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Study programme: Physics

Specialization: Astronomy and Astrophysics

Prague 2013



Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Alexander Pitňa
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Abstrakt: Gama záblesky jsou jedńım z jev̊u, kterým astrofyzici dosud zcela nerozumı́.

Z d̊uvodu jejich extremńıch luminozit jsou viditelné v kosmologických vzdálenostech.

Proto se mohou stát nástrojem, kterým bychom mohli zkoumat mladý vesmı́r. Tato

práce je zaměřena na určeńı celkové vyzářené energie gama záblesk̊u, jejich luminozit a

závislost těchto veličin na rudém posuvu. Při zkoumáńı 28 dlouhých gama záblesk̊u se

známými rudými posuvy je nalezena závislost těchto veličin na rudém posuvu. Dále se

práce zabýva t́ım, zda-li je tato závislost zapř́ıčiněna výběrovým efektem detekce nebo

se jedná o skutečný astrofyzikálńı jev. Nejdř́ıve je ukázáno, že př́ıslušná k-korekce má

na závislost těchto veličin na rudém posuvu jen malý, pokud ne žádný vliv. Za druhé, je

navrhnut nový př́ıstup jak studovat závislost luminozitńı funkce na rudém posuvu. Za

třet́ı, je ukázáno, že vzorek gama záblesk̊u s určenými rudými posuvy je vychýlený, což

znamená, že při kombinováńı měřeńı z r̊uzných zdroj̊u je třeba být opatrný. Z výsledk̊u

plyne, že závislost veličin na rudém posuvu se dá vysvětlit výběrovým efektem detekce.
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Abstract: Gamma-ray bursts (GRBs) are one of the phenomena that still puzzle the

astrophysicists. Due to their extreme luminosities, they are visible in cosmological

distances. They could provide a tool for understanding the early Universe. This thesis

focuses on the estimation of the total energy released by the GRBs, their luminosities

and how these quantities depend on the redshift. For a sample of 28 long GRBs with

known redshifts, a dependence of their total energies and luminosities on the redshift is

found. The thesis further studied if this dependence is either an observational bias or a

real astrophysical phenomenon. Firstly, proper use of k-correction revealed that it has

little effect on the redshift dependence of these quantities. Secondly, a new approach

has been proposed to investigate the redshift dependence of the luminosity function.

Thirdly, selection effect has been found, when investigating the sample of bursts with

known redshifts, implying a caution when combining data from different sources. All

these efforts show that the observational bias can still explain the redshift dependence.
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Chapter 1

Introduction

In this thesis I will present the results of the study of a phenomenon known as the

gamma-ray bursts (GRBs). GRBs are extra luminous nonrepetitive explosions in deep

space encompassing a wide range of distances and energy releases. Typical photon

energies in peak luminosity are of the order of hundreds of keV. In redshift units z,

which can be measured with high precision, the range is roughly 0.1 to 10. The actual

distance depends on the chosen cosmological model. The upper boundary is not known,

but is likely to be much higher, reaching into the era of the massive first generation stars.

Energy release ranges from 1050 to 1054 ergs and, considering the time scales on which

the energy is radiated, serious constraints are put on the modeling of a progenitor and

radiation mechanism. Time scale ranges from hundredths to a few hundreds of seconds

with clear distinction of two types of GRBs, the short GRBs with time scales less than

2 s and the long GRBs with time scales more than 2 s. Therefore, it is needed to come

up with two profoundly different progenitors for each group. In either case, connection

with the Star Formation Rate (SFR) is reasonable, because of the compactness of the

source derived from the variations in light curves. This connection has been studied

but there are still many puzzles to solve.

The Fermi Gamma-ray Space Telescope (Fermi) is a latest tool for studying, among

many other phenomena, the connection between the Star Formation Rate (SFR) and

the GRB rate. Together with the Swift satellite and InterPlanetary Network (IPN –

group of satellites that can detect the gamma-rays) more redshifts measurements for

the GRBs can be obtained.

The focus of the thesis is to derive some intrinsic properties of the GRBs detected by

the Fermi satellite. Next, I will study the GRB rate and possible luminosity function

evolution by analyzing these intrinsic properties. Attention will be put also on the

estimation of the degree of biases.

The structure of the thesis is as follows. The history and present knowledge of

the GRBs is presented in the second Chapter. The third Chapter describes the Fermi

1



Chapter 1. Introduction 2

satellite, its onboard instruments and data products. In the fourth Chapter I discuss

the acquiring of the data and creation of the samples used later in the analyses. The

fifth Chapter consists of the description of intrinsic properties and the theory of the

k-correction in a gamma range and its proper usage in the calculation of the intrinsic

properties. Further, the analysis of data with respect to GRB rate and GRB luminosity

function will be described. In the sixth Chapter I perform the statistical tests to account

for the biases introduced in Chapter four. In seventh Chapter I summarize the results.

Chapter 2–3 are review parts and do not contain any new result of the author. In

these two Chapters the brevity is kept and the theory of physical models is omitted,

because in 2011 two reviews were published in the Astronomical Institute of the Charles

University (Ř́ıpa 2011; Bystřický 2011). The Chapters 4–7 give the results of the authors

study. The thesis contains also four Appendices describing the used statistical tests,

computation of uncertainties, list of physical quantities used for computation of the

intrinsic properties and the list of the GRBs that were used for analyses. Finally, the

list of the cited publications, the list of abbreviations, the list of tables and the list of

figures are included.



Chapter 2

Summary of the Gamma-ray

Bursts

In this chapter a brief overview of the GRBs is presented. The review starts with the

earliest detection of the GRBs, a description of the current knowledge of the GRBs and

ends with the latest knowledge of the GRBs. The overview was drawn from the several

publications (Klebesadel et al. 1973; Fishman and Meegan 1995; van Paradijs et al.

1997; Heise et al. 2001; Stanek et al. 2003; Hjorth et al. 2003; Barthelmy et al. 2005;

Kouveliotou et al. 1993; Horváth 1998; Balázs et al. 2003; Band et al. 1993; Bloom

et al. 2001; Butler et al. 2010; Wanderman and Piran 2010; Lloyd-Ronning et al. 2002;

Firmani et al. 2005; Salvaterra et al. 2012; Amati et al. 2002; Yonetoku et al. 2004;

Schaefer 2007; Schaefer et al. 2001; Virgili et al. 2012; Gruber 2012; Wang et al. 2011;

Zhang et al. 2012; Xu and Huang 2012; Mészáros 2006; Ř́ıpa et al. 2012) and for more

detailed information one should look into them.

2.1 History

In exaggeration, for the earliest detection we may thank to the nuclear arm races in the

middle seventies. The U.S. military satellites Vela provided the means to control the

violation of the nuclear test ban treaty signed by the nuclear powers in 1963. Soon after

the launch of the satellites, the unexpected detection of gamma–ray photons certainly

surprised the U.S. military. Simple telemetry revealed that the gamma–rays did not

come from the Earth but rather from the outer space. Since then, the detection of the

GRBs continues to flourish. Sixteen bursts were detected between 1969 July and 1972

July. The observations were made by the CsI scintillation detectors on the four Vela

satellites, Vela 5A, 5B, 6A and 6B. Energy ranges of the detectors were 0.2–1.0 MeV

for Vela 5 and 0.3–1.5 MeV for Vela 6. Burst durations were in the interval of 0.1–30

3



Chapter 2. Summary of Gamma-ray Bursts 4

s and significant variations in time curves were observed. The total detected fluence

ranged from 10−5 erg·cm−2 to 2 · 10−4 erg·cm−2 (Klebesadel et al. 1973).

Several observations after the detection by the Vela satellites were performed, which

further widened our knowledge of the GRBs. After a long period of stagnation, Comp-

ton Gamma–Ray Observatory (CGRO), launched in 1991, greatly improved our un-

derstanding of GRBs. Onboard instrument Burst And Transient Source Experiment

(BATSE) showed that the GRBs were distributed isotropically, suggesting cosmologi-

cal origin. The results of the survey about the BATSE instrument are summarized in

(Fishman and Meegan 1995).

After the successful BATSE survey, an Italian–Dutch satellite Beppo-SAX was

launched in 1997. Its main contribution in understanding the GRBs was the confir-

mation of their cosmological origin. The position of the burst could be determined by

detection of x-ray images. That opened the possibility of afterglow measurements on

longer wavelengths leading to identification of the host galaxies (van Paradijs et al.

1997).

In 2000 the High Energy Transient Explorer (HETE-2) was launched. The mission

further widened our understanding of GRBs. Firstly, it confirmed a new class of objects

called X-ray flashes (XRF) discovered by Beppo-SAX satellite (Heise et al. 2001). Their

typical energies are lower compared to those of GRBs. Secondly, it made the first

association of the GRB with supernova (SN2003dh)(Stanek et al. 2003; Hjorth et al.

2003).

The next great shift in GRB detection was achieved in 2004 by launching the

Swift Gamma-Ray Burst Mission. Swift is a multi-wavelength observatory to a great

extent dedicated to the study of GRBs. It consists of three instruments. Burst Alert

Telescope (BAT) is able to calculate a position of the burst with accuracy of 1–4 arc-

minutes within 15–20 s. Its Field of View (FoV) is one steradian (fully coded) and

three steradians (partially coded). Energy range is 15–150 keV with ∼7 keV resolution

and a sensitivity of 10−8 erg·s·cm2 (Barthelmy et al. 2005). The second instrument,

X-ray Telescope (XRT), provides more precise location with accuracy of cca 2 arc-

seconds. The energy range is 0.2–10 keV. The third instrument, the Ultraviolet/Optical

Telescope (UVOT), provides a position in fractions of arc-seconds and performs optical

and ultraviolet photometry and low resolution spectra in 170–650 nm1.

The latest satellite launched in 2008, partially dedicated to the study of the GRBs,

is the Fermi Gamma-ray Space Telescope. It will be described in detail in Chapter 3.

1http://Swift.asdc.asi.it/
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2.2 Prompt Emission Properties

In this section of the thesis the prompt emission properties of the GRBs will be described

shortly. GRBs show high variability in durations, fluxes, light curves and spectral

characteristics. Since I will study the long duration GRBs, they will be described in

more detail than the short group of GRBs.

2.2.1 Durations

The durations ranges of the GRBs covers many order of magnitudes: starting with

very short 0.01 s ending up to 1000 s. Many definitions of specific durations of the

GRBs exist. The most common is T90, defined as the time during which 90 % of the

total fluence (fluence will be explained in subsection 2.2.2) was accumulated between

the time at which 5 % of the fluence was detected and the time at which 95 % of the

fluence was detected. Instead of the total fluence, fluence in arbitrary energy interval

can be used to compute T90. T90 provides a reasonable estimation of the total duration

of the burst.

A distinction of the GRBs into two subgroups is obvious considering the duration

distribution shown in Figure 2.1 (Kouveliotou et al. 1993). The bimodality of the

duration distribution has been observed several times with differrent satellites. Time

boundary of duration is usually set to 2 s. The bursts having T90 shorter than 2

s are considered as short bursts (denoted sGRBs), conversely the bursts having T90

longer than 2 s are considered as long bursts (denoted lGRBs). However, with the

rising number of the detected GRBs providing better statistics, introduction of the

third group was proposed by Horváth (1998) having T90 around 2–10 s. Presently, no

firm conclusion has been reached about this ”intermediate” subgroup and the question

remains open. The short and intermediate bursts will not be studied in this thesis.

Important empirical characteristic of the duration distribution is the log–normality.

