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Pavel Čoupek

Kvazieuklidovské obory integrity
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List of symbols

ω set of all natural numbers (including 0)

Z set (ring) of integers

Q set (field) of rational numbers

R set (field) of real numbers

C set (field) of complex numbers

Ẑp ring of p-adic integers

R/I quotient ring R modulo I

R[x1, x2, . . . , xn] ring of polynomials in indeterminates x1, x2, . . . , xn over
ring R

S−1R localization of ring R by multiplicatively closed set S

R1 × R2 direct product of rings R1 and R2∏
i∈I Ri direct product of collection (Ri | i ∈ I) of rings

RA direct product of collection of copies of R indexed by A

K algebraic closure of K

R[a1, a2, . . . , an] ring generated by R and a1, a2, . . . , an

K(a1, a2, . . . , an) field obtained by adjoining a1, a2, . . . , an to K

R× group of units of ring R

aR ideal of R generated by a

I + J sum of ideals I and J

deg f degree of polynomial f

lc(f) leading coefficient of polynomial f

|z| absolute value of (possibly complex) number z

a | b a divides b

gcd(a, b) set of all greatest common divisors of a and b
(or greatest common divisor of a and b)

(
a q1 . . . qk
b r1 . . . rk

)
division chain starting from (a, b) with quotients q1, . . . , qk
and remainders r1, . . . , rk

[q1, q2, . . . , qk] continued fraction with coefficients q1, q2, . . . , qk

kRα α-th step of transfinite construction of R as a k-stage
Euclidean ring

(Mi | i ∈ I), (Mi)i∈I collection of sets indexed by I

card(S) cardinality of S

ϕ : a 7→ b ϕ maps a to b

ϕ ◦ ψ composition of maps ψ and ϕ
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Introduction

Given a Euclidean domain D with a Euclidean norm ϕ : R → ω, one usually
proves that every pair of elements a, b has a greatest common divisor by carrying
out a division algorithm which produces a series of equations of the form

(∗)

a = q1b+ r1
b = q2r1 + r2
...

rk−2 = qkrk−1 + 0

and making the observation that rk−1 is the greatest common divisor in question.
The significance of the Euclidean norm in this process is to ensure that such a
series exists — in particular, one chooses the qi’s so that the remainders ri satisfy
ϕ(r1) < ϕ(b), ϕ(r2) < ϕ(r1), . . . , which is possible by definition of Euclidean norm
and eventually leads to the last remainder being 0 (since ϕ(0) < ϕ(r) for every
nonzero r).

Regarding this purpose, the condition on ϕ can be, however, significantly
relaxed — if ϕ were to satisfy that for given a, b ∈ D with b 6= 0, there exist q1, q2
such that

(∗∗) a = q1b+ r1, b = q2r1 + r2, ϕ(r2) < ϕ(b),

the existence of a series of the form (∗) is still ensured (even though the val-
ues of ϕ(r1), ϕ(r3), . . . can be arbitrarily large). This observation was made by
G. E. Cooke in [7], where a norm satysfying (∗∗) is called 2-stage Euclidean. An
obvious modification leads to the concept of k-stage Euclidean norm and further
to the concept of ω-stage Euclidean norm, which can be viewed as somewhat ‘limit
case’ of the k-stage Euclidean notion. A domain admitting a k-stage Euclidean
norm is called k-stage Euclidean (for k ≤ ω).

Another approach was chosen by B. Bogaut in [2], where the concept of Eu-
clidean norm is generalized to the quasi-Euclidean norm, a map ψ : R2 → ω
satisfying the condition that for every (a, b) ∈ R2 with b 6= 0, there exists q ∈ R
such that ψ(b, a − qb) < ψ(a, b). Existence of such norm implies the existence
of (∗) for every pair (a, b) as well. A ring R which can be equipped with such
a norm is called quasi-Euclidean. As it turns out, quasi-Euclidean domains are
exactly ω-stage Euclidean domains.

This thesis contains an overview of the basic known facts about k-stage Eu-
clidean and quasi-Euclidean rings as well as new results, concerning mostly the
k-stage Euclidean rings. Some of the new results provide a way of constructing
new k-stage Euclidean rings and domains from other k-stage Euclidean rings.
A class of elementary new examples of 3-stage Euclidean domains is constructed
and some other (counter-)examples from literature (in particular, [3],[7],[9]) are
presented.

Although the main focus is on the case of integral domains, we do not restrict
our attention to those entirely — the theory of k-stage Euclidean rings can be
developed without greater difficulities even for rings with zero divisors (as shown
in [3]). Moreover, k-stage Euclidean rings with zero divisors provide an interesting
comparison to the case of integral domains, as well as a new perspective on the
theory.
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In chapter 1, definitions of k-stage Euclidean and quasi-Euclidean ring are
given and basic properties of these rings are established. The focus is on the
relation to the existence of greatest common divisors and establishing the concept
of the smallest k-stage Euclidean norm on a k-stage Euclidean ring.

In chapter 2, several characterizations of quasi-Euclidean and k-stage Eu-
clidean rings are given. The characterization of k-stage Euclidean rings is a new
result and has immedate consequences, which are investigated in this chapter as
well.

Chapter 3 contains several examples of k-stage Euclidean and quasi-Euclidean
rings which are not Euclidean as well as some counterexamples to possible con-
jectures about k-stage Euclidean and quasi-Euclidean rings. A special attention
recieves the ring of integers of the number field Q(

√
−19). In [7], Cooke states

that the ring is not quasi-Euclidean and refers to the proof of P. M. Cohn in [6]
that the ring is not GE2, a related notion to the quasi-Euclidean notion. We
present a more straightforward proof of the fact.

Finally, in Appendix we list some technical lemmas which are used in Chap-
ter 3. These are presented separately for better readability of Chapter 3.
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Preliminaries

Throughout this thesis, all rings are commutative rings with unit (and satis-
fying inequality 0 6= 1).

Natural numbers are defined via the standard construction in Zermelo-Fraenkel
set theory — that is, natural numbers are considered to be finite ordinals (and
thus, 0 is a natural number). The set of all natural numbers is denoted by ω (in
particular, k < ω denotes k ∈ ω, i.e. k is a natural number).

The following definition of Euclidean ring is used:

Definition. A ring R is said to be Euclidean if there exists an ordinal γ and a
map ϕ : R → γ satisfying

1) ϕ(a) = 0 if and only if a = 0, and

2) for every a ∈ R and every nonzero b ∈ R, there exists q ∈ R such that
ϕ(a− qb) < ϕ(b).

Such a map is further called a Euclidean norm on R.

This definition differs from the standard one in the codomain (i.e. the tagret
set) of the Euclidean norm — most commonly, the codomain of a Euclidean norm
is required to be ω (we call such norms finite-valued).

Using this definition, we obtain exactly the same class of rings as studied by
P. Samuel in [14]. This class is strictly larger than the one given by the standard
definition — in [10], J.-J. Hiblot provided an example of a domain which can be
equipped with a Euclidean norm with its range in an ordinal larger than ω but not
with a finite-valued Euclidean norm. However, the most important properties of
Euclidean rings hold even for Euclidean rings defined in this manner — namely,
Euclidean rings are principal and every Euclidean domain is a UFD. Proofs of
these statements are analogous to the usual ones.

Consider a ring R and a, b ∈ R. A common divisor c of a and b with the
property that for every common divisor d of a and b, d | c (that is, d divides
c), is called a greatest common divisor of a and b. Denote gcd(a, b) the set of all
greatest common divisors of a and b. It follows that for c1, c2 ∈ gcd(a, b), c1 and c2
are associates1. Following the usual convention, we write c = gcd(a, b) instead of
c ∈ gcd(a, b) (and, sometimes, refer to gcd(a, b) as an element of R— for example,
note that gcd(a, b)R is a uniquely determined ideal of R provided that there exists
a greatest common divisor of a and b) — that is, c1 = gcd(a, b), c2 = gcd(a, b)
does not imply c1 = c2, however, it does imply that c1 and c2 are associates.

Given an integral domain D and its fraction field K, we consider K to be
its own fraction field as well. In particular, we someties write (c/d) instead of
cd−1 for c,d ∈ K, d 6= 0 (which is a fairly common convention if D is the ring of
integers and K are the rationals).

We use the following usual abbreviations: PID for principal ideal domain, and
UFD for unique factorization domain.

The degree of a zero polynomial is considered to be −1.

1For rings with zero divisors, we adopt terminology used by D. D. Anderson and
S. Valdes-Leon in [1], that is, c1 and c2 are associates if c1 | c2 and c2 | c1, or, equivalently,
c1R = c2R.
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1. Definitions and basic properties

1.1 Notions of k-stage Euclidean and

quasi-Euclidean ring

Although the notion of k-stage Euclidean ring was originally proposed by
Cooke in [7], we adopt a slightly generalised version used by C.-A. Chen and
M.-G. Leu in [3] (the generalisation is analogous to the generalisation of Euclidean
ring made by Samuel).

Definition 1.1. Let R be a ring and a, b ∈ R.
A series of equations

a = q1b+ r1

b = q2r1 + r2

(C) r1 = q3r2 + r3
...

rk−2 = qkrk−1 + rk,

where qi, ri ∈ R, i = 1, 2, . . . , k, is called a k-stage division chain starting from
the pair (a, b). We will also denote such chain (C) as

(
a q1 . . . qk
b r1 . . . rk

)
.

The number k is called the length of divison chain (C) (denoted by l(C)). A
chain (C) is called terminating if rk = 0. Given such division chain, b is called
0-th remainder and denoted as r0.

Definition 1.2. Let R be a ring and γ be an ordinal. A map ϕ : R → γ is
called a norm on R if for every r ∈ R, ϕ(r) = 0 if and only if r = 0.
Let k be a positive integer. We say that a norm ϕ : R → γ is k-stage Euclidean

if for every pair (a, b) ∈ R2 with b 6= 0, there exists n ≤ k and an n-stage division

chain

(
a q1 . . . qn
b r1 . . . rn

)
starting from (a, b) such that ϕ(rn) < ϕ(b).

