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Abstract

The main objective of this thesis is to analyze whether traded volume increases

predictive power of volatility. We are mostly focused on Garman-Klass volatil-

ity estimator, which is more efficient than squared returns. Both univariate

(AR, HAR, ARFIMA) and multivariate models (VAR, VAR-HAR) are used

to find out if traded volume improves volatility forecasting. Furthermore,

GARCH(1,1) both with and without traded volume is carried out and fore-

casted. All these methods are estimated on a basis of rolling window and

during each step 1-day ahead forecast is computed. Final assessment is based

on MAPE, RMSE and Mincer-Zarnowitz test of the out-of-sample forecasts,

which are compared with the realized volatility. It turns out that traded vol-

ume slightly improves predictive power of the scrutinized models in case of

FTSE 100 and IPC Mexico, contrary to Nikkei 225 and S&P 500 when a de-

crease of the predictive power is detected. Moreover, we observe that only

HAR and VAR-HAR models are able to produce an unbiased forecast. As the

evidence of the improvement is not conclusive and to maintain model parsi-

mony, HAR model fitted by Garman-Klass volatility appears to be the best

alternative in case of missing the realized volatility.
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Abstrakt

Ćılem této bakalářské práce je zhodnotit, zda-li obchodované množstv́ı zlepšuje

predikčńı schopnosti volatility. Převážně se zaměřujeme na Garman-Klass̊uv

odhad volatility, který je vydatněǰśı než čtvercové výnosy. Jak jednorozměrné

modely (AR, HAR, ARFIMA) tak v́ıcerozměrné modely (VAR, VAR-HAR)

jsou použity k zjǐstěńı, zda-li obchodované množstv́ı zlepšuje predikci volatility.

Dále je použit GARCH(1,1), ke kterému je také přidáno obchodované množstv́ı,

a následná predikce je poč́ıtána. Všechny tyto modely jsou odhadovány na

základě posuvného okna, kdy během každého posunu je vypoč́ıtána jednodenńı

předpověd’ volatility. Konečné zhodnoceńı je založené na MAPE, RMSE a

Mincer-Zarnowitz testu predikčńıch hodnot poměřených s realizovanou volatil-

itou. Ukazuje se, že obchodované množstv́ı zlepšuje predikčńı schopnosti v

př́ıpadě FTSE 100 a IPC Mexico a zhoršuje predikčńı schopnosti v př́ıpadě

Nikkei 225 a S&P 500. Nav́ıc je zjǐstěno, že pouze HAR a VAR-HAR modely

jsou schopny produkovat nevychýlené předpovědi. Jelikož prezentované d̊ukazy

zlepšeńı predikce nejsou přesvědčivé a kv̊uli zachováńı jednoduchosti modelu,

HAR model obsahuj́ıćı Garman-Klass̊uv odhad volatility se jev́ı jako nejlepš́ı

varianta v př́ıpadě nedostupnosti realizované volatility.
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Chapter 1

Introduction

Volatility, as a measure of price variability over some time period (Taylor 2005),

is a key variable in several areas of finance such as option pricing, risk manage-

ment or portfolio selection. Measuring volatility can become very tricky as it is

not directly observable variable (we call it latent variable). Therefore, several

basic proxy variables such as squared or absolute returns were developed. Since

Black & Scholes (1973) introduced formula for option pricing, where volatility

is one of the inputs, both researchers and practitioners started to scrutinize its

estimation and spent past decades developing more efficient estimators.

The efficiency is crucial in several ways. First, if we want to determine the

relationship between volatility and some other variable such as macroeconomic

announcement or trading volume, its inaccurate estimation can lead to mis-

leading conclusions. Second, it is supposed that the more efficient estimator

contains better information set on the future volatility. Third, the evaluation

of out-of-sample forecast is based on comparison with volatility proxy and if

this proxy is not efficient, final evaluation of the scrutinized models can lead to

the wrong model selection. Andersen & Bollerslev (1998) show that traditional

ARCH and stochastic volatility estimators does not perform as bad as was

considered when the comparison is made with the more efficient 5-minute re-

alized volatility instead of the squared returns. Furthermore, Hansen & Lunde

(2006) use both real and simulated data to confirm that evaluation of forecast-

ing models based on squared returns leads to inaccurate ranking and hence

extreme value estimators or realized volatility should be used. Moreover, they

emphasize that this problem arises whenever forecasts are compared with a

proxy variable.

The implied volatility is considered to have the best predictive power of
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the future volatility (Poon & Granger 2003). Besides implied volatility, many

researchers use various models fitted by realized variance, which is generally

considered as the most efficient measure of volatility. Andersen et al. (2003)

uses VAR fitted by realized volatility to outperform traditional ARCH models.

However, the problem can arise in case of lack of necessary data. First, not

all of the assets are traded through financial derivatives and hence concept of

the implied volatility is not feasible. Second, to compute the realized volatility

we have to possess intraday returns, which are mostly not publicly available

or their acquisition is very costly. Therefore, we will concentrate on one of the

most commonly used extreme value estimator developed by Garman & Klass

(1980), which uses daily open, low, high and close prices. Moreover, we will

focus on the relationship with traded volume, which is also publicly available

information for most of the financial time series.

There are several papers suggesting that volume and volatility are corre-

lated (Karpoff 1987; Harris 1987; Gallant et al. 1992; Charles et al. 1994). We

will apply both univariate (RW, AR, HAR, ARFIMA) and multivariate (VAR,

VAR-HAR) forecasting models to traded volume and Garman-Klass volatility

to reveal if the detected relationship improves the out-of-sample forecasts. Fur-

thermore, GARCH(1,1) both with and without traded volume will be estimated

and compared with the forecasted Garman-Klass estimator. The final evalua-

tion and appropriateness of traded volume will be based on RMSE, MAPE and

Mincer-Zarnowitz test. As a volatility proxy we will use the realized volatility,

which is publicly available for the highly traded stock indices. All of this re-

search will be made on the basis of rolling window, which will provide insight

how the relationship between volume and volatility differs across time.

The thesis is organized as follows: Chapter 2 focuses on literature review

and compile the research on this topic, Chapter 3 provides explanation of the

methodology used to assess the relationship, Chapter 4 describes our data,

Chapter 5 presents results together with the out-of-sample evaluation and

Chapter 6 concludes the whole thesis.



Chapter 2

Literature review

Extreme value estimators utilize historical daily open, low, high and close prices

reported by many financial sources. The first estimator introduced by Parkin-

son (1980) takes into account open and close prices. He proves that his es-

timator provides better results in comparison with the traditional measures

such as the squared returns. Other estimators using the range prices are de-

veloped by Garman & Klass (1980), Rogers & Satchell (1991) and Yang &

Zhang (2000). Several papers show that extreme value estimators are multiple

times more efficient than traditional estimators (Wiggins 1991; Rogers et al.

1994; Bali & Weinbaum 2005). Taylor (2005) points out that Parkinson esti-

mator is accurate approximately as the sum of five intraday squared returns

and Garman-Klass estimator is accurate as the sum of eight squared intraday

returns. The problem with the extreme value estimators is the use of daily low

and high prices, which tends to be sensitive to outliers. Hence, 5% quantiles

might be used instead of the highest and lowest price. However, if we had the

quantiles, we could already use the realized measures.

There are two major theoretical approaches explaining relationship between

stock price changes and traded volume. The first theory called Mixture of Dis-

tributions Hypothesis (MDH) is introduced by Clark (1973) and further de-

veloped by Epps & Epps (1976) and Tauchen & Pitts (1983). It assumes that

arrival of new information forms the contemporaneous relationship among vari-

ables. After release of a new information both volume and volatility increase

since investors renew their positions on what they believe is the new true value

of their assets. It entails that price changes are sampled from mixture of con-

ditional distributions, where as mixing variable is considered to be the rate

at which information appears in the market. In this case, volume is a proxy
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variable for the information arrival. The other proxies can be, for example,

number of transactions or number of information announcments.

The second theoretical framework called Sequential Information Arrival Hy-

pothesis (SIAH) is introduced by Clark (1973) and further developed by Jen-

nings et al. (1981). It states that new information arrival is spread sequentially

to traders. Therefore, only the well informed traders can adjust their position.

This results in a series of sequential equilibria until the information is known

to each trader and final equilibrium is reached. Consequently, the sequential

arrival of information from trader to trader generates the sequential movements

of trading volume and price movements, both increase as the rate of arrival of

information to market increases.

Karpoff (1987) is one of the first who provides an extensive summary on

the positive relation between stock volatility (measured both as absolute and

squared returns) and trading volume. Harris (1987) confirmed the positive cor-

relation between volume and changes in squared returns, Gallant et al. (1992)

and Charles et al. (1994) find positive relationship between volume and volatil-

ity. Moreover, they emphasize that number of trades is even more important

and has higher influence on volatility. Bessembinder & Seguin (1993) find re-

lationship between volume and absolute returns and show that it is possible

to extract even more information from the volume when it is decomposed into

expected and unexpected part. They state that the unexpected volume has

significantly larger impact on volatility than the expected part.

Besides measuring correlation of squared returns and traded volume, we

can also observe the relationship of traded volume with conditional variance

through ARCH models. Lamoureux & Lastrapes (1990) assume trading volume

to be exogenous variable and included it in the conditional variance equation.

After implementation of the contemporaneous trading volume, GARCH effect

remains only in four out of twenty stocks, while the volume is significant in

all stocks. Futher research on volume and GARCH type models is carried out

by Kim & Kon (1994); Andersen (1996); Gallo & Pacini (2000). Most of the

studies agree on the fact that volume significantly decreases or even eliminates

the persistence in the GARCH equation. Gallagher & Kiely (2005) follow

similar pattern of their predecessors on less liquid Irish stocks and find out

that in case of low traded stock, the reduction in persistence is less conclusive.

They states that the liquidity of market plays an important role and underline

it by the fact that the stocks without significant decrease of persistence has

over twice as many days with no price change. Similar results are observed on
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the less liquid Polish market by Bohl & Henke (2003) and the Taiwan market

by Huang & Yang (2001).

