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Introduction

As written in abstract, there are several libraries for 3D polygonal meshes ma-
nipulation. Each of them has already implemented or imported implementation
of mesh. But what if we want to use a different mesh implementation in one of
them? We have two options: either to build the algorithm from the beginning on
our mesh or to forcely import our mesh implementation into the implementation
of a algorithm, which can be in cases of incompatibile basic operations used in
the algorithm impossible.

In fact, we are able to implement an algorithm without knowing an implemen-
tation of a given mesh. Nevertheless, in order to let the algorithm recognize the
operation there have to be the specific requirements those have to be satisfied.
After observing the algorithms, we will find out that the knowledge of basic oper-
ations which manipulate with the certain implementations of the polygonal mesh
makes us capable of writing most of the known algorithms over the polygonal
mesh.

This thesis focuses on the fact that most of implemented algorithms implement
the same concept of polygonal mesh. We analyze the representative set of al-
gorithms that supports this statement and provide a solution that utilizes the
observed facts.

Algorithm Decomposition

This thesis explains how can be algorithms decomposed in smaller operations.
The purpose of the decomposition is to show that some operations occur fre-
quently and in fact, in some cases, those operations suffices for building numerous
algorithms.

Goals of the Thesis

The primary goal is to design a library of generic algorithms that can be used
on any implementation of the polygonal mesh. We also have to consider that the
implementation may contain several absences from the viewpoint of designing the
algorithm. Therefore, for each algorithm we have to provide a simple and clear
concept that is required by the algorithm and build a user-friendly checker for
the concept. The more simple the concepts are, the easier it is for the user to
understand the technique for using the library.

The secondary goal is to design the library in terms easy-to-expand. In other
words, whenever a new algorithm will be published, one can create the imple-
mentation inspired by the implementations of other algorithms in the library.
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Generic Programming

In C++, we are able to use the programming technique that allows us to write
in terms to-be-specified-later by using templates. In comparision with other pro-
gramming languages the templates are pre-evaluated and the temporary source
code is generated during the compile time. This gives us a better performance
while the binaries are executed. We are thus able to write an algorithm without
knowing the closer specification of an instantiated type. The only information we
have to know is whether the type used as parameter contains properties that are
demanded in the implementation.

The template metaprogramming technique gives us options to determine dur-
ing the compile time whether a structure used as parameter contains required
properties. Moreover, using this technique, we are able to expose implemented
operations in the structure and generate a temporary source code based on the
structure which is later merged with the rest of the source code.

In this thesis, it is shown how we can analyze an implementation of the mesh
during the compile time. Therefore we are able to determine whether it satisfies
the concept of the implementation of an algorithm. Based on other operations
that are contained in the structure, we can temporarily build a new operation
that is not generally supported by the structure. Despite the risk of inefficiences
in the resulting operation, we can use the algorithms that require the generated
operation.

4



Part I

Theoretical Background
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1. 3D Object Representation

This chapter contains the definitions of various three-dimensional object represen-
tations that are commonly used in applications. A geometric query or a different
operation involving the object might be more effectively formulated with one
representation than another.

1.1 Overview

The 3D object representations can be divided into two major categories

• solid - the object in this representation contains information about inner
propreties of the object such as density and elasticity. It is mostly used in
software for engineering simulations.

• surface - this representation works only with the surface of the object
ignoring the properties of the volume itself. One of the advantages of this
representation is relatively simple visualisation. The surface description is
entirely sufficient for graphical purposes.

1.1.1 Voxel Map

A voxel is a word made by joining ’Volumetric’ and ’Pixel’. It represents the
value on regular grid that forms a voxel map. The simplest representation of a
voxel map is a normalized grid made of cube-shaped voxels with 0-1 values where
0 stands for the cube that is completely outside of the object and 1 represents
the case of crossing the surface or inclusion by the object.

Each voxel can contain various properties such as color, material physical prop-
erties or in case of boundary voxels, a surface description. Some implementations
provide information about each corner of voxel separately in order to improve the
accuracy. As it can be deduced from the overview, this representation is perfect
for the representation of the solid objects.

1.1.2 Implicit Surface

An implicit surface[1] is a surface defined implicitly by a function

surfacef(x,y,z) =











on surface if f(x, y, z) = 0

below surface if f(x, y, z) < 0

above surface if f(x, y, z) > 0

(1.1)
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Figure 1.1: Implicit surface given by function f(x, y, z) = 1
2
x2 + 3y2 + z2 = 1

This representation has several advantages such as efficient checking whether
a point is either inside or outside and efficient search for an intersection with
geometric primitives.

1.1.3 Constructive Solid Geometry

Known also as CSG tree[2]. This technique is used especially in the engineering
software. It allows the user to construct objects using Boolean operators. Objects
created by using this method can be used repeatedly in Boolean operators; the
resulting object can be decomposed into a tree.

The leaves of the tree are typically the objects of the simple shape. However,
the operators can be theoretically applied on any objects. The set of supported
primitives is given by a specific software package.

Thanks to the tree structure, CSG objects come with some convenient prop-
erties. The nodes that are higher in the tree hierarchy give us an approximation
that can be used in various geometric algorithms with no need to look for its
descendants.

1.1.4 Point Cloud

A point cloud is a set of points in a three-dimensional coordinate system[2][3]. The
set can form the surface of an object or any other three dimensional figure. Every
point is indepedent from one another, with no information about its topology.
They are often converted to polygon mesh or triangle mesh models.

1.1.5 Polygonal Mesh

A polygonal mesh is a collection of vertices, edges and faces that defines the shape
of the surface of the object[2]. Some special implementations do not contain faces.
These implementations are defined only by vertices and edges. Moreover, some
cases do not consider the topology and the object is a raw set of polygons. Nev-
erthless, a standard implementation is expected to contain a topology information
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about each vertex and face.

Each face is defined by planar polygon, in special cases by convex polygon or
triagle. The polygonal mesh restricted to contain triangular faces only, is called
triangle mesh. The main purpose of the restriction is the rendering simplification.
In general case, face is defined as the set of points that can contain a hole.

There are several techniques to represent a topology of the mesh. Each of them
has its own advantages that are reflected in an efficiency of data storage and
querying the surrounding elements. Several mesh representations are described
in the next section.

