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Abstract

Název práce: Quantifying Determiners from the Distributional Semantics
View

Autor: Maria Ximena Gutierrez Vasques

Katedra: Ústav formálńı a aplikované lingvistiky

Vedoućı diplomové práce: doc. RNDr. Markéta Lopatková, Ph.D.

Abstrakt: Distribučńı sémanika představuje moderńı př́ıstup k zachyceńı
sémantiky přirozeného jazyka. Jedńım z témat, kterým zat́ım v rámci to-
hoto př́ıstupu nebyla věnována dostatečná pozornost, je možnost automat-
ické detekce logických relaćı jako vyplýváńı. Tato diplomová práce navazu-
je na práci autor̊u Baroni, Bernardi, Do and Shan (2012), kteř́ı se zabývaj́ı
relaćı vyplýváńı mezi kvantifikuj́ıćımi výrazy. Citovaná práce využ́ıvá de-
tekce pomoćı SVN klasifikátor̊u natrénavaných na sémantických vektorech
reprezentuj́ıćıch relaci vyplýváńı. Popisované experimenty se nezaměřovaly
na nastaveni parametr̊u SVN klasifikátoru, proto se v této práci vraćıme k
p̊uvodńım experiment̊um popisuj́ıćım relaci vyplýváńı mezi kvantifikovanýmo
jmennými konstrukcemi, navrhujeme nové konfigurace klasifikátoru a optimal-
izujeme nastaveńı parametr̊u. Dosaženou přesnost predikce porovnáváme s
p̊uvodńımi výsledky a ukazujeme, že SVM klasifikátor s kvadratickým polyno-
miálńım jádrem dosahuje lepš́ıch výsledk̊u. Analyzujeme úspěšnost výsledk̊u
a navrhujeme vysvětleńı, proč jsou některé kombinace nastaveńı úspěšné a
co tato úspěšnost odhaluje o zpracovávaných datech. Závěrečné experimenty
potvrzuj́ı hypotézu, podle které každá sémantická doména vyžaduje vlastńı
model relace vyplýváńı.

Kĺıčová slova: Distribučńı sémanika, SVN (support vector machines) klasi-
fikátor, vyplýváńı, kvantifikuj́ıćı výrazy.
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Abstract: Distributional semantic models are an approach to natural lan-
guage semantics that has become popular due to its capacity to successfully
capture semantic relations in a relative easy way. One aspect that has been
explored little is the use of distributional semantic representations to auto-
matically detect logical relations such as entailment between words or phrases.
This thesis starts from the work of Baroni, Bernardi, Do and Shan (2012) that
addresses for the first time the entailment between quantifying determiners
using distributional semantic models. In the mentioned work, the entailment
detection is done by means of an SVM classifier trained with semantic vectors
representing pairs of quantifying phrases that are in an entailment relation.
The original experiments paid little attention to the parameters involved in
an SVM classifier. We repeat the experiments to detect entailment between
quantifier-noun constructions, proposing new configurations of the SVM clas-
sifier and performing parameter optimization. We compare the prediction
accuracy and show that an SVM classifier with a quadratic polynomial kernel
is more suitable for the task. We analyze why some combinations of parame-
ters are more successful and what does this reveal about the dataset and the
entailment relations. Finally, we run an experiment to reinforce the evidence,
from the distributional semantics perspective, that each semantic domain has
its own entailment relation.
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Chapter 1

Introduction

1.1 Introduction

In general, we understand semantics as a study of the meaning of a word, a
phrase, a sentence. This fundamental question of what is meaning has been
tackled by philosophers, linguists and others in the past and recent times. On
one hand, linguists and logicians have constructed various highly formalized
models in order to be able to describe natural languages as precisely as possible
(formal semantics). On the other hand, philosophers as Wittgenstein avoided
the question of what is meaning and focused more on the practice of language,
suggesting that the meaning of linguistic signs is its use within a context: ”Do
not look for the meaning, look for the use” (Wittgenstein, 1953).

Distributional Semantics (DS) is an approach to semantics based on the above
mentioned notion (Wittgenstein’s), where meaning is the family of words or
expressions to which a word is similar to. In DS, the meaning of a word is
represented as a vector that codes the pattern of co-occurrence of that word
with other words in a large corpus. This approach has been proved to be use-
ful for measuring the semantic similarity of words and has many applications
like word clustering, word classification, automatic thesaurus generation, word
sense disambiguation, etc.

Semantics deals with representing not only the lexical meaning of a word, but
also of expressions larger than words. In this sense, formal semantics build a
logical representation of the meaning of phrases and sentences by combining
the meaning of its constituents. This key notion in semantics is known as com-
positionality. Recently, DS has also tried to model the meaning of a phrase
by composition, some of the approaches perform algebraic operations between
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semantic vectors of the words constituting a phrase.

DS has mainly focused on content words (nouns, adjectives, verbs), other types
of words like determiners are usually ignored. The determiners, specifically the
quantifying determiners or quantifiers (e.g., all, some), play a very important
role in formal semantics since they represent logical operators. This thesis has
special interest in the work of Baroni, Bernardi, Do and Shan (2012), which
explores for the first time the DS representation of quantifier phrases (phrases
built from a quantifier and a noun), suggesting that semantic vectors are able
to capture the semantic properties not only of content words but also of quan-
tifiers. The evidence show that it is possible to capture and generalize logical
inference patterns, entailment, by using the semantic vectors of expressions
such as quantifier phrases. Baroni, Bernardi, Do and Shan (2012) are able to
automatically detect that there is an entailment relation between the quantifier
phrases ”all cats” and ”several cats” by training a machine learning classifier
with examples of semantic vectors representing pairs of quantifier phrases that
are in an entailment/non-entailment relation.

Phenomena like quantification and inference have been deeply studied by for-
mal semantics. Analyzing these phenomena from the DS perspective consti-
tutes a bridge between these two aproaches of natural language semantics.
This joint view can be helpful to cope with the limitations of each since for-
mal semantics models are usually not enough to deal with the complexity of
natural language, while DS models are able to obtain semantic representa-
tions extracted from corpora but have focused so far on representing lexical
meaning, paying little attention to logical issues.

1.2 Goal

This work starts from the evidence shown in Baroni, Bernardi, Do and Shan(2012)
that entailment relations can be detected using DS representations of phrases.
We first provide a theoretical background and describe the related work to
detect entailment using DS representations.

We are mainly interested in the experiments conducted for detecting entailment
between quantifier phrases (QPs), this is, the entailment between quantifier-
noun constructions sharing the same noun (e.g.,many dogs |= some dogs). The
semantic vectors encoding the QP’s seem to carry enough information allowing
a support vector machine (SVM) classifier to predict if there is an entailment
relation between two QP’s, even if the involved quantifiers were never seen
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during the training phase of the classifier. Baroni, Bernardi, Do and Shan
(2012) show that an SVM classifier trained with semantic vectors represent
a successful entailment recognizer but the analysis of why is this happening
is left as future work. The general goal of this thesis is to complement the
previous work, we will analyze the machine learning method used and repeat
the experiments trying new classifier configurations. We are interested not
only in improving the performance of the current entailment detector but in
understanding better the properties of the semantic vectors that allow to learn
and generalize the entailment relations.

This thesis will look in more depth at the support vector machines since the
original entailment-detection experiments used an SVM classifier with a poly-
nomial kernel of degree 3 and a combination of default parameters provided
by the used software. We aim to repeat the experiments with an optimized
combination of parameters and with different degrees of polynomial kernels
(later we will talk about the meaning and impact of these parameters in a
classification task). Some of the reasons to do this is that SVM classifiers
with lower degree kernels are less complex and make easier to discover which
features of the semantic vectors were more relevant or were taken into account
when building the learning model, also the type of classifier that is able to
obtain the highest accuracies can reveal which kind of relation (linear, non-
linear) exists between the pairs of semantic vectors that allows to classify them
as entailment or non-entailment pair.

Comparisons will be performed among the performance obtained using differ-
ent SVM classifiers. We may observe that some classifiers are more accurate
when predicting the entailment of certain pairs of quantifiers. From this and
from analyzing the detailed predictions we would like to detect some patterns
and interpret why some combination of parameters result better or worst and
what does that mean in terms of detecting entailment using distributional vec-
tors. The general idea is to be able to perform quantitative analysis but also
qualitative by giving a linguistic interpretation to the results produced by the
machine learning classifier.

The last experiment will be performed to complement the idea that the entail-
ment relations are different depending on the semantic domain (e.g., nouns,
quantifiers). i.e., we will ask the question whether the model that detects
entailment between quantifiers is able to generalize to the noun case.
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1.3 Thesis structure

In the previous sections we have briefly mentioned some concepts needed to
introduce the topic and state the goal of this work. Chapter 2 contains a
more complete view and explanation of these concepts, the intention of the
chapter is to provide background of the main notions related with distribu-
tional semantic models, entailment and machine learning classifiers. These
notions are necessary to understand Chapter 3 that contains the related work
of entailment from the distributional semantics view and a detailed description
of the experiments performed in Baroni, Bernardi, Do and Shan(2012) which
constitute the basis of this thesis. Chapter 4 analyzes the machine learning
technique that is going to be used for the experiments and explains the reasons
why we decided to try different SVM classifiers. The obtained results and the
interpretation are also discussed in this chapter. Finally, chapter 5 contains
the conclusions and future work.
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Chapter 2

Background

2.1 Distributional semantic models

Distributional semantic models (DSMs) – also known as ”word space”, ”dis-
tributional similarity” or ”corpus-based semantic” models – are an approach
to semantic where the meaning of a word is represented by a vector that codes
the pattern of co-occurrence of that word with other expressions in a large cor-
pus. These models rely on the distributional hypothesis claiming that words
that occur in similar contexts tend to have similar meanings (Wittgenstein,
1953; Harris, 1954; Weaver, 1955; Firth, 1957; Deerwester, Dumais, Landauer,
Furnas, & Harsh-man, 1990). DSMs have been popular in the recent years due
to their capacity of extracting knowledge automatically from a given corpus,
requiring much less labour than other approaches to semantics, such as hand-
coded knowledge bases and ontologies (Turney and Pantel, 2010).

DSMs are based on vector space models, this kind of models are widely used
in information retrieval. The main idea is to represent each document in a col-
lection as a point in a space (a vector in a vector space). Points that are close
together in this space are semantically similar and points that are far apart
are semantically distant. In a DSM, a word is represented by a vector in which
the elements are derived from occurrences of that word in various contexts.
The contexts may be windows of words sorrounding the target word (Lund &
Burgess, 1996), entire paragraphs or documents (Landauer and Dumais 1997;
Griffiths, Steyvers, and Tenenbaum 2007), grammatical dependencies (Lin,
1998; Pado & Lapata, 2007), and some other richer contexts. The matrix
formed by distributional vectors is usually known as semantic space or word-
context matrix. This matrix collects the co-occurrence information, each row
corresponds to a target word and each column represents a given linguistic
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context. The idea is that similar row vectors indicate similar word meanings,
the semantic similarity can be measured using a distance measure such as co-
sine or Euclidean distance.

A DSM can be defined as a scaled and/or transformed co-occurrence matrix
M , such that each row x represents the distribution of a target term across
contexts, the columns are the set of elements representing the contexts used
to compare the distributional similarity of the target terms. A target term
(or term of interest) may be a word, lemma, phrase, morpheme. If we have a
m× n co-occurrence matrix M , then the m rows are the target terms and the
n columns are the features or dimensions. Some of the parameters and steps
that must be taken into account when building a DSM, include (Baroni and
Lenci 2010; Turney and Pantel, 2010):

Corpus pre-processing: In this first step, the terms for building the DSM
are identified. The corpus must be tokenized (segmented in smaller units,
usually words). Some deeper linguistic analysis may be performed such as
part-of-speech tagging, lemmatization, stemming, shallow syntactic patterns,
dependency parsing.

