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Introduction
Quantum critical phenomena.Non-analytic properties of quantum spectra have been
in the centre of interest in many fields of physics since 1970’whenquantum phase
transitions(QPTs) were introduced [1, 2]. QPTs can be recognized as singularities of
the ground state for a certain critical value of a non-thermal control parameterλc when
the size of the system is increased to infinity. Many systems that exhibit QPTs have
been proposed and theoretically described as well as in numerous cases experimentally
realized in various optical and solid-state models.

In recent years an analog of QPT for excited levels, so-called excited-state quantum
phase transition(ESQPT), has been noted in certain many-body models [3, 4] which
triggered a lot of new effort in this field. In particular, it turned out that the ESQPTs
are related to some singularities in the classical phase space of the system, and that
they may cause some thermodynamical anomalies.

Quantum entanglement.The non-separability of general quantum states describ-
ing composite quantum systems belongs to one of the most fascinating principles of
the theory. Detailed knowledge of these purely quantum correlations is needed for un-
derstanding quantum technologies such as quantum computing. Anomalous behaviour
of quantum entanglement has been recently associated with ground state QPTs [5].
However, there is a lack of knowledge about the behaviour of entanglement in excited
states, especially in connection with ESQPTs. This is one ofthe main aims of this
thesis.

The scheme of the thesis.In Chapter 1 we show some general properties of quan-
tum spectra and introduce QPTs and ESQPTs. Then these phenomena are demonstrat-
ed in the Lipkin model. Chapter 2 is focused on the connection of quantum entangle-
ment with QPTs and ESQPTs. Chapter 3 contains numerical studyof selected optical
models.

My own work was focused mostly on preparation, testing and subsequent use of
computer codes which enable one to perform numerical calculations within several
simple models that exhibit critical behaviour. The first part of these calculations is
concentrated in Sec. 1.4. This section contains a pedagogical example of the Lip-
kin model. The second part comes in Sec. 2.3 and particularlyin Chapter 3 where
calculations within the Dicke and the Jaynes-Cummings models are performed. The
calculations in the framework of the latter models are intended to be continued in a
more systematic manner in our future work.
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1. Non-analytic evolutions of quantum
spectra
General form of the Hamiltonian. Throughout the thesis we consider Hamiltonians
of a general form

Ĥ(λ) = Ĥ0 + λV̂ , (1.1)

whereĤ0 is the unperturbed part and̂V is the interaction. The real parameterλ ∈
(−∞,∞) measures the strength of the interaction. Detailed description of various
properties of such systems can be found in [6, 7, 8, 9], here wesummarize the most
significant ones.

The energy eigenproblem is given asĤ(λ)|n(λ)〉 = En(λ)|n(λ)〉. Naturally the
relation of orthonormality for the eigenstates forming a basis of the relevant Hilbert
space is given as

〈m(λ)|n(λ)〉 = δmn. (1.2)

We assume that̂V does not commute witĥH0

[Ĥ0, V̂ ] 6= 0 (1.3)

which is a reasonable assumption because otherwise the eigenstates ofĤ and Ĥ0

would only differ in scaling. Any non-trivial evolution of eigenstates with a change
of λ is given by the non-commutativity according to the equation(1.3). However this
assumption is not necessary for the validity of the forthcoming formulas.

1.1 Level dynamics

Coulomb analogy.From the stationary perturbation theory one can derive information
on the evolution of the energy levels withλ. Consider a perturbation̂H(λ + δλ) =
Ĥ(λ) + (δλ)V̂ whereδλ is sufficiently small. Then one can write the perturbative
expansion

En(λ+ δλ) = En(λ) + (δλ)Vnn(λ) + (δλ)2
∑

m(¬n)

|Vmn(λ)|2
En(λ)− Em(λ)

· · · (1.4)

where we denoted〈m(λ)|V̂ |n(λ)〉 ≡ Vmn(λ). Using Taylor expansion on the left hand
side and comparing the terms with the same power of(δλ) we obtain the following
formulas

dEn(λ)

dλ
= Vnn(λ), (1.5)

d2En(λ)

dλ2
= 2

∑

m( 6=n)

|Vmn(λ)|2
En(λ)− Em(λ)

. (1.6)

A similiar procedure where we use the perturbative expansion for eigenstates instead
of energies

|n(λ+ δλ)〉 = |n(λ)〉+
∑

m( 6=n)

Vmn(λ)

En(λ)− Em(λ)
|m(λ)〉 · · · (1.7)
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leads to the following:

dVmn(λ)

dλ
=
∑

k( 6=m)

Vmk(λ)Vkn(λ)

Em(λ)− Ek(λ)
+
∑

k(6=n)

Vmk(λ)Vkn(λ)

En(λ)− Ek(λ)
. (1.8)

The common interpretation of the formulas (1.5), (1.6) and (1.8) is that individual lev-
els behave as repelling charged particles with one degree offreedom [6, 7]. The energy
of a particular level plays a role of a ‘position’ of a particle,xn ↔ En, as well as di-
agonal terms of the disturbance,Vnn ↔ pn, represent its ‘momentum’. The ‘product
charges’ of each pair of particles are propotional to the non-diagonal terms of the dis-
turbance,Qmn ↔ Vmn. This is also the weakest part of the interpretation becauseQmn

cannot in general be factorizedQmn 6= QmQn and moreover depend nontrivially onλ
(see (1.8)) which plays a role of ‘time’.

Real and avoided crossings.The analogy with repelling charged particles gives a
good intuitive picture of the behaviour of energy levels. UnlessVnm vanishes for some
reasons, the closer the levels get, the stronger they repel.So the real crossing of levels
is prohibited (except the cases to be discussed). This rule is known asNo-Crossing
Theorem(see Appendix A).

On the other hand for noninteracting levels, whereVnm = 0, real crossing is nor-
mal. If the condition is satisfied by eachm, n, then the disturbance is of a diagonal
form V̂ = diag{p1, p2 . . . , pn}. However this is the case of[Ĥ0, V̂ ] = 0 which we de-
cided before not to take into account for its uninterestingness and unusualness. More
generally we can consider a disturbance of a block diagonal form for all λ in a basis
which diagonalizeŝH0. Then the corresponding Hilbert space splits into several sub-
spaces on which the disturbance acts independently, so there is no interaction between
these invariant subspaces. The crossings are possible for levels belonging to different
subspaces.

Although the real crossings are rare, except the symmetry-dictated cases discussed
above, quite often one can find places where levels get very close to each other. Such
an event of sharp level collision is calledavoided crossing.

It turns out to be useful to study the behaviour of eigenstates in the area of avoided
crossing. Let’s compute the probability of finding the eigenstate1 |n〉 of thenth level
of Ĥ(λ) in the eigenstate|n′〉 of the same Hamiltonian with a subtle changeδλ, Ĥ(λ+
δλ), of the same level.

Prob(n′|n) = |〈n′|n〉|2 = 〈n′|



I−
∑

k(6=n)

|k〉〈k|



 |n′〉 = 1−
∑

k( 6=n)

|〈n′|k〉|2. (1.9)

First order Taylor expansion gives|n′〉 ≈ |n〉 + δλ ∂
∂λ
|n〉. From (1.7) along with the

above mentioned Taylor expansion one can get the identity

〈k|
(
∂

∂λ
|n〉
)

=
Vkn

En − Ek

for n 6= k. (1.10)

When applied to (1.9) we obtain

1We do not write explicitly theλ dependence at this point.
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Prob(n′|n) ≈ 1− (δλ)2
∑

k 6=n

|Vnk|2

(En − Ek)
2 . (1.11)

It is obvious that near the point of avoided crossing, where levels get very close to each
other, even a small change of parameterλ results in a significant change of the wave
function.

1.2 Quantum phase transitions

Ground-state phase transitions.The above described general rules play an impor-
tant role in the formation of the spectrum. In this thesis we will deal with the systems
which show a ‘systematic’ and (in some sense) ‘coherent’ occurence of avoided cross-
ings. Moreover by increasing a parameterℵ, quantifying the size of the system (see
examples below), one can make these avoided crossings increasingly sharp, and in the
limit ℵ → ∞ non-analytic. We will call these phenomenaquantum phase transitions
(QPTs) [1, 2, 10, 11]. We will also show that QPTs can affect the ground state as well
as excited states.

QPTs can be thought of as a generalization of classical thermodynamic phase tran-
sitions. However we consider interacting quantum objects at zero temperature, which
undergo an abrupt change when the interaction parameterλ is varied. This implies that
only properties of the ground state are taken into account. It is necessary to point out
that the true QPTs occur only in the limitℵ → ∞. Within the system with finiteℵ
only some ‘precursors’ of QPTs can be observed. The valueλc where such a transition
occurs is called the critical point.