Lee & Rui (2002) examine dynamic relations between stock market trading

volume and returns and find out that volume does not cause return. However,

they point out that there exist a positive relationship between trading volume

and return volatility in all examined markets. To detect causality between re-

turns, volume and volatility Vector Autoregressive model (VAR) is used. The

similar procedure with employing VAR to detect causality can be found in Chen

et al. (2001); Mestel et al. (2003); Wang (2004); Medeiros & Doornik (2006);

Pisedtasalasai & Gunasekarage (2007). Chen et al. (2001) find positive causal-

ity between trading volume and absolute returns on nine observed markets

during period from 1973 to 2000. Mestel et al. (2003) find strong contempora-

neous correlation between trading volume and return volatility. Additionally,

they show that past volatility contains information about future trading vol-

ume. American, Japanese and Chinese stock markets are scrutinized by Wang

(2004) who supports the contemporaneous correlation between trading volume

and volatility. On the contrary to preceding evidence, he further finds nega-

tive causality between volume and subsequent volatility. Medeiros & Doornik

(2006) examine Brazilian stock market Bovespa and find positive both con-

temporaneous and dynamic relationship between return volatility and trading

volume. Pisedtasalasai & Gunasekarage (2007) find evidence from emerging

markets in South-East Asia that trading volume has very limited impact on

the future dynamics of stock returns, but might contain information that is

useful for predicting the future dynamics of volatility.

All of these papers find either contemporaneous or dynamic relationship

between trading valume and volatility. However, nearly none of the above

mentioned authors show whether their models provide accurate forecast and

whether utilization of trading volume improves forecasting ability of a given

model. Moreover, they mostly use absolute or squared returns as the volatil-

ity proxy. We will try to improve the traditional procedures by implementing

more efficient Garman-Klass estimator into several predictive models. Further-

more, we will compare the predictive power of the scrutinized models with

GARCH(1,1) to find out whether Garman-Klass estimator together with vol-

ume is superior to the traditional GARCH. The influence of traded volume will

be based on the accuracy of the rolling out-of-sample forecasts.



Chapter 3

Theoretical background

This Chapter is dedicated to the methodology used throughout this thesis. The

first part is focused on different volatility estimators and the second part deals

with the models used for forecasting the Garman-Klass volatility estimator.

3.1 Volatility estimators

Realized volatility is generally deemed to be the best volatility estimator since it

actually measures the volatility as it continuously tracks the changes of price of

a given asset. However, the realized volatility is not published for all financial

assets. Therefore, one of the most efficient range estimators, Garman-Klass

volatility estimator, is used to substitute the realized volatility. In this sec-

tion, the assumptions and derivation of Garman-Klass estimator are discussed.

Moreover, traditional GARCH model is presented to further compete with the

Garman-Klass estimator. Hansen & Lunde (2006) emphasize that realized vari-

ance should be used instead of squared returns to maintain consistent ranking

of volatility models. Therefore, the realized volatility is used as volatility proxy

and hence also further presented.

3.1.1 Garman-Klass estimator

In order to find more efficient volatility estimator than the simple squared

returns Garman & Klass (1980) introduce estimator, which takes into consid-

eration open, high, low and close prices. To derive the final estimator, they

assume that a diffusion process governs security price as

P (t) = φ(B(t)), (3.1)



3. Theoretical background 7

where P represents security price, t is time, φ is a monotonic, time independent

transformation and B(t) is a diffusion process with the differential equation

dB = σdz, (3.2)

where dz is the standard Gauss-Wiener process and σ is an unknown constant

to be examined. This definition is general enough to fulfill the usual hypothesis

of the geometric Brownian motion of stock price.

There are several limitations to the proposed assumptions. First, the price

evolves discretely even if we posses high-frequency data. Second, there is cer-

tain time interval when the market is closed and the price is not observable.

Third, the price evolution does not take into consideration covariance among

securities. Finally, it is assumed that the price evolves without drift. Although

the proposed model has several pitfalls, Garman & Klass (1980) argue that the

theoretical assumptions are necessary to derive the required estimator. They

find out that discrete evolution of price causes downward bias, and as the

number of trades increases the bias decreases.

Let us denote the opening price at day t as Ot, the highest price as Ht, the

lowest price as Lt and the closing price as Ct then we can calculate open-to-

close, open-to-high and open-to-low returns as

ct = ln(Ct)− ln(Ot) (3.3)

ht = ln(Ht)− ln(Ot) (3.4)

lt = ln(Lt)− ln(Ot). (3.5)

Then, the minimum variance analytical estimator looks as follows:

σ̂2
GK,t = 0.511(ht − lt)2 − 0.019(ct(ht + lt)− 2htlt)− 0.383c2t (3.6)

Garman & Klass (1980) prove that their estimator is theoretically 7.4 times

more efficient than commonly used squared returns. Bali & Weinbaum (2005)

compare several extreme-value estimators (including squared returns) with re-

alized volatility and show that Garman-Klass estimator performs best both in

bias and efficiency across all tested estimators. The gain in bias and efficiency

against squared returns is noticeable even at weekly and monthly frequencies.

Molnár (2012) further compares several range-based estimators and GARCH
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models to show that returns normalized by adjusted1 square root of Garman-

Klass estimator follow approximately standard normal distribution. Despite

the fact that not all of the assumptions hold, the Garman-Klass estimator

appears to be the best low-frequency estimator.

3.1.2 GARCH(p,q)

Engle (1982) developed the first model capturing basic characteristics of fi-

nancial returns such as heavy-tailed distribution and volatility clustering. His

ARCH(p) model decomposes volatility into constant unconditional and time-

varying conditional part where conditional volatility is dependent on the past

information set. The basic idea is to model volatility by past squared shocks.

However, high number of the shocks is often required which might lead to im-

proper model specification and loss of degrees of freedom. Bollerslev (1986)

improves the model by adding q lags of conditional volatilities which makes

GARCH an infinite order ARCH with geometrically declining set of weights.

This extension makes the model more parsimonious which also leads to higher

usefulness in a wide range of data. The general GARCH(p,q) looks as

rt = µt + εt (3.7)

εt = zth
1/2
t , zt ∼ N(0, 1) (3.8)

ht = ω0 +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiht−i, (3.9)

where rt stands for return at time t, µt is any stationary/weakly dependent

leading process and εt is a residual term in time t distributed according N(0, ht)

and following equation (3.8) where {zt} is a sequence of iid random variables

of zero mean and variance of 1. Furthermore, ht is conditional variance at

time t which is dependent on p lags of squared residuals ε2t and q lags of

conditional variance ht. Poon & Granger (2003) suggest in their extensive

volatility comparison that GARCH(1,1) is one of the most popular models from

GARCH family. To see if the traded volume increases the predictive power

of the GARCH model, we add logarithm of traded volume into conditional

1If σ̂2
GK,t is unbiased estimator of σ2 then σ̂GK,t is not unbiased estimator of σ since

E(X2) 6= E(X)2. Molnár (2012) stresses that σ̂ =
√
σ̂2
GK,t∗1.034 should be used as unbiased

estimator.
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variance equation of the simple GARCH(1,1) as

rt = εt (3.10)

εt = zth
1/2
t , zt ∼ N(0, 1) (3.11)

ht = ω0 + α1ε
2
t−1 + β1ht−1 + δ ln (volumet−1), (3.12)

where δ ∈ R measures the influence of lagged trading volume on contempora-

neous conditional variance. We omit the mean equation µt since Cont (2001)

points out the stylized fact that autocorrelations of financial returns are insignif-

icant. Moreover, returns are heavy-tailed and not exactly normally distributed

and hence also confidence intervals of the autocorrelation function might be

misspecified and overvalued.

Bollerslev (1986) states the following conditions for GARCH(1,1) to be sta-

tionary: ω0 > 0, α1 ≥ 0, β ≥ 0 and α1 +β < 1. If the latter condition does not

hold and α1 + β = 1, then GARCH(1,1) becomes nonstationary IGARCH(1,1)

developed by Engle & Bollerslev (1986). The problem with IGARCH is that the

unconditional volatility is not defined which becomes an issue in forecasting,

since the stationary GARCH converges to its unconditional volatility (Starica

2004).

The one-step ahead forecast is computed in order to compare the perfor-

mance of GARCH with the other forecasting methods taking into consideration

logarithm of traded volume. The one-day ahead conditional variance look as

follows:

σ̂2
t+1 = E(ht+1 | It) = ω̂0 + α̂1r

2
t + β̂1ht + δ̂volumet (3.13)

Since conditional variance, squared returns and traded volume are included in

information set It available at time t, obtaining the forecast is straightforward.

3.1.3 Realized volatility

Taylor (2005) points out that daily volatility can be estimated more precisely as

the frequency of squared intraday returns increases. Realized volatility utilize

high-frequency intraday returns and therefore the information extracted from

data has superior value-added compared to the classical low-frequency data.

The concept is appealing mainly as it does not use any parametric method to

estimate volatility, but it measures volatility through the sum of N intraday
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squared returns as

σ̂2
t =

N∑
i=1

r2t,i, (3.14)

where σ̂2
t stands for realized variance and

√
σ̂2
t for realized volatility. Early ex-

amples of realized volatility can be found in Zhou (1996), Taylor & Xu (1997)

and Ebens (1999). The formalized theory together with statistical proper-

ties and poofs can be found in Andersen et al. (2002) and Andersen et al.

(2003). Bandi & Russell (2006) and Bandi & Russell (2008) emphasize that

as N → ∞ the realized variance estimator becomes biased due to microstruc-

ture noise. They study the optimal sampling and find out that 5-minute data

brings optimal trade-off between loss of information and bias of the estimator.

Furthermore, it is shown by Andersen et al. (2001), Areal & Taylor (2002) and

Andersen et al. (2003) that natural logarithm of realized volatility is approxi-

mately normaly distributed which entails that it is more useful in modeling and

forecasting. Therefore, logarithmic standard deviations of the realized variance

and Garman-Klass variance will be used throughout this thesis. Based on the

efficiency of this estimator, it will be used as the volatility proxy which will be

further compared with the forecast of Garman-Klass volatility.

3.2 Forecasting methods

We apply several forecasting methods to Garman-Klass volatility estimator and

find out whether trading volume improves results of the scrutinized models.

We begin with introducing basic models and finish with the more advanced

approaches. Finally, all the methods, including GARCH(1,1) as a benchmark,

are compared based on their MAPE, RMSE and Mincer-Zarnowitz test. All the

estimations and forecasts are carried out on the basis of rolling window when

each sample consists of 500 observations and will be moved forward by one

observation. This approach provides us with information how the performance

of each model evolves in time.

3.2.1 Random walk

Concept of random walk has been used for several decades with the major

growth in seventies of the twentieth century. The basic definition provided by

Tsay (2005) is as follows.
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A time series {pt} is called random walk if it satisfies

pt = pt−1 + εt, (3.15)

where {εt} is a white noise series. If εt has a symmetrical distribution, then pt

conditional on pt−1 has a 50-50 chance to go up or down which implies that pt

evolves unpredictably. The equation (3.15) resemples AR(1) process with the

only difference of the coefficient of pt−1 not being less than one in modulus but

being unity. It does not satisfy the weak stationary condition of AR(1) and

therefore it is often called a nonstationary unit-root process (Tsay 2005).

