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P T
Does wavelet decomposition and neural networks help to improve predictability of realized volatil-

ity?

T C
is thesis will investigate realised volatility prediction. Volatility is usually modelled by processes

with long-term memory. My goal is to test, whether this method can be substituted by neural networks
and whether those can surpass results of modelling by long-memory processes. Moreover, predictive
models have to be built on an estimate of volatility. In this respect, novel approach is found in wavelet
method which allows for a decomposition of volatility into several investment horizons and is robust to
jumps. e decomposition is done without loss of any information, hence we can get time series which
represent volatility of different time horizons and, added up together, they form the original series. is
uncovers potentially new information, which is not part of standard models that are built upon other
methods of estimation. Hence, predicting these individual time series could further improve prediction
of volatility.

H

1. Volatility decomposition into investment horizons improves its predictions.

2. Neural networks are beer at predicting volatility than other common methods.

M
In the thesis, I will use a concept of realised volatility, which will be estimated by Jump Wavelet

Two-Scale Realized Volatility (JWTSRV) developed by Baruník (2011). e same approach will also be
used for the volatility decomposition. For estimation, I will use neural networks. Apart from that
standard methods of volatility estimation and auto-regressive fractionally integrated (ARFIMA) model
for prediction will be used as benchmark against which the hypotheses will be tested.

Testing will be done in two ways. First, the aforementioned methods will be applied on finance-
like time series generated by Monte Carlo method. Second, the same methods will be used on FOREX,
commodities and other financial data.

O

1. Methodology review
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(a) Realised volatility

(b) Estimation methods – common methods and Jump Wavelet Two-Scale Realized Volatility

(c) Prediction methods – ARFIMA and neural networks.

2. Sandbox testing

(a) Generating finance-like time series

(b) Estimation results

(c) Prediction results

3. Empirical analysis on selected real data

(a) Rationale for choice of the given data, descriptive analysis, expectations

(b) Estimation results

(c) Prediction results
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Chapter 1

Introduction

Volatility of a price process is a fundamental parameter to many practical problems on finan-
cial markets ranging from hedging to pricing assets and consequently also pricing of deriva-
tives of those assets. It has occupied the field of financial econometrics for approximately
last three decades with fruitful results. e current volatility literature is concentrated on
realised volatility estimators, improving the established estimators and their application in
estimation on various assets and forecasting exercises.

Historically, volatility of a price processes was a vivid field of exploration. Various para-
metric methods which treated the volatility as a latent variable were suggested for estima-
tion, from the famous (Generalized) autoregressive conditional heteroskedasticity (GARCH)
models as in Engle (1982) and further developed in Bollerslev (1986), Stochastic volatility
methods or exponentially weighted moving averages. ese models were overcome by re-
alised volatility framework which is non-parametric estimator and makes the conditional
volatility ex-post observable.

e realised volatility literature was started by Merton (1980) who noted that with in-
creasing frequency of returns observation the volatility parameter is becoming theoretically
observable. Already an orthodox work by Andersen et al. (2003) established a simple esti-
mator which is consistent in absence of noise. e noise issue was then resolved in further
literature (Zhang, Mykland, and Ait-Sahalia 2005; Hansen et al. 2008) which precised the
estimators to be noise-consistent. Having solved the noise issues the literature then con-
centrated on jumps, which create a different type of noise in the data. Jump-consistent
estimators were developed in Barndorff-Nielsen and Shephard (2004); Baruník (2011). e
work of Baruník (2011) develops amost theoretically advanced estimator that is consistent to
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noise as well as to jumps and uses wavelets to decompose volatility into several investment
horizons which potentially adds information to the estimate as market is diverse and differ-
ent types of investors (long-horizon or short-horizon investors) are present on the markets.
Hence, the investment horizon decomposition is hypothesised to increase our knowledge
about the markets and improve forecasting.

Furthermore, the applied literature is concentrated on forecasting of the integrated volatil-
ity. Historically, the most standard forecasting method was GARCH but currently with the
incarnation of realised volatility framework, more popularity goes to methods such as het-
erogeneous autoregressive (HAR) methods in Corsi (2009), which stipulates the current-day
volatility to be a combination of several different horizons volatilities. Even though HAR
model can replicate the stylized facts about the volatility time series it does not reflect in its
specification the long-memory nature of the time series. is long-memory property has
been documented in many studies, such as Sowell (1992); Baillie and Bollerslev (1994); Koop-
man, Jungbacker, and Hol (2005). For that reasons autoregressive fractionally integrated
moving average (ARFIMA) method is used in the literature. Despite the fact that artificial
neural networks (ANN) have been very successful in predicting various non-linear paerns
in other fields, there is only one work to my knowledge that uses artificial neural networks
in the domain of realised volatility by McAleer and Medeiros (2011). is work is moreover
only an augmentation of HAR model which makes no comparison to pure artificial neural
network methods.

In this thesis, I take the state-of-art realised volatility estimators that are standard in the
literature, including the wavelet estimator developed by Baruník (2011), to investigate the
features of the decomposition to investment horizons and whether it improves forecasting
performance across different forecasting methods and wide range of assets. Moreover, I use
artificial neural networks that have been a successful tool in other fields to see how they
compare to other more common forecasting methods in domain of volatility prediction.

Firstly, I take various assets, gold, crude oil and S&P 500 and perform realised volatility
estimation with state-of-art methods. Most importantly, I perform the horizon decomposi-
tion using the estimator first suggested by Baruník (2011). e thesis shows an important
and undocumented results about stable realised volatility decomposition across various as-
sets which further confirms the findings in Baruník (2011) who performed the same exercise
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on exchange rates for various currencies. Further, the decomposition into investment hori-
zons was hypothesized to bring more information content and hence beer predictions of
the realised volatility. However, this hypothesis is not supported by my results.

Secondly, I perform forecasting exercise and evaluate artificial neural networks against
common method ARFIMA and a mundane approach which is constructed simply as a cur-
rent observed value scaled by length of forecasting period. is simple estimator is included
to benchmark the results and to check that when artificial neural networks approach yields
beer result than the ARFIMA approach it is also beer than the simplistic mundane ap-
proach. I add this estimator because several similar paradoxes with very simplistic approach
oen beat very complicated methods. In forecasting, only basic neural network typologies
are used to create baseline scenarios for further expansion. e artificial neural networks
prove to be consistently beer in forecasting the realised volatility dynamics and this thesis
serves as a basis for use of neural networks in forecasting the realised volatility.

e rest of the thesis is organised as follows. First, overall methodology for the methods
that are used throughout the work is presented. In the second part, the results of the estima-
tion itself are exposed. Last part concludes the thesis. Moreover, significant code-base was
developed in R statistical soware and the code is an internal part of the work, yet is not
presented in print because its amount would at least double the length of the thesis. Many
packages created by various authors were used, all of them are credited in the specialised
bibliography section. Source code for the empirical part of the thesis will be provided upon
request.
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Chapter 2

Methodology

From purely methodological point of view, the thesis contains several distinctive bodies of
theory that need to be presented because they serve as a basis for the approach utilized in
the work. To make the thesis rather self-contained, it is necessary to present all of them.
First part is dedicated to the volatility measures of financial series, their derivation from
stochastic models of markets, and their measurement and estimation. Aer estimating a
time series, the logical step is to analyse it and try to forecast it. erefore, the second
part of theory is focused on topic of artificial neural networks and some general notes from
machine learning domain which elucidate the novel approach to forecasting used in this
thesis. More space is dedicated to realised volatility estimation because it is closer to the
economic substance of the problem whereas neural networks are more of a tool.

2.1 Realised volatility

Historically, there were many approaches how to estimate volatility of the return process.
In contrast to the log-returns themselves, which are easy to obtain from the price process,
the biggest problem with the estimation of the volatility of the price process is that it is a
latent (unobserved) variable. erefore, one has to develop a model based approaches of
measurement. Older approaches usually include parametric models such as Generalised au-
toregressive conditional heteroskedasticity (GARCH) models or stochastic volatility models.
Alternatively, one can approach the estimation from the perspective of asset-pricing and
then compute the price-implied volatilities. But as suggested, the models are parametric,
which means that they are specific to the parametrization.
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Most recent approach called realised volatility strives on the other hand to estimate
volatility from realised data using non-parametric measures. Historically, this approach
dates back to Merton (1980) when he noted that we can estimate the volatility arbitrarily
precisely if the number of noiseless observations increases within fixed time interval. e
literature was further developed in works Andersen et al. (2003); Barndorff-Nielsen and
Shephard (2004); Zhang, Mykland, and Ait-Sahalia (2005); Andersen et al. (2000). ere
are several brilliant literature reviews on the topic of realised volatility with different ac-
cents; these include Andersen and Benzoni (2008), McAleer and Medeiros (2008) or Poon
and Granger (2003). Also Baruník (2011) covers the material and I borrow from his treat-
ment heavily. However, I try to be compact for sake of space, so reader interested in deeper
treatment of the topic as well as more complete reading lists is delegated to the previously
mentioned literature.

In the following part, I will describe basic mathematical preliminaries upon which the
estimation theory is based, then I will describe issues with using high-frequency data and
approaches that solve it. Finally, I will introduce estimators that deal with the issue of jumps
in the time series data.

2.1.1 Continuous no-arbitrage stoastic price process

Presenting the mathematical background, I follow the canonical specification from Ander-
sen et al. (2003) with restriction to univariate case. Let us consider a price process that
is defined on a complete probability space (Ω,F , P ) evolving in time interval [0, T ], T ∈
N. Moreover, there is an information filtration defined as an increasing family of σ-fields
(Ft∈[0,T ]) ⊂ F , which satisfies the condition of P -completeness and right continuity.¹ Last
assumption is that the prices through time t are included in the information set Ft.

One type of price process that is extensively used in literature is the following jump-
diffusion model:

dpt = µtdt+ σtdWt + ξtdqt, (2.1)

where Wt is a Wiener process and qt is a constant intensity Poisson process with intensity
equal to λ. If I exclude the last part with jumps in the equation, I would get typical Wiener

1. Defining with le continuity would be equivalent, but version presented above is more standard.
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process
dpt = µtdt+ σtdWt,

with a time-specific dri and a diffusion parameter. So, in principle, the equation (2.1) de-
fines Wiener process which is from time to time accrued by jump which occurs with inten-
sity λ.

e quadratic variation theory is interested in estimating the, so called, integrated vari-
ance over the interval [t− h, t], defined as

IVt,h =

∫ t

t−h

σ2
sds,

because it is a central variable tomany tasks in finance such as pricing or hedging.² However,
the measure that is more standard in stochastic processes is so called quadratic variation
which is defined as

QVt,h = lim
||P ||→0

n∑
i=0

(
pzi − pzi−1

)2
,

where P is the partition [z0, z1, ..., zn] of the interval [t− h, t], hence z0 = t− h and zn = t.
e equation says that quadratic variation is a limit as the norm of the intervals inside the
partition, e.g. [z0, z1], [z1, z2], ..., goes to zero. is trivially simplifies to

QVt,h = lim
||P ||→0

n∑
i=1

(rzi)
2 .