Ehrenfest classification. To classify QPTs one can employ the Ehrenfest’s ap-
proach. The transitions of thefirst kind (discontinuous) are related to a discontinuity
in the first derivative of energy with respect to the control parameterλ (also referred
to as the first order QPTs). The phase transitions of thesecond kind(continuous) have
the first derivative continuous whereas the non-analyticity (either a discontinuity or
divergence) affects a higher-order derivative. For example the transition is of thekth
Ehrenfest order,k ≥ 2, if the kth derivative is discontinuous. In the case of a diver-
gence in thekth derivative (instead of discontinuity) the transition has no Ehrenfest
classification.

Excited-state quantum phase transitions.In generic situations the critical point
is not separated and the QPT affects a certain region of the spectrum. These sin-
gularities in excited states are referred to asexcited-state quantum phase transitions
(ESQPTs) [1, 3, 4]. An ESQPT, in general, is a singularity in the scaled spectrum of
theℵ → ∞ system along a certain critical borderlineEc(λ) in the planeλ × E , usu-
ally starting at the ground-state critical point. The type of the the singularity and the
shape ofEc(λ) depends on the specific system under study. Two manifestations of this
phenomenon can be observed: First, singularities in level densityρ(E) as a function
of energy may appear accross the excited levels, second, theproperties of the ‘flow’ of
individual levelsEi(λ) are affected when crossing the borderline (see Sec. 1.4).
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1.3 Infinite vs. finite systems

Infinite systems.In a general many-body system the number of degrees of freedom is
given by the number of constituentsN . So with the thermodynamic limitN → ∞ we
are heading to the quantum-field description.

One can take a system ofN 1
2
-spins as an example. The relevant Hilbert space

H = Span{| l〉1| l〉2 . . . | l〉N} naturally contains states with all possible total angular
momenta

H = Cjmin
Hjmin

SU(2) ⊕ . . .⊕ CjHj

SU(2) ⊕ . . .⊕ Cj=N

2

Hj=N

2

SU(2) (1.12)

whereCj stand for the numbers of possible coupling schemes ofN spins into the to-
tal angular momentumj. The dynamical algebra of such a system, i. e. the algebra
of all generators needed to build all relevant operators onH, naturally consists of all
the dynamical algebras of the individual spin subsystems⊕N

i=1SU(2)i ≡ {ĵ0i , ĵ±i }Ni=1,
where ĵ•i stand for the Pauli matrices2 at theith spin site. Each spin unit adds two
possibilities of the spin projection so in total one deals with 2N possible projections.
Similarly, each spin unit adds one degree of freedom so forN , naturally associated
with ℵ, the number of degrees of freedom diverges in the limitN → ∞.

Finite systems. The framework in which this thesis is set is connected to the
specific type of quantum systems that we will callfinite[12]. The finiteness is related
to a finite number of degrees of freedom which is independent on the size of the system
which means that generally one describes some collective properties of the many-body
system.

Again, we can use the spin system as an example but this time coupled to a maximal
j, so the relevant Hilbert space3 is

H = Hj=N

2

SU(2) with dimensiond = 2j + 1 = N + 1. (1.13)

The related dynamical algebra isSU(2) ≡ {Ĵ0, Ĵ±} whereĴ• =
∑N

i=1 ĵ
•
i . These

‘collective’ SU(2) operators provide a non-local spin-spin interaction and sothe global
response of the system in the interaction with an outer system.

As another example, one may consider collective degrees of freedom of a nucleus.
These are often described by models formulated in terms of a finite algebra of bosonic
operators. The different types of bosons roughly corespondto different types of collec-
tive excitations, which define a certain finite numberf of the degrees of freedom. This
number remains constant irrespective of a possibly growingtotal number of bosons,
N , in the case of enlarging the valence nucleonic shell (the size of the nucleus).

To sum up [12], consider a finite dimensional dynamical algebra G of operators
Ĝi, i = 1, 2 . . . f where these operators serve as building elements of all relevant
operators including the Hamiltonian̂H = Ĥ(Ĝi). The generators ofG satisfy the
closure relation[Ĝi, Ĝj] = cijkĜk wherecijk are structure constants.

The difference of the finite systems from the ordinary many-body systems is the
above noticed fact that the number of degrees of freedom doesnot grow withℵ. This
leads to the result that the infinite size limit is synonymousto classical limit. The

2Here we denote thez-Pauli matrix aŝj0i .
3The coupling in this case is unique, soCj=N

2

= 1.
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latter conclusion can be justified [13] if one uses the scaledgeneratorŝgi = Ĝi/ℵκ

whereκ > 0 is defined through consistent scalinĝH/ℵ = Ĥ(Ĝi/ℵκ) (for examples,
see below). In the limitℵ → ∞ the commutators of the scaled generators vanish
[ĝi, ĝj ] → 0 which justifies the termclassical limit.

This implies that QPTs and ESQPTs in finite systems are alwaysrooted in classi-
cal dynamics [3]. The first order QPTs are connected to the discontinuos development
of the minimum of the potential in the configuration space with the control parameter
λ. Similarly, the second order QPTs are connected to the development of the mini-
mum whose trajectory (with varyingλ) in the configuration space is continuous but
non-analytic. For ESQPTs no classification has been established yet. However, their
occurence in spectra is related to quasi-stationary pointsof the classical potential (local
maxima or minima, inflection points, saddle points).

1.4 Example: Lipkin model

The Lipkin Hamiltonian. In this section we will demonstrate the phenomena related
to QPTs and ESQPTs, respectively, on a simpleSU(2)-based4 Lipkin model [14]. We
start with the Lipkin Hamiltonian in a so called Schwinger representation using two
types of bosonssandt. For the respective annihilation and creation operators there are
the commutation relations[ŝ, ŝ+] = [t̂, t̂+] = 1 while others are zero. To distinguish
the two kinds of bosons we postulate the parity transformations P̂ ŝ+P̂−1 = ŝ+ and
P̂ t̂+P̂−1 = −t̂+. We consider the Hamiltonian

Ĥχ
L (η) = ηn̂t −

(1− η)

Nst

(
t̂+ŝ+ ŝ+t̂+ χt̂+t̂

)2
(1.14)

whereη ∈ [0, 1] andχ ∈ (−∞,∞) are two free parameters5. The total numberNst

of s and t is a conserved quantity. The presence of ofNst in the denominator of the
interaction term follows from the requirement that the Hamiltonian ‘behaves well’ for
Nst → ∞ (see below). Without this scaling, the interaction term would completely
dominate for very largeNst. The dimension of such a Hamiltonian isd = Nst +1. We
can rewrite (1.14) using the Schwinger mapping (see Appendix C)

Ĵz =
1

2

(
t̂+ŝ− ŝ+t̂

)
, Ĵ+ = t̂+ŝ, Ĵ− = ŝ+t̂. (1.15)

to the form

Ĥχ
L (η) = η

(
Nst

2
− Ĵz

)

− (1− η)

Nst

[

Ĵ+ + Ĵ− + χ

(
Nst

2
− Ĵz

)]2

. (1.16)

Obviously, this is an angular momentum form6 of the Lipkin Hamiltonian with the
dimensiond = 2j + 1.

4A detailed discussion of general systems withSU(2) dynamical algebra can be found in [15].
5Strictly speaking the presented Hamiltonian (1.14) is a generalized version to the parity conserving

Lipkin model with defaultlyχ = 0.
6One can easily form̂Jx andĴy from the ladder operators according to the formulas2Ĵx = Ĵ++ Ĵ−

and2iĴy = Ĵ+− Ĵ−. Then it is straightforward to show that theSU(2) commutation relation[Ĵi, Ĵk] =
iεijkĴk holds
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Now, one can employ Holstein-Primakoff transformation [16] using only one type
of bosonsb

Ĵz = b̂+b̂− Nmax
b

2
, Ĵ+ = b̂+

(√

Nmax
b − b̂+b̂

)

, Ĵ− =

(√

Nmax
b − b̂+b̂

)

b̂ (1.17)

whereNmax
b is the maximal value of theb-bosons. So from (1.16) we arrive at the

formula

Ĥχ
L (η) = η

(
Nst −Nmax

b

2
+ b̂+b̂

)

− (1− η)

Nst

×

×
[

b̂+
(√

Nmax
b − b̂+b̂

)

+

(√

Nmax
b − b̂+b̂

)

b̂+ χ

(
Nst −Nmax

b

2
+ b̂+b̂

)] (1.18)

Again, the dimension isd = Nmax
b +1, so we can conclude:Nst = 2j = Nmax

b ≡ N .
Using this notation one can write

Ĥχ
L (η) = ηb̂+b̂− (1− η)

N

[

b̂+
(√

N − b̂+b̂

)

+

(√

N − b̂+b̂

)

b̂+ χb̂+b̂

]2

= ηb̂+b̂− (1− η)



b̂+





√

1− b̂+b̂

N



+





√

1− b̂+b̂

N



 b̂+ χ
b̂+b̂√
N





2 (1.19)

At this point, we can use another transformation of the scaled operatorŝb+, b̂

b̂+√
N

=
x̂− ip̂√

2
,

b̂√
N

=
x̂+ ip̂√

2
, (1.20)

which leads to the commutation relation

[x̂, p̂] = i
1

N
. (1.21)

Due to the boundedness ofb̂+b̂ in the interval[0, N ] we see thatx
2+p2

2
is bounded in

[0, 1].
Now we define scaled Hamiltonian7

ĥ = Ĥ
N

.