The model does not use any advanced technique, but only the simple idea

that the future l-step ahead forecast is the same as the todays value of pt:

E(pt+1 | pt, pt−1, . . . ) = E(pt + εt+1 | pt, pt−1, . . . ) = pt (3.16)

E(pt+l | pt, pt−1, . . . ) = E(pt+l−1 + εt+l | pt, pt−1, . . . ) = · · · = pt (3.17)

However, V ar(pt+l) = lσ2
ε diverges to infinity as l→∞. Therefore, the useful-

ness of point forecast pt+l diminishes for sufficiently large l since it can assume

nearly any real number. For the purpose of basic comparison whether Garman-

Klass volatility estimator is possible to forecast it is useful to apply the random

walk to Garman-Klass volatility estimator as

GKt = GKt−1 + εt (3.18)

and compare the forecasts with the other more advanced techniques.

3.2.2 Autoregressive model

Autoregressive process of length p express conditional expectation of rt as a

function of past values of rt−i where i = 1, . . . , p. This process is defined for

example by Tsay (2005) as

rt = φ0 + φ1rt−1 + . . .+ φprt−p + εt, (3.19)

where p is a non-negative integer and {εt} is assumed to be a white noise with

mean zero and variance σ2
ε . The condition for series {rt} to be stationary is

that all solutions of characteristic equation (3.20) of the model (3.19) must be

greater than one in mudulus.



3. Theoretical background 12

1− φ1x− φ2x
2 − . . .− φpxp = 0 (3.20)

Or the other way round, series {rt} is stationary if characteristic roots, ex-

pressed as inverses of the solutions to (3.20), are less than one in modulus.

The selection of p, number of lags, is usually based on PACF and infor-

mation criteria of whom the most used are Akaike information criterion (AIC)

(Akaike 1973) and Bayesian information criterion (BIC) (Schwarz 1978). How-

ever, we choose the p to equal 5, since the measurement of minimal information

criteria on each rolling window would be cumbersome. Our model with 5 lags

of natural logarithm of Garman-Klass volatility estimator looks as follows:

ln(GK)t = φ0 + φ1 ln(GK)t−1 + . . . φ5 ln(GK)t−5 + εt (3.21)

We use the logarithm of Garman-Klass volatility estimator rather than the

absolute values due to its normality. This problem is further described in Data

description.

3.2.3 Heterogeneous Autoregressive model

Muller et al. (1993) formulate Heterogenous Market Hypothesis which declares

that different actors in the market have different time horizons and dealing

frequencies. They support this statement by considering FX dealers on the

side of high dealing frequency, and central banks and pension funds on the side

of low dealing frequency. The different frequencies result in different reactions

of market participants to the same news. These findings are summarized and

further developed in Fractal Market Hypothesis proposed by Peters (1994).

Based on these theories, Muller et al. (1997) develop HARCH model which takes

into consideration different time horizons of market participants by aggregating

squared returns in conditional volatility equation of the classic GARCH model.

Corsi (2009) further develops this theory and divides market participants into

three categories: short-term traders with daily frequency, medium-term traders

with weekly trading frequency and long-term traders who typically rebalance

theirs positions in one month or later. He applies this theory to realized volatily

and derives the model as

RVt = α + β1RV
(d)
t−1 + β2RV

(w)
t−1 + β3RV

(m)
t−1 + εt, (3.22)
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where RV
(d)
t−1, RV

(w)
t−1 and RV

(m)
t−1 stands for 1-day, 5-day average and 20-day

average of realized volatility in time t− 1, respectively. This decomposition al-

lows to study dynamics of different volatility components. Corsi (2009) shows

on several simulations that although this simple model does not belong to long

memory models, it captures volatility persistence well and even outperforms

long memory ARFIMA process on his out-of-sample forecast. Moreover, he

shows that volatility simulated through this model exhibit leptokurtic distri-

bution in the similar way as the real data. We adjust the original model by

implementing the logarithm of Garman-Klass estimator instead of the realized

volatility. Then, the model looks as

ln(GK)t = α + β1 ln(GK)
(d)
t−1 + β2 ln(GK)

(w)
t−1 + β3 ln(GK)

(m)
t−1 + εt, (3.23)

where ln(GK)
(d)
t−1, ln(GK)

(w)
t−1 and ln(GK)

(m)
t−1 stands for 1-day, 5-day average

and 20-day average of logarithm of Garman-Klass volatility at time t − 1,

respectively.

3.2.4 Vector Autoregressive model

Vector autoregressive model is developed by Sims (1980) who originally used

it for structural inference and policy analysis on macroeconomic level. As

this model becomes popular among researchers its usefulness spreads also into

microeconomic level and finance. Its popularity stems from assumption that

everything may depend on everything and moreover all the relationships are

measured in time. For example, Tsay (2005) defines VAR(p) for multivariate

time series rt as

rt = φ0 + φ1rt−1 + . . .+ φprt−p + εt, (3.24)

where p > 0 is number of included lags, φ0 is a k-dimensional vector of inter-

cepts, φi is a k × k matrix of slope coefficients for i-th lag with k variables in

the VAR system and {εt} is a sequence of serially uncorrelated random vectors

with zero mean and covariance matrix Σ. In practice, the covariance matrix Σ

should be positive definite otherwise the dimension of rt can be reduced. The

VAR(p) model in the equation (3.24) is called the reduced-form model and it

measures dynamic dependence of rt. To derive stationarity condition we have
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to rewrite the equation (3.24) into the form as

rt − φ1rt−1 − . . .− φprt−p = φ0 + at (3.25)

(I − φ1B − . . .− φ1B
p)rt = Φ(B)rt = φ0 + at, (3.26)

where I is the k × k unity matrix, B is lag operator and Φ(B) is a matrix

polynomial of lag operators. Then the necessary and sufficient condition for

VAR(p) model in the equation (3.24) is that all roots of determinant |Φ(B) |
lay outside the unit circle.

The selection of the number of lags p is based on generalized partial autocor-

relation function described by Johnson & Wichern (2007) and the information

criteria mentioned in section 3.2.2 describing AR model. We again choose the

p to be fixed and equal 5 to measure relationship within one week.

After implementing logarithms of volume and standard deviation of Garman-

Klass estimator into VAR(5) the model looks as

ln(GK)t = φ10 +

5∑
i=1

φ1i ln(GK)t−i +

5∑
i=1

β1i ln(volume)t−i + εGKt (3.27)

ln(volumet) = φ20 +
5∑
i=1

φ2i ln(GK)t−i +
5∑
i=1

β2i ln(volume)t−i) + εvolt , (3.28)

where φ1i and β1i measure relationship between logarithm of Garman-Klass

volatility and its i-th lag and i-th lag of logarithm of traded volume. The same

logic applies for influence of φ2i and β2i on natural logarithm of traded volume.

The huge advantage of VAR methodology is that it brings two important

tools for further analysis of causality and effects between the variables, Granger

causality and impulse-response functions.

Granger causality

Granger causality is introduced by Granger (1969) and further described in

Granger (1980). This approach is commonly used to find out whether there is

any causal relationship from one variable to another variable. Considering our

VAR system of equations 3.27 and 3.28, the whole concept can be rewritten in

terms of the null and the alternative hypothesis as

H0 : β1i = 0 for all i = 1, 2, . . . , 5

H1 : β1i 6= 0 for some i = 1, 2, . . . , 5,
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where under the null hypothesis H0 logarithmic volume does not Granger-cause

logarithm of Garman-Klass volatility and under the alternative hypothesis H1

logarithmic volume does Granger-cause logarithm of Garman-Klass volatility.

The same logic also applies for reverse Granger-causality from Garman-Klass

volatility to traded volume.

Impulse Response Function

In the similar way as any autoregressive univariate process can be rewritten as

a linear function of past error terms, we can rewrite VAR(p) model into the

form as

rt = µ+ εt + Ψ1εt−1 + Ψ2εt−2 + . . . , (3.29)

where µ = [Φ(B)]−1φ0 provided that the inverse matrix exist. Coefficient

matrices Ψi can be obtained from the equation

(I − φ1B − . . .− φpB
p)(I + Ψ1B + . . .+ψpB

q) = I (3.30)

with I being the identity matrix. Tsay (2005) describes Ψi as the impulse

response function of rt since Ψi measures influence of past shock εt−i on rt.

However, εt and εt−i are correlated and hence a unit shock of εt−i has also

impact on the shock εt. Therefore, the impact of the shock to a response

variable can not be fully described by the IRF as suggested in (3.29) and

further adjustments must be performed. In order to avoid this problem, we use

orthogonalized IRFs.

3.2.5 VAR - Heterogenous Autoregressive model

As Corsi (2009) suggest using VAR model to exploit the features of both VAR

and HAR models described in the previous sections, we decide to use trading

volume as the second variable in the VAR model. We use VAR(1) model with

variables ln(GK) and ln(volume) and add the 5-day and 20-day averages to

each equation as exogenous variables. Then, the proposed model written in

matrix form looks as[
ln(GK)t

ln(vol)t

]
=

[
α1

α2

]
+

[
β11 δ11

β21 δ21

][
ln(GK)

(d)
t−1

ln(vol)
(d)
t−1

]
+

[
β12 δ12

β22 δ22

][
ln(GK)

(w)
t−1

ln(vol)
(w)
t−1

]

+

[
β13 δ13

β23 δ23

][
ln(GK)

(m)
t−1

ln(vol)
(m)
t−1

]
+

[
ε1t

ε2t

]
, (3.31)
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where ln(vol)
(d)
t−1, ln(vol)

(w)
t−1 and ln(vol)

(d)
t−1 stands for 1-day, 5-day average and

20-day average of natural logarithm of traded volume at time t−1, respectively.

3.2.6 Fractionally Integrated Autoregressive Moving Aver-

age model

The most important object in forecasting is to recognize and correctly inter-

pret the autocorrelation pattern of data. If autocorrelation function declines

relatively slowly, we can apply any of the ARMA family models. If the autocor-

relation pattern does not decline nearly at all, which is the case of random walk

model, our data suffer from nonstationarity and further adjustments such as

detrending or first differencing should be carried out (Nelson & Plosser 1982).