To see how integrated volatility and quadratic variation relate to each other, we use theory
of martingales.

Given standard assumptions of frictionless markets: there is no arbitrage in return pro-
cess, the process has finite instantaneous mean; the process (2.1) belongs to special semi-
martingale processes as described by Back (1991). Following fundamental results of stochas-

2. It is oen a maer of philosophical debate, whether one should be more interested in estimating the inte-
grated volatility or quadratic variation because both measure amount of movement in the price and thus could
be used for pricing of the underlying asset. Approach that uses integrated variance for pricing is implicitly
assuming that the jumps are exogenous to the system, whereas using quadratic variation assumes endogeneity
of jumps.
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tic calculus, the return process can be decomposed in the following way.³

P 2.1. (Return decomposition)
Any arbitrage-free logarithmic price process (pt)t∈[0,T ] subject to regularity condition (as

above) may be uniquely represented by

rt ≡ pt − p0 = µt +Mt = µt +MC
t +MJ

t , (2.2)

where µt is a predictable and finite-variation process, Mt is a local martingale that may be
further decomposed to MC

t , a continuous sample path, infinite variation local martingale com-
ponent, andMJ

t , a compensated jump martingale. By definition, µ0 ≡ M0 ≡ MC
0 ≡ MJ

0 ≡ 0,
which implies that rt ≡ pt.

Hence, the return process can be decomposed into three parts: the instantaneous mean
that is predictable, and two local martingale innovation parts, of which the second one is
due to jumps.

If I denote any semi-martingale process by rt, the unique quadratic variation of the
process over interval t can be wrien as

[r, r]t = r2t − 2

∫ t

0

rs−drs,

where rs− is limit from the le and is well-defined. en according to Andersen et al. (2003)
I define the quadratic return variation of the return process as:

D 2.1. (adratic return variation)
e quadratic return variation of (rt)t∈[0,T ] over [t− h, t], for 0 ≤ h ≤ t ≤ T , is

QVt,h = [r, r]t − [r, r]t−h = [MC ,MC ]t − [MC ,MC ]t−h +
∑

t−h<s≤t

δM2
s

= [MC ,MC ]t − [MC ,MC ]t−h +
∑

t−h<s≤t

δr2s .
(2.3)

3. If not stated otherwise, the propositions are stated as in Andersen et al. (2003).
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Using martingale representation theorem most logarithmic price processes can be fit
into this framework.

As noted above quadratic variation of such process is a special case of the aforemen-
tioned decomposition. e quadratic variation of the return process over [t−h, t], 0 ≤ h ≤
t ≤ T is

QVt,h =

∫ t

t−h

σ2
sds+

∑
t−h≤s≤t

J2
s = IVt,h +

∑
t−h≤s≤t

J2
s ,

where Js denotes magnitude of jump at time s. Hence, I arrived at the important relation
between quadratic variation and integrated variation which is further used in the theory of
realised variance.

2.1.2 Realised variance

Realised variance is an approach to measuring return variation based only on the realisation
of the return process. e most appealing feature of this approach is that the measure is
non-parametric as compared to older approaches to volatility measurement. As noted it
dates back to 1980, but only the availability of high-frequency data and computers made
this approach feasible.

Now, let us define the original realised variance estimator that is due to Andersen et al.
(2003):

D 2.2. (Realised variance)
e realised variance over [t− h, t], for 0 ≤ h ≤ t ≤ T is defined by

R̂V t,h =
n∑

i=1

r2
t−h+( i

n)h
, (2.4)

where n is the number of observations in [t − h, t]. Realised volatility is defined as a square
root of this measure.

e theory of semi-martingales provides several important results which are accentu-
ated in the literature (Andersen et al. 2003, 2001; Barndorff-Nielsen and Shephard 2001).
I state them only in condensed form. First, the realised variance estimator is unbiased
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and if noise and jumps are not present, the realised variance estimator is consistent non-
parametric measure of the integrated variance with n → ∞. Second, the discrete-time
returns rt,h, given some general restriction on the price process, are distributed as a normal
mixture.

Let us now, for this part, drop the jumps in the process and concentrate only on a price
diffusion process in the form of

dpt = µtdt+ σtdWt.

When I consider only this simplified process, the above estimator defined in equation (2.4)
would measure the realised variance precisely, if there was no micro-structure noise in the
returns. ere are various sources of micro-structure noise such as price being discrete
(quoted usually only to two or three decimal places) or specific rules of trading on themarket.
Voluminous literature exists on this topic including useful reference book by O’Hara (1995).

To see how micro-structure influences the estimation with different frequency of sam-
pling of the returns during the same interval, imagine a simple price observation model

p̃t = pt + ϵt,

where p̃t is the observed price at times t, pt is the latent true price and ϵt is noise at the same
times. Hence, the observed return⁴ is

r̃t = p̃t+1 − p̃t = pt+1 + ϵt+1 − pt − ϵt = rt + ηt.

Applying this to the proposed estimator, I get

R̂Vt =
nt∑
i=1

r̃i =
nt∑
i=1

r2i + 2
nt∑
i=1

riηi +
nt∑
i=1

η2i . (2.5)

It is evident (assuming zero mean value for the noise and non-zero variance) that in the
presence of noise the naive estimate of the realised volatility is biased. Computing the

4. is definition of return is only used for illustration purposes. Log-return definition or simple return
definition yield in spirit similar results with considerably more tiring derivation.
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conditional estimate
E(R̂Vt|rt) = r2t + nt var (η)

Hence, it is burdened with bias which increases as the number of observations in a given
day increases.

In this situation, Zhang, Mykland, and Ait-Sahalia (2005) orders five approaches to re-
duce or completely eliminate bias (from least efficient to most efficient):

1. completely ignoring the noise – the estimator defined above in equation (2.4),

2. sampling sparsely at low frequencies,

3. sampling sparsely at an optimally determined frequency,

4. sub-sampling and averaging,

5. sub-sampling and averaging, and bias-correction.

ey overly elaborate on all five possibilities and also present algebraic results for amount
of noise present in the various estimators. Here, I describe two of the above approaches that
will be used in the empirical part.

First, I will use the estimator that corresponds to sampling sparsely at low frequencies,
which means that I use the estimator defined by equation (2.4), however, if I had, for ex-
ample, one minute returns data, I would transform them into 5 minute returns data and
only then perform the estimation. I will denote such estimator as R̂V

(k)

t,h , where (k) de-
notes the frequency of the sparse returns. Second, in the end of paper Zhang, Mykland,
and Ait-Sahalia (2005), the authors define the estimator which corresponds to the most effi-
cient method – sub-sampling, averaging and bias-correction. It is called Two-scale realised
volatility (TSRV) and it is defined as follows:

D 2.3. (Two-scale realised volatility estimator)
e two-scale realised volatility over [t− h, t] for 0 ≤ h ≤ t ≤ T is defined by

R̂V
(TSRV )

t,h =
1

K

K∑
k=1

R̂V
(k)

t,h − n̄

n
R̂V

(all)

t,h ,
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where R̂V
(k)

t,h is the previous estimate on smaller frequency and sample.

Another prominent approach to noise-consistent estimators is due toHansen et al. (2008).
e authors take kernel approach to estimating the volatility. eir estimator takes the naive
estimate of the realised volatility and adjusts it by kernel-weighted auto-covariances. To put
it more formally:

D 2.4. (Realised kernel estimator)
e realised kernel volatility estimator over [t− h, t] for 0 ≤ h ≤ t ≤ T is defined by

R̂V
(RK)

t,h = γt,h,0 +
H∑

η=−H

k

(
|η| − 1

|H|

)
γt,h,η, (2.6)

where

γt,h,η =
n∑

i=1

rt−h+( i−η
h )hrt−h+( i

h)h
(2.7)

is the realised η-th auto-covariance and k(·) denotes the kernel function.

In the paper Hansen et al. (2008) authors offer several kernel functions with different
properties. I will use Parzen kernel which is guaranteed to produce non-negative estimates
and comparability with Baruník (2011). e Parzen kernel is defined as follows

k(x) =


0 if x > 1

2(1− x)3 if 1 ≥ x ≥ 1
2

1− 6x2 + 6x3 if 1
2
≥ x ≥ 0.

(2.8)

ese two approaches are the most used ones and they efficiently solve the problem of
micro-structure noise in the price data. Let us now move to the next problem of jumps in
the data.

Before proceeding to deeper treatment, it is important to note that on the theoretical
level, an issue of jumps in the stochastic processes is far from resolved. One important
problem is distinguishing whether there is finite or infinite activity in the jump part of the
process. In the empirical part I work with the traditional, yet simplifying, assumption that
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the activity is finite. Recently there have been developed statistical tests that distinguish
between finite and infinite activity, see Aıẗ-Sahalia and Jacod (2011).

Inmy thesis, I will use two estimators that are able to deal with jumps. First, I usewavelet
approach developed in Baruník (2011). Second, I use estimator developed by Barndorff-
Nielsen and Shephard (2004) which is called Bi-power variation. Let us now concentrate on
the first approach.

In order to explain the estimator, I have to state some fundamental results from the
theory of wavelets to be able to carry on. I achieve this in very simplistic manner with
taking the risk of being oversimplifying, but the complete treatment of the theory is beyond
the scope of this thesis. ewhole treatment of the wavelet theory can be found for example
in Gençay, Selçuk, and Whitcher (2001).

2.1.3 Wavelet decomposition and Jump-adjusted wavelet two-scale re-

alised volatility

Wavelets are a relatively modern method of signal-processing similar to Fourier transforma-
tions. However, wavelets have the advantage that they decompose the original time series
to a series of coefficients that represent strength of the impulse functions of given lengths
– scale transformations of so called mother wavelet – whereas the Fourier transform would
state that the time series is a linear combination of sinuses and cosines and only would give
the coefficients by which magnitude the given sine or cosine is permanently present in the
whole time series. Hence, wavelets are more suitable for modelling the economic time series
because they can account beer for structural breaks in the hypothetical underlying model
and overall nature of the continuously evolving volatility time series.