We say that a norm ϕ : R → γ is ω-stage Euclidean if for every pair (a, b) ∈ R2

with b 6= 0, there exists a positive integer n and an n-stage division chain(
a q1 . . . qn
b r1 . . . rn

)
starting from (a, b) such that ϕ(rn) < ϕ(b).

We say that R is k-stage Euclidean if there exists a k-stage Euclidean norm on
R. We say that R is quasi-Euclidean (or ω-stage Euclidean1) if there exists an
ω-stage Euclidean norm on R.

Remark 1.3. Clearly, the definition of 1-stage Euclidean norm is equivalent
to the definition of Euclidean norm (given in Preliminaries). Therefore, 1-stage
Euclidean domains are exactly Euclidean domains.

It is also obvious that for k ≥ n, every n-stage Euclidean norm is also k-stage
Euclidean and also ω-stage Euclidean. Hence every n-stage Euclidean ring is
k-stage Euclidean for every k ≥ n and also quasi-Euclidean.

1This notation is used in formulations such as ‘k-stage Euclidean ring for k ≤ ω’.
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Remark 1.4. Two division chains

(
a q1 . . . qk
b r1 . . . rk

)
and

(
a′ q′1 . . . q

′

k

b′ r′1 . . . r
′

l

)
are

said to be equivalent if a = a′, b = b′ and rk = r′l.
Let R be a ring and a, b, q, r ∈ R elements such that a = qb + r. Then the

following pair of equalities holds:

a = (q + 1)b+ (r − b),

b = (−1)(r − b) + r.

As a consequence (by induction on k), we infer that every n-stage division chain
is equivalent to some k-stage division chain for every k ≥ n.

This leads to an alternative definition of k-stage Euclidean norm:
A norm ϕ : R → γ is k-stage Euclidean iff for every (a, b) ∈ R2 with b 6= 0, there

exists a k-stage division chain

(
a q1 . . . qk
b r1 . . . rk

)
such that ϕ(rk) < ϕ(b).

This observation simplifies formulation of most proofs and definitions concern-
ing k-stage Euclidean rings and therefore is used throughout this thesis without
further mentioning.

1.2 Relation to divisibility in a domain

The basic motivation behind the concept of k-stage Euclidean and
quasi-Euclidean ring is to obtain a class of rings with the property that for every
pair of elements, there exists its greatest common divisor and, moreover, it can be
(at least theoretically) obtained via a division algorithm similar to the classical
Euclidean algorithm. Although in this section the main focus is on the case of
integral domains, some results are useful in the case of rings with zero divisors as
well and are therefore stated more generally.

Proposition 1.5 ([7]). Let R be a ring and let

(
a q1 . . . qn−1 qn
b r1 . . . rn−1 0

)
be a ter-

minating division chain. Then rn−1 = gcd(a, b).

Proof. For s, t ∈ R, denote cd(s, t) the set of all common divisors of s and t
(note that gcd(s, t) depends only on cd(s, t)). Consider the equation c = qd+ r.
Then cd(c, d) = cd(d, r). Clearly, (x | c & x | d) implies (x | d & x | r), since
r = c− qd. On the other hand, if y | d and y | r, then y | c, since c = qd+ r.

By induction on k ≤ n, we infer that

cd(a, b) = cd(b, r1) = · · · = cd(ri, ri+1) = · · · = cd(rk−1, rk) .

It follows that gcd(a, b) = gcd(rn−1, 0) = rn−1.

Proposition 1.6 ([7]). Let R be a quasi-Euclidean ring. Then for every pair
(a, b) ∈ R2 with b 6= 0, there exists a terminating divison chain starting from
(a, b).

Proof. Let ϕ be an ω-stage Euclidean norm on R and consider (a, b) ∈ R2 with
b 6= 0. Recursively define (an, bn) ∈ R2. Set (a0, b0) = (a, b). If (an−1, bn−1) has
been defined and bn−1 6= 0, then there exists kn < ω and a kn-stage division chain

(
an qn1 . . . q

n
kn

bn rn1 . . . r
n
kn

)

6



with ϕ(rnkn) < ϕ(bn−1). In this case, set (an, bn) = (rnkn−1, r
n
kn
).

We claim that this process stops at some N < ω. Assume the contrary,
i.e. ((an, bn) | n < ω) is well-defined and for every n < ω, ϕ(bn) > 0. Then
{ϕ(bn) | n < ω} is a nonempty subset of γ and thus it contains its smallest element
α. Let k be an integer such that 0 < ϕ(bk) = α. Then ϕ(bk+1) < ϕ(bk) = α, a
contradiction. Therefore there exists N < ω such that bN = 0.

Thus, by concatenation of the considered division chains, a terminating divi-
sion chain (

a q11 . . . q
1
k1
q21 . . . q

2
k2
. . . . . . qNkN

b r11 . . . r
1
k1
r21 . . . r

2
k2
. . . . . . 0

)

is obtained.

Corollary 1.7. Every quasi-Euclidean domain R is a GCD domain. Moreover,
every quasi-Euclidean ring is Bézout (that is, every finitely generated ideal is
principal).

Proof. It is enough to show that for a, b ∈ R, aR + bR = (gcd(a, b))R. Since
the case b = 0 is trivial, we can assume b 6= 0. Then there exist a positive integer

k and a k-stage division chain

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)
where, by Proposition 1.5,

rk−1 = gcd(a, b).
By induction on n ≤ k, we show that there exists α, β ∈ R satisfying the

equation
αa+ βb = rn−1.

Case n = 1 is trivial, since r0 = b, and the case n = 2 follows directly from
the equation a = q1b + r1. Consider 2 < n ≤ k and assume that there exists
α′, β ′, α′′, β ′′ ∈ R such that

α′′a+ β ′′b = rn−3,

α′a+ β ′b = rn−2.

Then from rn−3 = qn−1rn−2 + rn−1 we get

rn−1 = rn−3 − qn−1rn−2 = α′′a+ β ′′b− qn−1(α
′a+ β ′b)

= (α′′ − qn−1α
′)a+ (β ′′ − qn−1β

′)b.

For n = k, this gives us α, β ∈ R such that αa+ βb = gcd(a,b), which implies
aR + bR ⊇ (gcd(a, b))R. The other inclusion is trivial.

A domain D is called a uniqe factorization domain or a UFD if every nonzero
nonunit element x ∈ D can be written as x = p1p2 . . . pk, where pi are irreducible
elements, and this decomposition is unique up to order and associated elements.
Recall that D is a UFD if and only if D is a GCD domain and every nonzero
nonunit element can be written as a product of irreducible elements. The follow-
ing statement is a direct consequence of this fact.

Corollary 1.8 ([7]). LetD be a quasi-Euclidean domain such that every nonzero
nonunit element can be written as a product of irreducible elements. Then D is
a UFD.

7



1.3 Further properties

Consider a k-stage Euclidean ring R (where k ≤ ω) and a nonempty family
(ϕi : R → γi | i ∈ I) of k-stage Euclidean norms on R. Then by setting
γ = supi∈I γi, we can treat the norms ϕi as ϕi : R → γ (since γi is an initial
segment of γ). This allows us to partially order (ϕi | i ∈ I) pointwise — that
is, ϕi < ϕj iff for every a ∈ R, ϕi(a) ≤ ϕj(a) and there exists b ∈ R such that
ϕi(b) < ϕj(b). This raises the natural question whether there exists the smallest

k-stage Euclidean norm on R — that is, a k-stage Euclidean norm τ such that
given an arbitrary k-stage Euclidean norm ϕ on R, τ ≤ ϕ.

Lemma 1.9 ([3]). Let R be a ring and k a positive integer or k = ω. Let
(ϕi : R → γ | i ∈ I) be a nonempty collection of k-stage Euclidean norms on R.
Define ϕ(a) = mini∈I ϕi(a) for every a ∈ R. Then ϕ : R → γ is also a k-stage
Euclidean norm.

Proof. Clearly, ϕ(r) = 0 iff there exists i ∈ I such that ϕi(r) = 0. Since ϕi is a
k-stage Euclidean norm, this occurs if and only if r = 0.

Consider (a, b) ∈ R2 with b 6= 0 and i ∈ I such that ϕi(b) = ϕ(b). Then there

exists n ≤ k (or n < ω, if k = ω) and a division chain

(
a q1 . . . qn
b r1 . . . rn

)
with

ϕi(rn) < ϕi(b). Then ϕ(rn) ≤ ϕi(rn) < ϕi(b) = ϕ(b).

Proposition 1.10. Given a k-stage Euclidean (resp. quasi-Euclidean) ring R,
there exists the smallest k-stage Euclidean (resp. ω-stage Euclidean) norm on R.

Proof. Let k ≤ ω and R be k-stage Euclidean. Consider a cardinal κ such that
card(R) < κ. By Lemma 1.9, there exists the smallest k-stage Euclidean norm τ
among the collection of all k-stage Euclidean norms on R with range contained
in κ. Consider an arbitrary k-stage Euclidean norm ϕ : R → γ. Then the image
ϕ(R) of ϕ is a well-ordered set with card(ϕ(R)) < κ, hence its order type α is an
ordinal satisfying α < κ. If we denote θ : ϕ(R) → α the order isomorphism, then
the composition θ ◦ ϕ : R → α is clearly a k-stage Euclidean norm on R such
that τ ≤ θ ◦ ϕ ≤ ϕ.

The following two propositions show that for given k < ω, the class of k-stage
Euclidean rings are closed under certain constructions — namely, under finite
direct products and under taking the quotient ring 2.