The classification of processes to be integrated of order zero or one stems from

the autocorrelation pattern. However, there might appear situations when au-

tocorrelation declines towards zero but the declining speed is not sufficient and

the first differencing is too much. The time series which exhibit this persis-

tency is called the long memory process. The comprehensive theory on the

long memory processes can be found in Beran (1994). He defines the long

memory process {xt} as the one with the feature in time domain as

+∞∑
k=−∞

ρ(k) = +∞, (3.32)

where ρ(k) is the autocorrelation at lag k. This entails that also the autocor-

relations at higher lags are also significant. Granger & Joyeux (1980) suggest

using fractionally integrated process ARFIMA of order (p,d,q) to model a series

with the long memory feature. They define the model as

φ(L)(1− L)dXt = θ(L)εt, (3.33)

where L is lag operator φ(L) is autoregressive polynomial, θ(L) is moving aver-

age polynomial, εt is white noise and d is the fractional differencing parameter.

The expansion of (1− L)d looks as follows:

(1− L)d = 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + . . . (3.34)

The process is mean reverting for d < 1, is covariance stationary with long

memory for d ∈ (0, 0.5) and is covariance stationary with short memory for
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d ∈ (−0.5, 0〉. There are several estimators of parameter d with the most

widely used log-periodogram estimator proposed by Geweke & Porter-Hudak

(1983) and local Whittle estimator proposed by Künsch (1987). In this thesis,

we use maximum likelihood estimator developed in R-Project under package

fracdiff.

The long memory feature of volatility is reported in various papers. Taylor

(1986) analyzed 40 stock returns and finds long memory in both absolute and

squared returns with the absolute returns having slower decay of autocorrela-

tions than the squared returns. Ebens (1999) finds long memory in realized

volatility based on 5-minute intraday returns of Dow Jones Industrial Average

index and estimates its order to be significant between 0.37 and 0.40. Further

evidence of long memory of realized variance can be found in Areal & Tay-

lor (2002) and Andersen et al. (2003). However, Ashley & Patterson (2011)

emphasize that ARFIMA model does not necessarily imply existence of long

memory and argue that autocovariances are inconsistent in case of the presence

of any time variation of the population mean. They suggest that the apparent

presence of long memory could rather signal structural changes of the observed

data.

We utilize only the feature of long memory without further modeling of

short memory AR or MA processes. The estimated ARFIMA(0,d,0) model of

natural logarithm of Garman-Klass then look as

(1− L)d ln(GK)t = εt, (3.35)

which turns out to be an infinite AR process. Bhardwaj & Swanson (2004) use

Monte Carlo simulation to show that the significance of higher lags decreases2

with d.

3.3 Error statistics

We estimate all the models on a basis of rolling window and during each step

the one-day ahead forecast is computed. This procedure provides us many

out-of-sample forecasts which need to be assessed. Different error measures

are chosen to find out if the traded volume improves the predictive power.

The range of the error statistics includes relative measure (MAPE), absolute

measure (RMSE) and correlation based measure (Mincer-Zarnowitz test)

2For example, there are 361 significant lags for d = 0.05 and 78 significant lags for d = 0.75.
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3.3.1 Mean Absolute Percentage Error

We define MAPE measure for the one-day ahead forecast as

MAPE =
1

n

n∑
i−1

|RVt+1 − ĜKt+1|
RVt+1

, (3.36)

where RVt+1 and ĜKt+1 stand for the true realized volatility and exponentially

transformed one-day ahead forecast of ln(GK), respectively. The advantage of

this measure is its intuitiveness and possible comparison across different sample

sets. The disadvantage is that for smaller true values the percentage error

corresponds to smaller absolute error than in case of the higher true values.

3.3.2 Root Mean Squared Error

We define RMSE measure for the one-day ahead forecast as

RMSE =

√∑n
i=1(RVt+1 − ĜKt+1)2

n
, (3.37)

where the term under the square root equals mean squared error. We choose

RMSE rather than MSE since the magnitude of the squared errors range from

approximately 10−5 to 10−10 and the final evaluation might be cumbersome.

Since the square root is an increasing linear transformation of MSE, it does not

have any influence on the final ranking. The only problem with this measure

is that the squaring exaggerates higher errors and diminishes smaller errors.

3.3.3 Mincer-Zarnowitz test

The Mincer-Zarnowitz test is first introduced by Mincer & Zarnowitz (1969)

and is based on the regression of true values on forecasted values as

RVt+1 = α + β ĜKt+1 + εt, (3.38)

where α and β coefficients can be interpreted as bias and efficiency of the

forecasts, respectively. Under the joint null hypothesis H0 : α = 0 ∧ β = 1 the

produced forecasts are both unbiased and efficient and the true value becomes

composed of only the forecast and the unpredictable error εt. Further individual

tests of α = 0 and β = 1 can be carried out. The advantage of this test is the

comparison of bias and efficiency produced by different forecasting methods.
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The disadvantage is that it does not provide any information about the accuracy

of the forecasting model as the model with higher bias can produce lower MSE

(Schwartz 1999).



Chapter 4

Data description

Open, low, high and close prices together with traded volume are freely down-

loadable from finance.yahoo.com. However, traded volume is reported only for

the most traded financial indices and the length of its time series also severely

differs across different stocks. The close prices are used to compute continu-

ously compounded returns in order to model GARCH volatility. The formula

used for the returns is

rt = ln(pt)− ln(pt−1), (4.1)

where pt is the close price at time t. Garman-Klass volatility estimator is com-

puted from the data according to formula (3.6). The web page realized.oxford-

man.ox.ac.uk/data/download provides several measures of intraday realized

volatility for the most traded indices. Based on the availability of realized

volatility and traded volume we chose four indices, each from different conti-

nent. The observed financial indices are FTSE 100, IPC Mexico, Nikkei 225 and

S&P 500 providing 2576 observations from 4th December 2002 to 8th March

2013, 2101 observations from 27th October 2004 to 8th March 2013, 2597 ob-

servations from 11th June 2002 to 8th March 2013 and 3295 observations from

4th January 2000 to 8th March 2013, respectively. We encountered a problem

with several missing observations on traded volume, even though the realized

volatility was nonzero. Therefore, the market was inevitably open and some

errors on yahoo.fiance must have occurred. FTSE 100 reports 1 missing value

on 19th April 2010, IPC Mexico reports 2 missing values on 1st November 2004

and 13th January 2005, Nikkei 225 reports 5 missing values on 30th June 2005,

2nd June 2006, 29th March 2010, 9th June 2010 and 15th February 2011 and

S&P does not report any missing value. Due to this inconvenience we were

forced to fill in the empty spaces by linearly interpolated values computed by
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the formula defined by Davis (1975) as

y∗t = yt−1 + (yt+1 − yt−1)
xt − xt−1
xt+1 − xt−1

, (4.2)

where y∗t is the unknown value of traded volume at time t and {xt} is the

time series of Garman-Klass volatility estimator.

Natural logarithms of realized volatility, Garman-Klass volatility and traded

volume are used throughout the whole thesis. Therefore, all the initial data

analyses are also focused on the logarithmic values. Plots of non-logarithmic

values are reported in figure A.1 and are presented for informative purposes

rather than a subject to analysis. Plots of logarithmic values together with

returns can be found in figure A.2. Both the plots of logarithmic and non-

logarithmic realized volatility and Garman-Klass volatility exhibit very similar

pattern. The only difference is in the thickness of these two lines when the plot

of Garman-Klass volatility is thicker and does not follow as straight line as the

realized volatility. This confirms the fact that Garman-Klass volatility is more

noisy than the realized volatility, but still enough efficient. The descriptive

statistics of logarithms is reported in table 4.1 and the descriptive statistics of

non-logarithmic values can be found in table A.1.

Stock Index variable mean st. dev. skewness kurtosis

FTSE 100
ln(RV) -4.991 0.517 0.509 3.038
ln(GK) -4.956 0.574 0.303 3.085

ln(volume) 20.932 0.415 -1.148 5.788

IPC
ln(RV) -4.860 0.517 0.605 3.476
ln(GK) -4.863 0.574 0.261 3.357

ln(volume) 18.743 0.415 -1.120 7.497

Nikkei 225
ln(RV) -4.792 0.421 0.525 4.072
ln(GK) -4.958 0.503 0.254 3.581

ln(volume) 20.830 0.412 -0.423 3.060

S&P 500
ln(RV) -4.764 0.521 0.509 3.369
ln(GK) -4.945 0.574 0.286 3.273

ln(volume) 21.597 0.605 0.017 1.924

Table 4.1: Descriptive statistics of logarithms

The kurtosis of nearly all of the logarithmic values, except traded volume,

is approximately 3 and the skewness is not far from zero. This is in contrast

with the non-logarithmic values with kurtosis ranging from 10.358 to 34.747

and skewness mostly about 3. These statistics confirm the fact that logarithmic

values are closer to the normal distribution in terms of skewness and kurtosis
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than non-logarithmic values and therefore are also more appropriate to model-

ing. Two mojor facts arise from table A.1. First, FTSE 100 is the less volatile

index and second, S&P 500 exhibits the highest average of daily traded volume.

Since the relationship between traded volume and volatility is the subject

to scrutiny, we also report contemporaneous correlations of logarithmic realized

volatility, Garman-Klass volatility and traded volume in table 4.2.

variable ln(RV) ln(GK) ln(volume)

ln(RV) 1 . .
ln(GK) 0.8747 1 .

ln(volume) 0.1181 0.0954 1

(a) FTSE

variable ln(RV) ln(GK) ln(volume)

ln(RV) 1 . .
ln(GK) 0.8234 1 .

ln(volume) 0.4333 0.3610 1

(b) IPC Mexico

variable ln(RV) ln(GK) ln(volume)

ln(RV) 1 . .
ln(GK) 0.8635 1 .

ln(volume) 0.1156 0.0960 1

(c) Nikkei 225

variable ln(RV) ln(GK) ln(volume)

ln(RV) 1 . .
ln(GK) 0.8795 1 .

ln(volume) 0.2183 0.1870 1

(d) S&P 500

Table 4.2: Correlation matrices

The evidence of Garman-Klass volatility being highly correlated with real-

ized volatility in all four indices underlines the fact that it is reasonably good

substitution for realized volatility if it is not available. Furthermore, the lower

correlation between traded volume and Garman-Klass volatility, in comparison

with correlation between realized volatility and traded volume, supports the

fact that it is still more noisy estimator as the relationship with more noisy

variable is harder to detect. Nonetheless, the difference is rather small.