ĥ = η
p̂2 + x̂2

2

− (1− η)

[

x̂− ip̂√
2

√

1− p̂2 + x̂2

2
+

√

1− p̂2 + x̂2

2

x̂+ ip̂√
2

+ χ
p̂2 + x̂2

2

]2 (1.22)

The classical limit. By performing the limitN → ∞ the commutation relation
(1.21) vanishes (1

N
plays the role of Planck constant~) and we obtain the classical limit

~ → 0

7Strictly speaking the new Hamiltonian represents a different system. However via an appropriate
readjusting of the interaction strength one can restore theoriginal Hamiltonian (1.19) for each value of
N .
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hcl = η
p2 + x2

2
− 2 (1− η)

(

1− p2 + x2

2

)

x2

− (1− η)

[

2χ

√

2

(

1− p2 + x2

2

)

x
p2 + x2

2
+
χ2

4

(
p2 + x2

)2

]

.

(1.23)

From the above explained restriction onx andp we see that the classical coordinates
and momenta can be found only within the circle in the phase space of a radius

√
2.

One may wish to find an appropriate canonical tranformation which ‘stretches’x ∈
[−

√
2,
√
2] toX ∈ [−∞,∞]. A suitable transformation forx is [8]

X =
x√

2− x2
. (1.24)

The conjugate momentumP can be found using the condition that canonical transfor-
mation preserves Poisson brackets

{X,P} =
∂X

∂x

∂P

∂p
− ∂P

∂x

∂X

∂p
︸︷︷︸

=0

= 1. (1.25)

So the solution forP is

P =
(2− x2)

√
2− x2

2 + 2x2
p+ C, (1.26)

whereC is a constant of integration which represents only a constant shift along the
momentum-axis and can be set equal to zero.

Now we can use the inverse transformationx = x(X), p = p(X,P ) in (1.23) and
express it via new variables. Our primary interest is the classical potentialvcl because
its specific shape can be used to study QPTs so in the followingwe can omit the kinetic
term (usualy very complicated) by settingP = 0.

vcl =
(5η − 4)X2 − 4 (1− η)χX3 + [η − (1− η)χ2]X4

(1 +X)2
. (1.27)

QPTs and ESQPTs. Here we present a numerical study of the spectra of the
Lipkin Hamiltonian in four different setups. First we vary parameterη while χ being
fixed, and then vice versa. In all the cases we work withN = 50.

Fig. 1.1 is a spectrum of the parity-conserving Lipkin Hamiltonian, i. e.χ = 0.
One can identify the QPT as the abrupt change of the ground state energy, marked 2),
at η = 4

5
. One can also identify the ESQPT as a ‘shockwave’ in the excited states.

Last but not least, we may notice that the ‘nearly degenerate’ states8 at energiesE < 0
become clearly distinguishable when crossing the criticalborderlineEc = 0. The fig-
ure also contains the shapes of the classical potencial (1.27) corresponding to different
values ofη marked 1) to 4).

For η = 1, position 1), where the ground state consists of thes-boson condensate,
the potential has a quadratic minimum. Then, when moving towards 2), the quartic

8For a degenerate double well potential (see 3) and 4) in Fig. 1.1) the levels lying deep in the wells
are nearly degenerate, the tiny splitting being associatedwith quantum tunneling between the wells,
which vanishes for~ → 0.
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term in the numerator begins to dominate and in the critical point 2), η = 4
5
, the

minimum becomes purely quartic. The topology of the potentical changes dramatically
at the pointX = 0 and with a further change ofη towards 3), a local maximum appears
with two equally deep wells on both sides. Further development of η causes only
deepening of both wells and does not change the shape of the potential qualitatively.

The structural change of the minimum of the potential is connected to the sec-
ond order QPTs. When reaching the critical point, the ground state starts continuously
propagating into the new minimum9. Similarly, when the higher-excitation levels reach
the energy of the local maximum ofvcl (which can be associated with the borderline
Ec = 0 ) the local level density suddenly grows (becoming singularin the thermody-
namic limit).

As a second example of the level dynamics in the Lipkin model we present Fig.
1.2. Now, the parameterχ is varied, the valueη being fixed asη = 0.4. So we proceed
across theχ = 0 line discussed in the previous example. Again, we present relevant
shapes ofvcl for different values of the varied parameter. A remarkable difference
from the previous case is that the potential does not change its structure qualitatively,
only the mutual position and the relative depth of the minimais being changed. When
crossing the critical pointχ = 0 the ground state undergoes the first order QPT as it
jumps to the other well. In this case, three critical bordelines can be observed, forming
a ∇-like shape in the spectrum. The upper lineE(1)

c = 0, which was present in the
previous example too, is connected to the stationary pointX = 0. The two lower
borderlinesE(2)

c (χ) andE(3)
c (χ) are connected with the respective secondary minimum

of the potential. Together withE(1)
c = 0 they separate the ‘phase-coexistence region’

in the energy interval defined by the vertical distance of both minima.
In the third setup (Fig. 1.3) we follow the development of thespectrum withη

again, as in the first case, but this time for the parity-violating parameterχ = 0.5.
Obviously, the ground state goes through a phase transitionwith a similar manner as
in Fig. 1.1 but the direct comparison would be misleading. One can show that for the
parity-violating Lipkin Hamiltonianχ 6= 0 the QPT is always of the first order [17].
Paradoxically, the behaviour of the ground state in the vicinity of the critical point is
more similar to the situation in the second example. The position of the critical point
ηc for generalχ is [17]

ηc(χ) =
4 + χ2

5 + χ2
. (1.28)

In Fig. 1.4 we present the potentialvcl for ηc(χ = 0.5)
.
= 0.81 with a zoom to the

critical region. The two degenerate minina (although quiteshallow) are present, the
original one atX = 0 and the new one which grows deeper with furtherη → 0.

Below η = 4
5

the local minimum atX = 0 becomes a local maximum and a
new secondary minimum appears atX < 0. Therefore, the potential is of a double-
well kind again forη ∈ [0, 4

5
), but the separating barrier becomes much higher for

decreasingη than in the case of Fig. 1.4. Due to the non-zero cubic term in (1.27)
the two wells atX < 0 andX > 0 are not symmetric. As a consequence, two
critical bordelines appear. The first one,E

(1)
c = 0, is the same as in the previous cases

(again, associated with the local maximum ofvcl). The other one,E(2)
c (λ) = v

sec
min, is

associated with the secondary minimum ofvcl. The area betweenE(1)
c andE(2)

c (η) is a

9 In the case when the wells are degenerate the ground state is acombination of states located in
both wells.
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Figure 1.1: Energy spectrum of the Lipkin model in the first setup: N = 50, χ =
0 and the shapes of the relevant classical potencial (1.27) for different values ofη.
Numbering is related to the position in the spectrum.
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‘mixed’ phase consisting of avoided crossings of individual levels caused by tunneling
between the two wells.

In the fourth setup the parameterη = 0.9 was fixed whileχ being changed. This
means that for|χ| <

√
5 the global minimum of the potential is atX = 0. At χ = ±

√
5

a first order QPT appears, associated with the crossing ofX = 0 andX 6= 0 minima.
Accompanying ESQPTs are again present. A similar analysis as in the previous cases
could be performed, however, here we present only the numerical results in Fig. 1.5.
The interpretation in terms of the relevant shapes ofvcl, which are shown in Fig. 1.6,
is left to the reader as an exercise.
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Figure 1.6: Potentials related to Fig. 1.5. Numbering is related to the position in the
spectrum.

17



2. Quantum entanglement
Definition. Quantum entanglement and the non-locality of quantum mechanics as its
direct consequence have been in the center of interest sincethe EPR-paradox was pub-
lished [18]. This chapter is devoted to the description and the subsequent quantification
of this quantum phenomenon. Its relevance for QPTs and ESQPTs will be discussed
later.