Moreover, I use maximal overlap discrete wavelet transform, because due to technical
reasons standard discrete wavelet transforms cannot cope with series of different lengths
than 2n. In a very broad sense, maximum overlap transform does something very similar
to bootstrap methods in econometrics. It takes the existing data in the time series and uses
them in the best way to construct a time series of length 2n and then to perform normal
wavelet transformation.

e advantage of wavelet processing is that tests were developed to clean the data from
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jumps, as I will show later. Moreover, wavelet approach can decompose the realised volatil-
ity into several investment horizons of lengths 2i, due to nature of the wavelet transforma-
tions. is decomposition can potentially bring about more information and due to that,
should be easier to forecast. Let us first look at the wavelet decomposition.

e decomposition is summarised by the following theorem:⁵

P 2.2. (Energy decomposition in discrete time)
e energy of the time series Xi, i = 1, ..., N − 1 can be decomposed on a scale-by-scale

basis J ≤ log
2
N so that

||X||2 =
J∑

j=1

||W̃j||2 + ||ṼJ ||2,

where ||X||2 =
∑N−1

i=0 X2
i , ||W̃j||2 =

∑N−1
i=0 W 2

j,i, ||ṼJ ||2 =
∑N−1

i=0 W 2
J,i and W̃j and Ṽj

are N dimensional vectors of the j-th level maximal overlap discrete wavelet transform and
scaling coefficients.

Hence, if I define vector

W̃ =



W̃1

W̃2

...
W̃J

ṼJ


I can restate the equation in the following way

||X||2 =
J∑

j=1

||W̃j||2 + ||ṼJ ||2 =
J+1∑
j=1

||W̃j||2. (2.9)

Importantly, note that the norm || · ||2 is the same as the commonmeasure of the realised
volatility, so if I set X = rt, I can construct estimator, which would decompose the whole
volatility into J levels and be equal to the original estimate. atmeans, I have the following

5. e name energy decomposition is due to the fact that aer applying the transformation I get magnitude
coefficients for the wavelet scales which are in this context called energies.
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equality which defines the Wavelet realised volatility (WRV):

R̂V t,h =
n∑

i=1

r2
t−h+( i

n)h
= ||r|| =

n∑
i=1

J+1∑
j=1

W̃2
j,t−h+ i

n
n
= R̂V

(WRV )

t,h .

By this definition I have arrived to decomposed volatility into investment horizons. e
horizons are given by the length of intervals that given levels of wavelet transforms take
into account. For example, the first level takes into account 21 observations, the second
takes 22, etc. If I had five minute data, then the first horizon is 5-10 minutes and the second
is 10-20 minutes, etc.

e other advantage I lever is data cleaning. Baruník (2011) takes inspiration from Fan
and Wang (2007) and introduces the following criterion for detection of the jumps in the
data and following adjustment:

P 2.3. (Jump estimation using wavelets)
Let W̃1,k be the 1st level wavelet coefficients of yt over [t − h, t] from 6 levels. If for some

W̃1,k

|W̃1,k| >
median{|W̃1,k|, k = 1, ..., n}

0.6754

√
2 logn,

then τ̂l = {k} is the estimated jump location with size ȳτ̂l+ − ȳτ̂l− (averages over [τ̂l, τ̂l + δ]

and [τ̂l, τ̂l − δ], respectively, with δ > 0 being the small neighbourhood of the estimated jump
location τ̂l ± δ; 0.6745 is a robust estimate of the standard deviation).

e jump variation is then estimated by the sum of the squares of all the estimated jump
sizes:

ŴJV =
Nt∑
l=1

(
ȳτ̂l+ − ȳτ̂l−

)2
. (2.10)

Plainly, Fan and Wang (2007) state that if I look at the first investment horizon, which
takes into account two subsequent observations, and if the energy connected with them
(there is unusually high movement in magnitude in two observations) is higher thanmedian
of the energies in the series adjusted by a constant, there is a jump.

is observation and connected proposition solve the detection of jumps. e next part
of the proposition says how to adjust the jump, which is even more important. e magni-
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tude of the jump is, of course, the difference between values just before the jump and just
aer the jump. e adjusted price series is corrected by this amount at the time of jump. In
the paper, he also provides an important result that such an estimation of jumps magnitude
is consistent.

Baruník (2011) combines both of the properties and develops so called Jump adjusted
wavelet two-scale realised volatility estimator (JWTSRV henceforth) as follows:

D 2.5. (Jump adjusted wavelet TSRV estimator (as in Barunik and Vacha (2012)))
LetRV (estimator,J) denote an estimator of realised variance over [t−h, t], for 0 ≤ h ≤ t ≤ T ,

on the jump-adjusted observed data, y(J) = yt,h−
∑Nt

l=1 Jl. e jump-adjusted wavelet two-
scale realised variance estimator is defined as:

R̂V
(JWTSRV )

t,h =
J+1∑
j=1

R̂V
(JWTSRV,J)

j,t,h =
J+1∑
j=1

(
R̂V

(W,J)

j,t,h − n̄

n
R̂V

(WRV,J)

j,t,h

)
(2.11)

where R̂V
(W,J)

= 1
G

∑G
g=1

∑n
i=1 W̃2

j,t−h+ i
n
n
obtained from wavelet coefficient estimates on a

grid of size n̄ = n/G and R̂V
(WRV,J)

=
∑n

i=1 W̃2
j,t−h+ i

n
n
on the jump-adjusted observed data,

y(J) = yt,h−
∑Nt

l=1 Jl.

Moreover, this estimator is proven to be unbiased and consistent so it possesses all the
desirable properties. (For statements and proofs, see Baruník (2011).)

ere is another popular approach to jump-consistent estimation which was suggested
by Barndorff-Nielsen and Shephard (2004). It levers similar observations as the wavelet
jump-detection. Andersen, Bollerslev, and Huang (2011) have further developed the estima-
tor and I use their modified definition:

D 2.6. (Bi-power variation estimator)
e bi-power variation over [t−h, t], for 0 ≤ h ≤ t ≤ T , is defined by

R̂V
(BPV )

t,h = µ−2
1

n

n− 2

n∑
i=3

∣∣∣rt−h+ i
n
h

∣∣∣ ∣∣∣rt−h+ i−2
n

h

∣∣∣ , (2.12)

where µ = π/2 = E(|Z|a), and Z ∼ N(0, 1), a ≥ 0 and R̂V
(BV )

t,h →
∫ t

t−h
σ2
sds.
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Moreover, jump-detection in this framework is done by a statistic which is introduced
in the following definition:

D 2.7. (Jump detection test, bi-power variation)
Under the null hypothesis of no within-day jumps,

Zt,h =

R̂V
(k)

t,h−R̂V
(BPV )

t,h

R̂V
(k)

t,h√√√√√((π
2

)2
+ π − 5

)
1
n
max

1,
T̂Qt,h(

R̂V
(BPV )

t,h

)2


,

where T̂Qt,h = nµ−3
4/3

n
n−3

∑n
j=5 |rt−h+ i−4

n
h|4/3|rt−h+ i−3

n
h|4/3|rt−h+ i−2

n
h|4/3 is asymptoti-

cally standard normal distributed.

Using this jump-detection, I can then define consistent jump variation by

Jt,h = IZt,h>Φα

(
R̂V

(k)

t,h − R̂V
(BPV )

t,h

)
and the measure of integrated variance as

IVt,h = IZt,h>ΦαR̂V
(BPV )

t,h + IZt,h≤ΦαR̂V
(k)

t,h ,

where IZt,h>Φα denotes the indicator function which is equal to one when jump is detected
and otherwise zero, the α denotes the significance level of the test.

is estimator is also consistent in estimating the integrated variance, so I can use the
approach from the previous estimator and estimate consistently the jump-variation.

I conclude this part with Table 2.1 which summarizes features of various estimators that
I have introduced in this section. is overview of the realised variance theory summarises
relevant approaches to estimation in the literature and I can move on to next body of litera-
ture that I need to present – machine learning and neural networks as the approach will be
used for modelling and forecasting of the realised volatility.
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Estimator name Noise consistent Jump consistent Decomposed

Naive no no no
Two-scale yes no no
Realised kernel yes no no
Bi-power variation partially yes no
Jump-adjusted wavelet two-scale yes yes yes

Table 2.1: Comparison of realised volatility estimators

2.2 Maine learning

Artificial intelligence is an idea as old as civilisation. Old cultures have dreamt about cre-
ating thinking creatures and machines, but only with mathematics and computer sciences
was this dream conceptualised in the works of A. Turing who showed that any logical op-
eration can be represented by operations over binary numbers and hence laid foundations
for evolution of computers and also learning algorithms oen called machine learning. I
will use this term oen in the forthcoming parts, so it is worth explaining what is meant by
it and so that reader does not have to dive into the enormous literature encompassing this
topic.

Machine learning, as the name suggests, is a discipline that is closely related to artificial
intelligence and its goal is to learn structures from data. Everyone of us is daily using many
products that are based on the machine learning algorithms, from spam filters in your email
in-box to fuzzy algorithms in your washing machine. Standard machine learning problems
can be divided into two types. First, regression (measurement) problem, is a type of problem
well-known to all econometricians. In this type of problem Imay be trying to exactly predict
a value of one (or more) variable. Typically, I might have weight, gender and age of k people
and I am trying to predict their height. Second, classification problem, is a bit less frequent
in econometrics but nonetheless taught in every undergraduate course. In classification
set-up I am trying to infer, based on data, to which category the observation belongs. (In
econometrics, methods such as probit, tobit are suited for problems falling in this category.)
To use the previous example, classification problem would be to infer the gender of the

18



respondent.
As happens usually in statistics, one has to face trade-offs between the precision of the

output and the ease of training, convergence or level of generalisation. Oen tasks can
be simplified from regression problems to classification problems which usually become
easier to estimate. In our illustrative case, I could ask to estimate, whether a person will
have higher or lower height than some given variable. As reader can notice, I am indeed
simplifying our problem and the information that I will gain from the output will also be
significantly lower, however, I will usually have beer precision. e information reduction
means that if I set a threshold 160cm, we cannot discriminate aer the estimation, whether
the person could also be 200cm. So when designing machine learning algorithm I need to
know precisely what I want from the estimation, because problem simplification (demand-
ing less information from the estimated output) would usually make our algorithm much
more efficient. For example, if I would be designing trading algorithmwhich predicts return
over the next ten days I could pose the problem to predict the exact return, however, in the
end I am mostly interested in knowing whether the return will be above some break-even
point.

emachine learning algorithms are also distinguished by approach in which they learn.
ere are two main types of learning supervised and unsupervised learning which I discuss
in here.⁶ Supervised learning is the set-up that is more straightforward. We have the ex-
planatory variables as well as the explained variables. Algorithms that fall into this class of
learning are, for example, artificial neural networks, support vector machines, or random
forest algorithms. In contrast, unsupervised learning is a problem where I do not know the
explained variables (usually to which group the observations fall), but I know how many of
such groups exist. Typical example of the problem is a spam filter training when the com-
panies do not know which mails are spam and which are not. Based on the input data, the
unsupervised learning algorithms can discern clusters in the data.⁷ Another type of problem
for unsupervised learning are noise filters, which extract voice from background.