1.2 Polygonal Mesh

The collection can be represented in a variety of ways, the main purpose of the
structure is to improve the efficiency of the queries. On the other hand we face
the limitations such as memory. In some representations it is impossible to query
the adjacent vertices of a vertex without iteration through entire container of
vertices or faces.

1.2.1 Face-Vertex Mesh

The simplest representation that contains any information about topology of the
polygonal mesh. A mesh is represented by a container of vertices and the con-
tainer of sets of vertices that form faces[2]. The face is represented by at least 3
vertices or more vertices that have to be coplanar.

v0 v1 v5 v4 f1

v1 v2 v6 v5 f2

v4 v5 v6 v7 f5

Figure 1.2: face-vertex mesh representation

The set that forms the faces must be ordered. The preceding and following
vertex in order must be adjacent to the vertex. If the structure is not extended
by face-normal-attribute, the vertices have to be in clockwise/counter-clockwise
order from the view of face normal. Whether the order is clockwise or counter-
clockwise depends on the implementation of the mesh.
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1.2.2 Winged-Edge mesh

The representation described above contains no direct information about adja-
cency of faces. In order to determine the adjacency of any two faces or vertices
in constant complexity, we can build a structure that requires an extra storage.
The winged edge structure[4] provides information capable of determining edges
that belong to a vertex. It also provides information which allows us to determine
the surrounding edges from the given face; in case of a triangle mesh, it returns
the triplet of edges. Finally, the structure is named winged-edge because of its
capabilty to get a face pair (wings) from a given edge.

Face list
f0 e0 e9 e4 e8

f1 e1 e10 e5 e9

f5 e4 e5 e6 e7

Edge list

e0 f0 f4 v0 v1

e1 f1 f4 v1 v2

e4 f0 f5 v4 v5

e5 f1 f5 v5 v6

e6 f2 f5 v6 v7

e7 f3 f5 v7 v8

e8 f0 f3 v4 v0

e9 f1 f0 v5 v1

e10 f2 f1 v6 v2

Figure 1.3: Winged-edge mesh

Several uncertainities occured in the above-mentioned examples.

• Let us take edge e9. In the pair of faces, which of faces f0 and f1 should be
considered as the first and which as the second?

• Which of vertices v1 and v5 should be considered as the first and which as
the second in the pair that forms the edge e9?

One of possible solutions is to split the edge element into two half-edges. The
structure using, or rather based on this representation, is described in the next
paragraph.

1.2.3 Half-Edge mesh

The half-edge data structure is the structure capable of maintaining the incidence
information of vertices, edges and faces[5]. Each edge is decomposed in two half-
edges with opposite orientations.

The structure contains the set of following information

• a vertex that is the half-edge pointing to
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• a face that the half-edge belongs to

• the next half-edge in order that forms a face that half-edge belongs to

• (optional) the previous half-edge in the same order

• opposite half-edge

Half-edge list

he0 f0 v0 he1

he1 f0 v4 he2

he2 f0 v5 he3

he3 f0 v1 he0

he8 f1 v1 he9

he9 f1 v5 he10

he10 f1 v6 he11

he11 f1 v2 he8

he4 f5 v4 he5

he5 f5 v7 he6

he6 f5 v6 he7

he7 f5 v5 he4

Figure 1.4: Half-edge mesh representation
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2. Operations and Algorithms

Our aim in this chapter is to describe algorithms over 3D data structures. In each
description of an algorithm there is a short paragraph that summarizes required
operations for running the algorithm. It is later used in hierarchical implementa-
tion of the algorithms.

The article[6] proves that the mesh representation of a hole-free solid object can
be treated as a planar graph, and a polygon mesh as general unoriented graph.
Therefore, we can generalize the editing functions over polygon meshes as the
operations over the graphs.

2.1 Euler Operators

The Euler operators are the set of operators which create a polygon meshes[7].
One of the advantages of these operators is that they are invertible. In the fol-
lowing description paragraphs, each operator is followed by its inverted operator.

2.1.1 Make Vertex

The operation creates a vertex with no topological dependencies. It can be used
either on empty mesh or mesh with already created topology.

Figure 2.1: Euler operator makeV

2.1.2 Kill Vertex

The operation removes a vertex that is required not to be contained in faces or
edges.

Figure 2.2: Euler operator killV

2.1.3 Make Vertex and Edge

The operation Make Vertex and Edge creates a vertex and connects it with an
another vertex that is already contained in the mesh.
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Figure 2.3: Euler operator makeEV

2.1.4 Kill Vertex and Edge

It removes a vertex and disposes the edge that is connected to the vertex.

Figure 2.4: Euler operator killEV

2.1.5 Make Edge and Face

This operation creates an edge and forms a new face by splitting another one, or
by forming a new face.

Figure 2.5: Euler operator makeEF

2.1.6 Kill Edge and Face

It removes the edge and the face that is connected to the edge.

Figure 2.6: Euler operator killEF

2.1.7 Make Face and Kill Ring

It creates a face by disposing the ring because of the addition of a new edge.

Figure 2.7: Euler operator makeFkillR
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2.1.8 Kill Face and Make Ring

The operation creates a ring by disposing of a face.

Figure 2.8: Euler operator killFmakeR

2.2 Editing Functions

Some functions are designed to change size or shape of the object. Those functions
are called editing function. During the editing of the object, the user defines
required values and the function deforms the object properly. In case of the
editing function scaling for instance, a user defines the scaling ratio.

2.2.1 Truncate

Truncate is the operation that affects a topology of a mesh. From a given vertex,
it creates a new face with surroundings of the original vertex. This is a common
operation of mesh editing used e.g. in 3D editors.

Figure 2.9: The red-marked vertex is a selected vertex to be truncated. The face
filled by the orange color with the red borders is the resulting face created by the
truncation.

2.2.2 Bevel

This operation is almost identical with the truncation. The only difference is the
argument of the operation. As the truncate operation creates a new face based
on the given vertex, the bevel operation creates the face from a given edge.

Figure 2.10: The red-marked edge is a selected edge to be beveled. As in the
previous case, the resulting face is filled with the orange color.
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2.2.3 Extrude

In the previous operations the argument is a vertex and then an edge. Intuitively,
one can assume that there is an operation that demands a face as the argument.
Operation extrude “pulls" the face out the object creating new faces connecting
the extruded face with the resulting object.

