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Abstract

Capital Asset Pricing Model is considered to be the benchmark when evaluat-

ing the systematic risk of assets and its covariance with market returns. This

thesis uses this framework and by employing various methods, such as Or-

dinary Least Square, Dynamic Conditional Covariance Multivariate GARCH

and State Space Formulation is trying to find the most suitable method among

these to estimate the coefficients of systematic risk. These coefficients are then

used to hedge portfolios, which are created from the stocks traded on different

stock exchange- NYSE Composite and NASDAQ Composite. According to the

results of the hedge performance of each portfolio we will be able to evalu-

ate which method is the most suitable to estimate the systematic risk within

CAPM framework.
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Abstrakt

Model CAPM je považován za základńı model při oceňováńı systematického

risku aktiv a jeho provázanosti s výnosnost́ı trhu. Tato práce využ́ıvá této

struktury a použit́ım r̊uzných metod, mezi které patř́ı OLS, DCC MGARCH

a SSF modelovańı, se snaž́ı naj́ıt nejvhodněǰśı metodu z výše zmı́něných, která

dokáže nejlépe odhadnout koeficienty systematického risku. Tyto koeficienty

jsou dále použity pro zajǐstěńı rizika portfolíı, které jsou vytvořeny z akcíı ob-

chodovaných na r̊uzných burzách- NYSE Composite a NASDAQ Composite.

Na základě obdržených výsledk̊u o výkonu zajǐstěńı rizika v každém portfoliu

budeme schopni vyhodnotit, která z metod je nejvhodněǰśı pro odhad system-

atické risku v modelu CAPM.
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Chapter 1

Introduction

This master thesis aspires to find the most suitable econometric approach to

estimate the systematic risk of different stocks on different stock markets and

based on these findings hedges the risk of created portfolios and tests their

performance in time. We have focused on the systematic risk as the systemic

risk is hard to measure and despite its impact, which may bring down the whole

financial system, it would not provide us with necessary information for our

research.

There are two main reasons why we have picked this topic. First is the latest

financial recession that has caused turmoils on financial markets influencing

plenty of companies and households. We assume that finding the most suitable

method among those we use in this thesis, for estimating the time-varying

systematic risk coefficients and hedging this risk to decrease the loss of the

investment might be very useful and may reduce consequences of possible future

financial crisis or may give us a fighting chance to avoid severe losses. Secondly,

we have found out that there are not plenty of research papers dedicated to

systematic risk and time-varying betas applied on the stock markets, therefore

we would like to focus on this field in our thesis.

Moreover, we will concentrate on particular stocks from different stock in-

dexes NYSE Composite and NASDAQ Composite and for financial analysis

we have chosen popular Capital Asset Pricing Model (CAPM). Based on this

model we will try to find the coefficients of systematic risk through couple of

econometric approaches. We will employ three approaches in this thesis, which

we assume are capable of this task.

First of them is Ordinary Least Square estimation on rolling sample. Even

though we assume this approach as being the weakest among the methods
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we have picked, we suppose that this approach will provide us of important

benchmark when evaluating the results later on. Second approach that is em-

ployed in our thesis is Dynamic Conditional Covariance Multivariate GARCH,

which is powerful tool when analyzing time series. Finally, last approach casts

CAPM into State Space Formulation, which should be the most powerful tool

for estimating the systematic risk in CAPM. Furthermore, as soon as we obtain

the estimates of systematic risk of each stock, we will introduce the β̂-hedging

strategy that will be applied on portfolios Weighted and Equally Weighted

composed of stocks from both indexes (NYSE, NASDAQ) and then we will

compare their performance in time. Based on these results we will evaluate the

best method for estimating the systematic risk.

The structure of this thesis consists of eight chapters. Second chapter sum-

marizes literature that has been published and has concentrated on topics rel-

evant for our research. Thus, chapter 2 is divided into 5 parts which are ded-

icated subsequently to Capital Asset Pricing Model, Ordinary Least Square,

GARCH family of models, State Space Formulation and Systematic risk and

Time-Varying Beta. Following part introduces the methodology that was used

for our analysis of time series and estimation of systematic risk coefficients. This

part is divided into two sections. First goes through assumptions of Capital

Asset Pricing Model and second section focuses on all econometric approaches

and introduces each of these methods. Chapter 4 is dedicated to a data sets,

which have been collected and provides of data statistics and selection of stocks

from each index.

In addition, chapter 5 and 6 are both empirical. Chapter 5 treats with

the estimation of the betas - systematic risk of each stock, whereas chapter

6 describes our hedging strategy that is used in this thesis and also explains

the way how portfolios were designed and built. Moreover, in this chapter we

evaluate the results of hedge performance of each portfolio and based on these

findings we propose the best method for estimation of systematic risk within

CAPM framework. Chapter 7 summarizes findings of this thesis and last part

of this thesis is the Related Literature, which is summing up all the literature

that was used during writing this thesis.



Chapter 2

Literature review

This chapter will go through the literature that has already been dedicated to

this topic and will highlight the findings of this literature. Firstly, we focus on

the CAPM and its pros and cons for our research.

Second part concentrates on the econometrics and will describe all of the

approaches, we will use in this thesis and their foundation and usefulness for

estimating the systematic risk in CAPM.

Last part summarizes the results that have been obtained from the previous

research papers dedicated on the hedging and performance of the portfolios.

2.1 Capital Asset Pricing Model - History

Capital Asset Pricing Model (CAPM) was introduced by Treynor (1962). His

model was the first, which derives the relation between expected return and

covariance with market portfolio. (French (2003))

Despite the fact that his work was cited by plenty of other economists who

proceed with development of his asset pricing model and some of them even

viewed Treynor’s model as the first for asset pricing (Black (1981)), his paper

was not officially considered as the initial foundation of the CAPM. Simultane-

ously, Sharpe (1964), Lintner (1965) and Mossin (1966) have developed concept

of CAPM, which was similar to Treynor’s. They all were inspired of Markowitz

(1952, 1959) and Tobin (1958) theoretical frameworks about diversification and

modern portfolio theory, which have become core for foundation of the theory

of CAPM.

During the years, this early pricing model has undergone few changes, such



2. Literature review 4

as relaxation of some assumptions, for instance the effects of taxation. (Bren-

nan (1970))

Furthermore, Mayers (1972) restricted trading of risky assets, transaction

costs and information asymmetries, whereas Rubistein (1973) added moments

into model and as well as Mayers created CAPM, where no risk less assets

occurred. Black (1972) considered assumption of unrestricted risk free lending

and borrowing as unrealistic, and created model without this assumption and

by this change proved that market portfolio is mean-variance-efficient under

different assumption. The only difference between Sharpe-Lintner and Black

CAPM is the way they define expected return on asset.

In addition, some economists argue that CAPM model, even thought it

is powerful and provides satisfying expectations how to measure risk and its

relation to expected returns, is not a very good empirical tool. (Fama, French

(2004)) Fama and French (2004) found the possible reason for this empirical

“failure” of CAPM in the simplifying of the assumptions or invalidity of testing

the model. Another problem, which was considered by Fama and French (2004)

was the misinterpretation of couple of definitions, such as market portfolio.

Moreover, empirical testing of the model has revealed plenty of shortcomings

such as imprecise estimates of β when regressing cross-sectional data. Thus

some economists such as Blume(1970), Black, Jensen and Scholes(1972) applied

CAPM model just on portfolios rather than securities, which has approved as

being good approach. Another issue caused by correlation of residuals in this

type of regression was solved by Fama and Macbeth (1973).