Type of DSM: This distinction between DSMs relies on the represen-
tation of the co-occurrence relations between a target term and a context.
Unstructured DSMs do not take into account the linguistic structure of the
text when computing the co-occurrences, this means that a co-occurrence is
counted whenever the target term occurs in or close to the context, disre-
garding the type of linguistic relation between these two elements. On the
other hand, structured DSMs extract triples from the corpus, the triples con-
tain word pairs and a syntactic relation or lexico-syntactic pattern between
the two words. The context of a target term must be linked to it by some
significant lexico-syntactic relation, which is also typically used to distinguish
the type of this co-occurrence. The triples are mapped directly onto a two-
dimensional matrix, either by dropping one element from the tuple (Pado and
Lapata 2007) or by concatenating two elements.

Weighting the contexts: The weight deals with ”reducing” the impact
of the less important features in a vector in order to improve the information
retrieval performance. Computing the similarity between all pairs of vectors in
a semantic space is computationally expensive. The similarity must be com-
puted only for those vectors that share non-zero features but most of these
shared non-zero features correspond to contexts that are very common and
have little semantic discrimination power (e.g., the word ”the”). In order to
keep only the most informative features some relevance weighting schemes can
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be applied to the co-occurrence frequencies, like tf-idf (Spark Jones, 1972) or
an statistical association measure like mutual information (Church & Han-
kes, 1989). Using pointwise mutual information (PMI), the dimensions that
co-occur frequently with only very few words, thus correspond to highly dis-
criminating contexts, get a high weight. Using PMI the number of comparisons
needed to compare vectors greatly decreases while losing little precision in the
similarity (Lin, 1998).

Similarity measure: There are several distance measures that can be
used to measure the similarity between two vectors: Euclidean distance, Man-
hattan, Minkowski p-distance, Kullback-Leibler, cosine similarity. The most
popular one is the cosine similarity which measures the cosine of the angle
between two vectors. The cosine similarity is calculated as follows:

cos(x, y) =

∑n
i=1 xi · yi√∑n

i=1 x
2
i ·
√∑n

i=1 y
2
i

cos(x, y) =
x · y√

x · x · √y · y

cos(x, y) =
x

||x||
· y

||y||
Where x and y are two vectors, each with n elements. The cosine of the angle
between two vectors is the inner product of the vectors after they have been
normalized to unit length. If the cosine of the angle is equal to 1 then vectors
are collinear, if the value is equal to 0 then the vectors are orthogonal.

Dimensionality reduction: Typically a co-occurrence matrix is very big
and sparse, for instance it can be a 1M × 1M matrix with less than 0.05%
cells containing nonzero counts (Evert, 2010). There are several dimensionality
reduction techniques that try to compress the matrix. Feature selection is a
technique that selects a subset of informative features, this means that only a
subset of columns of the co-occurrence matrix is kept. The metrics to decide
which features to select include information gain (Mitchell, 1997) and chi-
squared test (Liu and Setiono, 1995).

Another popular technique is singular value decomposition (SVD) which
is a linear algebra technique for factorizing a matrix (Deerwester,1990). The
general idea is to obtain a new reduced matrix that approximates the original
co-occurrence matrix and preserves most of the variance. Using SVD, a n ×
m matrix can be reduced to a k × m matrix, where k << n and k < m. These
new k dimensions are called latent dimensions, k is an arbitrary choice.

SVD decomposes a matrix X into the product of three matrices UΣV T ,
where U and V are in column orthonormal form (the columns are orthogonal
and have unit length, UTU = V TV = I) and Σ is a diagonal matrix of singular

14



contexts
get see use hear eat kill

knife 51 20 84 0 3 0
cat 52 58 4 4 6 26

target dog 115 83 10 42 33 17
words boat 59 39 23 4 0 0

cup 98 14 6 2 1 0
pig 12 17 3 2 9 27

banana 11 2 2 0 18 0

sim(cat, dog) = cos((52, 58, 4, 4, 6, 26), (115, 83, 10, 42, 33, 17)) = 0.90704
sim(banana, dog) = cos((11, 2, 2, 0, 18, 0), (115, 83, 10, 42, 33, 17)) = 0.63196

Table 2.1: Example, co-occurrence matrix M

values (Golub & Van Loan, 1996). Dimensionality reduction techniques such
as SVD have been shown to be effective in many semantic tasks, improving
the DSMs performance.

Table 2.1 shows a very simple example of a unstructured DSM, each row
vector contains the number of times that the corresponding target word co-
occurs in the same sentence with the words in the columns (context). The
similarity is calculated by the cosine of the angle between two row vectors.

DSMs are able to detect different kinds of semantic similarity. The kind of
similarity measured by the cosine of the angle between row vectors in a word-
context matrix is known as attributional similarity, which includes standard
taxonomic semantic relations such as synonymy, co-hyponymy, and hyper-
nymy. Unstructured DSMs can capture attributional similarity. There is also
relational similarity which is the property shared by pairs of words linked by
similar semantic relations (e.g., hypernymy) despite the fact that the words in
one pair might not be attributionally similar to those in the other pair (Ba-
roni and Lenci 2010; Turney 2006). Relational similarity is useful for finding
analogies, grouping concept pairs into relation classes, etc. Structured DSMs
can capture relational similarity.

This has given rise to a wide range of applications of DSMs in the field of
computational linguistics. Some of these applications include: synonym de-
tection, concept categorization, word sense disambiguation, query expansion
in information retrieval, ontology & wordnet expansion, probabilistic language
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models, textual entailment detection and so on.

DSMs have mostly focused on representing the meaning at the word level,
however, modeling the meaning of more complex linguistic constituents is also
very important in semantics. In the next section we will talk about compos-
tionality, a key notion for deriving the meaning of a complex expression.

2.2 Compositionality

Formal semantics (FS) treat natural language as a formal language. The se-
mantics are approached by theoretical models where it is possible to define
an algorithm to compose the meaning representation of a sentence out of the
meaning representation of its single words. The principle of compositional-
ity, also known as Frege’s Principle (Frege, 1892), states that the meaning of
an utterance is determined by the meanings of its constituents and the rules
used to combine them. This principle is used in formal semantics to build up
the meaning of a sentence by syntax driven composition of the meaning of
its words. The linguistic meanings are represented as symbolic formulas and
the meaning of a sentence is its truth value after assembling these linguistic
meanings via composition rules.

Linguistic meanings are represented by predicate-argument structures used
in logic, e.g., the meaning representation of “Maria eats soup” would be
eat(Maria,soup). Frege proposed the first order logic symbols ∃,∀ to repre-
sent the meaning of the quantifiers “some” and “all” and avoid ambiguities.
For example, the meaning representation of “A person eats soup” would be
∃x.person(x)∧ eats(x, soup). A sentence is equivalent to a proposition and its
meaning is the truth value of its meaning representations, e.g., [[∃x.person(x)∧
sleep(x)]] = 1. One of the weaknesses of this approach is that, although pro-
vides a sophisticated model of sentence meaning, it is usually not enough to
deal with the complexity of a natural language.

Distributional approaches to compositionality attempt to derive a distribu-
tional, vector-based, representation of a composite phrase from the distribu-
tional representations of its parts. One of the possibilities to do this compo-
sition is to perform algebraic operations on the semantic vectors representing
words. These operations include addition, multiplication, tensor product, di-
lation (Mitchell and Lapata, 2010). Another approach is to look at corpus-
harvested phrase vectors to learn composition functions that should derive
such composite vectors automatically. In (Baroni and Zamparelli, 2010) a

16



new method to derive distributional representations for adjective-noun com-
position is proposed, nouns are represented as vectors and the adjectives are
linear functions from a vector (the noun representation) to another vector (the
adejective-noun representation). It is still not clear which is the best way to
compose the representation of content words in vector spaces, in any case the
long-term goal is to be able to compose larger and larger constituents up to
full sentences.

2.3 Entailment

In logic and formal semantics, entailment is a relation that holds between two
propositions p and q such that if the truth of q necessarily follows from the
truth of p (and the falsity of q necessarily follows from the falsity of p) then
p entails q. We can also see it as a relation between sentence meanings: there
is an entailment relation between two sentences (or between a set of sentences
and a sentence) if the truth of the latter sentence (consequent) necessarily
follows from the truth of the former sentence (antecedent), e.g., “there is a
dog” entails “there is an animal” since one can not both assert the first and
deny the second. Usually, the entailment relation is expressed by the symbol
|= (Lyons, 1995). There are a number of other semantic notions closely related
to entailment such as logical equivalence, contradiction and logical truth (va-
lidity) (Chierchia and Ginet 2001).

So far, we have explained the notion of entailment as a relation between sen-
tences. However, the entailment relations can be defined not only among
sentences but also among words (lexical entailment) and phrases (phrase en-
tailment). Each semantic domain A has its own entailment relation |=A. For
instance, the entailment relation |=S corresponds to the entailment relation
between sentences explained before. It can also exist an entailment relation
between nouns, adjectives, verbs, modifiers, connectives and quantifier phrases.
Typically, a sentence denotes a truth value (true or false) or truth conditions,
a noun denotes a set of entities, and a quantifier phrase (e.g ’all dogs’) denotes
a set of sets of entities. So the entailment relation between nouns |=N are
the inclusion relations among sets of entities (hammer |= tool), the entailment
between quantifier phrases |=QP are the inclusion relations among sets of sets
of entities (all |= many) (Baroni, Bernardi, Do and Shan, 2012; Barwise and
Cooper, 1981).

FS school has focused mostly on the behavior of logical words. Logical words
are those words that correspond to logical operators like quantifiers, negation,
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conjunction, disjunction. A quantifier (e.g. all, many) is a type of determiner
that indicates quantity.

A slightly different focus on entailment is represented by textual entailment,
which is of high interest in natural language processing (NLP) research. Tex-
tual entailment is the task of deciding, given two text fragments, whether the
meaning of one text is entailed (can be inferred) from the other text (Dagan
and Glickmant and 2004). This focus differs from the traditional logic one,
since it allows cases in which the truth of the consequent is highly plausible
for most practical purposes, rather than certain, e.g., ∆ |= φ if typically a
human that reads ∆ would most likely infer that φ is also true. This task
captures generically a broad range of inferences that are relevant for multiple
applications, for example, question answering (QA) systems.

In distributional semantics, the work on entailment has mostly focused on
detecting inferences at the word level (lexical entailment) extracted from dis-
tributional vectors representing words, for instance, identifying hyponymy re-
lations from the distributional vectors. Chapter 3 is dedicated to this topic and
describes the related work for detecting entailment not only between nouns but
between quantifier phrases using distributional semantics. We will see in that
chapter that a fundamental component for classifying the relation between a
pair of distributional vectors as entailment or non-entailment is the use of ma-
chine learning techniques. Next section (2.4) introduces the main notions of
machine learning and support vector machines.

2.4 Machine learning

According to Mitchell (2006) the field of Machine Learning seeks to answer the
question of how can we build computer systems that automatically improve
with experience, and what are the fundamental laws that govern all learning
processes. We say that a machine learns with respect to a particular task T,
performance metric P, and type of experience E, if the system reliably im-
proves its performance P at task T, following experience E. In other words,
machine learning is about programming computers to optimize a performance
criterion using example data or past experience.