The log(T90) shows normal distribution with high level of significance (Balázs et al.

2003). Log–normal distribution is often seen, if the observed properties of the GRBs

are studied.

2.2.2 Peak Fluxes and Fluences

Peak flux is defined as the maximum flux [ph·cm−2·s−1] over some timescale δτ consid-

ering photons within the energy interval 〈E1, E2〉. The timescale δτ usually depends on

the instrument. For example, for the BATSE δτ = 64 ms, 256 ms, 1024 ms. Measured

peak fluxes are determined by the instrument which detects the burst. The lowest

threshold limit differs for each satellite depending on the onboard detectors. It is usu-

ally between 0.2–0.7 ph·cm−2·s−1. For the bright bursts the peak fluxes may exceed 50
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Figure 2.1: Distribution of T90 of the first BATSE catalogue (Kouveliotou et al.
1993).

ph·cm−2·s−1. Measured count rates, from which the peak fluxes and light curves are

determined, are complicated functions of time for many GRBs.

Fluence is defined as the total detected energy in energy range 〈E1, E2〉 over the

time range of the burst (commonly T90) in units of erg·cm−2. Typical fluences, in

the energy interval 50–300 keV, are 10−8–10−4 erg·cm−2. Fluences show a log–normal

distribution for the different subgroups (Balázs et al. 2003).

2.2.3 Light Curves

The profiles of the light curves are unique for each burst. Regardless, some pattern

among them can be found. According to Fishman and Meegan (1995) the profiles of

the bursts can be divided into these classes: a) Single pulse or spike events b) Smooth,

either single or multiple, well defined peaks c) Distinct, well-separated episodes of

emission; and d) Very erratic, chaotic and spiky bursts. In figure 2.2 these classes are

illustrated. The fastest observed time variations ∆t in the light curves were of the order

of thousandths of seconds implicating compact source of radiation. Simple calculation

using formula D . Γ2c∆t reveals that the typical length scale D of the source must

be in the orders of 102–106 km depending on the Lorenz Γ factor (calculation with Γ=

1–100). c is the velocity of light.
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Figure 2.2: The profiles of the four light curves of GRBs detected by the BATSE
satellite. Upper left image illustrates single pulse light curve (LC). Upper right image
illustrates smooth multiple LC. Lower left image illustrates well-separated episodes of

emission. Lower right image illustrates chaotic and spiky bursts.
(Credit: http://www.batse.msfc.nasa.gov/batse/grb/lightcurve/)

2.2.4 Spectra

Characteristics of the light curves have a wide range of possible values. On the other

hand, spectral functions used for fitting the time integrated or peak flux spectra are less

diverse. The spectra are unambiguously non-thermal and can be fitted by a number

of specific spectral functions (see section 4.2.5). A spectral function proposed by Band

et al. (1993) (called Band spectrum after David Band) has the form

NBAND(E) =

 A
(

E
100 keV

)α
exp

(
− (α+2)E

Epeak

)
ifE <

(α−β)Epeak

α+2

A
(

E
100 keV

)β
exp(β − α)

(
(α−β)Epeak

100 keV(α+2)

)α−β
ifE ≥ (α−β)Epeak

α+2

,

(2.1)

where the amplitude A is in units
[
ph · s−1 · cm−2 · keV−1

]
, α is a low-energy index, β is

a high-energy index and Epeak in [keV] is the peak energy in a so called E2NBAND(E)

spectrum. The E2NBAND(E) spectrum represents the total energy flux per energy

band. In figure 2.3 the example of a spectral fit with Band function is shown.
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Figure 2.3: Example of a spectral fit to the average spectrum of GRB911127.
(Credit: Band et al. (1993))

An empirical spectral function in this form can fit the spectrum of the burst rea-

sonably well. Due to the fact that the peak energy Epeak of the bursts correlates with

some intrinsic properties of the bursts, it is possibly the most studied parameter. These

correlations will be described in section 2.3.4.

2.3 Derived Intrinsic Properties

In this section the intrinsic properties of the long duration GRBs will be described.

Thanks to the Swift satellite, we have now determined redshifts for many lGRBs, which

are crucial in deriving of the intrinsic properties.

Like the supernova type Ia, the GRBs could become a new independent tool for

testing the cosmological models and studying the early Universe (z > 6). However,

many requirements must be satisfied, which are not usually measured well. Arguably,

the most important necessity is to find an intrinsic quantity that does not depend on the

redshift, second could be the intrinsic scatter of the quantity and third the calibration.

Naturally, all three requirements must be fulfilled, for a good cosmological tool.

In the following subsections, some of the intrinsic properties, and their observed

redshift dependencies, will be described together with some observed correlations bet-

ween them.

2.3.1 Isotropic Equivalent Energy

In general, the total emitted energy of an astrophysical source, and the time scale

over which this energy is radiated, put a constraint on the physics of the radiation

mechanism. Considering the lGRBs, the total emitted energy in the comoving frame

of reference is immense Eiso ≈ 1053 erg and the time scale over which this energy is

released is in the order of 1–100 of seconds. Importantly, this energy is derived under
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the assumption that the source radiates isotropically (therefore the subscript ”iso”).

The estimation of Eiso is straightforward, when the redshift of the burst is determined.

It is an important note that Eiso need not be the real total energy emitted by a GRB.

If there is a beaming, i.e. if GRB emits into a solid angle Ω, then the topical energy is

lowered by a factor 4π/Ω. The question of beaming is not a subject of this thesis and

therefore it will be discussed only shortly in subsection 2.3.4.

Bloom et al. (2001) estimated the Eiso (taking 17 bursts) in 〈E1, E2〉 = 〈0.1, 10 000〉
keV comoving energy band. The values lie in the range 1051.5∼1054.5 erg, showing a

large intrinsic scatter in ∼ 3 orders of magnitude. Butler et al. (2010) have found that

Eiso (taking 67 bursts) – in 〈1, 10 000〉 keV energy band – covers even wider energy

range 1050∼1054.5 erg. The fact that the Eiso covers such a wide range of energies puts

strong constrains on the theoretical modeling of the progenitor.

2.3.2 Isotropic Peak Luminosity

An isotropic peak luminosity Liso is a luminosity of the burst in the comoving frame

of reference. Subscript ”iso” denotes the assumption of the isotropic radiation of the

source. The timescale over which this quantity is usually derived is 1024 ms. Such as

for Eiso, Liso is computed in an arbitrary comoving energy band 〈E1, E2〉.
Yonetoku et al. (2004) found that Liso in units of

[
erg · s−1

]
, computed in 〈30, 10 000〉

keV energy interval, ranges from 1051 erg · s−1 to 5 · 1053 erg · s−1.

2.3.3 Luminosity Function

In general, luminosity function Φ gives the fraction of astrophysical objects per unit

luminosity. Considering the GRBs, the full shape of their luminosity function, which

characterizes the GRB emission mechanism, is unknown. Many authors (Butler et al.

2010; Wanderman and Piran 2010; Lloyd-Ronning et al. 2002; Firmani et al. 2005;

Salvaterra et al. 2012) have derived different forms and constraints of the luminosity

function, and its fundamental property, the dependence on the redshift z, still remains

unresolved. The following paragraphs briefly summarize the various estimations of the

luminosity function by a number of studies.

Butler et al. (2010) have found that the GRB luminosity function is best written

as a broken power law in the effective luminosity L
[
erg · s−1

]
as

Φ(L) =
dN

d logL
∝

{
Lα=−0.2±0.2 for logL < logL∗ = 52.7± 0.4

Lβ=−3.0±1.5 for logL > logL∗ = 52.7± 0.4
, (2.2)

and

L =
Eiso

(1 + z)0.0±0.5

(
102.5keV

Epeak

)1.8±0.3(
100.6s

Tr45,z

)0.4±0.2

, (2.3)
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where Eiso [erg] is defined over 〈1, 10 000〉 keV energy interval, Epeak is defined in section

2.2.4 and Tr45,z is a high-luminosity duration.

Luminosity function in this functional form (see the coefficient over (1+z) in eq.

2.3) is not dependent on redshift.

Similarly, Wanderman and Piran (2010) have found the luminosity function dis-

tribution in a form of a broken power law (eq. 2.2), with parameters α = 0.2+0.2
−0.1,

β = 1.4+0.3
−0.6 and L∗ = 1052.5±0.2 erg · s−1. Wanderman and Piran (2010) have also con-

cluded that the assumption of no luminosity function evolution with redshift can be

accepted.

On the other hand, Lloyd-Ronning et al. (2002) have found that the average lu-

minosity can be parametrized as L ∝ (1 + z)1.4±∼0.5, i.e. the luminosity function is

redshift dependent. Further, Firmani et al. (2005) have also shown an evolving lumi-

nosity function. Salvaterra et al. (2012) have found strong evolution in luminosity or in

density, in order to account for the observations of bright GRBs detected by the Swift

satellite.

2.3.4 Intrinsic Correlations

It has been shown that many intrinsic quantities of the GRBs show intrinsic correlations.

In this subsection I briefly describe some of them. Note, that Epeak is the peak energy

in so-called E2N(E) spectrum (see eq. 4.1). In the paragraphs of this section this

quantity is always in the rest frame of the burst.

Amati Relation

Amati et al. (2002) studied spectral and energetics properties of twelve GRBs detected

by Beppo-SAX with determined redshifts and discovered a positive correlation between

Eiso (in comoving energy interval 〈1, 10 000〉 keV) and Epeak. The correlation can be

expressed as

Epeak ∝ E0.52±0.06
iso (2.4)

Yonetoku Relation

Yonetoku et al. (2004) studied the GRBs detected by the Beppo-SAX and BATSE

satellite and derived a relation combining the Epeak and Liso, which is the peak lumi-

nosity in the rest frame of the GRB. The relation is concisely expressed as Liso ∝ Eµpeak.

They have found that

Liso

1052 erg · s−1
= 2.34+2.29

−1.76 · 10−5

[
Epeak

keV

]2.0±0.2

. (2.5)
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Ghirlanda Relation

Ghirlanda et al. (2004) studied the sample of GRBs with measured redshifts and esti-

mated jet opening angles from the achromatic break of the afterglow light curve. They

found tight correlation between Epeak and collimation-corrected energy of the burst Eγ .

The correlation has the form of a power law and can be written as

Epeak ' 480

(
Eγ

1051 erg

)0.7

keV. (2.6)

One can say that Ghirlanda relation is an improvement of the Amati relation, since it

accounts for the jet opening angle.

Variability–Luminosity Relation

The variability V of the GRBs can be viewed as a measure of spikiness or smoothness of

the light curves. Many definitions of V were proposed (Reichart et al. 2001; Fenimore

and Ramirez-Ruiz 2000; Guidorzi et al. 2005). Schaefer (2007) has found a correlation

between the luminosity
[
erg · s−1

]
and the variability of the bursts in a form

log(L) = 52.49 + 1.77 log

[
V (1 + z)

0.02

]
. (2.7)

Lag–Luminosity Relation

One of the prompt emission properties is the spectral lag τ , defined shortly as the time

delay between the soft and hard light curves of the burst. Schaefer (2007) has found a

correlation between the luminosity
[
erg · s−1

]
and τ . The correlation has a form of the

power law,

log(L) = 52.26 + 1.01 log

[
τ(1 + z)−1

0.1 s

]
. (2.8)

The lag–luminosity relation is closely tied to the variability–luminosity relation (Schae-

fer et al. 2001).