Jensen in 1968 introduced time-series regression test, which has rejected

functionality of the version of CAPM designed by Sharpe and Lintner. The

problem was that the intercept, which Jensen included was greater than the

average risk free rate and also β is less than market return. Other tests from

other authors, such as Miller and Scholes (1972), Blume and Friend (1973) and

Fama and French (1992) came out with similar results. Furthermore, CAPM

has undergone another wave of testing, which tested whether β can explain

expected returns. (Fama, MacBeth (1973))

According to this test, Black version of the CAPM seemed better, as the

assumption of his model held during all tests. The main difference between

Sharpe-Lintner model and Black model was that Black model expected β to

be suffice to explain expected returns and β risk premium is positive. (Fama,

French (2004))

Since the testing success of the Black model, many tests had challenged
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this model as well. Among first, there was Basu (1977), who found out that

returns on high earnings price ratio stocks are higher than what CAPM can

predict. Another non believer Banz (1981) argued that returns on small stocks

are higher, when these are sorted by market cap than CAPM prediction. Lastly,

Rosenberg, Reid and Lanstein (1985) proved that stocks with high B
M

equity

ratios have quite high returns, which are not reflected in their βs.

All of these shortcomings were supported by Fama and French (1992, 1996)

they reached the conclusion that any of price ratios have alike information

about expected return. Since the evidence from Fama and French in 1992,

most of the economists were aware of the fact that CAPM might have plenty

of loopholes. (Fama, French (2004))

However, there are two stories that look at that differently. Behavioralists

whose investors overreact to either good or bad times, so this sorting companies

based on B
M

equity ratios is not appropriate. (DeBondt, Thaler (1987)) Second

story is the need of more sophisticated asset pricing model which is not based

on the unrealistic assumptions, such as investor is keen on mean and variance

of portfolio during one period. (Fama, French (2004))

For this purpose, the CAPM model has been extended by Merton (1973),

who added to his model assumption of longer period instead of the one period

as in CAPM and so become ICAPM, which means inter-temporal capital asset

pricing model.

On the other hand, Roll (1977) stood on opposite side and argued that

despite these all results, the CAPM model has never been tested properly and

it will never be, as there are plenty of proxies used in the empirical testing,

which are not sufficient source.

Nevertheless, the CAPM is often used to measure the performance of funds

and even though it does produce abnormal returns, we consider this model

as being appropriate for the purpose of this thesis. Furthermore, the reason

why we have not used other variations of Capital Asset Pricing Model 1 is the

applicability of econometric methods on these models and also data collection,

where the data are hard to collect for couple of variables.

1such as Fama (2006) multi factor model
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2.2 OLS Rolling Window

In this thesis we will employ three different econometric approaches to find the

coefficients of systematic risk in CAPM model. First of them is OLS and its

rolling regression. Generally, this method is very popular but we assume there

are better approaches for estimation of systematic risk coefficients. Neverthe-

less, we involve this method, so we can later on compare the results of the

hedge performances of portfolios. Fabozzi and Francis (1978) used this method

to show that betas are random and also argued that this can explain the poor

performance of the return on assets.

2.3 GARCH family of models

GARCH model belongs to a family of ARCH models. There exist plenty of

types of these models, but we will concentrate on some models from GARCH

root. At the beginning, we have to mention general information about ARCH

model, which was founded by Engle (1982). ARCH model in contrast to an-

other econometric model ARMA (Box, Jenkins (1970)) considers conditional

variance dependent on past information (errors and variances), whereas ARMA

assumes one-period variance forecast. Furthermore, ARCH model simulates

heteroscedastic volatility over time, which is in comparison to ARMA model

different and based on that ARCH model can easily explain volatility clustering,

which is typical feature of financial market. (Mandelbrot, Taylor (1967))

GARCH model was introduced by Bollerslev (1986) as an extension of

ARCH. The rationale behind was to prolong memory and create more flexi-

ble structure of lags. The initiative of this model “derivation” was application

of long lags empirically in ARCH by Engle (1982, 1983), Engle, Kraft (1983),

which generated better results and the negative estimates of variance disap-

peared. In other words, slow decay in ARCH model needs large number of lags,

whereas this decay in GARCH is done through exponential function. (Engle,

Kraft (1983)) According to Silvennoinen and Tarasvirta (2009) GARCH family

of models is considered as being appropriate in modeling stock and stock index

returns, interest rates etc.

Furthermore, in our thesis we will use model from Multivariate GARCH

root of models and we will also employ rolling window assumption. First

model that was introduced was VEC (Bollerslev, 1988), where each element

of matrix was modeled as linear combination of the lagged squared errors and
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cross-products of errors and lagged values of the elements of matrix. (Bauwens,

2006) Nevertheless, this model had shortcomings, which were the high number

of parameters and positive definiteness of matrix was not assured. Engle and

Kroner (1995) have imposed new parameter on this model, which has guaran-

teed the positiveness of matrix, this model was called BEKK.

The model we will use in this thesis was introduced in 1990 by Bollerslev and

as well as GARCH was an extension of ARCH, M-GARCH was for GARCH. A

typical feature of CCC Multivariate GARCH is its modeling of the conditional

covariance matrix. Moreover, the problem of this model (GARCH (1,1)) is the

number of unknown coefficients, which also increases as the more time series

are involved. (Pagan (1996))

Bollerslev (1990) suggested to solve this complication to set coefficients off-

diagonal of the matrix to zero. This have reduced number of coefficient to

seven. This is one of the reasons, why we will use this model, which will be

introduced in methodology. Second reason is that according to Engle (2001),

ARCH/GARCH models are useful wherever there is a volatility of returns a

central issue and according to Engle (2001, p.167): “. . . provides a statistical

stage on which many theories of asset pricing and portfolio analysis can be

exhibited and tested.” This model was used by plenty of economists, who esti-

mated time varying betas. (De Santis and Gerard (1998), Hafner and Herwartz

(1998))

On the other hand, this Constant Conditional Correlation Multivariate

GARCH and its assumption may cause a problem for practical usage. (Ledoit

(2003)) Thus, in our thesis we will use a Dynamic Conditional Correlation

MGARCH model, which was proposed by Engle (2002) and it generalizes Bol-

erslev’s model (1990). This model is flexible as any of GARCH models but it

combines parsimonious parametric models with it. The core of this model is

the estimation based on two stage method using likelihood function. Accord-

ing to Engle (2002) DCC MGARCH performs well empirically and provides of

reasonable and sensible results.

2.4 State Space Formulation Model

This method has become very powerful tool for time series analysis since 1960,

when Kalman launched his paper. This framework accommodates different

specifications of models, which are related to time series. These days this
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tool is very popular among econometricians, but it has gained its popularity

gradually. (Sopov (2010))

Furthermore, SSF model in comparison to ARMA model (Box, Jenkins

(1970)) models time series in structural way explicitly. (Durbin, Koopman

(2001), pp. 52)

Durbin and Koopman (2001) also provided of theoretical background of

this model and advises how to model via SSF and apply Kalman filter on time

series. The efficiency of Kalman filter was improved in 2008 Jungbacker and

Koopman. In our application, we will use the SSF ability to extract latent

path/factor of unobserved nature. Common critique of standard estimation of

CAPM (Jagannathan, Wang (1994)) is aimed at the assumption of constant

parameter beta. We try to alleviate this issue using the rolling window for

OLS estimation, hence introducing some dynamics. In case of SSF, we simply

specify the CAPM parameter beta to follow a random walk, thus we estimate

its evolution over the whole sample.

This approach is suitable for beta evolution analysis ex-post2, yet for portfo-

lio/hedge evaluation, we cannot use all the information to estimate parameters.

This would imply we ”know” the future observation at the time of evaluating

performance at the beginning observations. In other words, to calculate βt, we

use data only up to time t. This leads to using rolling data-set also for SSF

estimation.