6. Usually, about 5 types of learning are distinguished in the literature, interested reader can find more in
specialised literature.

7. In practice, the spam filter problems use so called semi-supervised learning which is a combination of
supervised learning – user labels mail as spam – and unsupervised learning – the rest of mails. e algorithms
are only a bit more complex than in case of the exposed paradigms.
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Having introduced notion of machine learning let us move to neural networks which
are part of this broad category.

2.3 Neural networks

In this section, I provide brief introduction into neural networks, what they are, why to use
them and how to use them. My text draws mainly from book Neural Networks in Finance:
Gaining Predictive Edge in the Market by McNelis (2005). e book is an excellent introduc-
tion to neural networks for people with econometric and statistical background. For more
interested readers rather exhausting monograph about neural networks was compounded
by Haykin (2007). Now, I start with some examples of neural networks and only then come
back to more general statements about neural networks.

Concisely said, neural networks are semi-parametric non-linear forecastingmodels. ey
have been used successfully in various supervised machine-learning tasks and have been
more or less popular during last fiy years. e very roots date back to 1940s with Mc-
Culloch and Pis. As the name suggests the algorithm is inspired by human brain. Neural
network are built from so-called perceptrons – units that take inputs, transform it by a given
activation function and provide output to other perceptrons. Every neural network consists
of several perceptrons and corresponding connections, this ensemble is called a topology of
a network. ere are several topologies that are quite traditional and illustrative and I shall
discuss them.

2.3.1 Feed-forward neural network

Feed-forward neural network is the simplest example of neural network. Graphical illustra-
tion of topology can be found in Figure 2.1. In the Figure 2.1 the simplest version is depicted.
In neural-network parlance the perceptrons are gathered in layers. In the Figure, one can
see three layers. First, so called input layer, denoted with I in the Figure, takes in the raw
data, applies the activation function on them and sends the output to the hidden layer, as
suggested by the arrows. Hidden layer (denoted H ) aggregates the outputs from the input
neurons and againmap activation function on them and output the result to the output layer
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C1

H1 H2 H3 H4C2

O1

I1 I2 I4

Figure 2.1: Topology of feedforward neural network

(denotedO).e output layer then only aggregates these numbers or can alternatively apply
some output function on the number. Moreover, there are special neurons that provide a
constant to the estimation to correct for bias. ese neurons are denoted C in the Figure.

To be mathematically more precise, let us denote

• ij – the input j,

• n, nk – the number of layers in the network, number of neurons in the layer excluding
constant neuron,

• alk – the activation of neuron l in layer k, where k ∈ {1, ..., n} and l ∈ {1, ..., nk},

• yp – the output,

• ωl
k,m – the weight going from neuron in layer k, layer m to layer m+ 1 and neuron l,

• α (·) – the activation function,
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• γj – the output coefficients.

Usually, the activation function is assumed to be sigmoid function and I will use this
convention in the forthcoming explanations. e feed-forward procedure (transforming
from inputs to the outputs) of themultilayer perceptron network can then bemathematically
described as follows:

α(z) =
1

1 + exp{−z}
(2.13)

aj1 = α (ij) (2.14)

ajk = α

(
ck−1 +

nk∑
z=1

azk−1ω
j
k−1,z

)
(2.15)

yp = γ0 +
nn∑
j=1

γja
j
n. (2.16)

Hence, the problem of fiing feed-forward neural network means to find vector of
weights ω and γ that minimize error over a given sample. e task of minimizing this error
is not trivial and there is significant amount of literature that is concerned with this prob-
lem. e first successful algorithm is called back-propagation andwas introduced inWerbos
(1974). Technical details are not of interest, because the precise algorithms that I will use in
the estimation are different from back-propagation which was surpassed by other methods.
However, the idea that stands behind the back-propagation is rather elegant and simple and
it is worth describing because it illustrates nicely the problem of functional nesting that the
learning algorithm is facing.

When performing the task of minimization one tries to numerically evaluate how does
some cost function (in our case I could take mean square error of the estimated values to
the true values) change with the weights. Hence, I need to compute the derivatives of cost
functions with respect to the weights. Aer that I can hand the problem over to standard
optimization algorithms such as (stochastic or batch) gradient descent or BFGS. It is not
hard to evaluate on paper, that the derivatives by weights of layers in, let us say, 2nd layer
will be influenced by derivative by weights from subsequent layers. e big insight how to
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compute all the derivatives is that I can back-propagate the error recursively to the network
to estimate the derivatives. To state a bit more formally how it works for the weights in the
last layer, let J(y, o) = 1

2
(o− y)2 be the cost function, where y is the estimated value and o

is the actual output. Let us denote s =
∑n

i=1 aiωi where ai is input to the neuron i and ωi

is the corresponding weight. Moreover, let y = α(s). I need to compute partial derivatives
of J with respect to ωi

∂J

∂ωi

=
∂J

∂y

∂y

∂s

∂s

∂ωi

(2.17)

∂J

∂ωi

=
2

2
(y − o) = y − o (2.18)

∂y

∂s
= α′(s) = (assume sigmoid function) = y(1− y) (2.19)

∂s

∂ωi

= ai (2.20)

∂J

∂ωi

= (y − o)y(1− y)ai (2.21)

From this I can see that the ai term in the final computation is dependent on the subse-
quent layer. is is itself function of other weights of which I need derivatives. So if I would
go deeper into the neural network, the derivative will have to take into account value of the
following derivatives in the network.

It is also important to compare this approach to econometric methods. e obvious place
to start with is ordinary least squares (OLS). Inquisitive reader already noted that ordinary
least-squares method is a subset of neural networks in case where activation function is
linear. eOLS is actually a very degenerate case of a neural networkwithout a hidden layer.
If I would include hidden layers the network would become more complex than traditional
OLS. In case I am using time series as an input to the neural network with inclusion of
lags, the model becomes a variant ofAR(n) autoregressive process. However, both of these
methods, become inherently non-linear when I use the activation functions. We now look
at another rather particular topology of the neural networks which can be compared with
ARMA(p, q) autoregressive moving average processes.
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2.3.2 Recurrent neural networks

Apart from multi-layer perceptron (MLP) networks there is also significant amount of neu-
ral network topologies that are called recurrent. e recurrent neural networks are substan-
tially different from the MLP networks, because they contain loops, or otherwise stated,
memory. In Figure 2.2 I show one such topology, this exact is called Jordan network.

C1

H1 H2 H3 H4C2

O1

I1 I2 I4 M1

Figure 2.2: Jordan neural network

is particular network is only different from the common MLP by presence of the con-
text unit (denoted M), which takes the estimate of the value and propagates it back to the
hidden layer. In this particular example, the network has only one context unit, which cap-
tures only the last value, but it is straightforward to adjust the topology for cases where
it would accommodate more states. ere is another prominent example of recurrent neu-
ral network, which is called Elman network. Elman network stores in context unit the
non-activated values of the neurons from the previous run. Together Elman and Jordan
networks constitute the very basics of recurrent neural networks and are called simple neu-
ral networks. As said before, the Jordan network is generalised ARMA(p, q) to non-linear
specification.
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2.3.3 General result about neural networks

Let us be a bit more mathematically precise in this part. ere are several important results
about neural networks that are worth stating in their precise form.⁸ As I have illustrated
in previous parts neural networks are oen generalizations of well-known methods that
are encountered in econometrics. We might pose a question to what extent can a function
be approximated by a neural network and moreover what kind of network should I use.
Answer on this question can be found in universal approximation theorem:

P 2.4. (Universal approximation theorem (Haykin 2007, pg. 231))
Let ϕ(·) be a non-constant, bounded, and monotone-increasing continuous function. Let

Im0 denote the m0-dimensional unit hypercube [0, 1]m0 . e space of continuous functions on
Im0 is denoted C(Im0). en, given any function f ∈ C(Im0) and ϵ > 0, there exists integer
M and sets of real constants ai, bi, and ωi,j , where i = 1, ...,m1 and j = 1, ...,m0 such that
we may define

F (x1, ..., xm0) =

m1∑
i=1

aiϕ

(
m0∑
j=1

ωi,jxj + bi

)
,

as an approximate realization of the function f(x1, ..., xm0); that is

|F (x1, ..., xm0)− f(x1, ..., xm0)| < ϵ,

for all x1, ..., xm0 that lie in the input space.

It is evident from the proposition that any reasonable function can be approximated by
a neural network with one hidden layer and finite number of neurons in such hidden layer.
However, this theorem is only existence proof that generalizes approximations by Fourier
series and it is important to concentrate on what the theorem does not say. First, it does
not state that such approximation is optimal for training or that such neural network will
generalize well. To illustrate practical concerns with topology choice, Barron (1994) derives
approximation bounds based on the feed-forward network described in the previous part.

8. I follow more or less closely Haykin (2007) and the propositions are stated in the original form from the
text.
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First, the approximation bound is defined by∫
Br

(f(x)− F (x)2µ)dx ≤ 2rCf

m1

,

whereCf is first moment of function f(·)which is assumed to be finite and r is the diameter
of the ball Br. From this result it can be seen that I would like m1 (number of perceptrons
in our case) to be high to get high accuracy of approximation. However, the same moment
can be empirically approximated as follows

1

N

N∑
i=1

(f(xi)− F (xi))2 ≤ O
(
C2

f

m1

)
+O

(m0m1

N
logN

)
,

which implies exactly opposite – I should try to keep m1 as low as possible to get the best
approximation. Hence, I am facing two results that oppose themselves and one has to strike
the best compromise.

Another important concern is so called dimensionality curse. One can derive that the
exact number m1 depends on m0, the bigger m0 is the bigger number of perceptrons one
will need to approximate the function. Intuitively, it is clear that functions defined in higher
dimension will be harder to approximate. Because neural networks are semi-parametric
models, i.e. I have to specify at least order of the model, one would like to have set-up high
amount of neurons in the input layer (include all the explaining variables) and let the model
train. However, the dimensionality curse stipulates that I anyway have to carefully choose
the amount of input I include because the more I include the harder it will be to train the
network.

ere are various ways how to mitigate these drawbacks. General approach to this prob-
lem is dynamic construction of topology during training part or penalizing non-zero size
of weights in the network in the sense similar to ridge regression. Dynamic construction
of topology means adding or removing perceptrons during training based on some criteria.
ere is variety of the destructive algorithms – called pruning algorithms in neural net-
works slang – and several constructive algorithms, one prominent example being cascade
correlation. is thesis however uses only the basic neural network topologies that can
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serve as a baseline for any further improvements and tweaks.