Machine Learning represents an intersection of computer science and statistics.
While computer science deals with building machines that solve problems, and
tries to identify which problems are inherently tractable/intractable, the the-
ory of statistics is needed for building mathematical models which can make

18



inferences from a sample. Machine learning is needed for the problems in which
there is no algorithm or is not easy to write a computer program to solve it,
e.g., when human expertise does not exist, the solution changes in time or it
needs to be adapted to particular cases. Some of the important aspects that
must be taken into account when designing a machine learning system include
(Alpaydin, 2004):

Selection of the training experience: As it was mentioned before, a
system learns from experience E if its performance at a task T (measured
by P) improves with experience E. For instance, if we want to build a spam-
filter system, the task T would be to predict which e-mails are spam, the
performance metric P could be the percentage of e-mails correctly predicted
and a useful training experience E would be a set of e-mails manually labeled
as spam and not spam. In this sense, it is important to select a training
experience suitable for our learning task, the training experience should be
representative of the future situations faced by the learner.

Choosing the target function: The problem of improving performance
can often be reduced to the problem of learning some particular target function.
A target function F : X → Y maps all inputs with its correspondent output
in a learning task. For instance, in the case of the spam-filter system, the
target function would map every mail with its correspondent label (spam or
not spam), we want to approximate the target function as good as possible.
The target function can be defined in several ways depending on the learning
task, e.g., F : X → {0, 1}, F : X → a set of labels, F : X → R+.

Any hypothesis found to approximate the target function well over a suffi-
ciently large set of training examples will also approximate the target function
well over other unobserved examples (inductive learning hypothesis).

Choosing a representation for the target function: The representa-
tion of the target function can be a linear/polynomial function, a set of rules, a
neural network, etc. Usually expressive representations can be used for a close
function approximation and simple representation for simple training data and
learning algorithms. There is a trade-off between the expressiveness of a repre-
sentation and the ease of learning. The more expressive a representation, the
better it will be at approximating an arbitrary function; however, the more
examples will be needed to learn an accurate function.

Choosing a learning algorithm: A learning algorithm must be selected
in order to approximate or ”learn” the target function, for instance, it can
be a regression based algorithm, rule induction, genetic algorithm or back-
propagation. In the next subsection we mention some of the main types of
machine learning.
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2.4.1 Types of learning

Supervised learning: This kind of learning needs a set of examples, training
data, for finding a description that is shared by all positive examples and
none of the negative examples. Doing this, we can make predictions of unseen
instances. The input of this inferred function is an instance (typically a vector)
and the output should be the desired value, this function is called a classifier
if the output is discrete or a regression function if the output is continuous.

Classification is the task of determining to which class or label an unob-
served instance belongs to, based on a training data set containing labeled
instances. An algorithm that implements classification (find the function that
maps input data to a category) is known as a classifier. There are many ex-
amples of classification tasks, e.g., the spam-filter system is a classification
task since it has to assign one of the two labels ”spam” or ”not spam” to new
e-mails.

In a regression task, the goal is to find the function that predicts a real-
valued output given an input instance. The training data consist on instances
and their desired output values. The task of finding a inferred function from
the training data is an interpolation task. One example of a regression task
would be to predict the price of a used car based on several car attributes.

Unsupervised learning: As we mentioned before, in supervised learning
the aim is to learn a mapping from the input to an output where correct
examples are provided by training data. In unsupervised learning, there is
no training data and we only have input data. Here the aim is to find the
regularities in the input. One method is clustering where the goal is to find
clusters or groupings of the input. Clustering is a very popular technique with
a lot of applications, e.g., given a collection of text documents, organize them
according to their content similarities to produce a topic hierarchy.

Reinforcement learning: In some applications, the output of the system
is a sequence of actions. In such a case, a single action is not important; what
is important is the policy that is the sequence of correct actions to reach the
goal. In reinforcement learning, the machine learning program should be able
to assess the goodness of policies and learn from past good action sequences
to be able to generate a policy. This kind of learning is useful in game playing
algorithms.

2.4.2 Evaluation methods

The evaluation of a machine learning system performance is conducted exper-
imentally, there are several evaluation methods and metrics. In supervised
learning, the available dataset is usually segmented into training set (used to
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train the system), validation set (this is optional and it used to optimize the pa-
rameters of the system) and test set (used to evaluate the learned system). The
instances in the test set cannot be used in any way in the training (learning) of
the system. There are several evaluation methods such as: hold-out, stratified
sampling, repeated hold-out, cross-validation and bootstrap sampling.

The performance of a learning system can be measured mainly by its pre-
dictive accuracy (how accurate the system makes predictions on the test in-
stances). For classification problems a variety of measures has been proposed,
this includes precision and recall, tipycally used in information retrieval. Other
performance evaluation metrics take into account efficiency (time and mem-
ory), robustness, scalability, interpretability and complexity. We will explain
two types of evaluation that are common and that we used for the evaluation
of our experiments.

In hold-out evaluation, the entire dataset is divided into two disjoint sub-
sets, the training set and the test set. Usually the training set is a much more
bigger than the test set. Every instance included in the test set should not be
used in the training phase. The unseen test instances in the test set provide
an unbiased estimate of the systems predictive accuracy.

In a k-fold cross-validation, the entire dataset is partitioned into k disjoint
subsets, called folds, of approximately equal size. Each fold in turn is used
as the test set and the remainder (i.e., (k-1) folds) as the training set. The
k error rates are averaged to produce the overall error estimate. The value
of k is arbitrary, a common choice is 10 or 5. The advantage of this kind of
evaluation is that all the data can be used for training, it is suitable when the
entire dataset is not large.

2.4.3 Support vector machines

This section provides an overview of the theoretical foundations of the sup-
port vector machines (SVMs) and the effect of the parameters involved in this
learning method, we included this section because the decision of which types
of SVM classifiers to use in the experiments (Chapter 4) was based on these
notions. SVMs (Boser, Guyon, and Vapnik 1992) are a supervised machine
learning method for classification and regression problems, where the general
idea is to find a hyperplane that separates two classes of data. While some
learning methods find just any linear separator, SVM looks for a separator
(hyperplane) that is maximally far away from any data point. The distance
from this hyperplane to the closest data point determines the margin of the
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classifier. This method of construction necessarily means that the decision
function is fully specified by a (usually small) subset of the data which defines
the position of the separator. These points are referred to as the support vec-
tors, other data points play no part in determining the decision surface that
is chosen (Manning, Raghavan, Schütze, 2008).

When the data is not linearly separable (there is no linear model/hyperplane
that separate the two classes) SVMs are able to map the data to a higher di-
mensional space and find a separating hyperplane in the new space. The linear
model in the new space (feature space) corresponds to a nonlinear model in
the original space (input space), the transformation is done by using kernel
functions and this is the reason why SVMs are sometimes generalized under
the name “kernel machines”(Alpaydin, 2004). Figure 2.1 shows a graphical
example.

Figure 2.1: SVM, a two-dimensional example

The linearly separable case.

For two-class separable training data sets, there are lots of possible linear sep-
arators. SVM, in particular, looks for a decision surface that is maximally far
away from any data point. Maximizing the margin allows better generaliza-
tion and points near the decision surface represent very uncertain classification
decisions: there is almost a 50% chance of the classifier deciding either way
(Manning, Raghavan, Schütze, 2008). A classifier with a large margin makes
no low certainty classification decisions, it is proven that maximizing the mar-
gin minimizes the upper bound of the classification error.
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Formally, the two data classes are labeled with -1/+1 and the set of train-
ing data points is expressed by D = {[xi, yi], i = 1, ..., l, yi ∈ {−1, 1}, xi ∈ Rd}
where each member is a pair of a point and a class label corresponding to
it, when we say data point we are actually refering to vectors of the form
xi = (x1, x2, ..., xd). If we want to find a linear separator of the two classes, we
must find w and b such that:

xi · w + b ≥ 1 for yi = +1 (2.1)

xi · w + b ≤ −1 for yi = −1 (2.2)

This can be combined into one set of inequalities:

yi(xi · w + b)− 1 ≥ 0 ∀i (2.3)

Commonly, in the machine learning literature, w is known as the weight vec-
tor and b as the bias. The decision hyperplane (the hyperplane that separates
positive from negative examples) is defined by b and a normal vector w which
is perpendicular to the hyperplane. The equation of the decision hyperplane
is w · x + b = 0, the points x that satisfy this equation lie on the hyperplane,
w is normal to the hyperplane, |b|

‖w‖ is the perpendicular distance from the hy-

perplane to the origin, and ‖w‖ is the euclidean norm of w.

However, SVM classifiers are not only interested in finding a hyperplane that
discriminates correctly the training data points (there are many possible hy-
perplanes), they try to find the one with the maximum distance from the
hyperplane to the instances closest to it on either side; in other words, the
goal is to maximize the margin around the decision boundary. Let d+, d− be
the shortest distance from the separating hyperplane to the closest positive
(negative) instance, then the margin of the separating hyperplane is defined
by ρ = d+ +d−. If we consider the points for which the equality in (2.1) holds,
these points lie in the hyperplane H1 : xi · w + b = 1 with normal w and per-
pendicular distance from the origin |1−b|

‖w‖ . Similarlly, the points for which the

equality in (2.2) holds lie on the hyperplane H2 : xi · w + b = −1 with normal

w and a perpendicular distance from the origin |−1−b|
‖w‖ . Hence d+ = d− = 1

‖w‖
and the margin is ρ = d+ + d− = 2

‖w‖ . H1 and H2 are parallel, they have the
same normal, and no training points fall between them, thus the pair of hyper-
planes which gives the maximum margin is found by minimizing ‖w‖2 subject
to constraints in (2.3). Those training data points for which the equality in
(2.3) holds (the points that lie in H1 or H2) and whose removal would change
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the solution found, are called support vectors, fig. 2.2 (Burges 98).

Figure 2.2: The decision boundary for the separable case. The support vectors
are circled

In fact, learning in SVM can be formulated as an optimization problem:

min ‖w‖2 subject to yi(xi · w + b) ≥ 1∀i (2.4)

Or equivalently,

max
2

‖w‖
subject to

{
xi · w + b ≥ 1 for yi = +1
xi · w + b ≤ −1 for yi = −1

(2.5)

This is a standard quadratic optimization problem subject to linear constraints.
Quadratic optimization problems are a well-known class of mathematical op-
timization problems, many algorithms exist for solving them. For the case of
the SVM optimization problem, the solution involves constructing a dual prob-
lem where a Lagrange multiplier αi is associated with each constraint in the
primal problem (2.3). This method is useful because replacing the constrains
in (2.3) by constraints on the Lagrange multipliers makes them easier to han-
dle. Also because with this reformulation of the problem, the training data
will only be expressed in the form of dot products between vectors, this is a
crucial property that allows SVM to generalize the procedure to the nonlinear
case as we will see further. The dual optimization problem can be expressed as:

Find α1, ..., αn such that
∑
αi − 1

2

∑
i,j αiαjyiyjxi · xj is maximized, and:

-
∑

i αiyi = 0
- αi ≥ 0
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The solution is then of the form:
w =

∑
i αiyixi

b = yk − wxk for any xk such that αk 6= 0

In the solution, most of the αi are zero. Each non-zero αi indicates that the
corresponding xi is a support vector. The classification or decision function of
an SVM is then:

f(x) = sign(
∑
i

αiyixix+ b) (2.6)

The classification function involve a dot product between pairs of vectors
(x and xi).

