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Abstrakt: Práce shrnuje základy teorie relaxace, přenosu energie a dekoherence
ve fotosyntetických molekulárních agregátech popsaných jako otevřené kvantové
systémy a základy teorie koherentní nelineární spektroskopie třetího řádu. Práce
prezentuje dvě metody pro výpočet fotoindukované dynamiky molekulárních
agregátů. Tyto metody odstraňují jisté aproximace běžně užívané při popisu
relaxace a přenosu energie v molekulárních systémech na sub-pikosekundové
časové škále. První metoda, odvozená ve formalismu parametrických projekčních
operátorů, zahrnuje vliv korelací mezi prvním a druhým intervalem nelineární
funkce odezvy druhého řádu běžně zanedbávaných ve formalismu řídících rovnic.
Druhá metoda představuje stochastický model přesné dynamiky založený na
kumulantním rozvoji. Práce také prezentuje analýzu vlivu sekulární a markovské
aproximace v popisu dynamiky odvozeném v druhém řádu poruchové teorie v
systém-lázňové vazbě s důrazem na dobu života excitonové koherence.
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INTRODUCTION

When discovered, the quantum theory turned our understanding of how the nature
works upside down. We were forced to accept that, unlike in the classical physics,
our measurement often necessarily and significantly affects the system investigated.
We also had to accept the fundamental indeterminism present in the core of the
theory and many other important changes. The most important change, however,
was probably the change in our understanding of what the physical state of the
system is. In the quantum theory, it is represented by the Hilbert space wave-
vector or the wave-function that contain all characteristics of the system. This
approach is very well developed now and it has led to many far reaching discoveries
with many applications. However, being defined on the system Hilbert space that
is a direct product of the Hilbert spaces of the subsystems present, the wave-vector
quickly becomes incredibly complex object for bigger systems. Moreover, the
bigger the system is, the harder it is to separate it from its surrounding. Such
imperfect isolation leads to quick entanglement of such system with the rest of
the universe, which prevents further usage of the wave-vector approach on the
system. Theory of open quantum systems faces these problems by separation of
the total Hilbert space into few degrees of freedom of interest which are described
explicitly in detail, and which are called system, and the rest of the universe
that is described implicitly and it is usually called bath. The so-called reduced
density matrix defined as trace of the total density matrix over the bath degrees
of freedom is used for the system description. It is a very good tool capable of
describing all possible measurements performed on the system part.

One field where the open quantum systems play a very important role is the
theory of spectroscopy. Interaction with light specifies the particular set of degrees
of freedom that we can directly measure – the system. Rather than defined by
the spatial separation in the real space, it is characterized by the structure of the
Hilbert space. In optical spectroscopy, the system is constituted by the electronic
degrees of freedom (DOF) that manifest transitions coupled to the radiation by
their transition dipole moments. The system DOF constantly interact with nuclear

1



and other DOF that constitute the bath. Only in presence of such interaction,
one can observe effects such as energy transfer, relaxation, thermalization and
decoherence.

This thesis focuses on the problems of relaxation, energy transfer and decoher-
ence in the photosynthetic molecular aggregates – one of many fields where the
methods of spectroscopy represent a vital source of information. Many molecular
systems that ensure functions necessary in primary processes of the photosyn-
thesis have form of molecular aggregates composed of Chlorophyll molecules
[Bla02]. They are often embedded into a protein matrix and other molecules,
e. g. carotenoids, may be present. Theory of Frenkel excitons is used for a descrip-
tion of the aggregates. The main area of interest is the energy transfer from the
light-absorbing molecules (LH2 and LH1 photosynthetic antennae and others) to
the so-called reaction center, where the first steps of the photosynthetic chemistry
take place.

Advances recently achieved in non-linear spectroscopy opened many new
ways to investigate ultrafast photo-induced dynamics of molecules and molecular
aggregates. Particularly the two-dimensional (2D) coherent spectroscopy [Jon03,
Cow04, Bri04b, Bri04a], both in the infra-red and visible regions, allowed us to
obtain an unprecedented amount of information about the third-order non-linear
response of systems with a femtosecond time resolution by analysis of the third
order non-linear signal. 2D electronic spectra (2DES) [Jon03, Bri04a] resulting
from a four-wave mixing (FWM) experiment have many advantages over other
methods. Unlike in the case of the pump-probe experiments, their time-resolution
is not limited by their frequency resolution, they can reveal the homogeneous
line-width, which is otherwise often obscured by the inhomogeneous broadening,
and they generally contain more information about the system. More importantly,
they also allow us to distinguish between incoherent mixture of the Frenkel exciton
populations and their coherent quantum superposition. The latter is characterized
by a presence of the off-diagonal elements of the reduced density matrix also
called coherences. The presence of the coherences was predicted to manifest as
certain oscillations of the peaks of the 2DES [Pis06, Kje06]. Experiments on the
photosynthetic Fenna-Matthews-Olson (FMO) pigment-protein complex [Eng07]
confirmed these predictions with a surprising result – the coherence manifests
unexpectedly long lifetime compared to predictions of the the standard theories
used in the field [Ish09c, Hei12]. Since then, similar oscillations were observed
in many other photosynthetic systems [Lee07, Cal09, Mer09, Col10, Har12] and
conjugated polymers [Col09], as was also reviewed in detail in [Che13b]. It was
argued that the coherent quantum superposition of the molecular excitons could
significantly contribute to the efficiency of energy transfer in photosynthesis and
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the debate about the nature of the long coherence lifetime and their significance
to the energy transfer still continues [Ish10, Wu10, Ish11, Car12, Chr12, Che13a,
Che13b, Man13a, Tiw13].

All these exciting new results are connected by a common feature: Before the
advances in the 2D coherent non-linear spectroscopy, the theories for prediction
of the molecular systems dynamics could be based on a host of approximations
that turned out to be insufficient for a precise description of the new experiments.
Depending on the strength of the coupling between the electronic degrees of
freedom and the bath degrees of freedom, the Förster [Foe48] or the Redfield
[Red65] rate equations are used. The first works best if the system-bath coupling is
weak and the second if it is strong. Master equation theories going beyond the rate
theories often use the so-called secular approximation that decouples coherences
of the reduced density matrix from each other and from the populations, thus
significantly lowering the computational cost. Even at the very short time-scale, the
experiments focused on the population dynamics (pump probe) are not sensitive to
the non-secular effects. Their impact in the 2DES is therefore subject to particular
interest and it is an important issue to analyze [Zha98, Yan02, Jan04, Olš10].

Another class of approximations is closely connected to the way how the master
equations are used in calculation of the non-linear response functions. Although
it was shown that it is possible to obtain an exact result for the linear response
function with the use of master equations [Dol08], the same approach cannot
include the bath correlations between the different periods of the photo-induced
system evolution in higher orders of the response [Ish08]. In some cases, i. e. in
presence of the vibrational modulation of the 2DES, such approximation can
lead to a complete loss of information about the experimentally observed signal
[Nem08]. It was suggested to solve the problem by taking the previous system time
evolution explicitly into the equations of motion [Ric10], or by including it into
projection operators that are used to reduce the equations of motion to the system
DOF [Man12]. The latter technique was later used to develop a correction to the
master equations for the second-order response functions [Olš12]. Although the
second-order response functions cannot be directly used to model the 2DES, it can
be readily applied in the models of excitation of a molecular system by a general
quantized light [Man10, Olš11]. This became a matter of general interest in the
investigation of the impact of the long-living quantum coherence on the energy
transfer in photosynthetic systems. It was argued that although the quantum
coherence can be prepared in laboratory by a ultrashort-pulsed laser light, it
does not appear under excitation by a natural sunlight [Bru12], which is strongly
incoherent. Consequently, theories that include the quantum nature of the natural
light were sought [Man10, Olš11, Fas12].
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General lack of theories able to describe all observed effects also aroused
interest in exact methods in the field. This includes many path integral techniques
[Sto02, Shi03, Xu05, Huo10], Monte Carlo methods [Hub59, Sha04, Zho05, Mo05,
Lac05, Sha06], and also the stochastic wave-function method [Dal92], quantum
state diffusion method [Aha93] and some other approaches [Sch07, Moh08]. Nowa-
days, probably the most popular exact method are the Hierarchical Equations of
Motion (HEOM) developed by Kubo and Tanimura [Tan89, Ish05, Tan09]. It was
introduced by Ishizaki [Ish09b] into the field, and recently, it was successfully imple-
mented on the massively parallel graphics processing units [Kre11, Kre12, Kre13].

New exact theory was proposed also in [Olš13] – a stochastic method that
covers the resonance coupling term in the Hamiltonian by a stochastic unraveling.
Here, the evolution of the system’s state is modeled by an ensemble of trajectories
in the space of the projectors on the states in the system’s Hilbert space. This
projector space is known in the theory of non-linear spectroscopy as the Liouville
space (see Chapter 1 or Ref. [Muk95]). Each trajectory from the ensemble can be
assigned a sequence of resonance coupling-free evolution operators that remains
after the unraveling. The resulting expression is related to the high order non-
linear response functions. With a proper application of the cumulant expansion,
it can be evaluated analytically in terms of the so-called lineshape functions
commonly used in theory of nonlinear spectroscopy. The properly weighted sum
over trajectories gives a result for the system’s reduced dynamics, which is exact
assuming the Gaussian property for the higher order bath correlation functions.

The techniques of non-linear optical spectroscopy are still developing and
they have big potential for future applications. The connection of theory and
experiment is very close in this field, since it is generally difficult to understand
the experimental results without a detailed theoretical modeling. This thesis
follows the line of research developing methods for calculation of the dynamics of
molecular aggregates as open quantum systems with focus on the relaxation and
energy transfer. These methods may help us to improve our understanding of the
sub-picosecond electronic photo-induced processes not only in the photosynthetic
systems, but also a in large molecular aggregates, polymers, quantum dots, carbon
nanotubes and other systems accessible by the non-linear spectroscopy.

The thesis is based on two articles [Olš10, Olš12] and an arXiv e-print [Olš13]
of the author and coworkers. It is organized as follows. Chapter 1 briefly reviews
formalism of open quantum systems applied to molecular aggregates and the basic
theories that are further used or elaborated in the rest of the work. Chapter 2
serves as a reference to the non-linear spectroscopy, explains the pump probe and
the 2DES experiments and provides background that connects the models of the
dynamics of open quantum systems with experiment. Chapter 3 is based on the
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article [Olš10] and presents a discussion of the relevance of the non-secular effects
and application of the Markov approximation to the models of 2DES. Chapter 4
is based on the article [Olš12] and presents a derivation of a correction term to a
Redfield-type time-local master equations in the calculation of the second-order
response function with the use of parametric projectors [Man12]. Chapter 5, based
on the article [Olš13], presents the aforementioned method of stochastic unraveling
of resonance-coupling by the cumulant expansion and its application to a problem
of interaction between excitonic state and a charge-transfer state. In this problem,
the exact theory is required since the bath relaxation effects are large and the
effects of approximations based on perturbation expansion in the system-bath
coupling are pronounced.
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CHAPTER

ONE

OPEN QUANTUM SYSTEMS

This chapter aims to provide basics of the theory of open quantum systems
(OQS). We introduce the density matrix, the concept of separation of the total
physical system into the so-called system degrees of freedom that are described in
full detail, and the so-called bath DOF that are described implicitly and enter
the equations of motion through secondary bath-averaged quantities. We also
introduce basic models of the bath and the most commonly used theories for
calculation of the dynamics of the OQS. Main sources, where an interested reader
can obtain more detailed information, are the following books [Fai00, Gre98,
Ken82, May01, Muk95, Val13].

1.1 Density Matrix and Basic Terminology and
Notation Overview

The fundamental object of the Quantum Theory is the wave-vector |Ψ〉 (or
the wave-function Ψ(x1, . . . , xn)) from a Hilbert space H of the system, which
uniquely defines the system state. In order to study the open quantum systems,
however, it is very useful to introduce the so-called density operator or density
matrix that holds full information about all possible measurements performed on
the system. We can, for example, use the density matrix to describe a statistical
ensemble of systems in states |Ψi〉 with probabilities pi. The density matrix of an
ensemble is defined as

ρ =
∑
i

pi|Ψi〉〈Ψi| . (1.1)

The probabilities pi then simply represent our lack of knowledge about the ensemble.
In other cases, we are interested only in a subsystem with Hilbert space Hsub ⊂H .
Here, the wave-vectors belong to the total Hilbert space and the cases where the
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individual wave-vectors of the subsystems are well-defined and the quantum state
is separable are a very special case. However, one can still define the so-called
reduced density matrix (RDM) of the subsystem as a trace over all other degrees
of freedom

ρ = TrH \Hsub|Ψ〉〈Ψ| . (1.2)

The distinction between our lack of knowledge and the uncertainty arising purely
from the quantum nature of the system or its entanglement with a larger system
is still not very well understood, and various interpretations of the Quantum
Theory would offer different answers to the question. The density matrix, however,
represents extremely practical tool in the theory of open quantum systems.

The density matrix is a hermitian operator and its matrix elements are thus
basis-dependent objects. The diagonal elements are called populations (of the
basis states) and they always have real values between 0 and 1 that represent the
probabilities of measuring the respective basis state. The density matrix that has
all eigenvalues equal to zero with exception of a single eigenvalue that is equal to
1, corresponds to a quantum state representable by a single wave-vector. Such
states are referred as pure states, while all other states are called mixed states
[Fai00]. The off-diagonal elements of the density matrix are called coherences.
They serve as an indicator of the quantum superposition between the basis states.

We use standard notation for basic operations with Hilbert space operators.
We define the commutator and anti-commutator of operators A and B as

[A,B]− = AB −BA , (1.3)

[A,B]+ = AB +BA . (1.4)

We also use a notation in which we explicitly write matrix elements of operators
in some basis. The operator matrix elements are then denoted by indices as

Aab = 〈a|A|b〉 . (1.5)

1.1.1 Interaction Picture

In Quantum Theory, there are two fundamental ways how to hold the information
about the system dynamics. In the so-called Schrödinger picture, all information
about the system is held by the time-dependent wave-vector |Ψ(t)〉, and all
operators corresponding to physical quantities are constant (unless they express
a time-dependent external classical field). Another possible description is the
so-called Heisenberg picture, where we remove the dynamics induced by the total
Hamiltonian H of the system from the wave-vector and we define the Heisenberg-
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picture wave-vector |Ψ(H)〉 = exp(iHt/~)|Ψ(t)〉 and Heisenberg-picture operators
A(H)(t) = exp(iHt/~)A exp(−iHt/~). After this transformation, the information
about the system dynamics is completely held by the time-dependent Heisenberg-
picture operators and the wave-vector is time independent. It is also possible to
perform a partial transformation usually called an interaction picture. Here, we
transform only the parts of the Hamiltonian that are easy to describe in order
to simplify the resulting equation of motion. For example, for a Hamiltonian
H = H0 +H ′ composed of two parts described by Hamiltonians H0 and H ′, we
define interaction picture with respect to the Hamiltonian H0 for a wave-vector

|Ψ(I)(t)〉 = exp(iH0t/~)|Ψ(t)〉 (1.6)

and for the operators

A(I)(t) = exp(iH0t/~)A exp(−iH0t/~) . (1.7)

We denote the operators in the interaction picture by a superscript (I). For
operators that are time-independent in the Schrödinger picture, we sometimes
omit the superscript and use the time-dependence of the operators alone to
indicate they are in the interaction picture. For example, if an operator A is
time-independent, we will use a symbol A(t) in place of the symbol A(I)(t) when
no ambiguity can arise.

In the Section (1.2), we introduce splitting of the total system into system and
bath parts. If not stated otherwise, the interaction picture is always taken with
respect to both the system and the bath parts of the total Hamiltonian.

1.2 Model of Molecular Aggregate in Contact
with a Phonon Bath

Many molecular systems of interest can be characterized only by a small number
of relevant DOF that have to be described in detail. We call these DOF a
system and a full quantum description is used to model their dynamics. All other
DOF also play an important role in a host of effects, particularly they govern
the relaxation towards the thermal equilibrium and the decoherence, but a less
detailed description can be used for them. We call these DOF a bath. We denote
the system and bath Hilbert spaces HS and HB respectively.

Further, we focus our interest towards photosynthesis. Among the photosyn-
thetic complexes, there are many systems composed of Chlorophyll molecules
embedded in a protein matrix with different organization (LH1, LH2, FMO and
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other systems). Such aggregates can be modeled as groups of N molecules which
have two states: the ground state |gm

i 〉 and the excited state |em
i 〉. These DOF

are chosen to be the system, while all other DOF constitute the bath. The global
aggregate electronic states have a form

|g〉 =
N∏
i=1
|gm
i 〉 , (1.8a)

|en〉 =
n−1∏
i=1
|gm
i 〉|em

n 〉
N∏

i=n+1
|gm
i 〉 , (1.8b)

|fmn〉 =
m−1∏
i=1
|gm
i 〉|em

m〉
n−1∏

i=m+1
|gm
i 〉|em

n 〉
N∏

i=n+1
|gm
i 〉 . (1.8c)

Due to the fact that the relaxation to the ground state in the Chlorophyll molecules
is much slower than the typical timescale of energy transfer, it is possible to neglect
the relaxation and divide the molecular electronic states into four groups: states of
a ground-state manifold (GSM) |gn〉, states of a manifold of single-excited states
|en〉, states of a manifold of double-excited states |fn〉 and higher excited states.
If we are interested only in modeling non-linear spectroscopic experiments up to
third order in the electric field intensity, the higher excited states can usually be
completely neglected. The separation between these manifolds is comparable to
the optical frequency of the laser Ω. On the ultrafast time scale, the relaxation
between the manifolds can be neglected and the transition between them thus
happens only via interaction with the laser field. The blocks of the density matrix
corresponding to different state manifolds are thus independent of each other
during the dynamics. Elements of the density matrix that belong to different
density matrix blocks on their bra- and ket-sides oscillate with frequencies close
to the optical radiation and they are called optical coherences.

The total Hamiltonian for the photosynthetic molecular aggregate can be
written as

H = (ε′g + T + Vg({Q}))|g〉〈g|

+
Ne∑
n=1

(ε′n + T + Vn({Q}))|en〉〈en|

+
Ne∑
n=1

n−1∑
m=1

Jmn(|em〉〈en|+ |en〉〈em|)

+
Nf∑
n=1

(ε′fn + T + V f
n ({Q}))|fn〉〈fn|

+
Nf∑
n=1

n−1∑
m=1

Jfmn(|fm〉〈fn|+ |fn〉〈fm|) . (1.9)
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Apart from electronic energies of states |g〉, |ei〉 and |fi〉 denoted ε
′
g, ε

′
i or ε

′f
i , there

are also energy contributions from the bath. The kinetic operator of the bath T
is assumed to be independent of the electronic state. The bath potential energy
operators Vg({Q}), Vn({Q}), V f

n ({Q}) depend on some set of coordinates {Q}.
The total Hamiltonian (1.9) can be decomposed into a system part HS, a bath
part HB and a system-bath interaction part HS−B by rearranging its terms

H =HS +HS−B +HB , (1.10)

HS = εg|g〉〈g|+
Ne∑
n=1

εn|en〉〈en|+
Nf∑
n=1

εfn|fn〉〈fn|

+
Ne∑
n=1

n−1∑
m=1

Jmn(|em〉〈en|+ |en〉〈em|)

+
Nf∑
n=1

n−1∑
m=1

Jfmn(|fm〉〈fn|+ |fn〉〈fm|) , (1.11)

HS−B =
Ne∑
n=1

∆Vn|en〉〈en|+
Nf∑
n=1

∆V f
n |fn〉〈fn| , (1.12)

HB = T + Vg({Q}) . (1.13)

The symbol Ne denotes number of states in the manifold of single excited states
and the symbol Nf denotes the number of states in the manifold of double-excited
states. We added and subtracted the kinetic and potential terms of the ground
state by introducing the energy gap potential operators

∆Vi = Vi({Q})− Vg({Q})− λi , (1.14a)

∆V f
i = V f

i ({Q})− Vg({Q})− λfi , (1.14b)

and the reorganization energies λi and λfi . The HB is independent of the system
DOF and it represents the bath part of the Hamiltonian. The rest of the bath
operators constitute the system-bath interaction, which enters via two bi-linear
terms (1.12). The reorganization energies

λi = 〈Vi({Q})− Vg({Q})〉 , (1.15a)

λfi = 〈V f
i ({Q})− Vg({Q})〉 (1.15b)

are defined as an average of the energy-gap difference over the bath DOF. This
averaging, defined as trace over bath DOF

〈•〉 = TrB • weq (1.16)
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for arbitrary operator •, assumes that the bath is in the Boltzmann canonical
thermal equilibrium

weq = e−HB/kBT

Tr e−HB/kBT . (1.17)

Finally, we introduced energies

εg = ε
′

g , (1.18a)

εi = ε
′

i + λi , (1.18b)

εfi = ε
′f
i + λfi . (1.18c)

There are two reasons for this definition: Firstly, the mean value of the energy-gap
operators 〈∆Vi〉 and 〈∆V f

i 〉 is zero with such a definition, and this significantly
simplifies the models based on a perturbation expansion in the system-bath
coupling. Secondly, the new energies (1.18) correspond to the optical transitions
directly probed by the spectroscopy. In contrast, the old energies ε′g, ε

′
i and

ε
′f
i are the energies in which the thermal equilibrium has the form of canonical
distribution

ρeq = e−HS/kBT

Tr e−HS/kBT . (1.19)

The resonance couplings Jmn are free parameters of the model, but the double-
excited state manifold resonance couplings can be approximately derived from
them using the so-called Bethe ansatz [Mei97]

Jfmn,rs ≈ δnsJmr + δnrJms + δmsJnr + δmrJns . (1.20)

The double-excited potential bath operators are constructed from assumption

∆V f
mn ≈ ∆Vm + ∆Vn . (1.21)

In the chapters that follow, we denote total, system and bath evolution
operators

U(t) = exp
(
− i
~
Ht
)
, (1.22a)

US(t) = exp
(
− i
~
HSt

)
, (1.22b)

U g(t) = exp
(
− i
~
HBt

)
, (1.22c)

U e
n(t) = exp

(
− i
~

(HB + ∆Vn)t
)
. (1.22d)

The evolution operator (1.22c) corresponds to the evolution of the bath in presence
of the electronic ground state, while the evolution operator (1.22d) corresponds
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to the evolution of the bath in the presence of the electronic excited state |n〉.