As the stationarity of data is important to correctly determine the true

process, we used Augmented Dickey-Fuller test, first developed by Dickey &

Fuller (1979), to test for unit root in our time series:

∆yt = α0 + θyt−1 +

p∑
i=1

αi∆yt−i + εt (4.3)

The test is based on comparing the null hypothesis of unit root H0 : θ =

0 against the alternative hypothesis H0 : θ < 0. The differences ∆yt−i are

included to capture autocorrelation of the series {∆yt} in order the significance

of coefficient θ would not be overvalued. The optimal number of lags p is chosen
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based on the Akaike information criteria proposed by software JMulTi. The

results of the test can be found in table 4.3

Stock Index variable No. of lags t-statistics p-value Null hypothesis

FTSE 100

ln(RV) 9 -4.114 0.0009 rejected∗∗∗

ln(GK) 28 -3.021 0.0330 rejected∗∗

returns 54 -8.008 0.0000 rejected∗∗∗

ln(volume) 32 -2.634 0.0862 rejected∗

IPC

ln(RV) 11 -4.583 0.0001 rejected∗∗∗

ln(GK) 12 -4.946 0.0000 rejected∗∗∗

returns 12 -11.808 0.0000 rejected∗∗∗

ln(volume) 33 -3.097 0.0268 rejected∗∗

Nikkei 225

ln(RV) 11 -4.646 0.0001 rejected∗∗∗

ln(GK) 12 -4.749 0.0001 rejected∗∗∗

returns 26 -8.842 0.0000 rejected∗∗∗

ln(volume) 33 -3.124 0.0248 rejected∗∗

S&P 500

ln(RV) 11 -5.117 0.0000 rejected∗∗∗

ln(GK) 14 -4.890 0.0000 rejected∗∗∗

returns 0 -62.701 0.0000 rejected∗∗∗

ln(volume) 57 -1.306 0.6263 not rejected

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Table 4.3: Dickey-Fuller test results

Except ln(volume), unit root of nearly all of the other series is rejected

at 1%. The problem arises in case of FTSE ln(volume) and S&P ln(volume),

where we can reject the null hypothsis at only 10% and can not reject the null

hypothesis, respectively. However, if we chose optimal number of lags based on

Schwarz information criteria, which is less strict towards the autocorrelations,

we would obtain p being equal 19, 9, 13 and 9 for FTSE 100, IPC Mexico,

Nikkei 225 and S&P 500, respectively. This would also lead to rejecting unit

root for FTSE and IPC at 1% and for Nikkei and S&P at 5%.

The fact of not rejecting the null hypothesis is not as crucial as it could

seem since the coefficient θ is closely connected to d, the order of integration,

mentioned in ARFIMA section 3.2.6. In fact, not rejecting the unit root does

not imply d to be equal one. If d is lower than one, the time series is mean

reverting and hence still proper to forecasting. As we implement HAR and

ARFIMA models, whose assumption is the order of integration to be higher

than zero and lower than one, further differencing or detrending is not neces-

sary. Moreover, the goal of this paper is not to determine the true process, but

to compare performance of different models on different sample sets.



Chapter 5

Results

This chapter contains the estimates of the selected models for the whole period

of each stock index and discuss their significance. The estimates obtained on

a rolling basis, which serve for computing the one-day ahead forecasts, are

plotted in appendix. The ordering of the models follows the pattern as in the

methodological part, from the less complicated to the more advanced models.

Finally, the comparison of MAPE, RMSE and Mincer-Zarnowitz test of the

out-of-sample forecasts is presented in order to assess which model provides

the most accurate forecasts and whether traded volume increases the predictive

power.

5.1 Model results

Autoregressive model

The selection of this model comes naturally due to its simplicity, intuitivness

and the wide spread of use. The coefficients together with standard errors and

significance levels are presented in table 5.1. Furthermore, the plots of the

coefficients computed with the rolling window including 500 observations can

be found in figure B.1.

All the slope coefficients are statistically significant at 1%. Regarding their

economic significance, the magnitude is always positive and slightly decreasing

with higher lags. These results stem from two theoretical facts. First, Cont

(2001) describes the volatility clustering as one of the stylized facts which

results in high autocorrelation. Second, volatility usually exhibit long memory

feature, as described in section 3.2.6, which makes the autocorrelation function

slowly decaying. Hence, it is not surprising that all the autocorrelation terms
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variable FTSE 100 IPC Nikkei 225 S&P 500

Intercept
-0.60∗∗∗ -0.92∗∗∗ -1.01∗∗∗ -0.66∗∗∗

(0.078) (0.103) (0.097) (0.073)

ln(GK)t−1
0.27∗∗∗ 0.32∗∗∗ 0.27∗∗∗ 0.22∗∗∗

(0.020) (0.022) (0.020) (0.017)

ln(GK)t−2
0.20∗∗∗ 0.16∗∗∗ 0.19∗∗∗ 0.24∗∗∗

(0.020) (0.023) (0.020) (0.018)

ln(GK)t−3
0.14∗∗∗ 0.12∗∗∗ 0.15∗∗∗ 0.16∗∗∗

(0.020) (0.023) (0.020) (0.018)

ln(GK)t−4
0.14∗∗∗ 0.08∗∗∗ 0.11∗∗∗ 0.14∗∗∗

(0.020) (0.023) (0.020) (0.018)

ln(GK)t−5
0.12∗∗∗ 0.13∗∗∗ 0.07∗∗∗ 0.11∗∗∗

(0.020) (0.022) (0.020) (0.017)

R2 0.5540 0.4231 0.4007 0.5193

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Standard errors in parentheses.

Table 5.1: AR model

are significant. As the plots of the rolling coefficients suggest, the magnitude

of the coefficients and their ordering does not change dramatically. The only

notable exception is the rise of the first autoregressive term after year 2008 in

case of all four indices. This implicates that volatility clustering even magnified

in the financial crisis in 2008.

Vector Autoregressive model

The vector autoregressive model is an extension to the univariate autoregres-

sive model and explores the dynamic relationship across more variables. The

traded volume is added as the second endogenous variable and its statistical

significance, Granger-causality test and Impulse-response functions will be pre-

sented. Finally, the economic influence of the traded volume will be based on

the comparison of MAPE and RMSE of AR and VAR models. The results of

both ln(GK) and ln(volume) equation are presented in table 5.2. The plots of

coefficients from ln(GK) equation evolving in time can be found in figures B.2

and B.3.

Considering the Garman-Klass volatility equation, all the autoregressive

terms remain statistically significant and even their magnitude is similar to

that of the coefficients from the AR model mentioned earlier. The coefficients

of lagged ln(volume) are mostly statistically insignificant with the exemption

of the third lag of FTSE, IPC and S&P. As for the magnitude of ln(volume),

it appears that the influence on volatility is lower than the volatility itself.

However, one has to take into consideration that ln(volume) is several times
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variable FTSE 100 IPC Nikkei 225 S&P 500

Garman-Klass volatility equation

Intercept
0.44 0.08 -0.55∗∗∗ -0.62∗∗

(0.440) (0.429) (0.038) (0.028)

ln(GK)t−1
0.26∗∗∗ 0.31∗∗∗ 0.27∗∗∗ 0.21∗∗∗

(0.021) (0.024) (0.021) (0.029)

ln(GK)t−2
0.20∗∗∗ 0.15∗∗∗ 0.19∗∗∗ 0.24∗∗∗

(0.021) (0.025) (0.022) (0.019)

ln(GK)t−3
0.17∗∗∗ 0.14∗∗∗ 0.15∗∗∗ 0.18∗∗∗

(0.021) (0.025) (0.022) (0.019)

ln(GK)t−4
0.15∗∗∗ 0.08∗∗∗ 0.11∗∗∗ 0.13∗∗∗

0.021) (0.025) (0.022) (0.019)

ln(GK)t−5
0.11∗∗∗ 0.14∗∗∗ 0.08∗∗∗ 0.10∗∗∗

(0.020) (0.024) (0.021) (0.019)

ln(volume)t−1
0.05 0.02 -0.003 0.04

(0.032) (0.023) (0.046) (0.042)

ln(volume)t−2
0.02 0.01 0.01 0.01

(0.036) (0.024) (0.051) (0.047)

ln(volume)t−3
-0.15∗∗∗ -0.06∗∗ -0.02 -0.12∗∗∗

(0.036) (0.024) (0.051) (0.047)

ln(volume)t−4
-0.04 0.01 0.05 0.05

(0.036) (0.024) (0.051) (0.047)

ln(volume)t−5
0.07∗∗ -0.03 -0.06 0.02
(0.032) (0.023) (0.045) (0.042)

R2 0.5589 0.4262 0.4015 0.5204
Granger test

0.000 0.048 0.696 0.169volume ⇒ GK

Traded Volume equation

Intercept
2.17 3.43∗∗∗ 0.76∗∗∗ 0.30∗∗

(0.281) (0.487) (0.195) (0.126)

ln(GK)t−1
0.01 0.07∗∗∗ -0.01 0.02

(0.013) (0.024) (0.009) (0.008)

ln(GK)t−2
-0.003 0.02 0.004 0.01
(0,013) (0.025) (0.010) (0.008)

ln(GK)t−3
-0.0005 0.01 -0.003 -0.02∗

(0.013) (0.025) (0.010) (0.009)

ln(GK)t−4
0.02 -0.03 -0.01 -0.02∗∗

(0.013) (0.025) (0.010) (0.008)

ln(GK)t−5
-0.05 -0.04 -0.03∗∗∗ -0.01∗

(0.013) (0.024) (0.009) (0.008)

ln(volume)t−1
0.52∗∗∗ 0.33∗∗∗ 0.51∗∗∗ 0.50∗∗∗

(0.020) (0.024) (0.021) (0.019)

ln(volume)t−2
0.11∗∗∗ 0.11∗∗∗ 0.16∗∗∗ 0.13∗∗∗

(0.023) (0.025) (0.023) (0.021)

ln(volume)t−3
0.14∗∗∗ 0.05∗ 0.05∗∗ 0.10∗∗∗

(0.023) (0.025) (0.023) (0.021)

ln(volume)t−4
-0.02 0.13∗∗∗ 0.08∗∗∗ 0.13∗∗∗

(0.023) (0.025) (0.023) (0.021)

ln(volume)t−5
0.14∗∗∗ 0.20∗∗∗ 0.15∗∗∗ 0.12∗∗∗

(0.029) (0.024) (0.021) (0.019)

R2 0.6561 0.3977 0.8147 0.9140
Granger test

0.001 0.021 0.000 0.000GK ⇒ volume

Standard errors in parentheses. Results of Granger-test provide p-value.

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Table 5.2: Vector Autoregressive model
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higher in absolute terms than ln(GK). The goodness of fit R2 is only slightly

higher than in case of AR model. Moreover, the plots of rolling autoregressive

coefficients show nearly the same pattern as the coefficients from the autore-

gressive model, which indicates that adding traded volume does not decrease

the volatility persistence.