Consider two Hilbert spacesHl, Hr and the composite system given by the tensor
productH = Hl ⊗ Hr. We denote orthonormal bases inHl andHr as{|ψli〉}mi=1 and
{|ψrj〉}nj=1 respectively, wherem = dimHl andn = dimHr. Obviously the dimension
of the full Hilbert spaceH will be dimH = m · n. Let |Ψ〉 be an arbitrary state inH,
one can expand it in terms of the natural basis|Φij〉 ≡ |ψli〉|ψrj〉

|Ψ〉 =
m∑

i=1

n∑

j=1

γij|Φij〉 (2.1)

while the coefficientsγij generally cannot be simply factorized asγij = αiβj. There-
fore one cannot write|Ψ〉 = |ψl〉|ψr〉 where|ψl(r)〉 ∈ Hl(r). This property of such sys-
tems is calledquantum entanglement. It literally means that within a general state in
H one cannot distinguish between ‘the part fromHl ’ and ‘the part fromHr’ - together
they formthe entangled state.

2.1 Quantification

Description via density matrices.The full system can be equivalently treated using
density matrix1 ρ̂ = |Ψ〉〈Ψ|. The way how to get information on the states of the
individual subsystems is provided by partial trace technique

ρ̂l = Trrρ̂ =
∑

k

〈ψrk|Ψ〉〈Ψ|ψrk〉 =
∑

ii′

(
∑

j

γijγ
∗
i′j

)

|ψli〉〈ψli′ | =

=
∑

ii′

ρlii′ |ψli〉〈ψli′ |,
(2.2)

ρ̂r = Trl ρ̂ =
∑

k

〈ψlk|Ψ〉〈Ψ|ψlk〉 =
∑

jj′

(
∑

i

γijγ
∗
ij′

)

|ψrj〉〈ψrj′ | =

=
∑

jj′

ρrjj′|ψrj〉〈ψrj′ |,
(2.3)

where we denotedρlii′ =
(
∑

j γijγ
∗
i′j

)

andρrjj′ =
(∑

i γijγ
∗
ij′

)
. It can be shown that

the operator̂ρl on Hl satisfies all the conditions imposed on density operator andso
doesρ̂r onHr [19]. Obviouslyρ̂l represents a pure state if and only if|Ψ〉 is of a special
(separable) type|Ψ〉 = |ψl〉|ψr〉.

1|Ψ〉 is a pure state onH.
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Entanglement entropy. There are several ways how to quantify entanglement of
the system [20, 21]. One of them uses von Neumann’s definitionof entropy of the
state described by the density matrix. Consider the density matrix ρ̂ =

∑

i ρi|φi〉〈φi|
expressed via its eigenvaluesρi and orthonormal eigenvectors|φi〉. Von Neumann
entropy reads as

S(ρ) = −kB
∑

i

ρi ln ρi = −Tr [ρ̂ ln ρ̂] . (2.4)

For pure states one getsS = 0 while for mixed statesS > 0. The measure of en-
tanglement in the state (2.1) can be naturally linked to the entropyS(ρl) or S(ρr) on
the subsystems. This is often referred to as entanglement entropyE(|Ψ〉). One can
also show that the entanglement entropy is equal for the bothsubsystemsE(|Ψ〉) ≡
S(ρl) = S(ρr). According to the Schmidt decomposition (see Appendix B) both ρ̂l

andρ̂r can be diagonalized with the same non-zero part of their eigenvalues. Therefore
from (2.4) we obtain the same value of entropy forρ̂l andρ̂r as well.

However it should be remarked that such a simple link betweenthe entropy of
states on the subsystems with their entanglement fails if weconsider a mixed state on
H[20]. The mixture is described by the density matrix

ρ̂ =
∑

i

wi|Ψi〉〈Ψi| (2.5)

wherewi are the probabilities of finding the system in the pure state|Ψi〉 (naturally
adding up to one). It is necessary to keep in mind that decomposition (2.5) isnot
unique. Two different density matrices can describe the same system as well as we
can perform the measurement in different bases2. The reduced density matrix̂ρl can
be computed as follows

ρ̂l = Trrρ̂ =
dimH∑

ξ=1

dimH∑

i=1

wi

∑

αβ,α′β′

γiαβγ
∗i
α′β′ 〈ψrξ|ψrβ〉
︸ ︷︷ ︸

δξβ

〈ψrβ′ |ψrξ〉
︸ ︷︷ ︸

δξβ′

|ψlα〉〈ψlα′ | =

=
dimH∑

i=1

wi

∑

αβ,α′

γiαβγ
∗i
α′β|ψlα〉〈ψlα′ | =

dimH∑

i=1

wi

∑

αα′

(
∑

β

γiαβγ
∗i
α′β

)

|ψlα〉〈ψlα′ |
︸ ︷︷ ︸

≡ρ̂li

=
dimH∑

i=1

wiρ̂li.

So we obtain the density matrix̂ρl in the form of linear combination of reduced density
matrices related to the pure states{|Ψi〉}. Then the measure of entanglement is defined
as the minimum over all decompositions ofρ̂ [20, 21]

E(ρ̂) = min
∑

i

wiE(|Ψi〉). (2.6)

Throughout the thesis we work only with pure states onH and so the above mentioned
generalization does not have to be employed.

2One can choose different set of pure states{|Ψ′

i〉}. Generally we consider states such that
〈Ψi|Ψi〉 = 1 but 〈Ψi|Ψj〉 6= δij
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2.2 Hamiltonians producing entanglement

General interaction. One can consider Hamiltonian̂HonH = Hl ⊗ Hr of the form
(1.1) which can be equally written as

Ĥ(λ) = Ĥl ⊗ Ir + Il ⊗ Ĥr + λ
∑

i=1

∑

j=1

ΓijV̂li ⊗ V̂rj (2.7)

whereI is a symbol which stands for unit matrix. OperatorsV̂li andV̂rj respectively,
represent a set of independent Hermitian operators onHl andHr (e. g. the operators
forming the respective spectrum generating algebra). So the most general interaction
between the two subsystems, as used in (2.7), is a non-separable arbitrary combination
of them with coefficientsΓij.

One can easily deduce that the entanglement of the state|Ψn(λ)〉, being an eigen-
state ofĤ(λ), can be computed according to the formula

E(|Ψn(λ)〉) = −Tr [ρ̂ln(λ) ln ρ̂ln(λ)] (2.8)

whereρ̂ln is the reduced density matrix3 related to|Ψn(λ)〉.
Now it can be easily shown that for the limitλ → 0 the entanglement is zero. Let

|ξl〉 be an eigenstate of̂Hl with eigenvalueξ. Similarly, let |ζr〉 be an eigenstate of̂Hr

with eigenvalueζ. In the limit λ → 0, the eigenstates|Ψn(0)〉 are of the form of the
simple tensor product|ξl〉|ζr〉

(

Ĥl ⊗ Ir + Il ⊗ Ĥr

)

|ξl〉|ζr〉 = (ξ + ζ) |ξl〉|ζr〉. (2.9)

Therefore for such separable states the entanglement entropy vanishes.

Separable interaction. Now, let us make a short note on the production of en-
tanglement in this system with aseparableinteraction, in other words an interaction
whereΓij = αiβj

∑

i=1

∑

j=1

ΓijV̂li ⊗ V̂rj =

(
∑

i=1

αiV̂li

)

⊗
(
∑

j=1

βjV̂rj

)

≡ V̂l ⊗ V̂r. (2.10)

In this case, the eigenstates are generally entangled for finite λ but become separable
for asymptotically growing|λ|. Apparently, the production of entanglement for finite
values ofλ is given by the non-commutativity of̂Hl with V̂l, andĤr with V̂r respec-
tively.

However, in the caseλ → ∞, the eigenstates of the Hamiltonian̂H(λ → ∞) are
constructed from the eigenstates ofV̂l andV̂r. We denote them|vl〉 and|vr〉 respectively.
We also denote the respective eigenvalues asvl andvr. So one can show easily

V̂l ⊗ V̂r|vl〉|vr〉 = vlvr|vl〉|vr〉. (2.11)

So in the case of the separable interaction we arrive at the separable type of eigenstates
of Ĥ(λ) in the limit λ→ ∞ with zero entanglement.

3Of course, one could usêρrn as well.
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2.3 Entanglement in QPTs

The anomalous bahaviour.The anomaly of entanglement in QPTs has been known
since 2002 when A. Osterlohet al published the paper [5] . The idea was that the infi-
nite correlation length, which occurs in the continuous theromodynamic phase transi-
tion, has a quantum counterpart in the description of QPT. A purely quantum correla-
tion is represented by quantum entanglement.

Another paper by N. Lambertet al [22] followed up and showed that the entangle-
ment grows extremely at the critical point for the ground state of the so called Dicke
model (will be dicussed later in Chapter 3). In Fig. 2.1 we present our numerical results
for the entropy of the ground state in the Dicke model which shows how the anomaly
becomes sharper with the thermodynamic limit. This means that for the infinite size
of the system (single mode radiation interacting with an ensamble of two-level atoms)
the mutual entanglement of both subsystems (atoms vs. radiation) becomes singularly
strong. The result is fully consistent with [22].
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Figure 2.1: Entropy of the ground state of the Dicke model (see Sec. 3.1) for the
different number of spin sites in the chainNspin = 5, 10, 15, 20, 25, 30, 40, 45, 50.