2.5 Systematic Risk & Time Varying Beta

There has been written quite a lot of about the estimating of systematic risk

in Capital Asset Pricing Model or any other models. Jansky, Adam, Benecká

(2012) estimated the systematic risk of banking sector, using similar methods

as we will do in our thesis.

Banking sector was a objective of King’s (2009) analysis, who estimated

costs of capital. Merger and Bulla (2008) has concentrated their research of

time-varying betas on the financial sector, which has included also insurance

companies.

Similar research was done by Groenewold and Fraser (1999), who aimed on

Australian market. Lie (2000) analyzed stock market in Australia and for this

purpose he used GARCH and Kalman filter.

2The beta evolution paths were created like this.
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Wooldridge(1988) and Engle, Lilien and Robins(1987) tested CAPM and

for modeling time varying betas they used multivariate GARCH. Furthermore,

Schwert and Seguin (1990) use covariances to model time variation in GARCH

and also tested CAPM on couple of portfolios.

Adrian and Franzoni (2008) employed Kalman filter to model conditional

betas and tested portfolios by B
M

ratio and by size. They obtained results, that

supported theory of conditional CAPM.

Jostova, Philipov (2005) propose new beta model, which describes and sees

systematic risk- beta as general mean reverting stochastic process. Their model

puts together stochastic components and time variation in systematic risk pro-

cess. For the estimation of these betas, they used Bayesian methods. Ang and

Chen (2003), Petkova Zhang (2002) and Campbell and Vuolteenaho (2002)

have confirmed this mean reversion in systematic βs.

Moreover, Christiansen and Ranaldo (2010) also discussed the mean revert-

ing of betas, and found out that carry trade strategy is more exposed to stock

market.

As we can see from the short summary of the literature, there has been a

couple of papers written about the systematic risk and time-varying betas in

many fields of economics. We lack more papers dedicated on the stock market

and its cross market comparison, therefore our thesis is aimed to do this task.



Chapter 3

Methodology

This chapter of thesis will introduce Capital Asset Pricing model and all three

econometric approaches that have been employed in empirical parts of this

thesis.

3.1 CAPM model

This section will describe the model we use in our thesis. As we know the

CAPM is a pricing model for portfolios or securities. So for the purpose of this

thesis it is well chosen. This model builds relation between expected returns

and systematic risk to security market line, this relation shows what should be

the market price of security when considering the risk class of the security. The

equation of our model is as follow:

E(ri) = rf + βi(E(rm)− rf ) (3.1)

where:

E(ri) is an expected returns of asset

rf is a risk free rate of interest

βi is a sensitivity of expected asset returns to market returns

E(rm) is a market expected returns

E(ri)− rf is known as risk premium

E(rm)− rf is known as market premium

Moreover, β̂ is conceived as a measure of systematic risk and can be calculated

as:
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β̂i =
cov(ri, rM)

σ2
M

(3.2)

where:

• ri is a return of asset i

• rM is a returns of the market

• σ2
M is a variance of the returns of the market

• cov(ri, rM) is a covariance between asset i and market returns

This equation basically tells us the risk contribution of well diversified port-

folio to an asset. Furthermore, all equations and their derivatives will follow us

during the empirical parts of this thesis, where we focus on the estimations of

the β , which will help us afterwards in finding the best method to hedge the

systematic risk. Following part of this chapter, will propose the methods, we

use for estimating β.

3.2 Econometric approaches

This section will describe all the methods employed for estimating the β, which

we will use later in our thesis for hedging the risk of portfolios. These portfolios

will be then used to perform in time under particular beta hedging strategy,

which is introduced in chapter 6.

Moreover, to find the best method we have chosen three different econo-

metric approaches that might help us to find the betas and to compare the

performances of hedged portfolios. Each of these three methods has its pros

and cons and we assume that the estimations of β will not be the same, even

though they should behave similarly in time. The methods are OLS rolling

window, MGARCH and State Space Formulation Model.

3.2.1 OLS Rolling Window

As mentioned before, this method is very popular among economists, but we

consider this method as not being very powerful when analyzing time series.

This method’s results will provide us with useful benchmark, which will be

useful later for comparison with other results.
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Rolling regression estimates, in this case time varying betas, are obtained

through the OLS regression on a moving window of given time period (number

of observations). It is essential to find the right size of the window and also be

aware of outliers, which may affect the OLS estimates, as the OLS method is

very sensitive for the outliers. In our thesis, the rolling window consists of 250

observations, which is more or less a trading year at stock exchange.

Following equation is the modification of CAPM, which we used for esti-

mating systematic risk coefficients using OLS method:

ri,t − rf,t = α + βi,t(rm,t − rf,t) (3.3)

where

ri,t is a daily return of each stocks

rf,t is a daily risk free rate

βi,t is systematic risk coefficient of stock i

rm,t is a daily market returns

3.2.2 DCC MGARCH

This part of this chapter introduces Dynamic Conditional Covariance Multi-

variate GARCH. But before we will present this model we will introduce CCC

MGARCH, which have similar assumptions as DCC except for one.

Moreover, Multivariate GARCH model allows to employ multiple returns of

assets in modeling. However, this model have two drawbacks that is number of

parameters grow rapidly with the increasing number of assets and the second

is the positive definiteness, which cannot be ensured. Constant Conditional

Correlation Multivariate GARCH is used to decrease the number of parameters.

But firstly, we need to define model and its disturbances. We assume that

yt is stochastic process of dimension N x 1 and θ is a finite vector of parameters

then:

yt = µt(θ) + εt (3.4)

Where µt(θ) is the conditional mean vector and

εt = H
1
2
t (θ)zt (3.5)
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where H
1
2
t (θ) is a positive definite matrix and we assume that for vector zt

is:

E(zt) = 0 (3.6)

V ar(zt) = IN (3.7)

where IN is a positive definite matrix N x N.

Constant Conditional Covarience MGARCH model was introduced by Boller-

slev (1990), who has restricted the conditional correlation, which leads to condi-

tional covariances that are proportional to the conditional standard deviations.

Moreover, it does not model matrix Ht directly, but it decomposes Ht on cor-

relation and conditional standard deviation. Despite not very straightforward

way to obtain results for stationarity, ergodicity and moments, this model has

less parameters and so they are easier to be estimated. Following equations are

definition of this model:

Ht = DtRDt = (ρij
√
hiithjjt) (3.8)

where

Dt = diag(h
1
2
11,t . . . h

1
2
MM,t) (3.9)

and the off diagonal elements are defined as:

[Ht]ij =
√
hit

√
hjtρij, i 6= j (3.10)

where R = [ρij] is positive definite, symmetric matrix, where ρii = 1 for i =

1, . . . ,M . As mentioned in literature review, Multivariate GARCH models

can be modeled as GARCH(p,q) and so for the purpose of our thesis we will

use GARCH(1,1) to model Multivariate GARCH. The system of equations we

obtain is as follows:

hii,t = c11 + a11ε
2
i,t−1 + b11hii,t−1 (3.11)

hMM,t = c22 + a33ε
2
M,t−1 + b33hMM,t−1 (3.12)

hiM,t = ρ
√
hii,thMM,t (3.13)

According to equation 3.10 -12, we can estimate time varying β. From equa-
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tion 3.2 we can see that Capital Asset Pricing Model calculates β̂ as ratio of

covariance between return of assets and market return and the variance of the

market. As long as the matrix in MGARCH consists of variances and covari-

ances, which are time dependent, it can be used for calculating time-varying

β̂. Following equation explains it:

β̂it =
cov(rit, rMt)

σ2
Mt

=
hiM,t

hMM,t

(3.14)

For hedging purposes we always use the latest covariance and variance esti-

mates obtained from the rolling window sample and then we will calculate

betas. Furthermore, DCC MGARCH model we use in our thesis differs from

CCC MGARCH model in definition of correlation matrix Ht, which in DCC

MGARCH parametrizes R and so it becomes time-varying in model. So the

matrix looks as follows:

Ht = DtRtDt

Based on the Ht matrix obtained we can easily calculate covariances (by def-

inition) and time-varying estimates β subsequently. To evaluate our hedging

performance we again use the latest beta estimates. The reason why we use

DCC MGARCH instead of CCC MGARCH is the sensibility of results, which

are obtained by using this model.