Figure 2.11: The red-filled face is a selected face to be extruded. The operation
creates a set of faces (marked with orange) with the topology as shown on the
picture.

2.3 Converting between Representations

This section introduces some algorithms that convert one representation to an-
other. Each representation has its own capability.

2.3.1 Delaunay Triangulation

Let P be a set of points in the d-dimensional Euclidean space. Delanuay triangulation[8]
is a triangulation such that no point p ∈ P is inside the circum-hypersphere of
any simplex in DT (P ). For better imagination, in case of 2-dimensional space, no
point structure is inside the circumcircle of any triangle of the resulting structure.

2.3.2 Marching Cubes

Marching cubes algorithm converts a grid representation to a mesh [9]. It iterates
through all grid elements and builds a new polygonial mesh. For each element
(that can be considered as cube, cuboid or even parallelepiped) it determines
whether the corners are inside or outside object. The algorithm considers only
those elements which contain both categories of points; rest of them are ignored.
As each element has 8 corners, each of them can be determined either as inside
or outside object. In result, the element can possibly have one of 28 = 256 con-
figurations. However, some configurations can fit to another one after rotation,
reflective simmetry, or sign changed case.

Finaly, all of them can be reduced to 15 unique cases. The main idea of this
algorithm is to place a set of faces for each cube in order to create a polygonal
mesh with a corresponding shape. In other words, each configuration refers to
the configuration of new faces to be added to a mesh. However, we know that two
adjoining elements share 4 corners, so the resulting faces are certainly continuous.
If the corners contain any other information, except the inside/out information,

14



Figure 2.12: The 15 cases of marching cubes algorithm. The corners that are eval-
uated as inside of the object are labeled with red. The yellow triangles represent
faces to be added to a mesh.

the position of the faces in the mesh can be refined. Usually, it contains the
information about a color or the distance from point to surface. In that case,
placing or any other processing of the face is based on linear interpolation of
corner values.

Figure 2.13: Interpolated position of face

Let v1 and v2 be the values that represent the distances from the surface to
the corners. Thus, we can calculate the value of coefficient u from the following
equation.

u =
v1

v1− v2
(2.1)
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Figure 2.14: Voxelization step-by-step

2.3.3 Voxelization

Voxelization is the algorithm which is in 2D known as rasterization. It that
constructs an initially empty 3D grid and fills the grid elements that indicate
whether the element is inside the object[10]. There are several techniques how to
represent a boundary element. The simpliest one is to set the boundary element
as completely filled, thus we have a voxel map of values 0 and 1. The other ones
store additional information in voxels that form an alias-free voxelized object[11].

This algorithm can be divided into two phases: The first phase voxelizes the
faces of triangle mesh and the second one fills the created object. Admittedly,
before filling the object, the algorithm has to check whether the mesh forms an
enclosed surface. If it does not form an enclosed surface, the second phase of
algorithm is omitted.

The first phase voxelizes faces one by one. Each face is processed similarly to
the triangle rasterization in 2D. First, the algorithm voxelizes boundary edges
and then runs the floodfill over the face. The filling technique of the face is
processed by the line-filling algorithm in the following steps.

• On the pre-computed minimum boundary rectangle, start on the bottom
and repeat for each line

• In the line, start from an arbitrary side and process the elements conse-
quently

• After first crossing a rasterized edge, start filling the elements (entry the
face)

• After second crossing a rasterized edge, stop filling (leave the face).

In the second phase, the algorithm fills the elements inside the object. The only
problem is to determine whether the given voxel is inside or outside the object.
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As described above, the assumption of starting with a line outside the enclosed
area gives us the right method. The bounding box will be needed in this case as
well. If the object cannot be wrapped the inside/outside property of element can
not be determined.
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Part II

Analysis
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3. Libraries

We did not yet mention the implemented data structures that fulfill the described
rules. This chapter introduces several libraries that are comonnly used. The
following paragraphs show the corelation with the structures shown in the chapter
2.

3.1 OpenMesh

OpenMesh[12][13] is an open-source generic data structure for representing and
manipulating polygonal meshes. It has been developed at the Computer Graph-
ics Group, RWTH Aachen.

Restricting to the meshes introduced in the section 1.2, OpenMesh is consid-
ered as a half-edge structure. It is formed by the kernel that set proper attributes
such as triangular restriction or allowing to remove vertices from mesh.
To fully specify a mesh, several parameters can be given:

Face type: Specifies whether to use a general polygonal mesh or a triangle
mesh.

Kernel: Stores the element of the mesh internally. User chooses from the
available kernels according to expected usage. For example, the decimation algo-
rithm requires efficient deletion/insertion, thus the proper kernel for this case is
the kernel based on linked list.

Traits: Traits is the class that enhances the mesh functionality such as ver-
tices removal or adding various attributes to elements.

3.2 Trimesh

Trimesh is the library designed to read, write, and manipulate with the triangle
meshes[14].

Compared to the OpenMesh library, Trimesh library emphasizes the efficiency
and easy of use rather than the sophisticated design. The representation of the
mesh is a modified face-vertex structure(see the description in the section 1.2.1).
The modification consist in the addition of 3 connectivity structures:

• neighbors - for each vertex, all adjacent vertices

• adjacentfaces - for each vertex, all adjacent faces

• across_edge - for each face, the three faces attached to its edge. Since
the faces are restricted to triangles, a given face is allowed to have only the
triplet of adjacent faces.
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4. Computational Complexity

This chapter describes the impact on the computational complexity by choice of
the mesh representation. We will also define the limits for those we consider the
operation as effective or ineffective. Later in the thesis, if the operation is marked
as effective it must fulfill the defined criteria. If the mesh representation does not
contain an operation that satisfies the criteria for complexity the representation
does not natively support the operation.

4.1 Efficient vs. Inefficient

The efficiency is a relative expression hence we need to define what is effective. If
the operation does query on the local topology only then the scanning the whole
structure is considered in this case as ineffective. The acceptable complexity is
the complexity of scanning the immediate surroundings.

Example:
Getting all adjacent verticies of a vertex in the face-vertex representation. (see
the section 4.2)

Analysis:
Although the structure does not possess information about vertex adjacency we
can acquire the demanded information by scanning the topology of the mesh. As
we do not have any auxiliary structure the information can be acquired only by
scanning the whole structure. Thus the only way how to solve this problem is for
each face to check whether the vertex is contained in the face. Then the previous
and the next vertex from the view of the demanded vertex are the ones that form
the edges in the mesh.

