Atr

NEN-3SH--
jeyalaliTA
Sb

NNN-3SN--
vAzTTu
Obj

Vt-T---AA
TeriviTT
Pred

VR-T3SHAA
uLLAr
AuxV

Z#-------
.
AuxK

Tamil:    �நாயக�       ச����        ப��ைக   ெகா�டா��    ம�க���       அ��க      ெபா��ெசயலாள�       ெஜயல�தா    வா���    ெத����    உ�ளா�     .

Tr:          viwAyakar    caTurTTi     paNtikai    koNtAtum     makkaLukku   aTimuka    poTucceyalALar        jeyalaliTA      vAzTTu     TeriviTT      uLLAr       .
Gloss:    Vinayakar    Chaturthi    festival     celebrating   people-DAT     ADMK        general-secretary    Jeyalalitha     wishes      express     AUX-PERF .

English:  ADMK  General Secretary  Jeyalalitha expressed her wishes to people who are celebrating Vinayakar    Chaturthi    festival .

Figure 2.6: Tamil dependency tree example for the sentence “ADMK General

Secretary Jeyalalitha expressed her wishes to people who are celebrating Vinayakar

Chaturthi festival .” Example taken from the Tamil Treebank (49)

It consists of 100 Indonesian sentences with 2705 tokens and a vocabulary size

of 1015 unique tokens. It is taken from the IDENTIC corpus (32) of economic

articles. The treebank is enriched with part-of-speech tags provided by MorphInd

(33). Since the MorphInd output is ambiguous, the tags are disambiguated and

corrected manually including the unknown POS tag. The annotation is done with

the visual tree editor, TrEd (44) and stored in CoNLL format (2) for compatibility

with several dependency parsers and other NLP tools. This treebank is publicly

available as part of IDENTIC corpus (32). The distribution of the POS tags can

be seen in Table 2.3.

Currently the annotation provided in this treebank is the unlabeled relation-

ship between the head and its dependents. The annotation adheres to a general

annotation guideline as follows:

• The main head node of the sentence is attached to the ROOT node.

• Similarly as the main head node, the sentence separator punctuation is also

attached to the ROOT node.
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Figure 2.7: Indonesian dependency tree example for the sentence “He said that

the rupiah stability protection is used so that there is no bad effect in economy.”
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POS tag Description Freq

NSD Noun Singular 1037

Z– Punctuation 278

VSA Verb Singular Active 248

CC- Cardinal Number 226

R– Preposition 205

D– Adverb 147

ASP Adjective Singular Positive 127

S– Subordinating Conjunction 104

VSP Verb Singular Passiver 91

H– Coordinating Conjunction 62

F– Foreign Word 60

B– Determiner 43

CO- Ordinal Number 19

G– Negation 17

PS3 Pronoun Singular 3rdPerson 12

W– Question 7

O– Copula 6

PP1 Pronoun Plural 1stPerson 6

ASS Adjective Singular Superlative 4

PS1 Pronoun Singular 1stPerson 2

APP Adjective Plural Positive 1

CD- Colective Number 1

VPA Verb Plural Active 1

VPP Verb Plural Passive 1

Table 2.3: The distribution of the part-of-speech tag occurrences.

• The subordinate conjunction (with POS tag ‘S–’) nodes are attached to its

subordinating clause head nodes. The subordinating clause head nodes are

attached to its main clause head nodes.

• The coordination conjunctions (with POS tag ‘H–’) nodes, that connect

between two phrases (using the conjunction or commas), are attached to
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the first phrase head node. The second phrase head nodes are attached to

the conjunction node. It follows this manner when there are more than two

phrases.

• The coordination conjunctions (with POS tag ‘H–’) nodes, that connect

between two clauses (using the conjunction or commas), are attached to

the first clause head node. The second clause head nodes are attached to

the conjunction node. It follows this manner when there are more than two

clauses.

• The prepositions nodes with the POS tag ‘R–’ are the head of Prepositional

Phrases (PP).

• In quantitative numeral phrases such as “3 thousand”, ‘thousand’ node will

be the head and ‘3’ node attached to ‘thousand’ node.

In general, the trees have the verb of the main clause as the head of the

sentence where the Subject and the Object are attached to it. In most cases, the

most left noun tokens are the noun phrase head, since most of Indonesian noun

phrases are constructed in Head-Modifier construction.

2.3.9 Metrics

There are two standard metrics for comparing dependency parsing systems. Labeled

attachment score (LAS) and unlabeled attachment score (UAS). UAS studies the

structure of a dependency tree and assesses whether the output has the correct

head and dependency arcs. In addition to the structure score in UAS, LAS also

measures the accuracy of the dependency labels on each arc. A third, but less

common metric, is used to judge the percentage of sentences that are completely

correct in regards to their LAS score. This score might be better used to judge

how a dependency parser will affect other NLP tools that make use of the depen-

dency parser output (2).
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2.4 Machine Translation

There have been two dominant approaches to machine translation: a linguistic

rule based approach and a statistical approach. In rule based machine transla-

tion, specific lexical rules are created for each language pair. This approach is

not generalizable to multiple languages and thus can be time consuming when

translations are required in more than one language pair. The major advantage

of statistical machine translation (SMT) is that once the infrastructure of a sys-

tem is built it can be trained for multiple languages using existing parallel text.

SMT is currently the state-of-the-art approach and, in particular, phrase-based

SMT systems, such as Moses (20, 21), are most commonly used. However, this

requirement for parallel training data can be a disadvantage in languages where

limited resources are available and large training data is the prime disadvantage

of SMT.

Training data are collected in the form of parallel corpora, collections of texts

translated into multiple languages and sentence aligned. Parallel corpora are

extremely sparse when considering both the coverage of the world’s 6000+ lan-

guages and the variety of textual genres. The large majority of parallel corpora

exist only for parliamentary texts in major languages and are virtually nonexis-

tent for minority languages. The process of creating new parallel corpora for a

new language or new genre can be painstaking and time consuming, so SMT is

not always a viable option for some under-resourced languages.

2.4.1 Phrase Based MT

Phrase based statistical machine translation is the most popular and among the

most commonly used techniques for machine translation. This technique had

high requirements for data, both parallel corpora and monolingual target side

data. The most commonly used system is Moses (20, 21). Part of the success

of Moses is due to the ease of installation which made it available to masses of

MT researchers. Moses comes packaged with tools to create language models,

word alignments, and evaluation tools. Yearly competitions are held with the

Workshop for Machine Translation (WMT) in which systems compete against

Moses or use a modified version of Moses to achieve the highest evaluation scores
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(see Section 2.4.6). To help with the adoption of phrase based techniques a

yearly tutorial, the Machine Translation Marathon, is held in which participants

are trained on the individual components and theory behind Moses. Additionally,

participants often form groups and develop new components and features for

Moses during this Marathon. Because of these reasons and the high automatic

evaluation scores of the baseline Moses system, it is the standard choice for much

of the research in statistical machine translation.

2.4.2 Rule Based MT

Rule based systems are a more classical approach to machine translation. They

rely on linguistic information and rules constructed by a linguist. These systems

often perform well on very restricted genres or domains but often fail to generalize

to other uses. The main components needed are cross-lingual dictionaries, mor-

phological analyzers, and an existing grammar. These systems get complicated

quickly and therefore are hard to adapt to new situations. A common infrastruc-

ture to implement a rule based system is in Apertium (10). Apertium has been

shown to be very useful for languages that are linguistically very similar.

2.4.3 Deep Transfer MT

Deep transfer machine translation is similar to the notion of translating to an

interlingua language. The idea being if you can translate to an intermediate

language that has very detailed information, you can then translate that language

into your target language. This idea developed into using tectogrammatics as

an abstraction of a language peculiarities as it generalizes certain aspects of a

language while keep very details information about dependencies as well. For our

study we use the TectoMT (47) system as it directly uses tectogramatics as well

as an analytical layer in which we can directly manipulate the dependency trees.

TectoMT is a machine translation framework based on Praguian tectogram-

matics (54) which represents four main layers: word layer, morphological layer,

analytical layer, and tectogrammatical layer (47). This framework is primarily

focused on the translation from English into Czech. Since much of dependency
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parsing work has been focused on Czech, this choice of machine translation frame-

work logically follows as TectoMT makes direct use of the dependency relation-

ships. The work in this section primarily addresses the noun phrase structure in

the analytical layer (SEnglishA in Figure 2.8).

Figure 2.8: Translation Process in TectoMT in which the tectogrammatical layer

is transfered from English to Czech (47).

2.4.4 Hybrid MT

Each of the above approaches has their pluses and minuses. A newer branch of

MT has started which combines the different approaches into one system. This

may be through a voting system as we will do with parsers. Machine translation

output may be augmented with additional tools such as was done in DEPFIX

with success (51). Or other techniques such as training two systems to translate

from a middle language. For instance, we may translate Tamil to English using

a statistical system and we call the output A. We can then train a system to

learn how to translate the output A to English. Since A is already an “version”

of the target language, in theory this is a much more simple task. Since A and

English should be closely related, using a rule based system such as Apertium

might make sense in this situation.
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2.4.5 Data Sets

If experimenting in statistical machine translation, the most valuable resource is

the parallel corpus. While many language may have one or two corpora, if your

language is in Europe you have a much better chance at finding data. With the

formation of the European Union, all participating countries have translations of

the EU legislation in their own languages. This allows for one large multi-lingual

parallel corpus. This corpus has been compiled at different intervals and has been

released under the Europarl corpus (25).

For our experiments we will be using data released for the Workshop in Ma-

chine Translation (WMT). These workshops are a competition for teams to com-

pete on the same data to create the best machine translation output. This is

done for a handful of language pairs every year, so the data is continually being

updated and improved. Since it is based around a shared task, this also gives us

a good baseline for systems in the area. In particular we used the WMT shared

task data for English to Czech for the years 2010, 2011, and 2012.

2.4.6 Metrics

The BLEU (B iLingual Evaluation U nderstudy) score is an automatic scoring

mechanism for machine translation that is quick and can be reused as a bench-

mark across machine translation tasks. BLEU is calculated as the geometric

mean of common n-grams percentages, multiplied by a brevity penalty, compar-

ing a machine translation and a reference text (45).

NIST, from the N ational I nstitute of S tandards and T echnology, is based

upon the BLEU n-gram approach however it is also weighted towards discovering

more “informative” n-grams. The more rare an n-gram is, the higher the weight

for a correct translation of it will be. This, in effect, lowers the importance of

translating punctuation and common words such as articles.

2.5 Under-Resourced NLP

Under-resourced languages are those in which data, labor, or tools do not exist

to fulfill need. A common metric for this is the availability of a BLARK, Basic
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Language ToolKit (28). These toolkits should contain data for training or existing

tools for tasks such as tokenization, morphological analysis, and syntactic parsing.

Under-resourced is often confused with under-populated. For instance, Ice-

landic only had slightly over 200,000 native speakers but due to government and

university support, they have an existing BLARK (34) and well funded language

programs. On the other hand most language in India are spoken by more people

than then rest of the 6,000+ languages in the world, for instance Tamil with 60

million speakers, but they have little to no resources available. Some work has

been done creating a dependency treebank (49), which we will use later with our

ensemble methods for under-resourced languages (13).

With 6,000+ spoken languages in the world, we can only hope to make a

small dent. For our part in the situation we focus on ensemble and self-training

methods for under-resourced languages in dependency parsing. For such language

it is usually too early to get consistent and useful machine translation results so we

only focus on this early building block. By improving dependency parsing, future

NLP tools can be built and more data can be automatically or semi-automatically

annotated to help expand each languages’ reach. While not a complete NLP

pipeline, we think addressing an early BLARK module is important and any

improvement that can be added for under-resourced languages can reduce the

cost and time needed to build future systems.

2.5.1 Data Mining

For under-resourced languages, data mining is often a key ingredient to a success-

ful system. Both statistical machine translation and dependency parsing require

a large amount of training data. It is often the case that additional data will

have to be “mined” from the web or from other sources. This data is likely not

annotated or aligned to any other language. Since this is a common technique we

address this issue by looking at self-training as a way to use this data to assist

what little annotations and alignments a language might have. In the self-training

section of this dissertation, we examine Indonesian, which has few annotations,

but a large corpus of monolingual unannotated data. Using this, we attempt to
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2.5 Under-Resourced NLP

improve our dependency parsing results while adding some annotations to new

data with some confidence.