The linearly nonseparable case

If the training set D is not linearly separable, one approach is to allow the deci-
sion margin to make a few mistakes. We then pay a cost for each misclassified
example, which depends on how far it is from meeting the margin requirement
given in Eq.(2.3). This approach is usually known as soft margin classification
(Cortes and Vapnik, 1995). To implement this, slack variables are introduced,
ξi, i = 1, ..., l which store the deviation from the margin. There are two types
of deviation: An instance may lie on the wrong side of the hyperplane and be
misclassified. Or, it may be on the right side but lie inside the margin, not
sufficiently away from the decision hyperplane. If ξi = 0 it means that x is
correctly classified. If 0 < ξi < 1, it means x is correctly classified but lies on
the margin, If ξi ≥ 1, it means x is misclassified. A non-zero value for ξi allows
xi to not meet the margin requirement at a cost proportional to the value of
ξi.
The SVM optimization problem introducing slack variables can be expressed
as a dual optimization problem of the form (we have skipped the detailed
steps):

Find α1, ..., αn such that
∑
αi − 1

2

∑
i,j αiαjyiyjxi · xj is maximized, and:

-
∑

i αiyi = 0
- 0 ≤ αi ≤ C

The difference with the optimal linearly separable case is that now αi have
an upper bound of C. This optimization problem involves a trading off be-
tween how fat the margin can be versus how many points have to be moved
around to allow this margin. The soft margin constant C is a parameter chosen
by the user, a larger C corresponds to assigning a higher penalty to errors. The
parameter C plays the role of a regularization term which provides a way to
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control overfitting: as C becomes large, it is ”unattractive” to not respect the
data at the cost of reducing the geometric margin; when it is small, it is easy
to account for some data points with the use of slack variables and to have
a fat margin placed so it models the bulk of the data (Manning, Raghavan,
Schütze, 2008).

The solution of the dual problem is of the form:
w =

∑
i αiyixi

b = yk(1− ξk)− wxk for k = argmaxkαk

As before, the xi with non-zero αi will be the support vectors. Typically,
the support vectors are a small proportion of the training data. However,
if the problem is non-separable or with small margin, then every data point
which is misclassified or within the margin will have a non-zero αi. If this set of
points becomes large, then, this can be a slowdown for using SVMs at test time.

There is another alternative when the dataset does not allow a classification
by a linear classifier: nonlinear SVMs. In reality, nonlinear SVMs instead of
trying to fit a nonlinear model, map the data on to a higher dimensional space
and then use a linear classifier in the higher dimensional space where the train-
ing set is linearly separable. In order to accomplish this, kernel functions are
used to map the data from the input space X to a feature space F using a
non-linear function φ: X → F. We have seen before that SVM linear classifiers
rely on a dot product between the data point vectors, however, if we decide to
map every data point into a higher dimensional space via the transformation
φ, the dot products become φ(xi) · φ(xj). A kernel function K is a function
that corresponds to a dot product in some expanded feature space, using a
kernel function we can easily compute φ(xi) · φ(xj) (which is just a real num-
ber) in terms of the original data points with no need to map or explicitly
know φ. This is commonly known as the ”kernel trick”, if we replace xi ·xj by
K(xi, xj) = φ(xi) · φ(xj) everywhere in the training algorithm we will produce
an SVM classifier that lives in a high dimensional space. All the considerations
of the previous sections hold since we are still doing a linear separation but in
a different space.

The nonlinear svm classification function is:

f(x) = sign(
∑
i

αiyiφ(xi) · φ(x) + b) = sign(
∑
i

αiyiK(xi, x) + b) (2.7)

A kernel function k must be continuous, symmetric and satisfy Mercer’s con-
dition (Vapnik, 1995). The most popular choices of families of kernels include
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the polynomial kernels and radial basis functions. Polynomial kernels are of
the form K(x, y) = (x · y)d (homogeneous) and K(x, y) = (x · y+ 1)d (inhomo-
geneous) where d is the degree. A polynomial kernel with d = 1 is known as
a linear kernel, which corresponds to the linearly separable case explained in
the previous sections. A polynomial kernel with d=2 gives a quadratic kernel,
and it is very commonly used.

For example, in the case of a quadratic (inhomogeneous) kernel, K(x, y) =
(x · y + 1)2 for 2-dimensional vectors x = (x1, x2), y = (y1, y2). We know K is
a kernel function, since there is some φ such that K(x, y) = φ(x) · φ(y).

Consider φ(x) = [1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2] (Cherkassky and Mulier

1998), then:
K(x, y) = (x · y + 1)2

= (x1y1 + x2y2 + 1)2

= 1 + 2x1y1 + 2x2y2 + 2x1x2y1y2 + x2
1y

2
1 + x2

2y
2
2

= (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2) · (1,

√
2y1,
√

2y2,
√

2y1y2, y
2
1, y

2
2)

= φ(x) · φ(y)

This shows that the quadratic kernel K(x, y) = (x · y + 1)2 is a dot prod-
uct in a transformed feature space.

Effect of SVM parameters:

When training an SVM classifier there are certain parameters chosen by the
user that may have a significant effect on the decision boundary and therefore
in the performance of the classifier. These parameters are typically the soft
margin constant C and any parameters the kernel function may depend on,
e.g., the degree in the case of the polynomial kernels.

A large value of C assigns a large penalty to errors (Cortes and Vapnik, 1995).
Figure 2.3 shows how the value of C can affect the orientation of the hyper-
plane, a smaller value of C allows to ignore points close to the boundary and
increases the margin. For selecting an optimal value, cross-validation can be
performed trying several values of C. The selected C will be the one that
achieves the best cross-validation accuracy.

The degree of the polynomial kernel controls the flexibility of the decision
boundary. The linear kernel, which has the lowest degree, is not sufficient
when a non-linear relationship between features exists. Figure 2.4 shows an
example of different decision boundaries according to the degree of the ker-
nel. The selection of the optimal kernel is often data-dependent and several
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Figure 2.3: Example of the effect of the constant C in the decision boundary.

degrees should be tried. A linear kernel can be tried first and then check if the
performance can be improved by using a non-linear kernel. The linear kernel
provides a useful baseline and for some applications provides the best results.

Figure 2.4: Example of the effect of the degree of a polynomial kernel
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Chapter 3

Entailment in Distributional
Semantics

People working on entailment in distributional semantics have focused on de-
tecting inferences at the word level extracted from distributional vectors repre-
senting words. The cosine similarity, which is often used as a similarity measure
between row vectors in a DSM, has shown to be a good measure for capturing
synonymy, but it seems that it does not capture the “is-a” relation, e.g., “ap-
ple is-a food”. This is related with the fact that distributional word similarity
is most commonly perceived as a symmetric relation, while lexical entailment
is in general a directional relation (asymmetric). A way to exemplify these
types of relations is imaging an IR system where a user looks for “baby food”,
he will be satisfied with documents about ”baby pap” or ”baby juice” (“pap
is-a food”, “juice is-a food”); but when looking for ”frozen juice” he will not
be satisfied by “frozen food” since not all foods are juice, even though these
two words are semantically related (Kotlerman et al., 2010). Based on this, a
proposed notion of lexical entailment is that given a pair of words, the entail-
ment relation holds if there are some contexts in which one of the words can
be substituted by the other, such that the meaning of the original word can
be inferred from the new one. This corresponds to an asymmetric relation, for
example, baseball contexts are also sport contexts but not vice versa, hence
baseball is ’narrower’ than sport and baseball |= sport (Kotlerman et al., 2010).

Few works have investigated asymmetric similarity measures (Weeds and Weir,
2003; Geffet and Dagan, 2005; Bhagat et al., 2007; Szpektor and Dagan, 2008).
Kotlerman et al. (2010) proposed one asymmetric measure to capture the en-
tailment relation between distributional vectors, based on the notion of feature
inclusion. This measure, called balAPinc, is based on the common expectation
that the context features characterizing an entailing word should be largely in-
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cluded in those of the entailed word. The intuition behind the measure is that:
the relation “is-a” scores higher if included features are ranked high for the
narrow term, “is-a” scores higher if included features are ranked high in the
broader term vector as well, ”is-a” scores lower for short feature vectors. The
measure balAPinc measure is defined as:

balAPinc(u |= v) =
√
APinc(u |= v) · LIN(u, v) (3.1)

balAPinc captures a relation of feature inclusion between the narrower (en-
tailing) and broader (entailed) terms. It is based on Information Retrieval
methods to evaluate different ranking systems but addapted to lexical inclu-
sion. balAPinc is a geometric average between two terms, APinc and LIN
(Lin, 1998):

APinc(u |= v) =

∑|Fu|
r=1[P (r) · rel′(fr)]

|Fu|
(3.2)

LIN(u, v) =

∑
f∈Fu∩Fv

[wu(f) + wv(f)]∑
f∈Fu

wu(f) +
∑

f∈Fv
wv(f)

(3.3)

APinc (eq. 3.2) is a version of the Average Precision measure used in informa-
tion retrieval (Voorhees and Harman, 1999). Fu and Fv represent the features,
with positive PMI values, of the semantic vectors of the candidate pair u |= v.
The idea is that, if u and v are in an entailment relation then the features
that have larger values in Fu should also have have large values in Fv. The Fu

features are ranked according to their PMI value so that fr is the feature in
Fu with rank r, P (r) is the precision at r which is higher when highly ranked
u features are present in Fv as well, rel′(fr) is the relevance term which is
higher when the feature fr in Fu also appears in Fv with a high rank. On
the other hand, LIN (eq. 3.3) measures feature vector overlap and it is used
to balance the potentially excessive asymmetry of APinc towards the features
of the antecedent. wu(f), wv(f) are the PMI values of the feature f in the
vectors Fu and Fv.

The entailment relation explained so far was focused on nouns, the question
if entailment can be detected using distributional semantic representations of
phrases and if it generalizes to phrases containing logical words like quanti-
fiers has been raised by Baroni, Bernardi, Do and Shan (2012). They focus
on entailment among composite phrases rather than nouns and in entailment
among logical words rather than content words, suggesting that there are dif-
ferent entailment relations at different semantic types. This work is of special
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interest for this thesis since we aim to repeat and enhance the experiments that
involved an SVM classifier; the detailed description of the original experiments
and the obtained results are explained in the subsections 3.1 and 3.2 of this
chapter.

The main idea presented in Baroni, Bernardi, Do and Shan (2012) is to char-
acterize entailment between nouns by collecting semantic vectors exemplifying
which noun entails which and then to apply a supervised machine learning
method to predict if there is an entailment relation between unseen pairs of
nouns. They use a cheap way to collect such training data with almost no
manual effort: they extract adjective-noun sequences (AN) and build AN |=
N patterns as positive examples of entailment, based on the notion that most
ANs entail their head Ns. The results show that training the classifier with
AN |= N (big cat |= cat) examples, allows to predict the entailment relation
between unseen pair of nouns N |= N (dog |= animal).

They also study the entailment between quantifier-noun sequences (QN) such
that Q1N |= Q2N . They study 12 quantifiers and identified 13 clear cases
where Q1 |= Q2 and 17 clear cases where Q1 6|= Q2. The goal is to train
the classifier with QNs that are in an entailment relation (many dogs |= some
dogs) and be able to predict entailment between unseen quantifiers (all cats |=
several cats).

In the next two subchapters we are going to describe in the experiments con-
ducted in Baroni, Bernardi, Do and Shan (2012) for detecting entailment using
distributional semantic representations. It is important to explain the configu-
ration of these experiments, specially the one for detecting entailment between
quantifiers, since they were repeated for the aim of this thesis with modifica-
tions on the machine learning classifier. Our modifications are discussed in
Chapter 4.