Proposition 1.11. Let R be a k-stage Euclidean ring, where k is a positive
integer, and I ⊆ R its proper ideal. Then R/I is k-stage Euclidean.

Proof. Denote ϕ : R → γ a k-stage Euclidean norm on R. For a+ I ∈ R/I, set

ϕ(a + I) = min{ϕ(a′) | a′ + I = a + I}.

Then ϕ : R/I → γ is k-stage Euclidean norm. Indeed, ϕ(a + I) = 0 if and only
if a + I = 0 + I. Let a + I, b+ I be arbitrary cosets with b+ I 6= 0 + I. Choose

2Proposition 1.11 was independently proven by Chen and Leu in [4], which was published
while this thesis was being written.
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the representant b such that ϕ(b) = ϕ(b+ I). Then there exist a k-stage division
chain (

a q1 . . . qk
b r1 . . . rk

)

in R with ϕ(rk) < ϕ(b). This division chain induces a k-stage division chain
(
a+ I q1 + I . . . qk + I
b+ I r1 + I . . . rk + I

)

in R/I with ϕ(rk + I) ≤ ϕ(rk) < ϕ(b) = ϕ(b+ I).

Proposition 1.12. Let R1 and R2 be rings and k be a positive integer, k ≥ 2.
Then R1 × R2 is k-stage Euclidean if and only if both R1 and R2 are k-stage
Euclidean.

Proof. Both R1 × {0} and {0} × R2 are ideals in R1 × R2. Thus, by Proposi-
tion 1.11, if R1×R2 is k-stage Euclidean, so are R1 ≃ (R1 × R2)/({0} ×R2) and
R2 ≃ (R1 ×R2)/(R1 × {0}).

Conversely, consider k-stage Euclidean norms ϕi : Ri → γ, i = 1, 2 on R1, R2

respectively and for (a1, a2) ∈ R1 × R2, set

ψ(a1, a2) = max{ϕ1(a
1), ϕ2(a

2)} .

Then ψ : R1 × R2 → γ is a k-stage Euclidean norm. Clearly ψ(a1, a2) = 0
iff ϕ1(a

1) = 0 = ϕ2(a
2), which is equivalent to (a1, a2) = (0, 0). Consider

(a1, a2), (b1, b2) ∈ R1 × R2 such that (b1, b2) 6= (0, 0).
If both b1 and b2 are not 0, consider k-stage division chains

(
a1 q11 . . . q

1
k

b1 r11 . . . r
1
k

)
,

(
a2 q21 . . . q

2
k

b2 r21 . . . r
2
k

)

in R1, R2 respectively, such that ϕi(r
i
k) < ϕi(b

i), i = 1, 2.
Suppose that b1 6= 0, b2 = 0. Then there exists a k-stage division chain

(
a1 q11 . . . q

1
k

b1 r11 . . . r
1
k

)

and a 2-stage division chain

a2 = 0 · 0 + a2

0 = 0a2 + 0 .

As stated in Remark 1.4, there exists an equivalent k-stage division chain
(
a2 q21 . . . q

2
k−1 q

2
k

b2 r21 . . . r
2
k−1 0

)
.

The case b1 = 0, b2 6= 0 can be treated similarly.
In either case, by combining the considered k-stage division chains in R1 and

R2, we obtain a k-stage division chain in R1 × R2

(
(a1, a2) (q11, q

2
1) . . . (q

1
k, q

2
k)

(b1, b2) (r11, r
2
1) . . . (r

1
k, r

2
k)

)

9



such that ψ(r1k, r
2
k) = max{ϕ1(r

1
k), ϕ2(r

2
k)} < max{ϕ1(b

1), ϕ2(b
2)} = ψ(b1, b2),

which completes the proof.

The condition k ≥ 2 is not essential for the statement. In [3], a different
proof of Proposition 1.12, involving the case k = 1, is given (alternatively, the
case k = 1 can be found in [14]). On the other hand, the above proof shows
that for k ≥ 2, the codomain of k-stage Euclidean norm on R1 × R2 does not
need to exceed maximum of the codomains of k-stage Euclidean norms on R1, R2

respectively. As a special case it follows that the product of two rings equipped
with finite-valued k-stage Euclidean norms can be again equipped with a finite-
valued k-stage Euclidean norm for k ≥ 2. This, however, does not hold for k = 1.
In [14], Samuel shows that the ring Z× Z cannot be equipped with finite-valued
Euclidean norm, although the ring Z can.

Note that the assertions of Proposition 1.12 and Proposition 1.11 hold in
the case of quasi-Euclidean rings (that is, in the case k = ω) as well and they
can be proved using the same proof with slight differences in notation (namely,
instead of k-stage division chains one should consider n-stage division chains for
some n < ω; in the case of Proposition 1.12, Remark 1.4 is used to modify the
considered pair of division chains to respectively equivalent pair of division chains
of the same length).

Finally, by induction and Proposition 1.12 it easily follows that the class of
k-stage Euclidean rings is closed under finite direct products (where k ≤ ω), with
an obvious generalisation of the observation about finite-valued norms for k ≥ 2.
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2. Characterizations

The goal of this chapter is to provide conditions equivalent to the k-stage
Euclidean and quasi-Euclidean conditions, respectively, with the additional re-
quirement that the conditions do not use the concept of a norm. These charac-
terizations allow one to work with k-stage Euclidean and quasi-Euclidean rings
more effectively and eventually lead to new results (which are summarized in
Section 2.4).

We start with the quasi-Euclidean case, where this is achieved quite easily.

2.1 Alternative definitions of quasi-Euclidean ring

Proposition 2.1 ([2],[7],[9]). Let R be a ring. Then the following conditions
are equivalent:

(i) R is quasi-Euclidean.

(ii) For every pair (a, b) ∈ R2 with b 6= 0, there exists a terminating division
chain starting from (a, b).

(iii) There exists a map ψ : R2 → ω with the property that for every (a, b) ∈ R2

with b 6= 0, there exists q ∈ R such that ψ(b, a− qb) < ψ(a, b).

(iv) There exists a partial order ≤ on R2 satisfying the descending chain con-
dition such that for every (a, b) ∈ R2 with b 6= 0, there exists q ∈ R with
(b, a− qb) < (a, b).

Proof. (i)→(ii) is proved in Proposition 1.6.

(ii)→(i): Let ϕ be an arbitrary norm onR. For (a, b) ∈ R2 with b 6= 0, consider

a terminating division chain

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)
. Then ϕ(0) = 0 < ϕ(b). Hence

ϕ is ω-stage Euclidean.

(ii)→(iii): Define ψ as follows: For (a, b) ∈ R2 with b 6= 0, consider the set
TC(a, b) of all terminating divison chains starting from (a, b). Then put

ψ(a, b) =

{
min{l(C) | (C) ∈ TC(a, b)} if b 6= 0,

0 otherwise.

For (a, b) ∈ R2 with b 6= 0, denote k = ψ(a, b) (clearly, k > 0). By definition of

ψ, there exists a terminating k-stage division chain

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)
. Then

ψ(b, a− q1b) < ψ(a, b): Clearly r1 = a− q1b. If r1 = 0, then ψ(b, a− q1b) = 0 and

ψ(a, b) = 1 > 0. Otherwise

(
b q2 . . . qk−1 qk
r1 r2 . . . rk−1 0

)
is a terminating division chain

of length k − 1. Therefore, ψ(b, a− q1b) ≤ k − 1 < k = ψ(a, b).

11



(iii)→(iv): Set

(a, b) ≤ (c, d)
def↔ (ψ(a, b) < ψ(c, d) or (a, b) = (c, d) ).

It is obvious that ≤ is a partial order on R2 with desired properties.

(iv)→(ii): Consider (a, b) ∈ R2 with b 6= 0. We define (an, bn) ∈ R2 recur-
sively. Set (a0, b0) = (a, b). Assume that (an−1, bn−1) is defined and bn−1 6= 0.
This implies the existence of qn ∈ R such that (bn−1, an−1−qnbn−1) < (an−1, bn−1).
Then set (an, bn) = (bn−1, an−1 − qnbn−1).

Since ≤ satisfies the descending chain condition, this process clearly stops at
some N < ω, that is, bN = 0. Thus, we obtain a terminating division chain

(
a q1 . . . qN−1 qN
b r1 . . . rN−1 0

)
.

The condition (iii) in the above proposition is the original definition of
quasi-Euclidean ring used by Bogaut in [2]. The definition used in this thesis
is due to Cooke and was originally referred to as ω-stage Euclidean ring.

Note that replacing ω by a possibly larger ordinal γ in (iii) would not be an
essential generalisation, since such condition implies (ii) (using the same proof),
which is equivalent to (iii).

From the proof of the implication (ii)→(i) it follows that given a quasi-Euclidean
ring R, any norm on R is ω-stage Euclidean, which, in a way, makes the concept
of ω-stage Euclidean norm superfluous1.

2.2 Relation to continued fractions

In the case of integral domains, there is a natural way of connecting the
quasi-Euclidean condition to the relation between the domain and its fraction
field. This is done via continued fractions, which are closely related to division
chains.

Definition 2.2. Let D be a domain and K its fraction field. A continued

fraction with coefficients in D is an element of K denoted by [q1, q2, . . . , qk], where
qi ∈ D, i = 1, 2, . . . k, and defined recursively as follows:

1) For q1 ∈ D, set [q1] = q1.

2) Suppose that [q2, . . . , qk] is defined and nonzero. Then set

[q1, q2, . . . , qk] = q1 +
1

[q2, . . . , qk]
.

The following lemma makes the declared connection precise2.

1However, it is important to emphasize that this is not the case of k-stage Euclidean norms
for k < ω.

2The relation of quasi-Euclidean domain to the continued fractions in its fraction field was
described by Cooke. However, the case of possible division by zero was not treated and therefore
we state the result in a different, more precise way and using a different proof. See [7] for
comparison.