2.3.4 Neural networks training

Once the model is set-up the only remaining step is to train the model, which is, sadly, non
trivial. First of all, the training algorithm that I described briefly in previous part, back-
propagation, is usually not optimal or slow in training. Moreover, one has to find a way
how to discriminate the over-fied neural networks from models that generalize well.⁹ I
do not address the issue of choosing the optimal learning function (other option than back-
propagation) in here because of complexity and lile added value to reader, but I do intro-
duce ways how to asses predictive ability of the model and the overall state of training of
function because these can oen be useful even in predictive methods in econometrics.

First of all, because I am building predictive models, I need them to generalize well to
unseen data, otherwise called out-of-sample data. However, as neural networks are universal
approximating algorithms, I can always find an algorithm that will fit the in-sample data
with very high accuracy, but this model is likely to generalize poorly on the new data, i.e.
to over-fit the in-sample data. is problem can be mitigated by using cross-validation
paradigm with early stopping.

Cross-validation is based on a simple idea. Because I need to asses the predictive powers
of the model, I take part of the data and remove it from the learning process and periodically
compute error based on this data and also error of the data on which the model is trained.
For example, I compute the error for every 50 epochs¹⁰ while leing the model to train for
1000 epochs. is approach will result into so called learning curves which typically should
look like in Figure 2.3.

We can see that the error on the training set is decreasing in every epoch which is
secured by the algorithm itself, but the error in cross-validation set starts to grow at some
moment. is is the moment when the network is supposed to generalize the best for any
other data.

It may seem that such approach will decrease amount of data that I have for training,

9. Generalise loosely means in this context that the model is not over-fiing and having reasonable predic-
tive power.
10. Epoch is a specific name for iteration of learning in machine learning.
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Figure 2.3: Example of learning curves, dashed line: cross-validation error, line: training
error. x-axis: epochs, y-axis: error.

however the method can be applied in a way that I split the in-sample data to two equal
parts (in number of observations otherwise I select randomly) and first train the neural
network on the first half and cross-validate on second and then do the process vice versa.
is approach can be generalized into k-fold validation method, where the data are split
into k equal parts and then neural network is trained k times on k−1 of the folds and cross-
validated on the remaining one. e results are averaged aerwards. Moreover, the neural
network is trained beginning with random weights and it is possible that the training will
get stuck in some local optima so one should try training the model several times in order to
get the best solution, preferably global optimum. e cross-validation approach is however
problematic while applied to time series data, because it ignores the time dimension of the
data which is very important. Nevertheless, cross-validation can be generalised to time
series by using time windows.

It is also important to explain the notion of in-sample data and out-of-sample data. One
could make a mistake of thinking that I can asses the error of the model based on the cross-
validation set. However, that is not true, because as you may have noticed, cross-validation
is part of the decision process about the final model. Hence, I cannot asses the predictive
accuracy of the model by this set of data. We have to keep some out-of-sample data to get
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the final error of the forecasting process. To reiterate the whole process of data partitioning,
let me suppose I have 100 observations and for simplicity let me assume cross-section data.
First, I will form an in-sample and out-of-sample partition in certain proportion that I set.
Usual values for the in-sample vs. out-of-sample proportion are 85:15. e observations
should be sampled to the sets randomly. e in-sample data are data on which the neural
network model is selected and trained. e out-of-sample data should not in any way in-
teract with the model until it is selected as final. Aerwards, I partition the in-sample into
cross-validation and training sets. In the simple example of 2-fold validation the in-sample
data are divided into equal parts again randomly. On this in-sample data, two estimations
are run and then averaged model is produced based on cross-validation method.

In the empirical part I use the least complicated method of cross-validation where I
cross-validate just once and then retrain several times on the same sample to get the best
optimum.
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Chapter 3

Empirical part

3.1 Data description and preprocessing

e empirical analysis performed in the thesis is based on three particular datasets.¹ e
datasets were chosen to investigate in different types of items that are traded on the markets
and to see whether and how the analysis differs with given type. In particular, I chose
one stock index – S&P 500, one commodity from metals, namely gold, and lastly I chose a
particularly interesting commodity – oil.

All the data are high-frequency data obtained from Tick Data.² e raw dataset consists
of one-minute closing prices together with the given time and date. e processing from
ticker data to one minute data was done on the side of provider of the data.

Even though the data were obtained in processed form, there are some peculiarities con-
nected with using a particularly long time series and moreover all three assets have gone
through a considerable economic development throughout the years. In the next part, I
describe problems connected with using long-term time series, how the data for final esti-
mation were selected and then I provide individual description of the data with descriptive
statistics.

1. I use interchangeably time series and dataset.
2. Tick Data, GLOBAL HISTORICAL DATA SOLUTIONS 10134-G Colvin Run Road, Great Falls, Virginia

22066 USA
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3.1.1 Issues in using long-span time series

All econometric methods are built on simplifying assumptions that real-world data usually
do not fulfil. In this part, I describe two most painful departures from the assumptions for
this thesis.

e first is assumption of the data being strictly equidistant. Equidistant time series
means that all the subsequent observations are realised in intervals that are equally apart
from each other. For a financial series to be equidistant I would have to have that for a
minute data, there would have to be an observation every minute. e problems that arise
from having a non-equidistant observations is primarily heteroskedasticity of the given ob-
servations. Let us have the price process which is only reflecting some information process
(or latent price process) that does not stop with market trading. Interpreting the time series
in this way, it is always only a snapshots of the latent price process. If I would assume
the underlying latent process to be standard Wiener process it is known that variance of
such process is proportional to time. (e integrated variance from the methodological sec-
tion.) Hence, if I stop registering the observations, the volatility of the first observation aer
the pause will be proportional to length of the pause in trading. ese observations hence
highly bias the estimation.

emost non-equidistant observations in financial datasets arise from exclusion ofweek-
ends from trading. Especially inmy case, when Iwould be treating the dataset withwavelets,
or even spectral analysis, that creates additional problem, because the problematic observa-
tions that cumulate a lot of volatility (typically Monday mornings in old times when there
was no trading on weekends) are equidistantly spaced and wavelet method could translate
this into a special importance of these observations to the overall volatility. is fact has
to be kept in mind during preprocessing of the data. In common literature the first obser-
vations are usually stripped from the data to acquire unbiased estimate of the volatility of
underlying process. To illustrate this effect look at Figure 3.1.

One can see there that in both subsequent days the very first observation is much larger
in magnitude than most of the following observations. e magnitude itself is not biggest
problem, but the problem is, as described above, that the trading begins always at the same
time and hence the spectral methods would overvalue this observations.
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Figure 3.1: Log-returns, illustration of the excessive returns aer trading pause, Gold

e second source of non-equidistant observations arise from specificities of working
calendar and bank holidays. Fortunately, those can be traced down and disregarded. More
problematic days are those where stock exchanges did not work for specific reasons, i.e.
aer the 9/11 New York Stock Exchange was closed down for four days.³ In the thesis, I will
take a particular approach when I disregard 10 days for each year with fewest number of
observations. is rather simplistic approach will remove all exceptionally illiquid days.

e original time series are about 25 years long and hence the revision in the insti-
tutional background is understandable and expectable, especially because of the financial
markets globalisation and evolution of computer networks. Concretely in the data, I en-
counter change from 300 observations per day for all three datasets to 1440 for the two
commodities and 400 for S&P 500. Let us take an example of crude oil. One can see graphi-
cally how the number of daily observation evolves in the Figure 3.2.⁴ It can be seen from the
Figure 3.2 that the market structure – the opening hours and days – are more or less stable
from the beginning until 9/11 when there is an instant decrease in trading hours. But more
important structural difference comes in 2002, when the market starts to open on Sunday
night and the liquidity in market slowly but visibly increases as traders use more and more
of the new trading hours.

ese changes are more subtle to understand and underpin their effects. However, the

3. e exceptional closing of the NewYork Stock Exchange can be found at http://www.nyse.com/pdfs/
closings.pdf.

4. Figures for the rest of the three assets can be found in Appendix A
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Figure 3.2: Number of observations per day, Crude Oil, whole sample

explanation of the effects of structural changes are not subject of this thesis, on the other
hand I concentrate on assessing the forecasting methods and realised volatility measures
and hence I would like to have sample that is relatively coherent in structure. Because of
these reasons I will limit myself to use of only several last years to capture the current
structure of the market. Moreover, all data will be trimmed to exclude illiquid parts of the
trading days, more specifically Sundays and late night trading.

Years that I use in the estimation were selected on basis of two main criteria. First, be-
cause I will be using machine learning methods for forecasting, I need sufficient amount of
data to be able to train the methods efficiently. is number depends on type of learning
algorithm that one uses, however, aer computing various possible values I should have
about 1500 days which translates into 5 years.⁵ Second, I have to take into account a histor-
ical fact of the crisis of 2008 that it will make part of the sample. To make the algorithm to
generalise well I have to include enough calm times data.

Hence, the time span selection is a compromise based on goal I want to achieve, methods
I am using, and historical reality. I want the model to generalise well for forecasting which
means that the model has to underpin the most current structure of the market, so I would
like to use relatively short time series. On the other hand I am using a method that is the
beer the more data I use. Moreover, there is the crisis of 2008 when volatility shoots up so I

5. ere is no clear cut approach to tell amount of data necessary for the training process. Several ap-
proaches are suggested in the literature and the necessary number of observations is usually dependent on
number of weights in the network.
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also need to use enough other data to provide sufficient learning material for the algorithm.
Combining all the previous requirements I sele in here for the period between years 2007
and 2011.

Precise description of the preprocessing algorithm used can be found in form of flow
chart in the Appendix A and source codes. Other quantitative and graphical description of
the data is also deferred to the Appendix A.

3.2 Realised volatility estimation

Having prepared the data for the analysis I can get to the important part of the empirical
analysis. First, I describe the parameter choice made in the analysis and then I describe and
compare the results.

Daily volatilities based on 1 minute intra-day data will be estimated during the exercise.
As suggested in the methodology, Section 2.1, I will estimate realised volatility using several
estimators that are suggested in the literature. Namely these are: sparse (sometimes called
naive), bi-power variation, two-scale realised volatility, jump-adjusted wavelet two-scale
realised volatility and kernel estimators. eoretical construction of the estimators is de-
scribed in the aforementioned section. However, for the estimation I need to select several
parameters.

First, I need to select grid for sub-sampling in the two-scale estimators. Following litera-
ture on realised volatility where 5 minute second scale is suggested to performwell for most
data I set the parameters accordingly. Second, I need to choose number of decomposition
levels for the wavelet two-scale estimator. e number itself is, of course, limited propor-
tionally by number of intra-day observations. More specifically because of the character of
wavelet decomposition the maximal number of levels is ⌊log

2
min(nd)/s⌋, where nd corre-

sponds to number of intra-day observations and s is scale parameter which is equal to 5 in
my case. So theoretically, if I take for example gold where the minimal number of intra-day
observations is 454 and I take scale to be 5 minutes I could have 6 levels at maximum. To
be coherent across the assets, I find that the lowest number of levels possible is 4 in case of
S&P 500 and hence set the number of levels to 4.