2.5.2 Languages Used

We use the following languages in different sections of this document. For self-

training we need a somewhat small dataset, in Indonesian (32), so we can test

many iterations as well as addressing issues surrounding under-resourced lan-

guages. To test our ability to improve the state-of-the-art, we do most of our

tests on English. When determining the best ensemble techniques, we also ex-

amined additional language types such as Italian and Japanese. Japanese was

of particular interest since it has such a high baseline score. To test our meta-

classifier we also used Tamil, an Indian language, to test an under-resourced

language with a full treebank (49) as well as Indonesian.

31



2. BACKGROUND AND TERMINOLOGY

32



3

Improving current models: Use

what you have

In the first of the two empirical chapters we will start with the optimum situa-

tion from the viewpoint of the parser developer. In this situation, we have the

following:

1. Ample training, tuning, and testing datasets. For dependency parsing we

limit ourselves to whether or not the CoNLL shared task has curated data

for a language. While data certainly exists for languages that have not been

involved in CoNLL, for the most part, the data described in Section 2.3.8

is what will be used.

2. Established predictive models with relatively high accuracy for a variety of

techniques. For dependency parsing this includes both dependency tech-

niques along with constituency techniques.

3. Standard metrics by which to judge improvement. For dependency parsing,

we mainly focus on UAS which is outlined in Section 2.3.9.

3.1 Ensemble Learning

Ensemble methods are often used when we want models trained on different data.

We will look at ways to combine models trained on the same or similar data.
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When looking at similar or identical data, we hope that the different models give

us complimentary views of the same data. Ideally you do not want the models

to be “good” at the same things. It is equivalent to building strong development

team, you need a designer, a coder, and a tester. They may have some overlap

but you need an expert in each area to make the final decision. To get started

with ensemble parsing, we have created an ensemble class in Treex that collects

all analytical trees present and combines their structure into an edge matrix. An

edge matrix is a simple structure to store a directed graph. Each edge is assigned

some “weight”. In the end, we have to generate a parse tree out of this matrix.

To generate a single ensemble parse tree, our system takes N parse trees as

input. The inputs are from a variety of parsers as described in 2.3. We will call

these parsers our Base Parsers. All edges in these parse trees are combined

into a graph structure. This graph structure accepts weighted edges via Graph

Edge Weighting Algorithms. So if more than one parse tree contains the

same tree edge, the graph will be weighted appropriately according to a chosen

weighting algorithm. One could imagine many way of combining edges through

additive and multiplicative methods but our specific weighting algorithms used

in our experiments are described in Section 3.1.1.

Once the system has a weighted graph, the system then uses an algorithm

to find a corresponding tree structure by a selected Tree Algorithm so there

are no cycles. In this set of experiments, we constructed a tree by finding the

minimum spanning tree using ChuLiu/Edmonds’ optimization algorithm, which

is a standard choice for MST tasks. The result should be our final Ensemble

Parse. Figure 3.1 graphically shows the decisions one needs to make in this

framework to create an ensemble parse.

3.1.1 Maximum Spanning Tree Combination

To start with, we will apply a maximum spanning tree algorithm, ChuLiu/Edmonds’

algorithm. For supervised parsing this may return an “average” parse. Since these

algorithms work best with many inputs we can use many “baseline” parsers as

well as the same parsers retrained with different data sets. The theory being, the
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3.1 Ensemble Learning

Figure 3.1: General flow to create an Ensemble parse tree

more parsers and the more different types of parsers used, the better chance we

have to get an accurate ensemble parse.

With a maximum spanning tree combination, we have two options. We can

have an complete graph or a incomplete graph. A complete graph means that in

the edge matrix we can have a default value for every edge. In this case if one

edge has a very high probability but you have to pay a large cost to get to that

edge, the algorithm may create a shortcut to the edge using these nonexistent

edges that were inserted by default. In the incomplete graph we only add values

into the edge matrix that exist in our base parsers. This means no new edge

can be added that was not in our base parsers. All of our experiments in this

document deal with incomplete graphs.

3.1.1.1 Parsers

For English, we use 5 of the most commonly used parsers which enables us to have

a wide scope for ensemble learning. They range from graph-based approaches

to transition-based approaches to constituent parsers. Constituency output is

converted to dependency structures using PennConverter (22). All parsers are

integrated in the Treex framework (46, 60) using the publicly released parsers

35



3. IMPROVING CURRENT MODELS: USE WHAT YOU HAVE

from the respective authors but with Perl wrappers to allow them to work on a

common tree structure. For testing we use section 23 of the WSJ for comparability

reasons with other papers. This test data contains 56,684 tokens. For tuning we

use section 22. This data is used for determining the weighting features for the

POS error distribution in Section 3.1.2.

For Italian and Japanese, we do not have access to a constituency to depen-

dency transformation which limits use to too few parsers. So for these languages

we only use MaltParser and MSTParser but we use different training parame-

ters to create various parsing models. For MaltParser, we use 7 models and for

MSTParser, we use 2 models, these are enumerated in Table 3.1. For tuning data

we remove the last 500 sentence of the training data. As with English, this is

used for calculating the POS error distribution used in our weighting schemes in

Section 3.1.2.

Model Name Dependency System

nonproj MST

proj MST

nivreeager Malt

nivrestandard Malt

2planar Malt

planar Malt

stackeager Malt

stacklazy Malt

stackproj Malt

Table 3.1: Enumerated baseline parsing algorithms

In addition to the UAS score of the enumerated parsers, we also report the

accuracy of an Oracle Parser. This parser is simply the best possible parse com-

posed only of edges offered by the individual dependency parsers. If the reference,

gold standard, tree has an edge that any of the parsers contain, we include that

edge in the Oracle parse. Initially all nodes of the tree are connected to an arti-

ficial root. Since only edges that exist in a reference tree are added, the Oracle

Parser maintains the acyclic constraint.
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Parser UAS

Charniak 92.08

Stanford 87.88

MST 86.49

Malt 84.51

Zpar 76.06

Table 3.2: Our baseline parsers and corresponding UAS used in our ensemble

experiments

For English we ran 25 model combinations but only report on combinations of

three or more models. We conducted 29 combinations of models for each of three

weighting schemes for both Japanese and Italian. To consolidate the results we

only display the top ten results for Italian and Japanese.

3.1.1.2 Weighting Schemes

Currently we are applying three weighting algorithms to the graph structure. All

three of these are simple weighting techniques but even in their simplicity we can

see the benefit of this type of combination.

• Uniform Weights: an edge in the graph gets incremented +1 weight for

each matching edge in each parser. If an edge occurs in 4 parsers, the weight

is 4.

• UAS Weighted: Each edge in the graph gets incremented by the value

of its parsers individual accuracy. So based on the UAS baseline parsing

results from Table 3.3, an edge in Charniak’s tree gets .92 added while

MST gets .86 added to every edge they share with the resulting graph.

This weighting should allow us to add poor parsers with very little harm to

the overall score.

• Plural Voting Weights: In Plural Voting, the parsers are rated and each

gets a “vote” based on their quality. With N parsers the best parser gets N

votes while the last place parser gets 1 vote. In this experiment, Charniak

received 5 votes, Stanford received 4 votes, MSTParser received 3 votes,
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MaltParser received 2 votes, and Zpar received 1 vote. Votes in this case

are added to each edge as a weight.

• UAS10: For this weighting scheme we took each UAS value to the 10th

power. This gave us the desired effect of making the differences in accuracy

more apparent and giving more distance from the best to worst parser. This

exponent was empirically found and the results are shown in Table 3.4.

3.1.1.3 Results

Table 3.3 contains the results of different parser combinations of the 5 parsers

in Table 3.2. The results seem to indicate that using two parsers will give you

an “average” score. Ensemble learning seems to start to have a benefit around

3 parsers with a few combinations having a better UAS score than any of the

baseline parsers, these cases are in bold throughout the table. When we add a

4th parser to the mix almost all configurations lead to an improved score when

the edges are not weighted uniformly. The only case in which this does not occur

is when Stanford’s Parser is not used. When all five parsers are used together

with Plural Voting, the ensemble parser improves over the highest individual

parser’s UAS score. For UAS10 voting, the 5 parser combination gives the second

highest accuracy score. The top overall score is when we use UAS10 weighting

with the 4 top individual parsers. For parser combinations that do not feature

Charniak’s parser, we also find an increase in overall accuracy score compared to

each individual parser, although never beating Charniak’s individual score.

To see the maximum accuracy an ensemble system can achieve, we include

an Oracle Ensemble Parser in Table 3.3. As we can see in Table 3.3, the ceiling

of ensemble learning is 97.41% accuracy. Because of this high value, ensemble

learning should be a very prosperous area for dependency parsing research.

To discover the best exponential value in UASX we looked at our combining

all parsers at different exponential values. We empirically test different values on

our tuning data. UAS10 is the top scoring weight for English. The results are in

Table 3.4. We only discover this weight using the “all” parser setting and only

on English. If this setup was used in production it would be wise to relearn this
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System Uniform UAS Plural UAS10 Oracle

Weighting Weighted Voting Weighted UAS

Charniak-Stanford 89.84 92.08 92.08 92.08 94.85

Charniak-Mst 89.14 92.08 92.08 92.08 95.33

Charniak-Malt 88.15 92.08 92.08 92.08 95.4

Charniak-Zpar 84.10 92.08 92.08 92.08 94.49

Stanford-Mst 86.92 86.49 87.88 86.49 94.29

Stanford-Malt 86.05 87.88 87.88 87.88 94.09

Stanford-Zpar 81.86 87.88 87.88 87.88 93.02

Mst-Malt 85.54 86.49 86.49 86.49 90.38

Mst-Zpar 81.19 86.49 86.49 86.49 92.03

Malt-Zpar 80.07 84.51 84.51 84.51 91.46

Charniak-Stanford-Mst 91.86 92.27 92.28 92.25 96.48

Charniak-Stanford-Malt 91.77 92.28 92.3 92.08 96.49

Charniak-Stanford-Zpar 91.22 91.99 92.02 92.08 95.94

Charniak-Mst-Malt 88.80 89.55 90.77 92.08 96.3

Charniak-Mst-Zpar 90.44 91.59 92.08 92.08 96.16

Charniak-Malt-Zpar 88.61 91.3 92.08 92.08 96.21

Stanford-Mst-Malt 87.84 88.28 88.26 88.28 95.62

Stanford-Mst-Zpar 89.12 89.88 88.84 89.91 95.57

Stanford-Malt-Zpar 88.61 89.57 87.88 87.88 95.47

Mst-Malt-Zpar 86.99 87.34 86.82 86.49 93.79

Charniak-Stanford-Mst-Malt 90.45 92.09 92.34 92.56 97.09

Charniak-Stanford-Mst-Zpar 91.57 92.24 92.27 92.26 96.97

Charniak-Stanford-Malt-Zpar 91.31 92.14 92.4 92.42 97.03

Charniak-Mst-Malt-Zpar 89.60 89.48 91.71 92.08 96.79

Stanford-Mst-Malt-Zpar 88.76 88.45 88.95 88.44 96.36

All 91.43 91.77 92.44 92.58 97.41

Table 3.3: Initial Results of the minimum spanning tree algorithm on a combined

edge graph. Scores are in bold when the ensemble system increased the UAS score

over all individual systems.
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exponential value through new tuning data for the model combination choice and

particular language each time.

X UASX

0.5 91.77

2 91.84

4 91.98

6 92.44

8 92.47

9 92.52

10 92.58

11 92.57

12 92.57

16 92.43

Table 3.4: UAS scores of our ensemble parser with all parsers included at different

exponential values (UASx)

3.1.1.4 POS Errors

Given the prior research on differences in dependency errors seen in Section 2.3.7,

we look at the error distribution for all five parsers along with our best ensemble

parser configuration. Much like the previous work we expect different types of

errors, given that our parsers are from 3 different parsing techniques. To examine

if the ensemble parser is substantially changing the parse tree or is just taking

the best parse tree and substituting a few edges, we examine the part-of-speech

errors in Table 3.5.

As we can see the range of POS errors varies dramatically depending on which

parser we examine. For instance for CC, Charniak has 83% while MST is only

71% accurate. There are also POS errors that are almost always universally bad

such as the left parenthesis (. Given the large difference in POS errors, weighting

an ensemble system by POS is a logical choice, which we will address further in

Section 3.1.2. As we can see in Figure 3.2, the varying POS accuracies indicate

that the parsing techniques we have incorporated into our ensemble parser, are
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significantly different. In almost every case in Table 3.5, our ensemble parser

achieves the best dependency accuracy for each POS, while reducing the average

relative error rate by 8.64%.

The current weighting systems don’t simply default to the best parser or to

an average of all errors. In the majority of cases our ensemble parser obtains the

top accuracy. The ability of the ensemble system to use maximum spanning tree

on an edge graph allows the ensemble parser to connect previously unconnected

nodes for an overall gain, which is preferable to techniques which only select the

best model for a particular tree. In all cases, our ensemble parser is never the

worst parser. In cases where the POS is less frequent, our ensemble parser seems

to average out the error distribution.