Regarding the volume equation, nearly all of the autoregressive terms of

ln(volume) are significant at 1%. Most of the coefficients of ln(GK) are both

statistically and economically insignificant. The exemption is the case of IPC

with the first lag of ln(GK) being significant at 1% and implying that higher

volatility today means higher traded volume tomorrow. The second exemption

is S&P with the negative third, fourth and fifth lag being significant at 10%,

5% and 10%, respectively. The plots of rolling coefficients do not indicate any

stable pattern as the individual coefficients of lagged traded volume fluctuate

around zero. Moreover, the coefficients are not statistically significant most of

the time and hence confirmation of any pattern would be unjustified.

Results of the Granger-causality test described in section 3.2.4 are men-

tioned both for volatility and volume. It turns out that ln(volume) Granger-

causes ln(GK) only in case of FTSE and IPC at 1% and 5%, respectively.

Furthermore, strong Granger-causality from ln(GK) to ln(volume) is detected

in all four indices. In order to asses the relationship across those variables in

detail, Impulse-response functions, as described in section 3.2.4, are carried out

to find out the influence of a unit shock of an impulse variable to a response

variable. The plots of IRFs with 95% confidence intervals for ln(volume) to

ln(GK) can be found in figure B.4 and for ln(GK) to ln(volume) in figure B.5.

It appears that a unit shock of ln(volume) in short term causes increase in

ln(GK). However, the zero value is contained in the 95% confidence interval

and hence the positive influence is not statistically significant. The interesting

finding is that the unit shock has negative influence on level of volatility in long

term. In case of FTSE and IPC this feature is even statistically significant. This

suggests that if volume unexpectedly increases the, level of volatility decreases

in approximately two weeks. This might correspond to a rush day when the

abnormal trading activity is triggered by a negative information release after

which markets remain in tension with higher volatility for several days. In the

longer term, as the markets stabilize, the level of volatility returns to its initial

value. Furthermore, a unit shock in ln(GK), on the contrary, has significant

positive influence on ln(volume) and diminishes as the time passes and becomes

insignificant for higher lags.
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Heterogenous Autoregressive model

Heterogenous autoregressive model developed by Corsi (2009) is straightfor-

ward, intuitive and provides surprisingly good results outperforming even some

ARFIMA models. However, in comparison with ARFIMA models it does not

appear in research articles as often as one could expect. The selection of this

model also stems from the fact that its vector modification with other variables

is possible and the influence of those variables can be additionally measured.

The results for the whole periods are presented in table 5.3 and the plots of

coefficients evolving in time are in figure B.6.

variable FTSE 100 IPC Nikkei 225 S&P 500

Intercept
-0.31∗∗∗ -0.51∗∗∗ -0.49∗∗∗ -0.36∗∗∗

(0.024) (0.115) (0.108) (0.078)

ln(GK)
(d)
t−1

0.13∗∗∗ 0.21∗∗∗ 0.16∗∗∗ 0.07∗∗

(0.046) (0.026) (0.023) (0.021)

ln(GK)
(w)
t−1

0.42∗∗∗ 0.31∗∗∗ 0.31∗∗∗ 0.48∗∗∗

(0.041) (0.049) (0.045) (0.041)

ln(GK)
(m)
t−1

0.39∗∗∗ 0.37∗∗∗ 0.44∗∗∗ 0.37∗∗∗

(0.083) (0.047) (0.044) (0.037)

R2 0.5682 0. 4361 0.4179 0.5308

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Standard errors in parentheses.

Table 5.3: Heterogenous Autoregressive model

All the slope coefficients are both statistically and economically significant.

From the results arises that medium and long term traders influence level of

volatility more than the short term traders as the coefficients of weekly average

and monthly average of ln(GK) are generally higher than daily volatility. This

is confirmed by the plots of rolling coefficients where both weekly and monthly

averages dominate the daily value in case of all four indices. Regarding goodness

of fit R2, although the model contains less variables in comparison with AR and

VAR, it is higher by approximately 2%. Therefore, the model better describes

the evolution of volatility and might be more appropriate for forecasting.

Vector Heterogenous Autoregressive model

As described in section 3.2.5, heterogenous terms of traded volume are added

to the initial HAR equation in order to asses the influence of traded volume

on volatility. The model is compiled on a basis of VAR(1) with additional

exogenous variables of weekly and monthly averages of ln(GK) and ln(volume).

Moreover, joint significance of ln(volume) coefficients in volatility equation and
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joint significance of ln(GK) coefficients in volume equation are measured and

computed on the same basis as Granger-causality test in section 3.2.4. Results

of the model together with p-value of the Granger-causality test are presented

in table 5.4. Furthermore, plots of the coefficients of ln(GK) equation evolving

in time can be found in figures B.7 and B.8.

variable FTSE 100 IPC Nikkei 225 S&P 500

Garman-Klass volatility equation

Intercept
-0.41 0.22 -0.61 -0.41

(0.445) (0.533) (0.442) (0.284)

ln(GK)
(d)
t−1

0.19∗∗∗ 0.32∗∗∗ 0.15∗∗∗ 0.05∗∗

(0.025) (0.029) (0.025) (0.023)

ln(GK)
(w)
t−1

0.44∗∗∗ 0.34∗∗∗ 0.25∗∗∗ 0.46∗∗∗

(0.047) (0.057) (0.050) (0.047)

ln(GK)
(m)
t−1

0.40∗∗∗ 0.37∗∗∗ 0.51∗∗∗ 0.41∗∗∗

(0.043) (0.054) (0.049) (0.043)

ln(volume)
(d)
t−1

0.12∗∗∗ 0.04 0.04 0.12∗∗

(0.038) (0.027) (0.053) (0.049)

ln(volume)
(w)
t−1

-0.11∗∗ -0.06 0.20∗∗ -0.01
(0.045) (0.056) (0.087) (0.083)

ln(volume)
(m)
t−1

-0.004 -0.02 -0.23∗∗∗ -0.10
(0.011) (0.055) (0.070) (0.067)

R2 0.5700 0.4382 0.4207 0.5321
Granger test

0.013 0.208 0.006 0.036volume ⇒ GK

Traded Volume equation

Intercept
2.22∗∗∗ 1.51∗∗∗ 0.38∗ 0.11
(0.285) (0.542) (0.203) (0.126)

ln(GK)
(d)
t−1

0.02 0.10∗∗∗ 0.003 0.02∗∗

(0.016) (0.029) (0.011) (0.010)

ln(GK)
(w)
t−1

-0.03 -0.03 -0.04∗ 0.03
(0.030) (0.058) (0.023) (0.021)

ln(GK)
(m)
t−1

-0.02 -0.10∗ -0.01 -0.08∗∗∗

(0.028) (0.055) (0.022) (0.019)

ln(volume)
(d)
t−1

0.42∗∗∗ 0.20∗∗∗ 0.42∗∗∗ 0.39∗∗∗

(0.024) (0.028) (0.024) (0.022)

ln(volume)
(w)
t−1

0.47∗∗∗ 0.24∗∗∗ 0.31∗∗∗ 0.29∗∗∗

(0.028) (0.057) (0.040) (0.037)

ln(volume)
(m)
t−1

-0.01 0.47∗∗∗ 0.24∗∗∗ 0.31∗∗∗

(0.007) (0.056) (0.032) (0.030)

R2 0.6561 0.4070 0.8143 0.9159
Granger test

0.029 0.002 0.000 0.000GK ⇒ volume

Standard errors in parentheses. Results of Granger-test provide p-value.

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Table 5.4: Vector Heterogenous Autoregressive model

The autoregressive terms in volatility equation remain both statistically and

economically significant with the nearly same magnitude as in the HAR model.

Moreover, the plots of rolling coefficients of daily, weekly and monthly averages
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of volatility exhibit nearly the same pattern as the rolling coefficients produced

by HAR model. The influence of volume on volatility is higher, compared to

the VAR model, as there are several terms of volume in FTSE, Nikkei and S&P

significant at 1% and 5%. This is also reflected in Granger-causality test with

resulting causality from ln(volume) to ln(GK) in FTSE, Nikkei and S&P being

significant at 5%, 1% and 5%, respectively. Moreover, the rolling coefficients of

traded volume suggest that the influence of daily and weekly values increased

in the time of financial crisis during 2008-2010 in case of FTSE, Nikkei and

S&P contrary to the decrease of monthly average. Additionally, R2 is higher

by approximately 0.2-0.3% in comparison with HAR model.

Regarding the volume equation, nearly all of the volume terms are signifi-

cant at 1%. Their economic significance is rather higher in short term as is in

the case of FTSE, Nikkei and S&P. Strong influence of ln(GK) to ln(volume)

is detected through the Grange-causality test since the p-value is close to zero

for nearly all the indices.

Fractionally Integrated Autoregressive Moving Average model

It is reported by many studies that volatility exhibit long memory feature.

For simplicity, none of AR and MA terms are included, the only parameter

to estimate is the order of integration. Formally, the estimated model can be

written as ARFIMA(0,d,0) with d being the order of integration. Maximum

likelihood estimator developed in R-project under package fracdiff is used to

estimate the order of integration. The only variable modeled by ARFIMA is

ln(GK), but for the informative purposes the order of integration of ln(RV)

and ln(volume) is also presented. The results can be found in table 5.5 and the

dynamic evolution of d coefficient of ln(GK) is plotted in figure B.9.

variable FTSE 100 IPC Nikkei 225 S&P 500

ln(RV)
0.49∗∗∗ 0.39∗∗∗ 0.47∗∗∗ 0.46∗∗∗

(2.4×10−8) (6.2×10−6) (5.1×10−8) (6.0×10−6)

ln(GK)
0.36∗∗∗ 0.35∗∗∗ 0.33∗∗∗ 0.35∗∗∗

(1.2×10−5) (1.2×10−5) (1.3×10−5) (1.8×10−5)

ln(volume)
0.48∗∗∗ 0.34∗∗∗ 0.50∗∗∗ 0.50∗∗∗

(2.1×10−4) (1.2×10−5) (8.5×10−6) (1.1×10−5)

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Standard errors in parentheses.

Table 5.5: ARFIMA - Order of integration

All the variables exhibit long memory since the order of integration is sta-
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tistically significant at 1%. Although the estimation was written in order to

allow d to be from 0 to 1, all the coefficients are included in the interval (0, 0.5〉
which makes all the sets of data stationary. The order of integration of ln(RV)

and ln(volume) is approximately the same, and with the exemption of IPC

index, is slightly bellow 0.5 for all other indices. The rolling plots of the order

of integration of ln(GK) suggest that it fluctuates around 0.35 with the notable

increase after year 2008 and further decrease in year 2010. This confirms the

theory mentioned in results of autoregressive and vector autoregressive models

that volatility persistence increases during financial crisis.