Conclusion:
The computation complexity of the operation can be computed intuitively: For
each face we need to check whether the demanded vertex is contained in the face
so we need to check each vertex in the face and if the vertex is contained we are
able to get an adjacent vertex in constant time.

Thus the computational complexity of the operation is O(Fmesh× Vface) in total.
However getting the adjacent vertices is the operation querying the surroundings
only the complexity of the operation on the face-vertex structure is above the
effective limit.

The limits for the operation are defined in the following paragraph.

4.2 Limits

For each operation mentioned in the chapter 2 the specific limit of effectiveness
has to be defined. Before we specify the limits, we classify the operations in two
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categories:

• Global operation - the operation that can not be done without all informa-
tion about entire structure

• Local operation - the operation that involves only the specific part of the
mesh with no demans on the rest of elements in the structure

In the following analysis are involved operations that adds/removes an element(vertex,
edge, face), Euler operators (see the section 2.1), advanced editing functions (see
the section 2.2), the getters on the surroundings of an element and the getters on
the entire structure(e.g. getting all vertices).

Add/remove primitives

Name of the operation Allowed complexity local/global
Add vertex O(1) local

Remove vertex O(VadjacentV ) local
Create edge from vertices O(VadjacentV ) local

Remove edge O(1) local
Create face from vertices O(VadjacentV ) local

Remove face O(VadjacentV ) local

The table above are shown basic operations over mesh structure. The allowed
computational complexity is based on the number of adjacent vertices of the ver-
tex involved in the operation. In case of the operation that involves more vertices
the number VadjacentV represents the sum of all adjacent verticies of all verticies
involved in the operation. E.g. in case of the operation Create face from ver-
tices if the operation creates a face from the triplet of vertices the computational
complexity is 3× VadjacentV .

Euler operators

Name of the operation Allowed complexity local/global
MakeV O(1) local
KillV O(1) local

MakeEV O(1) local
KillEV O(1) local
MakeEF O(VadjacentV ) local
KillEF O(VadjacentV ) local

MakeFkillR O(VadjacentV ) local
KillFmakeR O(VadjacentV ) local

Figure 4.1: The table shows the allowed complexity of the Euler operators on any
mesh structure.
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Editing functions

Name of the operation Allowed complexity local/global
Truncate O(VadjacentV ) local

Bevel O(VadjacentV ) local
Extrude O(VadjacentV ) local

Figure 4.2: Despite to the fact the operations listed in the table above can be
created using the Euler operations a mesh may have own, faster and optimized
implementation of the operation.

Getters (surroundings)

Name of the operation Allowed complexity local/global
Get adjacent vertices of the vertex O(VadjacentV ) local
Get adjacent edges of the vertex O(EadjacentV ) local
Get adjacent faces of the vertex O(FadjacentV ) local

Get vertices of the edge O(VconsistE) local
Get faces that the edge splits O(FadjacentE) local

Get vertices of the face O(VconsistF ) local
Get edges of the face O(EconsistF ) local

Get adjacent faces of the face O(FadjacentF ) local

Figure 4.3: The operations listed above does not affect the mesh; the readable
information about the structure is acquired. The allowed complexity does not
permit scanning the entire structure. The operations cover operations that de-
termines whether two elements are adjacent. E.g. the operation dethtermine
whether two vertices are adjacent is covered by the operation Get adjacent ver-
tices of the vertex.

Getters (entire structure)

Name of the operation Allowed complexity local/global
Get all vertices O(Vall) global
Get all edges O(Eall) global
Get all faces O(Fall) global

Figure 4.4: The operation that gets all elements in the structure assumes that
all elements are contained in specific container that can be scanned in a linear
complexity.
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5. Designing the Library

There are a lot of libraries that offer the ability to represent the volume data and
the basic manipulation with it. There are a lot of published algorithms that can
be implemented as well.

Our goal is to create a generic set of algorithms that can be used over any im-
plementation of mesh that satisfies a required concept. Before the algorithm is
finally implemented, we must completely describe the concept of the algorithm
and the behavior of the algorithm on a closely unspecified mesh. The point of
this goal is to think generally regardless of the specification of a potentionally
used mesh.

5.1 Observation

Observing the algorithms step-by-step, we can see that single steps of the algo-
rithm are the variations of adding, removing and modifying the elements of the
mesh. In addition, the algorithms also uses a capabilities of querying in mesh
such as getting all adjancent vertices of given vertex or getting all vertices in a
container or any iterable structure.

Such capabilities of the mesh are critical for implementing an algorithm. The
question then arises, “Why do we implement the algorithms for meshes if the
usage of required operations might suffice?" The answer can be relatively simple:
We are generally not able to determine how is a given structure controlled with-
out being provided the an additional information.

Thus there is an option to build a correctly working algorithm over any structure
that fullfills the criteria that has been presented by the algorithm. Nowadays
in C++, we are able to build a template-based interface that modifies a given
structure according to algorithm requirements during a compile time.

Before using this set of algorithms, the user only defines an interface for cho-
sen structure and passes it as a parameter.

5.2 Concepts and Algorithms

The concept is specific according to the requirements of an algorithm. Let us
provide an example of an algorithm and then build a structure concept that re-
quires the algorithm in order to work correctly.

Example:
The algorithm that flips normal on each face of a given mesh.

Solution:
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Before analyzing the algorithm, we can see that input is a mesh (not closely
specified) that returns modified mesh. The idea of the algorithm is simple; pick
all faces and flip the normal of each one. Obviously, the mesh is required to have
faces. This is not an unnecessary note, because there are several implementations
of mesh without faces; e.g. vertex-edge mesh. Finally, let us summarize what
attributes are required by the algorithm.

• faces of a mesh

Now, when we have the required attributes, we need to specify which opera-
tions are required.

• flipping the normal of a face

• capabilty of applying the operation on each face

Question:
What if the structure does not have a method that flips the normal of a face?

After all, the algorithm can be build without providing a method that flips a
normal; it can flip the normal of a face by itself. There are two possible ap-
proaches to solving this question. The first: create the next algorithm with
different requirements separately. The second: build an adapter that has the
same functionality as a required method that flips normals and use it as method
in the algorithm described above instead a required method.