We have shown the benefits of using a maximum spanning tree algorithm in

ensemble learning for dependency parsing. Not only do we combine dependency

parsers, we show the effectiveness of combining constituent parsers with other

dependency parsing techniques. This ensemble method shows improvements over

the current state-of-the-art for each individual parser. We also show a theoretical

maximum oracle parser which indicates that much more work in this field can

take place to improve dependency parsing accuracy toward the oracle score of

97.41%.

We demonstrated that using parsers of different techniques, especially includ-

ing transformed constituent parsers, can lead to the best accuracy within this

ensemble framework. The improvements in accuracy are not simply due to a few

edge changes but can be seen to improve the accuracy of the majority of POS

tags over all individual systems.

To amplify the effect of POS error reduction further, we will look to learn

the ensemble weights though our POS error distribution. To do this we will

cluster the POS accuracies of our parsers and combine in a similar fashion. These

experiments are detailed in Section 3.1.2.

3.1.1.5 Iteratively combining ensemble systems

In the previous section, we saw improvement reaching that of the best model. If

the new system creates an even better model it would seem logical to iteratively
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POS Charniak Stanford MST Malt Zpar Best Relative Error

Ensemble Reduction

PDT 88.890 77.78 83.33 88.89 77.78 88.89 0.00

CC 83.540 74.73 71.16 65.84 20.39 84.63 6.64

NNP 94.590 92.16 88.04 87.17 73.67 95.02 7.81

, 84.450 78.02 63.13 60.12 65.64 85.08 3.99

WP$ 90.480 71.43 85.71 90.48 0.00 90.48 0.00

VBN 91.720 89.81 90.35 89.17 88.26 93.81 25.27

WP 83.780 80.18 80.18 82.88 2.70 81.08 -16.67

RBR 77.680 62.50 75.00 76.79 68.75 78.57 4.00

CD 94.910 92.67 85.19 84.46 82.64 94.96 1.02

RP 96.150 95.05 97.25 95.60 94.51 97.80 42.86

JJ 95.410 92.99 94.47 93.90 89.45 95.85 0.00

PRP 97.820 96.21 96.68 95.64 95.45 98.39 26.09

TO 94.520 89.44 91.29 90.73 88.63 94.35 -2.94

EX 96.490 98.25 100.00 100.00 96.49 98.25 50.00

WRB 63.910 60.90 68.42 73.68 4.51 63.91 0.00

RB 86.260 79.88 81.49 81.44 80.61 87.19 6.74

FW 55.000 45.00 60.00 25.00 35.00 55.00 0.00

WDT 97.140 95.36 96.43 95.00 9.29 97.50 12.50

VBP 91.400 83.29 80.92 75.81 50.87 91.27 -1.45

JJR 88.380 80.81 74.75 70.20 68.18 87.37 -8.70

VBZ 91.970 87.35 83.86 80.78 57.91 92.46 6.06

NNPS 97.620 95.24 100.00 95.24 69.05 100.00 100.00

( 73.610 75.00 54.17 58.33 15.28 73.61 0.00

UH 87.500 62.50 75.00 37.50 37.50 87.50 0.00

POS 98.180 96.54 98.54 98.72 0.18 98.36 10.00

$ 82.930 80.00 67.47 66.40 52.27 84.27 7.81

“ 83.990 79.66 76.08 58.95 74.01 84.37 2.35

: 77.160 72.53 45.99 44.44 53.70 79.63 10.81

JJS 96.060 90.55 88.19 86.61 82.68 93.70 -60.00

LS 75.000 50.00 100.00 75.00 75.00 75.00 0.00

. 96.060 93.48 91.07 84.89 87.56 97.08 25.81

VB 93.040 88.48 91.33 90.95 84.37 94.24 17.27

MD 89.550 82.02 83.05 78.77 51.54 89.90 3.28

NNS 93.100 89.51 90.68 88.65 78.93 93.67 8.26

NN 93.620 90.29 88.45 86.98 83.84 94.00 6.00

VBD 93.250 87.20 86.27 82.73 64.32 93.52 4.03

DT 97.610 96.47 97.30 97.01 92.19 97.97 14.78

# 100.000 80.00 0.00 0.00 0.00 100.00 0.00

’ 88.280 83.79 81.84 69.92 79.88 90.04 15.00

RBS 90.000 76.67 93.33 93.33 86.67 90.00 0.00

IN 87.800 78.66 83.45 80.78 73.08 87.48 -2.66

SYM 100.000 100.00 100.00 0.00 0.00 100.00 0.00

PRP$ 97.640 96.07 47.22 96.86 93.12 97.45 -8.33

) 70.830 77.78 96.46 55.56 12.50 72.22 4.76

VBG 85.190 82.13 82.74 82.25 81.27 89.35 28.10

Average 7.79

Table 3.5: POS errors for each of our systems that are used in the ensemble sys-

tem. We also our best ensemble system which is the combination of all parsers using

UAS10. All POS errors are calculated using the testing data provided by section 23

of the WST. The ensemble system that generated these errors was parameterized

on tuning data, section 22 of the WSJ.
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3.1 Ensemble Learning

Figure 3.2: Parsers dependency error rates by part-of-speech inclusing the best

ensemble system

include this system in the same process cycle. One would expect an initial gain

that would quickly reduce. To test whether we can use the new ensemble parse

as an input to the same ensemble system we use the following process:

1. Run the baseline system and create an ensemble parse

2. Remove worst performing model

3. Add ensemble parse and rerun

4. Remove previous ensemble parse and lowest performing system
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3. IMPROVING CURRENT MODELS: USE WHAT YOU HAVE

5. Add new ensemble system

6. Repeat this process until there are 3 systems left (each iteration removes 1

model)

We remove the previous ensemble parse along with the lowest performing

system in order to try to not bias the structure toward the previous ensemble

structure. We assume each iteration the new ensemble parse will gather some

of that previous structure since it is an input to the system. If we were to keep

each ensemble system as input into each iteration, giving our additive weighting

scheme, our system will never converge to an answer different than the first

ensemble parse.

Growth was slow to non-existent in comparison to basic UAS weighting for-

mula over the first iteration, this can be seen in Figure 3.3. Counter to the

hypothesis, the system increases a bit on the later iterations. Overall the results,

only giving a mild increase and leveling off quickly, are not significant enough to

look at much further but in some situations they may be helpful.

Exponent Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 91.83% 91.83% 92.37% 92.41%

2 91.83% 91.83% 92.37% 92.41%

6 92.45% 92.45% 92.45% 92.47%

10 92.55% 92.55% 92.55% 92.55%

Table 3.6: UAS scores across iterative iterations. Exponent is the weighting

parameter of the weighting scheme UASX

Table 3.6 shows that the system did not change much from exponential 6

onwards. This is due to the additive system favoring the exaggerated weight of

the ensemble system. Since the ensemble system already contains a likely MST

parse of the remaining systems, it is hard to get this number to shift. Although

the results are lower, we think the system with no exponential (exponent=1)

is more interesting. Without introducing any artificial weighting schema such as

exponentials, we are able to increase the overall score by 0.58. We stopped testing

at X = 10 so as to keep it consistent with our previous experiments.
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3.1 Ensemble Learning

Figure 3.3: UAS scores of each exponential ensemble system across iterations

3.1.2 Fuzzy Clustering

Each dependency parsing technique described thus far achieves state-of-the-art

results, however each technique achieves this success via different error distribu-

tion. To minimize these errors and to increase state-of-the-art parsing accuracy,

we now examine ensemble techniques that weight graph edges based on part-of-

speech errors. To do this, we cluster all dependency parsing models on part-of-

speech error counts. This leads us to have a different weighting scheme between

dependency parsers for each individual part-of-speech.

3.1.2.1 Weighting Schemes

We apply three weighting algorithms to the graph structure. First we give each

parser uniform weight. Second we weight each particular edge by a combination

of models weights determined by the part-of-speech error distribution. Finally we

apply exponential scaling to the POS weights (POS10) to amplify the differences

between models.

45



3. IMPROVING CURRENT MODELS: USE WHAT YOU HAVE

Weightedge =
N∑
i=1

ci

M∑
j=1

wj

Figure 3.4: Equation for calculating the weight of 1 edge across N POS clusters

each with their own weight c and M models each with their own weight w, where

each M predicts the edge

• Uniform: This is the same as our previous fixed weight experiments with

each edge in the graph getting incremented +1 weight for each matching

edge in each parser.

• POS: Each edge of the graph is weighted by a combination of weighting

schemes determined by the particular part-of-speech. This is described in

more detail in Section 3.1.2.2.

• POS10: For this weighting scheme, we took each POS model score from the

previous weighting scheme and raised it to the 10th power at run time which

was empirically chosen. This was once again an opportunity to exaggerate

the differences in each parser when it came to each part-of-speech.

3.1.2.2 Determining Part-of-Speech Clustering Weights

To automatically learn the weights of our models, we turn to part-of-speech error

analysis. We obtain a POS error distribution from our tuning data. Using fuzzy

clustering with the cosine distance metric over 20 iterations we find 3 clusters.

For a particular part-of-speech we get a weight corresponding to each cluster that

sum to 1. In N clusters, we have M weights corresponding to each M models. So

for a particular edge, we get its weight by summing each cluster multiplied by

all model weights as seen in Figure 3.4. If a part-of-speech did not occur in the

tuning data, the weights are equally split across all clusters.

Our clustering algorithm is based on Fuzzy-Cmeans algorithm. This algo-

rithm allows for a “data point” to exist partially in many clusters. The cluster

centroid is iteratively calculated. For our data points we will use a count of

correctly predicted POS’s tags for each parser so for one entry we would have

NOUN⇒Parser1⇒10, Parser2⇒20 Parser3⇒5, Parser4⇒6. The clusters will
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3.1 Ensemble Learning

then specify the centroids of different clusters of these data points. We use 3

clusters which gives use 3 combinations of model weights.

• Determine clusters for a POS

• Multiply each corresponding cluster weight against each model that predicts

the edge

• Sum the result

• Repeat for each cluster

• Sum results from all cluster

Models Cluster 1 Cluster 2 Cluster 3

Charniak 21.48% 26.46% 31.68%

Stanford 20.47% 24.91% 27.62%

Mst 20.29% 24.25% 21.57%

Malt 19.38% 20.47% 10.43%

Zpar 18.38% 3.91% 8.70%

Table 3.7: Cluster weights for each model when averaged based across centroids

for our English models

For instance for Table 3.7 and Table 3.8 we will look at a node which has the

POS VBZ. Let us assume that the edge we are looking at is only predicted by

ZPar and Charniak. Step one we see that Cluster 1 has a weight of 0.971. We

would then sum the weights of the models with the predicted edge (21.48∗0.971)+

(18.38 ∗ 0.971) = 38.7. We then repeat this for Cluster 2 ((26.46 ∗ 0.025) + (3.91 ∗
0.025) = 0.75 ) and Cluster 3 ((31.68 ∗ 0.0036) + (8.70 ∗ 0.0036) = 0.14). For the

final weight we combine these weights 38.7 + 0.75 + 0.14 = 39.59. As you can see

Cluster 2 and Cluster 3 provide little weight to the final result. This is because

as was seen in Figure 3.2, Zpar did relatively well on this POS compared to its

poor results on others. Cluster 1 gives a higher score to ZPar in this situation.
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POS Cluster 1 Cluster 2 Cluster 3

( 0.007 0.9928 0.0007

) 0.043 0.9508 0.0067

CC 0.008 0.9904 0.0019

JJ 1.000 0.0001 0

MD 0.804 0.182 0.0136

NN 1.000 0 0

NNP 1.000 0.0001 0

NNPS 0.007 0.9917 0.0013

PDT 0.210 0.7277 0.0618

PRP 1.000 0.0001 0.0001

VB 1.000 0 0

VBD 0.981 0.0153 0.0036

VBZ 0.971 0.025 0.0041

WDT 0.003 0.9963 0.0005

Table 3.8: The weights of each cluster for selected POS tags.

3.1.2.3 Results

This weighting system models the POS tag in a fashion similar to the POS error

distribution. For instance the POS tag “CC” has high weights for Cluster 1.

Cluster 1 gives very little weight to Zpar. If we examine the POS errors in

Table 3.5, Zpar did very poorly on these tags. Overall, it does appear that the

clusters tend towards a more balanced weighting scheme while only pointing out

true outliers.