Moreover, as well as in case of Ordinary Least Square method we employ

rolling window, whose size is alike to OLS. As a result of this step we obtain

same number of betas as in OLS and application of DCC MGARCH on the

window will provide us of more accurate estimates.

3.2.3 State Space Formulation Model

The last method we use in this thesis is SSF model. We use Kalman filter

to estimate the parameters of reformulated Capital Asset Pricing Model, this

change will give us higher degree of uncertainty in α and β estimation and

it also allows us to specify dynamics for α and β explicitly. Furthermore, we

specify both coefficients-α and β to follow the random walk. Coefficient α will

then stands for the discrepancy in the observed and real risk free rate. The

reformulated model is as follows:
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rt − rf,t = αt + βt(rM,t − rf,t) + ε, ε ∼ N(0, σ2
ε) (3.15)

αt+1 = αt + ηt, ηt ∼ N(0, σ2
η) (3.16)

βt+1 = βt + ε, ε ∼ N(0, σ2
ε ) (3.17)

We can rewrite these equations to a standard way, which is used when

defining state space formulation models:[
αt+1

βt+1

]
=

[
1 0

0 1

][
αt

βt

]
+

[
ηt

ε

]
(3.18)

rt − rf,t =
[
1 (rM,t − rf,t)

] [αt
βt

]
+
[
εt

]
(3.19)

Where equation 3.18 is state equation and 3.19 is measurement equation.

These equations will be employed when estimating the betas-systematic risk.



Chapter 4

Data Set

This chapter introduces the data that were collected from finance.yahoo.com

and used for the estimation of the systematic risk in CAPM model. We have

prepared two datasets for each of indexes and this chapter will also introduce

stocks we have picked. Furthermore, we will provide of data descriptive statis-

tics and show evolution of daily stocks returns in time.

4.1 Stocks and stock indexes

As mentioned before, we have chosen two different stock indexes, which are

NYSE Composite and NASDAQ Composite. The reason why we have chosen

these indexes is the structure of stocks traded on each stock index and also

because of the high liquidity of each of these indexes. Furthermore, we assume

that the domicile might play its role when estimating the betas and also com-

paring of the performance of the portfolios, thus we have picked the indexes

from the same country.

Furthermore, from each stock indexes we have picked 10 companies’ traded

on particular stock exchange. Each data set consists of daily values of stocks

prices and they span from 1991 to 2012 for both indexes- NASDAQ Composite

and NYSE Composite. The values of indexes span to the same period. We

were very cautious when choosing these companies as we wanted all of these

companies to be quoted on the stock exchange since 1991 or earlier.

Following tables 4.1 and 4.2 show companies that have been picked from

each index and their abbreviations that are used in following chapters of this

thesis. Our choice was quite limited as not many companies have been quoted

since 1991. Despite this fact, we tried to find stocks from different industries.
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Table 4.1: NYSE Composite

Abbreviations Stock Industry or Sector
GE General Electric Company Conglomerate
EX ExxonMobil Corporation Oil & Gas
PG Proctor & Gamble Co. Consumer goods
WM Wal Mart Stores Inc. Department Stores
AL Alcoa Inc. Aluminium
3M 3M Company Conglomerate

IBM IBM IT
MCK Merck& Co.Inc. Pharmaceuticals

AMEX American Express Company Consumer Finance
McD McDonald’s Corporation Fast food

WPNY Weighted Portfolio NYSE
EPNY Equally Weighted Portfolio NYSE
NYSE New York Stock Exchange

Table 4.2: NASDAQ Composite

Abbreviations Stock Industry or Sector
APP Apple Inc. IT,Electronics
CSC Cisco Systems Inc. Networking Equipment
CST CostCo WholeSale Corp. Retail
DLL DELL Inc. Software, Hardware
MTT Mattel Inc. Toys and Games
MCR Microsoft Corporation Computer Software
ORC Oracle Corporation Software, Hardware
PTC PTC Inc. Software
TXI Texas Instruments Inc. Semiconductor- Broad line
VD Vodafone Group P.Ltd.Co. Telecommunications

WPNQ Weighted Portfolio NASDAQ
EPNQ Equally Weighted Portfolio NASDAQ

NQ NASDAQ

Moreover, according to CAPM definition we had to collect the data for the

risk free rate. But there is not any official database of this rate so we have

picked the interest rate of 10 years governmental bonds of the USA for both

indexes- NYSE & NASDAQ analysis, we assume that this rate is less risky in

comparison to Greek Bonds.
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4.1.1 Preparation of dataset

Before we begin with estimating and calculation of systematic risk coefficients

within CAPM framework we had to prepare datasets. First step we did with

our dataset was the transformation of stock prices to daily changes of returns.

We used the formula stated below:

rt = ln
Pt
Pt−1

This step was done for both datasets. Moreover, we had to transform also the

risk free rate, as we collected daily data with annual return, we had to divide

annual rate with number of days. In case of US Treasury the denominator was

equal to 360.

Furthermore, because of different approaches used for calculation of betas,

we had to prepare two different types of datasets for each index. Based on

CAPM framework we had to subtract risk free rate from the stocks returns

and also from market return-index return. The result dataset are used for the

OLS Rolling Window and State Space Formulation analysis. On the other

hand, for DCC MGARCH analysis we subtract mean values of each stock and

index from the daily data of relevant stock and index. We assume that this step

will provide us with smoother time series more appropriate for the calculation

of betas.

4.2 Data properties

This section presents the descriptive statistics of the corresponding time series

of daily returns. We involve basic statistical informations such as mean, skew-

ness, kurtosis and standard deviation. Table 4.3 and 4.4 shows the information

about our dataset.

According to the tables 4.3 and 4.4 we can see, that most of the data are

skewed to the left and are leptokurtic with heavy tails, which is a common

feature of financial data. Furthermore, if we look at the figures 4.1 and 4.2

we can see the evolution of daily stock returns on each stock exchange. When

we compare the volatility of the stocks, we can see that most stocks traded

on New York Stock Exchange are quite volatile. On the other hand there are

some stocks, which does not experience with any marginal volatility over time

(if omitting few outliers), such as Proctor&Gamble, Merck and Alcoa.
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Table 4.3: Descriptive Statistics-NYSE Composite

Stock Mean St.Dev. Min. Max. Skewness Kurtosis
AMEX -0.062 0.012 -0.1 0.12 -0.384 13.7

AL -0.1362 0.0239 -0.19 0.187 0.0354 9.8
EX 0.067 0.0247 -0.17 0.2 -0.07 10.6
GE 0.0964 0.0154 -0.15 0.158 0.04 11.4
IBM -0.1723 0.0188 -0.14 0.18 0.007 10.64
MCD 0.113 0.0186 -0.169 0.12 0.008 9.78
3M 0.438 0.0164 -0.137 0.10 -0.04 7.18

MCK -0.047 0.0153 -0.10 0.104 -0.036 7.29
PG -0.1652 0.0185 -0.31 0.12 -1.09 22.5
WM 0.085 0.0153 -0.36 0.09 -2.46 61.38

WPNY 0.009 0.011 -0.09 0.1 -0.12 9.73
EPNY 0.0002 0.012 -0.098 0.104 -0.191 10.44
NYSE -0.144 0.0178 -0.1 0.104 0.09 6.02