1.3 Interaction with the Electromagnetic Field

Apart from the interaction of the system with the phonon bath through the
Hamiltonian HS−B, Eq. (1.12), one also has to describe its interaction with the
electromagnetic radiation in order to model the spectroscopic experiments. For
molecular systems, where the individual transition dipole moments are much
smaller than the optical wavelength, one can use the dipole approximation, which
corresponds to an interaction Hamiltonian1

HS−R = −
∑

i∈{x,y,z}
µiEi(r) . (1.23)

In this description, the system DOF interact with the radiation through the
total dipole moment operator µi composed of the dipole moment operators of the
individual transitions

µi =
Ne∑
n=1

µe,ni (|g〉〈en|+ |en〉〈g|) +
Nf∑
n=1

n−1∑
m=1

µf,mni (|fm〉〈en|+ |en〉〈fm|) . (1.24)

The electric field is described by operators Em from the Hilbert space of the
radiation HR. They can be defined by decomposition into modes with wave-
vectors k, polarization vectors εkm and creation and annihilation operators a†mk,
amk as

Em(r) = i

c

∑
k
Nkωkεkm

(
amke

ik·r − a†mke
−ik·r

)
. (1.25)

The polarization vectors εkm are orthogonal to k and to each other. The speed
of light is denoted c. The radiation field is quantized in a box of a size L and
the limit L→∞ is to be performed at the end of our calculations [Gre98]. This
procedure leads to normalization constants

Nk =
√

2π~c2

L3ωk
. (1.26)

1The full form of light-matter interaction Hamiltonian is HS−R = − e
mc p ·A(r) + e2

2mc2 A2(r),
where e denotes the elementary charge, c denotes the speed of light, m denotes the electron
mass, p denotes the electron momentum operator and A(r) denotes the vector potential known
from the Maxwell theory of electromagnetism. The Hamiltonian (1.23) assumes A2(r) ≈ 0.
Also, the usage of the dipole moment operator µ requires that we neglects the space-dependence
of the vector potential across the individual molecules.
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The radiation field is a quantum bath governed by a Hamiltonian

HR =
∑
σk

~ωk

(
a†σkaσk + 1

2

)
. (1.27)

Apart from special cases where the details of quantum nature of the radiation
field might play role [Man10, Olš11, Bru12, Fas12], much simpler semi-classical
approach can be used to describe the radiation. Eq. (1.23) can be replaced by semi-
classical system-radiation interaction Hamiltonian in the dipole approximation

HS−R = −
∑

i∈{x,y,z}
µiEi(r, t) . (1.28)

Here, Ei(r, t) are not operators, but time-dependent functions representing the
time-dependent electric field. The Hamiltonian (1.28) does not contain the de-
scription of spontaneous emission, which we do not require here. The Hamiltonian
(1.28), however, does not directly enter the equations of motion. We treat it in the
formalism of response theory instead. It is briefly explained in the Chapter 2.1.

The experiments we aim to describe are based on a sequence of femtosecond
pulses. Pulses this short can be well represented by a δ-pulse. The electric field in
a form

E(r, t) = e−k·rδ(t− t0)E0 (1.29)

is used. In this case, the excitation in time t0 simply corresponds to a jump in
the RDM written as

ρ(t0 + ε) = [µE0, ρ(t0 − ε)]− . (1.30)

Symbol ε denotes infinitesimally small positive quantity here.

1.4 Local and Excitonic Basis

According to the Quantum Theory, we are, of course, free to choose any basis of
states for our calculation. There are, however, two bases of special importance.
It is the exciton basis defined as a basis in which the system Hamiltonian HS,
Eq. (1.11), is diagonal and the local basis defined by Eqs. (1.8).

In the local basis, every excited basis state is localized on particular molecule.
It is therefore the basis in which the couplings, the transition dipole moments or
the correlations of the energy gap fluctuations directly relate to the geometrical
arrangement of the molecules. The exciton basis is natural choice in the case of a
weak system-bath coupling, because then the populations of the eigenstates of HS,
the so-called excitons, change only slowly due to the interaction with the bath,
compared to the oscillations caused by the HS in other bases. In the excitonic
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basis, the dynamics of populations and coherences is only very weakly coupled
and the separation into populations and coherences is more physical, as will be
discussed in the Section 1.7.5 in more detail. Also, for the weak system-bath
coupling, the thermalization drives the system towards the canonical distribution
(1.19).

The excitonic states from the excited-state and double-excited state manifolds
are denoted by tilde, as |ẽi〉 and |f̃i〉. Sometimes we want to stress that summation
over indices of operator • is performed in the exciton basis. In such case, we use
indices with tilde, e. g. •ãb̃. General operator A is transformed from the local
basis to the exciton basis as

Am̃ñ =
∑
ij

Aij〈i|m̃〉〈ñ|j〉 . (1.31)

We also define the potential energy bath operators for the excited eigenstates |m̃〉,
|ñ〉

Vm̃ñ({Q}) =
∑
ij

δijVi({Q})〈i|m̃〉〈ñ|j〉 (1.32)

here. It will be useful in the Chapter 4.

1.5 Energy Gap Correlation Function and Its
Properties

The system-bath interaction in the second-order of the perturbation expansion
in the system-bath coupling can be completely characterized with help of the
a correlation function of the potential energy difference bath operators (1.14)
reduced over the bath DOF. It is called energy gap correlation function (EGCF)
and it is defined as

Cmn(t) = TrB {U g†(t)∆VmU g(t)∆Vnweq} , (1.33)

where ∆Vm was introduced in Eq. (1.14a) and weq was introduced in Eq. (1.17).
The bath dynamics is included by the interaction picture with respect to the bath.
The EGCF is highly relevant also in the non-perturbative approaches. They can
be for example derived from assumption that the bath has the Gaussian property,
i. e. that the higher-order correlation functions can be expressed in terms of the
second-order EGCF (1.33) through the Wick’s theorem. In general case, higher
order correlation functions are necessary.

Before specifying the particular form of the EGCF, it is useful to define related

15



quantities – the so-called lineshape functions

gmn(t) = 1
~2

tˆ

0

dτ

τˆ

0

dτ ′Cmn(τ ′) . (1.34)

In Chapter 4, we will also need EGCF and the lineshape functions transformed
into the exciton basis in one or both of their indices

Cab̃(t) = 〈∆Va(t)∆Vb̃b̃〉 , (1.35a)

gab̃(t) = 1
~2

tˆ

0

dτ

τˆ

0

τ ′Cab̃(τ ′) , (1.35b)

Cãb̃(t) = 〈∆Vãã(t)∆Vb̃b̃〉 , (1.35c)

gãb̃(t) = 1
~2

tˆ

0

dτ

τˆ

0

τ ′Cãb̃(τ ′) . (1.35d)

1.5.1 Energy Gap Correlation Function of Quantum Har-
monic Oscillator

In application of nonlinear spectroscopy to the molecular aggregates in photosyn-
thesis, we are particularly interested in bath represented by nuclear degrees of
freedom. If we assume that these DOF can be described as a set of infinitely many
harmonic oscillators, we get both very powerful and simple model of a quantum
bath. The harmonic modes are independent, since the most natural set of har-
monic modes would be obtained through the normal mode analysis. The modes
are often referred as to phonons, although they have different properties than the
phonons in crystallography or solid-state physics. They lack the long-distance
spatial coherence and locally manifest higher reorganization energy as well as
slower response time.

To get a fully quantum EGCF for such a harmonic bath, we must derive
the EGCF for a single harmonic mode connected to a transition between the
ground and the excited electronic states. There is a single harmonic oscillator
with different potential energy operator in the ground state and in the excited
state, see Fig. 1.1. We are particularly interested in the energy gap potential
operator (1.14a)

∆V (Q) = 1
2mω

2(Q+ d)2︸ ︷︷ ︸
Ve

− 1
2mω

2Q2︸ ︷︷ ︸
Vg

− 1
2mω

2d2︸ ︷︷ ︸
〈Ve−Vg〉

, (1.36)
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Figure 1.1: A bath of harmonic oscillators: Nuclear degrees of freedom are modeled
as a bath of infinitely many harmonic oscillators with different coupling strengths
given by a spectral density J(ω). The model for a transition between states |a〉
and |b〉 assumes two harmonic surfaces for both states which are shifted by a
separation d in a single common coordinate Q. According to the Condon principle,
an excitation from the ground state of the lower harmonic oscillator vertically
excites a set of states of the upper harmonic oscillator, which results in a coherent
dynamics. In presence of many oscillators, the system dissipates reorganization
energy λ, which has classical analogy of a difference between the energy at which
the higher harmonic oscillator is excited and minimum of its potential energy
surface. The precise quantum definition is given by Eqs. (1.15).

where we indicated the terms corresponding to the general expression Ve, Vg and
〈Ve − Vg〉. The potential energy surface parabolas are shifted by distance d. This
allows for the description of the Stokes shift. We write all the important quantities
in terms of the ladder operators

Q =
√

~
2mω (a+ a†) , (1.37a)

H = ~ωa†a , (1.37b)

U(t) = exp(−iωa†at) . (1.37c)

The zero-mode energy was excluded from the harmonic oscillator Hamiltonian
(1.37b). We assume that the energy levels of the oscillator are initially in the
Boltzmann thermal equilibrium

Weq = 1
Z

exp(−Hβ) , (1.38)
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where
Z =

∞∑
k=0
〈k|e−a†a~ωβ|k〉 = e~ωβ

e~ωβ − 1 (1.39)

is the Bose-Einstein normalization factor. Now, one can write down the energy
gap correlation function

〈U †(t)∆V U(t)∆V 〉 =
∞∑
k=0

(1
2mω

2)2 1
Z

[
〈k|eiωa†at2Qde−iωa†at2Qde−a†a~ωβ|k〉

]
.

(1.40)
After evaluating the sum (1.40), we obtain

〈U †(t)∆V U(t)∆V 〉 = ω2~2S [cosωt coth ~βω/2− i sinωt] . (1.41)

We defined
S = 1

2
d2mω

~
, (1.42)

a dimension-less quantity called a Huang-Rhys factor, in order to reduce the
number of parameters. The Eq. (1.41) is the EGCF of a single harmonic oscillator.
It is also referenced as an EGCF of an undamped harmonic oscillator.

1.5.2 Multi-Mode Harmonic Bath

There are many DOF in the bath. In the harmonic approximation, one can always
perform a normal mode decomposition, which results in many uncoupled harmonic
oscillators coupled only with the system of interest. Only in the limit of infinitely
many harmonic oscillators, one gets important features, such as irreversibility
[Fai00]. The EGCF of such multi-mode harmonic bath can be defined as an
integral of harmonic oscillator EGCF (1.41) weighted by the so-called spectral
density J(ω)

C(t) =
∞̂

0

dω J(ω)ω2 (cosωt coth ~βω/2− i sinωt) . (1.43)

Further, we assume generally different spectral density Jm(ω) for every molecule
m of the molecular aggregate and no correlation between the baths of individual
molecules, i. e. Cmn(t) = δmnCmn(t).

There are two important properties of a general bosonic EGCF: Firstly, it
hermite-conjugates on time reversal

Cmn(−t) = C∗nm(t) (1.44)

as can be seen directly from its definition C∗mn(t) = Tr{∆Vm(t)∆Vnweq}∗ =
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Tr{∆Vn∆Vm(t)weq} = Tr{∆Vn(−t)∆Vmweq} = Cnm(−t). The last step is possible
because the bath evolution operators in the interaction picture of ∆Vm(t) commute
with the stationary bath density matrix weq. Secondly, the Fourier-transformed
EGCF

Cmn(ω) =
∞̂

−∞

dt eiωtCmn(t) (1.45)

has a property
Cmn(ω) = e~ωβCnm(−ω) . (1.46)

It is a special case of the Fluctuation-Dissipation Theorem and it ensures that in
the limit of weak (but non-zero) system-bath coupling, the Boltzmann thermal
equilibrium is reached between the energy levels (1.18). In the multi-mode
harmonic bath model, it is satisfied because we assumed the Boltzmann equilibrium
(1.38) for every harmonic oscillator present in the bath.

An important special case of the multi-mode harmonic bath is EGCF of an
overdamped harmonic oscillator [Muk95]

Cmn(t) =~λΛδmn [cot(Λ~β/2)− i] exp(−Λt)

+ 4λΛδmn
β

∞∑
n=1

νn exp (−νnt)
ν2
n − Λ2 . (1.47)

The parameter β = 1/kBTB relates to the bath temperature TB and the parameter
Λ = 1/τc is given by the characteristic time of damping of the oscillators τc. The
so-called Matsubara frequencies are defined as νn = 2πn/β~. The EGCF (1.47) is
derived from the Lorentz-Drude spectral density

ω2J(ω) = 2~
π

λωΛ
ω2 + Λ2 , (1.48)

where the parameter Λ is called cutoff frequency. Both the EGCFs (1.41) and
(1.47) are special cases of the EGCF of the general harmonic oscillator [Muk95]
with frequency ω and damping rate γ

Cmn(t) =~λω2

2ζ δmn
[
coth(iφ~β/2) exp(−φt)− coth(iφ′~β/2) exp(−φ′t)

]
− 4λω2γ

β

∞∑
n=1

νn exp(−νnt)
(ω2 + ν2

n)2 − γ2ν2
n

− i~λω2

ζ
exp(−γt/2) sin(ζt) , (1.49)
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where

φ = γ

2 + iζ , (1.50)

φ
′ = γi

2 − iζi , (1.51)

ζ =
√
ω2 − γ2/4 . (1.52)

1.6 Superoperator Formalism

For a closed system described by a density matrix, the role of the Schrödinger
equation is taken by the Liouville-von Neumann equation

d

dt
ρ(t) = − i

~
[H, ρ(t)]− . (1.53)

For open quantum systems, the equations of motion is typically much more
complicated. It is therefore convenient to adopt more compact formalism. Linear
operators on a Hilbert space of the system constitute a vector space. It is called
Liouville space and the operators on it are called superoperators. We introduce
the Liouville superoperator, or shortly Liouivillian

L• ≡ 1
~

[H, •]− . (1.54)

Now, we can write the Eq. (1.53) in more compact form

d

dt
ρ(t) = −iLρ(t) . (1.55)

We also define Liouvillians of the system, the bath and the system-bath interaction

LS ≡
1
~

[HS, •]− , (1.56a)

LB ≡
1
~

[HB, •]− , (1.56b)

LS−B ≡
1
~

[HS−B, •]− , (1.56c)

and the corresponding evolution superoperators

U(t) = exp (−iLt) , (1.57a)

US(t) = exp (−iLSt) , (1.57b)

UB(t) = exp (−iLBt) . (1.57c)

It is also useful to introduce a superoperator notation for the interaction with
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the electromagnetic field through the Hamiltonian (1.28). We define

Vi• = 1
~

[µi, •]− , (1.58a)

V(R)
i • = −1

~
• µi , (1.58b)

V(L)
i • = 1

~
µi • . (1.58c)

Even more general notation is often used: Given operator A on a Hilbert space,
we define related superoperators

A× = 1
~

[µ, •]− , (1.59a)

A◦ = 1
~

[µ, •]+ . (1.59b)

In the context of separation of the system into the system and bath parts, we
also introduce the reduced evolution superoperators

Ũ(t) = TrB{U(t)W0} , (1.60)

that are result of the full dynamics traced over the bath DOF. We denote them
by tilde. The exact definition always depends on the initial state W0 specified
later in the work.

A general superoperator A has four indices and its action on an operator B
can be written as

Aab =
∑
cd

AabcdBcd . (1.61)

We also introduce a notation to stress the block structure of the density matrix
described in the Section 1.2 for each of the indices. We add a superscript index
with a value g, e or f for every subscript index, depending if it belongs to the
ground state manifold, the manifold of the single-excited states or the manifold of
the double-excited states. These auxiliary superscript indices are given in brackets
not to be confused with the regular indices. For example the reduced evolution
superoperator acting on the optical coherence block of density matrix ρ(eg)

ab (0) is
written as

ρ
(eg)
ab (t) =

∑
cd

Ũ (egeg)
abcd (t)ρ(eg)

cd (0) . (1.62)
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1.7 Projector Approach to System-Bath Sepa-
ration

1.7.1 Nakajima-Zwanzig Identity

For molecular systems embedded in a bath it is necessary to derive equations of
motion dealing only with the DOF of interest. It can be done by separation of the
total system into system and bath parts. The system-bath separation yields the
so-called reduced density matrix, which contains detailed information only about
the system DOF and couples with the bath DOF through the EGCF. A very
straightforward and useful way of system-bath separation is the so-called projector
approach [Fai00], which was introduced by Nakajima and Zwanzig [Nak58, Zwa60]
to obtain a general equation of motion for the RDM.

As a starting point, one defines projector that preserves the system DOF and
traces over the bath DOF. The most common choice is the so-called Argyres-Kelly
(AK) projector [Arg64]

PAK• = w0 TrB• , (1.63)

where w0 is bath density matrix for which Tr w0 = 1. The most common choice
is w0 = weq according to definition (1.17), which is equivalent to an assumption
that the bath can be approximated by the canonical equilibrium state. For the
rest of this chapter, we will however use general projector on the system DOF P .
We only require that the projector property P2 = P holds. Further, we define the
projector on the bath DOF as

Q = 1− P . (1.64)

Now, we introduce reduced system density matrix ρ(t) and reduced bath density
matrix w(t) as

ρ(t) = TrBW (t) , (1.65a)

w(t) = TrSW (t) , (1.65b)

where the trace TrB traces over the bath DOF and the trace TrS traces over the
system DOF. The system RDM (1.65a) is very closely related with projection
PW (t) = ρ(t)w0. It differs only by the presence of the bath RDM w0. Impor-
tant property of the projector P is that is does not influence the system RDM,
TrBPW (t) = TrBW (t) = ρ(t). We hold to the convention of using symbols ρ, w
and W for the density matrices of the system, the bath and the total density
matrix respectively in the whole work. Starting from the Liouville equation (1.55),
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we include the identity P +Q into proper places

d

dt
(P +Q)W (t) = −i(P +Q)L(P +Q)W (t) . (1.66)

Due to the properties of the projectors P, Q, we can divide the Eq. (1.66) into
two parts

d

dt
PW (t) = −iPLPW (t)− iPLQW (t) , (1.67a)

d

dt
QW (t) = −iQLPW (t)− iQLQW (t) . (1.67b)

We can formally solve the Eq. (1.67b) and obtain

QW (t) = −ie−iQL(t−t0)QW (t0)− i
tˆ

t0

dτ e−iQL(t−τ)QLPW (τ) . (1.68)

Plugging the Eq. (1.68) back into the Eq. (1.67a) yields

d

dt
PW (t) =− iPLPW (t)− PLe−iQL(t−t0)QW (t0)

− PL
t−t0ˆ

0

ds e−iQLsQLPW (t− s) , (1.69)

which is the so-called Nakajima-Zwanzig identity in the Schrödinger picture. We
can repeat the same procedure, but this time in the interaction picture with respect
to the Hamiltonians of the system and the bath. The resulting Nakajima-Zwanzig
identity yields

d

dt
PW (I)(t) = −iPL(I)(t)PW (I)(t)

− PL(I)(t) exp

−i
tˆ

t0

dτ QL(I)(τ)

QW (I)(t0)

− PL(I)(t)
t−t0ˆ

0

ds exp

−i
sˆ

t0

dτ ′ QL(I)(τ ′)

QL(I)(t− s)PW (I)(t− s) .