One of the assessing tools whether the estimated realised variance performs well is to
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look at distributional parameters of the daily log-returns standardised by realised volatil-
ity, because these should be, as suggested in Andersen et al. (2001) very close to normal
distribution. e descriptive statistics can be found in Tables 3.1, 3.2 and 3.3.

Mean Std.dev Skew Kurt
bpv -0.05 1.04 -0.04 -0.28
jwtsrv -0.05 1.11 -0.04 -0.23
kernel -0.05 1.03 -0.06 -0.29
naive -0.04 1.02 -0.04 -0.32
tsrv -0.05 1.03 -0.06 -0.29

Table 3.1: Distribution description of Crude oil log-returns standardized by RV 1/2

Mean Std.dev Skew Kurt
bpv -0.10 0.98 -0.01 -0.26
jwtsrv -0.10 1.03 -0.00 -0.20
kernel -0.10 0.94 -0.00 -0.37
naive -0.09 0.94 0.01 -0.32
tsrv -0.10 0.95 -0.00 -0.37

Table 3.2: Distribution description of Gold log-returns standardized by RV 1/2

Mean Std.dev Skew Kurt
bpv -0.13 1.31 -0.14 0.06
jwtsrv -0.14 1.41 -0.22 0.26
kernel -0.07 1.04 0.11 -0.48
naive -0.07 1.05 0.11 -0.43
tsrv -0.11 1.26 -0.04 -0.25

Table 3.3: Distribution description of S&P 500 log-returns standardized by RV 1/2

e tables conform to the hypothesis that the unconditional distributions are very close
to normal distributions. Interestingly, means of standardised log-returns are consistently
negative, though close to zero, which is surprising because one would expect the deviation
from normality to be into positive or ambiguous direction. e negative direction suggests
a non-substantiated market volatility risk-taking by the agents in the market. is effect
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is statistically significant if I bootstrap the standard deviation of the mean. In other words,
if there is low volatility and high returns, it is predictable that the investors will take the
chance and will trade. But in our case the negative mean suggests that investors became
risk-taking on average in this period.

Standard deviation is also very close to one as I would expect aer performing stan-
dardization. is normality evidence is supported by normality tests, that can be found
in Tables A.4, A.5, and A.6 in the Appendix A. e tests do not uniformly confirm the hy-
pothesis of normality for all the time series, however it is well-known that with increasing
number of observations the normality tests become too powerful and even small deviation
from normality can cause the tests to reject the hypothesis. at is also the case, because
I have about 1200 observations in each time series. Hence, even though some of the tests
reject normality, the p-values are not very persuasive in the light of statistical theory espe-
cially when I am interested checking approximate normality. I also include a QQ-plot of the
results. In Figure 3.4 this plot is produced.⁶

e plot is important primarily due to the reason that I can see more deeply into the
working of used methods. For example, BPV estimator should be robust with respect to
jumps, but is not robust to micro-structure noise. On the other hand TSRV estimator is
robust to micro-structure but not to jumps. And finally JWTSRV should be robust to both.
In the Figure 3.4, I can inspect, how different methods treat outliers that appear in case of
the jump and noise inconsistent estimators. e outliers most probably contain high jump
variation and the jump-robust method should have less of them. Indeed, in case of crude oil
and gold, it is visually evident that JWTSRV estimate gets rid of the outliers at the end in
comparison with the other methods. It is surprising that the BPV estimator does not seem
to do as good job in case of these two assets.

Apparently a very different story emerges for S&P 500 because the jump-consistent es-
timates seem to do considerably poorer job than other methods. Paradoxically results of
normality tests show that in some distributional parameters the naive estimate seems to be
closest to the normal distribution. Moreover, from the results of normality tests I can claim
that TSRV estimate is uniformly beer then both JWTSRV and BPV which both should be
jump-consistent. It seems that the jump consistent methods have a problem with the S&P

6. Another representation in form of histogram with superimposed density can be found in Appendix A.4
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500 dataset and most probably the jump-adjustment process is overdone in this case. is
specific result is of great interest because the suggested consistency against jumps is wors-
ening results and that is in contradiction with literature which does not emphasise that such
result is possible. However, if I look at the construction of the jump-consistent estimators,
it is evident that they assume at least some jumps in the data to work. S&P 500 is a very
specific case, which aggregates 500 different titles and probability that there will be a sig-
nificant jump in the data is very low because it would mean a jump in the whole market.
Hence, the methods will have lower threshold for detecting jumps and a lot of jumps will
be detected. Jump-adjustment is not constructed for such situation because the theoretical
model accounts only for individually occurring jumps, but in case that the jumps would
occur sometimes even in pairs, the jump-adjustment could even worsen the situation by
adjustment.

Another interesting part of the estimation is the decomposition of the volatility into dif-
ferent investment horizons as allowed by JWTSRV estimator. First of all, the decomposition
shows us, how the volatility is created in the time series. It shows howmuch of the volatility
is short-time and what part persists on longer-horizons. Important question that arises is
whether the percentual composition of the volatility changes throughout the time and does
it change during high volatility times such as crises? Apart from that such a decomposition
has an important implication into a risk-management, because the percentage decomposi-
tion suggest on what horizon should I concentrate forecasting efforts. For example, if most
of the variance is created at the 5-10 minutes scale, as will be the case later.

e decompositions for different assets can be found in Figure 3.3. Even from the first
look, there are several interesting observations that I can make. First, the percentage decom-
position is surprisingly stable across the assets. e scale 5-10 minutes keeps about 50% of
the influence in the observations and scale 10-20 minutes has around 25%. Second, as com-
mon sense would suggest most of the volatility is created on the fastest scale which basically
means a white-noise. ese findings further support Baruník (2011) who found the same
composition in the FX markets, namely GBP, USD and CHF. As the market composition is
the same in here, and it is reasonable to suspect that it will be approximately same in other
cases due to the further evidence in literature.

Having estimated and analysed the time series that will be used for the forecasting ex-
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Figure 3.3: Percentage decomposition of RV 1/2

periment, I can proceed to describe the process of building predictive models for this data.

3.3 antitative models estimation and evaluation

Prediction of realised volatility is a popular problem in forecasting literature and there is a
substantive literature alreadywrien about this topic. As for themain works in the field, the
classic paper Andersen et al. (2003) must be mentioned, several important papers have been
published investigating the long-memory autoregressive methods, see for example Corsi
(2009), others have been interested in using machine learning approaches to the problem,
the most prominent McAleer and Medeiros (2011).

As suggested in the introduction, this thesis will assess long-run and short-run predic-
tions of realised volatility by several methods. In case of short-term predictions, I will make
predictions for one-day ahead volatilities for 70 days, approximately three months worth of
data. I will also use a mundane approach, where I will take the today’s observation to be
a forecast of tomorrow volatility, further ARFIMA rolling forecast and finally several types
of neural networks. For the long-term predictions, I will try to predict volatility 5 days, 10
days and 20 days ahead cumulatively using today’s data. Cumulative volatility was chosen
merely because it is more useful in practice than only estimating the volatility some certain
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Figure 3.4: Standardised log-returns by RV 1/2
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amount of days ahead. e samemethods will be used to predict cumulative volatilities as in
the short-term exercise. Mundane, so called lame henceforth, forecast will be constructed as
a today’s observation multiplied by the period length, ARFIMAwill be again rolling forecast
and neural networks are set up in a way that the targeted variable are not all the observa-
tions but cumulative number for the period. is slight adjustment is an illustration of how
to simplify problems for neural networks, as suggested in the part about machine learning.
Trying to predict all the ten values would be possible, but unnecessary, because I only need
the cumulative number.

e several different time-horizons were chosen because theoretically as one supposes
the realised volatility process to be a local martingale, and it seems that the best prediction
could indeed be today’s value and hence the lame approach might actually work signifi-
cantly beer than other approaches. Already canonical paper Meese and Rogoff (1983) il-
lustrates well this problem. e authors take predictions of exchange rates and they assess
predictive power of various models against random walk model. e outcome, at that time
quite surprising, is that in short-time horizon one cannot find consistently beer method
than randomwalk. However, in the case of long-horizon predictions (week-ahead) the lame
prediction should work significantly worse then in the short-horizon case because the so-
phisticated models should learn deeper paern than the lame approach and thus perform
beer.

Building ARFIMA and lame model is automatic, however, with neural networks, one has
to choose architecture and several parameters that cannot be tuned automatically as in the
case of ARFIMA model. Let us look at the process of building the predictive network and
specific choices about parameters that I made.

e first step to build a neural network is to choose an architecture. As suggested in
theoretical Section 2.3 if I am staying in the realm of relatively common architectures, I
can use multi-layer perceptron networks or recursive neural networks. As both type of
topologies are important – MLP architecture could be looked at as non-linear version of AR
process and recursive networks are non-linear MA or ARMA processes – I will use both
and see whether more complex networks increase the accuracy of predictions as intuition
would suggest. More specifically, I use feed-forward neural network with one hidden layer
that is fed by lagged values of the realised volatility. I choose the number of lags to be 3 as
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increasing this number does not bring significant improvement in predictive accuracy and
I have to be aware of the dimensionality curse – by introducing more lags I am trying to
model more complex function which might be unaainable using this type of network. As
for the recursive neural networks, I use the Jordan neural network and the Elman neural
networks. Jordan neural network has a context layer that stores the last predicted values
of specified number of lags whereas Elman neural network has a context layer that stores
the values of the hidden neurons from the preceding fit. Learning algorithm that was used
to fit the neural networks is resilient propagation developed in Riedmiller and Braun (1993)
and its variant for recursive neural networks. It is one of the fastest converging algorithms
in use. Moreover, all the networks were fied several times to get the best fit because the
training process always starts from random initialization of weights and on that particular
path, the training algorithm might get stuck in local optimum. e reiteration was done 10
times, because of the computational burden.

e predicted values will then be assessed by Mincer-Zarnowitz regression and Diebold-
Mariano test which are described in detail in the next section.

3.3.1 Mincer-Zarnowitz regression and Diebold-Mariano test

In the evaluation of results I use two main approaches. Firstly, I use the popular approach
by Mincer and Zarnowitz (1969), who suggest running a regression in form

V
(m)
t+i = α+ β1V

(k,j)
t,i + ϵt,

where V
(m)
t+i is the integrated volatility estimated by estimator m at time t + i, V (k,j)

t,i is
the prediction of the i-step ahead cumulative integrated volatility at time t using method
k for estimating the volatility and method j for evaluating the prediction. For example,
V

(BPV,ELMAN)
t,5 denotes 5-days ahead cumulative integrated volatility on Bi-power varia-

tion data using Elman neural network. Moreover, I have one realised volatility estimator,
JWTSRV, that decomposes the volatility into several horizons. e predictions for JWTSRV
are constructed by forecasting on all levels separately and then adding up the forecasts to
form the final prediction. If we would know the true value of the volatility, we could test
the two parameters α = 0, β = 1 to check for the estimate to be unbiased and consistent
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respectively. However, not having the true value, we still can use the R2 of the regression
which can be perceived as information content of one estimator vis à vis the second one.