12



Lemma 2.3. Consider a domain D and its elements a, b ∈ D, b 6= 0. Denote K
the fraction field of D.

(1) Suppose that there exists a terminating division chain

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)

in D such that ri 6= 0, i = 1, 2, . . . , k − 1. Then (a/b) = [q1, . . . , qk] in K.

(2) Conversely, if (a/b) = [q1, . . . , qk] in K, where qi ∈ D, i = 1, 2, . . . , k, then

there exists a terminating division chain

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)
in D such that

ri 6= 0, i = 1, 2, . . . , k − 1.

Proof. We prove both assertions by induction on k.
(1) Consider a, b ∈ D, b 6= 0 and suppose there exists a terminating division

chain (
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)

with r1 6= 0, i = 1, 2, . . . , k − 1. If k = 1, the statement is trivial. Assume that
k > 1 and therefore r1 6= 0. Since b 6= 0, the equation

a = q1b+ r1

implies
a

b
= q1 +

r1
b
.

Since

(
b q2 . . . qk−1 qk
r1 r2 . . . rk−1 0

)
is a terminating division chain of the length k − 1

starting from (b, r1) with r1 6= 0, i = 2, . . . , k − 1, by induction hypothesis we
have

b

r1
= [q2, . . . , qk].

Hence
a

b
= q1 +

r1
b

= q1 +
1
b
r1

= q1 +
1

[q2, . . . , qk]
= [q1, . . . , qk].

(2) Assume (a/b) = [q1, . . . , qk], where qi ∈ D, i = 1, 2, . . . , k.
The case k = 1 is trivial, since (a/b) = [q1] implies a = q1b. Suppose that

(a/b) = [q1, . . . , qk] and k > 1. Then from the equation

a

b
= [q1, . . . , qk] = q1 +

1

[q2, . . . , qk]

we obtain

a = q1b+
b

[q2, . . . , qk]
,

where

r1 =
b

[q2, . . . , qk]
= a− q1b

is a nonzero element of D. Moreover, (b/r1) = [q2, . . . , qk] and thus, by induction
hypothesis, there exists a terminating division chain

(
b q2 . . . qk−1 qk
r1 r2 . . . rk−1 0

)
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with ri 6= 0, i = 2, 3, . . . , k − 1. It follows that

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)
is a termi-

nating division chain with ri 6= 0, i = 1, 2, . . . , k − 1.

Proposition 2.4. An integral domain D is quasi-Euclidean if and only if ev-
ery element of its fraction field can be expressed as a continued fraction with
coefficients in D.

Proof. Using Lemma 2.3, we infer that the condition is sufficient. Conversely,
assume that D is quasi-Euclidean and consider (a, b) ∈ D2 with b 6= 0. By
Proposition 2.1, there exists a terminating division chain starting form (a, b).

Choose one of the terminating division chains

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)
such that the

length k is minimal. Then the condition ri 6= 0, i = 1, 2, . . . , k − 1 is staisfied
and thus, (a/b) = [q1, . . . , qk] by Lemma 2.3.

2.3 Transfinite construction of k-stage Euclidean ring

In the case of k-stage Euclidean rings, where k is a positive integer, finding a
norm-independent characterization is more complicated. The basic idea is to use
the fact that every k-stage Euclidean ring R admits its smallest k-stage Euclidean
norm τ : R → γ. Description of the level sets ({b ∈ R | τ(b) ≤ α})α<γ by the
means of transfinite recursion leads to a construction which can be performed in
a general ring and, in a sense, measures ‘how far is the ring from being k-stage
Euclidean’3.

Throughout the rest of the chapter, k denotes a fixed positive integer, if not
specified otherwise.

Definition 2.5 (transfinite construction of k-stage Euclidean ring). Let R be
a ring and γ be a sufficiently large ordinal. For a positive integer k, we define a
sequence (kRα)α<γ of subsets of R as follows:

1) We set kR0 = {0}.

2) Assume that α < γ and for every β < α, kRβ is defined. Set

kR
′

α =
⋃

β<α

kRβ .

For b ∈ R, denote

kR
b
α = {r1 ∈ R | ∃rk ∈ kR

′

α ∃r2, r3, . . . , rk−1 ∈ R :

r1 | (b− r2), r2 | (r1 − r3), . . . , rk−1 | (rk−2 − rk)}.

Then we set

kRα = {b ∈ R | πb
(
kR

b
α

)
= R/bR},

where πb : R→ R/bR is the canonical projection.

3This construction is a generalization of transfinite construction of Euclidean ring introduced
by Samuel in [14] as well as transfinite construction of 2-stage Euclidean ring by Chen and Leu
in [3].

14



Remark 2.6.

(1) It follows that the sequence (kRα)α<γ is strictly increasing (in particular,

kRβ \ kR
′

β 6= ∅) until the first ordinal α such that

∀β, α ≤ β < γ : kRβ = kRα.

Consider an ordinal γ such that card(γ) > card(R). Then γ is sufficiently
large in the sense that there exists α < γ such that the increase of the above
sequence stops at α. This is the intended meaning of

”
sufficiently large“ in

the definition above and it is further used in this manner.

(2) Note that the condition in the definition of kR
b
α can be equivalently restated

as follows:

There exists a (k − 1)-stage division chain

(
b q2 . . . qk
r1 r2 . . . rk

)
with rk ∈ kR

′

α.

It is further clear that πb(r1) = a + bR if and only if a = q1b + r1 for some
q1 ∈ R (since, by definition, πb(r1) = r1 + bR). Using these facts, we infer
that b ∈ kRα if and only if for every a ∈ R, there exists a k-stage division

chain

(
a q1 . . . qk
b r1 . . . rk

)
with rk ∈ kR

′

α.

The following theorem shows that the transfinite construction defined in this
manner corresponds to the level sets as discussed above.

Theorem 2.7. Let R be a k-stage Euclidean ring with the smallest k-stage
Euclidean norm τ . Let γ be a sufficiently large ordinal. For α < γ, set

kRα = {b ∈ R | τ(b) ≤ α}, kR
′

α = {b ∈ R | τ(b) < α} .

Then
∀α < γ : kRα = kRα .

Proof. Clearly, kR0 = kR0.
Assume that 0 < α < γ and for every β < α, kRβ = kRβ. Then we have

kR
′

α =
⋃

β<α

kRβ =
⋃

β<α

kRβ = kR
′

α .

Consider b ∈ kRα, i.e. τ(b) ≤ α, and let a be an arbitrary element of R. Then

there exists a k-stage division chain

(
a q1 . . . qk
b r1 . . . rk

)
such that τ(rk) < τ(b) ≤ α.

This means that rk ∈ kR
′

α = kR
′

α, which by Remark 2.6 (2) implies that b ∈ kRα.
Thus, kRα ⊆ kRα.

Suppose that there exists c ∈ kRα \ kRα. Then we set

τ̃(r) =

{
τ(r), r 6= c ,

α, r = c .

We claim that τ̃ is a k-stage Euclidean norm. Clearly, τ̃ (r) = 0 iff τ(r) = 0,
which is equivalent to r = 0, since τ is a norm. Consider (a, b) ∈ R2 with b 6= 0.
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We distinguish two cases:

(a) b 6= c: Then, since τ is a k-stage Euclidean norm, there exists a k-stage

division chain

(
a q1 . . . qk
b r1 . . . rk

)
with τ(rk) < τ(b).

Then τ̃ (rk) ≤ τ(rk) < τ(b) = τ̃(b).

(b) b = c: Then b ∈ kRα, therefore (by Remark 2.6 (2)) there exists a k-stage

division chain

(
a q1 . . . qk
b r1 . . . rk

)
with rk ∈ kR

′

α = kR
′

α, that is, τ(rk) < α.

Then τ̃ (rk) = τ(rk) < α = τ̃(b).

Since τ̃ < τ , this is a contradiction to the fact that τ is the smallest k-stage
Euclidean norm on R. Therefore, kRα = kRα.

Finally, we obtain a norm-free characterization of k-stage Euclidean rings, as
states the following theorem.

Theorem 2.8. A ring R is k-stage Euclidean if and only if
⋃

α<γ kRα = R,
where γ is a sufficiently large ordinal.

Proof. Let R be k-stage Euclidean and τ : R → γ its smallest k-stage Euclidean
norm. Then by Theorem 2.7 we have R =

⋃
α<γ kRα =

⋃
α<γ kRα.

Assume that
⋃

α<γ kRα = R. Then we define τ : R → γ as follows:

τ(r) = α
def↔ r ∈ kRα \ kR

′

α .

Then τ is a k-stage Euclidean norm. It is obvious that τ(r) = 0 iff r = 0.
Consider (a, b) ∈ R2 with b 6= 0 and denote α = τ(b). Then there exists r1 ∈ kR

b
α

such that r1 + bR = a+ bR (i.e. a = r1 + q1b for some q1 ∈ R) and r2, . . . , rk ∈ R
with rk ∈ kR

′

α such that

b− r2 = q2r1, r1 − r3 = q3r2, . . . , rk−2 − rk = qkrk−1.

It follows that

(
a q1 . . . qk
b r1 . . . rk

)
is a k-stage division chain with τ(rk) < α.

2.4 Consequences of norm-free characterizations

In this section, we list some applications of the investigated characterizations.
The main focus is on the case of k-stage Euclidean rings. The advantage of the
characterization using the transfinite construction is that it introduces transfinite
induction as a useful tool for proving statements concerning the k-stage Euclidean
rings.

Proposition 2.9. Let R be a k-stage Euclidean ring such that for every nonzero
b ∈ R, R/bR is finite. Then the smallest k-stage Euclidean norm τ on R is finite-
valued.