Table 4.4: Descriptive statistics-NASDAQ Composite

Stock Mean St.Dev. Min. Max. Skewness Kurtosis
APP 0.577 0.031 -0.73 0.285 -2.26 64
CSC 0.235 0.022 -0.269 0.17 -0.506 14.8
CST 0.225 0.219 -0.271 0.18 -0.51 14.9
DLL 0.485 0.031 -0.287 0.19 -0.467 8.4
MTT 0.296 0.022 -0.352 0.169 -1.08 27.3
MCR 0.421 0.021 -0.169 0.178 -0.002 8.79
ORC 0.776 0.03 -0.343 0.36 0.17 14.5
PTC 0.129 0.038 -0.673 0.243 -1.2 27.2
TXI 0.435 0.028 -0.21 0.22 0.133 5.99
VD 0.352 0022 -0.139 0.14 -0.035 7.33

WPNQ 0.483 0.017 -0.248 0.121 -0.584 14.1
EPNQ 0.393 0.0138 -0.089 0.093 -0.129 6.11

NASDAQ 0.0002 0.0158 -0.1 0.132 -0.066 8.65

Secondly, if we look at the daily returns of stocks traded on NASDAQ (fig-

ure 4.2) we can see that there are some stocks, whose evolution of returns in

time is quite smooth (if we omit couple of outliers). These stocks are PTC,

Mattel, Apple and Cisco. Obviously, there are some periods where these stocks

experienced with decreases or increases of the stock price, but in contrast to Mi-

crosoft or Vodafone, which are more like roller coaster, they seem quite smooth.



4. Data Set 20

Based on these figures we expect that the results obtained from hedging port-

folios may differ - as the weights of each stock may have significant impact on

the portfolio and its returns. We assume that higher volatility will test our

hedging strategy and DCC MGARCH may be the best of the methods, but

just in case the weighting of the portfolio would create pretty volatile evolution

of portfolios returns.
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Figure 4.1: NYSE Composite - daily returns of stocks
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Figure 4.2: NASDAQ Composite - daily returns of stocks
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Chapter 5

Estimating of systematic risk

5.1 Introduction to the problem

This chapter is dedicated to empirics. In this chapter we will find the estimates

of systematic risk of CAPM via various methods introduced earlier in this

thesis. Later in this chapter we will evaluate the results and based on this

outcome, we will set the systematic risk-β hedge on the created portfolios.

5.2 OLS rolling window

First method that is employed is Ordinary Least Square applied on the rolling

window. In this case the window is 250 observations long as we assume that

this is significantly large window for daily data, as this window should cover

approximately a trading year on a stock market.

New York Stock Exchange Figures A.1 and A.2 in Appendix show the

systematic risk of each stock we have received by using OLS rolling window

method. We can see from these pictures that evolution of systematic risk

coefficients among the NYSE stocks is more or less smooth (American Express,

GE, Proctor& Gamble and 3M). On the other hand IBM, Exxon and Alcoa’s

coefficients of systematic risk seems pretty volatile, this fact might be caused by

the industry and market. These companies are operating on- IT, Oil&Gas and

natural resources mining respectively. In case of Merck the progress in time

seems as well as in case of IBM quite unpredictable, but we assume as well

as in those other companies that it is because of the specification of industry,
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for instance in case of Merck it can be the expiration of patent on any of their

pharmaceutical products.

National Association of Securities Dealers Automated Quotations

According to figures A.3 and A.4 included in Appendix, we can see in com-

parison to NYSE’s coefficients of systematic risk that the NASDAQ’s stocks

coefficients are similar to the size but apart from Vodafone, Oracle and Mattel

they are pretty volatile. Furthermore, it can be seen that the industry may

influence the pattern of the evolution of coefficients no matter the Stock Ex-

change, for instance if we compare Microsoft, Cisco and Apple we can see either

periods of volatility or quite smooth periods. On the other hand, CostCo as a

corporation, which is selling consumer goods experiences with pretty volatile

evolution of betas, we assume that the competition on this field is high so it is

hard to keep the level of income steady.

If we check other similar companies from different stock exchange such

as Dell&IBM and CostCo& Wal Mart the pattern of evolution of coefficients

is different. In Dell&IBM case it seems like Dell experiences with smother

evolution, but this might be caused by wider IBM’s portfolio of services offered.

On the other hand, CostCo experiences with much larger volatility than Wal

Mart.

5.3 DCC MGARCH

Secondly, for calculating of systematic risk coefficients within CAPM framework

we have chosen Dynamic Conditional Covariance Multivariate GARCH. As

mentioned in previous chapters we have specified window of 250 observations

and as well as in OLS we had been moving it in time. As long as we obtained

time varying correlations and standard deviations we used them to calculate

systematic risk-β̂ of each stock in time. We assume that by this step we have

obtained more sensitive coefficients of systematic risk than we would in case of

running DCC MGARCH on whole time series.

New York Stock Exchange In Appendix, there are figures A.5 and A.6

that show the progress of coefficients of systematic risk in time, which were

obtained by using DCC MGARCH method used on rolling window. Generally

when looking at the betas, we can say that they are more volatile then the coef-

ficients obtained from OLS regression. In case of OLS we considered American
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Express, GE and Proctor as being pretty smooth but in case of DCC MGARCH

the results are opposite and the betas seems very volatile. Furthermore, 3M

coefficients are similar to those obtained from OLS.

On the other hand, some companies whose OLS coefficients were considered

as being volatile- IBM and Merck, has changed and now evolution of coefficients

seem to be smooth in contrast with other stocks. Moreover, the volume of

coefficients has increased, from the figures A.5. and A.6. we can see that the

open interval has in most of the times doubled. All the changes are caused by

the fact that DCC MGARCH by definition is more sensible on the volatility,

which may provide us of very important results later when we will analyze

performance of hedge.

National Association of Securities Dealers Automated Quotations

Coefficients of systematic risk that were obtained from DCC MGARCH are

showed in figures A.7 and A.8 in Appendix. When looking firstly one may

say that coefficients are less volatile than those obtained from OLS or NYSE’s

coefficients. But when looking closer we can see that the rationale behind

the “smooth” evolution are couple of outliers. For instance Apple’s, Oracle’s,

Cisco’s experiences with either huge jump of beta or decrease and so the in-

terval of their betas has widen sometimes even five times and so visually made

evolution of coefficients “smooth”. Nevertheless, the coefficients evolution pat-

tern is alike to the one NYSE stocks have, it means that it is more volatile than

OLS estimates of systematic risk.

5.4 State Space Formulation Model

Last method that is used is State Space Formulation model, we assume to

be better for estimation of coefficients of systematic risk than rolling window

OLS. We also believe that it can challenge DCC MGARCH on the grounds of

actual hedge performance. We assume that coefficients from SSF and following

hedging of portfolios may result in the best performance in time of of our

portfolios, which will be introduced in chapter 6.

New York Stock Exchange Figures A.9 and A.10 involved in Appendix

show the coefficients that were obtained from the SSF modeling. Generally, we

can see from these figures that the coefficients are not so volatile as the ones

obtained from the DCC MGARCH method, which is not surprising given that
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the DCC GARCH based methods work in conditional volatility rather than

“in mean equations”. Furthermore, when comparing these coefficients with

the ones obtained from Rolling Window OLS, we can see that there is slight

difference among them especially when talking about the size and generally

their progress in time experiences with very similar behavior. 1. There is slight

difference at the beginning of time series in AmEx, but then the coefficients

from SSF smoothen and flow similarly as the ones from OLS.

National Association of Securities Dealers Automated Quotations

The coefficients received from SSF are showed in Appendix on figures A.11 and

A.12.. We can see that the coefficients are more or less similar to the ones

obtained from OLS Rolling window. The size is also similar. The reason is

that SSF model as we defined it (see chapter 3) estimates essentially the same

thing but in a more complex way resembling extending window GLS, in other

words it provides us with more accurate results than OLS.