Both cases require additional points of the concept instead the ommited one.
In order to reverse the normal of a face manually, the following is required:

• the normal of a face

• getting the face normal

• setting the face normal

It is up to us how do we design the algorithms and the level of the implementa-
tion. The more sophisticated the adapters are, the bigger the number of cases of
mesh implementation can be covered. If the compiler does not find the required
methods and it is able to build an adapter, then it does not bother the user and it
builds a modified method. Naturally, adapter may have own requirements there-
fore we can assume that some point of concepts can be replaced with different
ones.
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6. Algorithms Decomposition

This chapter describes the decomposition of the algorithms (see the chapter 2) so
that basic operations over polygon mesh can be summarized. The word “basic"
is relative according to the chosen level. The level chosen in this thesis is such
that leads to the least count of operations in total.

If the mesh does not fulfill the concept of the algorithm, adapters can be used
instead of the absent operators. An adapter behaves like an operator but in fact
it is the algorithm that makes a desired step as a result. In the other words it
is the operator implemented in terms of brute-force. In some cases, lack of an
operator can not be replaced by an adapter.

The algorithms described in this chapter are only the small part of all algo-
rithms. The emphasized algorithms are primarily the ones that are commonly
used ones; the algorithms that change the mesh topology and the conversion
algorithm between voxel and polygon mesh representation.

6.1 Parallel Processing

Some algorithms have a passage that is repeated for every vertex, or every face,
etc. According the design of an algorithm, it can be determined whether the
repetition can be processed simultaneously. If the other processed elements are
affected in the loop body, the loop can not be processed parallelly.

If an algorithm have such a passage, the developer has an opportunity to ac-
celerate the run-time of the algorithm implementation by using multiple compu-
tational threads. Since the most of processors have more than one processor core
nowadays, the parallel processing of the algorithm block might significantly speed
up the performing time.

If a loop has an option to be processed parallelly, in pseudocode, the loop is
labelled with “parallel". In the implementation, if the algorithm is not imple-
mented parallelly, the algorithm remains correct.

6.2 Converting between Representations

6.2.1 Marching Cubes

The algorithm has the specific requirements for the mesh and also for the voxel
map (See algorithm description 2.3.2). However the voxel map can be in various
forms some special cases of marching cubes are explained.
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Algorithm 1 Marching cubes
1: function Marching cubes(voxelMap)
2: mesh := empty mesh
3: parallel for each voxel in voxelMap

4: cubeType := Determine Cube Type(voxel)
5: faces := Create Faces(cubeType)
6: for each face in faces do
7: Add Face To Mesh(mesh, face)
8: end for
9: end parallel for

10: return mesh

11: end function
12:

13: function Determine cube type(voxel)
14: configuration := initial configuration
15: ⊲ configuration contains all the information
16: ⊲ about each corner of the cube
17: ⊲ initial configuration assumes that all corners are outside
18: corners := Get Voxel Corners(voxel)
19: for each corner in corners do
20: if corner is inside the surface then
21: Set in configuration the corner as inside
22: end if
23: end for
24: return configuration

25: end function

From the pseudocode 1 we can conclude that the structures used as a param-
eters are required to support operations used in the algorithm. Thus the concept
of the algorithm is designed as follows:

• mesh is required to support face structure (line 6)

• mesh is required to support adding the faces (line 7)

• voxelMap is required to support voxel structure (line 3)

• voxelMap is required to support getting all the voxels (line 3)

• voxelMap is required to support getting all the corners of each voxel (line
18)

• voxelMap and mesh are required to have a cubeType convertible to a set
of faces (line 5)

6.2.2 Voxelization

Compared to the Marching cubes algorithm, the requirements for the voxel map
structure are more comprehensive. As mentioned in the description (See the
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section 2.3.3), the algorithm consequently voxelizes the edges, the faces and finally
fills the object.

Algorithm 2 Voxelization
1: function Voxelize mesh(mesh)
2: voxelMap := map of empty voxels
3: parallel for each face in mesh

4: Voxelize face(face, voxelMap)
5: end parallel for
6: Run Floodfill(voxelmap)
7: return voxelmap

8: end function
9:

10: function Voxelize face(face, voxelMap)
11: for each edge in face do
12: Voxelize edge(edge, voxelMap)
13: end for
14: Run Face Floodfill(face, voxelmap)
15: update voxelMap

16: end function
17:

18: function Voxelize edge(edge, voxelMap)
19: v0 = First Vertex(edge)
20: v1 = Second Vertex(edge)
21: for each voxel between v0 and v1 do
22: Set As Filled(voxel)
23: end for
24: update voxelMap

25: end function
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7. Adapters

If the polygon mesh does not satisfy the designed concept of the algorithm then
the compiler raises an error. Nevertheless, in some cases, there is an option to
create an additional function that performs according the requirements for the
absent operation. In C++ standard library, adapters are used to build function
objects out of ordinary functions or class methods[15].

Inspired by the adapters from the C++ standard library, we create a set of
adapters for our generic algorithms library. This chapter discribes the purpose
of adapters in the implementation of generic algorithms supported by several ex-
amples. It is primarily used in case of the absence of any required operation used
in algorithm.

7.1 Observation

Same as algorithms, adapters have specific requirements to be created. From this
point of view, we can state that an adapter has a capability to substitute a point
of the concept with the other ones that are required for the adapter.

That statement is supported in following paragraphs.

7.2 Get-Adjacent-Vertex-of-Vertex Adapter

If the polygonal mesh is not in a representation that contains direct information
about adjacency of two vertices then the mesh can not effectively get the adja-
cent vertices from a given vertex. Obviously, no algorithm that contains query
for adjacent vertices of a vertex can be working over such a structure.

However, using the brute-force, we can determine which ones from vertices are in
adjacency with the queried vertex. In the other words, demanded vertices can be
acquired after checking all faces that contain the queried vertex.