Table 3.9 shows the results of the run on our testing data in which the fuzzy

clusters were determined on our tuning data. The accuracies are higher but

comparable to what is seen with a basic uniform weighting scheme. The weights

were a combination of the fuzzy clustering weights based on POS errors shown

in Table 3.8. This score, 92.54%, which occurred when all parsers were used,

is the best accuracy of all our ensemble techniques and model combinations with

English.
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3.1 Ensemble Learning

Parser Uniform POS POS10 Oracle

Charniak-Stanford-Mst 91.86 92.27 92.08 96.48

Charniak-Stanford-Malt 91.77 92.28 92.08 96.49

Charniak-Stanford-Zpar 91.22 92.00 92.08 95.94

Charniak-Mst-Malt 88.80 89.55 92.08 96.3

Charniak-Mst-Zpar 90.44 91.59 92.08 96.16

Charnial-Malt-Zpar 88.61 91.30 92.08 96.21

Stanford-Mst-Malt 87.84 87.94 87.88 95.62

Stanford-Mst-Zpar 89.12 89.89 87.88 95.57

Stanford-Malt-Zpar 88.61 89.60 89.58 95.47

Mst-Malt-Zpar 86.99 87.34 86.49 93.79

Charniak-Stanford-Mst-Malt 90.45 92.09 92.45 97.09

Charniak-Stanford-Mst-Zpar 91.57 92.24 92.49 96.97

Charniak-Stanford-Malt-Zpar 91.31 92.15 92.08 97.03

Charniak-Mst-Malt-Zpar 89.60 89.53 92.08 96.79

Stanford-Mst-Malt-Zpar 88.76 88.40 87.88 96.36

All 91.43 91.84 92.54 97.41

Table 3.9: UAS scores of our ensemble parser using POS fuzzy clustering weights

for English. Values are bolded wherever the result is greater than any individual

model within the ensemble system.
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3.1.2.4 Ensemble with various training parameters

Models IT-UAS JA-UAS

mstnonproj 72.89% 78.65%

mstproj 76.03% 84.04%

nivreeager 82.08% 92.99%

nivrestandard 81.11% 92.87%

2planar 82.58% 90.01%

planar 81.89% 90.81%

stackeager 81.44% 93.25%

stacklazy 81.27% 93.43%

stackproj 81.57% 91.87%

Table 3.10: Our baseline parsers and corresponding UAS used in our ensemble

experiments for Italian and Japanese

The previous English experiments tested five parsers with a single model each.

For some languages, we do not have the needed constituent conversions or a

variety of dependency parsers with a high average. Because of this we also wanted

to test using two parsers with various training parameters to simulate different

models. We show this on Italian and Japanese data.

Table 3.11 shows the scores for Japanese. The scores are taken from the top

10 performing systems for POS10 weighting scheme. All of the top 10 systems

performed at or better than the best performing individual model. This is a

promising result since Japanese already has a relatively high baseline compared

to other languages. Extending the results from the English experiments, we

might see even greater improvement given more diversity of models instead of

only MaltParser and MSTParser.

Table 3.12 shows the scores for Italian. The scores are taken from the top

10 performing systems for POS10 weighting scheme as well. Overall none of the

combinations were able to achieve as high of a score as the best individual model

which was the 2planar trained MaltParser. Of all the weighting schemes, POS10

performed the best with an average accuracy of 77.38% and a max accuracy of

81.34%. Although this did not beat planar2 the average POS error reduction,
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Model Combos Uniform POS POS10 Oracle

mstnonproj-2planar-nivrestandard

nivreeager-stacklazy-stackeager 92.96% 93.00% 93.43% 97.51%

mstnonproj-nivrestandard

nivreeager-stackeager 93.28% 93.43% 93.43% 97.08%

mstnonproj-nivrestandard

nivreeager-stacklazy 93.35% 93.43% 93.43% 97.04%

mstnonproj-planar

nivreeager-stacklazy 92.63% 93.45% 93.43% 97.11%

mstnonproj-planar-nivrestandard

nivreeager-stacklazy 92.73% 93.12% 93.43% 97.32%

mstnonproj-2planar

nivreeager-stacklazy 93.24% 93.43% 93.45% 97.22%

mstnonproj-nivrestandard-nivreeager 93.29% 93.45% 93.45% 96.59%

mstnonproj-planar-nivrestandard

nivreeager-stacklazy-stackeager 93.38% 93.45% 93.45% 97.46%

mstnonproj-2planar-nivrestandard

nivreeager-stacklazy 92.84% 93.08% 93.50% 97.41%

mstnonproj-2planar

nivrestandard-nivreeager 93.26% 93.59% 93.59% 97.11%

Average over all Combos 92.41% 92.65% 92.63% 96.84%

Table 3.11: UAS scores of our ensemble parser using POS fuzzy clustering weights

for Japanese
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described in Section 3.1.2.5, shows us another story on how this ensemble system

may be used.

Model Combos Uniform POS POS10 Oracle

mstnonproj-2planar-nivrestandard

nivreeager-stacklazy-stackeager 80.77% 80.57% 81.04% 89.82%

mstnonproj-nivrestandard

nivreeager-stackeager 81.06% 81.10% 81.04% 90.36%

mstnonproj-nivrestandard

nivreeager-stacklazy 80.61% 80.77% 81.08% 89.78%

mstnonproj-planar

nivreeager-stacklazy 80.75% 80.89% 81.10% 90.72%

mstnonproj-planar-nivrestandard

nivreeager-stacklazy 80.61% 80.75% 81.10% 89.87%

mstnonproj-2planar

nivreeager-stacklazy 80.57% 80.77% 81.14% 89.68%

mstnonproj-nivrestandard-nivreeager 80.69% 80.99% 81.16% 90.62%

mstnonproj-planar-nivrestandard

nivreeager-stacklazy-stackeager 80.75% 81.04% 81.24% 90.58%

mstnonproj-2planar-nivrestandard

nivreeager-stacklazy 80.95% 81.14% 81.32% 87.40%

mstnonproj-2planar

nivrestandard-nivreeager 80.34% 80.93% 81.34% 88.30%

Average over all Combos 77.33% 77.36% 77.38% 87.98%

Table 3.12: UAS scores of our ensemble parser using POS fuzzy clustering weights

for Italian

3.1.2.5 POS error reduction

Figure 3.5 shows visually how the best ensemble system for Italian is at or better

than all other parsers in terms of POS errors. This shows that the ensemble

system is not just an averaging of errors but actually does reduce error for each

individual POS. Similar results can be seen in English as well.
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POS Charniak Stanford MST Malt Zpar Best Relative Error

Ensemble Reduction

PDT 88.890 77.78 83.33 88.89 77.78 88.89 0.00

CC 83.540 74.73 71.16 65.84 20.39 84.63 6.64

NNP 94.590 92.16 88.04 87.17 73.67 95.02 7.81

VBN 91.720 89.81 90.35 89.17 88.26 93.81 25.27

JJ 95.410 92.99 94.47 93.90 89.45 95.85 0.00

PRP 97.820 96.21 96.68 95.64 95.45 98.39 26.09

TO 94.520 89.44 91.29 90.73 88.63 94.35 -2.94

RB 86.260 79.88 81.49 81.44 80.61 87.19 6.74

FW 55.000 45.00 60.00 25.00 35.00 55.00 0.00

WDT 97.140 95.36 96.43 95.00 9.29 97.50 12.50

VB 93.040 88.48 91.33 90.95 84.37 94.24 17.27

MD 89.550 82.02 83.05 78.77 51.54 89.90 3.28

NNS 93.100 89.51 90.68 88.65 78.93 93.67 8.26

NN 93.620 90.29 88.45 86.98 83.84 94.00 6.00

DT 97.610 96.47 97.30 97.01 92.19 97.97 14.78

Average 7.79

Table 3.13: POS errors for each of our systems that are used in the ensemble

system for English. We also include the POS error distribution for our best en-

semble system. All POS errors are calculated using the testing data, section 23 of

the WST. The ensemble system that generated these errors was parameterized on

tuning data, section 22 of the WSJ. We only display a reduced set of POS tags for

space but the Average is over all POS tags including those not shown.
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Figure 3.5: We can visually see how the ensemble system reduces POS errors

across each POS. The line connects the best ensemble system for Italian on each

of its POS tags
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POS Mst MstnonNivre Nivre Planar 2Planar Stack Stack Stack Best Relative

proj proj eager standard proj eager lazy ensemble Error

Reduction

A 92.33 90.67 91.67 91.67 92 92 91 91.67 91.67 93 8.7%

S 74.55 70.98 78.62 71.56 79.13 78.11 72 72.36 72 79.56 2.09%

N 73.78 64.63 82.32 80.49 81.71 83.54 79.88 82.32 81.1 84.76 7.41%

PU 75.68 59.1 90.63 89.67 90.08 89.13 90.63 90.22 90.22 90.9 2.9%

P 49.76 53.17 81.95 58.54 80 81.95 59.51 62.44 61.46 81.95 0%

B 75.63 69.54 77.66 76.14 79.7 78.17 75.13 77.16 74.11 80.2 2.5%

E 71.32 63.38 78.1 72.47 78.23 77.46 76.18 74.9 74.14 78.23 0%

V 56.45 58.87 67.8 56.31 67.66 66.1 55.04 55.18 54.18 67.8 0%

SA 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 0%

D 77.36 69.81 81.13 62.26 92.45 94.34 60.38 71.7 64.15 98.11 66.67%

C 50.3 42.01 65.68 49.7 60.36 58.58 59.17 59.17 57.4 68.05 6.9%

R 80.79 78.82 89.66 58.37 92.86 91.87 56.16 54.93 54.93 93.6 10.34%

Avg 70.38 65.64 79.32 69.49 80.07 79.83 70.14 71.56 70.17 81.9 8.96%

Table 3.14: POS errors for Italian and its relative error reduction

Next in Table 3.14 we look at the relative POS error reduction rate and

its average across all parts-of-speech. Table 3.14 indicates that while the POS

clustering ensemble system did not perform better than the best overall system,

it did reduce error on an edge by edge level in terms of POS error. This indicates

that locally the system makes better decisions but the overall structure of the

parse tree is incorrect. To correct this we must look at combining POS clustering

with an ensemble method that will favor an overall structure.

We have shown a means to model different parsers’ error distribution based on

part-of-speech through fuzzy clustering. Using this distribution, we have weighted

our ensemble parser to distribute an edge’s weight across clusters and across mod-

els. This has reduced the dependency errors on a part-of-speech level however,

our scores are still a good amount lower than the possible oracle. We think this is

primarily because this method makes correct decision on a node by node level but

fails to achieve the larger structure. This makes sense since we are only modeling

errors on the parts-of-speech tag. To see if can get a better overall structure, we

now look at a more describe ensemble system in which only one parser determines

the edge.
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3.2 Model Classification

Here we will use a meta-classifier to select which model will choose each node’s

parent. A dependency tree in this situation may be made up of many different

parsers but each node will only be determined by one parser each. This is con-

trary to the previous section where each node took input and weights from each

individual parser. Such a meta-classifier can be based on a number of features

such as:

• POS: Certain parsers are better at certain POS. More importantly some

parsers are particularly bad at certain POS tags.

• Index in Sentence: Some models maybe be better at predicting tokens at

the beginning of the sentences (low index number) such as MaltParser which

uses a greedy algorithm. So not to create sparse features, we should break

this into buckets. For instance the index is in the first quartile, second

quartile and so on in the sentence. Either that or we could use discrete

buckets for example the token is in 0:3 or 4:7. Both would reduce sparsity.

Possibly these should be different features since one is a discrete position

and one is a relative position.

• Sentence Length: Like in the previous case this is based on some parsers

being better on shorter sentences due to error propagation caused by greedy

algorithms. However, the previous one bases it on a token by token decision.

This will decide based on the entire sentence length, not just the current

token index.

• Model Agreement: We use a binary feature for each possible model combi-

nation on whether or not they agree on a dependency edge. This feature

will be our main focus as it is language independent.

We have the immediate problem in this section of the data being multi-label

in nature. For instance for a particular feature set (POS, Sentence length) it

is very likely that multiple parsers have the correct edge in the predicted SVM

training data. For this reason we need to use Multi-label classifier techniques.
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There are algorithms and software sets to address this problem. There are also

techniques to transform a multi-label training set into a single label set.

This section should bridge between using ensemble (little pieces of each parser)

to discrete choices (letting one parser select the head of a node). The ensemble

selection should work similarly to the section above in selecting the final tree from

a graph structure. However, using a discrete choice brings new complications. If

we use a classifier on each node and this allows each node to be selected by

a different parser possibly. It is very likely that we will have cycles and more

importantly we will have a disconnected graph. In this case, we will need to

augment how we select the final tree and look at techniques such as finding

random forests.