Proof. We show that kRω\kR′

ω = ∅. Then clearly kR
′

ω = R and τ is finite-valued
(see Remark 2.6 (1) and Theorem 2.7).
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Consider a nonzero element b ∈ kRω and choose a1, a2, . . . , an ∈ R such that
{a1 + bR, a2 + bR, . . . , an + bR} = R/bR (this is possible since R/bR is finite).
Then there exist k-stage division chains

(
a1 q11 . . . q

1
k

b r11 . . . r
1
k

)
,

(
a2 q21 . . . q

2
k

b r21 . . . r
2
k

)
, . . . ,

(
an qn1 . . . q

n
k

b rn1 . . . r
n
k

)

such that rik ∈ kR
′

ω, i = 1, 2, . . . , n. If we denote βi = τ(rik), then, using Theo-
rem 2.7, it is easily seen that rik ∈ kRβi

and βi < ω, i = 1, 2, . . . , n.
Finally, by putting β = max{β1, β2, . . . , βn}, we obtain a natural number

such that πb
(
kR

b
β+1

)
= R/bR, which implies b ∈ kRβ+1 ⊆ kR

′

ω. This shows that

kRω ⊆ kR
′

ω which is equivalent to kRω \ kR
′

ω = ∅.
Recall that given a number field (i.e. an extension of Q of finite degree) K,

the ring OK of all algebraic integers contained in K has the property that for
every nonzero b ∈ OK , the ring OK/bOK is finite4. Thus, by Proposition 2.9, if
OK is k-stage Euclidean, then it admits a finite-valued k-stage Euclidean norm5.

Proposition 2.10. Let D be a quasi-Euclidean domain and S ⊆ D be a mul-
tiplicatively closed subset (containing 1 and not containing 0). Then S−1D is
quasi-Euclidean.

Proof. This is immediate from Proposition 2.4 and the fact that the fraction
field of S−1D is the fraction field of D (that is, the map (a/b)/(c/d) 7→ (ad/bc)
between fraction fields of S−1D and D respectively is a field isomorphism).

Proposition 2.10 shows that the class of quasi-Euclidean domains is closed
under localizations. Similar assertion holds for the class of k-stage Euclidean
domains, where k is a positive integer6.

Proposition 2.11. Let D be a k-stage Euclidean domain and S ⊆ D a multi-
plicatively closed subset (containing 1 and not containing 0). Then R = S−1D is
k-stage Euclidean.

Proof. Denote τ the smallest k-stage Euclidean norm on D. It suffices to show
that for b ∈ kDα and t ∈ S, (b/t) ∈ kRα. Proceed by transfinite induction on α.

For α = 0, the statement is trivial, since kDα = {0}, kRα = {0}.
Assume that α > 0 and for every β < α, the statement holds. Consider

b ∈ kDα, t ∈ S and (a/s) ∈ R an arbitrary element of R (that is, a ∈ D and
s ∈ S). Then there exists a k-stage division chain

(C) =

(
a q1 . . . qk
b r1 . . . rk

)

4In particular, card(OK/bOK) = |NK/Q(b)|, where NK/Q denotes the field norm. For further
details, see [8, p. 98, Theorem 15].

5Similar result, concerning the rings of integers, was provided by Cooke. In [7], Propo-
sition 13 states that, assuming that OK is quasi-Euclidean, it is k-stage Euclidean for some
k < ω. Since Cooke’s definition of k-stage Euclidean domain requires a k-stage Euclidean norm
to be finite-valued, the assertion for k follows as a consequence (however, the statement does
not provide a way of controlling the size of k).

6Proposition 2.11 was proved independently by Chen and Leu. See [4] for a proof that does
not use the transfinite construction.
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such that τ(rk) < τ(b) ≤ α, i.e. rk ∈ kDβ ⊆ kD
′

α, where β = τ(rk) (see
Theorem 2.7). For k odd, denote v = t, w = s and for k even, denote v = s, w = t.
From the division chain (C), a k-stage division chain




a
s

q1t

s

q2s

t

q3t

s
. . . qkv

w

b
t

r1
s

r2
t

r3
s
. . . rk

w




in R can be derived. Using the induction hypothesis on rk ∈ kDβ, we infer that
(rk/w) ∈ kRβ ⊆ kR

′

α. Hence (b/t) ∈ kRα.

Throughout the literature, it is still fairly common for the definition of Eu-
clidean norm to involve the additional condition

(m) For every a, b ∈ R with ab 6= 0, ϕ(a) ≤ ϕ(ab).

It is a well-known fact that (m) is not essential for the properties of Euclidean
rings — for instance, in [14], Samuel shows that any Euclidean ring (defined
without the requirement (m) on Euclidean norm) can be equipped with a norm
satisfying (m). In particular, the smallest Euclidean norm always satisfies (m).
Note that the condition (m) implies that associated elements are indistinguishable
by the norm. The next proposition is a generalisation of this statement to the
smallest k-stage Euclidean norm on a k-stage Euclidean ring 7.

Proposition 2.12. Let R be a k-stage Euclidean ring with its smallest k-stage
Euclidean norm τ . Then for every u ∈ R× and every b ∈ R, τ(ub) = τ(b).

Proof. By transfinite induction on α, we show that for b ∈ kRα and u ∈ R,
ub ∈ kRα.

The case α = 0 is trivial. Assume that α > 0 and that the assertion holds
for every β < α. For b ∈ kRα, a unit u and an arbitrary a ∈ R there exists a

k-stage division chain

(
au−1 q1 . . . qk
b r1 . . . rk

)
with τ(rk) < τ(b) ≤ α, i.e. rk ∈ kR

′

α.

By considering the division chain

(
a q1 . . . qk
ub ur1 . . . urk

)

and using the induction hypothesis on urk, we infer that urk ∈ kR
′

α, hence
ub ∈ kRα.

In conclusion, we have that τ(ub) ≤ τ(b) for every u ∈ R× and every b ∈ R.
Applying this on u−1 ∈ R× and ub ∈ R, we infer that also τ(b) ≤ τ(ub), and
hence, the equality τ(b) = τ(ub) holds.

In the case of integral domains, even more can be said. The following proposi-
tion proves that the condition (m) holds for the smallest k-stage Euclidean norm
on arbitrary k-stage Euclidean domain.

7More precisely, following the terminology introduced in [1], we prove this only for strongly
associated elements.
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Proposition 2.13. Let D be a k-stage Euclidean domain with the smallest
k-stage Euclidean norm τ : D → γ. Then for all nonzero b, c ∈ D, τ(b) ≤ τ(bc).

Proof. We use transfinite induction on α < γ to show that for nonzero b, c ∈ D,
bc ∈ kDα implies b ∈ kDα.

The case α = 0 is trivial, since D has no zero divisors.
Consider α > 0 and suppose that for every β < α, the statement holds. Let

b, c be nonzero elements of D such that bc ∈ kDα. For a ∈ D, there exists a
k-stage division chain (

ac q1 . . . qk
bc r1 . . . rk

)

with rk ∈ kD
′

α. By induction on i ≤ k, we can see that c | ri, i.e. there exists r′i
such that ri = r′ic . From ac = q1bc + r1 we have

r1 = ac− q1bc = (a− q1b)c .

Suppose that ri = r′ic, ri−1 = r′i−1c and consider the equation ri−1 = qi+1ri+ri+1.
Then

ri+1 = ri−1 − qi+1ri = r′i−1c− qi+1r
′

ic = (r′i−1 − qi+1r
′

i)c .

As a conseqence, the considered division chain is of the form

(
ac q1 . . . qk
bc r′1c . . . r

′

kc

)
.

But since D is an integral domain and c 6= 0, the equation r′i−2c = qir
′

i−1c + r′ic
implies that r′i−2 = qir

′

i−1 + r′i for i ∈ {2, . . . , k}, and, similarly, we have that
a = q1b+ r′1. Thus, we obtain a division chain

(
a q1 . . . qk
b r′1 . . . r

′

k

)
.

If rk = 0, then 0 = rk = r′kc and r′k = 0 (since c 6= 0 and D is a domain). If
rk 6= 0, we have r′kc = rk ∈ kD

′

α, i.e. there exists β < α such that r′kc ∈ kDβ

and both r′k, c are nonzero elements. Using the induction hypothesis it follows
that r′k ∈ kDβ. In either case, r′k ∈ kD

′

α. Thus, b ∈ kDα, which completes the
proof.
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3. Examples and counterexamples

3.1 Elementary examples

Example 1. Consider a field K and the ring R = K[x, y], where x, y are inde-
terminates. Then it is a well-known fact that R is a UFD. On the other hand, R
is not Bézout, hence (according to Corollary 1.7), R is not quasi-Euclidean. By
Proposition 2.4, this implies that its fraction field K(x, y) contains an element
which cannot be expressed as a continued fraction with coefficients in R. From
Lemma 2.3 and the given proof of Corollary 1.7 it is clear that (x/y) is such an
element, since the finitely generated ideal xR + yR is not principal (otherwise it
would necessarily contain 1, which is a greatest common divisor of x and y) and
thus, by the proof of Corollary 1.7, no terminating division chain starting from
(x, y) exists.

In the following example, we use the fact that given arbitrary n < ω, there
exists a pair of (nonzero) elements (a, b) ∈ Z2 such that every terminating division
chain starting from the pair (a, b) is of the length greater or equal to n. Proof of
this uses a lemma given by P. Glivický and J. Šaroch in [9] and can be found in
Appendix (see Corollary 2 in Appendix).

Example 2. Consider the ring R = Zω, i.e. the countable product of copies of
the ring Z.

Then R is a GCD ring, moreover, R is Bézout. To see that, consider arbitrary
elements (an)n<ω, (bn)n<ω ∈ R. For n < ω, denote gn = gcd(an, bn) (with respect
to the ring Z). Then it is easy to see that

(gn)n<ω = gcd ((an)n<ω, (bn)n<ω) .