Despite the number of papers on the anomal entanglement in QPTs none of them
considers the behaviour of entanglement in ESQPTs. This is the crucial part of the
forthcoming chapter.
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3. Numerical study of entanglement
Optical models. In Chapter 1 we studied the Lipkin model in detail. However, in
order to study the behaviour of entanglement in QPTs and ESQPTs, it is useful to con-
sider systems with clearly defined subsystems which would eventually get entangled.
For this reason we leave the Lipkin model and move towards some optical ones de-
scribing schematically the interaction of matter with electromagnetic field in a cavity.
The matter is represented by an ensamble of two-level atoms whereas the radiation is
approximated by one of its modes only. We will consider two versions of this setup,
namely the Dicke and Jaynes-Cummings models.

3.1 Dicke model

The Dicke Hamiltonian. The Dicke model [23] describes the interaction of a chain of
two-level atoms (or1

2
-spin chain equivalently) with a quantized field of single-mode

bosons (photons) in a optical cavity. The Dicke Hamiltonianis

ĤD = ω0Ĵ0 + ωb̂+b̂+
λ√
4j

(

b̂+ b̂+
)(

Ĵ− + Ĵ+

)

, (3.1)

whereω0 andω are single-particle energies1, λ ∈ [0,∞) measures the interaction
strength andĴ0 ≡ Ĵz, Ĵ± = Ĵx ± iĴy satisfy the commutation relations ofSU(2)
algebra

[Ĵ0, Ĵ±] = ±Ĵ±, [Ĵ+, Ĵ−] = 2Ĵ0. (3.2)

For an array of1
2
-spin sites the operatorŝJ• can be constructed as follows [13]:

Ĵ+ =

2j
∑

i=1

â+↑iâ↓i, Ĵ− =

2j
∑

i=1

â+↓iâ↑i,

Ĵ0 =
1

2

2j
∑

i=1

(
â+↑iâ↑i − â+↓iâ↓i

)
,

(3.3)

with â+↑i or â↑i and â+↓i or â↓i being creation or annihilation operators of spin-up and
spin-down states of the fermion on sitei (cf. the Lipkin model discussed in Sec. 1.4).

The single bosonic mode is given by the operatorsb̂+ and b̂ often denoted as
Heisenberg-Weyl algebraHW (1) with a well-known commutation relation

[b̂, b̂+] = 1. (3.4)

The complete dynamical algebra2 is thenSU(2)⊗HW (1) so the Hilbert space consists
of two clearly distinguishable subspaces of a spin chain andphotons. The classical
limit (including the potential) of the system can be constructed in a similar way as

1We set~ ≡ 1.
2Obviously, the system is one of those which we call finite because the dynamical algebra has a finite

dimension.
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described in Sec. 1.4 for the Lipkin model [13]. The system has two degrees of
freedom, associated with both components of the dynamical algebra.

The scaling of the interaction term by4j, wherej =
Nspin

2
is the total angular mo-

mentum of the spin chain (naturally equal to the half of the number of spin sites), is
necessary to keep the relative proportion of both terms whenperforming the thermo-
dynamic limit here associated withj → ∞.

QPTs and ESQPTs. The classical potential related to the Dicke model is two-
dimensional. In general the system isnon-integrable, i. e. unlike the Lipkin mod-
el with a certain conserved quantity removing one degree of freedom, there is no
conservation-dictated constraint on the allowed combination of the basis vectors. For
λ = 0 or for λ > 0 but sufficiently small, the ground state of thej → ∞ system is
associated with the boson vacuum combined with the lowest (forω0 > 0) projection of
the spin chain. When the interaction strength reaches the critical valueλc =

√
ω0ω
2

, the
minimum of the potential becomes a saddle point [13]. At thispoint the superradiant
phase is created which is characterized by a macroscopic excitation of both the bosonic
field and the chain of spins. One can anticipate that such a structural transition results
in a QPT of the second order inλc [24].

Because there are no finite dimensional irreducible representations which we could
possibly work on (the spectrum has no upper bound), the truncation of the maximal
number of photons must be performed in numerical diagonalization (see Appendix D).
Note that the diagonalization is performed inλ = 0 eigenbasis which reads as|nb〉|m〉,
wherenb is the number of bosons (photons) andm is the projection of the spin chain
(see Eq. 3.3).

In Fig. 3.1 we present Dicke spectra for two regimes: resonant and detuned, with
Ntrunc being a truncated number of photons in the system. In resonanceω0 = ω = 1
the critical point isλc = 1√

2
, similarly for the detuned systemω0 = 0.7 andω = 1.2

the critical point isλc
.
= 0.65. One can clearly observe a QPT inλc in both cas-

es. Despite the chaotic behaviour of the excited levels (which is a natural property
of the non-integrable models), an ESQPT can be recognized asa non-analytic growth
(with a diverging derivative) of level density developing with the saddle point of the
two-dimensional potential forλ > λc [22]. One can find some other structures in the
excited level dynamics but their exact shape is slurred.

Entanglement. We used the entanglement entropy (2.4) to quantify the entangle-
ment of the subsystems. The result for the ground state entropy development withλ
was already shown in Fig. 2.1. The anomalous growth was obvious in a QPT, consis-
tently with the earlier analysis [22].

The results for the excited-level dynamics (with entropy expressed via the colour
scale) are in Fig. 3.2. Apparently, the behaviour of entanglement is complicated for
excited states. Anyway, the Dicke interaction is of a separable type, as discussed in
Sec. 2.2. So we can see that in both limitsλ → 0 andλ → ∞ (see Fig. 3.3) the
entanglement vanishes and so the both subsystems become decoupled. One can also
estimate the area of the systematic entropy growth. The maximal entropy appears in
a roughly triangular region located in between extrapolated lines corresponding to the
ground state forλ < λc andλ > λc. Note that one of these lines is the ESQPT critical
borderline.
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Figure 3.1: Energy levels of Dicke Hamiltonian with the length of the spin-chainj =
40 in resonance and detuned regime. Required number of relevantenergy levels is250.
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Figure 3.2: Energy levels with entropy (palette) of Dicke Hamiltonian in the same
setup as in Fig. 3.1
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Figure 3.3: Energy levels with entropy (palette) of Dicke Hamiltonian in the resonance
setup as in Fig. 3.1 with larger scale.

3.2 Jaynes-Cummings model

The Jaynes-Cummings Hamiltonian.This model is a frequently usedintegrableap-
proximation of the Dicke model wherêbĴ− andb̂+Ĵ+ are omitted from the interaction
term in (3.1) (see Appendix E for the so calledrotating wave approximation- RWA).
Then the Hamiltonian is

ĤJC = ω0Ĵ0 + ωb̂+b̂+
λ√
MJC

(

b̂Ĵ+ + b̂+Ĵ−
)

. (3.5)

Note that we use a slightly different scalling of the interaction as used in [13]. The
quantityMJC is defined asMJC = 2 (nb +m+ j). The integrability is conditioned by
an existence of a conserved quantity removing one degree of freedom just like in the
case of the Lipkin model. One can show that although the bosonnumbernb and the
spin projectionm are not conserved separately, their sumnb +m (hence alsoMJC) is
an integral of motion. So let us denotêNb ≡ b̂+b̂ counting the number of bosons. The
sumN̂b+ Ĵ0 commutes with Hamiltonian (3.5). Apparently, it commutes with the free
part of the Hamiltonian (3.5) and it commutes with the interaction part as well, as can
be shown explicitly

b̂Ĵ+(N̂b + Ĵ0) = (N̂b + Ĵ0)b̂Ĵ+ + [b̂, N̂b]
︸ ︷︷ ︸

b̂

Ĵ+ + b̂ [Ĵ+, Ĵ0]
︸ ︷︷ ︸

−Ĵ+

= (N̂b + Ĵ0)b̂Ĵ+,
(3.6)

and similarlyb̂+Ĵ−(N̂b + Ĵ0) = (N̂b + Ĵ0)b̂
+Ĵ−.
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The conservation of̂Nb + Ĵ0 means that we always work within a finite subspace
of boson states, therefore the overall number of states withgivenMJC is also finite.
The Hamiltonian eigenstates atλ = 0 are again of the form|nb〉|m〉 as in the Dicke
model, but only the allowed combinations with a fixed sumnb +m are possible, and
in particular the ground state is not|nb = 0〉|m = −j〉.