3.2.1 SVM Based Parser Classification

Morphologically rich languages are often short on training data or require much

higher amounts of training data due to the increased size of their lexicon. This

section examines a new approach for addressing morphologically rich languages

with little training data to start.

Using Tamil as our test language, we create 9 dependency parse models with

a limited amount of training data. Using these models we train an SVM classifier

using only the model agreements as features. We use this SVM classifier on

an edge by edge decision to form an ensemble parse tree. Using only model

agreements as features allows this method to remain language independent and

applicable to a wide range of morphologically rich languages.

We show a statistically significant 5.44% relative improvement over the aver-

age dependency model and a statistically significant 0.52% relative improvement

over the best individual system.

3.2.1.1 Process Flow

When dealing with small data sizes, it is often not enough to show a simple ac-

curacy increase. This increase can be very reliant on the training/tuning/testing

data splits as well as the sampling of those sets. For this reason our experiments

are conducted over 8 training/tuning/testing data split configurations. For each
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Figure 3.6: Process Flow for one run of our SVM ensemble system. This Process

in its entirety was run 100 times for each of the 8 data set splits.

configuration we randomly sample without replacement the training/tuning/testing

data and rerun the experiment 100 times. These 800 runs, each on different sam-

ples, allow us to better show the overall effect on the accuracy metric as well as

the statistically significant changes as described in Section 3.2.1.4. Figure 3.6

shows this process flow for one run of these experiments.

3.2.1.2 Parsers

For this section, we generate two models using MSTParser (38), one projective

and one non-projective to use in our ensemble system. Additionally we generate

many transition-based parsers. We make use of MaltParser (42), which in the

CoNLL shared tasks was often tied with the best performing systems. For this

parser, we generate 7 different models using different training parameters and use

them as input into our ensemble system along with the two graph-based models

described above. These parsing algorithms are enumerated in Table 3.1
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3.2.1.3 Ensemble SVM System

We train our SVM classifier using only model agreement features. Using our

tuning set, for each predicted dependency edge, we create

(
N

2

)
features where

N is the number of parsing models. We do this for each model which predicted

the correct edge in the tuning data. So for N = 3 the first feature would be a

1 if model 1 and model 2 agreed, feature 2 would be a 1 if model 1 and model

3 agreed, and so on. This feature set is novel and widely applicable to many

languages since it does not use any additional linguistic tools.

Model Head Prediction

1 Node 3

2 Node 4

3 Node 2

4 Node 3

5 Node 2

Table 3.15: Node predictions for SVM based meta-classifier

In Table 3.15, we can see an example of 5 parsers and their prediction for a

head of a node. Let us say in this example that Model 2 is correct and the correct

head is Node 4. We would create a feature sets based on Table 3.16 in which our

features would describe a few scenarios. First (10010) would say that when Model

1 and Model 4 agree, Model 2 is correct. Second (01000) when Model 2 disagrees

with everyone, Model 2 is correct. Third (00101) when Model 3 and Model 5

agree, Model 2 is correct. These are all feature sets that are used in our SVM.

For each edge in the ensemble graph, we use our classifier to predict which model

should be correct, by first creating the model agreement feature set for the current

edge of the unknown test data. The SVM predicts which model should be correct

and this model then decides to which head the current node is attached. At the

end of all the tokens in a sentence, the graph may not be connected and will likely

have cycles. Using a Perl implementation of minimum spanning tree in which

each edge has a uniform weight, we obtain a minimum spanning forest, where

each subgraph is then connected and cycles are eliminated in order to achieve
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Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 1 0 0 1 0

Model 2 0 1 0 0 0

Model 3 0 0 1 0 1

Model 4 1 0 0 1 0

Model 5 0 0 1 0 1

Table 3.16: SVM Agreement Matrix

a well formed dependency structure. Figure 3.7 gives a graphical representation

of how the SVM decision and maximum spanning tree algorithm create a final

ensemble parse tree which is similar to the construction used in (14, 19).

3.2.1.4 Evaluation

To test statistical significant, we use Wilcoxon paired signed-rank test. For each

data split we have 100 iterations each with different sampling. Each model is

compared against the same samples so a paired test is appropriate in this case.

We report statistical significance values for p < 0.01 and p < 0.05.

3.2.1.5 Results and Discussion

For each of the data splits, Table 3.17 shows the percent increase in our SVM

system over both the average of the 9 individual models and over the best indi-

vidual model. As the Table 3.17 shows, our approach seems to decrease in value

along with the decrease in tuning data. In both cases when we only used 5% tun-

ing data we did not get any improvement in our average UAS scores. Examining

Table 3.18, shows that the decrease in the 90-5-5 split is not statistically signifi-

cant however the decrease in 85-5-10 is a statistically significant drop. However,

the increases in all data splits are statistically significant except for the 60-20-20

data split.

It appears that the size of the tuning and training data matter more than the

size of the test data. Given that the TamilTB is relatively small (see Table 2.2)

when compared to other CoNLL treebanks, we expect that this ratio may shift
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3.2 Model Classification

Figure 3.7: General flow to create an Ensemble parse tree for a discrete SVM

selection

Data Average % Increase % Increase

Split SVM UAS over Avg over Best

70-20-10 76.50% 5.13% 0.52%

60-20-20 76.36% 5.68% 0.72%

60-30-10 75.42% 5.44% 0.52%

60-10-30 75.66% 4.83% 0.10%

85-5-10 75.33% 3.10% -1.21%

90-5-5 75.42% 3.19% -1.10%

80-10-10 76.44% 4.84% 0.48%

Table 3.17: Average increases and decreases in UAS score for different Training-

Tuning-Test samples. The average was calculated over all 9 models while the best

was selected for each data split
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more when additional data is supplied since the amount of out of vocabulary,

OOV, words will decrease as well. As OOV words decrease, we expect the use of

additional test data to have less of an effect.

The traditional approach of using as much data as possible for the training

does not seem to be as effective as partitioning more data for tuning an SVM.

For instance, the high test training percentage we use is 90% applied to training

with 5% for tuning and testing each. In this case the best individual model had

a UAS score 76.25% and the SVM had a UAS of 75.42%. One might think using

90% of the data would achieve a higher overall UAS score than using less training

data. On the contrary, we achieve a better UAS score on average using only 60%,

70%, 80%, and 85% of the data towards training. This additional data spent for

tuning appears to be worth the cost.

Model 70-20-10 60-20-20 60-30-10 60-10-30 85-5-10 90-5-5 80-10-10

2planar * * * * * * **

mstnonproj * * * * * * **

mstproj * * * * * * **

nivreeager * * * * ** x *

nivrestandard * * ** x * * *

planar * * * * * * **

stackeager * * * x * ** *

stacklazy * * * x * ** *

stackproj ** * * x ** ** **

Table 3.18: Statistical Significance Table for different Training-Tuning-Test sam-

ples. Each experiment was sampled 100 times and Wilcoxon Statistical Significance

was calculated for our SVM model’s increase/decrease over each individual model.

∗ = p < 0.01 , ∗ ∗ p =< 0.05, x = p ≥ 0.05

To further examine the tuning/training data trade off, we turn to a new

language to see if the results are replicated. For this we will look at Indonesian.

For each of the data splits, Table 3.19 shows the percent increase in our

SVM system over both the average of the 7 individual models and over the best

individual model. As the Table 3.19 shows, we obtain above average UAS scores
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Data Average % Increase % Increase Statistical

Split SVM UAS over Average over Best Significant

50-40-10 60.01% 10.65% 4.34% Y

60-30-10 60.28% 10.35% 4.41% Y

70-20-10 62.25% 10.10 % 3.70% Y

80-10-10 60.88% 8.42% 1.94% Y

50-30-20 61.37% 9.73% 4.58% Y

60-20-20 62.39% 9.62% 3.55% Y

70-10-20 62.48% 7.50% 1.90% Y

50-20-30 61.71% 9.48% 4.22% Y

60-10-30 62.57% 7.89% 2.47% Y

90-5-5 60.85% 0.56% 0.56% N

85-10-5 61.15% 0.56% 0.56% Y

80-15-5 59.23% 0.54% 0.54% Y

75-20-5 60.32% 0.54% 0.54% Y

70-25-5 59.54% 0.54% 0.54% Y

65-30-5 59.76% 0.54% 0.54% Y

60-35-5 59.31% 0.53% 0.53% Y

55-40-5 57.27% 0.50% 0.50% Y

50-45-5 57.72% 0.51% 0.51% Y

Table 3.19: Average increases and decreases in UAS score for different Training-

Tuning-Test samples. The average was calculated over all 7 models while the

best was selected for each data split. Each experiment was sampled 100 times

and Wilcoxon Statistical Significance was calculated for our SVM model’s in-

crease/decrease over each individual model. Y = p < 0.01 and N = p ≥ 0.01

for all models in the data split
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Figure 3.8: Surface plot of the UAS score for the tuning and training data split.

in every data split. The increase is statistical significant in all data splits except

one, the 90-5-5 split. This seems to be logical since this data split has the least

difference in training data between systems, with only 5% tuning data. Our

highest average UAS score was with the 70-20-10 split with a UAS of 62.48%.

The use of 20% tuning data is of interest since it was significantly better than

models with 10%-25% more training data as seen in Figure 3.8. This additional

data spent for tuning appears to be worth the cost.

The selection of the test data seems to have caused a difference in our results.

While all our ensemble SVM parsing systems have better UAS scores, it is a lower

increase when we only use 5% for testing. Which in our treebank means we are

only using 5 sentences randomly selected per experiment. This does not seem to

be enough to judge the improvement.

We have shown a new SVM based ensemble parser that uses only dependency

model agreement features. The ability to use only model agreements allows us to

keep this approach language independent and applicable to a wide range of mor-

phologically rich languages. We show a statistically significant 5.44% improve-

ment over the average dependency model and a statistically significant 0.52%

improvement over the best individual system for Tamil. Additionally we repro-

duce the results on Indonesian with an improvement on individual accuracy of

4.92% on average.
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We believe this methodology to be an improvement over the fixed weight

ensemble system as it allows under-resourced languages to quickly retrain and

change dependency parsers when they might not know which algorithm is best.

Additionally since it is a discrete choice it is far less prone to one parser taking over

the weighting, unless that parser was the only accurate parser on the tuning data.

Next we will further show its use for under-resourced languages by examining the

used of the ensemble SVM system when combined with self-training.

3.3 Self Training

Manual dependency annotation is very time consuming and costly. While these

annotations exist for some of the larger treebanks, the cost of annotation is

prohibitive for under-resourced languages. For this reason, semi-supervised ap-

proaches are an appropriate direction. Researchers can use models trained on

less amounts of data to annotate unseen data. The cost of fixing some errors in

the resulting parse, is in most cases, less costly then starting from scratch.

When using a parsing model as a pre-processing tool, any improvement in

accuracy, reduces the work needed to be done by the annotator. We examine the

use of an ensemble dependency parser, which uses a variety of trained models, to

create a more accurate parse. This is done with the use of an SVM classifier that

requires no linguistic information about the particular language, it only needs to

know which models agree with each other. This makes it a prime candidate for

use in under-resourced languages, where the linguistic tools may not be available.

3.3.1 Methodology

The following methodology was run 12 independent times. Each time new test-

ing/tuning/training data sets were randomly selected without replacement. In

each iteration the SVM classifier and dependency models were retrained using self-

training. Also for each of the 12 experiments, new random self-training datasets

were selected from the larger corpus. The results in the next section are averaged

amongst these 12 independent runs. Figure 3.9 shows this process flow for one

run of these experiments.
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Figure 3.9: Process Flow for one run of our self-training system. There is one

alternative scenario in which the system either does self-training with each N parser

or with the ensemble SVM parser. These constitute two different experiments. For

all experiments i=10 and N=7

3.3.2 Parsers

For Indonesian we do not have access to a constituency to dependency transfor-

mation which limits us from using established constituent to dependency trans-

formation parsing techniques. We showed the result using two parsing techniques

with the Tamil data so for this we artificially limit ourselves to one. Because of

this, we only use MaltParser but we use different training parameters to create

various parsing models. For MaltParser we use a total of 7 model variations which

are enumerated in Table 3.1.

3.3.2.1 Self-training Scenarios

For self-training we will mainly be testing our ensemble system. We have chosen

to use the SVM ensemble system, as we feel is it best for under-resourced lan-

guages. We train our SVM classifier using only model agreement features in a

method similar to Section 3.2.1.

The data for self-training is also taken from IDENTIC and it consists of
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45,000 sentences. The data does not contain any dependency relation information

but it is enriched with POS tags. It is processed with the same morphology

tools as the training data described in section 2.3.8 but without the manual

disambiguation and correction. This data and its annotation information are

available on IDENTIC homepage1.