(1.70)

1.7.2 Convolutionless Equation of Motion

Before we introduce approximations into the Eq. (1.70), we can make one more
formal step, which allows us to overcome its time non-local character. Let us
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assume an evolution superoperator U ′(t), which satisfies

PW (t) = U ′(t− t0)PW (t0). (1.71)

This superoperator is of course unknown, but it allows us to turn a time non-local
differential equation (1.70) formally into a time-local one. We can write

d

dt
PW (t) =− iPLI(t)PW (t)− PLI(t) exp

{
−i
ˆ t

t0

dτQLI(τ)Q
}
QW (t0)

−
[ t−t0ˆ

0

dτ ′PLI(t) exp
{
−i
ˆ τ ′

t0

dτ ′′QLI(τ ′′)Q
}

×QLI(t− τ ′)U ′(−τ ′)
]
PW (t) . (1.72)

We do not develop the convolutionless (or time local) theory any further here,
because we will be interested only in terms up to the second order in LI . In such
case U ′(−τ) can be approximated as U ′(−τ) ≈ US(−τ)UB(−τ), where US(−τ)
and UB(−τ) are evolution superoperators with respect to LS and LB. Interested
reader can refer e. g. to Refs. [Has77, Shi77, Muk78, Muk79, Fai00] for further
details.

1.7.3 Time-Nonlocal Quantum Master Equation

Quantum Master Equation (QME) is an equation of motion derived in second-
order perturbation theory in system-bath coupling (SBC) [May01]. One possible
derivation starts with the Nakajima-Zwanzig identity (1.70), where we use the
Argyres-Kelly projector PAK , Eq. (1.63), with w0 = weq. The second term of
Eq. (1.70) is often assumed to be zero, L(I)(t)QW (I)(t0) = 0, which is ensured by
a proper choice of the initial condition

W (I)(t0) = weqρ0 , (1.73)

where the system and the bath are not entangled initially. Here, weq is the
bath density matrix in the canonical equilibrium (1.17). The system-part initial
condition ρ0 is not restricted by this assumption. The first term of the Eq. (1.70)
is also zero, since the interaction terms (1.14a, 1.15b) contained in L(I)(t) in the
first order vanish after the bath-averaging, i. e. after the action of PAK . The
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remaining term simplifies to

d

dt
PAKW (I)(t) =− PAKL(I)(t)

t−t0ˆ

0

ds QAKL(I)(t− s)PAKW (I)(t− s) (1.74)

in the second-order in SBC. If we define the reduced density matrix in the
interaction picture with respect to the HS and HB as

ρ(I)(t) = TrBW (I)(t) , (1.75)

we can write the Eq. (1.74) as well-known Quantum Master Equation

d

dt
ρ(I)(t) =− TrBL(I)(t)

t−t0ˆ

0

ds L(I)(t− s)ρ(I)(t− s) , (1.76)

which, written in Hilbert space representation, yields

d

dt
ρ(I)(t) = − 1

~2

∑
i,j

t−t0ˆ

0

ds

〈[∆Vj(t)K(I)
j (t), [∆Vi(t− s)K(I)

i (t− s), ρ(I)(t− s)]−]−〉 . (1.77)

We can also write it in terms of EGCF as

d

dt
ρ(I)(t) =− 1

~2

∑
i,j

t−t0ˆ

0

ds

(
Cji(s)[K(I)

j (t), K(I)
i (t− s)ρ(I)(t− s)]−

− Cij(−s)[K(I)
j (t), ρ(I)(t− s)K(I)

i (t− s)]−
)

(1.78)

in the interaction picture, or as

d

dt
ρ(t) =− i

~
[HS, ρ(t)]− −

1
~2

∑
i,j

t−t0ˆ

0

ds

(
Cji(s)[Kj, U

†
S(−s)Kiρ(t− s)US(−s)]−

− Cij(−s)[Kj, U
†
S(−s)ρ(t− s)KiUS(−s)]−

)
(1.79)

in the Schödinger picture. We will call this equation of motion Time-Nonlocal
Quantum Master Equation (TNL-QME). The Eq. (1.79) can be rewritten into
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the superoperator formalism as

d

dt
ρab(t) =

∑
cd

−iLabcdρcd(t)−
tˆ

t0

dsMabcd(s)ρcd(t− s) . (1.80)

The superoperatorM(t) defined by the matrix structure of Eq. (1.79) is defined
as

M(t)• =− 1
~2

∑
i,j

(
Cji(t)[Kj, U

†
S(−t)Ki • US(−t)]−

− Cij(−t)[Kj, U
†
S(−t) •KiUS(−t)]−

)
. (1.81)

1.7.4 Time-Local Quantum Master Equation

The TNL-QME (1.79) is an equation with convolution, which often makes its
solution numerically difficult. In various practical applications, the bath can be
considered to be only weakly coupled to the system so the system RDM does not
significantly change in the interaction picture with respect to the system and bath
Hamiltonians. Following this argument, we assume relation

ρ(I)(t− τ) ≈ ρ(I)(t) (1.82)

known as the Markov approximation [May01]. In all orders of expansion, the
Markov approximation can be used to transform the time non-local equation of
motion into a certain time-local form. This has to be regarded as an additional
approximation which simplifies the numerical treatment of the time non-local
equations. Interestingly, in the second order the time-local equations and the time
non-local equations with the Markov approximation have exactly the same form
[Val13].

Under condition (1.82), the Eq. (1.79) simplifies to the ordinary differential
equation

d

dt
ρ(I)(t) =− 1

~2

∑
i,j

(
[K(I)

j (t), U †S(t)
t−t0ˆ

0

ds Cji(s)K(I)
i (−s)US(t)ρ(I)(t)]−

− [K(I)
j (t), ρ(I)(t)U †S(t)

t−t0ˆ

0

ds Cij(−s)K(I)
i (−s)US(t)]−

)
(1.83)
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or in the Schrödinger picture

d

dt
ρ(t) =− i

~
[HS, ρ(t)]−

− 1
~2

∑
i,j

(
[Kj,

t−t0ˆ

0

ds Cji(s)K(I)
i (−s)ρ(t)]−

− [Kj, ρ(t)
t−t0ˆ

0

ds Cij(−s)K(I)
i (−s)]−

)
. (1.84)

We will refer to this equation of motion as to Time-Local Quantum Master
Equation (TL-QME). The matrix structure of the last two lines on the right hand
side defines a superoperator

R(t)• = − 1
~2

∑
i,j

(
[Kj,

t−t0ˆ

0

ds Cji(s)K(I)
i (−s)•]−

− [Kj, •
t−t0ˆ

0

ds Cij(−s)K(I)
i (−s)]−

)
, (1.85)

which we will call time-dependent Redfield tensor. The Eq. (1.84) then takes a
form

d

dt
ρab(t) =

∑
cd

−iLabcdρcd(t) +Rabcd(t)ρcd(t) . (1.86)

The famous Redfield equation, originally derived for use in the nuclear magnetic
resonance [Red65]), is obtained from the Eq. (1.86), if the time-dependent Redfield
tensor is integrated to infinity,

R = lim
t→∞
R(t) . (1.87)

The Redfield equation can then be written as

d

dt
ρab(t) =

∑
cd

−iLabcdρcd(t) +Rabcdρcd(t) . (1.88)

The TL-QME is works well in the limit of weak system-bath coupling. For stronger
SBC, it is known to break the positivity of the density matrix, which leads to
negative probabilities and unphysical results.

1.7.5 Secular Approximation

Unlike the coherent electronic spectroscopy, which will be introduced in Chapter 2,
most experiments are not sensitive to coherence between electronic levels. Even
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the short time-scale experiments (e. g. pump probe) mostly focus on studying
population dynamics and they do not require description of the coherences dynam-
ics. This allows many further approximations to simplify the equations of motion.
Most notably, the secular approximation, which decouples the RDM elements
oscillating on different frequencies from each other and thus limits the energy
transfer phenomena to separate dynamics of population transfer and coherence
dephasing [May01].

Technically, the secular approximation is performed in the exciton basis, where
the system Hamiltonian HS is diagonal, by ignoring all terms of the R(t) in the
Eq. (1.86) andM(t) in the Eq. (1.80) that couple populations to coherences and
the coherences to each other. We refer to the resulting equations as to secular
TL-QME and secular TNL-QME. Contrary, the models without the secular
approximation are referred as full TL-QME and full TNL-QME.

The justification for the secular approximation is following: the system Liouville
operator L leads to a dynamics in which the excitonic populations remain constant
and the coherences oscillate with the transition frequency between the two energy
levels to which the coherence belongs. In the limit of weak SBC, the relaxation
dynamics caused by the time-dependent Redfield tensor R(t) is much slower than
the oscillations caused by L. All elements of R(t) containing such oscillations are
suppressed by the integration of the quickly oscillating function. For example, if a
population p(t) is coupled with a coherence c(t) via equation

d

dt
p(t) = kc(t) , (1.89)

where rate k is caused by the presence of the bath, and the coherence oscillates
with the frequency ω corresponding to the energy-gap as

c(t) = c0 cos(ωt+ ϕ0) , (1.90)

the integrated effect of the coherence on the population will be

p(t) ≈ kc0

ω
sin(ωt+ ϕ0) . (1.91)

We can see that the presence of the coherence causes population oscillations
shifted in phase by π/2 with respect to the coherence and suppressed by the factor
k/ω. Secular approximation assumes the ratio k/ω is small and that the effect of
coherences to populations can be neglected.

Numerically, the secular approximation brings many advantages. Instead of the
full Eq. (1.86), which has complexity comparable with the dimension of the system
Liouville space (O((dim HS)4)), one gets equations with complexity comparable
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to the rate equations between the populations (O((dim HS)2)). Furthermore, it
can be shown that the long time equilibrium between the populations has form of
the canonical equilibrium in the secular theories, provided the system is ergodic
and only baths with one temperature are present [May01]. For these reasons, the
secular approximation is a very common method of choice in spectroscopy, unless
we are forced to choose more sophisticated methods.
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CHAPTER

TWO

NON-LINEAR SPECTROSCOPY

2.1 Basic Framework

In the semi-classical approximation, the radiation field is described by the macro-
scopic Maxwell theory. The electric field intensity E(r, t) inside a sample obeys
the wave equation

∆E(r, t)− 1
c2
∂2

∂t2
E(r, t) = µ0

∂2

∂t2
P(r, t) , (2.1)

where the material effects of the sample are described by the polarization P(r, t).
The symbol µ0 denotes the vacuum permeability and c denotes the speed of light.
For now, we drop the position dependence. The polarization can be expanded
into a Taylor series in orders of the electric field intensity

P(t) = P(1)(t) + P(2)(t) + P(3)(t) + . . . . (2.2)

The n-th order polarization P(n)(t) is proportional to n-th order of the external
electric field applied to the sample. The first order describes the linear absorption
spectrum. Second order gives zero contribution in homogeneous samples [Muk95]
and it is therefore not directly interesting for us, although the second order
response is important in precise description of molecule excitation [Man10, Olš11].
The third order in the polarization expansion describes a host of interesting effects,
such as Raman scattering, fluorescence1 or the photon echo. It can be used to

1The reader might be surprised by including the fluorescence and the Raman scattering
into third order of the expansion (2.2). Both fluorescence and Raman scattering are linear in
the laser intensity! More precisely, the expansion (2.2) is not always given by the polarization
dependence on the external electric field, but it is defined by the orders of the response function
analogous to Eqs. (2.3a) and (2.3c). In the formalism of the non-linear spectroscopy developed
by Mukamel, the fluorescence and the Raman scattering are described by two modes of the
electric field: the external electric field in which the effects are quadratic (and hence linear in
the laser intensity), and the virtual electric field composed of single photon leaving the sample in
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completely characterize the pump-probe, the four-wave mixing or the coherent
Raman scattering experiments. The relevant terms of the expansion (2.2) can be
written using the response theory as

P
(1)
i (t) =

∞̂

0

dt1 S
(1)
ij (t1)Ej(t− t1) , (2.3a)

P
(2)
i (t) =

∞̂

0

dt2

∞̂

0

dt1 S
(2)
ijk(t2, t1)Ej(t− t2)Ek(t− t2 − t1) , (2.3b)

P
(3)
i (t) =

∞̂

0

dt3

∞̂

0

dt2

∞̂

0

dt1 S
(3)
ijkl(t3, t2, t1)×

Ej(t− t3)Ek(t− t3 − t2)El(t− t3 − t2 − t1) , (2.3c)

where the S(1)
ij (t1), S(2)

ijk(t2, t1) and S(3)
ijkl(t3, t2, t1) are the first-, the second- and the

third- order response functions (RF) of the polarization. The Einstein summation
convention is applied.

To make a connection to the microscopic theory of the OQS, we employ the
Liouville equation of the total system (1.53) in the interaction picture with respect
to all parts of total Hamiltonian except of the system-radiation interaction (1.28)

d

dt
W (I)(t) = iV(I)(t)W (I)(t)E(t) , (2.4)

where

V(I)(t) = U †(t− t0)VU(t− t0) , (2.5a)

W (I)(t) = U †(t− t0)W (t) . (2.5b)

an arbitrary direction. Both effects belong to the third-order response function of polarization,
which is also the reason why Raman scattering and fluorescence contain more information that
the absorption spectrum. For more information, see Chapter 9 of [Muk95].
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One can expand this equation into a perturbation series to obtain a formal solution

W (I)(t) = W0 + i

tˆ
t0

dt1 V(I)
i (t1)W0Ei(t1)

−
tˆ

t0

dt1

t1ˆ
t0

dt2 V(I)
i (t1)V(I)

j (t2)W0Ei(t1)Ej(t2)

− i
tˆ

t0

dt1

t1ˆ
t0

dt2

t2ˆ
t0

dt3 V(I)
i (t1)V(I)

j (t2)V(I)
k (t3)W0

× Ei(t1)Ej(t2)Ek(t3) , (2.6)

with initial condition
W (t0) = W (I)(t0) = W0 . (2.7)

We apply the Einstein summation convention over the indices i, j and k. We are
interested in the mean value of polarization. The polarization is a macroscopic
quantity that corresponds to a mean value of the polarization operator

P̂i =
∑

j∈molecules
δ(r− rj)µji , (2.8)

Pi(t) = Tr P̂iW (t) . (2.9)

Index i is a vector index and runs through values i ∈ {x, y, z}. If we employ
substitutions

t1 = t− τ1 , (2.10a)

t2 = t− τ1 − τ2 , (2.10b)

t3 = t− τ1 − τ2 − τ3 (2.10c)

to the Eq. (2.6), use the assumption that the initial state of system is stationary,
i. e.

U(t)W0 = W0 , (2.11)
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and apply limit t0 → −∞, we obtain

W (t) = W0 + i

∞̂

0

dτ1 U(τ1)ViW0Ei(t− τ1)

−
∞̂

0

dτ1

∞̂

0

dτ2 U(τ1)ViU(τ2)VjW0Ei(t− τ1)Ej(t− τ1 − τ2)

− i
∞̂

0

dτ1

∞̂

0

dτ2

∞̂

0

dτ3 U(τ1)ViU(τ2)VjU(τ3)VkW0

× Ei(t− τ1)Ej(t− τ1 − τ2)Ek(t− τ1 − τ2 − τ3) . (2.12)

If we plug this result into Eqs. (2.8), (2.9) and compare it with the definitions
of the response functions (2.3), we see that we can calculate the RF from the
formalism of the quantum theory as

S
(1)
ij (t1) = iθ(t1)Tr {µi U(t1)VjW0} , (2.13a)

S
(2)
ijk(t2, t1) = i2θ(t1)θ(t2) Tr {µi U(t2)VjU(t1)VkW0} , (2.13b)

S
(3)
ijkl(t3, t2, t1) = i3θ(t1)θ(t2)θ(t3) Tr {µi U(t3)VjU(t2)VkU(t1)VlW0} . (2.13c)

Here, θ(x) denotes the Heaviside step-function that has value 1 for positive values of
x and value 0 for negative values of x. The response functions (2.13) are composed
of many additive terms, the so-called Liouville pathways [Muk95]. Particularly for
third-order response, it is convenient do define the so-called response operators

R1g(t, T, τ) = TrB{U (egeg)(t)V(R)
(eg)U

(eeee)(T )V(R)
(ge)U

(egeg)(τ)V(L)
(eg)W0} , (2.14a)

R2g(t, T, τ) = TrB{U (egeg)(t)V(R)
(eg)U

(eeee)(T )V(L)
(eg)U

(gege)(τ)V(R)
(ge)W0} , (2.14b)

R3g(t, T, τ) = TrB{U (egeg)(t)V(L)
(eg)U

(gggg)(T )V(R)
(eg)U

(gege)(τ)V(R)
(ge)W0} , (2.14c)

R4g(t, T, τ) = TrB{U (egeg)(t)V(L)
(eg)U

(gggg)(T )V(L)
(ge)U

(egeg)(τ)V(L)
(eg)W0} , (2.14d)

R1f (t, T, τ) = TrB{U (efef)(t)V(R)
(ef)U

(eeee)(T )V(R)
(ge)U

(egeg)(τ)V(L)
(eg)W0} , (2.14e)

R2f (t, T, τ) = TrB{U (efef)(t)V(R)
(ef)U

(eeee)(T )V(L)
(eg)U

(gege)(τ)V(R)
(ge)W0} (2.14f)

and their complex conjugates for the Liouville pathways. The response operators
(2.14) have a tensor structure identical with the RF (2.13c). We omit it in further
text for the sake of brevity.
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Figure 2.1: Double-sided Feynman diagrams representing the Liouville pathways
A) of the third order response function (2.14) and B) of the second-order response
operators (2.17).

The RF (2.13c) can then be written as

S(3)(t, T, τ) = i3θ(t1)θ(t2)θ(t3)
4∑
i=1

(Ri(t, T, τ)−R∗i (t, T, τ)) , (2.15)

where

R1(t, T, τ) = Tr (µ(ge)R1g(t, T, τ)− µ(fe)R
†
1f (t, T, τ)) , (2.16a)

R2(t, T, τ) = Tr (µ(ge)R2g(t, T, τ)− µ(fe)R
†
2f (t, T, τ)) , (2.16b)

R3(t, T, τ) = Trµ(ge)R3g(t, T, τ) , (2.16c)

R4(t, T, τ) = Trµ(ge)R4g(t, T, τ) (2.16d)

are RFs of the non-linear signal according to the standard notation of [Muk95].
A diagrammatic graphical representation shown on the Fig. 2.1 is often used for
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the terms (2.14). In the Chapter 4, we will be interested in a correct description
of the correlations in the second interval of the RFs (2.3). For the second-order
response (2.13b), we define quantities

RI(t, τ) = TrB{U (gggg)(t)V(R)
(eg)U

(gege)(τ)V(R)
(ge)W0} , (2.17a)

RII(t, τ) = TrB{U (eeee)(t)V(L)
(eg)U

(gege)(τ)V(R)
(ge)W0} , (2.17b)

similar to Eqs. (2.14) and their Hermite conjugates RI∗ = R†I , RII∗ = R†II .

2.2 Orientational Averaging

The total response functions (2.13) and the related response operators (2.14),
(2.17) and functions (2.16) representing the Liouville pathways have a tensor
structure in the real space originating from the dipole-moment operators µi. The
orientations of the dipole moments depend on the orientation of the molecule. The
measurements are performed in liquid phase in most cases, and an orientational
averaging has to be taken. One possible approach is to calculate the reduced
evolution superoperators (1.60) for all involved blocks of the RDM and to perform
the tensor orientational averaging analytically [Dre03, Abr06]. All 2DES in this
work are calculated by this method. Another commonly used approach is to
directly average over an ensemble of molecules with different orientations, or by
symmetric positioning of the different orientations of the molecules on the unit
sphere to reduce the computational cost [Hei12].