Secondly, to compare the two time series of forecasts I use the widely popular test de-
veloped in Diebold and Mariano (1995). e test compares two loss functions and assesses
whether the two loss functions differ in statistically significant way. Let us assume time
series {yt} and its two different h-step ahead forecasts {ŷAt+h} and {ŷBt+h}. e errors of the
forecast are:

ϵAt+h = yt+h − ŷAt+h

ϵBt+h = yt+h − ŷBt+h

e loss function over the time series is defined as a function L(·). e typical examples
of loss functions are absolute value L(x) = |x| or quadratic function L(x) = x2. I want
to test the hypothesis that the expected loss of the forecast is significantly different, which
translates to statistical hypotheses

H0 : E
(
L
(
ϵAt+h

))
= E

(
L
(
ϵBt+h

))
H1 : E

(
L
(
ϵAt+h

))
̸= E

(
L
(
ϵBt+h

))

In the Diebold-Mariano test, loss differential dt is computed as

dt = E
(
L
(
ϵAt+h

))
− E

(
L
(
ϵBt+h

))
and the test statistic

S =
d̄√
σ̂2
d̄
/T

,

where d̄ = 1
T

∑T
t=1 dt is the mean value of the loss differential and σ̂2

d̄
= γ0 + 2

∑∞
j=1 γj ,

γi = cov(dt, dt−i) is the estimate of the long-run variance. Diebold andMariano (1995) show
that under the null hypothesis H0 : E (dt) = 0, the statistic S is asymptotically distributed
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as S ∼ N(0, 1). Moreover, we can distinguish the beer value by the sign of the statistic S.

3.3.2 Results of the forecasting methods application

First of all, it is worth mentioning how and why the results will be represented in the form
as I do represent them – mostly in form of figures and diagrams – which is much less stan-
dard in econometric and statistical literature. Apart from my belief that figures present
results in much faster way than tables, if done properly, another important aspect rises in
this work. e thesis deals with rather large amount of data and comparison of several
methods and oen I encountered a problem how to present about 700 numbers in coher-
ent and understandable way that will, moreover, allow for comparison of the numbers in
meaningful way. Even printing this amount of data on one page is next to impossible not
speaking about well-structured understandable table.

Let us first look at the Mincer-Zarnowitz regressions and the respectiveR2. e statistic
measures the information content of the estimator method with respect to the estimated
method. In Figures 3.5, 3.6, 3.7, and 3.8 one can find results for in- and out-samples of one
day ahead and five days ahead estimations. For the sake of saving space, the rest of the
figures for horizons of 10 and 20 days are deferred to the Appendix A, Figures A.5, A.6, A.7,
and A.8.

e figures showsR2 results for the Mincer-Zarnowitz regressions for all the assets and
methods that I used. Every part of the facet describes a method and asset combination.
e graph itself shows what R2 was aained for various combinations of explanatory and
explained methods of estimating the realised volatility. For example, if on one line a given
shape has the highestR2, i.e. is farthest to the right, I can say that this method is most easily
explained by the explaining method. As I will see in the Figure this is usually the case for
JWTSRV estimator.

Let us examine the Figures A.5, A.6, A.7, and A.8. First, I look at the short-term one
day ahead fied values and forecasts. Surprisingly, on the short-term, neural networks are
performing rather well when compared to the other methods. e amount of explained
variance is also, as expected, very high – in the case of in-sample traditional methods aain
from 75% to 80% and neural network methods aain about 90%. e neural networks are
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Figure 3.5: R2 from Mincer-Zarnowitz regressions, one day ahead, in-sample
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Figure 3.6: R2 from Mincer-Zarnowitz regressions, one day ahead, out-sample

45



crude gold sp500

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

bpv
kernel
jwtsrv
naive

jwtsrv.decomposed
tsrv

bpv
kernel
jwtsrv
naive

jwtsrv.decomposed
tsrv

bpv
kernel
jwtsrv
naive

jwtsrv.decomposed
tsrv

bpv
kernel
jwtsrv
naive

jwtsrv.decomposed
tsrv

bpv
kernel
jwtsrv
naive

jwtsrv.decomposed
tsrv

arfim
a.roll

lam
e

m
lp

elm
an

jordan

0.80 0.85 0.90 0.950.650.700.750.800.850.900.95 0.7 0.8 0.9
r2

ex
pl

ai
ni

ng

explained ● bpv kernel jwtsrv naive tsrv

Figure 3.7: R2 from Mincer-Zarnowitz regressions, five days ahead, in-sample
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Figure 3.8: R2 from Mincer-Zarnowitz regressions, five days ahead, out-sample
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consistently beer and there does not seem to be significant difference between the MLP
neural network and the two recursive networks. Hence, the biggest increase in the R2

seems to be due to the non-linear nature of the neural networks models. Looking at the
two standard models, the lame estimate and the ARFIMA estimate, in the in-sample, the
ARFIMA estimate is slightly beer but in the out-sample the ARFIMA estimate performs
worse than the lame method. On contrary, in the out-sample the neural network methods
outperform the ARFIMA methods by far. is edge in predictive power might be due to the
construction of the training process, when the neural-network is stopped to over-fit, when
the error rises on the cross-validation set.

Looking at longer-horizons, interestingly, the performance of the lame estimator does
not deteriorate much. is result is important because it suggests that the time series moves
around its conditional mean and it would probably be even higher if there would not be the
data that reflect economic crisis. Another paern that I find and is worth of aention is that
in in-samples, the performance of the ARFIMAmethod is very good. It seems that the errors
are averaging themselves and ARFIMA is becomingmore andmore precise in predictions on
longer horizon cumulative values. However, in the out-samples the performance of ARFIMA
is worse and is constantly lower than in case of neural networks. e performance of the
networks themselves is quite in line with expectation. In the in-samples the neural networks
perform a bit worse than the ARFIMAmethod because neural networks are restrained from
over-fiing by the training process. For the same reasons, they are also beer in the out-
samples. e exact topology of the neural network starts to maer only on longer horizons.
is is sensible because if I suppose a time series with long memory, the autoregressive
structure will become more and more pronounced in longer horizons.

If I consider question what estimators of realised volatility I should use for the fore-
casting and estimation procedure in general, the Figures also can provide valuable insights
into this issue. eoretically, the best estimator should be JWTSRV because it is consistent
against noise as well as jumps, so it should be the easiest to forecast. When I look at the fig-
ures, I can confirm that JWTSRV usually has the highest R2 and hence also the information
content. Moreover, I can note that selecting an estimator only becomes an issue at longer
horizons in out-samples. And also the magnitude how important it is to choose the right
estimator is highly dependent on the asset. For example, in case of the crude oil, I can see
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that selecting whatever estimator will result into fairly similar results on all horizons. On
the other hand, in case of S&P 500, different selection might result into 50%R2 difference in
the out-of-sample forecasting. Selecting an explaining method is a case for further investi-
gation and a promising path would most likely be investigation of cross-validation errors in
various estimations and their comparison. However, looking into the literature there is one
important paper (Liu et al. 2012) which exactly compares if it is possible actually beat the
sparse naive estimator in forecasts and there is quite persuasive and discouraging evidence
that statistically it is hard to tell the difference.

Moreover, one of the questions was whether the wavelet decomposition caries some
additional information or it is only a technical exercise. eoretically there is a rationale
behind the wavelet decomposition, that the variance can be decomposed into several mean-
ingful investment horizons and theremight be some interactions between the horizons. is
hypothesis is, however, not supported by the results of the forecasting exercise. As can be
seen in the Figures A.5, A.6, A.7, and A.8, if the explaining estimator is JWTSRV.decomposed
there is no significant and consistent improvement in the performance against other meth-
ods. In the case of lame estimator, the Figures suggest equal performance which must be the
case due to the construction of the estimators. Approximately same performance is shown
in case of all the other methods. Hence, the decomposition does not seem to bring additional
information to the forecasting. Further investigation of this hypothesis would have to try
predicting all the series at once and levering covariance structure of the ensemble. Even
though this approach might turn to be helpful in predictions, it would still lack the inter-
esting economic interpretation that simple decomposition horizon has, i.e. that the market
has some deeper structure where different investment horizons have different rules.

Next, I look at the Diebold-Mariano tests for predictive accuracy. I perform the forecast
tests on two cases: I test the forecasts errors from the Mincer-Zarnowitz regressions and
then I test the pure residuals that are constructed as a difference between the true value
of the estimator minus the estimated value. I compare the neural network methods to the
ARFIMA estimate and the lame estimation. In the Tables 3.4, 3.5 I present the count of the
number of tests that were significant at a given value throughout the whole estimation, on
the le in given column is the count of tests that favorizes the neural networks and on
the right is count of tests that favorizes the compared method. is can give us an overall
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picture of the methods.
First, it is important to note, that results from the Mincer-Zarnowitz part from both

tables strongly support the results from the previous text and I can see huge difference in
numbers of cases when neural-networks outperform both ARFIMA and lame methods. It
was not quite evident from the visual inspection of the previous Figures, but from looking
at the tables recursive networks seem to be beer than the MLP network even for the cost
of having more undecided cases of the tests.

Second, as I can see, the results from the part where I compare the true value to the
estimated value forecast indicates quite the opposite, or at least gives much more inconsis-
tent picture, from the previous part of the table as a lot of forecasts are evaluated beer
by ARFIMA and have much higher number of indecisive test results. is issue is likely
caused by one feature of training of neural networks. Before the neural network is trained,
one has to standardise the inputs⁷ and hence the predicted values have to be converted
back by an inverse transformation. is inverse transformation in my case is done by tak-
ing the same mean and standard deviation as for the training sample. Hence, because the
Mincer-Zarnowitz is an equivalent to re-standardization it is logical to argue that the inverse
standardization of the output from artificial neural networks is wrong.

is contrasting result implies that the estimation predicts well the dynamics, however
the scale and location are not quite right. How to estimate the two parameters remains an
open question for further research. A promising way might be using estimate of the values
from closer period to the training sample as it beer reflects the current state of the market.
Or combination of using ARFIMA estimate for mean and standard deviation and applying
those to invert the standardization.