3.1 Detecting noun entailment

In chapter 2, it was mentioned that one of the first steps in a DSM is to
build a semantic space or co-occurrence matrix that captures the distribution
of the words or phrases of interest accross contexts. In the entailment de-
tection experiments performed in Baroni, Bernardi, Do and Shan (2012), the
corpora used to extract the distributional semantics vectors were the British
National Corpus (http://www.natcorp.ox.ac.uk/), WackyPedia and ukWaC
(http://wacky.sslmit.unibo.it) with a total amount of 2.83-billion-tokens. The
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corpora were tokenized, POS-tagged and lemmatized to merge singular and
plural instances of words and phrases. The phrases of interest (rows of the
matrix) include: AN (big cat) and QN sequences (all cats), the adjectives
(big), quantifiers (all) and nouns (cat) contained in those sequences, and the
most frequent nouns and adjectives in the corpora. The contexts (columns)
included the most frequent 9.8K nouns, 8.1K adjectives, and 9.6K verbs in the
corpora. For building the distributional semantic vectors, co-occurrences were
counted between the phrases of interest and the content words appearing in
the same sentence. These co-occurrence counts were converted to PMI. The
result is a co-occurrence matrix with 48K rows (one per phrase of interest) and
27K columns (one per content word).

Additionally, the co-occurrence matrix was transformed using SVD in order
to reduce the dimensionality to only 300 columns. These reduced vectors were
used for feeding the SVM classifiers.

For training a classifier that is able to predict which noun entails which, train-
ing data that exemplify this relation is needed. Baroni, Bernardi, Do and
Shan (2012) introduce a cheap way to collect such training data by extract-
ing adjective-noun sequences (AN) and building AN |= N patterns as positive
examples of entailment, based on the notion that most ANs entail their head
Ns (e.g., big cat |= cat). From the distributional point of view the vector
representing an AN should include the information encoded in the vector rep-
resenting N, since AN occurs at least in the same contexts than N.

The positive examples of this training data, called the AN|=N dataset, were
created by simply concatenating the semantic vectors of ANs and Ns (e.g.,
big cat |= cat). The negative examples were created by randomly permuting
the Ns, since an AN usually does not entail another N (e.g., big cat 6|= dog).
Most of the frequent adjectives are not restrictive, in order to reduce the noise
caused by these adjectives and to assure that the phenomenon of entailment
is being examined, 256 restrictive adjectives were manually selected from the
most frequent 300 adjectives in the corpus. Then it was performed the Carte-
sian product between these adjectives with 200 concrete nouns extracted from
BLESS data set (Baroni and Lenci, 2011) to avoid highly polysemous words.
Finally, after the Cartesian product, a total of 1246 AN sequences were ob-
tained. The AN|=N dataset contains those 1246 positive instances of AN|=N
entailment and an equal amount of negative examples AN1 6|=N2 created by
randomly permuting the nouns in the positive instances.
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The goal is to train a classifier with the AN|=N dataset and use it to pre-
dict lexical entailment of the type N1 |=N2 e.g., training the classifier with
pairs such as big cat|=cat and test it on pairs such as dog|=animal. In order
to obtain pairs useful for testing data, all Wordnet nouns in the corpus were
listed and the hyponym-hypernym chains were extracted. For example, cat
is found to entail carnivore because WordNet contains the chain cat→feline,
feline→carnivore. From here, 1385 positive instances of N1 |=N2 entailment
were extracted and the same amount of negative instances N1 6|=N2 were cre-
ated by inverting and by randomly shuffling the words across the positive
instances. In all the cases it was manually checked that the positive and nega-
tive instances were in an entailment and non-entailment relation respectively.
This testing dataset was called the N1 |=N2 dataset.

An SVM classifier was used to predict the lexical entailment. The semantic
vectors are the concatenation of two vectors, for instance, the testing instances
are the concatenation of two vectors representing two nouns and the output is
{−1, 1} where 1 means that there is an entailment relation between the two
nouns and -1 indicates the opposite case. In all the cases the dimensionality
of the semantic vectors is 600 (300 per each member of the entailment pair)
since SVD was applied to reduce the dimensions of the original semantic space
to 300.

The classifier was evaluated by classifying the pairs in the N1 |=N2 dataset,
trained on the AN|=N dataset (SVMAN |=N). Another evaluation regime was
to classify the pairs in the N1 |=N2 dataset, training the classifier with 10-fold
cross-validation on the N1 |=N2 dataset itself (SVMupper).

Additionally, the balAPinc measure (3.1) that captures the relation of feature
inclusion, was used to recognize entailment. A threshold t was selected above
which a pair was classified as entailing or not. The threshold t was determined
in two different ways. In balAPincupper the selected threshold t is the one that
maximizes the F-measure on the test set (N1 |=N2 dataset) giving an upper
bound on how well balAPinc could perform on the test set. In balAPincAN |=N

the selected threshold t is the one that maximizes the F-measure on the AN|=N
data set. The balAPinc measure was used as a reference point for comparing
the performance obtained using SVM classifiers, since balAPinc represents the
state of the art in various tasks related to lexical entailment.

Two baseline methods were designed to compare if the performance of the
entailment recognizers was above chance. The first baseline fq(N1)<fq(N2)
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P R F Accuracy(95% C.I.)

SVMupper 88.6 88.6 88.5 88.6 (87.3–89.7)

balAPincAN |=N 65.2 87.5 74.7 70.4 (68.7–72.1)

balAPincupper 64.4 90.0 75.1 70.1 (68.4–71.8)

SVMAN |=N 69.3 69.3 69.3 69.3 (67.6–71.0)

cos(N1,N2) 57.7 57.6 57.5 57.6 (55.8–59.5)

fq(N1)<fq(N2) 52.1 52.1 51.8 53.3 (51.4–55.2)

Table 3.1: Detecting lexical entailment.

guesses entailment if the first word is less frequent than the second. The sec-
ond, cos(N1, N2), applies a threshold (determined on the test set) to the cosine
similarity of the pair.

The entailment detection accuracies obtained with the different methods are
shown in table 3.1. In all the cases the SVM classifier performs at least as good
as the balAPinc measure and considerably better than the baseline classifiers.
The results suggest that the distributional vectors of the AN|=N dataset are
excellent training data for discovering entailment between nouns.

3.2 Detecting QN entailment

The semantic space used for this experiment is the same described in the pre-
vious section. As in the previous experiments, SVM classifiers were used

For detecting entailment among quantifier phrases, the classifier must learn
from training data containing pairs of the form Q1N|=Q2N. This training
dataset, called the Q1N|=Q2N dataset, was built by performing the Carte-
sian product between a fixed set of quantifiers (all, both, each, either, every,
few, many, most, much, no, several, some) and 6402 nouns extracted from
Wordnet (the same nouns used for the N1 |=N2 dataset explained in the sec-
tion before). From this product, a total of 28926 QN sequences, that occur at
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least 100 times in the corpus, were obtained.

From the fixed set of quantifiers, 13 clear cases were manually identified where
Q1 |= Q2 and 17 clear cases where Q1 6|= Q2. For each of these 30 quantifier
pairs (Q1, Q2), a set of Wordnet nouns were enumerated such that the seman-
tic vectors of Q1N and Q2N were available in the semantic space as phrases
of interest (rows). These nouns allowed to build the positive and negative
instances of the training dataset since Q1N |= Q2N if Q1 |= Q2 and Q1N 6|=
Q2N if Q1 6|= Q2, e.g., many dogs |= some dogs since many |= some and many
dogs 6|= most dogs since many 6|= most. The set of entailing and non-entailing
quantifier pairs are shown in table 3.2.

As in the previous experiment, an SVM classifier was used to predict the
entailment between quantifier phrases. The classifiers had a default configu-
ration using Weka 3 1 and LIBSVM 2.8 (Chang and Lin, 2011), i.e., a cubic
polynomial kernel. The input of the classifier is the concatenation of the two
vectors representing Q1N and Q2N and the output is {−1, 1} where 1 means
that there is an entailment relation between the two quantifier phrases and -1
indicates the opposite case. The dimensionality of the input vector is 600 (300
per each quantifier phrase).

The aim of this experiment was to train the classifier with entailment pairs of
the form Q1N|=Q2N (e.g., many dogs|=some dogs) and to be able to predict
correctly the entailment between pairs Q3N|=Q4N (e.g., all cats|=several cats)
even if Q3 or Q4 was not seen at all in the training dataset. Several training
and testing regimes were designed in order to see if the information encoded
in the QP vectors is enough to generalize the QN entailment:

SVM pair-out. In this regime, one quantifier pair (table 3.2) is held out as
testing data and the remaining 29 pairs are used as training data. This means
that the classifier must be able to predict correctly the entailment relation
Q1N |= Q2N without seeing these pair of quantifiers (Q1,Q2) in an entailment
relation in the training data. For example, the classifier must discover all dogs
|= some dogs without seeing any all N |= some N examples in the training
data. The results and number of instances are shown in table 3.2.

SVM quantifier-out. In this regime one of the 12 quantifiers is held out
as testing data, this means that all the pairs containing this quantifier (whether
in the antecedent or consequent position) are the test data, the remaining pairs
are used as training data. This regime is expected to be more challenging since

1http://weka.wikispaces.com/LibSVM
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there is less training data and the classifier must predict the entailment without
having seen at all one of the quantifiers involved in the entailment pair. For
example, the classifier must guess all dogs |= some dogs without ever seeing
all in the training data. The results of this regime and number of instances
are shown in table 3.3.

SVMQ
pair−out, SVMQ

quantifier−out. These training regimes are the same than
the two described before but in this approach the nouns are ignored and only
the vectors of the quantifiers are used for training the classifier. For example,
the prediction of all dogs |= some dogs considers only the semantic vectors of
the quantifiers all and some

SVMAN |=N . In this regime, the classifier must predict the entailment be-
tween quantifier phrases but trained on the on the AN|=N dataset. This eval-
uation regime was designed to know if noun-level entailment generalizes to
quantifier phrase entailment.

Additionally, the balAPinc measure and two baseline classifiers, cos(QN1,
QN2) and fq(QN1)<fq(QN2) were used to detect entailment between quan-
tifier phrases. Table 3.4 summarizes the performance obtained with all the
regimes previously described. SVMpair-out, and SVMquantifier-out obtained the
best performances, suggesting that semantic vectors of QNs carry enough in-
formation for predicting entailment. Even SVMQ

pair−out and SVMQ
quantifier−out

performed better than most of the regimes which indicates that even Q vectors
alone encode enough information to capture entailment above chance (above
the baseline classifiers). The classification using the regime SVMAN |=N ob-
tained a low performance, it performed even worst than one of the baseline
classifiers, this result is in accordance with the notion of FS that each seman-
tic domain has its own entailment relation thus noun-level entailment does
not generalize to quantifier phrase entailment. Finally, the failure of balAP-
inc measure in this task suggests that the notion of feature inclusion seems
enough to capture entailment between nouns but is not enough for the case of
quantifier phrases. A more flexible classifier, like SVM, is more suitable since
relies in properties of the vectors beyond feature inclusion.
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Quantifier pair Instances Correct

all |= some 1054 1044 (99%)
all |= several 557 550 (99%)

each |= some 656 647 (99%)
all |= many 873 772 (88%)

much |= some 248 217 (88%)
every |= many 460 400 (87%)
many |= some 951 822 (86%)

all |= most 465 393 (85%)
several |= some 580 439 (76%)

both |= some 573 322 (56%)
many |= several 594 113 (19%)
most |= many 463 84 (18%)
both |= either 63 1 (2%)

Subtotal 7537 5804 (77%)

some 6|= every 484 481 (99%)
several 6|= all 557 553 (99%)
several 6|= every 378 375 (99%)

some 6|= all 1054 1043 (99%)
many 6|= every 460 452 (98%)
some 6|= each 656 640 (98%)

few 6|= all 157 153 (97%)
many 6|= all 873 843 (97%)
both 6|= most 369 347 (94%)

several 6|= few 143 134 (94%)
both 6|= many 541 397 (73%)

many 6|= most 463 300 (65%)
either 6|= both 63 39 (62%)
many 6|= no 714 369 (52%)
some 6|= many 951 468 (49%)

few 6|= many 161 33 (20%)
both 6|= several 431 63 (15%)

Subtotal 8455 6690 (79%)

Total 15992 12494 (78%)

Table 3.2: Entailing and non-entailing quantifier pairs and SVMpair-out (cubic
kernel)performance breakdown with number of instances per each case.
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Quantifier Instances Correct
|= 6|= |= 6|=

each 656 656 649 637 (98%)
every 460 1322 402 1293 (95%)
much 248 0 216 0 (87%)
all 2949 2641 2011 2494 (81%)
several 1731 1509 1302 1267 (79%)
many 3341 4163 2349 3443 (77%)
few 0 461 0 311 (67%)
most 928 832 549 511 (60%)
some 4062 3145 1780 2190 (55%)
no 0 714 0 380 (53%)
both 636 1404 589 303 (44%)
either 63 63 2 41 (34%)

Total 15074 16910 9849 12870 (71%)

Table 3.3: Results of SVMquantifier-out training regime (cubic kernel).