7.2.1 Concept of the Adapter

Assuming the structure is non-edge-based, we add an assumption that the struc-
ture is face-based so it supports the face structure that provides information
about contained vertices in the correct order. The points of the concept are as
follows:

• mesh is required to support getting all faces of the mesh

• mesh is required to support getting all vertices of a face in the mesh

Finally, we can conclude that the point “mesh is required to support getting all
adjacent vertices of a vertex in the mesh" can be substituted by these two points
in a concept of any algorithm. On the other hand, the complexity of the operation
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raises from O(Vvertex) to O(Fmesh) where the Fmesh is the number of the faces in
total and Vvertex is the expected count of the adjacent vertices.
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Part III

Implementation
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8. Hmira Library

The library is written in C++ using the standard C++11 [16]. However the
features for metaprogramming are not yet as advanced as the ones from Boost [17]
we use Boost library, especially Boost Metaprogramming Library[18] and Boost
Preprocessor Library[19] for metaprogramming purposes.

8.1 Designing the Concept

The important part of the generic library is the concept - the set of requirements
for a template used as parameter. After the concept is satisfied, a code can be
built.

Concept consists of axioms and constraints[20]. Constraints are statically evalu-
able predicates of the properties. Axioms are the requirements on the types that
can not be statically evaluated.

8.2 C++11

The standard C++11 comes with new features such as lambda functions, stat-
ic assertions and other features that help us to pre-evaluate available constants
during the compile-time.

C++11 contains the header <type_traits> that defines a series of classes to
obtain information during the compile-time.

8.3 Boost

Boost has a metaprogramming framework boost::mpl[18]. During the compile-
time, it is capable of evaluation logical or arithmetical expressions. Combined
with std::enable_if or static assertion it can determine which function will be
compiled and which not.

8.4 Threading Building Blocks

The library Threading Building Blocks[21][22] is multiplatform C++ template
library for task parallelism made by Intel R©. It uses C++ templates to eliminate
the need to create and manage threads. The Hmira library uses the Threading
Building Blocks in algorithms that have a section which can be done parallely; in
the chapter 6, the section which can be done paralelly is labeled with parallel.
E.g.: the parallel for does not necessarily mean that the block must be a parallel
loop; it means that the block of code provides an option being done parallelly.
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9. Traits

This chapter describes the methods of the required operations recognition by the
library.

Our problem is that the class used as a template has unknown parameters and
methods. Obviously, the library can not classify the purpose of the members of
the class used as template by itself. The solution is to create a new class called
traits.

Traits aggregate all useful types and methods in the way defined by the library.
It is used as a parameter in the templated algorithm and when a method from the
traits is called it returns the result of the method from the mesh implementation
or anything that has a user put into the traits.

Example:
Implement an algorithm that generates a cube with the centroid in the origin
of the standard coordinate system with edges aligned to x,y and z axes and the
length of the edge is 2. Thus the coordinates of the points are:

A = [−1,−1,−1]
B = [1,−1,−1]
C = [1,−1, 1]
D = [−1,−1, 1]
E = [−1, 1,−1]
F = [1, 1,−1]
G = [1, 1, 1]
H = [−1, 1, 1]

The mesh can be assumed as polygonal.

Solution:
The code will appear as follows:

/**

* \param m the reference to the mesh

* \returns whether the operation ended successfully

*

* the mesh is assumed as empty. If the mesh is not empty

* it just adds a cube

*/

template <typename TMesh , typename TMesh_traits >

bool generate_cube(TMesh& m)

{

typedef typename TMesh_traits::Point Point; // coordinates

typedef typename TMesh_traits::Vertex Vertex; //vertex

typedef typename TMesh_traits::Face Face; //face type

auto a = Vertex(Point(-1,-1,-1));
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auto b = Vertex(Point (1,-1,-1));

auto c = Vertex(Point (1,-1,1));

auto d = Vertex(Point (-1,-1,1));

auto e = Vertex(Point (-1,1,-1));

auto f = Vertex(Point (1,1,-1));

auto g = Vertex(Point (1,1,1));

auto h = Vertex(Point (-1,1,1));

TMesh_traits:: add_vertex(m, a);

TMesh_traits:: add_vertex(m, b);

TMesh_traits:: add_vertex(m, c);

TMesh_traits:: add_vertex(m, d);

TMesh_traits:: add_vertex(m, e);

TMesh_traits:: add_vertex(m, f);

TMesh_traits:: add_vertex(m, g);

TMesh_traits:: add_vertex(m, h);

TMesh_traits:: create_face(m, a, b, c, d);

TMesh_traits:: create_face(m, b, c, g, f);

TMesh_traits:: create_face(m, c, g, h, d);

TMesh_traits:: create_face(m, a, d, h, e);

TMesh_traits:: create_face(m, e, f, b, a);

TMesh_traits:: create_face(m, h, g, f, e);

return true; // the cube has been generated succesfully

}

Without creating an instance, in the class TMesh_Traits are obtained all meth-
ods and types required for the algorithm. In fact, a type can be named differently
but in the traits class, it must be named following the rules specified by the in-
terface.

Assuming we have class named my_mesh, the traits class will appear:

class my_mesh_traits

{

public: //the typenames must be visible for the algorithm

/* TYPES */

typedef typename Coord_type Point;

typedef typename My_Vertex Vertex;

typedef typename My_Face Face;

typedef typename mesh TMesh;

/* METHODS */

inline static Face

create_face(

TMesh& m,

Vertex a,

Vertex b,

Vertex c,

Vertex d) {/*the implementation*/}

inline static void

add_vertex(

TMesh& m,

Vertex a) {/*the implementation*/}

};
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10. Concepts

The example in the chapter 9 shows that the implemented algorithm will not
work if the class that is used as traits misses any of the methods or parameters
used in the algorithm. In order to be certain, the error is raised during the com-
pile time.

The set of all parameters and method required by the algorithm is called concept.
The concept specifies what must be obtained in the traits to let the algorithm
work correctly. This chapter explains the purposes of specifying the concept of
the algorithm and the possible methods to let the compiler check the concept.

Summarized from the code of the example in the chapter 9, we can see that
the required paramters and methods are as follows:

//parameters

typename Traits ::Point

typename Traits ::Vertex

typename Traits ::Face

//methods

Traits ::Face create_face(

Traits ::Mesh& m,

Traits ::Vertex a,

Traits ::Vertex b,

Traits ::Vertex c,

Traits ::Vertex d);

bool add_vertex(

Traits ::Mesh& m,

Traits ::Vertex a);

In addition, the type Vertex must be constructible from the type Point. and
the type Point must be constructible from the triplet of float. From this point
there are two approaches to create a class that fullfills the requirement for the
constructor assuming the class does not support it by default. The first, to create
an inherited class with modified constructor. The second, to build a templated
wrapper that uses a class as a parameter.