2.4 Modern Observations (2010–2013)

In this section I shortly recapitulate some results from the last three years. Much effort

has been spent to extract as much information as possible from a large sample (∼ 700)

of the GRBs detected by the Swift satellite. For a large fraction of them (∼ 200), the

redshift is determined. This is due to the fact, that the Swift satellite has been designed

solely for the detection of the GRBs, with respect to maximizing the probability of the

redshift measurement. Another advantage over the other satellites, is the low value of

the threshold flux ∼ 0.4 ph · s−1 · cm−2. However, a complicated detection threshold
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algorithm is very hard to model. The main disadvantage of the Swift satellite is a low

energy band of the BAT instrument (15–150 keV).

The Fermi satellite has two great advantages: a wide energy range of the detectors,

〈10, 30 000〉 keV, and a high spectral resolution, 256 channels. However, its current

sensitivity is around ∼ 0.7 ph · s−1 · cm−2, approximately two times higher than that of

the BAT instrument.

One may presume, that by combining the data acquired by both of the satellites,

the amount of information hidden in the data is more than just an add-up. Virgili et al.

(2012) studied the joint Swift/BAT-Fermi/GBM sample and suggested the importance

of an energy-dependent temporal analysis of the GRBs. Cobb et al. (2010) proposed

to use the OIR instrument suit on the Gemini south and Gemini north telescopes,

to rapidly observe new GRBs, to fully unroll the potential of the Swift and Fermi

satellites. One of the goals is to constrain the progenitors of the short GRBs, which

are still unresolved.

Considering the Amati relation described in section 2.3.4, Butler et al. (2010) has

shown that this tight correlation is strongly detector dependent. In spite of that, they

concluded that there exists intrinsic correlation between Eiso and Epeak, but it has a

large scatter. Similarly, Gruber (2012) reported that the correlation has larger scatter

than that in eq. 2.4. They found that

Epeak = 441+1840
−360

(
Eiso

1.07 · 1053 erg

)0.55±0.10

keV. (2.9)

Wang et al. (2011) published also updated Amati relation, variability–luminosity

and lag–luminosity correlations.

The Yonetoku relation has also been verified by a number of studies. Gruber (2012)

have found the correlation between Liso and Epeak in a form of

Epeak = 667+295
−310

(
Liso

4.97 · 1053 erg · s−1

)0.48±0.01

keV. (2.10)

However, Wang et al. (2011) analyzed a combined sample of 116 long GRBs (31 pre-

Swift and 85 Swift) and have found a different power law index µ ' 1.4, instead of the

original index µ ' 2 found by Yonetoku et al. (2004). The new Yonetoku relation has

a form
Liso

1052 erg · s−1
= 1.28+0.17

−0.13

[
Epeak

300 keV

]1.40±0.12

. (2.11)

Further, Zhang et al. (2012) derived yet one more different value of the power law index

µ ' 1.7, which is marginally consistent with Yonetoku’s value within the one σ level.

Considering the classification of the GRBs into groups, Horváth et al. (2012) an-

alyzed the latest Fermi GRB catalogue. They used statistical method of PCA and
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Multiclustering, which revealed three groups. However, additional analysis is needed

to rule out the possibility that the splitting is a mathematical by-product. Further,

Ř́ıpa et al. (2012) studied a sample of 427 GRBs detected by the Reuven Ramaty High

Energy Solar Spectroscopic Imager satellite (RHESSI) and also found three groups of

GRBs. They concluded that the group of intermediate-duration bursts differs from the

group of lGRB and has similar properties as the group of sGRB.

Recently, Xu and Huang (2012) found a new tight three-parameter correlation

between the end time of the plateau phase in the afterglow (in the rest frame) Ta, the

X-ray luminosity LX and the isotropic gamma-ray energy release Eiso, which has a form

LX ∝ T−0.87±0.09
a E0.88±0.08

iso . (2.12)
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The FERMI Satellite

The FERMI Gamma-ray Space Telescope, formerly known as the Gamma-ray Large

Area Space Telescope (GLAST), is the latest space observatory dedicated to the study

of the Universe with respect to the high energy part of the electromagnetic spec-

trum. Aside from deepening the knowledge of already known astronomical phenomena,

FERMI is expected to make also new revolutionary scientific discoveries. This is due

to the fact that the onboard instruments has unprecedented energy coverage and sen-

sitivity.

In this Chapter I briefly describe the onboard instruments and the data products.

Sections 3.2 and 3.3 are drawn from the some publications (Atwood et al. 2009; Meegan

et al. 2009; Paciesas et al. 2012). For more detailed information look into them.

3.1 Overview

The FERMI mission is a joint collaboration of NASA, the United States Department

of Energy and government agencies of France, Italy, Japan and Sweden1. The FERMI

satellite was launched on 11 June 2008 and was designed to have a five-year lifetime.

The mission objectives are to explore the most extreme environments in the Universe,

to search for signs of new physics, to shed light on a mysterious dark matter, origins of

cosmic rays, and last but not least, to help crack the puzzles of the GRBs.

The principal instrument onboard the FERMI satellite is the Large Area Telescope

(LAT) and the secondary instrument is the Gamma-ray Burst Monitor (GBM). To-

gether they provide an energy band ranging from 8 keV to 300 GeV. In Figure 3.1 the

schema of the FERMI satellite is shown. In next subsections a brief description of these

instruments will be given.

1http://www-glast.stanford.edu/

14
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Figure 3.1: The schematic description of the Fermi satellite.
(Credit: http://fermi.sonoma.edu/multimedia/gallery/)

3.2 LAT

After a successful mission of the Compton Gamma Ray Observatory (CGRO), which

was the first space observatory designed to detect the high energy photons (from 20

keV to 30 GeV), the development of an instrument that is more sensitive and has a

wider energy coverage began. The LAT is superior in every way in comparison with the

previous high energy instrument EGRET aboard the CGRO. The scientific objectives

of the LAT are, a) determining the origins of the diffuse emission and the nature of the

unidentified sources detected by EGRET, b) understanding the mechanism of particle

acceleration that produces the gamma photons, c) explore the high energy part of the

GRBs’ spectra, d) searching for the signs that help in understanding the dark matter,

and e) explore the early universe Atwood et al. (2009).

In Table 3.1 the main scientific performance, compared with the EGRET instru-

ment, is summarized. For detailed description see Atwood et al. (2009).

The LAT is a pair-conversion telescope that measures the directions, energies and

arrival times of gamma-rays. It is composed of a 4x4 array of identical towers supported

by a low-mass aluminium grid structure. Each tower (40x40 cm2) consists of a precision

converter-tracker, calorimeter and data acquisition module. In order to filter out the

massive flux of cosmic rays, which is a houndred times larger than the flux of the

gamma-rays, a segmented anticoincidence detector (ACD) covers the tracker array. A

programable trigger and data acquisition system utilizes prompt signals from tracker,

calorimeter and ACD, to achieve a self-triggering capability. The characteristic of the
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Quantity LAT EGRET

Energy Range 20 MeV – 300 GeV 20 MeV – 30 GeV

Peak Effective Areaa > 8000 cm2 > 1500 cm2

Field of View (FoV) > 2 sr 0.5 sr

Angular Resolutionb
< 3.5◦ (100 MeV)

5.8◦ (100 MeV)
< 0.15◦ (> 10 GeV)

Energy Resolutionc < 10 % 10 %

Deadtime per Event < 100µs 100 ms

Source Location Determinationd < 0.5′ 15′

Point Source Sensitivitye < 6 · 10−9 cm−2 · s−1 ∼ 10−7 cm−2 · s−1

Table 3.1: A brief summary of the scientific performance of the LAT instrument
in comparison with the CGRO/EGRET instrument. The LAT is superior in every
parameter that is listed in the table. a After background rejection. b Single photon,
68% containment, on axis. c 1-σ, on axis. d 1-σ radius, flux 10−7 cm−2 · s−1 (> 100
MeV), high |b|. e > 100 MeV, at high |b|, for exposure of one-year all sky survey,

photon spectral index -2.
(Credit: fermi.gsfc.nasa.gov/science/instruments/table1-1.html)

detected gamma-ray is, a) no signal in the ACD, b) more than one track starting from

the same location within the volume of the tracker, and 3) an electromagnetic shower

in the calorimeter2.

3.3 GBM

The GBM was constructed mainly for detection of GRBs. It was designed to have

similar characteristics as the CGRO/BATSE instrument, but with higher resolution

in time and photon energy. The primary scientific objective of the GBM is the joint

analysis of spectra and time histories of GRBs observed by both the GBM and the

LAT (Meegan et al. 2009). Further objectives are, a) to provide near-real time burst

locations utilized by the LAT and ground-based observers, b) study of the rest of the

sources that triggers the GBM (solar flares, terrestrial gamma flashes and soft gamma

repeaters).

The GBM consists of Data Processing Unit (DPU), Power Box, 12 thalium ac-

tivated sodium iodide (NaI(Tl)) scintillation detectors and two bismuth germanate

(BGO) scintillation detectors. The NaI(Tl) detectors measure the low-energy part of

the GRB’ spectrum and are used to determine a direction to the source. The orienta-

tion of the 12 detectors is such that the position of the burst could be determined by

the technique of the relative count rates. The BGO detectors measure the high-energy

part of the spectrum. They are located at opposite sides of the spacecraft so that any

2fermi.gsfc.nasa.gov/science/instruments/lat.html
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burst (not occulted by the Earth) could be detected at least with one of the them. In

Figure 3.2 the locations and orientations of the detectors are illustrated.

Figure 3.2: Locations and orientations of the GBM detectors. (Credit: Meegan et al.
(2009))

Table 3.2 and 3.3 summarizes the specifications and current performance compared

with the BATSE instrument, respectively.

3.3.1 Data types of the GBM

The GBM Flight Software (FSW) on DPU continuously monitors all the detectors and

produces three types of science data packets: CTIME, CSPEC and TTE.

The Continuous Time (CTIME) data consists of accumulated spectra with 8 chan-

nel resolution and have nominally 256 ms time resolution (configurable from 64 ms

to 1024 ms). The Continuous Spectroscopy (CSPEC) data consists of the accumu-

lated spectra with 128 channel resolution and have nominally 4096 ms time resolution

(configurable from 1024 ms to 32768 ms). Both the accumulation intervals (i.e. time

resolutions) for CTIME and CSPEC are controlled by the FSW. The TTE data con-

sists of individual detector events. Each event has a detector number, time tag (with

accuracy ∼ 10µs, but resolution 2µs) and energy (128 channels). The TTE data are

stored in a ring buffer with the capacity of 512,000 events (holding the data for ∼ 30 s)

(Meegan et al. (2009)).
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GBM BATSE

Total Mass 115 kg 850 kg

Low-Energy Detectors Large Area Detectors

Material NaI NaI

Number 12 8

Area 126 cm2 2025 cm2

Thickness 1.27 cm 1.27 cm

Energy Range 8 keV – 1 MeV 25 keV – 1.8 MeV

High-Energy Detectors Spectroscopy Detectors

Material BGO NaI

Number 2 8

Area 126 cm2 126 cm2

Thickness 12.7 cm 7.62 cm

Energy Range 150 keV – 40 MeV 30 keV – 10 MeV

Table 3.2: The characteristics of the FERMI/GBM instrument in comparison with
the CGRO/BATSE instrument. The GBM detectors cover a wider energy range and

have a smaller collection area.
(Credit: gammaray.msfc.nasa.gov/gbm/instrument/description/character.html)

Quantity GBM BATSE

Energy Range ∼ 8 keV – 30 MeV ∼ 25 keV – 10 MeV

Field of View 9.5 sr 4π sr

Energy Resolutiona < 10% < 10%

Dead time per Event < 2µs

Burst Sensitivityb ∼ 0.7 ph · cm−2 · s−1 ∼ 0.2 ph · cm−2 · s−1

Onboard GRB Location < 15◦ in 1.8 s ∼ 25◦

Time resolution 2µs 2 ms

Table 3.3: A brief summary of the current scientific performance of the FER-
MI/GBM in comparison with the CGRO/BATSE. The current sensitivity of the GBM
detectors is roughly three times higher than that of the BATSE detectors. a 1-σ, 0.1–1

MeV. b 50–300 keV.
(Credit: fermi.gsfc.nasa.gov/science/instruments/table1-2.html &

gammaray.msfc.nasa.gov/gbm/instrument/description/character.html)

In normal mode, the GBM continuously transmits the CTIME and CSPEC data

with nominal resolution. When a trigger occurs, the FSW speeds up the time resolu-

tion to 64 ms (for CTIME data) and 1024 s (for CSPEC data). The TTE data are

transmitted continuously with CTIME and CSPEC data for ∼ 300 s. The TTE data

in the ring buffer are frozen and transmitted later, providing ∼ 30 s of high resolution

pre-trigger data (Meegan et al. 2009).
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3.3.2 Triggers

The GBM enters the trigger mode, if two or more NaI(Tl) detectors have an increase

rate above a specified threshold. An increase rate is monitored by the FSW and the

threshold is specified in units of standard deviation σbr of the background rate. The

detection threshold algorithm works on multiple timescales (from 16 ms to 16384 ms)

and in various energy ranges (> 100 keV, > 300 keV, 25–50 keV and 50–300 keV).