P R F Accuracy (95% C.I.)

SVMpair-out 76.7 77.0 76.8 78.1 (77.5–78.8)

SVMquantifier-out 70.1 65.3 68.0 71.0 (70.3–71.7)

SVMQ
pair-out 67.9 69.8 68.9 70.2 (69.5–70.9)

SVMQ
quantifier-out 53.3 52.9 53.1 56.0 (55.2–56.8)

cos(QN1, QN2) 52.9 52.3 52.3 53.1 (52.3–53.9)
balAPincAN |=N 46.7 5.6 10.0 52.5 (51.7–53.3)

SVMAN |=N 2.8 42.9 5.2 52.4 (51.7–53.2)

fq(QN1)<fq(QN2) 51.0 47.4 49.1 50.2 (49.4–51.0)

balAPincupper 47.1 100 64.1 47.2 (46.4–47.9)

Table 3.4: Results of quantifier entailment detection.
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Chapter 4

Trying different SVM classifiers

In the previous chapter we described the experiments conducted to detect en-
tailment using SVM classifiers and distributional semantic vectors. Baroni,
Bernardi, Do and Shan (2012) showed that SVM classifiers are able to cap-
ture entailment relations and that the learning model that successfully detects
entailment between nouns does not generalize well for detecting entailment
between quantifiers since they are different entailment relations. The origi-
nal experiments payed little attention to the parameters configuration of the
classifier, we will repeat the QN entailment experiments using different con-
figurations, starting from the simplest type of classifier (linear) and then with
two more classifiers with a polynomial kernel of degree 2; we will perform
an optimization procedure to choose an appropriate value of the constant C
(soft margin parameter) per each quantifier/quantifer-pair (training regimes
SVMpair-out, SVMquantifier-out). Additionally, to reinforce the evidence that there
are different entailment relations at different semantic types we will train a
classifier on the Q1N |= Q2N dataset and test it on the datasets N1 |= N2 and
AN |= N, expecting to obtain a low predicting accuracy.

We saw that, for the task of QN entailment, the SVM classifier performed
better than the balAPinc classifier which only takes into account individual
features of one vector that are included in the other. Our hypothesis of the
successful behavior of SVM in this task is that SVM classifiers, using a polyno-
mial kernel of degree greater than one, take into account not only the influence
of individual features but the combination between them, e.g., the product of
the first dimension of the antecedent QN and the first dimension of the conse-
quent QN. In the work of Baroni, Bernardi, Do and Shan (2012) the question
of what properties of the vectors are taken into account for predicting an en-
tailment is left as future work. Repeating the experiments with lower degree of
polynomial kernel is also a first step for solving this question. The idea is that
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if we obtain the same (or better) performance using a linear or a quadratic
kernel, then there is no need of the cubic polynomial kernel used in the original
experiments. If the simplest classifier, linear, is able to perform well then we
may observe that there exists a linear relationship between features and that
no interactions between them are needed to detect entailment. Furthermore,
even if a non-linear relation exists, it is preferable to use a less complex SVM
classifier (e.g., quadratic) since it will make easier the analysis of the features
that influence the learning model. In this chapter we describe the experiments
performed for detecting entailment using new configurations of SVM classifiers
and the aspects that were taken into account.

The SVM classifiers used in Baroni, Bernardi, Do and Shan (2012) had the
next configuration:

-(x·y/600)3. Polynomial kernel of degree 3, with gamma of 1/600 (1/total
number of features) and homogeneous.

-Tolerance of termination criterion ε set to 1.6 (this value was tuned on the
AN|=N data set which was never used for testing)

-Parameter C set to 1 (soft margin parameter/cost)

This type of kernel and parameter values, except ε, are the default config-
uration provided by the used software, i.e., LIBSVM 2.8 (Chang and Lin,
2011) and weka1. The effectiveness of SVM depends on the selection of the
type of kernel, the kernel’s parameters and the soft margin parameter C. The
default configuration used in the original experiments seemed to work fine for
the aim of the entailment detection task. However, we wanted to try differ-
ent configurations, especially different degrees of kernels and values of C, not
only for trying to improve the accuracy but for facilitating the analysis of the
information encoded in the semantic vectors that allows to predict entailment
relations. We used LIBSVM 3.13 in C++, the details of the implementations
and procedure followed to perform our experiments are mentioned in appendix
A.

4.1 Choice of less complex kernel.

As we have explained before, the SVM classifier is fed by a vector containing
600 features. This vector is the concatenation of the semantic vectors rep-
resenting a Q1N and Q2N, respectively. The classifier’s output is 1 if Q1N
and Q2N are in an entailment relation, -1 if they are not. Figure 3.1 shows a
graphical representation of the semantic vectors fed to the SVM classifier.

1http://weka.wikispaces.com/LibSVM
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Figure 4.1: Graphical representation of the semantic vectors

Lower degrees of polynomial kernels mean in some sense less degree of complex-
ity. We know that SVM classifiers with polynomial kernels (nonlinear SVMs)
are useful to handle linearly inseparable problems by transforming data to a
high dimensional space and the higher the degree of the kernels, the more
flexible the decision boundary. However, training and testing nonlinear SVMs
usually requires more time than a linear SVM classifier. Additionally, high
degree polynomial kernels make more difficult the interpretation and the ex-
traction (from the learning model) of the features that were more relevant for
deciding if a pair was entailing or not. This is because higher degrees of poly-
nomial kernels imply that the classifier is taking into account more complex
combinations between the input features in order to make a prediction.

In section 2.4, it was explained that polynomial SVMs use kernel functions
for efficiently compute the dot product in a certain space. The feature space
induced by a polynomial kernel depends on its degree. In fact, the feature
space induced by a homogeneous polynomial kernel of degree d corresponds
to a feature space whose dimensions are spanned by all possible dth-order
monomials of the input vector features (Zhang, 2009). For example, an ho-
mogeneous kernel of degree 2 induces a feature space spanned by all products
of two variables, that is,{x2

1, x1x2, x
2
2}. The inhomogeneous case is similar but

the feature space is spanned by all products of at most two variables, that is,
{1, x1, x2, x

2
1, x1x2, x

2
2}. For the linear case, which corresponds to a polynomial

kernel of degree 1, the feature space corresponds simply to the set of single
features, without taking into account products between them for building the
classifying function.

For the reasons before described we decided to try three configurations less
complex of SVM classifiers:

-(x · y). Linear classifier
-(x · y/600)2). Polynomial kernel homogeneous with degree 2
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-((x · y/600)+1)2). Polynomial kernel inhomogeneous with degree 2

In all cases, the tolerance of termination criterion ε remained set to 1.6. But
for these classifiers the parameter C was optimized, this process is explained
in the next section.

4.2 Optimizing the parameter C.

We have mentioned before that the performance of an SVM classifier is highly
dependent on the parameters chosen. The parameter C controls the trade off
between allowing training errors and forcing rigid margins. A low value of C
creates a “soft margin” that allows some missclassifications, a high value of
C increases the cost of misclassifying points and forces the creation of a more
accurate model that may not generalize well. The value of C was set to 1 in the
original entailment detection experiments. However it is a common practice
when using SVMs to find an optimal value of C. In fact, while repeating the
experiments with the new classifiers, we soon realized of the need of optimized
C values. For example, the linear classifier was not able to converge using the
default value C=1 (that worked fine for the original experiments using a cubic
kernel). Another important reason to perform the optimization was to be able
to properly compare the accuracy among classifiers. Without optimizing the
parameters in all the classifiers it is difficult to assert that one type of classifier
performs better than other for the same task.

Since our goal was to repeat the experiments SVMpair-out and SVMquantifier-out

using different classifiers, the C-optimization was performed for each quantifier-
out and for each pair-out (tables 4.1, 4.2). The procedure consisted of per-
forming an ”inner” cross validation on each of the training datasets pro-
duced by leaving out one quantifier or one quantifer pair (training regimes
SVMquantifier-out and SVMpair-out explained in section 3.2). Different values of
C were tried when doing this cross validation, the optimized C was the one
that allowed the best performance. For instance, in the case of the experi-
ment SVMquantifier-out where one quantifier is held out as testing data and the
remainder is used as training data, cross validations with different values of
C were performed on the training data (the dataset that does not contain the
quantifier being held out). The same procedure was followed for the experi-
ment SVMpair-out.

The C-optimization process was computationally expensive since the cross-
validation had to be performed for each quantifier-out and pair-out and the
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overall process had to be performed 3 times (one per each classifier). In order
to counteract this, we reduced the number of folds for the cross-validation and
the range of values of C to be tried. We used a 5-fold cross-validation and a
search range of C ∈ [0.0001, 0.001 0.005, 0.01, 0.1, 1] for the linear classifier
(we stopped at 1 because the classifier was not converging with C’s greater
than 0.1) and C ∈ [0.0001, 0.001, 0.01, 0.1, 1, 10,...,100] for the two polyno-
mial classifiers with kernel of degree 2.

The obtained optimized C values are shown in tables 4.1 and 4.2. We can
see that the values of the optimized C’s using the linear classifier are consid-
erably lower than the optimized C’s obtained with the polynomial classifiers.
These low C values indicate that it is hard for the linear classifier to find a
linear separator that discriminate the data on the respective training datasets
so a soft margin where the misclassified examples pay a low cost is more suit-
able. It is reasonable that the polynomial classifiers allowed a higher value of
C, since they map the features to a higher dimension where the training can
be discriminated better.