2.3 Pump-Probe Experiments

The basic experiment of the ultra-fast non-linear spectroscopy is the pump-probe
experiment. Two pulses are sent to the sample from different directions separated
by time τ . The first pulse is called a pump. Its purpose is to excite the molecules
in the sample and initiate their dynamics. The second pulse is called a probe,
because it probes changes in the absorption caused by the pump pulse. The
pump-probe spectrum IτPP (ω) is defined as a difference between the absorption at
given frequency after time τ , Iτ (ω), from the absorption spectrum without the
pump-pulse I(ω)

IτPP (ω) = Iτ (ω)− I(ω) . (2.18)

The pump-probe experiment has, however, certain limitations. The most
important is probably the trade-off between the time resolution and the frequency
resolution. The frequency spectrum of the electric field is defined by its Fourier
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transform as

E(ω) =
∞̂

−∞

dt eiωtE(t) . (2.19)

From the properties of the Fourier transformation follows that in order to get a
good frequency resolution, long pulses have to be used, which decreases the time
resolution. On the other hand, a good time resolution requires short pulses broad
in frequency and we therefore lose the frequency resolution.

2.4 Four-Wave Mixing Experiments

The four-wave mixing experiment is a non-linear spectroscopic experiment that
allows us to overcome limitations of the pump-probe experiment to achieve
resolution either in time or in frequency, but not in both. It can unravel much
information about the sample, for example reveal the homogeneous linewidth,
which is often hidden by the inhomogeneous broadening. These properties will be
demonstrated in the following two sections.

The experimental setup, illustrated on Fig. 2.2, is following: Three phase-
locked very short laser pulses are sent into sample from different directions given
by vectors k1, k2 and k3. They reach the sample at times t1, t2 and t3 respectively.
The resulting third order signal is directional and appears only in the so-called
phase-matching directions [Muk95] given by linear combination ±k1 ± k2 ± k3 of
the directions of the incident pulses. We are particularly interested in the so-called
photon echo effect, which appears in the signal propagating in the direction

kS = −k1 + k2 + k3 . (2.20)

The signal is mixed with the so-called local oscillator pulse in direction kLO = kS.
This is experimental technique known as the heterodyne detection. Since the
measured intensity is given by the square of the electric field, for weak signal field
ES, it is easier to measure the difference intensity |ELO+ES|2−|ELO|2 ≈ 2ELO ·ES

than directly the signal intensity |ES|2. The known relative phase of the local
oscillator is also necessary for the reconstruction of the phase of the other pulses.

The electric field can be written as

Ei(t) = A1,i(t+ T + τ)eik1·r−iΩ(t+T+τ) + c.c.

+ A2,i(t+ T )eik2·r−iΩ(t+T ) + c.c.

+ A3,i(t)eik3·r−iΩt + c.c. (2.21)

where the Ω is the fast laser frequency, which for optical 2DES experiments on
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Figure 2.2: The experimental setup of four-wave mixing experiment. Three short
phase-locked laser pulses are sent into the sample from different directions k1,
k2 and k3 reaching the sample in times t1, t2 and t3. The third-order signal is
directed into the so-called phase-matching directions. The photon echo signal
appears in the direction kS = −k1 + k2 + k3. The signal is mixed with the local
oscillator pulse with known phase relation to the other pulses to gain advantages
of the intensity enhancement via the heterodyne detection technique.

photosynthetic molecular aggregates typically has values between 10, 000 cm−1

and 20, 000 cm−1. The functions Ai(t) are slowly varying envelopes of the pulses
centered around zero of their argument. The first (k1) and the second (k2) pulses
are separated by time τ , while the second and the third (k3) pulses are separated
by time T , which is often referred as a waiting time. Plugging the Eq. (2.21) into
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the Eq. (2.3c) yields the following rather long expression

P
(3)
i (t) =

∞̂

0

dt3

∞̂

0

dt2

∞̂

0

dt1 S
(3)
ijkl(t3, t2, t1)×

(A∗1,j(t+ T + τ − t3)e−ik1·r+iΩ(t+T+τ−t3)

+ A2,j(t+ T − t3)eik2·r−iΩ(t+T−t3)

+ A3,j(t− t3)eik3·r−iΩ(t−t3) + c.c.)

(A∗1,k(t+ T + τ − t3 − t2)e−ik1·r+iΩ(t+T+τ−t3−t2)

+ A2,k(t+ T − t3 − t2)eik2·r−iΩ(t+T−t3−t2)

+ A3,k(t− t3 − t2)eik3·r−iΩ(t−t3−t2) + c.c.)

(A∗1,l(t+ T + τ − t3 − t2 − t1)e−ik1·r+iΩ(t+T+τ−t3−t2−t1)

+ A2,l(t+ T − t3 − t2 − t1)eik2·r−iΩ(t+T−t3−t2−t1)

+ A3,l(t− t3 − t2 − t1)eik3·r−iΩ(t−t3−t2−t1) + c.c.) . (2.22)

If we collect only the terms that produce signal in the direction (2.20), we can
construct the total polarization from three components that differ from each other
by the frequency-dependent part under the integral (2.22),

P
(3)
i (t) = P

(3)
R,i(t) + P

(3)
NR,i(t) + P

(3)
DC,i(t) . (2.23)

The part

P
(3)
DC,i(t) =

∞̂

0

dt3

∞̂

0

dt2

∞̂

0

dt1 S
(3)
ijkl(t3, t2, t1)ei(−k1+k2+k3)·r×

(
A∗1,j(t+ T + τ − t3)A2,k(t+ T − t3 − t2)A3,l(t− t3 − t2 − t1)

+ A∗1,j(t+ T + τ − t3)A2,k(t+ T − t3 − t2 − t1)A3,l(t− t3 − t2)

+ c.c.
)
eiΩ(τ−t+t3+2t2+t1) (2.24)

is called double coherence. It contributes to the experimentally relevant polariza-
tion that produces the signal in the direction (2.20) only if the laser pulses overlap,
i. e. for T ≈ 0. Since the pulses are usually very short, it is not necessary to
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include it into the theoretical description. The remaining two parts, the rephasing

P
(3)
R,i(t) =

∞̂

0

dt3

∞̂

0

dt2

∞̂

0

dt1 S
(3)
ijkl(t3, t2, t1)ei(−k1+k2+k3)·r×

+ A∗1,j(t+ T + τ − t3 − t2 − t1)A2,k(t+ T − t3)A3,l(t− t3 − t2)

+ A∗1,j(t+ T + τ − t3 − t2 − t1)A2,k(t+ T − t3 − t2)A3,l(t− t3)

+ c.c.
)
eiΩ(τ−t+t3−t1) . (2.25)

and the non-rephasing

P
(3)
NR,i(t) =

∞̂

0

dt3

∞̂

0

dt2

∞̂

0

dt1 S
(3)
ijkl(t3, t2, t1)ei(−k1+k2+k3)·r×

+ A∗1,j(t+ T + τ − t3 − t2)A2,k(t+ T − t3)A3,l(t− t3 − t2 − t1)

+ A∗1,j(t+ T + τ − t3 − t2)A2,k(t+ T − t3 − t2 − t1)A3,l(t− t3)

+ c.c.
)
eiΩ(τ−t+t3+t1) . (2.26)

both contribute to the signal. Since the pulses envelope functions Ai(t) are all zero
if their argument is far from zero and since the third-order RF S

(3)
ijkl(t3, t2, t1) is

non-zero only if all of its arguments are positive, we obtain a set of inequalities that
have to be satisfied for the signal to be non-zero. The rephasing part of the signal
is non-zero only if τ > 0, while the non-rephasing part of the signal is non-zero
only for τ < 0. This corresponds to two different experimental arrangements with
different orderings of the first and second pulses. As a result, the rephasing and
the non-rephasing parts can be measured separately.

2.5 Two-Dimensional Electronic Spectrum

The measured electric field ES(t, T, τ) in the direction kS depends on times t, T
and τ . If we assume a simple box geometry of the (thin) sample, it can be shown
that the measured field is connected with the polarization induced in the sample
by relation [Val13]

ES,i(t, T, τ) ≈ i
hΩ

n(Ω)ε0c
P

(3)
i (t, T, τ) , (2.27)

where h is the sample thickness, n(Ω) is the sample refractive index and ε0 is the
vacuum permittivity. From this relation follows that in the limit of ultrashort
pulses, the measured electric field is proportional to the third-order response
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function2

ES(t, T, τ) ∼ iS(3)(t, T, τ) .

Experimentally, the so-called two-dimensional electronic spectrum

Ξ(ωt, T, ωτ ) =
∞̂

−∞

dt

∞̂

−∞

dτ ES(t, T, τ)eiωtt−iωτ τ (2.28)

is constructed from the measured field [Jon03, Bri04a]. It serves as a direct
visualization of the third-order non-linear response function. Since the response-
function oscillates with the optical frequency in its first and third interval, the
Fourier transform is performed over these times. The Fourier transform in τ yields
an ωτ dependence that is formally similar to linear absorption spectrum, while the
Fourier transform in t yields generalized absorption and stimulated emission from
a non-equilibrium state created by the first two laser pulses. As can be shown by
proper mathematical analysis [Man13b], the real part of the 2D spectrum (2.28)
can be interpreted as a correlation plot between the system absorption spectrum
I(ωτ ) and the absorption spectrum IT (ωt) after time T from the excitation. The
imaginary part represents correlation between the system absorption spectrum
and the dispersion after time T and it is rarely used for practical analysis. The
Liouville pathways (2.14) contributing to the 2D spectrum can be interpreted in
the following way: In the trajectories R1g and R2g, the molecule is in its excited
state during the waiting time T and they thus represents a stimulated emission
(SE). Unlike in the pump-probe spectrum, these trajectories have positive sign
in the most commonly used convention. The trajectories R3g and R4g also have
a positive sign and the molecule is in the ground state during the waiting time
T . They can therefore be interpreted as the ground state bleach (GSB). The
trajectories R†1f and R†2f contribute to the 2DES conjugated, which results in
negative sign of the generated signal. They represent an excited state absorption
(ESA).

We illustrate some of the properties of the 2DES spectrum on an excitonic
molecular dimer with transition energies e1 = 14, 000 cm−1 and e2 = 16, 000 cm−1,
and with equal parallel transition dipole moments. The bath is described by the
EGCF (1.47) with reorganization energy λ = 250 cm−1, coherence time τc = 100 fs
and temperature TB = 300 K. Fig. 2.3 presents a 2DES of the dimer in case
no interaction between the two molecules is present (J = 0 cm−1) in waiting
times T = 0 ps and T = 10 ps. The only visible features in the spectrum are

2More precisely, the three unpaired tensor indices of S(3)
ijkl(t, T, τ) are taken away by dot-

products with unit polarization vectors of the laser pulses according to the same scheme as in
Eq. (2.22).
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Figure 2.3: Total 2D electronic spectrum of a non-interacting dimer with energies
e1 = 14, 000 cm−1 and e2 = 16, 000 cm−1, and with equal parallel transition
dipole moments. The bath is described by the EGCF (1.47) with parameters
λ = 250 cm−1, τc = 100 fs and TB = 300 K. Spectrum is plotted for waiting times
T = 0 ps and T = 40 ps.

two diagonal peaks on the transition frequencies. The diagonal of the 2DES
can be interpreted as a square of an absorption spectrum. The absence of off-
diagonal features, the so-called cross-peaks, is result of cancellation between the
excited state absorption pathways on one hand and the ground state bleach and
stimulated emission pathways on the other hand. Reason behind this cancellation
is the perfect symmetry between transitions |g〉 → |e1〉 and |e2〉 → |f12〉 that
both represent excitation of the first molecule and between transitions |g〉 → |e2〉
and |e2〉 → |f12〉 with the same symmetry, representing the excitation of the
second molecule. Contributions of the individual pathways is shown on Fig. 2.4.
According to the model of photosynthetic molecular aggregates, described in
Section 1.2, we assume there is no relaxation to the ground state. In absence of
relaxation and coupling, the peaks do not disappear with increasing waiting time
T and the 2DES has no dynamics.

The same dimer with resonance coupling J = 200 cm−1 between the states
already manifests cross-peaks in the 2DES, as shown on Fig. 2.5. The excitonic
mixing of states |e1〉 and |e2〉, originally with equal transition dipole moments,
leads to enhancement of the transient dipole moment of one state and decrease
of the other. This makes the analysis less clear and it is not practical for this
demonstration. We compensate this effect by setting 〈g|µ|e1〉 = 1.22〈g|µ|e2〉 so
that the excitonic transient dipole moments are equal. Cross-peaks appearing
at T = 0 ps are a signature of excitonic origin of the observed excited states3.

3The coherence between the vibrational states of weakly-coupled electronic states would
manifest as a cross-peak only in later T .
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Figure 2.4: 2D electronic spectra in T = 0 ps resulting from individual Liouville
pathways (2.14). The system investigated is a non-interacting dimer with energies
e1 = 14, 000 cm−1 and e1 = 16, 000 cm−1, and with parallel transition dipole
moments equal in the excitonic basis. The bath is described by the EGCF (1.47)
with parameters λ = 250 cm−1, τc = 100 fs and TB = 300 K. The subfigures
A), B), D), E), G) and H) represent pathways R1g, R2g, R4g, R3g, R†1f and R†2f
respectively. In this arrangement, the rephasing trajectories are in the middle
column, while the non-rephasing ones are in the left column. The subfigures
C), F) and I) in the right column represent sum of the two spectra on the left.
Unlike the individual pathways, they do have direct physical interpretation of total
stimulated emission, ground state bleach and excited state absorption respectively.
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Figure 2.5: Total 2D electronic spectrum of a dimer with energies e1 = 14, 000 cm−1

and e2 = 16, 000 cm−1, with resonance coupling J = 200 cm−1 and with equal
parallel transition dipole moments. The bath is described by the EGCF (1.47)
with parameters λ = 500 cm−1, τc = 100 fs and TB = 300 K. Spectrum is plotted
for waiting times T = 0 ps and T = 40 ps.

They emerge because the aforementioned symmetry between the transitions from
ground state to the block of single excited states and from the block of single
excited states to the block of double-excited states, is broken. Contribution of
the individual pathways at T = 0 ps is shown on Fig. 2.6. The main difference
from the non-interacting case, Fig. 2.4, is in the ESA pathway. It differs, because
while the excitonic dipole moments of transitions from the ground state are equal,
the dipole moments of transitions to the double-excited states are different. The
2D cross-peaks oscillate in T as long as the corresponding electronic coherence
elements of the reduced density matrix are oscillating. The peak is elongated
along the diagonal or the anti-diagonal in different phases of the oscillation and
its shape is similar the shape of peaks in spectra of the the rephasing and non-
rephasing pathways. (Figs. 2.4, 2.6 and 2.7.) The lifetime of the electronic
coherences can thus be estimated directly from the T dependent sequence of 2D
spectra [Pis06, Eng07]. More detailed analysis of the electronic-coherence related
cross-peak oscillations can be found in the Chapter 3, particularly on Fig. 3.7.

During the time evolution, ESA and SE pathways rearrange according to
the relaxation between the excitonic states. Once the electronic coherence is
dephased, the peaks in the total ESA, GSB and SE spectra become round-shaped.
On Fig. 2.7, the 2DES corresponding to different pathways are plotted for time
T = 40 ps. (The total spectrum is on Fig. 2.5.) In this time, the system already
reached the canonical thermal equilibrium between the excited states. The energy
difference between the excited levels is chosen high here, and the upper excited
state is consequently almost entirely depopulated. During the depopulation, the
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ESA peaks shift towards the higher frequency and the SE peaks shift towards the
lower frequency. The GSB does not change with T , since the single ground state
in the GSM provides no dynamics. In presence of relaxation to the ground state,
contributions from all pathways would gradually vanish.

In the experiment, the static disorder in transition energies often plays an
important role. The disorder shifts the transition peaks along the 2DES diagonal.
As a result, the observed peaks are elongated along the diagonal, but keep their
homogeneous linewidth in the anti-diagonal direction. This is one of the important
advantages the 2D electronic spectra have over the pump-probe experiment.
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Figure 2.6: 2D electronic spectra in T = 0 ps resulting from individual Li-
ouville pathways (2.14). The system investigated is a dimer with energies
e1 = 14, 000 cm−1 and e1 = 16, 000 cm−1, with resonance coupling J = 200 cm−1

and with parallel transition dipole moments equal in the excitonic basis. The
bath is described by the EGCF (1.47) with parameters λ = 250 cm−1, τc = 100 fs
and TB = 300 K. The subfigures A), B), D), E), G) and H) represent pathways
R1g, R2g, R4g, R3g, R†1f and R†2f respectively. In this arrangement, the rephasing
trajectories are in the middle column, while the non-rephasing ones are in the left
column. The subfigures C), F) and I) in the right column represent sum of the two
spectra on the left. Unlike the individual pathways, they do have direct physical
interpretation of total stimulated emission, ground state bleach and excited state
absorption respectively.
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Figure 2.7: 2D electronic spectra in T = 40 ps resulting from individual Li-
ouville pathways (2.14). The system investigated is a dimer with energies
e1 = 14, 000 cm−1 and e1 = 16, 000 cm−1, with resonance coupling J = 200 cm−1

and with parallel transition dipole moments equal in the excitonic basis. The
bath is described by the EGCF (1.47) with parameters λ = 250 cm−1, τc = 100 fs
and TB = 300 K. The subfigures A), B), D), E), G) and H) represent pathways
R1g, R2g, R4g, R3g, R†1f and R†2f respectively. In this arrangement, the rephasing
trajectories are in the middle column, while the non-rephasing ones are in the left
column. The subfigures C), F) and I) in the right column represent sum of the two
spectra on the left. Unlike the individual pathways, they do have direct physical
interpretation of total stimulated emission, ground state bleach and excited state
absorption respectively.
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CHAPTER

THREE

STUDY OF NON-SECULAR EFFECTS

In the reduced density matrix formalism, there are several general approaches
that can be used to derive equations of motion of second or higher order in the
system-bath coupling that describe the dissipative dynamics of open quantum
systems. Direct application of the Nakajima-Zwanzig identity is one such approach
developed long ago [Nak58, Zwa60]. Equations of motion resulting from direct
application of this scheme are characterized by the presence of time retarded
terms responsible for energy relaxation and decoherence processes. Equations
of this type, derived in the Section 1.7.3, are denoted as time non-local. Later,
an alternative approach to the derivation of the RDM equations of motion has
emerged which yields time local equation of motion [Has77, Shi77]. Both theories
express the terms responsible for the dissipative dynamics in form of an infinite
series in terms of the system-bath interaction Hamiltonian, but differ in time
ordering prescriptions for the cumulant expansion of the evolution operator (see
Section 5.1.2). The time local equations correspond to the so-called partial time
ordering prescription of the cumulant expansion, while the time non-local equations
result from the so-called chronological time ordering [Muk78, Muk79]. Although
the two schemes yield formally different equations of motion for the RDM, they
are in fact equivalent as long as the complete summation of the corresponding
infinite series is performed. When the infinite series are truncated at a finite order,
the two theories yield equations that predict different RDM dynamics. This is
a result of different statistical assumptions about the bath that are implicitly
made in the two cases [Muk78, Muk79]. In all orders of expansion, the so-called
Markov approximation can be used to transform the time non-local equation of
motion into a certain time-local form. This has to be regarded as an additional
approximation which simplifies the numerical treatment of the time non-local
equations. Interestingly, in the second order the time-local equations and the time
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non-local equations with the Markov approximation, derived in the Section 1.7.4,
have exactly the same form [Val13].

Until recently, most experiments were not sensitive to coherence between elec-
tronic levels. This allowed a host of further approximations to simplify equations of
motion. Most notably the secular approximation discussed in Section 1.7.5, which
amounts to decoupling RDM elements oscillating on different frequencies from
each other and thus limits the energy transfer phenomena to separate dynamics of
population transfer and coherence dephasing [May01]. Even on very short times
scale, experiments aimed at studying population dynamics (pump probe) are not
sensitive enough to coherence between electronic levels to require non-secular
theory, although it was suggested that measured relaxation time can be distorted
by non-secular effects [Bar99]. Consequently, most of the theory developed for
evaluation of experiments focuses on improving calculation of the relaxation rates
[Zha98, Yan02, Jan04]. With experiments now uncovering new details about the
role of electronic coherence, theoretical methods beyond rate equations for proba-
bilities which are both accurate and numerically tractable are required. Although
schemes for constructing equations of motion for the RDM beyond second order,
like the hierarchical equations of motion [Tan89, Ish05, Tan09], seem feasible and
promising [Ish09a, Ish09b, Hei12], second order theories might still be the only
option for treatment of extended molecular systems. It was suggested previously
that second order perturbation theory with respect to system-bath coupling pro-
vides a suitable framework for development of such methods [Man08]. This notion
is also supported by the fact that in the special case of the so-called spin-boson
model, second order time-local equation of motion already represents an exact
equation of motion for the RDM [Dol08].