However, only the algorithms that work in 50–300 keV energy range are currently

enabled, since the algorithms working in different energy ranges never triggered a burst

that had not been triggered by the ”50–300 keV” algorithms (Paciesas et al. 2012).
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Definition of the Samples

In this part of the thesis I will focus on the process of acquiring the relevant data

and on the methodology, which I will use for the selection of the particular GRBs. A

measured redshift provides a strong way to determine the intrinsic properties of the

GRBs. Hence, having a well determined redshift, is extremely useful. Therefore, in

this Chapter a sample of GRBs, having measured redshifts, will be defined together

with two other samples.

4.1 Definition of the GRBall, GRBz and GRBtrun Sam-

ples

The data will be acquired from the Fermi GBM Burst Catalog1 (FERMIGBRST),

which is an official product from the Fermi GBM Science Team. By selecting the

bursts, matching the criteria T90 > 2 s with known spectral parameters, I will obtain

a sample of 397 bursts. This sample will be denoted as ”GRBall”. The period, which

covers the GRBall sample, starts on July 14th 2008 and ends on July 9th 2010. From

that sample, the bursts having determined redshifts will be chosen. This is done by

comparing the GRBs which are both in Greiner table2 and in GRBall. This procedure

yields a sample of 29 bursts, which is a subset of the GRBall sample.

The burst denoted by GRB090423330 is one of the most distant object, whose

redshift has ever been measured. Due to its extreme distance, the measured T90 differs

considerably from the topical T90 in the comoving frame of reference (denoted as T90cf).

One has T90 = 7.168 s. By using the standard cosmological formula T90cf = T90/(1+z),

it follows T90cf = 0.774 s. Due to the intrinsic properties, discovered by Fenimore et al.

(1995) and in depth studied by Mészáros and Mészáros (1996), another prescription for

T90cf may be used, namely T90cf = T90/(1 + z)0.6 yielding T90cf = 1.89 s. In any case

1https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
2Although Greiner table is a subjective work of Dr. Greiner, it has a high reliability and is heavily

referenced. http://www.mpe.mpg.de/∼jcg/grbgen.html
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it is likely that this burst belongs to the family of the short GRBs. Therefore I will

exclude this burst from the sample with known redshifts. Now 28 bursts remain after

this exclusion and they will be denoted as ”GRBz” sample. None of the 28 bursts in

the GRBz sample does have T90fc below 2 s. Hence, it is likely that all of them belong

to the family of the long GRBs. For the sake of consistency, the burst GRB090423330

is not excluded from the GRBall sample.

Additionally, I also create a sample ”GRBtrun”, which is defined as a group of

the GRBs that are in the GRBall sample except for the GRBs in the GRBz sample

(GRBall = GRBtrun ∪ GRBz). This sample will also be used in the analyses, because

GRBtrun and GRBz samples are obviously independent.

The physical quantities describing GRBall will be denoted with the superscript

”all”. Physical quantities describing GRBz will be denoted with the superscript ”z”.

4.2 Description of the Parameters

In this section I will provide the definitions of the quantities and abbreviations used

later on in the thesis. For completeness, quantities described in section 2.2 will be

described below, some with abbreviations.

4.2.1 Name

The name I used to designate GRB is in the form GRByymmddfff, where fff is the

fraction of the day as described in FERMIGBRST. The designations of the GRBs in

GRBz sample are listed in the first column of Table 4.1. The designations of the burst

in GRBall sample are listed in Appendix D.

4.2.2 T90

T90 [s] is the duration, during which 90 % of the burst fluence was accumulated. The

start of the T90 interval is the time at which 5 % of the total fluence has been detected,

and the end of the T90 interval is the time at which 95 % of the total fluence has been

detected. Values of T90 with errors for the GRBz sample are listed in the second column

of Table 4.1.

4.2.3 Fluence F

Fluence [erg · cm−2] is the flux integrated over T90 time of the burst. It can be defined

over an arbitrary energy range. It is usually computed in the reliable energy range of

the detector (e.g. 50–300 keV for BATSE satellite3). In FERMIGBRST the energy

intervals of 50–300 keV and 10–1000 keV are used. The fluence can also be computed

3www.batse.msfc.nasa.gov/batse/



Chapter 4. Definition of the Samples 22

using the spectral function fitted on the time integrated spectra of the GRB. Fluence

computed this way is more reliable than the fluence computed crudely using 8 channel

data4 (see Chapter 3). From now on, fluence obtained by using the best fitted spectral

function in 10–1000 keV energy interval will be designated as Fbest and in 50–300 keV

energy interval as Fbbest. Definitions of the spectral functions are found in the section

4.2.5. Values of Fbest and Fb,best, respectively, with their errors, for the GRBz sample

are listed in the third and fourth column of the Table 4.1.

4.2.4 Peak flux P

Peak flux [ph · s−1 · cm−2] is the maximum photon flux over the duration of the burst

on a defined time scale and in a defined energy interval. In FERMIGBRST peak fluxes

are computed in energy intervals 50–300 keV and 10–1000 keV. Time scales are 64, 256

and 1024 ms. P[timescale] will designate peak flux in 10–1000 keV and Pb[timescale] will

designate peak flux in energy interval 50–300 keV. As for the fluence, more accurate

peak fluxes are obtained by using the best fitted spectral functions. Peak fluxes obtained

by this way will be denoted by subscript ”best”. Values of Pb,best[1024] with their errors,

actually computed from the spectral functions for the GRBz sample, are listed in fifth

column of Table 4.1. For details of error estimation see section 5.4.

4.2.5 Spectra

Spectral functions used for fitting the spectrum over the duration of the burst and over

the time range of the peak flux of the burst are the BAND, PLAW, COMP and SBPL

models, respectively. They are described as follows:

BAND model

This is the most widely used GRB empirical model introduced by Band et al. (1993).

Its functional form is

NBAND(E) =

 A
(

E
100 keV

)α
exp

(
− (α+2)E

Epeak

)
ifE <

(α−β)Epeak

α+2 ,

A
(

E
100 keV

)β
exp(β − α)

(
(α−β)Epeak

100 keV(α+2)

)α−β
ifE ≥ (α−β)Epeak

α+2 ,

(4.1)

where the amplitude A is in units
[
ph · s−1 · cm−2 · keV−1

]
, α is a low-energy index, β

is a high-energy index and Epeak in [keV] is a so-called E2NBAND(E) peak energy. The

E2NBAND(E) spectrum represents the total energy flux per energy band.

4https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
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PLAW model

Power law model – with two free parameters – is the simplest one among the four

models. It is

NPLAW(E) = A

(
E

Epiv

)λ
, (4.2)

where A is the amplitude in units
[
ph · s−1 · cm−2 · keV−1

]
, λ is a spectral index and

Epiv is the pivot energy set to 100 keV for every spectrum (Kaneko et al. 2006).

COMP model

Comptonized model is a low-energy power law with an exponential high-energy cutoff,

written as

NCOMP(E) = A

(
E

100 keV

)α
exp

(
−(α+ 2)E

Epeak

)
, (4.3)

where A is the amplitude in units
[
ph · s−1 · cm−2 · keV−1

]
, α is a low-energy power

law index (Kaneko et al. 2006).

SBPL model

Smoothly broken power law is the last model used to fit the spectra. Its functional

form is as follows

NSBPL(E) = A

(
E

Epiv

)b
10a−apiv , (4.4)

where
apiv = m∆ln

(
eq+e−q

2

)
, a = m∆ln

(
e
qpiv+e

−qpiv

2

)
,

q = log(E/Eb)
∆ , qpiv =

log(Epiv/Eb)
∆ ,

m = λ2−λ1
2 , b = λ1−λ2

2 .

Amplitude A is in units
[
ph · s−1 · cm−2 · keV−1

]
, Epiv is set to 100 keV. λ1 and λ2 are

the low- and high-energy power law indexes, respectively. Eb in unit [keV] is the break

energy. ∆ denotes the break energy scale fixed at 0.3 for all the spectra which describes

the transitions between the high and low energy parts of the spectrum (Kaneko et al.

2006).

4.3 Selection of the Parameters

The GRBz sample is the main set studied in this thesis. GRBall and GRBtrun serve

for comparison and estimation of possible biases. All selected parameters, which will
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be used in the following two Chapters, are shown in Appendix C. Values are not shown

since one can easily access them from the FERMIGBRST database5.