After obtaining the optimized parameters for each of the 3 classifiers the next
step was to perform the experiments SVMpair-out and SVMquantifier-out using
the new classifier parameter configurations. This stage is described in the next
section.
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Linear Polynomial 1 Polynomial 2
quantifier out Optimized C Optimized C Optimized C

many 0.0001 0.01 0.01
both 0.0001 0.01 0.01

several 0.0001 0.01 0.1
some 0.0001 1 0.01
most 0.001 1 0.1
no 0.0001 0.1 0.1
few 0.0001 0.1 0.1

either 0.0001 0.1 1
much 0.0001 0.1 1
each 0.0001 0.1 0.1
every 0.0001 0.1 1

all 0.0001 0.1 1

Table 4.1: C parameter optimization for SVMquantifier-out. Polynomial 1 is the
classifier with homogeneous kernel of degree 2 and Polynomial 2 is inhomoge-
neous.
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Linear Poly 1 Poly 2
pair out Optimized C Optimized C Optimized C

many |= several 0.001 0.01 0.1
most |= many 0.001 1 0.1

several |= some 0.0001 1 1
both |= some 0.0001 0.1 0.1
many |= some 0.001 1 1
both |= either 0.0001 1 0.1
every |= many 0.001 1 0.1
much |= some 0.0001 0.1 0.1
all |= most 0.0001 1 1
all |= many 0.0001 1 0.01
each |= some 0.001 1 1
all |= several 0.005 0.1 0.1
all |= some 0.001 1 1

both 6|= several 0.001 1 0.01
both 6|= many 0.0001 0.01 0.01
some6|=many 0.0001 0.1 0.1
many 6|= most 0.0001 0.1 1
many 6|= no 0.001 1 1
few 6|= many 0.0001 0.1 1
either 6|=both 0.0001 0.1 0.01
several6|= few 0.005 1 0.1

few6|= all 0.0001 0.1 0.1
both 6|=most 0.001 0.1 1
some6|= each 0.0001 1 0.01
Several 6|= all 0.005 0.1 1

several6|= every 0.0001 0.1 0.1
some6|= every 0.0001 1 0.01
many 6|=every 0.0001 0.1 0.1
many6|= all 0.001 0.01 1
some6|= all 0.001 0.1 1

Table 4.2: C parameter optimization for SVMpair-out. Polynomial 1 is the
classifier with homogeneous kernel of degree 2 and Polynomial 2 is inhomoge-
neous
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4.3 Comparison of performance

The training and testing regimes SVMpair-out, SVMquantifier-out explained in
section 3.2 were performed using the exact same datasets but with differ-
ent classifier’s configuration. One linear classifier and two polynomials with
quadratic kernels (homogeneous, inhomogeneous) were tried; in this set of ex-
periments the classifiers use a different value of C depending on each quantifier-
out and pair-out. The accuracies obtained with each classifier are shown in
table 4.3 and 4.4. Additionally, the confidence interval was calculated in or-
der to be able to compare the different classifiers and identify the cases where
the difference in the performance is statistically significant. A 95% confidence
interval of a prediction can be computed as (Mitchell, 1997):

CI = ±1.96
√

(acc)(1−acc)
n

Where acc is the accuracy of the prediction and n the number of instances
used to compute the accuracy.

4.3.1 Results of SVMquantifier-out

Table 4.3 shows the obtained results for the experiment SVMquantifier-out. A
quick look shows that the obtained results with the quadratic kernels are very
similar to the original ones (table 3.3). In most of the cases they are slightly
better. In principle, it seems that there is no need of a cubic polynomial kernel.
On the other hand, more dramatic changes in the accuracy can be observed
using the linear classifier. If we compare the performance of the linear clas-
sifier with the two quadratics (poly1, poly2 ) there are some cases where the
performance is apparently a lot better or worst. e.g., the quantifier few 78.96%
(linear) vs 66.38% (poly1,poly2 ). We looked into the cases that had the great-
est difference in performance between classifiers, this is, the cases where the
linear result plus confidence interval is farthest from the poly, poly2 result mi-
nus confidence interval (or vice versa). We looked at the detailed predictions
of these cases in order to see if there was some clear pattern that could explain
why the linear classifier performs better or worse when detecting entailment
involving certain quantifiers.

In SVMquantifier-out, the cases in which the linear classifier outperformed the
quadratic ones with the biggest difference correspond to few, no, most ; two
of these quantifiers are precisely the only two for which there are not positive
examples in the dataset (table 3.3). We have explained before that the training
regime SVMquantifier-out leaves out all the pairs containing the quantifier in turn
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(whether it is in the antecedent or consequent position) and then the result-
ing model is tested on these pairs containing the quantifier that was left out
during the training. We noticed that the performance of the linear classifier
was influenced by the amount of training data that remains after taking out
the pairs containing the quantifier in turn. For instance, in the case of the
quantifier few, the classifiers are trained without seeing few at all and then
they are tested on the instances containing the pairs few 6|= many, few 6|= all,
several 6|= few i.e. all the pairs involving the quantifier few (table 3.2). By
looking at the detailed predictions of SVMfew-out we realized that the linear
classifier predicts correctly a bigger proportion of testing instances containing
few6|=many and few6|=all while the quadratic classifiers are better predicting
the instances containing several6|=few. This could be happening because even
after removing all the pairs containing few, the training dataset still has a
big amount of positive and negative examples containing the quantifiers many
and all in the consequent position of a pair, while for the quantifier several
in the precedent position, there are less positive and negative examples re-
maining in the training dataset; the quadratic classifiers seem to handle better
than the linear the prediction of those pairs for which the involved quantifiers
were seen little or none in the training data, suggesting that the quadratic
classifiers are somehow learning and generalizing the entailment relation. The
same pattern can be detected in most of the quantifiers: it seems that the
cases where the linear classifier notably outperforms is not really because it
is able to generalize better the entailment relation, the performance of the
linear classifier is being affected by the unbalanced dataset. We also looked
at the cases where the quadratic classifiers outperformed the linear with a
greater difference, in these cases we observed again that the amount of data
is associated with the failure of the linear classifier, for instance, in the case
of the quantifier either (table 4.3), when we leave out the pairs involving this
quantifier (both|=either, either6|=both) the training dataset is left without any
positive/negative example of the quantifier both appearing in the consequent
position, so we observed that the linear classifier predicted considerably less
instances containing either 6|=both than the quadratic classifiers.
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Quantifier Linear Poly1 Poly2
acc.(%) CI acc.(%) CI acc.(%) CI.

each 97.79 ±0.8 98.40 ±0.7 98.40 ±0.7
every 97.42 ±0.7 95.62 ±0.9 95.51 ±1.0
much 85.89 ±4.3 88.31 ±4.0 88.31 ±4.0
all 79.80 ±1.1 81.06 ±1.0 80.52 ±1.0
several 73.86 ±1.5 78.21 ±1.4 79.78 ±1.4
many 77.23 ±0.9 77.49 ±0.9 77.49 ±0.9
few 78.96 ±3.7 66.38 ±4.3 66.38 ±4.3
most 60.40 ±2.3 58.35 ±2.3 58.30 ±2.3
some 53.25 ±1.2 55.14 ±1.1 54.11 ±1.2
no 59.10 ±3.6 53.08 ±3.7 53.08 ±3.7
both 42.16 ±2.1 44.26 ±2.2 44.66 ±2.2
either 27.78 ±7.8 38.09 ±8.5 41.27 ±8.6

Total 70.23 ±0.50 71.10 ±0.50 70.93 ±0.50

Table 4.3: Results of SVMquantifier-out. Poly1 uses an homogeneous quadratic
kernel, Poly2 an inhomogeneous quadratic kernel.

4.3.2 Results of SVMpair-out

Table 4.4 shows the obtained results for the experiment SVMpair-out. In the
SVMpair-out regime, a similar situation to the above described occurs, the ob-
tained results with the quadratic kernels are similar to the original ones (table
3.2) while the linear classifier exhibits more drastic changes. There are sev-
eral cases in which the linear classifier performed considerably worse than the
quadratic classifiers (e.g., either 6|= both, both 6|= many, several |= some). The
bad behavior of the linear classifier could be influenced by the number of exam-
ples in which a quantifier appears in certain position and the label related to it.
For example, in the case of several |= some, if we look to the table 3.2 we can
see that most of the times that several appears in the antecedent position there
is a non-entailment relation, so the linear classifier fails in predicting several
|= some because it generalizes a rule that every time several appears in the
antecedent position it is likely to be in a non-entailment relation, disregarding
which quantifier is in the consequent position.
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Quantifier pair Linear Poly1 Poly2
acc.(%) CI acc.(%) CI acc.(%) CI.

all |= some 99.05 ±0.6 99.15 ±0.6 99.15 ±0.6
all |= several 97.85 ±1.2 98.92 ±0.9 98.92 ±0.9
each |= some 97.56 ±1.2 98.63 ±0.9 98.63 ±0.9
all |= many 92.90 ±1.7 90.49 ±1.9 91.41 ±1.9
many |= some 80.44 ±4.9 90.01 ±3.7 90.01 ±3.7
much |= some 87.10 ±3.1 88.71 ±2.9 88.71 ±2.9
every |= many 89.35 ±3.1 88.70 ±2.9 88.70 ±2.9
all |= most 89.46 ±2.0 83.40 ±3.4 84.52 ±3.0
several |= some 56.72 ±4.0 75.69 ±3.5 75.69 ±3.5
both |= some 70.16 ±3.7 58.46 ±4.0 58.46 ±4.0
most |= many 23.76 ±3.4 18.14 ±3.1 17.06 ±3.0
many |= several 24.24 ±3.9 16.67 ±3.4 21.89 ±3.8
both |= either 6.35 ±6.0 4.76 ±5.3 6.35 ±6.0
Subtotal 77.44 ± 0.94 77.88 ± 0.94 78.34 ± 0.93

some 6|= every 99.79 ±0.4 99.79 ±0.4 99.79 ±0.4
several 6|= all 98.74 ±0.9 99.46 ±0.6 99.46 ±0.6
some 6|= all 98.96 ±1.0 99.34 ±0.8 98.86 ±1.1
several 6|= every 100.00 ±0.0 99.21 ±0.5 99.21 ±0.5
few6|= all 98.09 ±1.3 98.73 ±1.0 98.73 ±1.0
many 6|=every 98.91 ±0.8 98.26 ±1.0 98.26 ±1.0
many 6|= all 97.14 ±2.6 97.94 ±2.2 96.33 ±2.9
some 6|= each 98.48 ±0.8 97.56 ±1.0 98.63 ±0.8
both 6|=most 86.45 ±3.5 95.39 ±2.1 96.21 ±1.9
several 6|= few 88.11 ±5.3 91.61 ±4.5 93.01 ±4.2
both 6|= many 41.04 ±4.1 67.84 ±3.9 67.84 ±3.9
many 6|= most 54.86 ±4.5 66.31 ±4.3 64.79 ±4.4
either 6|=both 44.44 ±12.3 60.32 ±12.1 52.38 ±12.3
many 6|= no 58.12 ±3.6 55.04 ±3.6 55.04 ±3.6
some 6|=many 48.27 ±3.2 47.00 ±3.2 47.00 ±3.2
few 6|= many 39.13 ±7.5 20.50 ±6.2 22.98 ±6.5
both 6|= several 12.53 ±3.1 11.83 ±3.0 8.58 ±2.6
Subtotal 76.84 ±0.90 79 ±0.87 78.66 ±0.87
Total 77.12 ±0.65 78.47 ±0.64 78.51 ±0.64

Table 4.4: Results of SVMpair-out. Poly1 uses an homogeneous quadratic kernel,
Poly2 an inhomogeneous quadratic kernel.
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4.3.3 The optimal classifier

The comparisons between the classifiers performance emphasized the need of
a more balanced dataset. The classifiers with a polynomial kernel of degree
2 were in general the most appropriate ones for the task of entailment detec-
tion. The linear classifier is apparently able to outperform for some specific
quantifiers/pairs but, as we discussed, this is probably just an overfitting effect
and the results would change if we modify the distribution of the training and
testing dataset. Moreover, if we remember from tables (4.1, 4.2) the optimized
C’s for the quadratic classifiers were much bigger than the ones obtained for
the linear classifier in all cases, this expresses that using the linear features
alone the classifier makes a lot of mistakes even for classifying the training
instances (that is why the linear classifier needs a small value of C that allows
misclassifications). All these aspects suggest that the quadratic classifiers gen-
eralize better the entailment relation; the interaction between the features of
semantic vectors must be one of the properties involved in the QN entailment,
therefore the polynomial classifiers are more suitable for capturing this entail-
ment relation.