5.5 Comparison of the Betas

Last section of this chapter will compare the estimates of systematic risk ob-

tained by using various method. We have picked just one stock from each index,

to show the difference between systematic risk coefficients, as the pattern of

coefficients obtained from various method is alike for any of stocks we have

picked for our analysis.

New York Stock Exchange From the NYSE we have chosen American

Express, as you can see from the figure 5.1 that the evolution of betas obtained

from SSF and OLS are almost the same as we mentioned in previous section of

this chapter. On the other hand DCC MGARCH provides us of totally different

scenario.

National Association of Securities Dealers Automated Quotations

Figure 5.2 compares Mattel’s coefficients obtained from different methods. The

reason why we have picked Mattel is the volatility of DCC MGARCH, which

is in comparison to Apple less volatile and so other estimates (OLS and SSF)

are visible on common figure. Once again as you can see SSF coefficients are

more or less same as the OLS so they almost cover each other.

1See Chapter 3 on methodology.
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Figure 5.1: NYSE comparison of coefficients
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Figure 5.2: NASDAQ comparison of coefficients
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Chapter 6

Weighted portfolios and their

hedge performance

This chapter is the second empirical part of our thesis and this part is directly

related to the previous one as we will use the estimates of betas for hedging

portfolios. As soon as we know the systematic risk-β̂, we would like to offset the

loss/gains that may occur. At the beginning of this chapter we will introduce

the hedging strategy, which will be applied on the portfolios and then we will

briefly explain how we structured each portfolio and at the end of this chapter

we evaluate the results of how each of portfolio performs. We assume that both

portfolios hedged with coefficients obtained from DCC MGARCH should per-

form better than portfolios hedged with OLS and SSF coefficients. Moreover,

when comparing SSF and OLS coefficients hedge we suppose that SSF hedge

will perform slightly better as this method applied on this task works similarly

as OLS but the estimates are more accurate.

6.1 Hedging strategy

To see whether we can exploit different approaches for estimation of betas we

propose a β̂t hedging strategy. The strategy is simple and it follows simple

rule, where we start 1000 dollars long of 1

β̂t
in each portfolio - Weighted and

Equally Weighted and short of particular index - NYSE Composite and NAS-

DAQ Composite. Furthermore, for every period of 250 trading days we evaluate

the performance and will rebalance the portfolio to match the initial hedge by

using newly estimated β̂t. We also keep the track of money borrowed that are

needed to rebalance the hedge. We assume that risk free rate is equal to zero,
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so is does not change over time, thus just effectively keeps track of balances on

daily basis.

Moreover, as long as we finish with this moving of the hedge in time, we

will obtain the results of each portfolio in time, so we will be able to show how

much our beta hedging strategy employed on couple of portfolios gained or lost.

Based on these findings we will be able to conclude, which method from

those three might be the best when estimating the systematic risk coefficient

within CAPM framework.

6.2 Structure of the portfolios

Apart from hedge, we will use another tool to decrease the risk - diversification

of portfolio, where we will structure the portfolio from the stocks we have

mentioned in chapter 4. According to Elton and Gruber (1977), the risk related

to portfolio, when 10 stocks are included in portfolio, decrease to a half in

contrast to one stock risk. We propose two options for structuring the portfolios

in this thesis- weighting of portfolios based on the market cap and the second

option is equally weighted portfolio, which means that each of the stock will

have weight in our portfolio equal to 10%.

6.2.1 Weighted portfolios

This part is dedicated to the weighted portfolio as we need to introduce the

weights of each stock. Moreover, each stock included in portfolios will have

the different weight, which is derived from the market cap of each stock to the

October 2012. We assume that this approach would provide us with better

portfolio than we would obtain from equally weighted portfolio. According to

this weights we will calculate the returns of the weighted portfolios and also the

time varying betas of these portfolios, which we will get as well as the returns

by weighting the stocks betas in the same proportion as returns. Weights of

each stock are shown in the tables 6.1 and 6.2.

As you can see from the table 6.1 the largest impact on our NYSE anal-

ysis will have the evolution of stocks of Exxon Mobile and General Electric,

which are followed by IBM and Proctor&Gamble. On the other side, the least

influence will have Alcoa, the mining company.

From the table 6.2, we can see that there are two large companies, whose

stock evolution will influence the most our analysis of hedging, these are Apple
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Table 6.1: NYSE Composite

Stock Weight
General Electric 14.1%

ExxonMobile 23.23%
Proctor & Gamble 12.1%

Wal Mart 14.1%
Alcoa 0.67%
3M 4.2%

IBM 13.9%
Merck 7.7%

American Express 4.2%
McDonald’s 5.8%

Total 100%

Table 6.2: NASDAQ Composite

Stock Weight
Apple 31.5%
Cisco 9.6%

CostCo 4.1%
Dell 2.3%

Mattel 1.8%
Microsoft 21%

Oracle 13%
PTC 0.9%

Texas Instruments 3.1%
Vodafone 12.7%

Total 100%

and Microsoft. Apart from the Vodafone, there are more or less similar weights

among the rest of the companies included in our portfolio.

6.2.2 Weighted vs. Equally Weighted Portfolios

In this subsection of this chapter, we are going to compare the returns of two

portfolios- Equally Weighted and Weighted according to market cap.

NYSE Composite If we look on the figure 6.1 we can see the evolution of

returns of NYSE stocks portfolios. We can see that Equally Weighted Port-
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Figure 6.1: NYSE-portfolios returns
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folio’s returns more or less cover the returns of the Weighted Portfolio. That

might be caused by the fact that some of the stocks, whose weight is based on

the market capitalization was low then has increased significantly, for instance

Alcoa’s weight increased from 0.67% to 10% and its individual daily returns are

quite volatile (around year 2010, according to figure 4.1) and so the returns of
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Equally Weighted Portfolio differs. Moreover, other stocks that are responsible

of this EWNY’s evolution of returns are American Express, McDonald’s and

3M, which have also experienced with significant changes in returns over time

(figure 4.1) and their weights have increased during creating Equally Weighted

Portfolio.

Furthermore, the daily returns of both portfolios span to the interval be-

tween 10% and minus 10%. We can see that the market was very volatile

around 2010, which could be the influence of the World recession, which has

begun in 2007. There is a reaction delay, but this may be because of the rigid-

ity of industry, long term contracts or just uncertainty on the market situation

and postponing of the economic situation of the company.

NASDAQ Composite Figure 6.2 shows the returns of both portfolios cre-

ated from the NASDAQ stocks. When looking closely, we can see that Equally

Weighted Portfolio is less volatile than the one with different weights. In com-

parison to the NYSE’s scenario, which is opposite, we assume that this is caused

by the choice of the company and the weights respectively. In case of the

weighted portfolios, the weight shares leaders are Apple and Microsoft, whose

share is approximately 53% (3 companies’ share in NYSE portfolio is similar).

Therefore, “weakening” of the share of these stocks in Equally Weighted Port-

folio decreases also its returns as these companies are worldwide leader in the

industry, they are operating on.

Moreover, if we omit the couple of outliers, the returns span to the interval

between 10% increase and 10% decrease so it is similar to the NYSE portfolios.