Since Z is Euclidean, it is a PID and therefore Bézout. This implies that for
every n < ω, there exist αn, βn ∈ Z such that αnan + βnbn = gn. It follows that

(αn)n<ω · (an)n<ω + (βn)n<ω · (bn)n<ω = (gn)n<ω,

hence R is Bézout.
Suppose now that for every n < ω, (cn, dn) is a pair of integers with the

property that every terminating divison chain starting form (cn, dn) is of the
length greater or equal to n (and, moreover, dn 6= 0). Consider the elements
(cn)n<ω, (dn)n<ω. Assume that there exists a terminating division chain

(
(cn)n<ω (q1n)n<ω . . . (q

k−1
n )n<ω (q

k
n)n<ω

(dn)n<ω (r1n)n<ω . . . (r
k−1
n )n<ω 0

)
.

Choose arbitrary N > k. Then we obtain an induced terminating chain

(
cN q1N . . . q

k−1
N qkN

dN r1N . . . r
k−1
N 0

)

of the length k < N , a contradiction. Thus, no terminating division chain starting
from ((cn)n<ω, (dn)n<ω) exists.
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This is an elementary example of Bézout ring which is not quasi-Euclidean.
Moreover, since the ring Z is Euclidean and hence k-stage Euclidean for every
k ≤ ω, this example shows that the assertion of Proposition 1.12 cannot be
extended to infinite direct products.

The following example is motivated by the effort to find a 3-stage Euclidean
domain which is not 2-stage Euclidean1.

Example 3. Let D be a Euclidean domain such that for every a, b ∈ D with
b 6= 0, there exists a terminating 2-stage division chain in D (in particular,
this holds for any discrete valuation ring). Denote K the fraction field of D
and ϕ : D → γ the Euclidean norm on D. Consider an order isomorphism
θ : (ω × γ,<) → γ · ω, where · denotes the ordinal multiplication. Then the ring

R = D + xK[x] = {f ∈ K[x] | f(0) ∈ D},

a subring of K[x], is a 3-stage Euclidean ring with respect to the norm ψ = θ ◦ ρ,
where ρ : D → ω × γ is defined by

ρ(f) = (deg f + 1, ϕ(f(0))).

Proof. Clearly, ρ(f) = (0, 0) if and only if f = 0.
Consider f, g ∈ R with g 6= 0. We can write f = f(0) + xf1, g = g(0) + xg1,

f1, g1 ∈ K[x]. We distinguish several cases:

(1) g is constant, i.e. g1 = 0: Since D is Euclidean and g(0) 6= 0, there exist
q1, r1 ∈ D such that f(0) = q1g(0) + r1 and ϕ(r1) < ϕ(g(0)). Then

f = f(0) + xf1 = q1g + r1 + xf1 =

(
q1 +

xf1
g

)
g + r1,

where
(
q1 +

xf1
g

)
∈ R and ρ(r1) ≤ (1, ϕ(r1)) < (1, ϕ(g(0))) = ρ(g).

(2) deg g > 0: Denote n the degree of g. Consider the following subcases:

(a) deg f < n: Then f = 0g + f with ρ(f) < ρ(g).

(b) deg f = n: Consider c ∈ D such that cf, cg ∈ D[x]. Denote a = lc(cf),
b = lc(cg). Then there exist q1, q2, r1 ∈ D such that

a = q1b+ r1,

b = q2r1 + 0.

It follows that

f = q1g +
r1
c
xn + h1,

g = q2

(r1
c
xn + h1

)
+ h2,

where h1, h2 ∈ R are suitable polynomials of degree less than n. In
particular, ρ(h2) < ρ(g).

1And thus, to resolve an open question raised by Glivický and Šaroch in [9].

21



(c) deg f > n: Since K[x] is Euclidean with respect to the norm deg(−) + 1,
there exist q, r ∈ K[x] such that

f = qg + r, deg r < n.

Write q = q(0) + xq1. Then

f = xq1g + (q(0)g + r),

where h = (q(0)g + r) ∈ R, since its constant term is equal to f(0). If
deg h < n, then ρ(h) < ρ(g). If deg h = n, using steps in (b) on the pair
(g, h) we obtain a 3-stage division chain such that the degree of the last
remainder is less than n.

Notice that, assuming D is not a field, the ring R = D+xK[x] is not Noethe-
rian. Given a nonzero nonunit element d ∈ D, we obtain an infinite chain

xR ( (x/d)R ( (x/d2)R ( · · · ( (x/dk)R ( . . .

of ideals in R. Thus, we obtain our first example of a non-PID domain which is
k-stage Euclidean for some k > 1 (regardless of whether it is 2-stage Euclidean
or not).

3.2 The ring of all algebraic integers

Example 4. Denote A the ring of all algebraic integers — that is, an integral
closure of Z in Q, where Q denotes the field of all algebraic numbers, i.e. the
algebraic closure of Q. Recall that A is a Bézout domain2 with the fraction field
Q.

The following proposition was proved by T. van Aardenne-Ehrenfest and
H. W. Lenstra Jr. in [15]. For reader’s convenience, we present the proof here as
well.

Proposition 3.1. Given an arbitrary algebraic number z, there exist algebraic
integers a, b such that

z = a+
1

b
.

Proof. From the fact that Q is the fraction field of A and the fact that A is a
GCD domain it follows that we can write

z =
c

d
,

where c, d are coprime algebraic integers with d 6= 0. Since A is Bézout, there
exist algebraic integers r, s such that

rc+ sd = 1. (1)

2For proof of this statement, see [12, p. 72].
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Consider the field K = Q(c, d, r, s) and denote R = OK the ring of algebraic
integers contained in K. From (1) we see that c+ dR is a unit in the ring R/dR,
since

(r + dR)(c+ dR) = rc+ dR = 1 + dR.

Since the ring R/dR is finite, its group of units is finite as well and thus, there
exists a positive integer n such that (c+ dR)n = 1+ dR. That is, there exists an
algebraic integer (contained in K) e such that

cn + de = 1.

Using the facts that A is a GCD domain and that gcd(c, d) = 1, we infer that
gcd(cn−1, dn−1) = 1. This implies that there exist algebraic integers u′, v′ such
that u′cn−1 + v′dn−1 = 1. Then u = u′e, v = v′e are algebraic integers satisfying

ucn−1 + vdn−1 = e.

Define a ∈ A as a solution of the equation

xn + uxn−1 + v = 0. (2)

We immediately see that a 6= z, since

zn + uzn−1 + v =
( c
d

)n
+ u

( c
d

)n−1

+ v =
1

dn
(cn + d(ucn−1 + vdn−1))

=
1

dn
(cn + de) =

1

dn
6= 0.

Finally, set b = 1/(z − a). Then the desired identity z = a + (1/b) holds and it
remains only to show that b is an algebraic integer. Since

a = z − 1

b
=
c

d
− 1

b
,

by substitution into (2) we have

(
c

d
− 1

b

)n

+ u

(
c

d
− 1

b

)n−1

+ v = 0,

which implies
(cb− d)n + udb(cb− d)n−1 + vdnbn = 0.

That is, b is a root of the polynomial

f(x) = (cx− d)n + udx(cx− d)n−1 + vdnxn

defined over D = Z[c, d, u, v], an integral extension of Z. Since the leading coef-
ficient of f is

cn + udcn−1 + vdn = cn + d(ucn−1 + vdn−1) = cn + de = 1,

b is integral over D. It follows that b is integral over Z, i.e. b ∈ A.

23



Having the correspondence between terminating division chains and continued
fractions as stated in Lemma 2.3 in mind, from Proposition 3.1 we immediately
see that every pair of algebraic integers a, b (with b 6= 0) has a terminating 2-stage
division chain. That is, 2A1 = A, in particular, A is a 2-stage Euclidean domain.
However, A is easily seen to be non-Noetherian and thus non-principal, since

2A (
√
2A (

4
√
2A ( · · · ( 2

k√
2A ( . . .

is a strictly increasing chain of ideals in A. For completeness’ sake, we comment

on this further. The number 2
k√
2 is an algebraic integer for every 0 < k < ω,

since it is a root of the monic polynomial

x2
k − 2

(which is the minimal polynomial of 2
k√
2 over Q, since it is irreducible by Eisen-

stein’s criterion). The strictness of the inclusions follows from the fact that the

minimal polynomial of 1/( 2
k√
2) over Q is

x2
k − 1

2

(irreducibility of which follows from the irreducibility of x2
k − 2 via the substitu-

tion x→ 1
y
). Since it does not have coefficients in Z, the element 1/( 2

k√
2) is not

an algebraic integer for any 1 < k < ω.
Moreover, every algebraic integer d can be written as d =

√
d
√
d in Q, and

similar arguments show that
√
d is an algebraic integer. Thus, the ring A has no

irreducible elements (since
√
d is a unit iff d is a unit).

3.3 The ring of integers of Q(
√
−19)

For the purposes of the next example, we define the norm N on the field C

as follows. For z = a + ib, a, b ∈ R, we set N(z) = a2 + b2. Note that since
N(z) = |z|2, N is subadditive, that is, N(z1 + z2) ≤ N(z1) + N(z2) for every
z1, z2 ∈ C. Also, observe that N is multiplicative, i.e. N(z1z2) = N(z1)N(z2) for
every z1, z2 ∈ C, and thus, since N(1) = 1, N(z1/z2) = N(z1)/N(z2) for every
z1, z2 ∈ C with z2 6= 0. We denote the restriction of this norm to a subring of C
by N as well.

Example 5. Consider the algebraic number field K = Q(
√
−19) and let R

be the ring of algebraic integers contained in K. It is a well-known fact that
R = Z[ϑ], where ϑ = (1 + i

√
19)/2 (that is, if we consider Q(

√
−19) to be the

subring Q(i
√
19) of C)3.