To sum the results of the empirical part, I first estimated the realised volatility measure
and looked at the standardised log-returns, which should be normal, when standardised by
the realised volatility. is theoretical result is confirmed in most of the cases and assets,
however, interestingly standardisation of S&P 500 by jump-consistent estimators of realised
volatility, i.e. JWTSRV and BPV, move the returns further away from the normality. e
likely cause is that in the theoretical model upon which the jump-adjustment is based, oc-

7. It is not a necessity, but it is considered to be a common practice, because without standardization the
training converges only very slowly.
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Minzer-Zarnowitz residuals True-estimated residuals

Significance MLP Elman Jordan MLP Elman Jordan

Cr
ud

e
0.025 317 0 298 0 233 0 422 0 461 0 458 0
0.05 45 0 62 0 56 0 25 0 23 2 38 0
0.1 89 0 96 0 89 0 42 0 35 1 35 0
Insignificant 269 0 264 0 342 0 225 6 165 33 177 12

Go
ld

0.025 353 0 223 0 249 0 37 0 157 4 130 0
0.05 75 0 2 0 4 0 27 0 64 0 49 0
0.1 85 0 8 0 7 0 35 0 80 4 91 0
Insignificant 164 43 453 34 426 34 590 31 389 22 450 0

S&
P
50

0 0.025 178 23 157 16 150 21 302 101 365 79 372 90
0.05 46 4 31 6 35 4 27 8 34 14 27 9
0.1 64 1 68 5 61 13 29 10 37 3 28 15
Insignificant 333 71 355 82 373 63 164 79 113 75 112 67

Table 3.4: Number of given result for Diebold-Mariano test in a group when compared to
lame method. Le numbers are favorizing neural networks, right the alternative method.

currence of two jumps that follow each other is close to impossible and in case of S&P 500
such corrections can occur. Success of this standardization is also confirmed by several nor-
mality tests, and this can be considered quite spectacular, because with big amount of data
(more than thousand observations in the sample) normality tests are immensely powerful
and even small divergence from normality causes refusal of the normality hypothesis. Aer
the estimation exercise, forecasting exercise follows.

Canonical ARFIMA model is fied accompanied with lame estimation. ese two repre-
sent the more or less standard forecasting methods and the lame estimate allows to account
for theMeese-Rogoff paradox which established that a most of the forecasting methods only
show negligible improvement against unintelligible Brownian motion. Moreover, I fit three
standard types of neural networks and compare them with the standard methods. Analysis
by means of Mincer-Zarnowitz regressions and Diebold-Mariano tests brings about interest-
ing results. Neural networks have higher informational content concerning the complicated
dynamics but fail to be very good predictors because their scale and location parameters are
estimated wrongly. is is caused by one of standard techniques used in the training of neu-
ral network, the pre-standardization of data and the back-transformation of the forecasts.
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Minzer-Zarnowitz residuals True-estimated residuals

Significance MLP Elman Jordan MLP Elman Jordan

Cr
ud

e
0.025 409 56 346 0 300 0 255 165 234 131 268 92
0.05 9 4 62 0 67 0 8 20 23 14 20 25
0.1 25 2 51 0 69 0 11 15 27 16 24 28
Insignificant 185 30 261 0 284 0 118 128 127 148 114 149

Go
ld

0.025 194 0 333 0 419 0 9 14 81 23 70 0
0.05 17 0 63 4 53 0 11 7 21 4 15 0
0.1 52 0 76 13 65 0 11 21 24 14 17 1
Insignificant 421 36 218 13 162 21 141 506 137 416 173 444

S&
P
50

0 0.025 206 24 194 13 201 9 142 278 186 169 167 226
0.05 47 0 32 1 36 5 16 15 22 17 16 16
0.1 52 3 61 8 61 8 17 19 26 23 21 21
Insignificant 317 71 334 77 332 68 112 121 131 146 131 122

Table 3.5: Number of given result for Diebold-Mariano test in a group when compared
to ARFIMA method. Le numbers are favorizing neural networks, right the alternative
method.

Moreover, it is visible from the results that the forecasting is highly asset-dependent and also
horizon-dependent. When concerned with dynamics, neural networks usually outperform
the standard methods in all the cases.
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Chapter 4

Conclusion

e volatility literature is an important and significant part of financial econometrics. e
question of estimating volatility process is slowly closingwith favourable results and prevail-
ing paradigm of realised volatility. One of the most advanced realised volatility estimators
in the literature is proposed in Baruník (2011). It uses wavelets and allows for decomposi-
tion into investment horizons. Various estimators have various aributes and these should
be carefully compared.

In short, my thesis has two significant parts. First the estimation, I estimate on wide
range of assets the wavelet realised volatility estimator, benchmark it against the orthodox
estimators used in the literature. Moreover, I test the hypothesis that wavelet decomposi-
tion brings more information for forecasting. Second the forecasting, I build artificial neural
network models for forecasting volatility on several time-horizons. I benchmark these mod-
els against common ARFIMA method and provide evidence that ANN should be used more
in the empirical literature.

e realised volatility estimation procedure confirms the broad picture of results that
can be found in literature about realised volatility estimators. is results seem to be very
robust across estimators.

First, the theory suggests that standardised returns by the volatility should be normally
distributed and this is strongly confirmed in case of crude oil and gold. In case of S&P 500
index the results deserve more aention, because the application of jump-consistent models
yields the standardised returns to be less normal than in other cases. However, as suggested
in the text, S&P 500 is a very specific and aggregated case which means that occurrence of
jumps in the price of this asset is very unlikely. In this situation, because the methods
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assume occurrence of jumps they over-identify jumps and hence over-adjust the data.
Second, the results confirm, that noise-consistent and jump-consistent are easier to pre-

dict because the behaviour should be less erratic and the series is cleared from disturbing
effects. e most prominent in this respect is the JWTSRV estimator.

ird, contrary to the expectation the decomposition of the volatility does not show to
improve the explanatory power of various methods in simple seings. By simple seing it
is meant that we forecast or fit the series only horizon by horizon and we implicitly assume
that they are independent. is result is particularly important because it suggests that
there is no easily understandable and interpretable structure of the market. Rather it seems
that market cannot be looked at as segmented by investment horizons but we should really
look at market as investment continuum.

Aer performing the estimation, I moved to forecasting procedure. e set-up of the
exercise was to forecast cumulative volatilities over several time horizons. I used standard
rolling ARFIMA method, lame approach that benchmarks against geing results that are
inferior to very simple and intuitive method and artificial neural networks. To provide
broader insight recursive as well as standard multi-layer perceptron network topologies
were used.

First, as one would suppose, it is oen very hard to get beer results than the very
simple method in short-horizon. is result is known for a long time in finance and several
paradoxes can be found in literature. Two typical examples are the Meese and Rogoff (1983)
paradox when forecasts benchmarked against Brownian motion are not significantly beer
and the well-known paradox that it is very hard to get beer portfolio returns than equal
weight portfolio.

Second, this thesis brings new evidence about usability of artificial neural networks in
forecasting of realised volatility. Simple MLP network as well as Elman and Jordan neural
networks were used. Neural networks proved to have higher information content about dy-
namics of the volatility series than ARFIMA or lamemethods that were used as a benchmark.
e typologies performance does not differ which is an interesting result, because MLP is
only non-linear variant of AR process. e only short-come is that the networks suffer from
post-standardisation of results, which is le as an open question for further research.

e thesis is novel in several aspects. First, I widen the analysis of volatility to three
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substantially different assets crude oil, gold and S&P 500. Furthermore, I apply the state-of-
art estimation methods of realised volatility on them, including wavelet estimator that is
able to decompose volatility into different horizons. Results of estimation mostly support
the existing literature on the topic. Secondly, I built neural network models for forecasting
and showed that they make beer predictions about dynamics than the existing method. I
only used simple topologies and deeper investigation in this area is le for further research.
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Appendix A

Complementary tables and figures
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Figure A.1: Number of observations per day, S&P 500, whole sample
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Figure A.2: Number of observations per day, Gold, whole sample
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Load data from raw source

Gold Crude oil S&P 500

Generate Log-Returns

Select years, get rid of rest

Remove weekends

Remove late night trading

Estimate realised volatility

Naive estimate Two-scale realised volatility Bipower variation Jump-wavelet two scale realised volatility

Apply quantitative models

Naive ARFIMA ARFIMA rolling Multi-layer perceptron Elman network

Estimate Minzer-Zarnowitz R2 Compare superiority of predictions

Figure A.3: Flowchart description of the program

Start End Days Observations
Gold 1984-01-03 2012-11-09 7628 3831122
Crude 1987-01-02 2011-12-30 6654 3316592
S&P 500 1983-02-01 2011-12-30 7290 2750092

Table A.1: Summary statistics, original time series
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Figure A.4: Histogram of daily log-returns standardized byRV 1/2, standard normal density
superimposed
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Start End Days Observations
Gold 2007-01-02 2011-12-30 1247 1508371
Crude 2007-01-02 2011-12-30 1247 1471701
S&P 500 2007-01-17 2011-12-20 1201 467842

Table A.2: Summary statistics, trimmed time series

Min Max Madian Average Kurtosis Skewness
Gold -0.02 0.02 0.00 -0.00 36.35 0.37
Crude -0.04 0.03 0.00 0.00 37.83 0.09
S&P 500 -0.03 0.03 0.00 0.00 78.18 0.48

Table A.3: Summary statistics, log-return series used in estimation

Shapiro-Wilk Lilliefors Anderson-Darling Pearson chi-square
bpv 0.05 0.30 0.17 0.02
jwtsrv 0.30 0.54 0.26 0.17
kernel 0.04 0.17 0.10 0.04
naive 0.03 0.25 0.13 0.08
tsrv 0.05 0.18 0.10 0.26

Table A.4: P-values of normality tests of Crude oil log-returns standardized by RV 1/2

Shapiro-Wilk Lilliefors Anderson-Darling Pearson chi-square
bpv 0.22 0.86 0.60 0.77
jwtsrv 0.41 0.61 0.52 0.43
kernel 0.05 0.31 0.11 0.47
naive 0.16 0.61 0.27 0.66
tsrv 0.06 0.28 0.12 0.64

Table A.5: P-values of normality tests of Gold log-returns standardized by RV 1/2

Shapiro-Wilk Lilliefors Anderson-Darling Pearson chi-square
bpv 0.01 0.01 0.00 0.03
jwtsrv 0.00 0.00 0.00 0.00
kernel 0.00 0.10 0.00 0.49
naive 0.00 0.23 0.01 0.54
tsrv 0.03 0.33 0.09 0.08

Table A.6: P-values of normality tests of S&P 500 log-returns standardized by RV 1/2
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Figure A.5: R2 from Minzer-Zarnowitz regressions, ten days ahead, in-sample
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Figure A.6: R2 from Minzer-Zarnowitz regressions, ten days ahead, out-sample
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Figure A.7: R2 from Minzer-Zarnowitz regressions, twenty days ahead, in-sample
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Figure A.8: R2 from Minzer-Zarnowitz regressions, twenty days ahead, out-sample
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