When looking closer, we can see, that there is huge decrease in returns of

Weighted Portfolio by the end of 2000. If we look at the individual evolutions

of returns (figure 4.2), we can see that Apple and Microsoft (highest weights

in portfolio) experienced of the large decrease during that period, but not

only these two companies but also Vodafone and Cisco, whose weights are also

pretty high and together with Apple and Microsoft have approximately 75% of

portfolio’s weights. The reason of this fall was the burst of the internet bubble

in 2000, also known as Dot-com bubble. This can be also seen when looking at

the figure 6.3, which shows the evolution of prices of NASDAQ.
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Figure 6.2: NASDAQ-portfolios returns
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6.2.3 Systematic risk of portfolios

This part of this chapter will discuss and show the systematic risk coefficients

of both portfolios created from two indexes. Furthermore, this subsection is

divided into two paragraphs each consisting of one index. You can also find in
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Figure 6.3: NASDAQ- Dot-com bubble 2000
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Appendix comparison of each portfolios’ coefficients according to the method

used for their estimation. (Figures A.13-A.18)

NYSE Composite Figure 6.4 shows us the comparison of the systematic risk

coefficients of two portfolios. We can see that the evolution of these coefficients
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is very similar between Weighted Portfolio and Equally Weighted Portfolio.

The reason why it is like that is the weighting of stocks, where four stocks’

weights are more or less equal to those weights used for Equally Weighted

Portfolio. In comparison to portfolios created from stocks from NASDAQ the

scenario is different as most of the weight belongs to Apple and Microsoft and

so each portfolio’s coefficients are different.

When comparing among the methods, DCC MGARCH estimates of sys-

tematic risk are the most volatile, whereas coefficients obtained from the OLS

and SSF are alike and quite smooth. In figure 6.5 you can see zoomed period

of figure 6.4 to see that OLS estimates are alike to those obtained from SSF.

Moreover in Appendix on figures A.13, 14 and 15 you can see that different

weighting of stocks in our portfolios has not caused any major change of sys-

tematic risk coefficients. Thus, we expect that hedging of both portfolios and

its performance in time should provide us of very similar results.

NASDAQ Composite When we look at the figure 6.6 we can see that

coefficients of Weighted Portfolio are larger as they are very sensible on Apple

and Microsoft changes. In case of Equally Weighted Portfolio, we can see that

the evolution of coefficients of systematic risk is more volatile than in case of

Weighted Portfolio. As you can see on the figure 6.6 the Dot-com burst of

bubble that we mentioned before is also noticeable on the figure.

Moreover, if we compare the coefficients based on the method used for their

estimation, we can see that SSF coefficients are very similar to those obtained

from OLS rolling window (figure 6.7). On the other hand, coefficients obtained

from DCC MGARCH are the most volatile among all and also the largest

among others.

In addition, if we look at the figures included in Appendix (A.16,17,18),

we can see that there is a difference between Weighted and Equally Weighted

Portfolios’ systematic risk coefficients. In comparison to the NYSE’s figures

(A.13-15) it is markable difference especially during nineties of the twentieth

century. We can also see that OLS estimates are similar to SSF estimates,

whereas DCC MGARCH estimates have totally different pattern.
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Figure 6.4: Systematic risk coefficients- NYSE Portfolios
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6.3 Performance of hedge in time of portfolios

Last part of this chapter is dedicated to the most important part of this thesis

- Beta hedging and its performance. The strategy used is explained in previous

section of this chapter. This section is divided into two parts, where each
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Figure 6.5: Zoom- Systematic risk coefficients- NYSE Portfolios
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consist of two paragraphs each dedicated to one portfolio.
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Figure 6.6: Systematic risk coefficients-NASDAQ Portfolios
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6.3.1 NYSE Composite

According to the previous analysis, we expect that the results of hedge of

each both portfolios will be alike, because of the structure of weights used for

creating Weighted Portfolio, which are not so dependent to the change of one
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Figure 6.7: Zoom-Systematic risk coefficients- NASDAQ Portfolios
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or two stocks. Apart from the ExxonMobile’s weight and Alcoa we may say

that the weights used for the Weighted and Equally Weighted Portfolios are

similar with the same impact.
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Weighted Portfolio vs. Equally Weighted Portfolio

Firstly, we will compare the day by day changes of each portfolio based on the

method used for estimating the coefficients of the systematic risk. Figure 6.8

and 6.9 shows a daily change of the values of our portfolios in time. We can see

that the values of either Weighted or Equally Weighted are very alike among

the methods and even more the values of OLS and SSF are very similar.

On the other hand we can see that daily changes of portfolio hedged with

DCC MGARCH estimates of systematic risk are the most volatile among all

and the size of either decrease or increase are sometimes 10 times higher than

those changes of values of portfolio hedged with OLS and SSF coefficients.

Moreover, we can see that the changes of hedged portfolios are similar. So

in this case we can say that weighting does not changed the performance of

hedged portfolios.

Hedge Performance

Secondly, based on previous part we will evaluate the gains or loss of each

portfolio and later in conclusion we will discuss on the best method to hedge

the risk of portfolio. Figure 6.10 and 6.11 show a performances of hedges

applied on each portfolio. We can see that the changes between OLS and SSF

are more or less equal. On the other hand DCC MGARCH experiences with

large volatility, but at the end this volatility results with the highest value of

both portfolios.

Furthermore, in table 6.3 are final gains of our hedge applied on both port-

folios. We can see that our hedge was successful and no matter the method

we did not lose anything. Moreover, DCC MGARCH hedge gained on aver-

age approximately 200 dollars more than OLS and SSF hedge. We can also

see that Weighted Portfolio performed better than Equally Weighted Portfo-

lio, the reason behind is that the largest weight belongs to Exxon Mobile and

when looking at individual performance of Exxon Mobile stocks (figure 4.1) it

does not experience with any significant decrease. Annual yield is calculate as

follows:

ya =
Vp − V0
V0

∗ 1

t
(6.1)

where Vp stands for the final value of portfolio, V0 is the initial value of portfolio,
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Figure 6.8: NYSE- daily changes of value
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which equals to 1000 dollars for both portfolios and t is number of years of hedge

simulation.
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Figure 6.9: NYSE- daily changes of value
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6.3.2 NASDAQ Composite

Second index we have picked is NASDAQ Composite. We assume in this case

that Weighted Portfolio may be quite biased as the two companies’ weight share

is around 50%. But on the other hand, we expect that this fact will provide
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Figure 6.10: NYSE - Weighted Portfolio hedge performance
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us with different results between Weighted and Equally Weighted Portfolios’

performances.



6. Weighted portfolios and their hedge performance 45

Figure 6.11: NYSE - Equally Weighted Portfolio hedge performance
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Weighted Portfolio vs. Equally Weighted Portfolio

According to the figures 6.12 and 6.13, which show daily changes of the hedge

value we can see that portfolios created from NASDAQ stocks are more volatile

than NYSE portfolios. Moreover, the size of daily changes are sometimes



6. Weighted portfolios and their hedge performance 46

Table 6.3: NYSE- Performance of hedge

Value of: Weighted Portfolio Equally Weighted Portfolio
OLS 3794 3235

annual gain/loss 12.59% 10.07%
DCC MGARCH 3949 3544
annual gain/loss 13.29% 11.47%

SSF 3797 3237
annual gain/loss 12.61% 10.08%

100times larger than in case of NYSE portfolios. It is caused by the fact

that Apple and Microsoft, both very successful companies, are sharing approx-

imately half of the weights and in case of Equally Weighted Portfolio other

very successful IT companies such as Oracle and Cisco influences the portfolio

hedge. When looking at the returns of stocks of these four companies (figure

4.2) we can see that all has experienced with expansion and rapid growth since

1991.

Once again, when looking closer we can see that Dot-com crisis influenced

the daily changes of hedged portfolios’ values very significantly. In case of

OLS and SSF both portfolios experienced with large decrease. In addition,

DCC MGARCH hedge performed even worse than OLS and SSF hedge and so

the daily change of portfolio value was decrease of approximately 5000 dollars

in case of Weighted Portfolio and around 7000 decrease in case of Equally

Weighted Portfolio. We assume that this significant decrease may result in

worse performance of our DCC MGARCH hedge than OLS and SSF hedge

performances.