In this chapter based on the article [Olš10], we study the following four different
second order theories: (a) full TNL-QME, Eq. (1.79), resulting from the Nakajima-
Zwanzig identity or equivalently from the chronological ordering prescription in
the cumulant expansion, (b) the full TL-QME, Eq. (1.84), resulting from the
partial ordering prescription in the cumulant expansion, or equivalently from
Markov approximation applied to TNL-QME, (c) time non-local equation with
secular approximation (secular TNL-QME), and (d) time local equation with
secular approximation (secular TL-QME). We discuss the applicability of these
equations to the description of the energy relaxation and decoherence dynamics in
small systems of molecular excitons. We emphasize the recent 2D spectroscopic
experiments, the dynamics of coherence between electronic excited states and
the lifetime of the electronic coherence, which is very relevant to the discussion
about the coherent dynamics of the FMO pigment-protein complex and related
photosynthetic systems. Note that, in this section, full refers to the equations
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n εn
cm−1

dn,x
|dn|

dn,y
|dn|

dn,z
|dn|

|dn|
d0

hn
αn
grad

1 9850 1 0 0 0.65 0 0
2 10000 −0.94 0.34 0 2.15 10 60
3 10150 −0.94 0.34 0 0.9 10 120

Table 3.1: Parameters of the model trimer. The parameter εn represents the
transition energy of n-th monomer, transition dipole moments dn are taken relative
to some value d0. Parameters hn and αn are explained on Fig. 3.1.

where no secular approximation has been applied. These equations are still of
second order of perturbation theory.

3.1 Calculation on a Trimer

In this chapter, we study dynamics of a model aggregate viewed via population
and coherence dynamics and via 2D coherent spectrum. We define a simple model
aggregate for which we calculate excited state dynamics including evolution of
coherences between electronic states, linear absorption and 2D spectra at chosen
population times. Calculations of linear absorption, which require only knowledge
of the time evolution of optical coherences, are performed using all four methods
and the results are compared. The dynamics of the optical coherences in the
2DES spectra calculations use the secular time local QME, since it is known to
yield exact result at least for some models [Dol08] and since the time-nonlocal
theories lead to certain artifacts when applied on optical coherences dynamics
calculation. The population dynamics is calculated using all four methods we
discussed in the Section 1.7, and the results are compared.

The simplest model of an aggregate that can exhibit all effects observed
in Ref. [Eng07] is a trimer. The geometry of the models, together with the
meaning of the parameters is presented in Fig. 3.1. In Tab. 3.1 we summarize
the main parameters of the model. Parameters J , h and d0 from Tab. 3.1 are not
independent. For given hn and dn we could in principle calculate the value of
resonance coupling J . Because we are not interested in the absolute amplitude of
the absorption or 2D spectra we assume d0 to be fixed by the values of hn and
dn to yield the expected value of J . All three resonance couplings J between
the molecules are set to J = 200 cm−1 for the calculations presented here. The
values of the transition dipole moments determine the initial condition for the
population dynamics. We assume that the excitation light intensity and the
value of the transition dipole moment are such that the system is only weakly
excited. The total population of the excited state band is normalized to 0.01.
The relative values of the transition dipole moments are chosen so that the linear
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Figure 3.1: Geometry and parameters of a trimer aggregate. One monomer is
chosen to be positioned at the origin of the coordinate system, with the transition
dipole moment pointing along the x axis. The positions the transition dipole
moments of the other two molecules in space are characterized by their distance h2
and h3 from the origin of coordinates and by the angles α2 and α3. Orientations
and lengths of the dipoles are given in Tab. 3.1. In our example we assume that
the aggregate is planar.

absorption spectrum (see Fig. 3.2) shows peaks of roughly the same height. Two
peaks originating from the energetically lowest and the energetically highest states
dominate the spectrum, the third level contributes as a shoulder to lowest energy
peak.

Two parameters that influence the coupling of the model system to the bath
are reorganization energy λ and correlation time τc. We vary these parameters in
the range that can conceivably represent chlorophylls in photosynthetic complexes
(see e. g. Refs. [Zig06, Cho05]).

3.2 Population Relaxation and Evolution of Co-
herences

First, we compare relaxation dynamics of populations of excited state of our
aggregate after excitation by an ultrashort laser pulse. TL-QME was solved by
standard numerical methods for ordinary differential equations provided by the
Mathematica® software. For the TNL-QME we used fast Fourier transform method.
Figure 3.3 presents the first 1 ps of the population dynamics after a δ−pulse
excitation (1.29) of the trimer from Tab. 3.1 at the temperature TB = 300 K.
Reorganization energy λ = 120 cm−1 and correlation time τc = 50 fs are the
same at all three monomers. The dynamics with the same parameters for a
selected coherence element ρ13(t) is presented in Fig. 3.4. The overall conclusion
is that all four methods yield a similar general behavior for the populations, with
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Figure 3.2: Linear absorption spectrum of the model trimer for various parameters
of the system bath interaction: (a) λ = 120 cm−1, τc = 50 fs, (b) λ = 30 cm−1,
τc = 100 fs, calculated by the secular TL-QME (full lines) and the secular TNL-
QME (dashed lines).

some difference at the short time evolution and also slightly different long time
equilibrium. Examination of the Figure 3.4 leads us to the conclusion that the
methods yield two different results - a short coherence lifetime for the time local
methods, and a relatively longer lifetime in case of the time non-local methods.
The behavior of the coherence ρ13(t) represents a general tendency that we have
observed for all electronic coherences over a wide range of parameters.

Let us now concentrate on short time behavior of the populations and co-
herences in more detail. In the short time evolution of the coherences the four
methods form two distinct groups with short (TL methods) and long (TNL meth-
ods) coherence lifetime. Whether the underlying equation is secular or not seems
to have only a little influence on the coherence dynamics. Fig. 3.5 shows the short
time (0− 400 fs) comparison of the population calculated by the four equations
of motion. We can clearly see that the results can be naturally grouped according
to the presence of fast oscillatory modulation of the population relaxation dynam-
ics. In the one group we have the full TL and full TNL methods, where such
oscillations clearly occur, the second group comprises the two secular methods
with no oscillations present. Thus, it can be concluded that the non-secular
terms in the equations of motion are the cause of these oscillations. This is also
supported by comparison of the population dynamics of the full TL-QME and the
full TNL-QME from Fig. 3.3 (e. g. the population of the state 1). The oscillation
on the full TNL curve last longer than those of the full TL one, which reflects the
longer coherence lifetime we have found for the TNL equations.
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Figure 3.3: First 1000 fs of the excited state population dynamics of a trimer with
parameters λ = 120 cm−1, τc = 50 fs, calculated by all four methods. For these
particular parameters, the full TL-QME breaks positivity of the RDM diagonal
elements after 200 fs. Its prediction for the populations of the lowest and highest
levels is significantly different from the other three methods.
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Figure 3.4: First 500 fs of the dynamics of the RDM coherence element ρ13(t),
with parameters from Fig. 3.3, calculated by all four methods. Detail of the long
time part of the time evolution is presented in the inset.
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Figure 3.5: First 400 fs of the population dynamics of the trimer with parameters
λ = 30 fs and τc = 100 fs. Results of full TL-QME and TNL-QME are presented
in upper subfigure (A), the secular results are found the the lower subfigure (B).
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Let us now discuss the long time limit of the time evolution. As expected, the
two secular theories yield the same equilibrium at long population times. This
equilibrium corresponds to the canonical distribution of population among the
excitonic levels at TB = 300 K. In both secular TNL and secular TL cases, coher-
ences have relaxed to zero at long times as the inset of the Fig. 3.4 demonstrates.
The non-secular TNL and TL equations yield non-zero, stationary coherences
at long times, and correspondingly, the long time equilibrium populations do
not correspond to the canonical thermal equilibrium. Although both non-secular
theories converge to results different from the canonical equilibrium (1.19), the
full TNL equation yields populations that are physical at all times for the studied
system parameters, i. e. they are always positive. The full TL equation on the
other hand fails to keep probabilities positive at long times, and the occupation
probability of the highest electronic level becomes negative after 200 fs for the
parameters used on Fig. 3.3.

In light of the recent experiments on the FMO complex [Eng07] and other
photosynthetic systems [Lee07, Cal09, Mer09, Col10, Har12], the conclusion that
time non-local theories lead to a longer coherence lifetime than the time-local ones
(i. e. also longer than the standard constant rate theories) is probably the most
interesting. We have performed calculations of the RDM dynamics while varying
the reorganization energy and the correlation time. The absolute values of the
coherence ρ13(t) elements were fitted by a single exponential to estimate coherence
life-time. The results are summarized in Fig. 3.6. The Fig. 3.6A shows the results
for secular TL and secular TNL equations. Clearly, with growing correlation
time τc, the full TNL equations lead to a increasing coherence lifetime. The full
TL equation shows only a very weak dependence of the coherence lifetime on
correlation time. Another interesting observation is that for correlation time longer
than 50 fs, the dependence of the coherence lifetime on the reorganization energy
λ is different for full TNL and TL methods. Time local theory, in accordance
with the standard rate theories, predicts decrease of the coherence lifetime with
λ. The full TNL theory predicts (within the parameter range studied here) an
opposite tendency. The Fig. 3.6B shows similar conclusion for the non-secular
versions of the theories, with the same difference between TL and TNL theory.
The dependence of the coherence lifetime on λ in case of TNL equations is not
monotonous.

3.3 Two-Dimensional Spectrum

As discussed in the Introduction, the secular TL equation of motion yields an
exact result for the dephasing of an isolated optical coherence [Dol08]. One
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Figure 3.6: The lifetime of coherence ρ13(t) as obtained from fitting the coherence
dynamics calculated by all four methods for various parameters λ and τc. The
upper subfigure (A) shows the lifetimes obtained by the secular methods, while
the lower subfigure (B) presents the same for non-secular methods.
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can show, by comparison of the absorption spectra calculated by secular TL
and TNL methods (see Fig. 3.2), that the TNL theory leads to certain artifacts
(second peak) and is therefore not suitable for the description of the optical
coherence evolution. Consequently, one can only hope to obtain valid results for
the evolution superoperators at the first and the third time interval of the third
order response functions by the TL theories. Alternative approach which we didn’t
chose here would be using the stochastic method introduced in Chapter 5. In
Ref. [Man06b] it was shown that non-secular terms in the TL equations for optical
coherences lead to temperature dependence of the positions of excitonic bands in
absorption spectra. This dependence was shown to be strong when the electronic
states involved are characterized by significantly different reorganization energy
[Man06b, Man08]. Indeed it can be shown for homodimer that the non-secular
terms are exactly zero in second order TL theory if the monomers exhibit the
same reorganization energy [Man08]. We can therefore expect the non-secular
effects in the optical coherences to be weak in our case, and we choose secular TL
to calculate the evolution superoperators in the first and third time interval of
the RF, Eq. (2.13c).

Concerning the population interval, the situation is somewhat different. As we
have shown above, the non-secular TL theory leads to dynamics that breaks the
positivity condition for the population probabilities at long times. At the same
time, short time dynamics is very similar to the full TNL. Both theories predict
population oscillations during the lifetime of the electronic coherences. The full
TNL equation, however, preserves positivity, at least for the parameters studied
here, and can be therefore used to calculate meaningful 2D spectra. For the
same reason, both secular theories can also be successfully used to calculate 2D
spectrum. As the oscillation of the populations predicted by non-secular theories
are too small to be reliably observed in 2D spectrum (only a small change of the
crosspeak amplitude due to the population transfer is observed after 140 fs of
relaxation in 2D spectrum of Fig. 3.7 ) we expect only a small difference of the 2D
spectrum to appear between the secular and full TNL theories. For the calculation
of the representative 2D spectrum we therefore choose the secular TL and the full
TNL theories. These two differ from each other mainly in the prediction of the
lifetime of the electronic coherences. The observable difference in the calculated
2D spectra should therefore predominantly result from the different lifetime of
the electronic coherence.
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Figure 3.7: Two-dimensional coherent spectra of the trimer model at population
times T = 0, 20 and 140 fs calculated by the secular TL method (left column) and
the full TNL method (right column). The system-bath interaction parameters
are λ = 30 cm−1 and τc = 100 fs. The coherence element ρ13(t), which is mainly
responsible for the oscillatory behavior of the cross-peaks, is presented in the
upper right corner of the figure. The 2D spectrum at T = 0 fs is the same for
both methods and is therefore presented only once. The population times are
selected so that they represent different phases of the ρ13(t) element (denoted by
arrows on the coherence element figure). Arrows in the 2D spectra denote the
orientation of the peaks. All spectra are normalized to 1 with contour step of
10 %. Positive features are in full red line, negative features are represented by
dashed blue line, and the zero contour is depicted by the full black line.
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Fig. 3.7 presents 2D spectra for λ = 30 cm−1 and τc = 100 fs. These parameters
lead to a rather slow relaxation and consequently to narrow spectral peaks in
both absorption (see Fig. 3.2) and 2D spectra. This allows us to clearly see
characteristic T−dependent oscillations of the peaks in 2D spectrum. At T = 0 fs,
both methods provide the same 2D spectrum, with four peaks. Two diagonal
peaks arise when all three perturbations of the system by electric field occur on the
same level, while two cross-peaks appear from interactions occurring on different
levels. Negative peaks correspond to excited state absorption. For two molecules
that are not excitonically coupled, all contributions to the cross-peaks cancel
out exactly, while if two molecules are excitonically coupled non-zero cross-peaks
appear. The shapes of the peaks are influenced by the phase evolution of the
coherence elements of RDM during the population time T . On the upper left
figure of Fig. 3.7 we have marked the elongation of the diagonal and off-diagonal
peaks by arrows. The elongation can be best judged by looking at the zero contour
(in black). This particular elongation is characteristic for the phase of the ρ13(t)
element (see upper right figure of Fig. 3.7) at T = 0. At T = 20 fs the phases
of the ρ13(t) calculated by both methods are opposite to the phase at T = 0.
The 2D spectra calculated by the two different methods at T = 20 fs differ only
in the precise positions of the contours. This phase of the coherence element is
characterized in 2D spectrum by a different orientation of the peaks. Interestingly,
at T = 140 fs the two methods predict ρ13(t) that have mutually opposite phases
and as a consequence the 2D spectra at T = 140 fs calculated by different methods
differ in the orientation of their cross-peaks. Since the secular TL theory predicts a
simple dephasing of the coherence and a regular oscillation with a single frequency
proportional to the energy difference between corresponding energy levels, it is
in principle possible to distinguish, even experimentally, deviations from this
prediction. Our conclusion is that such a deviation should be a consequence of
the memory effects in the reduced system time evolution.

3.4 Validity of Secular and Markov Approxima-
tions

Several conclusions about the applicability of the secular and Markov approxima-
tions can be drawn from the above results. As pointed out in Ref. [Dol08], Markov
approximation, which in the second order in system-bath coupling converts the
TNL equations to the TL ones, leads accidentally to an exact result for an optical
coherence element interacting with the harmonic bath. It has been also pointed
out previously [Ish09b, Kub69] that in the same case, the TNL equations lead to
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artifacts. When studying relaxation dynamics of the populations and electronic
coherences in excitonic systems, full TL theory leads to a breakdown of the posi-
tivity of the RDM, while none of the secular theories suffer from this problem. In
principle, the full TNL theory suffers from this problem, too. However, it has been
found less susceptible to it here. The secular theories lead to canonical density
matrix at long times, while the full TNL results in a stationary state characterized
by non-zero (but constant) coherences. Such result corresponds to an additional
renormalization of the electronic states by the interaction with bath, and has to
be expected even at a weak coupling limit [Gev00]. It is important to note in this
context that the canonical equilibrium (1.19) is to be expected for the system
consisting of the molecule and the bath as a whole, not for its parts [Gev00].

For the population dynamics we are therefore forced to conclude that the full
TNL theory represents the best candidate for a correct description of relaxation
phenomena in the second order of the system bath interaction. It predicts similar
population transfer times as other methods, it is much less sensitive to the
breakdown of the positivity than its TL counterpart, and it leads to a bath
renormalization of the canonical equilibrium. Most interestingly however, unlike
in the TL theory, the coherence lifetime can attain wider range of values in the
TNL theory, depending of the correlation time of the bath. The lifetime of the
electronic coherence predicted by the non-perturbative methods, for example by
the hierarchical equations of motion, is 300 − 500 fs for various systems with
parameters similar to the photosynthetic molecular aggregates [Ish09b, Zhu11,
Kre12]. Comparable lifetimes can be obtained by the TNL theories with proper
choice of the bath-correlation time. This is not true for the TL theories. The
lifetime observed in the FMO [Eng07] is longer than a picosecond it is thus not well
explained by the TNL theories. Since the publication of [Olš10], it was proposed
that the picosecond lifetime can be explained by the coupling of electronic and
vibrational states [Chr12, Che13a, Tiw13].

In the light of the above conclusions about the dynamics of optical coherences
and the populations and coherences of the one exciton band, we suggest a hybrid
approach to calculating 2D spectra, which consists of the application of the TL
method on optical coherences (first and third time interval) and the full TNL
method on the calculation of the RDM dynamics in the one exciton band during
the population time T .
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CHAPTER

FOUR

RESPONSE FUNCTION CORRELATIONS THROUGH
PROJECTOR OPERATORS

For the description of the most 2D experiments, the third order semi-classical
light-matter interaction response function theory is well established. Response
functions of model few-level systems with pure dephasing (i. e. with no energy
transfer between the levels) can even be expressed analytically in terms of the
EGCF, using the second order cumulant in Magnus expansion [Muk95]. Some
examples of small chromophores in solution fall in this category [Nem08, Nem10]
when investigated on time scales shorter then radiative lifetime. For a Gaussian
bath this analytical theory is exact, and thus knowing the EGCF of the electronic
transitions enables us to determine linear (absorption) as well as non-linear spectra.

However, the construction of exact response functions for realistic energy
transferring systems, such as Frenkel excitons in photosynthetic aggregates [vA00],
is no longer possible. Photosynthetic complexes are relatively large, and the
proper methods to simulate finite timescale stochastic fluctuations at finite tem-
peratures [Tan06, Ish09a, Ish09b] carry a substantial numerical cost. Practical
calculations thus require some type of reduced dynamics where only electronic
degrees of freedom are treated explicitly. These approaches usually rely on a
host of approximations that seem to work well for most spectroscopic techniques
[Nov03, Nov05, vG06, Abr09] and in systems where the details of system-bath
coupling are apparently less important [Zig06]. With increasing details of the ex-
cited state dynamics revealed by the 2D spectroscopy [Rea07, Rhe09, Abr10] and
with increasing size of the studied systems, it becomes more and more important
to keep the numerical cost of simulations low, while simultaneously account for
experimentally observed quantum effects. One of the possible research directions
is to extend on existing reduced density matrix (RDM) theories [Zha98, Pal09] or
relax certain approximations [Olš10].
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It was demonstrated that RDMmaster equations derived by projection operator
technique reproduce exactly the linear response [Dol08]. In the case of higher
order RFs, however, the same approach necessarily neglects bath correlations
between the different periods of photo-induced system evolution (i. e. between
the coherence time τ and the waiting time T of the FWM experiment). The
failure to account for this correlation leads sometimes to a complete loss of the
experimentally observed dynamics in simulated 2D spectra, such as in the case of
the vibrational modulation of electronic 2D spectra [Nem08]. Because vibrational
modulation leads to effects similar to those attributed to electronic coherence,
developing methods that can account for its effect reliably in complex systems is of
utmost importance. One possible approach to the problem is to derive equations
of motion for the response as a whole, and to take the previous time evolution of
the system into account explicitly [Ric10]. In this chapter, based on the article
[Olš12], we take a different route in which the correlation effects are treated by a
specific choice of the projection operator. Once a projector is specified, it can be
used for any method of treating system bath interaction. We apply the previously
suggested parametric projection operator technique [Man11] to a calculation of the
second order response of a quantum system. The second order response operators
can be used to determine the state of a molecular system subject to excitation by
a weak light with arbitrary properties, and thus its importance goes beyond the
semi-classical system light interaction theory [Man10]. Alternatively, calculation
of the second order response can be viewed as a first step towards more involved
calculation of the third order RFs that is required for the modeling of the third
order non-linear spectra.