Designation T90 Fbest Fb,best Pb,best

[s]
[
10−5 erg

cm2

] [
10−5 erg

cm2

] [
10−7 erg

s·cm2

]
GRB080804972 24.7±1.4 1.12±0.03 0.513±0.011 3.66+0.11

−0.69

GRB080810549 107±15 1.68±0.03 0.617±0.013 3.10+0.16
−0.61

GRB080905705 105±6.8 0.19±0.02 0.118±0.007 1.14+0.14
−0.14

GRB080916009 62.9±0.8 8.38±0.10 3.342±0.028 14.81+0.34
−0.56

GRB080916406 46.3±7.1 1.28±0.03 0.550±0.013 5.16+0.17
−0.65

GRB080928628 14.3±4.0 0.20±0.01 0.077±0.005 1.14+0.16
−0.14

GRB081008832 150±12 0.73±0.05 0.398±0.014 2.14+0.10
−0.94

GRB081121858 41.9±8.5 1.48±0.04 0.762±0.018 6.9+0.1†
−4.4

GRB081221681 29.6±0.4 3.08±0.05 1.776±0.018 17.11+0.47
−0.56

GRB081222204 18.8±2.3 1.19±0.03 0.629±0.010 9.64+0.24
−0.60

GRB090102122 26.6±0.8 3.26±0.06 1.508±0.016 13.88+0.29
−0.46

GRB090113778 17.4±3.2 0.18±0.01 0.068±0.003 3.01+0.10
−0.63

GRB090323002 135±1.4 12.6±0.1 5.270±0.034 13.45+0.26
−0.47

GRB090328401 61.6±1.8 5.01±0.05 2.091±0.018 17.10+0.30
−0.47

GRB090424592 14.1±0.2 4.67±0.05 2.599±0.021 64.58+0.57
−0.81

GRB090516353 123±2.8 2.26±0.08 1.104±0.025 2.13+0.18
−0.17

GRB090519881 74.1±5.1 0.47±0.03 0.138±0.009 0.91+0.14
−0.13

GRB090618353 112±1.0 25.1±0.1 13.45±0.065 60.2+1.0
−1.1

GRB090902462 19.3±0.2 27.9±0.1 8.767±0.027 61.57+0.85
−0.79

GRB090926181 13.7±0.2 15.5±0.1 7.358±0.028 88.26+0.72
−0.88

GRB090926914 55.5±7.6 0.77±0.01 0.529±0.014 2.84+0.07
−0.88

GRB091003191 20.2±0.3 3.52±0.05 1.594±0.017 37.00+0.48
−0.80

GRB091020900 24.2±7.9 0.80±0.04 0.413±0.012 4.22+0.19
−0.19

GRB091024372 93.9±5.2 1.55±0.07 0.577±0.031 2.33+0.37
−0.37

GRB091024380 450±2.3 3.92±0.14 2.314±0.044 3.62+0.40
−0.44

GRB091127976 8.7±0.5 1.89±0.02 0.734±0.008 26.21+0.37
−0.37

GRB091208410 12.4±5.0 0.79±0.02 0.337±0.010 13.93+0.25
−0.93

GRB100414097 26.4±2.0 9.21±0.06 3.109±0.020 21.81+0.34
−0.56

Table 4.1: Characteristics of the GRBz sample. Quantities T90, Fbest and Fb,best,
with their errors, are taken from the FERMIGBRST database. Quantity Pb,best de-
notes the peak flux on 1.024 ms timescale in energy range 〈50, 300〉 keV, and it was
computed by using the spectral parameters of the best fitted spectral function over
the peak flux of the burst. The errors of Pb,best are computed by Monte Carlo (MC)

technique briefly described in section 5.4.
†This error estimate is not reliable (see section 5.4).

5https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
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The Analysis of the GRBz

Sample

In this Chapter I describe the computation of the intrinsic properties of GRBs for the

GRBz sample. Due to the fact that GRBs lie at cosmological distances, the computation

of their intrinsic characteristics from the measured quantities, like duration T90, fluence

F and peak flux P , is not trivial. Measured quantities depend on the progenitor’s

characteristics and on its redshift. Due to the dependence on the redshift, the type of

the Universe model plays a role in these computations. Further, the empirical relation

discovered by Fenimore and Bloom (1995), studying BATSE data, plays an important

role too.

Another important aspect of the cosmological formulas is the necessity to use k-

correction (Bloom et al. 2001), when the total emitted energy in a comoving frame of

reference is asked for an energy range 〈E1, E2〉. The knowledge of the redshift z is a

necessary condition for the computation of the k-correction. Equally important is the

knowledge of the spectra of GRBs. The GRBs, which I selected (GRBz sample), meet

both criteria (see the previous Chapter).

5.1 Calculation of Eiso and Liso

5.1.1 On the Theory of the Eiso, Liso and k-Correction

If we want to obtain the intrinsic properties of GRBs, we need to find a way of de-

termining them. Assuming an ideal detector, that can detect all the radiation at all

the wavelengths, the following cosmological formulas, for the measured Fbol in units of[
erg · cm−2

]
and Pbol in units of

[
erg · s−1 · cm−2

]
,

Eiso,bol =
4πD2

l

1 + z
Fbol (5.1)

25
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and

Liso,bol = 4πD2
l Pbol, (5.2)

may be used to calculate the bolometric energy Eiso,bol, in units of [erg], and the

bolometric luminosity Liso,bol, in units of
[
erg · s−1

]
. Fbol is a measured bolometric

fluence, Pbol is a measured bolometric peak flux and Dl is the luminosity distance1

of the source at redshift z. Subscript ”iso” denotes the assumption that the source

radiates isotropically.

Because every detector has a limited energy range, it is almost impossible to have

Fbol and Pbol. What the detector can measure is the fluence F〈e1,e2〉 and the peak flux

P〈e1,e2〉 in its energy band 〈e1, e2〉. If the spectrum of the burst in this energy band is

known, it is possible to derive the quantity E〈E1,E2〉, which is the isotropic equivalent

energy radiated by the source in the arbitrary source frame energy range 〈E1, E2〉. The

quantity L〈E1,E2〉, which is the peak luminosity radiated by the source in the arbitrary

source frame energy range 〈E1, E2〉, is calculated similarly. Essential assumption is that

a fitted spectral function should also describe the spectrum outside the energy range of

the detector 〈e1, e2〉. Corresponding equations for F〈e1,e2〉 in units of
[
erg · cm−2

]
and

P〈e1,e2〉 in units of
[
erg · s−1 · cm−2

]
are

E〈E1,E2〉 =
4πD2

l

1 + z
F〈e1,e2〉kE (5.3)

and

L〈E1,E2〉 = 4πD2
l P〈e1,e2〉kL, (5.4)

where kE and kL are the k-corrections of isotropic equivalent energy and luminosity,

respectively. They are defined as

kE(e1, e2, E1, E2, z, φ) =

E2/(1+z)∫
E1/(1+z)

EφE(E)dE

e2∫
e1

EφE(E)dE

(5.5)

and

kL(e1, e2, E1, E2, z, φ) =

E2/(1+z)∫
E1/(1+z)

EφL(E)dE

e2∫
e1

EφL(E)dE

, (5.6)

where φ(E) is the spectral function, subscript ”E” denotes the average spectrum during

the whole duration of the burst; subscript ”L” denotes the spectrum derived during the

1Throughout the thesis I assume a widely accepted cosmological model ΛCDM, with
H0 = 70 km · s−1 · Mpc−1,ΩM = 0.3,ΩΛ = 0.7.
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time range of the peak flux. In derivation of E〈E1,E2〉 I adopted the method of Bloom

et al. (2001).

Consider the eq. 5.1 and suppose we know the fluences and redshifts of randomly

chosen GRBs. After rewriting the eq. 5.1 to a more convenient form of

Fbol = c(z)Eiso,bol , (5.7)

where c(z) = (1+z)/4πD2
l , we may test the independence of c(z) and Eiso,bol. Assuming

the log–normal distribution of Fbol, we may use the formula

σ2
logFbol

= σ2
log c(z) + σ2

logEiso,bol
+ 2ρbolσlog c(z)σlogEiso,bol

, (5.8)

where σ is the dispersion for the given quantity denoted by the subscript and ρbol

is the correlation coefficient. If there is no correlation between c(z) and Eiso,bol then

ρbol is zero and the equation reduces to the one introduced by Mészáros et al. (2006).

Generally, it holds −1 ≤ ρbol ≤ 1.

With a similar line of reasoning we obtain the equations rewritten for given energy

ranges 〈E1, E2〉 and 〈e1, e2〉 as follows

F〈e1,e2〉 =
c(z)

kE(z)
E〈E1,E2〉 , (5.9)

and

σ2
logF〈e1,e2〉

= σ2
log[c(z)/kE(z)] + σ2

logE〈E1,E2〉
+ 2ρσlog[c(z)/kE(z)]σlogE〈E1,E2〉

. (5.10)

I will calculate the values of σlogF〈e1,e2〉
, σlog[c(z)/kE(z)], σlogE〈E1,E2〉

and ρ for both of

the fluences Fbest and Fb,best. For comparison, I will compute these values by neglecting

the k-correction, which effectively means that I will compute the E〈E1,E2〉 in different

source frame energy range 〈E1, E2〉 for every GRB, depending on the redshift of the

burst.

For computation of the kE the shape of the spectral function φ(E) must be known.

The spectrum was fitted by four spectral functions: BAND (eq. 4.1), PLAW (eq. 4.2),

COMP (eq. 4.3) and SBPL (eq. 4.4). The k-correction for a particular GRB will be

computed by using the best fitted spectral function over the duration of the burst.

The estimation of the σlogFbest
and σlogFb,best

is straightforward2. To estimate

the σlog[c(z)/kE,best(z)], σlog[c(z)/kE,b,best(z)], σlogE〈E1,E2〉,best
,σlogE〈E1,E2〉,b,best

,ρbest and ρb,best

I use the statistical method of Maximum Likelihood Estimation (MLE) assuming the

2For definition of Fbest and Fb,best look in the section 4.2.3.
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bivariate log-normal distribution in the form (for details of MLE see Appendix D)

Ξ(~r |~s ) = 1

2πσxσy
√

1−ρ2
exp

{
− 1

2(1−ρ2)

[(
x−x0
σx

)2
+
(
y−y0

σy

)2
− 2ρ (x−x0)(y−y0)

σxσy

]}
,

(5.11)

where ~r = (x, y) =
(
log [c(z)/kE(z)] , log

[
E〈E1,E2〉

])
and ~s = (σx, σy, x0, y0, ρ) =

(
σlog[c(z)/kE(z)], σlog[E〈E1,E2〉]

, µlog[c(z)/kE(z)], µlog[E〈E1,E2〉]
, ρ
)
.

5.1.2 Determined Values of Eiso and Liso with and without k-Correction

In this subsection the calculation of Eiso and Liso with and without the k-correction

will be presented. The energy range 〈E1, E2〉 in which the isotropic equivalent energy

and isotropic luminosity is computed is set to 〈0.1, 10 000〉 keV. Quantities computed

in this range will be denoted in the text below as ”effective bolometric”.

The estimated values of ~s in 5.11 for F〈10,1000〉 = Fbest (denoted as ~sbest), together

with the estimated ~sbest without the k-correction are listed in the first and second

column of Table 5.1. In Figure 5.1 the isotropic equivalent energy E〈0.1,10 000〉 as a

function of c(z)/kE,best(z), considering the k-correction (red dots) and not considering

(blue dots), is shown.

The estimated values of ~s in 5.11 for F〈50,300〉 = Fb,best (denoted as ~sb,best), together

with the estimated ~sb,best without the k-correction are listed in the third and fourth

column of Table 5.1. In Figure 5.2 the isotropic equivalent energy E〈0.1,10 000〉 is shown as

a function of c(z)/kE,best(z) considering the k-correction (red dots) and not considering

(blue dots).

Fbest Fb,best

k-corr with without with without

σlog(Fbest) 0.596+0.098
−0.065 0.596+0.098

−0.065

σlog[c(z)/kE(z)] 0.506 0.502 0.535 0.502

σlog[E〈E1,E2〉]
0.688 0.707 0.689 0.699

µlog[c(z)/kE(z)] −57.9 −57.8 −58.2 −57.8

µlog[E〈E1,E2〉]
53.2 52.8 53.2 52.8

ρ −0.555 −0.576 −0.567 −0.566

Table 5.1: Values of the ~s for bivariate log-normal distribution 5.11 determinated
by MLE for the measured fluence Fbest and Fb,best. For both of them with the k-
correction and without it. The values of the uncertainties of σlogFbest

and σlogFb,best

are really the same.