It is a matter of straightforward verification that given an arbitrary element
a = r + sϑ, r, s ∈ Z of R, N(a) = r2 + rs + 5s2, in particular, it is a natural
number. As a consequence, any nonempty subset M ⊆ R contains an element
b ∈ M such that N(b) = min{N(a) | a ∈M}. It is also useful to observe that the
fact that N(a) is natural number for any a ∈ R together with multiplicativity of
the norm N imply that ±1 are the only units in R (and for any nonzero nonunit
element b, N(b) ≥ 2 holds).

3See [8, p. 55] for proof.
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Lemma 3.2. An element a ∈ R is divisible by 2 in R if and only if N(a) is
divisible by 2 in Z.

Proof. If 2 | a, that is, a = 2a′ for a′ ∈ R, then 2 | N(a) in Z, since
N(a) = N(2a′) = N(2)N(a′) = 4N(a′), where N(a′) is a natural number.

Conversely, consider an element a = r + sϑ, r, s ∈ Z such that 2 | N(a).
Since N(a) = r2 + rs + 5s2 is an even number, by analysis of all four possible
combinations of parities of r, s it is clear that both r and s are even. Thus,
a = 2r′ + 2s′ϑ = 2(r′ + s′ϑ).

Proposition 3.3. R is a principal ideal domain.

Our proof of the above statement follows the arguments given by O. A. Cámpoli
in [5] and is influenced by a modification of these made by R. A. Wilson in [16].

Proof. Let I be a nonzero ideal of R. Choose an element a ∈ I with minimal
nonzero norm (i.e. N(a) = min{N(b) | b ∈ I \ {0}}). Suppose that there
exists b ∈ I \ aR. Then for every α, β ∈ R, αa + βb is an element of I, hence
N(αa + βb) ≥ N(a) or αa+ βb = 0.

Denote b/a = r + is, where r,s ∈ R. Consider n ∈ Z such that

|s+ n
√
19/2| ≤

√
19/4

and k ∈ Z such that
|r + n/2 + k| ≤ 1/2.

Set t = (nϑ+ k). Then

b+ at

a
=
b

a
+ t =

b

a
+
n(1 + i

√
19)

2
+ k =

(
r +

n

2
+ k
)
+ i

(
s+

n
√
19

2

)
.

Consider the following cases:

(1) |s+ n
√
19/2| <

√
3/2:

Then we have

N

(
b+ at

a

)
=
(
r +

n

2
+ k
)2

+

(
s+

n
√
19

2

)2

<

(
1

2

)2

+

(√
3

2

)2

= 1,

that is, N(b+at) < N(a). This implies that b+at = 0 and therefore b ∈ aR,
a contradiction.

(2)
√
3/2 ≤ |s+ n

√
19/2| ≤

√
19/4:

Without loss of generality, we may assume
√
3/2 ≤ s+n

√
19/2 ≤

√
19/4, i.e.

the imaginary part of the considered fraction is positive. If s+ n
√
19/2 < 0,

by taking ã = −a, we obtain again an element of I of minimal nonzero norm
(since N(ã) = N(a)). Moreover, b 6∈ ãR = aR, and by taking t̃ = −t, we
obtain a similar fraction

b+ ãt̃

ã
= −b+ at

a
,

that is, the estimates for absolute values of real and imaginary part of the
fraction still hold and the imaginary part is positive.
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Consider k′ ∈ Z such that

|2r + n + 2k − 1/2 + k′| ≤ 1/2

and set t′ = 2t + k′ − ϑ. Then

2b+ at′

a
=

2(b+ at)

a
+ k′ − 1 + i

√
19

2

=

(
2r + n + 2k − 1

2
+ k′

)
+ i

(
2s+

(2n− 1)
√
19

2

)
.

Since the following estimates
∣∣∣∣2r + n+ 2k − 1

2
+ k′

∣∣∣∣ ≤
1

2
,

−
√
3

2
<

√
3−

√
19

2
≤
(
2s+

(2n− 1)
√
19

2

)
≤ 0

hold, we conclude (similarly to the case (1)) that

N

(
2b+ at′

a

)
< 1,

i.e. N(2b+at′) < N(a). Thus, 2b+at′ = 0 and from t′ = 2t−ϑ+k′, we have
0 = 2b+ at′ = 2b+ a (2t− ϑ+ k′) ,

2(b+ at) = a (ϑ− k′) .

By comparing the norms of the elements on the left-hand and right-hand side
of the last equation, it is easily seen that 2 | a in R, since

N(2(b+ at)) = N(2)N(b+ at) = 4N(b+ at)

is an even number (N(b+ at) is a natural number, since b+ at ∈ R), and

N (ϑ− k′) = k′
2 − k′ + 5

is an odd number (for both possible parities of k′). Therefore N(a) is even
and the rest follows from Lemma 3.2. It follows that a = 2a′ with a′ ∈ R and

b+ at = a′ (ϑ− k′) .

By multiplying both sides of the equation by (1− k′ − ϑ) (i.e. the conjugate
element of (ϑ− k′)) we get

(b+ at) (1− k′ − ϑ) = a′(k′
2 − k′ + 5).

From the expression on the left-hand side of the last equation it follows that
a′(k′2 − k′ + 5) ∈ I. Since 2a′ = a ∈ I and (k′2 − k′ +5) is odd, we infer that
a′ ∈ I (a′ = (k′2 − k′ + 5)a′ +ma for suitable m ∈ Z). But then

N(a) = N(2a′) = N(2)N(a′) = 4N(a′)

and since N(a) > 0, it follows that N(a′) < N(a). This contradicts the fact
that a is the element of I of minimal nonzero norm.

The assumption b ∈ I \ aR leads to contradiction, therefore I = aR.
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The considered ring R is probably the most well-known example of a PID
which is not Euclidean (see, for example, [5]). We aim to show that R is not even
quasi-Euclidean. To prove this, a rather technical lemma is needed.

Lemma. Let R be a ring and a,b ∈ R, b 6= 0. Suppose that the pair (a, b) has
a terminating division chain in R. Then there exists a terminating division chain

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)

such that for every i > 1, qi is a nonzero nonunit element.

Proof of this lemma can be found in Appendix (where it is listed as Lemma 4).

Proposition 3.4. R is not quasi-Euclidean. More specifically, the pair of ele-
ments 3− ϑ, 2 + ϑ does not have a terminating division chain.

The following proof is inspired by the proof of a related assertion by Cohn4.

Proof. Firstly observe that 3− ϑ is not a divisor of 2 + ϑ and vice versa (this is
easily seen from multiplicativity of N , since N(3 − ϑ) = N(2 + ϑ) = 11 and the
only elements of norm 1 in R are ±1). Suppose that there exists a terminating
division chain

(C) =

(
3− ϑ q1 q2 . . . qk−1 qk
2 + ϑ r1 r2 . . . rk−1 0

)
.

It is clear that k ≥ 2 and by the lemma above, we may further assume that
qi /∈ {0,1,− 1} for i > 1.

If q1 /∈ {0,1, − 1}, set s−1 = 3 − ϑ, s0 = 2 + ϑ. Otherwise put s−1 = 2 + ϑ
and s0 = r1. By analysis of possible values of s−1, s0 it is easily verified that
0 < N(s−1) ≤ N(s0). Moreover, there exists a terminating division chain

(D) =

(
s−1 t1 . . . tn−1 tn
s0 s1 . . . sn−1 0

)

such that n ≥ 1 and ti /∈ {0,1,− 1}, i = 1, . . . , n, that is, N(ti) ≥ 2 for every i (if
q1 /∈ {0,1,−1}, the chain (D) is the same as (C); in the other case, (D) is formed
by all the equations used in (C) except the first one). Denote the last remainder
(that is, 0) by sn.

Consider arbitrary i ∈ {1,2, . . . , n}. Then, using subadditivity and multplica-
tivity of N , we have that

N(tisi−1) = N(tisi−1 − si−2 + si−2) ≤
≤ N(tisi−1 − si−2) +N(si−2) =

= N(−si) +N(si−2) = N(si) +N(si−2),

and thus,

2N(si−1) ≤ N(ti)N(si−1) = N(tisi−1) ≤ N(si) +N(si−2),

N(si−1)−N(si−2) ≤N(si)−N(si−1).

4Cohn proves that R is not GE2, that is, the group GL2(R) is not generated by matrices of
elementary transformations. See [6, § 6] for the proof and [7, § 2] for establishing the relationship
between the concept of GE2 ring and the quasi-Euclidean condition.
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In particular, we have that

0 ≤ N(s0)−N(s−1) ≤ N(s1)−N(s0) ≤ · · · ≤ N(sn)−N(sn−1),

and therefore

∀i ∈ {0,1, . . . n} : N(si)−N(si−1) ≥ 0, i.e. N(si) ≥ N(si−1).

It follows that

0 < N(s−1) ≤ N(s0) ≤ N(s1) ≤ · · · ≤ N(sn−1) ≤ N(sn) = N(0) = 0.

This is a contradiction. Hence, no terminating division chain starting from
(3− ϑ, 2 + ϑ) exists.

Example 6. We close this section with a comment that for many quadratic
number fields, the respective rings of algebraic integers are 2-stage Euclidean. As
was proved by Cooke in [7], the ring of algebraic integers contained in the field
Q(

√
d) is 2-stage Euclidean for the following values of d 5:

14, 22, 31, 43, 46, 53, 61, 69, 77.

3.4 Quasi-Euclidean domains which are not

k-stage Euclidean

Example 7. It was proved by Chen and Leu that the subring

Z+ xQ[x] = {f ∈ Q[x] | f(0) ∈ Z}
of Q[x] is a quasi-Euclidean ring which is not 2-stage Euclidean.

More generally, in [3] it is proved that given a quasi-Euclidean domain D with
finitely many units equipped with a function ψ : D → γ satisfying the property
(m) (see Section 2.4) and an additional property that for every element a ∈ D,
there exists an irreducible element p with ψ(p) > ψ(a), the ring D+xK[x], where
K denotes the fraction field of D, is quasi-Euclidean domain which is not 2-stage
Euclidean.