//building a vertex type

//using inheriting class

class Vertex1 : public MyVertex

{

public:

Vertex1( MyPoint& p )

{

this ->coordinates = p;

}

};

//building a vertex type

//using a wrapper class

template <typename TVertex , typename TPoint>

class Vertex2 : public TVertex

{

public:
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Vertex2( TPoint& p )

{

this ->coordinates = p;

}

}

The code implements an example with an assumption that the class MyVertex

contains a member coordinates.

10.1 Usage

The user can check the concept by the placing the following code before the
calling of the function.

boost ::function_requires < GenerateCubeConcept <Mesh , Traits >();

If the concept is not satisfied, the error code will apear as follows:

$ /usr/include/boost/concept/detail/ has_constraints.hpp

:32:14: required by substitution of template <class

Model > boost::concepts ::detail::yes boost::concepts

::detail::has_constraints_(Model*, boost::concepts ::

detail::wrap_constraints <Model , (& Model::

constraints ) >*) [with Model = VertexAdjacencyConcept

<Mesh , Traits > >]

If the checking is not processed, the compilator still throws an error. The benefit
of the error message above is that the compiler always throws such an error if the
concept is not satisfied. If the concept is not checked, the compiler may produce
a misleading or confusing error messages that are more demanding to solve.
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11. Adapters

The chapter 7 explains the purpose of the adapters. The adapter is worth using
only if the conversion of the used mesh representation is more demanding than
the usage of the adapter.

Adapters generally can not be treated as standard implementation of the function
that an adapter replaces; the computational complexity of the adapter increases
the total complexity of the algorithm so that the resulting behavior is considered
as inefficient (see the section 4.1).

11.1 Usage

The adapters are processing the demanded operation by the brute-force. When
the user is building the traits(see the chapter 9) for the algorithm, he puts a
calling of the adapter inside the function placed to traits instead of calling the
function supported by a mesh structure.

Example:
Let us have an algorithm X that requires iterating through all adjacent vertices
from a given vertex. We have a face-vertex polygonal mesh(see the section 1.2.1)
that does not support the efficient(see the section 4.1) operation capable of get-
ting the all adjacent vertices.

How do we build a traits for the algorithm X?

Let us assume that the type representing the mesh is named X_fv_mesh, and
the required operation of the algorithm that has to be contained in traits is as
follows:
static std::pair <vv_iterator ,vv_iterator >

get_adjacent_vertices(

const X_fv_mesh& m,

const vertex_descriptor v);

Observation:
From the declaration of the function above, it is obvious that except the X_fv_mesh,
two additional types has to be contained in the traits.
typedef vertex_descriptor X_fv_mesh&::Vertex; //supported by the

structure

typedef vv_iterator ??? //not supported by the structure

Thus the question arises “How do we define the vv_iterator" and what do
we place into the implementation of the function get_adjacent_vertices()?

Solution:
We use an adapter hmira::adapters::vv_adapter::vv_iterator_adapter which
allow us to call a function that returns the demanded pair of the iterators and
provides a type that was required for the function; in case of this example,
vv_iterator.
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The implementation of the traits will appear as follows:

# include <hmira/adapters/vv_adapter.hpp >

class X_fv_mesh_traits

{

//the following block of the code has to be

//added to the traits

//...

typedef typename hmira::adapters::vv_adapter <

X_fv_mesh ,

X_fv_mesh_traits

>::vv_iterator vv_iterator;

static inline

std::pair <vv_iterator , vv_iterator >

get_adjacent_vertices(

const X_fv_mesh& m,

vertex_descriptor v)

{

return hmira::adapters::vv_adapter <

X_fv_mesh ,

X_fv_mesh_traits

>::vv_iterator_adapter(m, v);

}

//...

};

The class X_fv_mesh does not support the operation that returns the iterators
that are able to iterate through the adjacent vertices of a given vertex. Instead of
calling the implemented function, the function refers to an adapter. In this case
vv_iterator_adapter.
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Conclusion

The goal was to build a robust library that can be a basis for 3D editors. The
robustness is based on the template-like implementation technique that allow us
to let it work over any implementation of the mesh. The secondary goal was
to establish a convention for the future expansion of the library that has to be
simple and clear. As the concepts philosophy is clear, the library is now easy to
expand with a set of algorithm.

Since most of meshes used nowadays are used in the rendering software, the
implementations are commonly not appropriate for algorithms that affects the
topology. That is the main reason why the implementations of algorithms has
own implementation of the mesh that loads the data from an external file or has
own convertors. The Hmira library provides a solution that saves a user from
developing conversion software between the implementations of the mesh. In
addition, it allows a user to create an adaptor for the specific operations rather
than implement a convertor and the implementation of the operation separatedly.

The attached examples shows that the metaprogramming technique used in the
library brings a great benefits that allow us to create any algorithm as gener-
ic. The challenging part of the implementation of the algorithm is an algorithm
decomposition; as the algorithm is decomposed, the algorithm is then ready to
implement using elementary operations that are contained in the concept.

As the project is developed on repository https://github.com/hmira/hmiralib,
anyone is allowed to expand the library using the instructions contained in the
appendicies. One can implement algorithms, adaptors for the operations and the
traits for the mesh library.
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A. Running the Implemented

Examples

The library has been tested on the OS Ubuntu 12.10 using compiler g++ 4.7 and
has been developed using the multi-platform developement tools only.

A.1 Installation

git clone https://github.com/hmira/ hmiralib.git

mkdir build

cd build/

cmake ..

make [custom executable]

A.2 Running

By running a command

./test/[custom executable] --help

the program prints a message that specifies the required parameters to run.
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B. Templating by a Custom

Polygon Mesh

To make the library work, we must build a proper traits in order to let the library
recognize the required operations.

Depending on the demanding algorithm, we must create the traits that satis-
fy the concept of the algorithm. If the concept is not fulfilled the compiler throws
an error.