QPTs, ESQPTs and entanglement.In the forthcoming numerical solutions we
consider a system with the number of spin sites equal to the maximal number of pho-
tons. In other wordsMJC = 4j. We also asummeω > ω0 which means that we
associate theλ = 0 ground state with the boson vacuum and fully excited spin chain
|nb = 0〉|m = +j〉. The classical analysis leads to a one-dimensional potential with a
minimum that changes to a point of inflection inλc = ∆ω√

2
with ∆ω = ω − ω0, where

the ground state undegoes the second order QPT (see Fig. 3.4). The major part of
the spectrum is ‘laminar’ but one can also observe a ‘wave’ ofESQPTs propagating
from the critical point. In contrast to the analogous effectin the Lipkin model (Fig.
1.1), this ‘coherent’ growth of level density is connected with the development of the
inflection point forλ > λc [13]. We remind that at such a point, the level density has a
singularity in the thermodynamic limit.

 0

 50

 100

 150

 200

 250

 0  0.5  1  1.5  2

E
ne

rg
y

λ

MJC=300

Figure 3.4: Energy levels of Jaynes-Cummings Hamiltonian with MJC = 300, i. e.
the number of spin sites is150, ∆ω = 1, so the critical point for QPT isλc = 1√

2
.

The development of entanglement in the spectrum is in Fig. 3.5. One can clearly
identify the area of systematically decreased entanglement close to the ESQPTs. The
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behaviour of entropy of selected individual levels is in Fig. 3.6. The ground state
entropy grows suddenly at criticalλc. The similar growth can be noticed for excited
states as well, however, the local minimum in entanglement starts progressing. This
can be also noticed from Fig. 3.7.
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Figure 3.5: Energy levels and entropy (palette) for Jaynes-Cummings Hamiltonian in
the same setup as Fig. 3.4

In Fig. 3.8 we show how individual-level entropy adds up to form some kind of
‘collective’ enveloping growth of entanglement. A few selected levels are put in green
to highlight the individual shape and the way how they contribute to the collective
envelope.

A more detailed explanation of the systematic evolution of entanglement will be a
subject of the further study.

Comparison with the Dicke model. One may naturally wish to see the compari-
son of both used optical models as one is supposed to be an approximation of the other.
In Fig. 3.9 we present our numerical results for energy levels. A similar picture can
be found in [24]. The figure is a synthetis of several spectra of the Jaynes-Cummings
Hamiltonian with a fixed length of the spin-chainj but for differentnmax

b being the
maximal number of photons in the system. One can notice that different values of
nmax
b result in different values ofMJC (see Table 3.1). So changingnmax

b in the scale
nmax
b = 0, 1, 2 . . . leads to moving from one symmetry subspace to another in each

step.
The straight horizontal line at energy−3.5 represents the trivial system withMJC =

0. It consist of the spin chain with the projectionJ0 = −j. So as there are no photons
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Figure 3.6: EntropyS of the Jaynes-Cummings model,a) Ground state,b) 1st excited,
c) 2nd excited,d) 3rd excited,e) 4th excited,f ) 5th excited,g) 10th excited,h) 15th
excited. In this caseMJC = 300, i. e. the number of spin sites is150, ∆ω = 0, 7,
which impliesλc = 0, 5.

to interact with, the state remains unchanged along the variation ofλ. In the next step
we takeMJC = 2. Now, there are two possible states of such a system developing with
λ. And so we can continue.

The individual lines form some visible structure where (at least) the one forming
the lower bound can be associated with the ground state of therelevant Dicke model
with a proper position of the critical point.
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Figure 3.7: Entanglement entropy of the Jaynes-Cummings model as a function ofλ
and the ordinal number of the level,MJC = 400, i. e. the number of spin sites is200,
∆ω = 1.

In Fig. 3.10 we present the direct comparison of the entanglement entropy in the
Dicke spectrum with the equivalent RWA spectrum. The RWA spectrum is obvious-
ly not complete because in numerical computation we had to use only a bounded set
of MJC values. Anyway, our results still support the general idea that RWA is a rel-
evant approximation for a rather small interaction strength [25] however for largeλ
the approximation fails. This can be seen for example from the fact that the Dicke
interaction term is separable where (as discussed in Sec. 2.2) the both subsystems be-
come decoupled inλ → ∞ whereas in the case of non-separable interaction of the
Jaynes-Cummings type, such a decoupling does not occur.
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Figure 3.8: Development of the the entropy for individual levels,MJC = 400, i. e. the
number of spin sites is200, ∆ω = 1. Ground state is put in red colour.

MJC nb m dimension

0 0 −j 1
2 0 −j + 1 2

1 −j
4 0 −j + 2 3

1 −j + 1
3 −j

...
...

4j 0 j 2j + 1
1 j − 1
...

...
j − 1 1
j 0

4j + 2 1 j 2j + 1
2 j − 1
...

...
j − 1 1
j 0

...
...

Table 3.1: Possible combinations ofnb andm related to the same symmetry subspace
MJC. Note thatMJC is by definition even.
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Figure 3.9: Energy spectra of the Jaynes-Cummings model (ω0 = 0.7, ω = 1.2) for
differentMJC with a fixedj = 5 forming an equivalent of a ground state QPT as in the
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levels belonging to differentMJC do cross as a consequence of symmetry.
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Figure 3.10: Comparison of the Dicke model with its RWA form with the same initial
parameters, entropy expressed via colour palette.
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Conclusion
Here is a brief summary of what has been achieved:

• We have analyzed QPTs and ESQPTs in the Lipkin model, see Sec.1.4. In
particular, we have associated the critical phenomena withstationary and qua-
sistationary points of the classical potential. The spectra obtained by a numerical
diagonalization of the Lipkin Hamiltonian have been shown to be consistent with
the classical analysis.

• We have performed a numerical diagonalization of the Dicke and Jaynes-Cummings
models, see Sec. 3.1 and 3.2. In the Dicke model, the problem of truncation of
the relevant Hilbert space had to be addressed. The spectra of both models have
been compared with the results of the classical analysis performed elsewhere,
showing the link of of spectral singularities to the features of the respective clas-
sical potential.

• We have analyzed the entanglement in the ground and excited states of the Dicke
and Jaynes-Cummings models, see Sec. 3.1 and 3.2 and also 2.3.For the Jaynes-
Cummings model, the entanglement entropy has been shown to exhibit a singu-
larity close to the ESQPT borderline. The nature of this effect will be a subject of
future investigation. No similar critical behaviour of theentanglement has been
observed in the non-integrable Dicke model, although in this case the ESQPT
seems to be a part of an envelope of the region with maximal entanglement. We
have shown that the Dicke and Jaynes-Cummings models yield different predic-
tions of entanglement except a small region in theλ× E region close toλ ≃ 0.
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A. No-Crossing Theorem
Real crossings.To show the ‘exceptionality’ of real crossings, let us assume that we
found one at pointλ0. Energy of a particular level is a solution of the characteristic
polynomial

p (λ,E) = det[Ĥ (λ)− E · I]. (A.1)

For a real crossing ofnth andmth level inλ0 we get the conditionEn(λ0) = Em(λ0) ≡
E0. SoE0 is a double root of (A.1), therefore

∂p

∂E
(λ,E) |λ=λ0

E=E0
= 0. (A.2)

For fixedE0 if we slightly vary parameterλ0 −→ λ0 ± ǫ we must get two different
rootsE1 6= E2 for ‘+ǫ’ case and for ‘−ǫ’case as well. It results in another condition

∂p

∂λ
(λ,E) |λ=λ0

E=E0
= 0. (A.3)

Two independent formulas (A.2) and (A.3) must be satisfied byvarying one parameter
which is generally very difficult and can occur only very rarely1.

1To enforce real crossing of two levels, one needs at least twoparameters to vary.
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B. Singular value decomposition
theorem (SVD) and Schmidt
decomposition
Theorem 1 (Singular value decomposition). SupposeΛ is anm × n real or complex
matrix. There exist unitarym×m andn×n matricesU andV respectively, such that

U+ΛV = Σ (B.1)

whereΣ represents a rectangular diagonal matrix (apparentlym×n) of non-negative
real numbers known as singular values ofΛ.

Proof. Λ+Λ is obviously a Hermitian matrix. One can easily show thatΛ+Λ is also
positive-semidefinite right from the definition:〈ξ|Λ+Λ|ξ〉 = ‖Λ|ξ〉‖2 ≥ 0 for an ar-
bitrary vector|ξ〉. So the spectrum of such a matrix can be written in the descending
order as

σ(Λ+Λ) = {λ1, λ2 . . . λr, λr+1 . . . λn} , λ1 ≥ λ2 . . . ≥ λr > λr+1 . . . λn = 0.

Here we assume thatn − r of the eigenvalues are zeros. One can also form a unitary
n×nmatrixV consisting of the eigenvectors|vi〉 corresponding to the the eigenvalues
λi

V = [|v1〉, |v2〉 . . . |vn〉] .
These eigenvectors form a basis in then-dimensionalcolumnspace. We can use them
to form a basis in them-dimensionalrow space as well. Consider a set of vectors given
as

|ui〉 =
Λ|vi〉√
λi

for i = 1 . . . r. (B.2)

Such vectors are orthogonal

〈ui|uj〉 =
〈vi|Λ+Λ|vj〉
√
λiλj

= λj
1

√
λiλj

δij = δij.