Hedge Performance

In addition, figures 6.14 and 6.15 show the evolution of the values of hedged

portfolios in time. We can see that Weighted Portfolio performed better than

the Equally Weighted Portfolio. The reason is high dependence of Weighted

Portfolio on Apple and Microsoft stocks returns. Moreover, when comparing

performance of hedge according to methods used for estimating the coefficients

we can see that OLS and SSF hedge perform better than DCC MGARCH

hedge no matter the type of portfolio is.

We assume that this is caused by the definition of the DCC MGARCH and
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Figure 6.12: NASDAQ daily changes of value
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its sensitivity on price changes. Another reason is the burst of bubble and

following internet crisis, which had influenced most of the stocks returns of

picked companies that mostly operates in industry, which is very related to the

internet. Furthermore, table 6.4 show the performance of each hedge sorted

by method. As mentioned before, OLS and SSF performed better than DCC
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Figure 6.13: NASDAQ- daily changes of value
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MGARCH by approximately 2000dollars in case of Weighted Portfolio and

200 dollars in case of Equally Weighted Portfolio. Annual yield is calculated

according to formula 6.1.
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Figure 6.14: NASDAQ - Weighted Portfolio hedge performance
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Figure 6.15: NASDAQ - Equally Weighted Portfolio hedge perfor-
mance
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Table 6.4: NASDAQ-Performance of hedge

Value of: Weighted Portfolio Equally Weighted Portfolio
OLS 13229 5704

annual gain/loss 54.3% 20.89%
DCC MGARCH 10976 5630
annual gain/loss 44.3% 20.56%

SSF 13203 5706
annual gain/loss 54.19% 20.9%

Table 6.5: Total gains of Portfolios’ value based on the method

Method Total gains
OLS 25962

DCC MGARCH 24099
SSF 25943



Chapter 7

Conclusion

The goal of this master thesis was to find the most suitable method to estimate

systematic risk within the CAPM framework. For this purpose we have picked

three methods, which we supposed to be the most appropriate to solve this task.

These methods were Ordinary Least Square 250 days Rolling Window, Dynamic

Conditional Covariance Multivariate GARCH also applied on the window of 250

days and the last method was State Space Formulation model, which as well as

two previous methods was applied on the 250 days rolling window. All methods

have provided us with relevant results of time varying estimates of systematic

risk β̂t, which we used for hedging the risk of two portfolios from different stock

exchange index- NYSE and NASDAQ. We have designed beta hedging strategy

and observed the performance in time of both hedged portfolios -Weighted and

Equally Weighted. We discovered that Weighted Portfolios, no matter the stock

exchange, perform better than Equally Weighted Portfolios. In case of NYSE

there is a slight difference between the portfolios performances but in case of

NASDAQ the difference between performance of portfolios is huge, in a sense

that Weighted Portfolio value after 50 years of hedge simulation is more than

twice larger than value of Equally Weighted Portfolio composed from same

stocks.

The reason is weighting of the stocks in Weighted Portfolio as mentioned

previously, thus the Weighted Portfolio created from NASDAQ stocks is very

sensitive and influenced by the stock price changes of Apple and Microsoft.

That also might be the reason of very large annual gains of our hedge applied

on NASDAQ Weighted Portfolio as these two corporates have experience with

steady growth since 1991 as they have been the ones who have begun the com-

puter boom worldwide. We could have experienced with different scenario if we
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would added Lehman Brothers stocks into our set of stocks but fortunately this

company did not meet our quotation period condition, when we were picking

the stocks for our analysis.

Furthermore, the core of our research was to find the most suitable method

to estimate the coefficients of systematic risk. We have found out that in case

of less volatile stock exchange - NYSE, the best hedge results were obtained

from the DCC MGARCH coefficients, whereas hedges built on coefficients of

systematic risk obtained from OLS and SSF methods provided us with worse

performance, but still our hedging strategy offsets the risk and the values of

portfolios increased. Moreover, if we compare the performances of OLS and

SSF hedges there is a slight difference between values of portfolios. Nevertheless

SSF method and its systematic risk coefficients hedge performed slightly better

than OLS.

On the other hand, in case of NASDAQ the results are twofold. We may

say that the most suitable methods for estimating systematic risk for hedging

purpose according to NASDAQ analysis are OLS and SSF, as their estimated

coefficients of systematic risk have been very powerful and outperformed the

hedge performance of DCC MGARCH coefficients. That is quite surprising

as DCC MGARCH performed very well in case of NYSE. But we blame the

Dot-com bubble, which has decreased DCC MGARCH values of hedge by ap-

proximately 6000 dollars in 2001, which at the end could had influenced the

values of both portfolios composed from NASDAQ stocks. The decrease in

2001 also influenced OLS and SSF hedge performance as well, but the propor-

tion of this decrease was not so large in contrast to the DCC MGARCH rapid

decrease. Nevertheless, if we would split period into few smaller time interval,

we would see that DCC MGARCH and its coefficients hedge performs better

in each interval, while omitting the burst of the internet bubble. In table 6.5

we have summarized the results we obtained in chapter 6. We can see that the

difference amongst the results is not so large and hedge built on OLS and SSF

systematic risk coefficients performed almost similarly. Also we can see that

even though DCC MGARCH coefficients based hedge outperformed OLS and

SSF in case of NYSE Portfolios when we added results from NASDAQ it has

become the “weakest” method amongst all.

To conclude, based on our findings we may say that the most suitable

method to find the systematic risk coefficients and then β̂ hedge the risk of

portfolios is DCC MGARCH, even though the results obtained are not very

convincing. Although it may provide us with very volatile evolution of values
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in time and so may persuade the investors to withdraw from this hedging

strategy based on DCC MGARCH coefficients. Moreover, we suppose that in

long term this hedge performs better amongst the others. On the other hand,

when the stock market is unpredictable and the investor is averse to risk, we

would recommend the investor to choose one of the method less sensible on

volatility, in our case OLS and SSF to find the correct coefficients to hedge the

risk of the portfolios.
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Figure A.1: OLS- NYSE stocks systematic risk
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Figure A.2: OLS- NYSE stocks’ systematic risk
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Figure A.3: OLS- NASDAQ stocks’ systematic risk
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Figure A.4: OLS- NASDAQ stocks’ systematic risk
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Figure A.5: DCC MGARCH- NYSE stocks’ systematic risk
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Figure A.6: DCC MGARCH- NYSE stocks’ systematic risk
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Figure A.7: DCC MGARCH- NASDAQ stocks’ systematic risk
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Figure A.8: DCC MGARCH- NASDAQ stocks’ systematic risk
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Figure A.9: SSF- NYSE stocks’ systematic risk
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Figure A.10: SSF- NYSE stocks’ systematic risk
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Figure A.11: SSF- NASDAQ stocks’ systematic risk
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Figure A.12: SSF- NASDAQ stocks’ systematic risk
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Figure A.13: NYSE portfolios’ systematic risk
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Figure A.14: NYSE portfolios’ systematic risk
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Figure A.15: NYSE portfolios’ systematic risk
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Figure A.16: NASDAQ portfolios’ systematic risk
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Figure A.17: NASDAQ portfolios’ systematic risk
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Figure A.18: NASDAQ portfolios’ systematic risk
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Proposed topic Modern way of calculation of CAPM coefficient: Beta

hedging application

Topic characteristics This thesis aspires to find the best method to
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– 2) GARCH is the most accurate method in hedging the risk of port-

folio.

– 3) State space CAPM estimation is the most accurate method among

the rest in hedging the risk of portfolio.

Methodology In this thesis we will use variety of tests. Furthermore
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get time varying parameter. Secondly, we will use GARCH, which should

be appropriate tool for our research and lastly we will program in Matlab
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