Given the evidence that SVM quadratic classifiers are able to capture the
entailment relations, the next step would be to identify which are the combina-
tions of features that are playing an important role in this entailment detection.
The task of extracting the most significant features and giving them a linguis-
tic interpretation, has been left for future work (see Chapter 5). We conjecture
that the analysis of these features will reveal the characteristics of entailment
that are encoded in the semantic vectors. In fact, we used a feature selection
tool2 available in LIBSVM, with our quadratic classifiers. The tool assigns a
score to each feature, this score measures the impact of each feature in the
prediction accuracy of the learning model, a high score indicates high feature
relevance. We observed that there was a set of features that were important
in practically all the entailment detection cases, while there were features that
were important just for specific quantifiers/pairs. This tool combines several
selection strategies (e.g., f-score) and it was useful as a preliminary indicator
that there is a set of features that is crucial for detecting entailment. How-
ever, this tool does not extract the weights of the features from the learning
model and the interactions between them, which is something we are interested
in. The extraction of the weights from the learning models generated by our
experiments and the interpretation of the latent dimensions of our semantic
vectors requires further work and analysis.

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools
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4.4 Testing on noun entailment

Finally, a last experiment was performed to confirm that the QN entailment
does not generalize to entailment between nouns. We trained a linear and a
polynomial (quadratic kernel) classifier on the Q1N |= Q2N dataset and test
it on the N1 |=N2 and the AN |= N datasets explained in section 3.1. The
results are shown in table 4.5, the accuracy in predicting lexical entailment
using the learning model of Q1N |= Q2N is not better than the baseline meth-
ods (table 3.1). This shows that the information encoded in semantic vectors
that allow to detect entailment between quantifiers is not the same one that
allows to detect the entailment between nouns. The QN entailment is relying
in something different from the feature inclusion that works fine for the lexical
entailment. This reinforces the idea of formal semantics that each semantic
domain has its own entailment relation.

Linear Poly1
acc.(%) CI acc.(%) CI

SVMQ1N |=Q2N tested on N1 |=N2 52.38 ±0.26 52.74 ±0.26

SVMQ1N |=Q2N tested on AN|=N 48.63 ±1.35 52.30 ±1.34

Table 4.5: Results of SVMQ1N |=Q2N . The linear classifier uses a C=0.001 and
Poly1 is an homogeneous quadratic kernel with C=1.
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Chapter 5

Conclusions

In this thesis we provided an overview of distributional semantic models as
an approach to natural language semantics. In particular, we talked about
how distributional representations of words and phrases can be used to detect
logical inference patterns like those studied in formal semantics. We described
in detail the work of Baroni, Bernardi, Do and Shan (2012) because it is the
first one to explore and show that the distributional vectors are able to capture
semantic properties of quantifiers and that entailment relations between quan-
tifier phrases can be detected using these representations. Since the entailment
detection is done by means of an SVM classifier fed with distributional seman-
tic vectors, we focused on the SVM classifier with the aim of improving the
original work. Machine learning literature was reviewed in order to analyze the
behavior and the parameters related to this classifying method. Afterwards
we realized the need of repeating the entailment detection experiments follow-
ing a more standard procedure which involved trying first classifiers with less
complex polynomial kernels and to perform a parameter optimization. Since
these elements were missing in the original experiments we were interested in
comparing how much the performance would be affected or benefited by the
new configurations of the classifiers.

After performing the new experiments we came to the conclusion that the
cubic polynomial classifier used in the original experiments was not really nec-
essary since the classifiers with lower kernel degree (quadratic) were able to
perform at least as good as it. The simplest classifier, the linear, showed more
dramatic positive and negative changes in the performance, the first impression
was that the linear classifier could represent the best option for detecting the
entailment of certain quantifiers. However a more detailed analysis (looking
at the predictions) revealed that this behavior is probably more related with
the distribution of the examples in the dataset than with a real capacity of
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the classifier to generalize better. Repeating the experiments with different
parameters was useful to analyze some other aspects like the need of a more
balanced Q1N |= Q2N dataset. The analysis of the soft margin constant C
and the detailed predictions among classifiers suggested that the entailment re-
lation between quantifiers involves the interaction between the vector features
so a linear classifier which only takes into account the sum of the individual
feature influences is not enough.

Finally a training and testing regime was added to the original work, where
the learning model that successfully detected entailment between quantifier
phrases was tested in semantic vectors representing pairs of nouns in order to
detect lexical entailment. As expected, we obtained a bad performance using
this regime, reinforcing the idea that the entailment relation that exist between
nouns is different from the one between quantifiers; the classifiers are tapping
different properties of the vectors.

5.1 Future work

One of the first things that became evident during the analysis of the obtained
results was the need of a more balanced Q1N |= Q2N dataset, the number of
examples per each quantifier pair changes considerably from case to case. A fu-
ture step would be to extend and balance the dataset and see if the prediction
accuracy changes using the new dataset. For instance, in the current results
the universal-like quantifiers (each, every, all, much) obtain the best predic-
tion accuracies while the hardest to classify are existential-like ones (some, no,
both, either), it would be interesting to see if this pattern remains with a more
balanced dataset. The new results could make easier to identify the quantifier
pairs for which is harder to detect an entailment relation.

This work represents in some sense a first step to answer the question of what
properties encoded in the semantic vectors are decisive for detecting the entail-
ment relations. We showed that a quadratic SVM classifier was able to perform
well for the task, this is useful because if we want to extract the information
contained in the learning model, it is a lot easier to do it from the model of
a quadratic or a linear classifier than extracting it from the model of a higher
degree kernel. The obtained learning model can be analyzed to extract those
features that have the highest influence for deciding if a pair is in entailment
or not, this could reveal interesting linguistic relations. Some considerations
must be taken into account like the fact that the current semantic vectors are
a reduced version obtained by singular value decomposition, this means that
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the meaning of the features cannot be directly interpreted, these latent dimen-
sions represent ”topics” so the features would have to be interpreted in terms
of these topics.
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Appendix A

Data and technology used

The performed experiments in chapter 4 comprised three main stages:
-Corpus preprocessing.
-Building the semantic space.
-SVM classification

We started from the same data used in Baroni, Bernardi, Do and Shan (2012).
In the first two stages we used most of the methods and tools used by the cited
work. This was done in order to assure that we were recreating the original
experimental setup. For the third stage, we wrote all the scripts from scratch
since we used a slightly different SVM implementation and different data for-
mats than the ones used in the original experiments. We will mention the
involved technology and main considerations in each of these stages.

Corpus preprocessing: The used corpus was a 2.83-billion-token concatena-
tion of the British National Corpus (http://www.natcorp.ox.ac.uk), WackyPe-
dia and ukWaC (http://wacky.sslmit.unibo.it). We were provided with each
of these corpora already tokenized, POS tagged and lemmatized. The parsing
was performed with the MaltParser (http://www.maltparser.org) and lemma-
tized with TreeTagger (Schmid, 1995). This is an example of the preprocessed
corpus in XML format:

<s>
How How WRB 1 0 ROOT
does do VVZ 2 0 ROOT

it it PP 3 2 SBJ
affect affect VV 4 2 VC
you you PP 5 4 OBJ
? ? SENT 6 2 P

</s>
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The next step was to compute the co-occurrences, i.e., the occurrences of
each word in the corpus with other words in the same sentence. It is im-
portant to mention that the AN and QN sequences were also considered as
single words when computing the co-occurrences. Words with no alphabetical
characters, with adjacent or initial dashes, etc., were ignored. After this, the
co-occurrences were converted to pointwise mutual information (PMI) scores.
The computation of the co-occurrences and the PMI were done using scripts
written in Python.

Building the semantic space: Our semantic space was a matrix where
the rows contained the most frequent nouns (9.8K), adjectives (8.1K) and also
those ANs, QNs and Ns needed for the data sets Q1N |= Q2N, N1 |=N2 and
AN |= N (explained in chapter 3). The columns contained the content words
of the corpus (the most frequent 9.8K nouns, 8.1K adjectives, and 9.6K verbs
in the corpus). Each matrix cell was filled with the PMI scores calculated in
the previous stage. The result was a sparse matrix with size 48K×27K. The
matrix was stored as a text file where each line correspond to a row of the
semantic space.

We applied Singular Value Decomposition (SVD) to reduce the dimensionality
of the semantic space. This was done by means of a command-line program
of the SVDLIBC toolkit1. We used the default value of singular vectors to be
preserved (300).

SVM classification: Once the semantic space was reduced, the next step
was to extract from it our vectors of interest: QNs, ANs and Ns (the vectors
needed for the Q1N |= Q2N, N1 |=N2 and AN |= N datasets).

For the classification task we used LIBSVM 3.13, a library for support vector
machines (software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm).
This implementation of support vector machines (Chang and Lin, 2011) has
gained wide popularity, it has interfaces and extensions to many programming
languages. We didn’t use any of the extensions, we decided to use directly the
source code of the library in C++. One aspect that must be taken into account
is the format of the data. We had to convert our semantic vectors into the
LIBSVM format. We show an example of an instance in LIBSVM format, the
first element represents the class {−1, 1} and the remaining elements represent
the value of each feature (feature:value):

1http://tedlab.mit.edu/ dr/SVDLIBC/
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-1 1:-92.9 2:49.43 3:28.93 4:4.83 ...

LIBSVM allows to set different options when training a classifier, e.g., the
svm type, kernel type, degree, soft margin constant, number of folds in cross
validation, among others. This flexibility allowed us to incorporate LIBSVM
to all our scripts that required an SVM training and testing process.

The scripts that we wrote for performing these experiments were mainly writ-
ten in Perl (for filtering, splitting datasets) and shell scripting language (for
managing the data flow and incorporating LIBSVM). We wrote our shell scripts
in such a way that they could work within the Sun Grid Engine2 (SGE).
This engine is used in clusters and it is responsible for accepting, schedul-
ing, dispatching, and managing the remote and distributed execution of large
numbers of standalone, parallel or interactive user jobs. We were allowed to
use a cluster of the University of Trento. Running our scripts in a cluster
was convenient since our experiments (parameter optimization, SVMpair−out,
SVMquantifier−out) involved splitting the dataset into many subsets. The train-
ing and testing procedures had to be performed for each of these subsets with
different configurations according to the experiment. Without the use of a
cluster, the running time would have been prohibitive.

Attachments: As an attachment to this thesis, we provide the lists of words
that we extracted from the corpus to build the semantic space:

- matrix rows.txt: Contains the concatenation of the most frequent 9.8K
nouns, 8.1k adjectives, the AN and QN phrases used in the experiments and
the adjectives, quantifiers and nouns contained in those sequences.

- matrix columns.txt: Contains the concatenation of the most frequent
9.8K nouns, 8.1K adjectives, and 9.6K verbs in the corpus.

- noun hypernyms.txt: Contains the 9734 hyponym-hypernym pairs used
for building the N1 |=N2 dataset.

- q-pairs.txt: Contains the fixed list of entailing and non-entailing quantifier
pairs

- svdout QN sample.mat: Contains a sample of the first 1K rows of our
reduced semantic space, i.e., the semantic vectors.

Additionally, we attach the scripts that perform the training and testing phases
in order to show the usage and parameters of LIBSVM.

2http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
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