Since I have the k-corrected values of E〈0.1,10 000〉, the dependence on the redshift

z may be easily visualized. In Figure 5.3 the E〈0.1,10 000〉 is plotted as a function of z

computed from the measured Fbest and Fb,best using the eq. 5.3. There is virtually

no difference. A correlation coefficient ρE between E〈0.1,10 000〉 and z is virtually the
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Figure 5.1: Distribution of E〈0.1,10 000〉 as a function of c(z)/kE(z) (red dots) and of
c(z) alone (blue dots) (i.e. with the k-correction and without it) computed from Fbest

by eq. 5.9.
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Figure 5.2: Distribution of E〈0.1,10 000〉 as a function of c(z)/kE(z) (red dots) and
of c(z) alone (blue dots) (i.e. with the k-correction and without it) computed from

Fb,best by eq. 5.9.

same for computation with both fluences, ρ = 0.63. In columns 2–5 of Table 5.4 the

computed values of E〈0.1,10 000〉 are listed together with the k-correction factors defined

by eq. 5.5.
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Figure 5.3: Distribution of the E〈0.1,10 000〉, computed with the k-correction for Fbest

(blue circles) and Fb,best (red crosses) using the eq. 5.3, as a function of the redshift
z.

The next step is the estimation of averaged effective bolometric luminosity Lave,〈E1,E2〉

with the assumption of isotropic radiation of the burst using the formula

Lave,〈E1,E2〉 =
E〈E1,E2〉(1 + z)0.6

T90
. (5.12)

The quantity E〈E1,E2〉 is computed from the Fb,best. Computation with the Fbest makes

little difference (see second and third column of Table 5.4 and Figure 5.3). Due to the

intrinsic characteristic of the GRBs discovered by (Fenimore et al. 1995), the factor 0.6

should be used in the exponent over (1 + z). The values of Lave,〈0.1,10 000〉 are listed in

the sixth column of Table 5.4. Figure 5.8 shows the Lave,〈0.1,10 000〉 as a function of the

redshift z. The red line will be explained in next section.

The average effective bolometric luminosity Lave,〈0.1,10 000〉 is computed directly

from the E〈0.1,10 000〉. Although informative, k-corrected effective bolometric luminosity

L〈0.1,10 000〉 computed from the peak flux Pb,best by the eq. 5.4 is more suitable for the

analysis below. The values of L〈0.1,10 000〉 and corresponding k-correction factors kL are

listed in the seventh and eighth column of Table 5.4. Figure 5.9 shows the dependence

of L〈0.1,10 000〉 on the redshift. The correlation coefficient ρL between L〈0.1,10 000〉 and z

is ρL = 0.65.

In this section the isotropic equivalent energies and luminosities were computed.

From Figures 5.1 and 5.2 it is apparent that E〈0.1,10 000〉 values computed without the k-

correction (kE=1), do not differ from the k-corrected values in an overall trend. Values

of the correlation parameter, ρ ∼ −0.5, in the Table 5.1 confirm this. Additionally,
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the correlation is also visible in Figures 5.8 and 5.9. For the burst with higher z, the

Lave,〈0.1,10 000〉 and L〈0.1,10 000〉 is gradually higher, i.e. there is a deficit of low–luminosity

bursts for z & 2 and a deficit of high–luminosity burst for z . 2. The question arises,

what is the reason for this correlation. A possible answer will be given in the following

sections 5.2.1 and 5.3.

5.1.3 The Bivariate Log–normality of c(z)
kE(z)

E〈0.1,10 000〉

In this section, the assumption of a log-normal distribution of the fluence in eq. 5.10

is tested. Considering the high p-values of the Lilliefors test for the fluences F z
best and

F z
b,best in Table 6.2, the assumption of the log–normality of the eq. 5.10 is met (for

description of the Lilliefors test see Appendix A).

Furthermore, the assumption of bivariate log–normal distribution of c(z)
kE(z)E〈0.1,10 000〉

is tested by multivariate Jarque-Bera tests (MJB) (Koizumi et al. 2009). P-values of

the test are shown in Table 5.2 (for description of the tests see Appendix A). Since the

p-values are high ∼ 0.5, the log–normal distribution is a good assumption.

Fbest Fb,best

k-corr with without with without

p-MJB∗M 0.48 0.54 0.60 0.65

p-MJB∗S 0.60 0.63 0.74 0.83

Table 5.2: P-values of the MJB tests applied on the values of(
log [c(z)/kE(z)] , log

[
E〈0.1,10 000〉

])
computed by 5.9 for Fbest and Fb,best,

with the k-correction and without it. The depictions of relevant(
log [c(z)/kE(z)] , log

[
E〈0.1,10 000〉

])
are in figures 5.1 and 5.2. For details of

p-values p-MJBm and p-MJBs see Appendix A.

5.1.4 Spectral Functions

The approach of taking four different spectral functions needs some discussion, which

is done in this subsection.

Considering the rest frame energy interval 〈0.1, 10 000〉, for which the quantities in

section 5.1.2 were derived, one assumes that the spectral functions – derived over the

energy interval 〈e1, e2〉 – describe the intrinsic spectrum well. All four spectral functions

defined in section 4.2.5 can fit the spectrum reasonably well and none is significantly

more preferred than the other.

However, PLAW model is probably the most problematic, since it likely describes

the spectra over the wide 〈0.1, 10 000〉 keV energy interval less accurately. The spectrum

of the burst hardly have a form of a PLAW in bolometric energy range since the isotropic

equivalent energy Ebol and peak luminosity Lbol would be infinite. It is plausible that

a spectrum – best fitted by a PLAW model in 〈10, 1000〉 keV energy interval – deviates
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from the actual spectrum in 〈0.1, 10 000〉 keV energy interval. BAND, COMP or SBPL,

may characterize the spectrum in that interval better and it does not hugely depend on

which since they do not differ significantly compared to PLAW. One may even conclude

that the spectrum in 〈10, 1000〉 is only high-energy part of BAND or SBPL spectra, but

the Epeak or Eb is too low for detection (i.e. Epeak or Eb < 10 keV). Other possibility

is that it is a low-energy part of the BAND, COMP or SBPL spectra, but the Epeak

or Eb is too high (i.e. Epeak or Eb > 1000 keV). For the spectra best fitted by the

PLAW model, the most common situation is, that the spectrum has a poor quality (e.i.

small S/N ratio) and the PLAW model with only two free parameters is statistically

sufficient to describe the spectrum (i.e. taking a model with more free parameters does

not significantly improve the fit). Indeed, one can see from figures 5.4, 5.5 and 5.6 that

the fluences – Fbest and Fb,best – and peak fluxes Pb,best of the GRBs, best fitted by

PLAW function, are smaller in comparison with the fluences and peak fluxes of the

GRBs, best fitted by the other three spectral functions.
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Figure 5.4: Depiction of Fbest with respect to the best fitted spectral function (over
the duration of the burst), BAND, PLAW, COMP and SBPL, of the GRBz sample.

The difference of the shape of the spectral functions is illustrated in figure 5.7

where I choose to depict the BAND, PLAW, COMP and SBPL functions for the

burst GRB091024372. For better visibility of the spectra in the whole energy range

E〈0.1,10 000〉, E
2φ(E) –also known as νFν power spectrum– is chosen. In the energy

interval delimited by the vertical lines one can see that the spectral functions do not

differ from each other much compared with the rest of the energy intervals. One may

suggest that the PLAW model is an ”average” of the rest of the models. BAND,

COMP and SBPL functions are practically identical in low energy part of the spectrum

E . 100 keV compared with the PLAW which is above the others. In high energy part

E & 100 keV the spectral functions differ a lot. PLAW is again above the other ones.

The figure adequately represents the typical shape of the spectral functions when the
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Figure 5.5: Depiction of Fb,best with respect to the best fitted spectral function (over
the duration of the burst), BAND, PLAW, COMP and SBPL, of the GRBz sample.
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Figure 5.6: Depiction of Pb,best with respect to the best fitted spectral function (over
the peak flux of the burst), BAND, PLAW, COMP and SBPL, of the GRBz sample.

GRB is best fitted by a PLAW model. From it follows that the quantities E〈0.1,10 000〉

and L〈0.1,10 000〉 may be most likely overestimated considering the PLAW model in cal-

culation. In figure 5.10, L〈0.1,10 000〉 computed using every spectral model for the bursts

in GRBz sample, is shown. This trend is clearly visible. The quantitative measure of

the difference between the L〈0.1,10 000〉 computed by different spectral functions is taken

to be an arithmetic mean of the corresponding L〈0.1,10 000〉 values for all the bursts in

the GRBz sample3. In addition, the mean of L〈0.1,10 000〉 using the best fitted spectral

functions is shown. The means are listed in Table 5.3.

In this section I discussed the approach of taking different spectral functions for

deriving L〈0.1,10 000〉. From Table 5.3 one can see that for PLAW model the mean is

3For each spectral model, there will be sample of 28 values of L〈0.1,10 000〉.
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higher than that of the others, which are basically the same. This may introduce some

uncertainty in to the results. Its size depends on the percentage of the burst which are

best fitted by a PLAW model4.
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Figure 5.7: Comparison of the BAND (blue), PLAW (red), COMP (green) and SBPL
(yellow) functions fitted over the peak flux for the burst designated as GRB091024372.
Vertical lines delimit the energy interval 〈10, 1000〉 keV over which the spectral func-

tions were fitted.

L〈0.1,10 000〉
[
erg · s−1

]
BAND PLAW COMP SBPL BEST

1.357 · 1053 1.704 · 1053 1.274 · 1053 1.339 · 1053 1.344 · 1053

Table 5.3: List of the arithmetic means of L〈0.1,10 000〉 for five different calculations.
First four values correspond to L〈0.1,10 000〉 derived by taking one spectral model –either
BAND, PLAW, COMP or SBPL –for every burst and the last value is calculated using

the best fitted model for the peak flux spectra.

5.2 Effect of the Detection Threshold

In this section it will be shown that a large part of the correlation of L〈0.1,10 000〉 with

redshift can be explained by the effect of the detector threshold. A curve in Figures

5.8 and 5.9 denotes the threshold limit of the detector. It is derived by assuming a

sharp threshold model with Pthresh = 0.7 ph · s−1 · cm−2, where Pthresh is the lowest flux

that can trigger the detector in the energy range 〈50, 300〉 keV. Crucial in derivation is

the assumption of an ”average” spectrum of the burst. This was taken to be a BAND

4The percentages of the burst, considering the best fitted spectral function, are listed in Table 6.6.
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function 4.1 characterized by αmed = −0.75, βmed = −3.03 and Epeak,med = 294 keV,

which are the median values of the spectral parameters of the BAND function fits of the

spectra over the duration of the peak flux of the bursts in the GRBz sample. Amplitude

A of the BAND function is computed so that P ph
〈e1,e2〉 = Pthresh, where P ph

〈e1,e2〉 is flux

in units of
[
ph · s−1 · cm−2

]
. The BAND function constructed by this way is used for

calculation of the k-corrected L〈0.1,10 000〉 using the eq. 5.4. Thus constructing the

”threshold” L〈0.1,10 000〉 as a function of z.
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Figure 5.8: Distribution of the Lave,〈0.1,10 000〉, computed for Fb,best (blue circles)
using the eq. 5.12, as a function of the redshift z. Red curve denotes the detection
threshold limit derived by assuming, a) a sharp threshold with Pthresh = 0.7 ph ·
s−1 · cm−2 in 〈50, 300〉 keV energy range, b) ”average” Band function with spectral

parameters defined above.

The sharp detector threshold model described in previous paragraph is more appro-

priate for the L〈0.1,10 000〉 than for Lave,〈0.1,10 000〉 (see Figure 5.9 and 5.8, respectively),

since the detector threshold algorithm operates on time scales of fractions of seconds to

seconds [Chapter 3]. The curve effectively separates the GRBs which could be detected

by the FERMI satellite from those which could not be.