4.1 Theory

As discussed in the Section 1.7, one can derive master equations by the projector
approach from the Nakajima-Zwanzig identity (1.70). Let us assume we have
derived a master equation by applying the corresponding projector operator P
and calculated elements of the reduced evolution superoperator Ũ(t), Eq. (1.60).
We can then assemble an approximate response function (2.14), for instance

R̃2g,kl(t, T, τ) = Ũ (egeg)
kgkg (t)V(R)

(eg)Ũ
(eeee)
klkl (T )V(L)

(eg)Ũ
(gege)
glgl (τ)V(R)

(ge)|g〉〈g| . (4.1)

It can be shown that R̃2,kl can also be written as

R̃2g,kl(t, T, τ) = TrB{U (egeg)
kgkg (t)V(R)

(eg)PU
(eeee)
klkl (T )

×V(L)
(eg)PU

(gege)
glgl (τ)V(R)

(ge)P|g〉〈g|weq} . (4.2)
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However, the exact expression for R2,kl reads as

R2g,kl(t, T, τ) = TrB{U (egeg)
kgkg (t)V(R)

(eg)(P +Q)U (eeee)
klkl (T )

×V(L)
(eg)(P +Q)U (gege)

glgl (τ)V(R)
(ge)(P +Q)|g〉〈g|weq}, (4.3)

where we added the projector-pair P +Q = 1, which equals the identity operator,
to proper places in Eq. (4.3). Eqs. (4.2) and (4.3) differ by the Q-containing terms
that cannot be in general eliminated, and consequently one cannot expect master
equations based on a single projector operator P of any type to reproduce the
third order RFs. This applies also to the validity of non-perturbative schemes
of calculations of non-linear response, such as those derived in Refs. [Gel05] and
[Man06a]. Note that we do not claim that master equations cannot lead to exact
form of Ũ(t) in a single interval. They sometimes do, even if they are based
on finite order perturbation in system-bath coupling [Dol08]. This exactness is
enabled by the fact that the solution of the finite order equation contains all
orders of perturbation

dρ(t)
dt

= Λ(t)ρ(t) yields→ ρ(t) = e
´ t

0 dτ Λ(τ)ρ(0) . (4.4)

What we address here is their inability to compensate the Q-containing terms
between intervals of the RF, i. e. to take into account the effect of the bath history
on the change of electronic state after the delta pulse excitation.

A general solution of this problem was proposed in Ref. [Man11]. It was
argued that one cannot write down a single exact master equation for all three
intervals of the RF. Rather, one has to write a different master equation for
each interval. This is formally possible by introducing three different projectors:
PAK , the Argyres-Kelly projector (1.63), for the first, Pτ for the second and
Pτ+T for the third interval of the response [Man11]. The projectors Pτ and Pτ+T

are constructed so as to cancel the Q-containing term exactly for Jmn = 0. In
this limit, all RFs (2.14) can be exactly reproduced by the corresponding master
equations.

In the following sections, we will treat the case of Jmn 6= 0. We present a way
how to calculate the second order response operators (2.17) and their Hermite
conjugates RI∗ = R†I , RII∗ = R†II by a time-local master equation that includes
the Q-containing terms in the exact expression

RII(t, τ) = TrB{U (eeee)(t)V(L)
(eg)(P +Q)U (gege)(τ)(P +Q)V(R)

(ge)|g〉〈g|weq} (4.5)
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by a proper choice of a new projector Pτ,II so that

RII(t, τ) = TrB{U (eeee)(t)V(L)
(eg)Pτ,IIU

(gege)(τ)PAKV(R)
(ge)|g〉〈g|weq} . (4.6)

The response operators RI and RI∗ are not treated, because the non-trivial effects
cannot manifest in the case of non-degenerate ground state. Their treatment is
analogical to the treatment of response operators RII and RII∗ . The projector
Pτ,II is chosen in such way that it contains the time evolution of the bath in the
first interval of the response, where the relevant system dynamics is the one of
an optical coherence. The projector corresponding to the pathway RII and the
length of the first interval τ reads according to Ref. [Man11, Olš12]

Pτ,II• = TrB {•} U g(τ)weq
∑
ñ

U e†
ñ (τ)Kñ e

g∗ññ(τ) . (4.7)

This choice gives an exact description of the bath for Jmn = 0. For a non-zero
coupling it corresponds to the secular approximation in the first interval equation
of motion (1.84).

Instead of deriving the master equation directly for RII/II∗(t, τ), we derive it
for RDM excited by two ultrashort pulses according to the initial condition (1.29)

ρ
(2)
II/II∗(t, τ) = RII/II∗(t, τ)|E0|2 . (4.8)

As with the response operators (2.17), the operator of the conjugated pathway I∗

and II∗ is Hermite-conjugate to the operator of normal pathway I and II. We
also define the total density matrices in the first and second intervals of RII

W
(1)
II (t) = U (gege)(τ)PAKV(R)

(ge)|g〉〈g|weq|E0|2 , (4.9)

W
(2)
II (t) = U (eeee)(t)V(L)

(eg)Pτ,IIU
(gege)(τ)PAKV(R)

(ge)|g〉〈g|weq|E0|2 , (4.10)

their Hermite conjugates W (1)
II∗(t) = (W (1)

II (t))† and W (2)
II∗(t) = (W (2)

II (t))†, and the
RDM of the first interval of the RF

ρ
(1)
II/II∗(t) = TrBW (1)

II/II∗(t) . (4.11)

Further on in the text, all derivations will be done for the pathway RII , Eq. (2.17b),
and we omit the index II. The treatment of the pathway RII∗ is analogical. We
define an bath evolution operator for the system in the excited eigenstate |ñ〉

U e
ñ(τ) = exp

(
− i
~

(T + V e
ññ({Q})− 〈V e

ññ({Q})− Vg({Q})〉)τ
)
, (4.12)
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where the potential energy bath operators V e
ññ for the excited eigenstates |ñ〉 are

defined by Eq. (1.32). By the choice of the projector (4.7) we prescribe an ansatz

W (2)(0) = W (1)(I)(τ) ≡ ρ(1)(I)(τ)w(I)
τ , (4.13)

and
w(I)
τ ≡

∑
ñ

KñU
g(τ)weqU

e†
ñ (τ) eg∗ññ(τ) . (4.14)

For zero resonance coupling Jmn, this is an exact prescription for the bath. For
non-zero resonance coupling, it is an approximation comparable to the secular
approximation. Projector (4.7) can be written in short as

Pτ• = TrB {•}w(I)
τ . (4.15)

It is important to note that w(I)
τ is not a purely bath operator, and it does not

generally commute with ρ. Also the interaction picture with respect to the system
Hamiltonian HS denoted by (I) applies to it. It stands on the right hand side of ρ
when evaluating RII , while in RII∗ it would stand on the l.h.s. of ρ. This follows
from the diagrams in Fig. 2.1B. The full form of W (1)(τ) is

W (1)(τ) = U g(τ)weq
∑
ñ

U e†
ñ (τ)Kñe

i(εñ+〈V eññ−Vg〉)τ/~ρ(1)(0). (4.16)

From now on, the upper index (2) will be omitted in text for the sake of brevity.

We can verify that the projector property P2
τ = Pτ is fulfilled

PτPτ (|m̃〉〈ñ|w)

= |m̃〉〈ñ|TrB
{
U g(τ)weq U

e†
ñ (τ)

}
TrB {w} e2g∗ññ(τ)

= |m̃〉〈ñ| e−g∗ññ(τ) TrB {w} e2g∗ññ(τ) = Pτ (|m̃〉〈ñ|w) . (4.17)

Here, we used expression for the line shape function g(t) in the second cumulant
approximation

e−g(t) = TrB
{
U g†(t)U e(t)weq

}
. (4.18)

The action of the projector Pτ (≡ Pτ,II) on the electronic state is asymmetric,
because the projector was derived for the Liouville pathway RII (see Fig. 2.1B).

Let us focus on the details of the application of the projector Pτ with the
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Nakajima-Zwanzig identity (1.70)

d

dt
PW (I)(t) = NZ1 + NZ2 + NZ3 =

− PL(I)(t) exp

−i
tˆ

t0

dτ QL(I)(τ)

QW (I)(t0)

− PL(I)(t)
t−t0ˆ

0

ds exp

−i
sˆ

t0

dτ ′ QL(I)(τ ′)

QL(I)(t− s)PW (I)(t− s)

− iPL(I)(t)PW (I)(t) . (4.19)

We use it up to the second-order in L(I) and we set t0 = 0. We write the Eq. (4.19)
as sum of terms NZ1, NZ2 and NZ3 for easier referencing. The term NZ1 is the
so-called initial terms that vanishes thanks to the properties of the projector
(4.15) and separability of the initial condition of the first-order response function
ρ(1)(0) = weq|g〉〈g|. The last term NZ3 corresponds to an effective Liouvillian,
and it is usually purely electronic operator. Now, with the parametric projector
it contains additional terms originating from the system-bath interaction. It is
important to note that the projector Pτ itself contains the system-bath interaction
to all orders in the form of the exponential of the line-shape function (see Eq. (4.7)).
The success of the second order master equations (of the form ρ̇ = −α2ρ, where the
dot denotes the time derivative, and α2 is some second order operator) lies in the
fact that their solutions includes all orders of the perturbation (ρ = e−α2tρ0). The
solution corresponds to a partial summation of the perturbative series to infinity.
For some types of bath, such as the bath consisting of harmonic oscillators, this
may even lead to exact master equations [Dol08]. When higher order terms are
added to the right hand side of the equation motion by a procedure that does not
respect the form of higher order terms dictated by the cumulant expansion, the
resulting equation of motion may lead to unphysical results. Therefore, one has
to take care in application of the projector Pτ , not to allow higher than second
order contributions to appear on the right hand side of the Nakajima-Zwanzig
identity (4.19). Since the difference between projectors PAK and Pτ is only in
dynamics of the system-bath coupling during time τ , their difference is at least of
the first order in ∆V . Since the NZ2 with Argyres-Kelly projector is already of
the second order in ∆V in all its terms, the difference caused by using projector
Pτ will be of higher order in ∆V . In the second order master equation, the term
NZ2 with projector Pτ has to be equivalent to the form obtained with the AK
projector that yields the TNL-QME (1.79). Applying the following approximation
ρ(I)(t− τ ′) ≈ ρ(I)(t) in the term NZ2 we obtain it in the form the second order
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relaxation term of TL-QME (1.84).

4.2 Derivation of Parametric Quantum Master
Equation

In this section we will evaluate the contribution of the only new non-trivial term
NZ3 of Eq. (4.19) to the new parametric QME. Applying the definitions of its
component operators from Section 1.7 we obtain

NZ3 = − i
~

TrB


[∑
m

∆V (I)
m (t)K(I)

m (t), ρ(I)(t)w(I)
τ

]
−

w(I)
τ (4.20)

where
ρ(I)(t) = TrB

{
PτW (I)(t)

}
. (4.21)

Using Eq. (4.14) yields

NZ3 =− i

~
∑
mk̃

eg
∗
k̃
(τ)TrB

{
∆Vm(t)K(I)

m (t)ρ(I)(t)weq

× U g(τ)U e†
k̃

(τ)Kk̃

}
w(I)
τ

+ i

~
∑
mk̃

eg
∗
k̃
(τ)TrB

{
ρ(I)(t)weqU

g(τ)U e†
k̃

(τ)

×Kk̃∆V (I)
m (t)K(I)

m (t)
}
w(I)
τ . (4.22)

Now we have to set eg∗k̃(τ) ≈ 1 since its contribution is of higher order in ∆V .
Applying the first order expansion

U g(τ)U e†
ñ (τ) ≈ 1 + i

~

τˆ

0

dτ ′∆V e
ññ(−τ ′), (4.23)

yields
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NZ3 = 1
~2

τˆ

0

dτ ′

∑
mk̃

K(I)
m (t)ρ(I)(t)Kk̃ − ρ(I)(t)Kk̃K

(I)
m (t)


× TrB

{
∆V (I)

k̃
(−τ ′)∆V (I)

m (t)weq
}
w(I)
τ

=
∑
mk̃

(
K(I)
m (t)ρ(I)(t)Kk̃ − ρ(I)(t)Kk̃K

(I)
m (t)

)
×
(
ġ∗mk̃(t+ τ)− ġ∗mk̃(t)

)
w(I)
τ . (4.24)

By putting the Eq. (4.24) together with the TNL-QME (1.78), originating from
term NZ2, and by tracing over bath DOF we obtain the parametric quantum
master equation [Olš12]

d

dt
ρ(I)(t) =− 1

~2

∑
i,j

t−t0ˆ

0

ds

(
Cji(s)[K(I)

j (t), K(I)
i (t− s)ρ(I)(t− s)]−

− Cij(−s)[K(I)
j (t), ρ(I)(t− s)K(I)

i (t− s)]−
)

+
∑
mk̃

(
K(I)
m (t)ρ(I)(t)Kk̃ − ρ(I)(t)Kk̃K

(I)
m (t)

) (
ġ∗mk̃(t+ τ)− ġ∗mk̃(t)

)
(4.25)

in the interaction picture. The first three lines of Eq. (4.25) correspond to the
standard TNL-QME, Eq. (1.78), while the last line represent the τ -dependent
contribution which the standard TNL-QME does not predict.

Let us investigate the τ -dependent term only. First, we turn to Schrödinger
picture by substituting ρ(I)(t) = U †S(t)ρ(t)US(t). We denote the new τ -dependent
term of the parametric QME by D(t; τ)

D(t; τ)ρ(t) =∑
mk̃

(
Kmρ(t)K(I)

k̃
(−t)− ρK(I)

k̃
(−t)Km

) (
ġ∗mk̃(t+ τ)− ġ∗mk̃(t)

)
(4.26)

It can be easily verified that the new term preserves the trace of ρ(t), because
Tr
(
Kmρ(t)K(I)

k̃
(−t)− ρK(I)

k̃
(−t)Km

)
= 0. From the inspection of the term

ġ∗
mk̃

(t+ τ)− ġ∗
mk̃

(t) we can conclude that the effect of the parameter τ is transient.
If EGCF tends to zero on a time scale given by some bath correlation time, this
term also tends to zero. The dynamics at long times is therefore not affected by
the delay between the two excitation interactions. In the next part we study the
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effect of the τ -dependent term numerically for a heterodimer. Since the new term
(4.26) is time-local, it can be added in its present form also to the TL-QME (1.88)
and yield

d

dt
ρab(t) =

∑
cd

−iLabcdρcd(t) +Rabcdρcd(t) +Dabcd(t, τ)ρcd(t) . (4.27)

4.3 Numerical Results and Discussion

In this section, we study the dynamics of the elements of the response functions,
Eqs. (2.17). The RDM ρ(t; τ) for which we derived Eqs. (4.25) and (4.27) cor-
responds the response function RII (see Eq. (4.8) for the case of E0 = 1). We
compare the dynamics in two cases. In the first case, the evolution operator
U (eeee)(T ) appearing in Eqs. (2.17) is calculated by standard time dependent TL-
QME derived using the AK projector, Eq. (1.63), with w0 = weq. In the second
case, it is calculated using Eq. (4.27). We use the relation ρII∗,ij(t) = ρ∗II,ji(t)
between the RDMs from different Liouville pathways.

The most simple system which exhibits τ -dependent correction to the standard
TL-QME is a molecular heterodimer. In general, it is characterized by orientation
and magnitude of its transition dipole moments, the excited state energies ε1, ε2

of the component molecules, their resonance coupling J and the properties of
the bath. We denote the difference of the excited state energies by ∆ ≡ ε1 − ε2,
and we set the magnitudes of the transition dipole moments to unity. The initial
condition is assumed in a form ρ(1)(0) = |g〉〈g|. The evolution during the first
interval of the response follows Eq. (1.84). For the calculations presented on
Figs. 4.1, 4.2 and 4.3, we choose the anti-parallel orientation of the transition
dipole moments, while for the calculation shown on Figs. 4.4 and 4.5, we choose
the parallel orientation. The temperature is set to T = 300 K in all calculations.

First, let us investigate the sensitivity of the excited state dynamics to the
interplay of the delay τ and the phase of the bath vibrations. Fig. 4.1 shows the
dynamics of the electronic coherence between the excited states |e1〉 and |e2〉 in
presence of the bath represented by a single-mode general Brownian oscillator,
EGCF (1.49), with parameters λ = 50 cm-1, γ = 1 ps-1, ΩBath = 100 ps-1 and
∆ = 100 cm-1. Both calculations show that the standard TL-QME calculation
of U (eeee)(T ) is insensitive to the phase of bath vibrational mode during the time
evolution in the first interval. The parametric TL-QME, Eq. (4.27), shows a
distinct sensitivity to this phase. In the calculation on the Fig. 4.1, the vibration
of the bath is much faster than the period (333 fs) of the electronic coherence.
The two theories give the same result for τ = 0 fs, then they start to deviate and
after one period of bath oscillator, at τ = 60 fs, they coincide again. Initial phase
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Figure 4.1: The time evolution of the real parts of R∗II and RII for a heterodimer
with energy gap ∆ = 100 cm-1, interacting with a bath represented by a general
Brownian oscillator with parameters λ = 50 cm-1, γ = 1 ps-1and ΩBath =
100 ps-1. Red lines, the matrix element 12 of R∗II according to standard TL-QME
(dashed) and the corresponding parametric TL-QME (full). Black lines, the matrix
element 12 of RII according to standard TL-QME (dashed) and the corresponding
parametric TL-QME (full).

of ρII∗,12 and ρII,12 is in general different at T = 0 fs because of their different
time evolution in the first interval (they are not simply complex conjugates of
each other). In the Fig. 4.2, we calculated the same system, but we used bath
with parameters λ = 5 cm-1, γ = 1 ps-1, ΩBath = 19 ps-1. The frequency is
now resonant with the frequency of the electronic coherence, which makes the
effect more significant. The two theories give the same result for τ = 0 fs, and at
τ = 360 fs, which is approximately one period of the bath vibration mode. Unlike
in Fig. 4.1, the initial phase of ρII∗,12 and ρII,12 differs significantly in T = 0 fs
because of their different time evolution in τ .

In both the cases studied above, the time evolution of the off-diagonal elements
of the second order response operator is slightly modulated by the time evolution of
the vibrational DOF. The phase of the oscillations seems to be mostly unaffected.

Figs. 4.3 and 4.4 demonstrate the influence of the resonance coupling on the
population and electronic coherence dynamics in the homodimer. As above, we
perform calculation according to standard TL-QME and the parametric TL-QME.
This time, we choose the overdamped Brownian oscillator with fixed τ = 60 fs
and ∆ = 100 cm-1, reorganization energy λ = 120 cm-1 and correlation time
τc = Λ−1 = 50 fs to represent the bath, and we change the resonance coupling. We
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Figure 4.2: The time evolution of the real parts of R∗II and RII for a heterodimer
with energy gap ∆ = 100 cm-1, interacting with a bath represented by a general
Brownian oscillator with parametersλ = 5 cm-1, γ = 1 ps-1 and ΩBath = 19 ps-1.
Red lines, the matrix element 12 of R∗II according to standard TL-QME (dashed)
and the corresponding parametric TL-QME (full). Black lines, the matrix ele-
ment 12 of RII according to standard TL-QME (dashed) and the corresponding
parametric TL-QME (full).

calculate both diagonal and off-diagonal elements (“populations” and “coherences”)
of the operators ρII∗/II . For J = 0 cm-1, there is no population dynamics. By
increasing the coupling, the difference between the theories in the diagonal elements
increases. In the Fig. 4.3, the dipole moments of the molecules are anti-parallel,
while in Fig. 4.4 they are parallel.
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Figure 4.3: The time evolution of the real parts of R∗II and RII and their dependen-
cy on the resonance coupling J for a heterodimer with energy gap ∆ = 100 cm-1
and an anti-parallel arrangement of the transition dipole moments, interacting
with a bath represented by an overdamped Brownian oscillator with reorgani-
zation energy λ = 120 cm-1 and correlation time τc = Λ−1 = 50 fs. The delay
between the two pulses is fixed to τ = 60 fs. Black lines, the matrix elements 11,
22 (left column) and 12 (right column) of RII according to standard TL-QME
(dashed) and the corresponding parametric TL-QME (full). Red lines, the matrix
element 12 (right column) of R∗II according to standard TL-QME (dashed) and
the corresponding parametric TL-QME (full).
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Figure 4.4: The same as Fig. 4.3 but for a heterodimer with parallel transition
dipole moment arrangement.
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Figure 4.5: The time evolution of the real parts of R∗II and RII a heterodimer
with energy gap ∆ = 100 cm-1, resonance coupling J = 33.1 cm-1 and a parallel
arrangement of the transition dipole moments, interacting with a bath represented
by one overdamped Brownian oscillator with parameters Λ−1 = 100 fs and
λoverdamped = 12 cm-1 and an undamped vibration with reorganization energy
λharmonic = 30 cm-1 and frequency ΩBath = 60 cm-1. Black lines, the matrix
elements 11, 22 (left column) and 12 (right column) of RII according to standard
TL-QME (dashed) and the corresponding parametric TL-QME (full). Red lines,
the matrix element 12 (right column) of R∗II according to standard TL-QME
(dashed) and the corresponding parametric TL-QME (full).