Generalized Autoregressive Conditional Heteroskedasticity model

GARCH model developed by Bollerslev (1986) and described in section 3.1.2

is one of the most cited models in financial econometrics. Therefore, it is

natural to compare our results with this model. Disadvantage of this model

against the Garman-Klass volatility estimator is that it uses squared returns (or

squared residuals) which are generally considered as less efficient than the real-

ized volatility. Therefore, even the in-sample comparison with realized volatil-

ity might produce poor results. For simplicity, only GARCH(1,1) without any

mean process is considered. Cont (2001) mentions no autocorrelation of returns

as one of the stylized facts. Having assumed this stylized fact to hold, we are

not obliged to model the mean equation and the estimation reduces only to

GARCH coefficients. The results of the whole periods are presented in table

5.6 and the coefficients evolving in time can be found in figure B.10.

variable FTSE 100 IPC Nikkei 225 S&P 500

Conditional variance equation

Omega
9.6×10−7∗∗∗ 2.1×10−6∗∗∗ 3.6×10−6∗∗∗ 1.5×10−6∗∗∗

(2.9×10−7) (6.1×10−7) (9.7×10−7) (3.2×10−7)

Alpha
0.085∗∗∗ 0.094∗∗∗ 0.101∗∗∗ 0.086∗∗∗

(0.010) (0.012) (0.012) (0.009)

Beta
0.901∗∗∗ 0.896∗∗∗ 0.885∗∗∗ 0.904∗∗∗

(0.011) (0.012) (0.013) (0.009)

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Standard errors in parentheses.

Table 5.6: GARCH

All the coefficients including intercept are significant at 1%. One of the key

measures of GARCH(1,1) models is the sum α+ β to be less than one in order

to avoid nonstationary IGARCH. For all indices this summation is close to
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one. This might be caused by the long sample sets including both volatile and

calm periods, which makes the model nonstationary. The plots of coefficients

computed on a basis of rolling window suggest that the sum approaches one

nearly for all the time in case of all four indices. The interesting finding is

that although the sum is still close to one, the contribution of alpha and beta

changes during 2008-2010 as the alpha coefficient rises and beta coefficients

decreases. This indicates that influence of the error made yesterday (in our

case return) increases, and the influence of conditional variance from yesterday

decreases in financial crisis.

Generalized Autoregressive Conditional Heteroskedasticity model with vol-

ume

In order to measure the influence of traded volume on the predictive power

of GARCH model, lagged traded volume is added to the conditional variance

equation. The results are presented in table 5.7 and plots of coefficients evolving

in time can be found in figure B.11.

variable FTSE 100 IPC Nikkei 225 S&P 500

Conditional variance equation

Omega
2.1×10−7 4.1×10−7 1.1×10−6 3.5×10−7

(5.5×10−6) (2.0×10−5) (3.0×10−5) (6.4×10−6)

Alpha
0.079∗∗∗ 0.091∗∗∗ 0.101∗∗∗ 0.080∗∗∗

(0.009) (0.012) (0.013) (0.008)

Beta
0.919∗∗∗ 0.901∗∗∗ 0.884∗∗∗ 0.915∗∗∗

(0.009) (0.012) (0.014) (0.008)

ln(volume)
1.6×10−8 7.4×10−8 1.3×10−7 3.8×10−8

(2.6×10−7) (9.6×10−7) (1.4×10−6) (2.9×10−7)

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Standard errors in parentheses.

Table 5.7: GARCH with volume volume

The expected effect is the sum of α + β to decrease. However, it appears

that nothing significant happened to α and β coefficients. Even the rolling

alpha and beta coefficients does not exhibit any notable difference compared to

the simple GARCH(1,1) without the traded volume The significant difference is

in ω coefficient which is now insignificant. Moreover, the magnitude of traded

volume and its statistical insignificance suggest that traded volume does not

bring any additional information in the model. The out-of-sample forecasts

will serve as the final measure of the appropriateness of traded volume in the

conditional variance equation.
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5.2 Rolling forecasts

Each model is estimated on a basis of rolling window containing 500 observa-

tions and in each step one-day ahead forecast is computed and compared with

the true realized volatility. The number of forecasts that is generated by this

procedure equals the length of the volatility time series minus the length of the

rolling window. Several error measures described in section 3.3 are applied to

those forecasts to find out which model performs best.

Ouf-of-sample evaluation

All the plots of forecasts (red line) compared to the true realized volatility

(black line) are presented in figure B.12. It appears that most of the forecasts

follow the similar pattern as the realized volatility. The exemptions are both

GARCH and GARCH with volume which apparently overestimate the true

volatility. The accuracy of the forecasts is based on MAPE and RMSE and is

presented in table 5.8.

Stock Index measure RW AR(5) VAR(5) HAR VAR HAR ARFIMA GARCH GARCHv

FTSE 100
MAPE 32.27% 22.47% 22.81% 21.63% 21.71% 22.18% 55.17% 55.57%
RMSE 0.00385 0.00285 0.00286 0.00281 0.00281 0.00284 0.00525 0.00530

IPC
MAPE 34.83% 24.85% 26.31% 24.20% 24.37% 24.52% 54.68% 54.52%
RMSE 0.00485 0.00418 0.00436 0.00412 0.00414 0.00413 0.00572 0.00573

Nikkei 225
MAPE 28.94% 20.98% 20.96% 20.41% 20.24% 20.55% 76.56% 76.20%
RMSE 0.00394 0.00369 0.00367 0.00359 0.00345 0.00369 0.00752 0.00753

S&P 500
MAPE 31.59% 23.92% 23.91% 23.49% 23.37% 23.42% 39.35% 39.17%
RMSE 0.00465 000452 0.00452 0.00442 0.00442 0.00459 0.00457 0.00460

Table 5.8: Comparison of out-of-sample forecasts

It appears that both GARCH and GARCH with volume perform poorly

compared to the models including Garman-Klass volatility estimator. If the

sum of α+ β equals one, and GARCH becomes IGARCH, the forecast of con-

ditional volatility is not defined any more. From the rolling plots of GARCH

coefficients in figures B.10 and B.11 it is clear that the sum is close to one.

Starica (2004) proves that in case the sum is close to one, GARCH(1,1) signif-

icantly overestimates the true volatility and points out that this is caused by

unstable GARCH unconditional volatility. This might be prevented by using

shorter rolling window since the shorter sample set of observations might in-

clude less structural shocks. Considering the improvement of predictive power,

GARCH with volume in conditional variance equation is better in case of IPC,

Nikkei and S&P, by 0,16% 0.36% and 0,18% in terms of MAPE, respectively.
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Therefore, it seems that volume improves the accuracy of GARCH. However,

in terms of RMSE GARCH without volume is better in case of all four indices.

Taking into consideration only the models with Garman-Klass volatility

estimator, random walk turns out to produce larger errors by approximately

8% - 11% in terms of MAPE compared to other models. Therefore, volatility

forecasting is meaningful and further modeling is appropriate. It appears that

models considering the long memory feature dominate the other models. HAR

model produces the lowest errors in case of FTSE and IPC and VAR-HAR

in case of S&P and Nikkei. The similar results are provided by comparison

of RMSE which evaluate HAR and VAR-HAR as equally good. Interestingly,

HAR and VAR-HAR models outperforms the widely cited ARFIMA model in

all four indices.

Regarding the influence of traded volume on predictive power of the mul-

tivariate VAR model compared to the univariate AR model, there is evidence

that the included traded volume even worsen the accuracy of forecast as the

AR model is better by 0.34% and 1.46% for FTSE and IPC, respectively. The

improvements registered in Nikkei and S&P are rather negligible, 0.02% and

0.01%.

From comparison of HAR and VAR-HAR models we observe the similar

results as in case of AR and VAR models. Traded volume has negative impact

in case of FTSE and IPC when MAPE of HAR is lower by 1.08% and 0.19%,

respectively. The percentage improvement in case of Nikkei and S&P is 0.17%

and 0.12%. Therefore, there does not seem to be any conclusive evidence

whether traded volume increases the predictive power of the scrutinized models.

Mincer-Zarnowitz test

The Mincer-Zarnowitz test does not serve for assessing the accuracy of the

forecasts, but is rather useful in revealing features such as bias and efficiency.

The goal of the testing is not to reject the null hypothesis of unbiasedness and

efficiency, H0 : α = 0, β = 1. The results of the Mincer-Zarnowitz regression

together with the test results are presented in table 5.9.

The results suggest that except FTSE, none of the models produce both

unbiased and efficient forecast as p-values of the F-test approach zero. In case

of FTSE, the desired unbiasedness and efficiency is reached under VAR, HAR

and VAR-HAR models. To further explore the individual features two singe

tests are carried out, H0 : α = 0 and H0 : β = 1. It appears that except HAR
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Index Model α β F test R2 Index Model α β F test R2

FTSE

RW
0.0022∗∗∗ 0.66∗∗

0.000 0.6108

IPC

RW
0.0035∗∗∗ 0.64∗∗∗

0.000 0.4648(0.0001) (0.012) (0.0001) (0.017)

AR(5)
-0.0003∗∗ 1.04∗∗∗

0.031 0.6915 AR(5)
0.0035∗∗∗ 1.22∗∗

0.000 0.5385(0.0001) (0.015) (0.0003) (0.028)

VAR(5)
-0.0003∗ 1.03∗

0.180 0.6882 VAR(5)
-0.0003 1.16∗∗∗

0.000 0.4877(0.0001) (0.015) (0.0003) (0.030)

HAR
0.0000 1.00

0.940 0.6993 HAR
-0.0003 1.14∗∗∗

0.000 0.5434(0.0001) (0.014) (0.0002) (0.026)

VAR-HAR
0.0000 1.00

0.496 0.7006 VAR-HAR
-0.0002 1.14∗∗∗

0.000 0.5382(0.0001) (0.014) (0.0002) (0.026)

ARFIMA
-0.0006∗∗∗ 1.08∗∗∗

0.000 0.6980 ARFIMA
-0.0006∗∗ 1.18∗∗∗

0.000 0.5405(0.0001) (0.016) (0.0001) (0.027)

GARCH
0.0011∗∗∗ 0.61∗∗∗

0.000 0.6573 GARCH
0.0009∗∗∗ 0.67∗∗∗

0.000 0.5077(0.0001) (0.010) (0.0002) (0.016)