One can now take this set of vectors|ui〉 and extend it to the orthonormal basis

[|u1〉, |u2〉 . . . |ur〉 . . . |um〉]

forming the matrixU . Now we can directly showU+AV = Λ

U+ΛV = U+Λ [|v1〉, |v2〉 . . . |vn〉] = U+ [Λ|v1〉,Λ|v2〉 . . .Λ|vn〉] =

= U+
[√

λ1|u1〉,
√

λ2|u2〉 . . .
√

λr|ur〉, |~0〉 . . . |~0〉
]

=

=
[√

λ1|e1〉,
√

λ2|e2〉 . . .
√

λr|er〉, |~0〉 . . . |~0〉
]

= Σ

where we denoted zero vector as|~0〉 and the vectors of canonical basis as|ei〉 for
i = 1, 2 . . ..
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Theorem 2(Schmidt decomposition). Suppose|Ψ〉 is a pure state of a composite sys-
temH = Hl ⊗Hr with dimensionsm = dimHl andn = dimHr. Then there exist two
sets of orthonormal states{|χli〉} and{|χri〉} such that

|Ψ〉 =
min(m,n)
∑

i=1

√
ρi|χli〉|χri〉 (B.3)

whereρi are common eigenvalues ofρ̂r and ρ̂l defined in (2.2) and (2.3).

Proof. To prove this theorem we use (SVD). We denoteΓ = γij the matrix of coeffi-
cients from eq. (2.1) which is anm× n matrix associated withΛ from SVD theorem.
ThereforeΓ = UΣV +, whereΣ is diagonal with non-negative elementsΣkl = δkl

√
λk.

Indexk counts the number of diagonal terms of a rectangular diagonal matrix therefore
its maximum isk = min(m,n). Then using (2.1) as a starting point one can write

|Ψ〉 =
∑

ij

(UΣV +)ij|ψli〉|ψrj〉 =
∑

ij

∑

k

(√

λkUik(V
+)kj

)

|ψli〉|ψrj〉 =

=
∑

k

√

λk
∑

i

Uik|ψli〉
︸ ︷︷ ︸

≡|χlk〉

∑

j

(V +)kj|ψrj〉
︸ ︷︷ ︸

≡|χrk〉

=
∑

k

√

λk|χlk〉|χrk〉.

Unitary operatorsU andV + transform basis vectors|ψli〉 and |ψrj〉 to new sets of
orthonormal bases{|χli〉}mi=1, {|χrj〉}nj=1. According to SVD the coefficientsλk are
eigenvalues ofΓ+Γ which is in our caseΓ+Γ = ρrjj′. Its diagonalizationρrjj′ = δjj′ρj
leads to the diagonalization of̂ρr =

∑

j ρj|ψrj〉〈ψrj|. Therefore the coefficientsλk are
equal to the eigenvaluesρj of ρ̂r. Now the only thing which is left to be proved is
whether the coefficientsρj are also eigenvalues of̂ρr. This can be seen as follows

ρ̂l = Trr

[
∑

ij

√
ρi
√
ρj|χli〉|χri〉〈χlj|〈χrj|

]

=

=
∑

k

〈χrk|
[
∑

ij

√
ρi
√
ρj|χli〉|χri〉〈χlj|〈χrj|

]

|χrk〉 =
∑

i

ρi|χli〉〈χlj|

where we used orthonormality

〈χrk|χri〉 =
∑

ll′

VlkV
+
il′ 〈ψrl|ψrl′〉
︸ ︷︷ ︸

δll′

=
∑

l

VlkV
+
il = δik.

The last equality holds becauseV is unitary.

Obviously in case of dimensional mismatchm 6= n, saym > n, ρi = 0 for i > n
in the larger space.
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C. Schwinger mapping and
Holstein-Primakoff transformation
Schwinger representation.ForU(2) symmetry-based models, such as two-dimensional
harmonic oscillator, the generators of the symmetry algebra can be formed as bilinear
products of creation and annihilation operatorsŝ+ŝ, ŝ+t̂, t̂+ŝ, t̂+t̂. However these
generators can be rearranged to physically meaningful operators

Ĵx =
1

2

(
t̂+ŝ+ ŝ+t̂

)
, Ĵy =

i

2

(
ŝ+t̂− t̂+ŝ

)
,

Ĵz =
1

2

(
t̂+t̂− ŝ+ŝ

)
, N̂ = ŝ+ŝ+ t̂+t̂,

(C.1)

whereN̂ is the operator of the total number ofs andt bosons1. Knowing the commuta-
tion relation of the single bosonics andt operators one can show that the commutation
relation[Ĵi, Ĵj] = iεijkĴk is satisfied for{ijk} ↔ {xyz} and therefore these operators
can be referred to as projection operators of the total angular momentum.

From the quantum theory of angular momentum we know how to construct the
ladderoperatorsĴ± = Ĵx ± iĴy so

Ĵ+ = t̂+ŝ, Ĵ− = ŝ+t̂. (C.2)

SinceN̂ is conserved by (C.1) the subspace with a given value ofN (with dimen-
siond = N+1) carries an irreducible representation of the angular momentum algebra
with j = N

2
.

Holstein-Primakoff transformation. This transformation representsone-to-one
correspondence between the angular momentum operators andboson creation and an-
nihilation operators, here denoted asb̂+ and b̂. The lowest weight state|j − j〉 can
be associate with theb-boson vacuum|0〉. Then for any integern ≤ 2j we can also
associate

|j(−j + n)〉 ↔

(

b̂+
)n

√
n!

|0〉. (C.3)

Now, lets see how the ladder operators transform

1Or equivalentlyN̂ is the operator which counts the total number of phonons in the two-dimensional
oscillator.
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Ĵ+|j(−j + n)〉 =
√

j (j + 1)− (−j + n) (−j + n+ 1)|j(−j + n+ 1)〉
=
√

2j (n+ 1) + n (n+ 1)|j(−j + n+ 1)〉

=
√
n+ 1

√

2j + n|j(−j + n+ 1)〉 =
√
n+ 1

√

2j + n

(

b̂+
)n+1

√

(n+ 1)!
|0〉

=
√

2j + nb̂+

(

b̂+
)n

√
n!

|0〉 = b̂+
√

2j + n|j(−j + n)〉

= b̂+
√

2j + b̂+b̂|j(−j + n)〉

(C.4)

where in the last step we associatedn with the total number ofb bosons. Its maximal
valueNmax

b must be equal to2j.
Similarly for the lowering ladder operator

Ĵ−|j(−j + n)〉 =
√

j (j + 1)− (n− j) (−j + n− 1)|j(−j + n− 1)〉

=
√

2j − (n− 1)
√
n|j(−j + n− 1)〉 =

√

2j − (n− 1)
√
n

(

b̂+
)n−1

√

(n− 1)!
|0〉

=
√

2j − (n− 1) b̂

(

b̂+
)n

√
!

|0〉 =
√

2j − b̂+b̂ b̂

(

b̂+
)n

√
n!

|0〉

=

√

2j − b̂+b̂ b̂|j(−j + n)〉.

(C.5)

The transformation of̂J0 is straightforward

Ĵ0|j(−j + n)〉 = (n− j)|j(−j + n)〉 = (n− j)

(

b̂+
)n

√
n!

|0〉

=
(

b̂+b̂− j
)

|j(−j + n)〉.
(C.6)

One can notice that the Holstein-Primakoff mapping can be formally obtained from

Schwinger mapping via substitution̂t, t̂+ 7→ b̂, b̂+ andŝ, ŝ+ 7→
√

2j − b̂+b̂.
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D. Numerical solution of the Dicke
Hamiltonian
Truncation. As noted in Section 3.1 truncation of the total number of photons is
needed in numerical study of the Dicke model. So we have a system ofNa spin sites (or
two-level atoms equivalently) and a truncated number of photonsNtr with a dimension
(Na + 1) (Ntr + 1). The question is, how well does the spectrum of such a system
approximate the Dicke model.

One must keep in mind that individual levels interact with one another. One can
anticipate that the top levels in the truncated spectrum will definitely not be a good
approximation because of the absence of the levels right above them. However the
levels closer to the ground state would be affected only a little by the missing part
of the full Dicke spectrum. So we can suppose that the contribution of the absent
levels to the ‘ground state area’ is negligible and this partof the spectrum is a good
approximation of the Dicke model.

In our numerical solution we establishNtr from the given numberNlev of required
relevant levels. We do so by comparing theNlevth level energy in two runs of the pro-
gram forNtr andNtr+1 considering the maximal interaction inλmax. If the difference is
sufficiently small1 we take the currentNtr as a relevant truncation needed to obtainNlev

levels of the Dicke model. Here we present the relevant scripts written in GNU Octave.