Let us now investigate a molecular dimer coupled to overdamped harmonic
bath with EGCF (1.47) and to a single harmonic mode with frequency ΩBath

described by EGCF (1.41). The harmonic mode is assumed to continue oscillating
even long after thermalization in the overdamped part of the bath has taken place.
Therefore, the τ -dependent term of Eq. (4.26) changes the system dynamics also
at long times. The time dependence of the density operator elements for different
τ is shown in Fig. 4.5. Parameters of the overdamped bath are Λ−1 = 100 fs and
λoverdamped = 12 cm-1 and of the harmonic mode λharmonic = 30 cm-1, ΩBath =
60 cm-1. The dimer is characterized by ∆ = 100 cm-1, J = 33.1 cm-1 and the
parallel electronic transition dipole moments of the molecules. We can notice
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that the interaction of the vibrational mode with the electronic DOF induces
oscillations in both the diagonal and off-diagonal elements of the density operator.
The amplitude of the oscillations increases with increasing τ . Since the EGCF
of the harmonic mode, Eq. (1.41), is periodic, we expect the relative amplitude
of the oscillations to decrease again for sufficiently long τ , and to become zero
for τ = 2π/ΩBath. However, in such long τ the second order response would be
almost zero due to the decay of the optical coherence in the first interval. Fig. 4.5
suggests that the phase of the oscillation does not change linearly with τ . To
understand this behavior, we can study a simple equation of the form

ρ̇(t) = −α(ρ(t)− ρ0) + (f(t+ τ)− f(t))ρ(t), (4.28)

which describes exponential decay to a limiting value ρ0 with the rate constant α
and a modulation by the function

f(t) =
tˆ

0

dτ A cos(ωτ). (4.29)

Eq. (4.29) represents a first integral of the EGCF of an undamped vibrational
mode, Eq. (1.41). The solution of Eq. (4.29) with the parameters α = 0.01,
A = 10−4, ω−1 = 60 and ρ0 = 0.6 is shown in Fig. 4.6. We can see that the
oscillation phase and period of the oscillations is indeed not proportional to τ ,
and the amplitude increases with τ similarly to Fig. 4.5. The behavior is therefore
a direct consequence of the parametric term in the parametric QME.
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Figure 4.6: The time evolution of “population” according to model Eq. (4.28).
The curves are solutions for τ increasing from 0 fs to 100 fs with step of 20 fs.

The overall picture arising from the numerical simulations is the following:
Except for special cases, such as the molecular homodimer, the excited state
dynamics of an open quantum system, as it is observed by the non-linear spec-
troscopy, indeed depends on the delay τ between the FWM scheme. The 2D
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spectroscopy therefore observes a certain averaged dynamics. The effects seem
to be rather small in most cases, but they might be observable by an advanced
implementation of 2D spectroscopy. They are especially pronounced in the case
of the intramolecular vibrational modes, which have frequency similar to the
electronic energy gap between excitonic levels. Both the dynamics of electronic
level populations and electronic coherences are affected. In order to identify these
effects in the experimental data, the theory has to be extended to include also the
third interval of the third order non-linear response. The corresponding projection
operator PT+τ which now depends on the duration of both the coherence and the
population intervals τ and T , respectively, has been already proposed an tested
for Jmn = 0 in Ref. [Man11]. The formulation of the theory for the third interval
of the response of a multilevel excitonic system in a similar manner as performed
here for the second interval will be the subject of our future work.
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CHAPTER

FIVE

STOCHASTIC UNRAVELING OF RESONANCE
COUPLING BY CUMULANT EXPANSION

The hierarchical equations of motion method [Tan89, Ish05, Tan09] became very
popular recently for calculation of excited state dynamics in photosynthetic systems
as it combines feasibility with accuracy [Ish09c, Ish09a, Ish09b, Hei12, Kre12]
and even promises efficient implementation on modern parallel computers [Kre11].
The only drawback of the method is that the calculations become more difficult
with decreasing temperature [Ish09c].

In this section, another method which provides an exact solution to the reduced
density matrix problem for Gaussian bath is proposed. The method is based
on a stochastic unraveling of the equation of motion for the reduced density
matrix in the resonance coupling. The leading idea is to cover the resonance
coupling term in Hamiltonian by stochastic unraveling rather than doing it with
the system-bath coupling as it is usual in ordinary stochastic methods. The
evolution of the system’s state is modeled by an ensemble of trajectories in the
space of the projectors on the states in the system’s Hilbert space. This projector
space is known in the theory of non-linear spectroscopy as the Liouville space (see
Ref. [Muk95]). Each trajectory from the ensemble can be assigned a sequence
of resonance coupling-free evolution operators that remains after the unraveling.
The resulting expression is related to the high order non-linear response functions,
and it can be evaluated analytically. The properly weighted sum over trajectories
gives an exact result for the system’s reduced dynamics.

The proposed method offers an advantage over the existing exact methods
in systems with strong system-bath coupling and comparatively weak resonance
coupling since the strong coupling to the bath does not increase the computational
cost. It can be also very well used in systems with complicated spectral densities,
which is a challenging task for the HEOM method.
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We apply our method to the case of a heterodimer, motivated by the works on an
interaction between charge transfer (CT) states and the excitons in photosynthetic
reaction center [Ren04, Man06b]. In the absorption spectrum of this system,
one can observe a large blue shift of the lowest energy band with increasing
temperature [Hub98]. Previous works used either the local basis [Ren04] or the
excitonic basis [Man06b] as a starting point of their theory. It was concluded that
the large reorganization energy of the CT state is the reason for the temperature
dependent shift of the absorption band. It can be shown that the necessary
condition for the band shift is the difference in the energy-gap correlation function
of the two involved types of states, the excitonic and the CT states. It can be even
shown that in second order theories the non-secular terms, and correspondingly
the shift, vanishes when the reorganization energies in the dimer are the same
[Man08]. We therefore concentrate on a dimer in which the one dipole forbidden
local state is characterized by a large reorganization energy and a zero transition
dipole moment (playing thus a role of the CT state), and the second state is
optically allowed, characterized by a moderate reorganization energy (playing a
role of an excitonic state). Due to the resonance interaction between these two
excited states, we observe two peaks in the absorption spectra, which shift as
function of the system parameters and various approximations discussed.

5.1 Theory

5.1.1 Basic Principle

Let us introduce a different separation of the total Hamiltonian H, Eq. (1.9), in
this section. We define

HJ =
Ne∑
m=1

Ne∑
n=1

Jnm(|em〉〈en|+ |en〉〈em|)(1− δmn)

+
Nf∑
m=1

Nf∑
n=1

Jfnm(|fm〉〈fn|+ |fn〉〈fm|)(1− δmn) , (5.1)

H0 = H −HJ (5.2)

the corresponding Liouville superoperators LJ and L0, evolutions operators UJ(t)
and U0(t), and superoperators UJ(t) and U0(t). We will start with the closed
system, whose evolution superoperator is a solution of the Liouville equation

d

dt
U(t) = i(L0 + LJ)U(t) . (5.3)
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The reason for separation of L into L0 and LJ is that for the case LJ = 0, we can
solve the problem with the bath exactly via the cumulant expansion. Provided
there is initially no entanglement between the system and the bath, we can write
U(t) as a time-ordered exponential using time-dependent perturbation theory

U(t) = U0(t)
[
1− i

tˆ

0

dτ L(I)
J (τ)+

+ i2
tˆ

0

dτ

τˆ

0

dτ ′ L(I)
J (τ)L(I)

J (τ ′) . . .
]

(5.4)

The interaction picture is taken with respect to the U0(t), i. e. L(I)
J (t) ≡

U †0(t)LJU0(t).

The proposed stochastic scheme is the following: We generate trajectories,
where system exhibits random jumps between projectors on electronic states on
Liouville space of electronic states. The jumps are generated in such way that
they reconstruct the action of electronic J-coupling, i. e. of LJ . Between the
jumps, the system evolves according to U0(t). We introduce a time discretization
of the time axis into time intervals ∆t. The model is exact in the limit ∆t→∞.
In every time step ∆t, there is a probability Jij ∆t/~ of the jump between states
|ei〉〈ek| → |ej〉〈ek| and the same probability of the jump |ek〉〈ei| → |ek〉〈ej|. In
addition to the time evolution according to U0(t), the trajectory weighting factor
is multiplied by a complex number ϕc, which we will call “coherent factor” (CF)
further on in the text. The coherent factor assures the correct stochastic unraveling.
For each jump between bra-states, the trajectory gets a factor of +i, while for a
jump between ket-states, it gets a factor of −i. Hence

ϕc = iNbra(−i)Nket , (5.5)

where Nbra and Nket are the numbers of the jumps between bra-states and ket-
states in the given trajectory, respectively.

If we introduce jump superoperators as

Jbra,i→j• = |ej〉〈ei|•, (5.6a)

Jket,i→j• = •|ei〉〈ej|, (5.6b)

we can describe a trajectory with N jumps in times t1, . . . , tN by a sequence of
jumps J1̃, J2̃, . . . , JÑ , where every index k̃ should be replaced by “details” of
the kth jump, i. e. it should specify if it is a jump in bra or ket vector, and it
should state between which of the states the jump occurs. The total evolution
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superoperator can be then written as

U(t) = 1
Ntr

Ntr∑
n=1

ϕc,n U0(t− tNn)JÑn,nU0(tNn − tNn−1)

× . . .J2̃,nU0(t2 − t1)J1̃,nU0(t1 − t0). (5.7)

The index n numbers the trajectories, and Ntr is number of trajectories.

To show that Eq. (5.7) gives correct result for evolution superoperator, we will
investigate the individual terms of the expansion, Eq. (5.4). We can see that the
term “U0(t)1” is covered by trajectories with no jumps, which have the probability

p0 = Zt/∆t, (5.8)

where Z is the probability that no jump occurs in time interval ∆t. If the trajectory
starts in a projector |i0〉〈j0|, Z reads as

Z = 1−
∑
n 6=i0

Ji0n +
∑
m6=j0

Jmj0

 ∆t/~. (5.9)

The term

−iU0(t)
tˆ

0

dτ L(I)
J (τ) = −iU0(t)

tˆ

0

dτ U †0(τ)LJU0(τ)

≈ −iU0(t)
t/∆t∑
n=1
U †0(n∆t)LJU0(n∆t) (5.10)

of Eq. (5.4) is represented by trajectories with one jump at time τ = n∆t, which
constitute the individual terms of the sum in Eq. (5.10). A trajectory with one jump
evolves according to the evolution superoperator U0(t) = U i

′j
0 (t)U i

′j†
0 (τ)U ij0 (τ),

which corresponds to the time evolution in ij-th projector on electronic states for
time τ , the action of LJ which transfers the projector i′j into the projector ij and
a time evolution in this projector for time t− τ . The factor “−i” is included in
the ϕc. The probability of such a trajectory with time of the jump τ is given by

pi′j,ij = Jii′ ∆t/~ Zt/∆t−1 . (5.11)

It yields the correct ratio

pi′j,ij
p0

= Li
′j,ij
J Z−1 ≈ Li

′j,ij
J . (5.12)

The Liouvillian LJ is hence not explicitly present in the sum over trajectories, but
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it is included by proportion of trajectories with particular number of jumps, as

1
~
LJ =

∑
i,j

Jij (Jbra,i→j − Jket,i→j) .

There is also a trajectory with a jump between the projectors ij and ij′ for each
trajectory with a jump from ij to i′j. It comes from the second term of the
commutator, Eq. (1.54). The trajectory gets additional minus sign, and the CF is
therefore i, see Eq. (5.5). One easily verifies that trajectories with multiple jumps
reconstruct the higher order terms of the expansion, Eq. (5.4).

5.1.2 Bath Influence

For the case of a closed system, the superoperators U0(t) in Eq. (5.7) are obtained
explicitly. For open systems, we perform a trace over bath DOF and the cumu-
lant expansion, and we get complex factors in terms of the lineshape functions,
Eq. (1.34). The reduced evolution superoperator can then be written as

TrB U(t) = 1
Ntraj.

Ntraj.∑
n=1

Cnϕc,n US(t− tNn)×

JÑn,nUS(tNn − tNn−1) . . .J1̃,nUS(t1 − t0) . (5.13)

The factor
Cn = TrB

{
U ÑnB (tNn − tNn−1) . . .U 1̃

B(t1 − t0)weq
}

(5.14)

can be evaluated analytically using second order cumulant expansion in a manner
similar to the evaluation of non-linear response functions (see e. g. [Muk95]).

Let us illustrate the procedure on the case with two jumps, one on the bra-side,
〈g| → 〈ei|, in time t0 and the other on the ket-side, |g〉 → |ej〉, in time t1. The
factor (5.14) then yields

C = TrB{U e
j (t− t1)U g(t1 − t0)weqU

e†
i (t− t0)} (5.15)

in the Hilbert-space representation. By proper rearranging of the terms, one
can distribute the bath evolution operators into pairs U e

n(t)U g†(t), U e†
n (t)U g(t),

U g(t)U e†
n (t) or U g†(t)U e

n(t) and obtain

C = TrB{U g(t− t0)U e†
i (t− t0)U e

j (t− t1)U g†(t− t1)weq} . (5.16)

This can always be done provided the bath density matrix is stationary and
commutes with the operator U g(t). This is satisfied for the canonical equilibrium
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weq. One can write evolution equation for the pairs

d

dt
U e
n(t)U g†(t) = − i

~
U e
n(t)U g†(t)∆Vn(−t) , (5.17a)

d

dt
U e†
n (t)U g(t) = i

~
U e†
n (t)U g(t)∆Vn(t) , (5.17b)

d

dt
U g(t)U e†

n (t) = i

~
∆Vn(−t)U g(t)U e†

n (t) , (5.17c)
d

dt
U g†(t)U e

n(t) = − i
~

∆Vn(t)U g†(t)U e
n(t) (5.17d)

with use of their definitions (1.22c) and (1.22d). The procedure that leads to the
analytical solution dictates to evaluate all terms of Eq. (5.16) to the second order
in the system-bath interaction, which can be done using expansions

U e
n(t)U g†(t) = 1− i

~

tˆ

0

dτ ∆Vn(−τ)− 1
~2

tˆ

0

dτ

τˆ

0

dτ ′ ∆Vn(−τ ′)∆Vn(−τ) ,

(5.18a)

U e†
n (t)U g(t) = 1 + i

~

tˆ

0

dτ ∆Vn(τ)− 1
~2

tˆ

0

dτ

τˆ

0

dτ ′ ∆Vn(τ ′)∆Vn(τ) , (5.18b)

U g(t)U e†
n (t) = 1 + i

~

tˆ

0

dτ ∆Vn(−τ)− 1
~2

tˆ

0

dτ

τˆ

0

dτ ′ ∆Vn(−τ)∆Vn(−τ ′) ,

(5.18c)

U g†(t)U e
n(t) = 1− i

~

tˆ

0

dτ ∆Vn(τ)− 1
~2

tˆ

0

dτ

τˆ

0

dτ ′ ∆Vn(τ)∆Vn(τ ′) . (5.18d)

The alone-standing first-order terms vanish after the trace over the bath DOF,
because their mean value is zero, TrB∆Viweq = 0. The pairs of the first-order
terms that enter as cross-terms between different U gU e-pairs do not vanish and
they have an influence on the total response-function. One can collect and evaluate
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all the second-order terms that originate directly from Eqs. (5.18)

1
~2

tˆ

0

dτ

τˆ

0

dτ ′ TrB∆Vn(−τ ′)∆Vn(−τ)weq = gnn(t) , (5.19a)

1
~2

tˆ

0

dτ

τˆ

0

dτ ′ TrB∆Vn(τ ′)∆Vn(τ)weq = gnn(−t) , (5.19b)

1
~2

tˆ

0

dτ

τˆ

0

dτ ′ TrB∆Vn(−τ)∆Vn(−τ ′)weq = gnn(−t) , (5.19c)

1
~2

tˆ

0

dτ

τˆ

0

dτ ′ TrB∆Vn(τ)∆Vn(τ ′)weq = gnn(t) . (5.19d)

Similarly, one can collect the ones that originate from the first order terms of
different U gU e-pairs

1
~2

t1ˆ

0

dτ

t2ˆ

0

dτ ′ 〈∆Vm(τ)∆Vn(τ ′)〉 =

δmn[gmm(t1) + gmm(−t2)− gmm(t1 − t2)] , (5.20a)

1
~2

t1ˆ

0

dτ

t2ˆ

0

dτ ′ 〈∆Vm(τ)∆Vn(−τ ′)〉 =

δmn[−gmm(t1)− gmm(t2) + gmm(t1 + t2)] , (5.20b)

1
~2

t1ˆ

0

dτ

t2ˆ

0

dτ ′ 〈∆Vm(−τ)∆Vn(τ ′)〉 =

δmn[−gmm(−t1)− gmm(−t2) + gmm(−t1 − t2)] , (5.20c)

1
~2

t1ˆ

0

dτ

t2ˆ

0

dτ ′ 〈∆Vm(−τ)∆Vn(−τ ′)〉 =

δmn[gmm(−t1) + gmm(t2)− gmm(−t1 + t2)] . (5.20d)

Here, we assumed that the bath operators on different sites are completely
uncorrelated. After this procedure, the Eq. (5.16) is written as a sum of lineshape
functions

C = [−gii(t0 − t)− gjj(t− t1)](1− δij)− δijgii(t0 − t1) . (5.21)

The last step is application of the Magnus cumulant expansion. The function
(5.15) is trace over product of operator exponentials. We assume ansatz in which
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it can be written as an exponential of the lineshape functions. If (some) function
f(x) can be written as an expansion

f(x) = a0 + a1x+ a2x
2 + . . . (5.22)

or as an expansion

f(x) = exp
(
A0 + A1x+ A2x

2 + . . .
)
, (5.23)

there is a unique correspondence between the coefficients ai and Ai. We use this
correspondence to obtain exponential from the second-order expression (5.21). If
only second-order terms are present, trivially A2 = a2 and Eq. (5.21) yields

C = exp ([−gii(t0 − t)− gjj(t− t1)](1− δij)− δijgii(t0 − t1)) . (5.24)

Intuitively, it can be understood as a proper resummation of the perturbation
series that fixes its asymptotic behavior. For Gaussian processes for which only
the second-order correlation functions are non-zero, this procedure leads to an
exact result [Muk78].