Example:

template <typename my_mesh >

class my_mesh_implementation_traits <my_mesh >

{

public:

typedef typename my_mesh::point point;

typedef typename my_mesh::normal normal;

typedef typename my_mesh::vertex_descriptor

vertex_descriptor;

typedef typename my_mesh::vertex_iterator vertex_iterator

;

typedef typename my_mesh::edge_descriptor edge_descriptor

;

typedef typename my_mesh::edge_iterator edge_iterator;

typedef typename my_mesh::face_descriptor face_descriptor

;

typedef typename my_mesh::face_iterator face_iterator;

typedef typename my_mesh::fv_iterator fv_iterator;

typedef typename my_mesh::vv_iterator vv_iterator;

typedef typename my_mesh::ve_iterator ve_iterator;

inline static bool add_vertex(

vertex_descriptor a,

my_mesh& m)

{

m. my_add_vertex(a);

return true;

}

inline static bool create_face(

vertex_descriptor a,

vertex_descriptor b,

vertex_descriptor c,

my_mesh& m)

{

m. my_make_face(a,b,c);

return true;

}

}
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From here, we have a traits that is capable of generating a cube.

int main()

{

typedef typename my_mesh_implementation_traits <my_mesh >

traits;

auto cube = generate_cube <my_mesh , traits >();

}
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C. Expansion of the Library

C.1 Creating a new Concept

Once we have an algorithm/adapter working, we have to create a concept follow-
ing the convention provided by the library. In the concept it has to be contained
the rules required for running the algorithm/adaptor.

Example:
We have a method that generates a cube
template <typename TMesh , typename TMesh_traits >

bool generate_cube(TMesh& m)

{

typedef typename TMesh_traits::Point Point; // coordinates

typedef typename TMesh_traits::Vertex Vertex; //vertex

typedef typename TMesh_traits::Face Face; //face type

auto a = Vertex(Point(-1,-1,-1));

auto b = Vertex(Point (1,-1,-1));

auto c = Vertex(Point (1,-1,1));

auto d = Vertex(Point (-1,-1,1));

auto e = Vertex(Point (-1,1,-1));

auto f = Vertex(Point (1,1,-1));

auto g = Vertex(Point (1,1,1));

auto h = Vertex(Point (-1,1,1));

TMesh_traits::add_vertex(m, a);

TMesh_traits::add_vertex(m, b);

TMesh_traits::add_vertex(m, c);

TMesh_traits::add_vertex(m, d);

TMesh_traits::add_vertex(m, e);

TMesh_traits::add_vertex(m, f);

TMesh_traits::add_vertex(m, g);

TMesh_traits::add_vertex(m, h);

TMesh_traits::create_face(m, a, b, c, d);

TMesh_traits::create_face(m, b, c, g, f);

TMesh_traits::create_face(m, c, g, h, d);

TMesh_traits::create_face(m, a, d, h, e);

TMesh_traits::create_face(m, e, f, b, a);

TMesh_traits::create_face(m, h, g, f, e);

return true; // the cube has been generated succesfully

}

Thus the concept appear as follows:
template <class TMesh , class TMesh_Traits >

struct GenerateCubeConcept

{

typedef typename TMesh_traits::Point Point; // coordinates

typedef typename TMesh_traits::Vertex Vertex; //vertex

typedef typename TMesh_traits::Face Face; //face type

TMesh m;

Vertex v;
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float f;

Point p;

void constraints() {

boost::function_requires <MeshConcept <TMesh ,

TMesh_Traits > >();

p = Point(f, f, f);

v = Vertex(p);

TMesh_traits::add_vertex(m, v);

TMesh_traits::create_face(m, v, v, v, v);

}

};

After building a concept, we place a concept checker in the implementation
of the algorithm.

boost::function_requires < GenerateCubeConcept <TMesh , TMesh_Traits >

>();

C.2 Creating a new Algorithm

The algorithm should be created from the elementary operations that are com-
monly used in the library. As more operations that are already used in the other
algorithms the algorithm uses than the robustness of the library is enhanced. In
the other words, user should let himself be inspired by the other algorithms so
the concepts overlap as a result.

Inspiring from the implementation C.1 we can implement an algorithm that gen-
erates a tetrahedron.

template <typename TMesh , typename TMesh_traits >

bool generate_cube(TMesh& m)

{

typedef typename TMesh_traits::Point Point; // coordinates

typedef typename TMesh_traits::Vertex Vertex; //vertex

typedef typename TMesh_traits::Face Face; //face type

auto a = Vertex(Point (0,0,0));

auto b = Vertex(Point (0,0,1));

auto c = Vertex(Point (0,1,0));

auto d = Vertex(Point (1,0,0));

TMesh_traits::add_vertex(m, a);

TMesh_traits::add_vertex(m, b);

TMesh_traits::add_vertex(m, c);

TMesh_traits::add_vertex(m, d);

TMesh_traits::create_face(m, a, b, c);

TMesh_traits::create_face(m, d, a, c);

TMesh_traits::create_face(m, d, b, a);

TMesh_traits::create_face(m, d, c, b);

return true; // the tetrahedron has been generated

succesfully
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}

From here, compared to the implementationC.1 that generates a cube, the im-
plementation that generates a tetrahedron requires one method to have modified.
Thus the concept will be as follows:

template <class TMesh , class TMesh_Traits >

struct GenerateTetrahedronConcept

{

typedef typename TMesh_traits::Point Point; // coordinates

typedef typename TMesh_traits::Vertex Vertex; //vertex

typedef typename TMesh_traits::Face Face; //face type

TMesh m;

Vertex v;

float f;

Point p;

void constraints() {

boost::function_requires <MeshConcept <TMesh ,

TMesh_Traits > >();

p = Point(f, f, f);

v = Vertex(p);

TMesh_traits::add_vertex(m, v);

TMesh_traits::create_face(m, v, v, v);

// 3 vertices instead of 4

}

};
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List of Abbreviations

VadjacentV Number of adjacent vertices of the vertex

EadjacentV Number of adjacent edges of the vertex

FadjacentV Number of adjacent faces of the vertex

VadjacentE Number of adjacent vertices of the edge

EadjacentE Number of adjacent edges of the edge

FadjacentE Number of adjacent faces of the edge

VadjacentF Number of adjacent vertices of the face

EadjacentF Number of adjacent edges of the face

FadjacentF Number of adjacent faces of the face

VconsistF Number of vertices that forms the face

EconsistF Number of edges that forms the face

Vall Number of vertices contained in entire structure

Eall Number of vertices contained in entire structure

Fall Number of vertices contained in entire structure
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