For self-training we present two scenarios. First, all parsing models are re-

trained with their own predicted output. Second, all parsing models are retrained

with the output of our SVM ensemble parser. Self-training in both cases is done

over 10 iterations of 20 sentences. Sentences are chosen at random from unanno-

tated data of size 45,000 sentences. This allows us to examine self-training to a

training data size of twice the original set.

3.3.3 Results

Without self-training, the SVM ensemble model outperformed all other baseline

models achieving an average score of 62.3%. The other models average 57.4%.

The ability to use an SVM agreement model as opposed to the best base model,

has the advantage of allowing the SVM models to weight the parsers in each

iteration. This eliminates the problem of languages where the annotated resources

are very scarce and it is hard to determine the best model from the first 100

sentences. The iterative process allows for the best model to change and for the

SVM model to take advantage of this new and prior information.

As can be seen in Figure 3.10, the base models did better when trained with

additional data that was parsed by our SVM ensemble system. The higher UAS

accuracy seems to of had a better effect than receiving dependency structures of

a similar nature to the current model. We show the 2Planar model in Figure 3.10

but this was the case for each of the 7 models. On an interesting note, the SVM

system had least improvement, 0.60%, when the component base models were

trained on its own output. This seems warranted as other parser combination

papers have shown that ensemble systems prefer models which differ more so that

a clearer decision can be made (14, 19). The improvements when self-training

on our SVM output over the individual parsers’ output can be seen in Table

1http://ufal.mff.cuni.cz/˜larasati/identic/index.html
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Figure 3.10: We can see that the self-trained 2Planar model that is trained with

the ensemble output consistently outperforms the self-trained model that uses its

own output. Results are graphed over the 10 self-training iterations

3.20. Again these are averages over 12 runs of the system, each run containing

10 self-training loops of 20 additional sentences.

Model % Improvement %

2planar 1.10%

nivreeager 0.40%

nivrestandard 1.62%

planar 0.87%

stackeager 2.28%

stacklazy 2.20%

stackproj 1.95%

svm 0.60%

Table 3.20: The % Improvement of all our parsing models including our ensemble

svm algorithm over 12 complete iterations of the experiment.

We have shown a successful implementation of self-training for dependency

parsing on an under-resourced language. Self-training in order to improve our

parsing accuracy can be used to help semi-supervised annotation of additional

data. We show this for an initial data set of 100 sentences and an additional self-

trained data set of 200 sentences. We introduce and show a collaborative SVM

classifier that creates an ensemble parse tree from the predicted annotations and
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improves individual accuracy on average of approximately 5%. This additional

accuracy can release some of the burden on annotators for under-resourced lan-

guage annotation who would use a dependency parser as a pre-annotation tool.

Using these semi-supervised annotation techniques should be applicable to many

languages since the SVM classifier is essentially blind to the language and only

considers the models’ agreement. Most importsntly we show that self-training

with multiple models is better when the self-training data is the result of the

ensemble system as opposed to self-training with each model’s own data.

69



3. IMPROVING CURRENT MODELS: USE WHAT YOU HAVE

70



4

The Pipeline: Dependency

Parsing’s Effect on Machine

Translation

The previous chapter showed various useful combinations of parsers. However,

we feel the evaluation should not end there. In this chapter we aim to show

a motivation for further evaluation of dependency parsing. To do this we will

show that noun phrase structure in a parser will effect a syntax-based machine

translation system. Following that we see how the structures from our ensemble

parser help or hurt machine translation. Much like we had an oracle score for our

ensemble parsing experiment, we need a gold standard for machine translation.

To fully test the effects if dependency trees on syntax-based machine translation,

we present experiments with hand annotated machine translation data. Using

these hand annotations we will examine whether we can improve our previous

baseline and ensemble systems.

4.1 Deep Noun Phrase Structure in MT

Flat noun phrase structure was, up until recently, the standard in annotation for

the Penn Treebank. With the recent addition of internal noun phrase annotation,

dependency parsing and applications down the NLP pipeline are likely affected.
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Some machine translation systems, such as TectoMT, use deep syntax as a lan-

guage transfer layer. It is proposed that changes to the noun phrase dependency

parse will have a cascading effect down the NLP pipeline and in the end, im-

prove machine translation output, even with a reduction in parser accuracy that

the noun phrase structure might cause. This section examines this noun phrase

structure’s effect on dependency parsing, in English, with a maximum spanning

tree parser and shows a 2.43%, 0.23 BLEU score, improvement for English to

Czech machine translation.

4.1.1 Introduction

Noun phrase structure in the Penn Treebank has up until recently been only

considered, due to underspecification, a flat structure. Due to the annotation

and work of Vadas and Curran (56, 57, 59), we are now able to create Natural

Language Processing (NLP) systems that take advantage of the internal structure

of noun phrases in the Penn Treebank. This extra internal structure introduces

additional complications in NLP applications such as parsing.

Dependency parsing made many improvements due to the CoNLL X shared

task (3). However, in most cases, these systems were trained with a flat noun

phrase structure in the Penn Treebank. Vadas’ internal noun phrase structure

has been used in previous work on constituent parsing using Collin’s parser (58),

but has yet to be analyzed for its effects on dependency parsing.

Parsing is very early in the NLP pipeline. Therefore, improvements in parsing

output could have an improvement on other areas of NLP in many cases, such

as machine translation. At the same time, any errors in parsing will tend to

propagate down the NLP pipeline. One would expect parsing accuracy to be

reduced when the complexity of the parse is increased, such as adding noun

phrase structure. But, for a machine translation system that is reliant on parsing,

the new noun phrase structure, even with reduced parser accuracy, may yield

improvements due to a more detailed grammatical structure. This is particularly

of interest for dependency relations, as it may aid in finding the correct head of

a term in a complex noun phrase.
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This section examines the results and errors in parsing and machine transla-

tion of dependency parsers, trained with annotated noun phrase structure, against

those with a flat noun phrase structure. The results also serve as motivation for

our further research into dependency annotations and machine translation. These

results are compared with two systems: a Baseline Parser with no internally an-

notated noun phrases and a Gold NP Parser trained with data which contains

gold standard internal noun phrase structure annotation. Additionally, we ana-

lyze the effect of these improvements and errors in parsing down the NLP pipeline

on the TectoMT machine translation system (60).

4.1.1.1 Dependency Parsers

As noted in Section 2.3.7, we expect each parser to have different errors handling

internal noun phrase structure, but for this experiment we will only be examining

the globally trained MSTParser. This will allow us to examine one set of machine

translation experiments with one variable.

4.1.1.2 TectoMT

As described in Section 2.4.3 TectoMT is a modular framework built in Perl. This

allows great ease in adding the two different parsers into the framework since each

experiment can be run as a separate “Scenario” comprised of different parsing

“Blocks”. This allows a simple comparison of two machine translation system in

which everything remains constant except the dependency parser.

Scenario for Baseline Parser Scenario Gold NP Parser

Penn To Dep Vadas NP Script

Sentence Split Penn To Dep Gold NP

Tokenize Sentence Split

MSTParser Tokenize

MSTParser

Table 4.1: Example of Scenarios with different Blocks (47)
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4.1.1.3 Noun Phrase Structure

The Penn Treebank is one of the most well known English language treebanks (35),

consisting of annotated portions of the Wall Street Journal. Much of the anno-

tation task is painstakingly done by annotators in great detail. Some structures

are not dealt with in detail, such as noun phrase structure. Not having this in-

formation makes it difficult to tell the dependencies on phrases such as “crude oil

prices” (58). Without internal annotation it is ambiguous whether the phrase is

stating “crude prices” (crude (oil prices)) or “crude oil” ((crude oil) prices).

Figure 4.1: Ambiguous dependency caused by internal noun phrase structure.

Manual annotation of these phrases would be quite time consuming and as

seen in the example above, sometimes ambiguous and therefore prone to poor

inter-annotator agreement. Vadas and Curran have constructed a Gold standard

version Penn treebank with these structures. They were also able to train super-

vised learners to an F-score of 91.44% (56, 57, 59). The additional complexity

of noun phrase structure has been shown to reduce parser accuracy in Collin’s

parser but no similar evaluation has been conducted for dependency parsers. The

internal noun phrase structure has been used in experiments prior but without

evaluation with respect to the noun phrases (11).

4.1.2 Methodology

The Noun Phrase Bracketing experiments consist of a comparison two systems.

1. The Baseline system is McDonald’s MSTParser trained on the Penn Tree-

bank in English converted to dependencies without any extra noun phrase

bracketing.

2. The Gold NP Parser is McDonald’s MSTParser trained on the Penn Tree-

bank in English with gold standard noun phrase structure annotations (56).
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4.1.2.1 Data Sets

To maintain a consistent dataset to compare to previous work we use the Wall

Street Journal (WSJ) section of the Penn Treebank since it was used in the

CoNLL X shared task on dependency parsing (3). Using the same common

breakdown of datasets, we use WST section 02-21 for training and section 22

for testing, which allows us to have comparable results to previous works. To

test the effects of the noun phrase structure on machine translation, ACL 2008’s

Workshop on Statistical Machine translation’s (WMT) data are used.

4.1.2.2 Process Flow

Figure 4.2: Experiment Process Flow. PTB (Penn Tree Bank), NP (Noun Phrase

Structure), LAS (Labeled Accuracy Score), UAS (Unlabeled Accuracy Score), Wall

Street Journal (WSJ)

We begin the experiments by constructing two data sets:

1. The Penn Treebank with no internal noun phrase structure (PTB w/o NP

structure).

2. The Penn Treebank with gold standard noun phrase annotations provided

by Vadas and Curran (PTB w/ gold standard NP structure) and then

converted to dependencies using the PennConverter.
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From these datasets we construct two separate parsers. These parsers are

trained using McDonald’s Maximum Spanning Tree Algorithm (MSTParser) (39).

Both of the parsers are then tested on a subset of the WSJ corpus, section 22,

of the Penn Treebank and the UAS and LAS scores are generated. Errors gener-

ated by each of these systems are then compared to discover where the internal

noun phrase structure affects the output. Parser accuracy is not necessarily the

most important aspect of this work. The effect of this noun phrase structure

down the NLP pipeline is also crucial. For this, the parsers are inserted into the

TectoMT system.

4.1.2.3 Metrics

This experiment compares the two parsing systems against each other using both

UAS and BLEU scores. In both cases the test set data is sampled 1,000 times

without replacement to calculate statistical significance using a pairwise compar-

ison.

4.1.3 Results and Discussion

When applied, the gold standard annotations changed approximately 1.5% of

the edges in the training data. Once trained, both parsers were tested against

section 22 of their respective annotated corpora. As Table 4.2 shows, the Baseline

Parser obtained near identical LAS and UAS scores. This was expected given the

additional complexity of predicting the noun phrase structure and the previous

work on noun phrase bracketing’s effect on Collin’s parser.

Systems LAS UAS

Baseline Parser 88.12% 91.11%

Gold NP Parser 88.10% 91.10%

Table 4.2: Parsing results for the Baseline and Gold NP Parsers. Each is trained

on Section 02-21 of the WSJ and tested on Section 22

While possibly more error prone, the 1.5% change in edges in the training data

did appear to add more useful syntactic structure to the resulting parses as can
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be seen in Table 4.3. With the additional noun phrase bracketing, the resulting

BLEU score increased 0.23 points or a 2.43%. The improvement is statistically

significant with 95% confidence using pairwise bootstrapping of 1,000 test sets

randomly sampled with replacement (26, 62). In Figure 4.3 we can see that the

difference between each of the 1,000 samples was above 0, meaning the Gold NP

Parser performed consistently better in each sample as shown in Table 4.3.

Systems BLEU

Baseline Parser 9.47

Gold NP Parser 9.70

Table 4.3: TectoMT results of a complete system run with both the Baseline

Parser and Gold NP Parser. Both are tested on WMT08 data. Results are an

average of 1,000 bootstrapped test sets with replacement.

Figure 4.3: The Gold NP Parser shows statistically significant improvement with

95% confidence. The difference in BLEU score is represented on the Y-axis and

the bootstrap iteration is displayed on the X-axis. The samples were sorted by the

difference in BLEU score.

Visually, changes can be seen in the English side parse that affect the overall

translation quality. Sentences that contained an incorrect noun phrase structure

such as “The second vice-president and Economy minister, Pedro Solbes” as seen

in Figure 4.4 and Figure 4.5 were more correctly parsed in the Gold NP Parser.