Note that any such ring is non-Noetherian (by the same argument as used in
Example 3).

Example 8. Let
∏

=
∏

p∈P Ẑp, that is, the product of rings of p-adic integers,

where p runs over all primes. In [9], Glivický and Šaroch provided a set of subrings
S = {Rλ | λ ∈∏} of Q[x] such that for every λ ∈ ∏ , Rλ is a quasi-Euclidean
domain which is not k-stage Euclidean for any k < ω 6.

Moreover, λ1 6= λ2 implies Rλ1
6= Rλ2

and thus, card(S) = card(
∏
) = 2ω

(it is further proved that 2ω of the constructed domains are principal and 2ω are
non-Noetherian).

We note that the case λ = 0 produces the ring Z+ xQ[x], the ring described
in Example 7. Therefore, the ring Z + xQ[x] cannot serve as an example of a
k-stage Euclidean domain which is not 2-stage Euclidean.

5Some of these, i.e. the cases d = 14, 69, are actually Euclidean.
6The definition of k-stage Euclidean norm used in [9] allows only finite-valued norms. How-

ever, the proof that Rλ is not k-stage Euclidean works even when norms with possibly larger
codomains are considered, since the only aspect of ω used in the proof is the descending chain
condition of its order.
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4. Appendix

In this section we list some additional statements about division chains, which
are rather technical.

The first of these lemmas is a version of Lemma 3.5 given by Glivický and
Šaroch in [9] for the ring Z instead of rings discussed in the article. The proof of
the statement, however, can be used without any modifications and can be found
in [9]. As can be seen in a proof of Corollary 2, we use this lemma to relate the
continued fractions with coefficients in Z as defined in Chapter 2 to the widely
studied simple continued fractions.

Lemma 1 ([9]). Consider a, b ∈ Z, a, b > 0 and a division chain

(
a q1 . . . qk
b r1 . . . rk

)

in Z (where k ≥ 1). Then there exists a division chain

(
a q′1 . . . q

′

n

b r′1 . . . r
′

n

)
such that

for every i ≥ 2, qi > 0, |rk| = |r′n| and n ≤ 2k − 1.

Corollary 2. Given n < ω, there exist a, b ∈ Z such that the smallest possible
length of a terminatig division chain starting on (a, b) is at least n.

It is a well-known fact that every rational number can be expressed as a
continued fraction with positive integer coefficients (except the first one) — that
is, as a simple continued fraction — in exactly two ways and the lengths (i.e.
numbers of coefficients used) of these continued fraction expressions differ by one1.
This is a fact used in the following proof.

Proof. Consider the rational number q with the following continued fraction ex-
pression

q = [1, 1, . . . , 1︸ ︷︷ ︸
(2n)×

]

and choose a, b ∈ Z such that a,b > 0, (a/b) = q and, for unambiguity’s sake,
such that a, b are coprime2. Suppose there exists a terminating division chain

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)

with k ≤ n− 1. Then by Lemma 1, there exists a terminating division chain

(
a q′1 . . . q

′

m−1 q
′

m

b r′1 . . . r
′

m−1 0

)

such that q′i > 0 for i > 1 and m ≤ 2k − 1. But then, using Lemma 2.3, we see
that

[1, 1, . . . , 1︸ ︷︷ ︸
(2n)×

] = q =
a

b
= [q′1, . . . , q

′

m−1, q
′

m],

1See [13, p. 14, Theorem 1.1] and the following discussion.
2Then it is easy to check that a and b are two consecutive Fibonacci numbers.
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where the lengths of the continued fractions on the opposite sides differs by at
least 3, since

m ≤ 2k − 1 ≤ 2(n− 1)− 1 = 2n− 3.

This is a contradiction and hence, the assumption k ≤ n− 1 does not hold.

Lemma 3. Let R be a ring. Consider a,b ∈ R, b 6= 0, and u,v ∈ R×. Given a
division chain (

a q1 q2 . . . qk−1 qk
b r1 r2 . . . rk−1 rk

)
,

there exists a division chain
(
ua uv−1q1 u−1vq2 . . . u

εv−εqk−1 u−εvεqk
vb ur1 vr2 . . . wrk−1 trk

)
,

where ε = (−1)k and w = u, t = v for k even and w = v, t = u for k odd.

Proof. This is proved by induction on k, using straightforward computation.

Note that as a consequence, if the chain starting from (a, b) is terminating, so
is the derived one for the pair (ua, vb) and, moreover, both division chains are of
the same length. This fact is used in the given proof of the following lemma.

Lemma 4. Let R be a ring and a, b ∈ R, b 6= 0. Suppose that the pair (a, b)
has a terminating division chain in R. Then there exists a terminating division
chain (

a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)

such that for every i > 1, qi is a nonzero nonunit element.

Proof. First we make the following observations. Consider a series of equations

c = t1d+ s1,

d = t2s1 + s2,

s1 = t3s2 + s3.

(1) Suppose that t2 = 0. It follows that s2 = d and thus, we can write

c = t1d+ s1 = t1d+ (t3d+ s3) = (t1 + t3)d+ s3,

omitting the intermediate steps.

(2) Assume t2 is a unit. Then from the middle equation we have

−t−1
2 s2 = s1 − t−1

2 d,

and thus, we obtain

c = t1d+ s1 = (t1 + t−1
2 )d+ s1 − t−1

2 d = (t1 + t−1
2 )d− t−1

2 s2,

d = t2s1 + s2 = t2(t3s2 + s3) + s2 = (t2t3 + 1)s2 + t2s3

= (−t2)(t2t3 + 1)(−t−1
2 s2) + t2s3,

that is, from the considered 3-stage chain we obtain a 2-stage chain at the cost
that any continuation of the chain needs to start from the pair (−t−1

2 s2, t2s3)
instead of (s2, s3) (where −t−1

2 , t2 are units).
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(3) Suppose that the chain is terminating, i.e. s3 = 0, and that t3 = 0 as well.
Then the last two steps are clearly superfluous and we can simply write

c = t1d+ 0

instead.

(4) Finally, suppose that s3 = 0 and t3 is a unit. Then it follows that s2 = t−1
3 s1

and thus,

c = t1d+ s1,

d = (t2 + t−1
3 )s1 + 0.

Suppose that a terminating division chain

(
a q1 . . . qk−1 qk
b r1 . . . rk−1 0

)

does not meet the condition of the proposition, that is, k ≥ 2 and there exist i > 1
such that qi ∈ R× ∪ {0}. If k ≥ 3, using one of the transformations described in
(1)–(4) we can modify the chain to obtain a strictly shorter terminating division
chain starting from (a, b) (if we need to use the step (2), we further replace the
continuation of the chain by a terminating chain of the same length as described
in Lemma 3). If k = 2, the case q2 = 0 implies b = 0, a contradiction, and the
case q2 ∈ R× can be treated as in (4).

Thus, by considering a terminating division chain (C) of the minimal length,
we infer that the condition of the proposition for (C) holds.
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Conclusion

The concepts of k-stage Euclidean and quasi-Euclidean domains were intro-
duced by G. E. Cooke in [7] in 1976 and were motivated by their applications
to algebraic number theory. In the same article, Cooke admits that he does not
know an example of quasi-Euclidean domain which is not 2-stage Euclidean.

Such examples had not been known until recently. In [3], Chen an Leu pro-
vided an example of quasi-Euclidean domain which is not 2-stage Euclidean, and
in [9], Glivický and Šaroch described a set of examples of quasi-Euclidean domains
which are even not k-stage Euclidean for any positive integer k.

There seems to be a lot of potential to generalise known results concerning
the Euclidean domains to the k-stage Euclidean case, where k is an integer. In
particular, the Hiblot’s article [11] can be interesting in this regard. Since many of
the statements in the article work with the transfinite construction of Euclidean
ring as described in [14], the transfinite constructions presented in this thesis
could be used toward such purpose.

We conclude this thesis by a short list of open questions. First of these is a
slightly generalized question raised by Glivický and Šaroch in [9].

Question 1. Does there exist k ≥ 2 and a (k + 1)-stage Euclidean ring which
is not k-stage Euclidean?

It is the author’s conjecture that the Example 3 given in Chapter 3 is an
example of 3-stage Euclidean ring which is not 2-stage Euclidean (which would
answer this question even for integral domains). However, no proof (or disproof)
has been found so far.

Question 2. For a given positive integer k, does there exist a k-stage Euclidean
ring R such that the smallest norm on R is not finite-valued?

In the case k = 1, Samuel proved that the Euclidean ring Z × Z admits no
finite-valued Euclidean norm in [14]. A more sophisticated example, answering
the question for k = 1 and the case of integral domains, provided Hiblot in [10].
However, the given proof of Proposition 1.12 shows that the Samuel’s approach
does not provide a counterexample for any k ≥ 2. Also note that in the case
k = ω no such example exists, since for every quasi-Euclidean ring, the range of
the smallest ω-stage Euclidean norm is {0, 1}.
Question 3. Given a positive integer k and k-stage Euclidean ring R, does
there exist a k-stage Euclidean norm ϕ : R → γ such that for every a, b ∈ R with
ab 6= 0, ϕ(a) ≤ ϕ(ab) (that is, thet the condition (m) is satisfied)? In particular,
does the condition hold for the smallest k-stage Euclidean norm on R?

In Chapter 2, Proposition 2.12 shows that strongly associated elements are
indistiguishable by the smallest k-stage Euclidean norm. This question is mo-
tivated by the effort to show that the associated elements are indistiguishable
by the norm as well (see [1] for the distinction). The question is answered in
the affirmative for k = 1, which can be found in [14], and for arbitrary positive
integer k in the case that R is an integral domain, which is the statement of
Propostition 2.13 of this thesis.
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