5.1.3 Some Numerical Considerations

We described the basic principle of the method in the previous section, and we
showed that it is equivalent to the time evolution via the expansion, Eq. (5.4).
The sum over trajectories gives the evolution superoperator U(t) in some fixed
time t. U(t) is, however, calculated up to a normalization constant, which depends
linearly on the number of trajectories and according to Eq. (5.8) also on time.
We would like to generate trajectories to a maximum time tmax, and use them to
evaluate U(t) for all times t < tmax in such a way that the trajectories are not
generated for each time independently. One possibility is simply to use scaling of
the normalization, Eq. (5.8), for times t < tmax of every trajectory. However, for
technical reasons, we use a different way. We include the trajectory in summation
only at times t for which tLJ < t < tmax, where tLJ is the time of the last jump
in the trajectory, and we ignore the trajectory in evaluation of the times t < tLJ .
This also leads to the correct result, because the ratio of the trajectories that
have a jump in the interval tLJ < t < tmax to the total number of trajectories is
proportional to the scaling of normalization factor Eq. (5.8) with time

phas jumps in (tLJ,tmax)

pall
= Z(tmax−tLJ)/∆t. (5.25)

Ignoring trajectories at t < tLJ times thus provides the correct normalization.
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5.1.4 Connection to the Feynman-Vernon Influence Func-
tional

The connection can be drawn between the described method and the well-known
Feynman-Vernon influence functional [Fey63, Gra88]. Similarly to Eq. (5) in
Ref. [Mak95], the path integral for the time evolution of a reduced density matrix
can be written in the time-discretised form on a Hilbert space of a finite dimension

ρ(s′′, s′; t) =
∑
s+

0

∑
s+

1

· · ·
∑
s+
N−1

∑
s−0

∑
s−1

· · ·
∑
s−N−1

〈s′′|e−iHSJ∆t/~|s+
N−1〉 . . . 〈s+

1 |e−iHSJ∆t/~|s+
0 〉

× 〈s+
0 |ρS(0)|s−0 〉×

〈s−0 |eiHSJ∆t/~|s−1 〉 . . . 〈s−N−1|eiHSJ∆t/~|s′〉

I(s+
0 , . . . , s

+
N−1, s

′′, s−0 , . . . , s
−
N−1, s

′; t) . (5.26)

Here HSJ = HS +HJ , ρS(0) is the initial system reduced density matrix and s+
i ,

s−i , s′, s′′ number states from the system’s Hilbert space. The sums run through
the whole Hilbert space of the system. The time is discretized into N steps of
size ∆t. The influence functional has a form

I(s+
0 , . . . , s

+
N−1, s

′′, s−0 , . . . , s
−
N−1, s

′; t)

= TrB[e−i〈s′′|HBSB |s′′〉∆t/2~e−i〈s
+
N−1|HBSB |s

+
N−1〉∆t/~

× . . . e−i〈s
+
0 |HBSB |s

+
0 〉∆t/2~weqe

i〈s−0 |HBSB |s
−
0 〉∆t/2~

× . . . ei〈s
−
N−1|HBSB |s

−
N−1〉∆t/~ei〈s

′|HBSB |s′〉∆t/2~] , (5.27)

where HBSB = HB +HS−B.
Our method, to which we will refer as to stochastic unraveling of resonance

coupling (SURC) method in the rest of this work, relies on an approxima-
tion of the expression e−iHSJ∆t/~ in the Eq. (5.26) using the Trotter expansion
e−i(HS+HJ )∆t/~ ≈ e−iHS∆t/~e−iHJ∆t/~. This expression after further approximation
yields

e−iHSJ∆t/~ ≈ e−iHS∆t/~∑
rs

(
δrs −

i

~
Jrs∆t

)
|r〉〈s| . (5.28)

If the path integral was to be performed without any importance sampling at
this point, at each timestep, we would have trajectories that jump between the
states |r〉 and |s〉 and gain factor iJrs∆t/~ and those that stay in the same
state |r〉 = |s〉 and gain factor “1”. Trajectories with too many jumps, however,
tend to cancel each other. The SURC can thus be viewed as an importance
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sampling in which we prefer the trajectories with less jumps by factor Jrs∆t/~,
and we increase correspondingly the phase change if the jump occurs. This allows
us to trivially perform most of the summations in Eq. (5.26), because terms
〈s−i |eiHSJ∆t/~|s−i+1〉 ≈ 〈s−i |eiHS∆t/~|s−i+1〉δs−i s−i+1

for most of the cases. Luckily, our
influence functional has a particularly simple form: If there is a sequence of
consecutive states |si〉, |si+1〉,. . . , |sn〉, for which |si〉 = |si+1〉 = · · · = |sn〉, all
factors with indices between (i+ 1) and (n− 1) can be expressed as one factor
in terms of the lineshape functions and the states can be excluded from the
expression for the influence functional.

5.2 Numerical Results

In this section, we study the dynamics of optical coherences of the density matrix
of a molecular dimer in order to test the precision and the numerical stability of
our method. We will demonstrate how the SURC works for a simple system with
no bath, i. e. the case

T = Vg = V e
n ({Q}) = V f

n ({Q}) = 0 (5.29)

of the total Hamiltonian (1.9), and for an exactly solvable system with a simple
model of bath. We also calculate absorption spectra of a model dimer with
full harmonic bath and compare the results obtained by this method with those
obtained with the full and secular TL-QME (1.84) and with the HEOM.

First, we demonstrate that the method correctly reproduces coherent quantum
dynamics. We set the same excitation energies for both molecules ε1 = ε2 =
104 cm-1 and a non-zero resonance coupling J = 50 cm-1. The bath is not present,
Eq. (5.29), and the dynamics can therefore be solved exactly. We calculate the
element Ue1g,e1g(t) of the evolution superoperator, and we compare the exact
dynamics with the dynamics obtained by SURC. The results are presented in
Fig. 5.1. We present the results of three runs of SURC, each of them performed
with 108 trajectories. SURC dynamics is very close to the exact one. At longer
times, SURC runs start to differ from the exact solution and the convergence
gets worse. The numerical noise does not allow calculation to times longer than
approximately ~/(2πJ).

To show that the SURC method is exact also for an open system with harmonic
bath, we calculate element Ue1g,e1g(t) of the evolution superoperator for a molecular
dimer with simple bath that allows exact solution of the model. It is represented
by a single undamped harmonic oscillator, EGCF (1.41) for each molecule. In the
SURC calculation, harmonic oscillators are treated implicitly by EGCF, Eq. (1.41).
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Figure 5.1: “Optical coherence” element Ue1g,e1g(t) of the evolution superoperator
of a molecular homodimer in no contact with bath. The site and resonance
interaction energies are ε1 = ε2 = 104 cm-1, J = 50 cm-1, and the frequency
104 cm-1 is subtracted from the plot. The red lines correspond to the explicit
exact solution of the dynamics, black lines represent the dynamics calculated by
SURC using 108 trajectories. Full lines correspond to the real part and dashed
lines to the imaginary part.
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Figure 5.2: “Optical coherence” element Ue1g,e1g(t) of the evolution superoperator
of a molecular homodimer coupled with one harmonic oscillator per site. The
site energies and the reorganization energies are ε1 = ε2 = 104 cm-1, λ1 = λ2 =
500 cm-1, the oscillator frequencies are ω1 = ω2 = 500 cm-1, and the frequency
104 cm-1 is subtracted from the plot. The resonance interaction energy J has
values of 50 cm-1, 100 cm-1, 150 cm-1, 200 cm-1 in plots A), B), C) and D). The
red lines correspond to the explicit exact solution of the dynamics, black lines
represent dynamics by SURC using 108 trajectories. Full lines correspond to
the real part and dashed lines to the imaginary part. Temperature of the initial
condition is T = 100 K.
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This calculation is compared in Fig. 5.2 with the exact explicit solution. The
calculated system is a homodimer with parameters ε1 = ε2 = 104 cm-1, λ1 = λ2 =
500 cm-1, ω1 = ω2 = 500 cm-1 and the temperature of initial condition, Eq. (1.73),
equal to 100 K. We performed four calculations for values of J = 50 cm-1,
100 cm-1, 150 cm-1 and 200 cm-1. We can see that the correspondence of the
exact solution with the SURC solution is very good. The time up to which we
can calculate is inversely proportional to J .

Let us now compare the absorption spectra calculated by SURC with other
frequently used theories. We use a dimer with parameters ε1 = 9600 cm-1, ε2 =
10000 cm-1, λ1 = 100 cm-1, λ2 = 1000 cm-1, τc,1 = τc,2 = 100 fs. The big difference
in reorganization energies is typical in situations where the molecules have very
different surroundings (e. g. protein envelope and water) or for systems with both
excitonic and charge transfer states, as discussed in the Introduction. Only the
site 1 has non-zero transition dipole moment, since the site 2 represents a CT state.
The length of the dipole moment is arbitrary since it only changes normalization
of the spectra. The Fig. 5.3 shows absorption spectra in three cases: J = 0 cm-1,
100 cm-1 and 300 cm-1. For J = 0 cm-1, this is a problem of non-interacting
monomers which is exactly solvable [Dol08, Man11], and all theories give the same
result. With a gradual increase of J , we see an increase of the excitonic splitting,
noticeable as a shift of the higher of the peaks (lower transition frequency) to the
red. The results of full TL-QME and SURC calculations are similar, while the
secular approximation gives an exaggerated peak splitting. The HEOM, which is
considered an exact theory in this regime of parameters, is in very good agreement
with the SURC method. The Fig. 5.5A plots the positions of the lower frequency
peak for the four theories and quantifies the difference in its shift with J . Already
here, we can conclude that the full TL-QME captures the decrease of the excitonic
splitting with respect to the excitonic basis surprisingly well.

In Fig. 5.4 we plot the temperature depentdence of the absorption spectra
for the same model dimer. Here, we can notice that the SURC is in nearly
perfect match with the HEOM, and that the full TL-QME also captures the
right tendency. We can notice a shift of the lower frequency peak to higher
frequencies with increasing temperature. This demonstrates an increasing dynamic
localization by the bath with increasing temperature. The secular TL-QME gives
opposite peak shift with respect to the other theories. This shift is caused by the
slight temperature dependent changes in the lines shape, because the transition
frequencies remain the same for all temperatures in the secular TL description.
For lower temperatures, we can notice a difference between the SURC and full
TL-QME in the width of the wider peak. With increasing temperature, these two
theories also increasingly differ in the lower frequency peak position, as is shown
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Figure 5.3: Absorption spectra of a molecular homodimer coupled to an over-
damped harmonic bath, EGCF (1.47), calculated by A) full TL-QME, B) sec-
ular TL-QME, C) SURC and D) HEOM. The parameters are ε1 = 9600 cm-1,
ε2 = 10000 cm-1, λ1 = 100 cm-1, λ2 = 1000 cm-1, τc,1 = τc,2 = 100 fs and
T = 300 K. Absorption spectra are calculated for J = 0 cm-1, J = 100 cm-1,
J = 200 cm-1 and J = 300 cm-1.
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Figure 5.4: Temperature dependence of the absorption spectra of a molecular
homodimer coupled to an overdamped harmonic bath, EGCF (1.47), calculated
by A) full TL-QME, B) secular TL-QME, C) SURC theory and D) HEOM. The
parameters are ε1 = 9600 cm-1, ε2 = 10000 cm-1, λ1 = 100 cm-1, λ2 = 1000 cm-1,
J = 300 cm-1 and τc,1 = τc,2 = 100 fs. Absorption spectra are calculated for
temperatures ranging from 100 K to 400 K. Figure D) shows the change of the
left peak frequency with temperature for all three aforementioned theories.
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Figure 5.5: Positions of the maxima of the lower frequency peak of the spectra
for A) resonance coupling dependence (Fig. 5.3) and B) temperature dependence
(Fig. 5.4).
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on Fig. 5.5B. The nearly perfect match of SURC and HEOM gets worse at lower
temperatures, which is caused by employing the high-temperature approximation
(HTA) [Ish09c] of Eq. (1.47) in the HEOM case:

CHTA
mn (t) = 2λ

β

(3Λ2 − ν2
1)e−Λt − 2Λδ(t)
Λ2 − ν2

1
δmn

− i~λΛδmne−Λt , (5.30)

which requires ~βΛ < 1. The HTA extends the range of validity of HEOM towards
lower temperatures while at the same time it preserves an exponential time-decay
the correlation function. This is essential for constructing the reduced hierarchy
in a computationally efficient manner and ties HEOM to specific forms of the
spectral density. Arbitrary spectral densities and lower temperatures are readily
implemented in SURC using the exact EGCF, whereas the treatment by HEOM
requires a decomposition of the spectral density into shifted peaks [Tan94, Kre12].

In its present form, the SURC is limited to short time evolution due to the
dynamic sign problem. For the cases discussed here, the HEOM implementation
on massively parallel graphics processing units (GPU-HEOM) [Kre13] exceeds the
SURC implementation in speed. However, the SURC is also massively paralleliz-
able. Moreover, it has minimal memory requirements independent of the system
size and its computational cost does not increase with the complexity of the EGCF
used. For example, the treatment of spectral densities with n shifted peaks by
HEOM [Tan94, Kre12] can be a challenging task in some cases since the HEOM
computational cost grows as 1

2nN
(2nN+k)!
k!(2nN−1)! both in memory and CPU time, where

N is the number of sites and k is the Hierarchy depth required for convergence.
The SURC may therefore offer advantage over the HEOM for larger systems
with more involved spectral densities, or serve as a good check of convergence for
HEOM.
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CONCLUSION

In this thesis, we have focused on the problems of relaxation, energy transfer
and decoherence in the photosynthetic molecular aggregates. Motivated by the
fast progress in the ultrafast non-linear spectroscopy, we followed a research
program that aims to improve the description of the photo-induced dynamics
of molecular aggregates. Generally, there is a lack of theories able to correctly
describe the relaxation, energy transfer and decoherence induced by the coupling
of the molecular aggregate to the phonon bath on the sub-picosecond timescales
probed by the non-linear spectroscopic experiments. This makes this area of
research very interesting. We have centered the discussion around three related
problems: Firstly, we studied effects of the Markov and the secular approximations
on the coherence lifetime and energy transfer in the time local and non-local
theories of second-order in the system-bath coupling. Secondly, we have improved
the description of the bath correlations between the intervals of the second-
order photo-induced response function that were treated by construction of a
new quantum master equation derived in the formalism of parametric projection
operators. And thirdly, we developed the new stochastic method based on the
unraveling of the resonance-coupling by the cumulant expansion.

Summary of Work Done

The first part of the work highlights the importance of the non-secular effects to
the question whether the energy transfer in the photosynthetic systems can be
enhanced by the presence of the quantum coherence. Such enhancement would be
essentially a non-secular effect. The discussion started together with the surprising
discovery of the long coherence lifetime in the FMO complex [Eng07]. Now, certain
part of the scientific community accepts the enhancement of the energy transfer
efficiency by the quantum coherence as an established fact [Bal11, Ved11], although
no positive evidence to support such claims is available [Man13a]. Our results
indicate that the non-secular effects seem rather small, which agrees with the results
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of other authors [Pan11]. Further, our results indicate that among the models of
second-order in the system-bath coupling, (and within the range of parameters we
investigated), the time local equations predict too short lifetime of the electronic
coherence in comparison to the lifetime of oscillations in experiments measured on
most photosynthetic molecular aggregates [Lee07, Cal09, Mer09, Col10, Har12]
as well as in comparison to the results of the hierarchical equations of motion
[Ish09b, Zhu11, Kre12]. The time non-local equations predict wider range for
the coherence lifetime depending on the bath correlation time and they are thus
consistent with the results both of the hierarchical equations of motion and the
experimental data. They also grant stability with respect to the breakdown of
positivity typical for the time-local equations. The lifetime observed in the FMO
complex [Eng07] is longer than a picosecond and it is thus not well explained by
the TNL model we investigated, nor by the non-perturbative theories.

In the second part, we followed the result of [Man12] that the third and the
second order response of a multilevel system cannot be completely evaluated by
propagating reduced density matrix by the equations of motion derived using a
single projection operator. Such treatment would inevitably neglect correlations
between the time evolution of the bath during the neighboring intervals of the
non-linear response function. We presented the parametric projector quantum
master equation that approximately accounts for these correlations in the second
interval of the second-order response function. We showed that in the absence of
the resonance coupling the method yields an agreement with the result obtained
by the second order cumulant method. We confirmed by numerical simulations
that for different delays τ between the excitation pulses, distinct dynamics of
both excited state populations and electronic coherence occurs, in the presence
of environmental degrees of freedom with finite bath correlation time and in the
presence of intra-molecular vibrations. The two-dimensional Fourier transformed
spectroscopy sees in these cases some averaged dynamics.

The aforementioned investigation of the non-secular effects is also an important
source of motivation for the third research topic presented in this thesis. We
proposed a method using a stochastic unraveling of the resonance coupling (SURC)
by the cumulant expansion. The method is massively parallelizable, allows the use
of arbitrary energy-gap correlation function, and it is exact for Gaussian harmonic
baths, which we tested by comparing it with exactly solvable model of a dimer
with single vibrational coordinate on both sites. The method was used to evaluate
the optical coherence dynamics in a model dimer, where one site represents a
normal electronic state and the other represents a charge-transfer state with large
reorganization energy and zero transition dipole moment. Unlike in the systems
investigated in the first part of the thesis, the non-secular effects play an important
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part here and the effect is clearly visible already in the dimer absorption spectrum.
We should stress here that in this case, the non-secular effects are not connected
to the energy transfer, but only to the mixing of the optical coherences. Detailed
and precise method is required to describe these non-secular effects properly. We
investigated the dependence of absorption spectrum of the dimer on temperature
and resonance coupling. Comparison with full time-local quantum master equation
leads us to a conclusion that despite the well-known problems of the time-local
approach, such as the positivity breaking under some parameters, it describes
the non-secular effects between the optical coherences rather well for the used
range of parameters. On the other hand the failure of the secular theory clearly
shows the importance of the non-secular effects in the system. The match with
the hierarchical equations of motion is very good, which also serves as a good
benchmark of both theories.

Outlook

The fact that neither the TNL second-order quantum master equations nor the
hierarchical equations of motion predict the correct lifetime of oscillations in the
2DES of the FMO probably indicates that the observed oscillations are either
not entirely caused by the electronic coherence or that the FMO complex is very
special in some other way. (For example by presence of strong bath correlations
between different chromophores [Pan10].) Although the atomistic simulations
do not indicate any spatial correlations between the baths of the Chlorophyll
molecules [Olb11], other explanations exist as well. It was proposed that although
the purely vibrational origin of the coherence was excluded in the original article
[Eng07], the superposition of the electronic and vibrational states can correctly
explain the effect [Chr12, Che13a, Tiw13]. The electronic states enhance the
intensity of the resonant vibrational states that provide the prolonged lifetime
typical for the coherence between the vibrational DOF. The increase of the energy
transfer hypothesis still remains an ungrounded speculation.

The proposed approach using parametric projection quantum master equation
for description of the bath correlations between the intervals of the second-order
response function has some remarkable properties. While other theories, such as
the hierarchical equations of motion, are able to describe these bath-correlation
effects as well, they are usually numerically very costly. Some molecular aggregates
relevant in the primary processes of photosynthesis, such as the FMO, already
present great challenge for them [Hei12]. The proposed approach offers a possibility
of calculations at very low numerical cost, which could allow calculations for bigger
systems. Also, the extension of the method to the third-order response function
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necessary for the calculation of the 2DES experiments, presents very promising
area for further research. Such approach presents certain challenges: While in the
first interval of the response function, the optical coherences mix only due to the
non-secular effects and they mostly remain in single Liouville pathway, in its second
interval, the populations are significantly transferred due to relaxation. Therefore,
the populations do not stay within single Liouville pathway approximations used
in derivation of the parametric QME for the second interval of the response will
probably not be well-satisfied.

The SURC method is very promising as well. It can be easily used with a bath
specified by an arbitrary energy gap correlation function, which is, for example,
numerically very costly for the hierarchical equations of motion. It has almost no
memory requirements and allows massive parallelization. In principle, it can be
also extended to allow the description of the laser-pulse excitations and therefore
the calculation of the third-order response function, the core object probed by
the non-linear spectroscopy. However, there is currently an important difficulty
arising from the so-called dynamic sign problem, a numerical instability caused
by the summation of many complex-valued factors with different phases, which
prevents useful calculation in times longer that few hundreds of femtoseconds.
There is a hope that this instability could be lifted by performing the unraveling
not in the site basis, but for example in the excitonic basis, where no additional
stochastic jumps will be required after the thermalization is reached. The limited
amount of jumps would significantly improve the dynamic sign problem, which
makes further development of the SURC method promising area for the future
work.
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LIST OF ABBREVIATIONS

2D Two-dimensional

2DES Two-dimensional electronic spectrum

AK Argyres-Kelly (projector), Eq. (1.63)

CF Coherent factor, Eq. (5.5)

CT Charge transfer

DOF Degree of freedom

EGCF Energy-gap correlation function

ESA Excited state absorption

FMO Fenna-Matthews-Olson photosynthetic pigment-protein complex

FWM Four-wave mixing

GSB Ground-state bleach

GSM Ground-state manifold

HEOM Hierarchical equations of motion

HTA High Temperature Approximation, Eq. (5.30)

OQS Open quantum system

RDM Reduced density matrix

RF Response function

SBC System-bath coupling

SE Stimulated emission
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SURC Stochastic unraveling by resonance coupling

QME Quantum Master Equation

TL Time-local

TNL Time-nonlocal
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