In Figure 4.4 “and” is incorrectly assigned to the bottom of a noun phrase and

does not connect any segments together in the output of the Baseline Parser,
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Figure 4.4: The parse created with the data with flat structures does not appear

to handle noun phrases with more depth, in this case the ’and’ does not properly

connect the two components.

while it connects two phrases in Figure 4.5 which is the output of the Gold NP

Parser. This shift in bracketing also allows the proper noun, which is shaded, to

be assigned to the correct head, the rightmost noun in the phrase.

This section has demonstrated the benefit of additional noun phrase brack-

eting in training data for use in dependency parsing and machine translation.

Using the additional structure, the dependency parser’s accuracy was minimally

reduced. Despite this reduction, machine translation, much further down the

NLP pipeline, obtained a 2.43% jump in BLEU score and is statistically signifi-

cant with 95% confidence. Future work should examine similar experiments with

MaltParser and other machine translation systems.

This section gives additional motivation for further examination of annotation

structure. With the success of noun structure, we now look at whether the con-

structions formed by our ensemble parsers will help or hurt machine translation.
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Figure 4.5: With the addition of noun phrase structure in parser, the complicated

noun phrase appears to be better structured. The “and” connects two components

instead of improperly being a leaf node.

4.2 The Effects of Hybrid Ensemble Parsers on

MT

Given the success for using noun phrase structures, we now want to look at two

things. One, how our ensemble structures effect machine translation and two,

how a gold standard parse will effect the translation result.

4.2.1 Annotation Style

To find the maximum effect that dependency parsing can have on the NLP

pipeline, we annotated English dependency trees to form a gold standard. Anno-

tation was done with two annotators using a tree editor, TrEd (44), on data that

was preprocessed using MSTParser. For the annotation of our gold data, we used

the standard annotation standards described in the Prague Dependency Treebank

(PDT) (18). PDT is annotated on three levels, morphological, analytical, and

tectogrammatical. For our gold data, we do not touch the morphological layer,

we only correct the analytical layer (i.e. labeled dependency trees). For machine

translation experiments later in the chapter, we allow the system to automati-
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cally generate a new tectogrammatical layer based on our new analytical layer

annotation. Because the Treex machine translation system uses a tectogrammat-

ical layer, when in doubt, ambiguity was left to the tectogrammatical (t-layer in

Figure 2.8) to handle.

4.2.2 Data Sets

Evaluation Set

For the annotation experiments, we use text provided by the 2012 Workshop

for Machine Translation (WMT2012). The data consists of 3,003 sentences. We

automatically tokenized, tagged, and parsed these sentences. This data set was

also chosen since it is disjoint from the usual dependency training data, allowing

researchers to use it as a out-of-domain testing set. The parser used is an imple-

mentation of MSTParser. We then hand corrected the analytical trees to have

a “Gold” standard dependency structure. Analytical trees were annotated on

the PDT standard. Most manual corrections involved coordination construction

along with prepositional phrase attachment.

Having only two annotators has limited us to evaluating our annotation only

through spot checking and through comparison with other baselines. Annota-

tion happened sequentially one after another. Possible errors were additionally

detected through a set of automatic tests. As a comparison we will evaluate our

gold data set versus other parsers in respect to their performance on previous

data sets, namely the Wall Street Journal (WSJ) section 23.

Training Set

All the parsers were trained on sections 02-21 of the WSJ converted to dependen-

cies using the PennConverter, except the Stanford parser which also uses section

01. We retrained MST and Malt parsers and used pre-trained models for the

other parsers. Machine translation data was used from WMT 2010, 2011, and

2012. Using our gold standard we are able to evaluate the effectiveness of dif-

ferent parser types from graph-base, transition-based, constituent conversion to

ensemble approaches on the 2012 data while finding data trends using previous

years data.
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4.2.3 Translation Components

To examine the effects of dependency parsing down the NLP pipeline, we now

turn to syntax based machine translation. Our dependency models will be eval-

uated using the TectoMT translation system (47). This system, as opposed to

other popular machine translation systems, makes direct use of the dependency

structure during the conversion from source to target languages via a tectogram-

matical tree translation approach.

We use the different parsers in separate translation runs each time in the same

Treex parsing block. So each translation scenario only differs in the parser used

and nothing else. As can be seen in Figure 2.8, we are directly manipulating

the Analytical portion of Treex. As seen in previous Ensemble papers (9, 12,

13, 14, 61) and in the previous chapter, parsing accuracy can be improved by

combining parsers’ outputs for a variety of languages. We apply a few of these

systems to English using models trained for both dependencies and constituents.

The parsers used are as follows:

• MST: Implementation of Ryan McDonald’s Minimum spanning tree parser

(39)

• MST with chunking: Same implementation as above but we parse the

sentences based on chunks and not full sentences. For instance this could

mean separating parentheticals or separating appositions (46)

• Malt: Implementation of Nivre’s MaltParser trained on the Penn Tree-

bank (40)

• Malt with chunking: Same implementation as above but with chunked

parsing

• ZPar: Yue Zhang’s statistical parser. We used the pretrained English

model (english.tar.gz) available on the ZPar website for all tests (63)

• Charniak: A constituent based parser (ec50spfinal model) in which we

transform the results using the PennConverter (22)
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• Stanford: Another constituent based parser (24) whose output is converted

using PennConverter as well (wsjPCFG.ser.gz model)

• Fixed Weight Ensemble: A stacked ensemble system combining five of

the parsers above (MST, Malt, ZPar, Charniak, Stanford). The weights for

each tree are assigned based on UAS score (14)

• Fuzzy Cluster: A stacked ensemble system as well but weights are deter-

mined by a cluster analysis of POS errors (15)

• SVM: An ensemble system in which each individual edge is picked by

a meta classifier from the same 5 parsers as the other ensemble systems

(12, 13).

4.2.4 Evaluation

For machine translation, we report two automatic evaluation scores, BLEU and

NIST. We examine parser accuracy using UAS. We compare a machine translation

system, integrating 10 different parsing systems, against each other using these

metrics. We report UAS scores for each parser on section 23 of the WST and

BLEU and NIST scores for the WMT test set in Table 4.4.

4.2.5 Results and Discussion

Type of Changes in WMT Annotation

Since our gold annotated data was preprocessed with MSTParser, our baseline

system at the time, we started with a decent baseline and only had to change 9%

of the dependency arcs in the data. These 9% of changes roughly increases the

BLEU score by 7%.

Parsers vs our Gold Standard

On average, our gold data differed in head agreement from our base parser 14.77%

of the time. When our base parsers were tested on the WSJ section 23 data they

had an average error rate of 12.17% which is roughly comparable to the difference

with our gold data set which indicates overall our annotations are close to the
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accepted standard from the community. The slight difference in percentage fits

into what is expect in annotator error and in the errors in the conversion process

of the WSJ by PennConverter.

MT Results in WMT with Ensemble Parsers

• WMT 2010: As seen in Table 4.4, the highest resulting BLEU score for the

2010 data set is from the fixed weight ensemble system. The other two en-

semble systems are beaten by one component system, Charniak. However,

this changes when comparing NIST scores. Two of the ensemble method

have higher NIST scores than Charniak, similar to their UAS scores.

• WMT 2011: The 2011 data corresponded the best with UAS scores. While

the BLEU score increases for all the ensemble systems, the order of systems

by UAS scores corresponds exactly to the systems ordered by NIST score

and corelates strongly (Table 4.5). Unlike the 2010 data, the MSTParser

was the highest base parser.

• WMT 2012: The ensemble increases are statistically significant for both

the SVM and the Fixed Weight system over the MSTParser with 99% con-

fidence, our previous baseline and best scoring base system from 2011. We

examine our data versus MST instead of Charniak since we have prepro-

cessed our gold data set with MST, allowing us a direct comparison in

improvements. The fuzzy cluster system achieves a higher BLEU evalu-

ation score than MST, but is not significant. In pairwise tests, it wins

approximately 78% of the time. This is the first dataset we have looked at

where the BLEU score is higher for a component parser and not an ensemble

system, although the NIST score is still higher for the ensemble systems.

Human Manual Evaluation: SVM vs the Baseline System

We selected 200 sentences at random from our annotations and they were given

to 7 native Czech speakers. 77 times the reviewers preferred the SVM system,
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Parser UAS NIST(10/11/12) BLEU(10/11/12)

MST 86.49 5.4038/5.5898/5.1956 12.99/13.58/11.54

MST w chunking 86.57 5.4364/5.6346/5.2364 13.43/14.00/11.96

Malt 84.51 5.3747/5.5702/5.1484 12.90/13.48/11.27

Malt w chunking 87.01 5.4110/5.6025/5.1904 13.39/13.80/11.73

ZPar 76.06 5.2676/5.4635/5.0846 11.91/12.48/10.53

Charniak 92.08 5.4750/5.6561/5.2816 13.49/13.95/12.26

Stanford 87.88 5.4000/5.5970/5.1892 13.23/13.63/11.74

Fixed Weight 92.58 5.4911/5.6831/5.2902 13.53/14.04/12.23

Fuzzy Cluster 92.54 5.4730/5.6820/5.2672 13.47/14.06/12.06

SVM 92.60 5.4846/5.6837/5.2891 13.45/14.11/12.22

Table 4.4: Scores for each machine translation run for each dataset (WMT 2010,

2011 and 2012 results are given in both columns)

NIST BLEU

2010 0.98 0.93

2011 0.98 0.94

2012 0.95 0.97

Table 4.5: Pearson correlation coefficients for each year and each metric when

measured against UAS. Overall NIST has a stronger correlation to UAS scores,

however both show a strong relationship.
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48 times they preferred the MST system, and 57 times they said there was no

difference between the quality of the sentences. On average each reviewer looked

at 26 sentences with a median of 30 sentences. Reviewers were allowed three

options: sentence 1 is better, sentence 2 is better, both sentences are of equal

quality.

+ = -

+ 12 12 0

= 3 7

- 7

Table 4.6: Pairwise agreement between annotators for our SVM and baseline

systems. (-,-) all annotators agreed the baseline was better, (+,+) SVM was better,

(+,-) annotators disagreed

Table 4.6 indicates that the SVM system was widely preferred. When remov-

ing annotations marked as equal, we see that the SVM system was preferred 24

times to the Baseline’s 14.

Although a small sample, this shows that using the ensemble parser will at

worse give you equal results and at best a much improved result.

MT Results with Gold Data

In the perfect situation of having gold standard dependency trees, we obtained

a NIST of 5.3003 and a BLEU of 12.39. For our gold standard system run, the

parsing component was removed and replaced with our hand annotated data.

These are the highest NIST and BLEU scores we have obtained including using

all base parsers or any combinations of parsers.

We have shown that ensemble parsing techniques have an influence on syntax-

based machine translation both in manual and automatic evaluation. Further-

more we have shown a stronger correlation between parser accuracy and NIST

rather than the more commonly used BLEU metric. We have also introduce a

gold set of English dependency trees based on the WMT 2012 machine transla-

tion task data, which shows a larger increase in both BLEU and NIST. While
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on some datasets it is inconclusive whether using an ensemble parser with better

accuracy has a large enough effect, we do show that practically you will not do

worse using one and in many cases do much better.

4.3 Annotation of the Penn Treebank

The previous sections show that using a different annotation set has a positive

change to our translation results. We used Gold data that was hand annotated.

This process obviously cannot be expect to be widely used as it is very time

consuming. Instead of writing extra post parsing conversion scripts, that may

introduce new errors, we decided to retrain our parsings on new data.

Since most parsing experiments are trained on the Penn Treebank, we did the

same. Typically the parsers are trained on section 02 through section 21. This

turned out to be far too much, and very time expensive to annotate, so instead we

focused on one section. We decided to annotate section 23 of the Penn Treebank

which is typically used as the test set. With this data complete our intent is to

find the best automatic conversion to approximate this annotation scheme and

then to apply it to the full Penn Treebank.

4.3.1 Annotation

To annotate section 23 of the Penn Treebank, we followed a similar process as

to the WMT data. First, based on previous experiments, we applied Vadas

and Curran’s deep noun phrase structure corrections. Second, we converted the

constituent trees to dependencies using the “-2007” conversion options on the

PennConverter, these were the options used in previous ensemble experiments.

Once converted, we annotated all sentences into our Gold annotation stan-

dard. A second annotator hand checked various files. Because of the lack of

annotators on the project, no kappa or inter-annotator scores were computed.

The same style was used as we did in the WMT data, so we expect the same

amount of accuracy.
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Overall we changed 7.40% of the edges when compared to our standard

conll2007 conversion option. Simular to WMT data most of the changes came

from coordination structure, punctuation changes, and multi word expressions

4.3.2 Finding the best conversion from constituent to PDT

style

We ran different permutations of the PennConverter’s possible options, as seen

in Table 4.7, on section 23. Each permutation we compared against our hand

annotated corpus. We found that only one flag needed to be set to get closest to

our annotations and that was the coordination flag set to Prague style.