In this section, the detection threshold bias, that favors more luminous bursts in

greater redshifts, was described. The detection threshold curve accounts for the absence

of less luminous bursts for higher redshifts nicely. On the other hand, this effect surely

cannot account for an apparent deficit of bright burst at lower redshifts z . 2 as is seen

in Figures 5.3, 5.8 and 5.9. Because the detection threshold effect is most easily taken

care for quantity L〈0.1,10 000〉, in the next section I will analyze this apparent deficit in

the
[
z, L〈0.1,10 000〉

]
plane.
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Figure 5.9: Distribution of the L〈0.1,10 000〉, computed for Fb,best (blue circles) using
the eq. 5.4, as a function of the redshift z. Red curve denotes the detection threshold
limit derived by assuming a sharp threshold with Pthresh = 0.7 ph · s−1 · cm−2 in
〈50, 300〉 keV energy range and an ”average” Band function with spectral parameters

defined above.

5.2.1 Sharp Detection Threshold Model

Now the assumption of sharp detection threshold will be discussed. As one can see in

figure 5.10, the detection threshold curves derived by assuming an ”average” spectrum

for each spectral function defined in the caption, are virtually the same for BAND,

COMP and SBPL models. This assumption brings a small uncertainty into the results

since the real threshold cannot be represented as a curve and more complicated de-

scription is needed. However, the uncertainty will be small due to the fact that the

position of the detection threshold curve does not change strongly by varying the spec-

tral parameters. Additionally, further away the spectral parameters from their median

values are, less GRBs have them. As discussed above, a PLAW model most likely over-

estimates the value of L〈0.1,10 000〉, thus the corresponding curve lies above the other

three.

Despite the simplification of the complicated detection threshold algorithm working

on a multiple time scales and multiple threshold settings, the bursts in GRBz sample

depicted in figure 5.10 are above the detection threshold curves – for BAND, COMP

and SBPL – with exceptions. Thus fortifying the approach of taking four different

spectral functions in calculation of the intrinsic properties of the GRBs.
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Figure 5.10: Comparison of the L〈0.1,10 000〉 computed using the PLAW model (red
circles) with L〈0.1,10 000〉 computed using the BAND, COMP and SBPL model (blue
points). Additionally the detection threshold curves derived by assuming an ”average”
spectrum with spectral parameters taken as medians of the relevant spectral charac-
teristics are depicted. For BAND (blue) α = −0.75, β = −3.03 and Epeak = 294 keV;
PLAW (red) λ = −1.48; COMP (green) α = −0.784, Epeak = 265 keV and SBPL
(yellow) λ1 = −0.874, λ2 = −2.723, Eb = 190.4 keV and ∆ = 0.3. Assuming the

sharp detection threshold of the FERMI detectors as Pthresh = 0.7 ph · s−1 · cm−2.
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Designation Ebest Eb,best kE,best kE,b,best Lave,〈0.1,10 000〉 L〈0.1,10 000〉 kL z[
1052erg

] [
1052erg

] [
1052 erg

s

] [
1052 erg

s

]
GRB080804972 18.9 18.7 1.47 3.19 1.52 1.87+0.08

−0.35 1.39 2.2045

GRB080810549 53.6 53.0 1.37 3.70 1.19 10.6+2.9
−1.9 3.39 3.35

GRB080905705 2.67 2.64 1.04 1.71 0.05 2.53+0.55
−0.39 5.05 2.374

GRB080916009 379 374 1.29 3.19 16.27 79.2+4.2
−6.1 2.85 4.35

GRB080916406 2.99 2.93 1.87 4.32 0.08 0.175+0.011
−0.026 1.62 0.689

GRB080928628 2.79 2.70 1.93 4.91 0.34 1.09+0.16
−0.08 4.96 1.692

GRB081008832 7.48 7.38 1.08 1.97 0.094 0.91+0.06
−0.37 1.52 1.9685

GRB081121858 27.7 27.3 1.30 2.50 1.39 12.2+0.1
−7.8 3.50 2.512

GRB081221681 40.7 39.7 1.10 1.87 2.72 9.93+0.82
−0.35 1.49 2.26

GRB081222204 24.4 24.0 1.20 2.25 2.82 12.1+1.8
−1.0 1.97 2.77

GRB090102122 20.4 20.1 1.03 2.21 1.33 4.77+0.18
−0.25 2.24 1.547

GRB090113778 2.70 2.63 1.94 5.10 0.277 0.98+0.05
−0.21 1.57 1.7493

GRB090323002 425 418 1.31 3.09 7.71 41.5+2.2
−2.9 2.63 3.57

GRB090328401 8.51 8.42 1.19 2.84 0.190 1.434+0.075
−0.066 3.42 0.736

GRB090424592 4.19 4.11 1.17 2.07 0.377 1.459+0.052
−0.038 1.92 0.544

GRB090516353 93.5 91.0 1.28 2.56 1.97 14.4+1.5
−1.2 4.11 4.109

GRB090519881 22.0 21.8 1.60 5.42 0.758 6.0+1.4
−1.0 4.62 3.85

GRB090618353 21.2 20.8 1.12 2.06 0.240 2.387+0.039
−0.047 3.43 0.54

GRB090902462 308 305 1.35 4.27 29.5 75.21+0.44†
−0.44 5.31 1.822

GRB090926181 215 212 1.31 2.73 30.53 73.8+1.6
−1.4 2.55 2.1062

GRB090926914 3.16 3.13 1.02 1.48 0.091 0.35+0.01
−0.10 1.37 1.24

GRB091003191 10.8 10.7 1.46 3.20 0.781 4.86+0.20
−0.19 3.29 0.8969

GRB091020900 6.56 6.46 1.11 2.15 0.484 5.17+0.35
−0.32 6.22 1.71

GRB091024372 8.29 8.15 1.72 4.54 0.135 0.83+0.21
−0.12 5.45 1.092

GRB091024380 12.7 12.6 1.04 1.75 0.043 1.45+0.38
−0.36 6.17 1.092

GRB091127976 1.71 1.64 1.47 3.65 0.240 0.637+0.018
−0.015 2.66 0.49

GRB091208410 3.48 3.42 1.48 3.45 0.423 2.22+0.21
−0.23 2.62 1.063

GRB100414097 56.5 56.1 1.28 3.76 3.55 8.23+0.63
−0.43 3.33 1.368

Table 5.4: Derived quantities for the GRBz sample. Ebest, Eb,best, kE,best and
kE,b,best denotes the isotropic equivalent energy released in energy range 〈0.1, 10 000〉
computed by taking Fbest and Fb,best in eq. 5.3, respectively. Corresponding k-
corrections computed by eq. 5.5 are denoted as kE,best and kE,b,best. Lave,〈0.1,10 000〉
denotes the average effective bolometric luminosity in 〈0.1, 10 000〉 keV energy range
defined by eq. 5.12 and L〈0.1,10 000〉 denotes the effective bolometric luminosity com-
puted from Pb,best by eq. 5.3. Corresponding k-correction computed by eq. 5.6 is
denoted as kL. The errors of L〈0.1,10 000〉 are computed by Monte Carlo technique

briefly described in section 5.4.
†This error estimate is not reliable (see section 5.4).
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5.3 Evolution of the GRB Rate and Luminosity Function

5.3.1 Theory

The first natural suggestion how the GRB rate depends on redshift is the assumption

of a linear correlation with the SFR, ρ̇GRB ∝ ρ̇SFR, where ρ̇GRB is the number of the

bursts per year in the redshift interval < z, z + dz > and ρ̇SFR is the mass of the new

born stars per year in the redshift interval < z, z + dz >. However, to test a possible

evolution of the GRB rate with respect to SFR, one should assume a deviation from it

parameterized by a function ξ(z); so we may write ρ̇GRB(z) ∝ ξ(z)ρ̇SFR(z).

For the description of the observed distribution of the GRBs I use a formula from

Kistler et al. (2008) with a slight modification

dṄ(z)

dzdlogL
∝ Ψ(z)Φ(L)ρ̇GRB(z)

dV (z)

dz

1

1 + z
= Ψ(z)Φ(L)ξ(z)ρ̇SFR(z)

dV (z)

dz

1

1 + z
, (5.13)

where dṄ(z) is the rate of bursts (per year) in the redshift interval 〈z, (z + dz)〉 and

luminosity interval 〈logL, (logL+ d logL)〉, dV (z)/dz is the comoving volume element,

1/(1 + z) is required by cosmological time dilation, Ψ(z) is the fraction of bursts that

can be seen at a given z and Φ(L) is the luminosity function of the GRBs.

Φ(L) is traditionally defined as a fraction of bursts with isotropic equivalent lumi-

nosities L〈E1,E2〉 in the interval 〈logL, (logL+ d logL)〉. Assuming that the luminosity

function is redshift independent (see subsection 2.3.3), we may define

dṄL(z)

dz
=

L2∫
L1

dṄ(z)

dzdlogL
dlogL, (5.14)

where dṄL(z) is the rate of bursts (per year) in the redshift interval 〈z, (z + dz)〉 and

in an arbitrary luminosity interval 〈L1, L2〉. Then the equation

dṄL(z)

dz
∝ Ψ(z)ρ̇GRB(z)

dV (z)

dz

1

1 + z
= Ψ(z)ξ(z)ρ̇SFR(z)

dV (z)

dz

1

1 + z
(5.15)

holds.

Assuming the ΛCDM cosmological model with parameters stated in section 5.1.1,

the comoving volume element may be expressed as

dV

dz
=

4πc3

H3
0

z∫
0

dz′

E(z′)

E(z)
, (5.16)

where

E(z) =
√

(1 + z)3ΩM + ΩΛ .
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The star formation history of the universe is presently well known up to the redshift

z ≈ 6 and can be described by a number of empirical functions (Cole et al. 2001; Hopkins

and Beacom 2006). For example, Cole et al. (2001) proposed for the ρ̇SFR function in

the form

ρ̇SFR = ρ̇c(z) ∝
a+ bz

1 +
(
z
c

)d , (5.17)

where (a, b, c, d) are free parameters. Hopkins and Beacom (2006) introduced a piece-

wise function in a form

ρ̇SFR = ρ̇hop(z) ∝


a(1 + z)b for z < z1

c(1 + z)d for z1 < z < z2

e(1 + z)f for z2 < z < 6 ,

(5.18)

where (a, b, c, d, e, f, z1, z2) are free parameters, but c and e are not independent, because

ρ̇hop(z) should be continuous.

5.3.2 Testing of Evolution

Apparent deficit of the bright bursts L〈0.1,10 000〉 & 1052.5erg·s−1 for the redshifts z . 2.5

is seen in Figure 5.9. The question is, what is the reason for this behaviour. One of

the possible hypotheses can be that the luminosity function of the GRB is redshift

dependent. To test this hypothesis I create a sample of the GRBs matching the following

criteria, a) the bursts have the peak luminosities in the range
〈
Llow
〈0.1,10 000〉, L

max
〈0.1,10 000〉

〉
,

where Llow
〈0.1,10 000〉 is an arbitrary lower value of the range and Lmax〈0.1,10 000〉 is the effective

bolometric peak luminosity of the most luminous burst, b) for minimizing the effect

of the detection threshold I choose only the bursts with the redshifts z in the interval

〈0, ztr〉, where ztr is the highest redshift at which the burst with Llow
〈0.1,10 000〉 could be

detected (this means that the point
[
ztr, L

low
〈0.1,10 000〉

]
lies on the detection threshold

curve: see Figure 5.11).