GARCHv
0.0011∗∗∗ 0.60∗∗∗

0.000 0.6554 GARCHv
0.0010∗∗∗ 0.66∗∗∗

0.000 0.5066(0.0001) (0.010) (0.0002) (0.016)

Index Model α β F test R2 Index Model α β F test R2

Nikkei

RW
0.0032∗∗∗ 0.72∗∗∗

0.000 0.5275

S&P

RW
0.0027∗∗∗ 0.84∗∗∗

0.000 0.5888(0.0001) (0.015) (0.0001) (0.013)

AR(5)
-0.0013∗∗∗ 1.42∗∗∗

0.000 0.6387 AR(5)
-0.0003∗∗∗ 1.35∗∗∗

0.000 0.6891(0.0002) (0.023) (0.0001) (0.017)

VAR(5)
-0.0012∗∗∗ 1.39∗∗∗

0.000 0.6307 VAR(5)
-0.0005∗∗∗ 1.34∗∗∗

0.000 0.6839(0.0002) (0.023) (0.0001) (0.017)

HAR
-0.0005∗∗∗ 1.30∗∗∗

0.000 0.6466 HAR
-0.0002 1.30∗∗∗

0.000 0.6974(0.0002) (0.021) (0.0001) (0.016)

VAR-HAR
-0.0002 1.25∗∗∗

0.000 0.6511 VAR-HAR
-0.0003∗∗ 1.30∗∗∗

0.000 0.6965(0.0002) (0.020) (0.0001) (0.016)

ARFIMA
-0.0015∗∗∗ 1.44∗∗∗

0.000 0.6442 ARFIMA
-0.0011∗∗∗ 1.41∗∗∗

0.000 0.6855(0.0002) (0.023) (0.0002) (0.018)

GARCH
0.0016∗∗∗ 0.50∗∗∗

0.000 0.5949 GARCH
0.0006∗∗∗ 0.79∗∗∗

0.000 0.6653(0.0001) (0.009) (0.0001) (0.011)

GARCHv
0.0016∗∗∗ 0.50∗∗∗

0.000 0.5954 GARCHv
0.0007∗∗∗ 0.78∗∗∗

0.000 0.6651(0.0001) (0.009) (0.0001) (0.010)

Standard errors in parentheses. Results of F-test provide p-value of H0 : α=0 and β=1. Significance of β is reported against H0 : β=1.

Significance levels : ∗ ∗ ∗ : 1% ∗∗ : 5% ∗ : 10%

Table 5.9: Mincer-Zarnowitz test results

and VAR-HAR in case of FTSE none of the models produce efficient forecasts

since p-values of H0 : β = 1 approach zero. Part of the efficiency loss might be

caused by the comparison of the less efficient Garman-Klass volatility estimator

with the more efficient realized volatility. Regarding only the unbiasedness, it

turns out that only HAR and VAR-HAR models are able to produce unbiased

forecast as the null H0 : α = 0 can not be rejected in case of FTSE, IPC and

S&P for HAR and in case of FTSE, IPC and Nikkei for VAR-HAR. As for the

magnitude of the bias, both GARCH and GARCHv produce relatively high

positive bias, which confirms the theory of GARCH models to overestimate the

true volatility. Except RW, all the other models produce negative bias.

The coefficient of determination R2 of each equation explains how much

of variation of the true volatility is explained by the forecast. Therefore, this

measure can also be used to asses the predictive power of the given models. It

turns out that again, HAR and VAR-HAR dominates other models as HAR is
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the best in case of IPC and S&P and VAR-HAR is the best in case of FTSE and

Nikkei. Surprisingly, the GARCH models does not performs as bad as in the

case of RMSE and MAPE statistics, but still worse than most of the models.

5.3 Possible extensions

Several models are discussed in this thesis ranging from the simple random

walk to the long memory ARFIMA model. Therefore, there are many possible

extensions and improvements to the current procedure. The plots of the rolling

coefficients mentioned in appendix suggest that the dependence of the variables

is not constant and evolve in time. Therefore, the length of the rolling window

might influence both the coefficients and the forecasts, and further analysis

of the optimal length that minimize the forecasted error could be carried out.

Second, the order of AR and VAR models was determined to be 5 and hence

the autocorrelation pattern was not always fully exploited. Based on the in-

formation criteria, an algorithm to recognize the optimal order in each rolling

window could be developed.

Regarding the poor performance of GARCH, it could be enhanced by im-

plementing t-distribution of innovations rather than the normal distributions.

As was also pointed out earlier in this thesis, volatility does not respond to pos-

itive and negative shocks in the same way. Therefore, other GARCH models

such as TGARCH or EGARCH could used. Moreover, different multivariate

GARCH models could be applied to find out how the individual stock markets

are linked together.

Considering the forecasting horizon, not only the 1-day ahead forecasts but

also the 5-day or 20-day ahead forecasts could be done. However, this procedure

would also require to model the traded volume several days ahead which might

finally result even in higher forecasted error. This might be avoided be using

weekly or monthly averages where only the 1-step ahead forecast would be

computed and the further modeling of traded volume would not be necessary.

As was mentioned earlier, both volume and volatility has the long memory

feature as the order of integration varies from 0.35 to 0.5. To exploit this feature

in higher detail both the variables could be first modeled by an ARFIMA model.

The produced residuals would be then the subject of interest to the analysis

through a VAR model.

As the results of Mincer-Zarnowitz test suggest, there are several methods

producing negatively biased forecasts and several methods producing positively
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biased forecasts. It would be useful to find out whether is it possible to extract

some information from different forecasting methods and different volatility

estimators to increase the predictive power and produce both unbiased and

efficients forecasts.

Finally, the real impact on a portfolio selection could be measured. It might

be interesting to find out whether the covariance matrix obtained from both

historical covariances and traded volume would produce a better portfolio in

terms of final profit.



Chapter 6

Conclusion

The most precise volatility estimator is considered to be the realized volatility

as it directly measures changes of price in each second. However, this data is

available only for the mostly traded shares. Usually, stock exchanges and other

institutions charge fees for providing this data. Therefore, we substituted the

realized volatility by publicly available Garman-Klass volatility estimator tak-

ing into account daily open, low, high and close prices. Moreover, we were in-

terested whether the second publicly available statistics, traded volume, might

improve the predictive power of Garman-Klass volatility estimator.

We used natural logarithms of both Garman-Klass volatility estimator and

traded volume as these measures appeared to follow less leptokurtic distribu-

tion and hence were more suitable to forecasting. We implemented the loga-

rithms into both univariate models (AR, HAR) and multivariate models (VAR,

VAR-HAR) to asses the influence of the volume on the predictive power. Ad-

ditionally, we compared those models with the widely used GARCH(1,1) both

with and without volume. Moreover, we were interested how these models

perform in comparison with the long memory ARFIMA model. We found out

that both GARCH models provide significantly worse results than the simple

random walk of Garman-Klass volatility. HAR and VAR-HAR models, despite

their simplicity, outperformed all the other models and compared to the second

best model, ARFIMA, the gain in accuracy is about 0.05% - 0.6%. Moreover,

Mincer-Zarnowitz test shows that only HAR and VAR-HAR models are able

to produce unbiased forecasts.

To measure the impact of traded volume on volatility, we ran Granger-

causality test in VAR and VAR-HAR models. In case of VAR, the results

are ambiguous as the the Grange-causality is rejected for Nikkei and S&P and
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can not be rejected for FTSE and IPC. Regarding Granger-causality test in

VAR-HAR model, the results seems to be more in favor of Granger-causality

as it can not be rejected for FTSE, Nikkei and S&P. The reverse causality

from volatility to volume is stronger, it can not be rejected in case of all four

indices both for VAR and VAR-HAR models. These findings are supported

by impulse-response functions which show that a unit shock in volume does

not have any significant influence on volatility in short term compared to the

significant influence of shock of volatility to volume.

Considering the influence of traded volume on the predictive power of the

scrutinized models, the results do not provide evident proofs of improvement.

In case of AR against VAR, the improvements for Nikkei and S&P are negligible

and even drop in accuracy for FTSE and IPC by 0.34% and 1.46% was detected.

In case of HAR against VAR-HAR, the traded volume decreases predictive

power for FTSE and IPC by 1.08% and 0.17%, and increases the predictive

power for Nikkei and S&P by 0.17% and 0.12%.

Although we revealed that traded volume might Granger-cause volatility

and several volume coefficients in VAR and VAR-HAR models were significant,

the analysis of the out-of sample forecasts did not provide sufficient evidence

to confirm that traded volume improves volatility forecasting. Therefore, to

maintain model parsimony we recommend using HAR model with Garman-

Klass volatility estimator as it outperformed nearly all of the models under

scrutiny.
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Appendix A

Data description

Stock Index variable mean st. dev. skewness kurtosis

FTSE 100

return 0.0002 0.0125 -0.196 11.013
RV 0.0079 0.0049 2.651 15.519
GK 0.0084 0.0058 2.734 15.662

volume 1 330m 469m -0.006 2.087

IPC

return 0.0002 0.0125 -0.196 11.013
RV 0.0089 0.0049 3.003 18.911
GK 0.0090 0.0058 2.798 16.598

volume 156m 79.3m 2.645 21.944

Nikkei 225

return 0.0000 0.0156 -0.534 10.874
RV 0.0091 0.0048 3.373 23.474
GK 0.0080 0.0050 3.866 34.747

volume 1 210m 477m 0.980 5.805

S&P 500

return 0.0000 0.0135 -0.164 10.358
RV 0.0099 0.0065 3.002 19.038
GK 0.0085 0.0060 3.327 22.909

volume 2 860m 1 700m 0.933 3.530

Table A.1: Descriptive statistics of absolute values
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Figure A.1: Plots of absolute time series
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Figure A.2: Plots of logarithmic time series
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Figure B.1: AR(5) rolling coefficients
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Figure B.2: VAR(5) volatility equation: rolling ln(GK) coefficients
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Figure B.3: VAR(5) volatility equation: rolling ln(volume) coeffi-
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Figure B.5: IRF volatility to volume
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Figure B.6: HAR rolling coefficients
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Figure B.7: VAR-HAR volatility equation: ln(GK) rolling coefficients
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Figure B.8: VAR-HAR volatility equation: ln(volume) rolling coeffi-
cients
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Figure B.10: GARCH rolling coefficients
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Figure B.11: GARCH with volume rolling coefficients
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Figure B.12: Forecasts
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Ćılem této práce je:

1. Prezentovat range-based modely a popsat jejich výhody.
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