As can be seen in Table 4.7, many options gave us improvements but only

the coordination had the highest effect. We then ran each of the options in

combination with the Prague coordination flag, and at best we received the same

accuracy and in many cases the score dropped.

Additionally we had some differences in punctuation style, for this we post

processed the data. This mainly consisted of adjusting the end punctuation to

match our style. With these changes we can convert new constituent trees at 95%

accuracy using PennConverter. We measured this against Section 23 of the Wall

Street Journal which contains all our hand annotated annotations.

As we can see from Table 4.11, the PennConverter with the new settings can

match our annotations at a much higher accuracy than using the existing parsers.

As expected all parsers dropped in accuracy since the annotation standard was

changed. The biggest change was in the constituent parsers which make direct

use of the PennConverter. Due to this we retrained the parsers, as well, using

the new conversion from PennConverter. Using these retrained models we study

their effect on machine translation.

Using the retrained models we see we get closer to our standard but our

discovered PennConverter options and post processing steps still give us better

accuracy. The retrained models in some cases, such as Charniak, have a higher

UAS accuracy than the previous base parser (the one without gold annotations).

So in the end, we feel this adds more linguistic knowledge to our parses and

increases the overall accuracy.
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Parser UAS

baseline 93.05

coordStructure=prague 95.10

posAsHead=true 91.24

prepAsHead=false 75.23

subAsHead=false 90.83

whAsHead=true 91.54

imAsHead=false 90.76

splitSmallClauses=false 92.86

rootLabels=true 93.05

advFuncs=false 93.05

labelCoords=true 93.05

splitSlash=false 7.40

ddtGapping=false 93.02

conll2008clf=false 93.05

conll2008exp=false 93.05

iobj=true 93.05

relinkCyclicPRN=false 92.90

name=false 93.05

suffix=false 93.05

title=false 93.05

posthon=false 91.76

appo=false 90.55

clr=true 93.05

deepenQP=true 92.77

qmod=true 93.05

noPennTags=true 91.47

noPennTags=true 91.47

rightBranching=false 92.98

-2007 92.59

Table 4.7: Conversion options for each of the PennConverter’s available options

through one level
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Parser UAS

coordStructure=prague -posAsHead=true 93.26

coordStructure=prague -prepAsHead=false 76.93

coordStructure=prague -subAsHead=false 92.89

coordStructure=prague -whAsHead=true 93.60

coordStructure=prague -imAsHead=false 92.79

coordStructure=prague -splitSmallClauses=false 94.90

coordStructure=prague -rootLabels=true 95.10

coordStructure=prague -advFuncs=false 95.10

coordStructure=prague -labelCoords=true 95.10

coordStructure=prague -splitSlash=false 7.11

coordStructure=prague -ddtGapping=false 95.07

coordStructure=prague -conll2008clf=false 95.10

coordStructure=prague -conll2008exp=false 95.10

coordStructure=prague -iobj=true 95.10

coordStructure=prague -relinkCyclicPRN=false 94.95

coordStructure=prague -name=false 95.10

coordStructure=prague -suffix=false 95.10

coordStructure=prague -title=false 95.10

coordStructure=prague -posthon=false 93.74

coordStructure=prague -appo=false 92.49

coordStructure=prague -clr=true 95.10

coordStructure=prague -deepenQP=true 94.82

coordStructure=prague -qmod=true 95.10

coordStructure=prague -noPennTags=true 93.49

coordStructure=prague -noPennTags=true 93.49

coordStructure=prague -rightBranching=false 95.05

Table 4.8: Conversion options for each of the PennConverter’s available options

through two levels
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Parser UAS

MST 82.20

Malt 79.42

Zpar 71.5

Charniak 82.59

Stanford 79.31

PennConverter 95.00%

Table 4.9: UAS scores of each parser measured on out gold data section 23 of

PTB

Parser UAS

MST 85.22

Malt 82.57

Zpar 71.57

Charniak 92.22

Stanford 88.07

Table 4.10: UAS scores of each parser measured on our gold data section 23 of

PTB after retraining
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4.3.3 Effects on Parsers

MST and MaltParser were both retrained using the entire Penn Treebank, sec-

tions 02-21. We reconverted the Penn Treebank using the settings and post

processing blocks discovered and created from the previous section using Pen-

nConverter. We evaluate the newly trained parsers on both our Gold data and

the previous standard data set. Parsing models created for both Malt and MST

will be tested with chunking varieties as well.

4.3.4 Effects on Machine Translation

We ran the base Treex setup for MST, MaltParser, MST with Chunking, Malt

with Chunking, and our Ensemble Methods. Note that Zpar and our constituent

parsers are not retrained here so only a portion of the ensemble parser has

changed. Due to the change, our SVM also needed to change.

Both Stanford and Charniak parsers have changed results, this is not due to

retraining but because we use different PennConverter settings. Charniak and

Stanford results are incorporated into our Ensemble SVM scores.

Parser NIST (WMT 10/11/12) BLEU (WMT 10/11/12)

MST 5.40/5.63/5.24 13.33/13.86/11.83

MST with chunk 5.44/5.67/5.27 13.76/14.17/12.27

Malt 5.26/5.50/5.13 13.24/13.65/11.84

Malt with chunk 5.33/5.54/5.17 13.55/13.77/12.03

SVM 5.48/5.71/5.30 13.81/14.35/12.49

Table 4.11: NIST and BLEU using retrained MST and Malt models. Additionally

Charniak and Stanford make use of the new conversion parameters

Table 4.11 shows the results for each retrained system and the results of

using these new models in our SVM ensemble system. Overall the retraining had

a positive effect, when compared to Table 4.4, with a greater effect on MST than

on MaltParser. In only one instance did our BLEU score decrease. This was with

MaltParser with chunking on 2011 data. We saw that with using WMT gold
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data in the previous experiments, we obtained a positive increase in NIST scores.

Contrary to the Gold data, our retrained parsers only noticeably improved the

BLEU score. The NIST score seemed overall unaffected.

To test our SVM system, we used both retrained models and kept in chunking.

For all constituent parsers we used the most current discovered tuning parame-

ters, the same MST and Malt are trained on. The SVM parameters were then

retrained on Section 22 of the Wall Street Journal, as was done in the previous

set of experiments. The results on the three WMT data sets was a noticeable

increase. Given that we use three different datasets with different BLEU baseline

we describe the changes in percent change, seen in Table 4.12.

Table 4.12 shows percent increases against the previous baseline for that

parser. So MST is the percent change vs the previous MST experiment, SVM

vs the previous SVM experiment, etc. Because of this SVM and MST are not

directly comparable. MST has a slightly larger percent increase, but SVM has a

higher overall BLEU score.

Parser NIST (WMT 10/11/12) BLEU (WMT 10/11/12)

MST -0.07%/0.72%/0.85% 2.62%/2.06%/2.51%

MST with chunk 0.07%/0.63%/0.64% 2.46%/1.21%/2.59%

Malt -2.13%/-1.26%/-0.36% 2.64%/1.26%/5.06%

Malt with chunk -1.5%/-1.12%/-0.39% 1.19%/-0.22%/2.56%

SVM 0.00%/0.53%/0.38% 3.45%/1.7%/ 2.21%

Table 4.12: NIST and BLEU using retrained MST and Malt models. Additionally

Charniak and Stanford make use of the new conversion parameters

To show the effects of dependency structures on syntax-based machine transla-

tions we needed types of gold annotation data. First, we needed gold dependency

trees for data with a parallel translation. Only with this can we test the oracle

situation with limited errors. Second, to step away from the oracle situation, we

need better training data for our existing parsers. To solved the first problem

we annotated data from the WMT 2012 shares task, which contains English to

Czech translations. For the second issue we looked at traditional training data
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and hand annotated a section of the Penn Treebank. This hand annotated data

was used to discover the best constituent conversion so that we could expand our

training data without hand annotating it all. Using this data we showed the opti-

mal parameter for the PennConverter. Applying this conversion and post editing

scripts, we obtained approximately 95% accuracy post conversion without hand

annotated results.

We have shown results for new parsing models that make use of our gold de-

pendency annotations, accomplished with the Penn Treebank annotations. Satis-

fied with a 95% constituent conversion accuracy, we applied the conversion to the

entire Penn Treebank. The parsers, retrained on this data, showed an increase in

accuracy. When applied to our machine translation scenaio we saw an additional

increase in the final BLEU score of our translation system. These increases were

also apparent in our ensemble SVM system, which returned our highest BLEU

score to date.

Both sets of data, but in particular the WMT annotations, should have a

positive effect on the field. Having gold for both an early process and the final

process in an NLP pipeline will help researchers concentrate on particular tasks

in machine translation without wondering if the errors were created by an earlier

process in the pipeline.
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Conclusion

We have shown improvements to dependency parsing through three means. First,

we have combined parse trees with an ensemble approach, employing a variety of

voting schemes for English. Second, we have modeled errors in terms of depen-

dency errors per part-of-speech using fuzzy clustering to help weight our ensemble

parser for Italian and Japanese. Third, we have used an SVM meta-classifier on

each node to determine which model selects the parent for Tamil and Indonesian.

All three approaches have been successful. We feel the biggest contribution of the

three would be the third parser since it is linguistically independent. It achieves

state-of-the-art results by only using model agreement features, which know noth-

ing about the contributing languages. This makes the approach applicable for

small and large languages alike. To help with under-resourced languages, we also

showed the usefulness of using our ensemble approach with self-training to create

additional training data.

We have shown that these ensemble parsers are useful down a syntax-based

machine translation pipeline. We have measured this success with the BLEU

and NIST automatic metrics along with a small number of human evaluators for

an English to Czech translation. This indicated that the results of the ensemble

parsers truly did change the parse tree in a useful manner. To fully test our

theory that the dependency parse correctness is an important component of the

pipeline, we moved next to examine a gold standard.

To the best of our knowledge, there is no gold data sets that combine both

machine translation parallel texts along with gold standard dependency trees. To
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fill the void in this area, we hand annotated the English side of the English-Czech

parallel dataset of the WMT 2012 shared task. This allowed us to fully see the

impact of gold dependency trees on machine translation. As an additional perk to

the dependency parsing community, this data set is a valuable out of domain test

set as well. On this new data set we showed the highest BLEU scores obtained

on the evaluation set by the TectoMT system. One cannot always expect gold

level dependency trees so we next turned to improving the typical parser training

data used by the community.

When trying to improve the training data used for dependency parsing, we

first gathered evidence and motivation that the annotation decisions truly effected

the final output in the NLP pipeline. To do this we first examined the depth of

noun phrases. While parsers are typically trained with flat noun phrases, we

showed improvement to the TectoMT system by adding the existing noun phrase

annotations.

With the success of noun phrase structure, we decided to aim for gold level

training data for dependency parsing for English. We first annotated section 23

of the Penn Treebank by hand so that we had a reference set. Next we showed

the optimal PennConverter options that would approximate these annotations.

After enumerating and testing all options, we have a post conversion accuracy of

95%. Using this conversion, we converted all of the Penn Treebank and retrained

our parsers. The result gave us higher UAS scores for our baseline parsers as

well as our ensemble parsers and additionally improved the BLEU scores in our

machine translation pipeline.

With high oracle parsing scores still in the distance, we feel more work in

ensemble parsing could accomplish even better results in syntax-based machine

translation. While 95% accuracy with our constituent conversion is a large im-

provement over past training data, more analysis of the errors may lead to greater

gains. We feel that our data set, combining machine translations with gold de-

pendency annotations, will leave a lasting impact on future research in this area.
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Appendix

Here are a few examples of trees from our WMT gold annotations including the

automatic parse followed by our gold annotation.

Figure A.1: Original incorrect parse. Errors most likely cause by incorrect tagging

due to the capitalization of the title.
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. APPENDIX

Figure A.2: Correction of the structure. Tags in this situation were not always

corrected. Further processing of the data is needed.
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Figure A.3: Often sentences were not segmented where we would like. For in-

stance when two sentences are connected with a semicolon. In these situations we

made the semicolon the root of the tree.
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. APPENDIX

Figure A.4: Fix for issues with sentence segmentation and semicolons.
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Figure A.5: We made the decision to structures such as “to define” up one level.
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. APPENDIX

Figure A.6: Correct version of the “to define” structure.
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Figure A.7: Coordination is often incorrect with the automatic parses. In this

case the last clause is placed with the false root.
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. APPENDIX

Figure A.8: Corrected coordination structure.
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