The script computing the free part of the Hamiltoninan 3.1.

f u n c t i o n FreeDicke = FreeDicke ( Na , w0 , Ntr ,w)
% p a r a m e t e r s : Na−number o f t h e 2− l e v e l atoms ,

% Ntr−t r u n c a t e d number o f photons ,
% w0 − 1− p a r t i c l e enery o f 2− l e v e l atoms ,

% w − 1− p a r t i c l e enery o f photons ,

j =Na / 2 ;

FreeDicke = z e r o s ( ( Na +1)∗ ( Nt r + 1 ) ) ;
FDJ= z e r o s ( ( Na +1)∗ ( Nt r + 1 ) ) ;
FDGamma= z e r o s ( ( Na +1)∗ ( Nt r + 1 ) ) ;

m=− j ;
f o r i nd = 1 : ( Nt r + 1 ) : Na∗ ( Nt r +1)+1

FDJ ( ind : i nd +Ntr , i nd : i nd +Ntr )=w0∗m∗eye ( Nt r + 1 ) ;
m=m+1;

end

f o r n = 1 : ( Nt r + 1 ) : Na∗ ( Nt r +1)+1
FDGamma( n : n+Ntr , n : n+Ntr )=w∗ d iag ( 0 : Nt r ) ;

end

1In our program we set a condition that the energy of the maximal Nlevth level must be equal in eight
significant digits in both runs. Note that GNU Octave that wasused fot numerical study works with the
double precision.
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FreeDicke =FDJ+FDGamma;

The script computing the interaction part of the Hamiltoninan 3.1.

f u n c t i o n I n t e r a k c e D i c k e = I n t e r a k c e D i c k e ( Na , Nt r )
% p a r a m e t e r s : Na−number o f t h e 2− l e v e l atoms ,

% Ntr−t r u n c a t e d number o f photons ,
J= z e r o s ( Na+1 ,Na + 1 ) ;
Gamma= z e r o s ( Nt r + 1 ) ;
ONNa=eye ( Na + 1 ) ; %o r t h o g o n a l m a t r i x
ONNtr=eye ( Nt r + 1 ) ;
j =Na / 2 ;
I n t e r a k c e D i c k e = z e r o s ( ( Na +1)∗ ( Nt r + 1 ) ) ;

%c o n t r i b u t i o n o f ( J {̂+}+ J ) i n s p i n s t a t e s

f o r m=(− j ) : ( j )
i f ( abs (m)<= j −1)

vecPlusNa= s q r t ( j∗ ( j +1)−m∗ (m+1) )∗ONNa ( : ,m+ j +1+1) ;
vecMinusNa= s q r t ( j∗ ( j +1)−m∗ (m−1))∗ONNa ( : ,m+ j +1−1);

e l s e i f (m== j )
vecPlusNa =0;
vecMinusNa= s q r t ( j∗ ( j +1)−m∗ (m−1))∗ONNa ( : ,m+ j +1−1);

e l s e
vecPlusNa= s q r t ( j∗ ( j +1)−m∗ (m+1) )∗ONNa ( : ,m+ j +1+1) ;

vecMinusNa =0;
end
J ( : ,m+ j +1)= vecPlusNa+ vecMinusNa ;

end

%c o n t r i b u t i o n o f ( b {̂+}+ b ) i n photon s t a t e s
f o r n = ( 0 ) : ( Nt r )

i f ( n==0)
v e c P l u s N t r = s q r t ( n +1)∗ONNtr ( : , n +1+1) ;
vecMinusNtr =0;

e l s e i f ( n== Ntr )
v e c P l u s N t r = 0 ;
vecMinusNtr= s q r t ( n )∗ONNtr ( : , n+1−1);

e l s e
v e c P l u s N t r = s q r t ( n +1)∗ONNtr ( : , n +1+1) ;
vecMinusNtr= s q r t ( n )∗ONNtr ( : , n+1−1);

end
Gamma ( : , n+1)= v e c P l u s N t r +vecMinusNtr ;

end

%mind t h e p o s i t i o n i n t h e m a t r i x ! !
f o r i = 1 : ( Nt r + 1 ) : ( Na )∗ ( Nt r +1)+1

f o r k = 1 : ( Nt r + 1 ) : ( Na )∗ ( Nt r +1)+1
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I n t e r a k c e D i c k e ( i : i +Ntr , k : k+Ntr )=
J ( i d i v i d e ( i , Nt r +1)+1 , i d i v i d e ( k , Nt r + 1 ) + 1 ) .∗Gamma;

end
end

The script computing the Dicke Hamiltonian with λmax 3.1. This function is
used in the truncation as noted above.

f u n c t i o n TruncDicke=TruncDicke (NA, w0 ,N,w)
% p a r a m e t e r s : Na−number o f 2 l e v e l atoms ,
% N−number o f pho tons i n t h e run
% w0 − 1− p a r t i c l e enery o f 2− l e v e l atoms ,

% w − 1− p a r t i c l e enery o f photons ,
% f o r max lambda =3

j =NA/ 2 ;
TruncDicke= FreeDicke (NA, w0 ,N,w) + 3 / ( 4∗ j ) ∗ I n t e r a k c e D i c k e (NA,N) ;

Diagonalization of the Dicke Hamiltonian3.1.

%Dicke model
NA= i n p u t ( ’ Number o f s p i n s i t e s : ’ ) ;
Nlev= i n p u t ( ’ Number o f r e q u i r e d l e v e l s : ’ ) ;

%Ntr =40;
w0=1;
w=1;

%T r u n c a t i o n
N= i d i v i d e ( Nlev ,NA+1)+1 ;

wh i le ( 1 )
I n i = z e r o s ( (NA+1)∗ (N+ 1 ) ) ;
Next= z e r o s ( (NA+1)∗ (N+ 2 ) ) ;
I n i =TruncDicke (NA, w0 ,N,w) ;
Next=TruncDicke (NA, w0 ,N+1 ,w) ;
EigNext= e i g ( Next ) ;
E i g I n i = e i g ( I n i ) ;

i f ( s t r2num ( num2st r ( EigNext ( Nlev ) , 8 ) )
== st r2num ( num2st r ( E i g I n i ( Nlev ) , 8 ) ) )

b reak ;
e l s e

N=N+1;
end

end
Ntr=N;

j =NA/ 2 ;
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d a t a = z e r o s ( 6 1 , (NA+1)∗ ( Nt r +1)+1);% d imens ion must f i t f o r−c y c l e

ind =1;
f o r lambda = 0 . 0 : 0 . 0 5 : 3 . 0

DickeHam= FreeDicke (NA, w0 , Ntr ,w)
+ lambda / s q r t ( ( 4∗ j ) ) ∗ I n t e r a k c e D i c k e (NA, Nt r ) ;

v = e i g ( DickeHam ) ;
v e k t o r = [ lambda v ’ ] ;
d a t a ( ind , : ) = v e k t o r ;
i nd = ind +1;

end

save −a s c i i ” Dicke . d a t ” d a t a ;
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E. Rotating wave approximation
(RWA)
Brief overview. This approximation is used in atomic physics and its basic idea is that
the terms in Hamiltonian which oscillate rapidly are averaged to zero and therefore can
be neglected.

In the first step we move into the interaction picture of the Dicke Hamiltonian
ĤD → Ĥ int

D . The time dependence for the operatorb̂ is then given as

d̂b
dt

= i[Ĥfree, b̂] = iω[b̂+b̂, b̂] = −iωb̂⇒ b̂(t) = b̂(0)e−iωt. (E.1)

Similarly in the interaction picture one can show

b̂+(t) = b̂+(0)eiωt, Ĵ−(t) = Ĵ−(0)e
−iω0t, Ĵ+(t) = Ĵ+(0)e

iω0t. (E.2)

So one can easily see that the termsb̂+Ĵ+ areb̂−Ĵ− (so calledcounter-rotating terms)
oscillate with frequencyω0+ω which is faster than in the case ofb̂+Ĵ− andb̂Ĵ+. When
the one-particle energies get close to resonance, the diference in the final frequencies
becomes more significant. At this point one usually omits thecounter-rotating terms
as they average to zero over the reasonable time period. Now we move back to the
Schr̈odinger picture and obtain the Jaynes-Cummings HamiltonianĤJC.
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[9] M ORÁVEK P., Bachelor thesis, 2008

[10] SACHDEV S., Quantum Phase Transitions, Cambridge University Press. (2nd
ed.), ISBN 978-0-521-51468-2.

[11] CARR L. D., Understanding Quantum Phase Transitions, CRC Press 2010, IS-
BN 978-1-4398-0251-9.

[12] CEJNAR P., Journal of Phys.: Conference Series322(2011) 012012.
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List of Abbreviations
QPT - Quantum phase transition
ESQPT - Excited-state quantum phase transition
SVD - Singular value decomposition
RWA - Rotating wave approximation
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