The question arises how to pick the Llow
〈0.1,10 000〉. I choose the approach of maxi-

mizing the number of burst,nmax , for which the criteria above are met. I have found

nmax = 14 for Llow
〈0.1,10 000〉 = 1.36 · 1052 erg · s−1 and ztr = 2.374. In Figure 5.11 the

L〈0.1,10 000〉 is shown with respect to z. The denoted area depicts the region for which

the criteria above are met. GRBs within the shaded area are listed in Table 5.5.

Since I want to study the possible luminosity function evolution, I have to create

two independent subsamples of GRBs, each containing bursts in separate luminosity

intervals. The idea is that, if there is any luminosity function evolution, then the

functional form of the left hand side of eq. 5.15 should differ for separate luminosity

intervals 〈L1, L2〉 and 〈L′1, L′2〉. Conversely, if there is no luminosity function evolution,
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Figure 5.11: Distribution of the L〈0.1,10 000〉, computed for Fb,best (blue circles) using
the eq. 5.4, as a function of the redshift z. Red curve denotes the detection threshold
limit derived by assuming a sharp threshold with Pthresh = 0.7 ph · s−1 · cm−2 in
〈50, 300〉 keV energy range. Shaded region denotes the area obtained by maximizing
the number of bursts in that area. Horizontal lines denotes the ”dividing” luminosities
Ldiv1 = 2.2154 · 1052 erg · s−1, Ldiv2 = 2.3874 · 1052 erg · s−1, Ldiv3 = 2.5306 · 1052 erg ·
s−1, Ldiv4 = 4.7712 · 1052 erg · s−1, Ldiv5 = 4.8621 · 1052 erg · s−1 , that separates the
GRBs in the shaded region into two subsamples. Critical –black– point denotes the[

ztr, L
low
〈0.1,10 000〉

]
=
[
2.374, 1.36 · 1052 erg · s−1

]
.

the functional form of the left hand side of the eq. 5.15 should be the same for any

luminosity interval 〈L1, L2〉.
Taking the GRBs in the shaded region I have to choose the ”dividing” luminosity5

Ldiv, which separates the GRBs into two independent subsamples. Method, which I

choose should minimize the bias introduced by taking only one value of Ldiv. Instead of

taking one Ldiv I choose several of them with the condition of having minimum of five

bursts in each sample. Five different Ldiv met the condition: Ldiv1 = 2.2154 · 1052 erg ·
s−1, Ldiv2 = 2.3874 ·1052 erg · s−1, Ldiv3 = 2.5306 ·1052 erg · s−1, Ldiv4 = 4.7712 ·1052 erg ·
s−1, Ldiv5 = 4.8621 · 1052 erg · s−1. See Figure 5.11.

First, the testing of the GRB rate evolution is carried out by maximizing a p-

value of the Kolmogorov–Smirnov test. The Kolmogorov–Smirnov test compares the

empirical cumulative distribution of the redshifts in one subsample of GRBs, with its

theoretical Cumulative Distribution Function (CDFtheor(z)) derived from the eq. 5.15

5Superscript 〈0.1, 10 000〉 is omitted due to the shortening.
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L〈0.1,10 000〉 z[
erg · s−1

]
GRB090328401 1.43 · 1052 0.736

GRB091024380 1.45 · 1052 1.092

GRB090424592 1.46 · 1052 0.544

GRB080804972 1.87 · 1052 2.2045

GRB091208410 2.22 · 1052 1.063

GRB090618353 2.39 · 1052 0.54

GRB080905705 2.53 · 1052 2.374

GRB090102122 4.77 · 1052 1.547

GRB091003191 4.86 · 1052 0.8969

GRB091020900 5.17 · 1052 1.71

GRB100414097 8.23 · 1052 1.368

GRB081221681 9.93 · 1052 2.26

GRB090926181 7.38 · 1053 2.1062

GRB090902462 7.52 · 1053 1.822

Table 5.5: List of bursts which met the conditions, a) their effective bolometric
luminosity L〈0.1,10 000〉 lie in the interval

〈
1.36 · 1052, 7.52 · 1053

〉
, b) their measured

redshifts lie in the interval 〈0, 2.374〉.

as follows

CDF theor(z) =

z∫
0

(1 + z′)ωρ̇SFR(z′)dV
dz′

1
1+z′dz

′

ztr∫
0

(1 + z′)ωρ̇SFR(z′)dV
dz′

1
1+z′dz

′
(5.19)

with the essential assumption of Ψ(z) = const. The GRB rate evolution ξ(z) was

parameterized by a power function ξ(z) = (1 + z)ω, where ω is a free parameter over

which the p-value of the K–S test is maximized.

The null hypothesis of the test is that the sample of redshifts is drawn from the

reference distribution defined by the eq. 5.15. The maximizing of p-value of the K–S

test over ω is done for each of the two subsamples defined by Ldiv (together 10).

To study the dependence of results on the SFR function, analysis is performed for

three SFR functions ρ̇SFR(z′). The first ρ̇cole(z), obtained by Cole et al. (2001), has

the form of 5.17 with (a, b, c, d) = (0.0166, 0.1848, 1.9474, 2.6316). The second ρ̇hop(z),

obtained by Hopkins and Beacom (2006), is also in a form of 5.17 with (a, b, c, d) =

(0.017, 0.13, 3.3, 5.3). The third ρ̇hop,pw(z), obtained by Hopkins and Beacom (2006) is

in a form of 5.18 with6

(a, b, c, d, e, f, z1, z2) = (0.0151, 3.28, 0.1888,−0.26, 10 000,−8, 1.04, 4.48).

6The SFR functions are derived assuming the Salpeter Initial Mass Function (IMF) – for ρ̇cole(z) –
and modified Salpeter A IMF – for ρ̇hop(z) and ρ̇hop,pw(z).
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By maximizing the p-value of the K–S test, over the parameter ω, for each sub-

sample of the GRBs and for each SFR function, the values ωmax were obtained. These

values are summarized in Table 5.6. For illustration of the empirical and theoretical

cumulative distribution functions look at Figure 5.12 and 5.13.
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Figure 5.12: Depiction of cumulative distribution functions for the subsample of
GRB with luminosities in the interval

〈
1.36 · 1052, 2.5306 · 1052

〉
erg · s−1 and redshifts

in the interval 〈0, 2.374〉. Light blue curve denotes the empirical CDF, dark blue
curve denotes the theoretical CDF (eq.5.19) with ωmax = −3 derived by maximizing
the p-value of the K–S test. Red curve denotes the theoretical CDF with ωmax = 0.

Assumed SFR function is ρ̇hop(z).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

C
D

F
 =

 (
N

<
z
)/

(N
<

2
.3

7
5
)

z

CDF<Ldiv3,L
max

>

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

C
D

F
 =

 (
N

<
z
)/

(N
<

2
.3

7
5
)

z

CDFtheor,ωmax

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

C
D

F
 =

 (
N

<
z
)/

(N
<

2
.3

7
5
)

z

CDFtheor,α = 0

Figure 5.13: Depiction of cumulative distribution functions for the subsample of
GRB with luminosities in the interval

〈
2.5306 · 1052, 7.53 · 1053

〉
erg · s−1 and redshifts

in the interval 〈0, 2.374〉. Light blue curve denotes the empirical CDF, dark blue
curve denotes the theoretical CDF (eq.5.19) with ωmax = −3 derived by maximizing
the p-value of the K–S test. Red curve denotes the theoretical CDF with ωmax = 0.

Assumed SFR function is ρ̇hop(z).
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In Figure 5.14 a typical graph of the p-values of the K–S test as a function of ω

is shown. One can see that the confidence interval of the ω – setting the significance

level on α = 0.05 – covers a wide range of values, typically 6–10, proving useless for its

reasonable estimation. Additionally, for lesser significance level, the null hypothesis can

be rejected for higher p-values. Therefore, the values in Table 5.6 carry little if none

information. One can make only suggestion that generally the ω tends to be lower for

the luminosity interval
〈
Llow, Ldiv

〉
compared with 〈Ldiv, L

max〉. The GRB luminosity

function evolution is not seen, because the confidence intervals of the p-values for GRBs

in different luminosity ranges are overlapping (for the given significance level).

ωmax

ρ̇cole ρ̇hop ρ̇hop,pw〈
Llow, Ldiv

〉
〈Ldiv, L

max〉
〈
Llow, Ldiv

〉
〈Ldiv, L

max〉
〈
Llow, Ldiv

〉
〈Ldiv, L

max〉
Ldiv1 −3.5 1.6 −4.2 0.6 −4.1 1.3
Ldiv2 −3.8 3.0 −4.4 1.7 −4.4 2.9
Ldiv3 −2.2 1.8 −3.0 0.6 −2.5 1.8
Ldiv4 −1.7 2.3 −2.6 1.1 −2.1 2.3
Ldiv5 −2.3 3.8 −3.1 2.6 −2.7 3.8

Table 5.6: Values of the ωmax, for which the p-values of the K–S test are highest,
computed for five different pairs of GRB subsamples. Each pair is defined by low
luminosity boundary Llow = 1.36 · 1052 erg · s−1, high luminosity boundary Lmax =
7.53 · 1053 erg · s−1 and by different value of ””dividing luminosity which separates the
bursts to two subsamples, Ldiv. Values of Ldiv are Ldiv1 = 2.2154·1052 erg·s−1, Ldiv2 =
2.3874 ·1052 erg ·s−1, Ldiv3 = 2.5306 ·1052 erg ·s−1, Ldiv4 = 4.7712 ·1052 erg ·s−1, Ldiv5 =
4.8621 ·1052 erg ·s−1. All values of ωmax are computed for three different SFR function,

ρ̇cole and ρ̇hop and ρ̇hop,pw.
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Figure 5.14: P-value of the K–S test as a function of ω. Red curve denotes
the p-values computed for the subsample of GRBs with luminosities in the inter-
val

〈
Llow, Ldiv

〉
, where Llow = 1.36 · 1052 erg · s−1 and Ldiv3 = 2.5306 · 1052 erg · s−1.

Blue curve denotes the p-values for the luminosities in the interval 〈Ldiv, L
max〉, where

Lmax = 7.53 · 1053 erg · s−1.
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However, having the p-values of the K–S test for ω = 0 one can estimate the

incompatibility of the GRB rate evolution with SFR7. Values of pω=0 are listed in

Table 5.7. The p-values pω=0, for the subsample of GRBs with luminosities in the

range
〈
Llow, Ldiv

〉
, fluctuate around the significance level α = 0.05 (lower p-values are

for ρ̇hop).

pω=0

ρ̇cole ρ̇hop ρ̇hop,pw〈
Llow, Ldiv

〉
〈Ldiv, L

max〉
〈
Llow, Ldiv

〉
〈Ldiv, L

max〉
〈
Llow, Ldiv

〉
〈Ldiv, L

max〉
Ldiv1 0.071 0.758 0.028 0.971 0.057 0.774
Ldiv2 0.023 0.374 0.007 0.805 0.017 0.391
Ldiv3 0.082 0.523 0.028 0.918 0.064 0.542
Ldiv4 0.192 0.517 0.073 0.901 0.150 0.534
Ldiv5 0.078 0.209 0.023 0.486 0.059 0.218

Table 5.7: Values of the pω=0, p-values of the K–S test for ω = 0, computed for
five different pairs of GRB subsamples. Each pair is defined by the low luminosity
boundary Llow = 1.36 · 1052 erg · s−1, the high luminosity boundary Lmax = 7.53 ·
1053 erg · s−1 and by different value of the ”dividing” luminosity, Ldiv, which separates
the bursts into two subsamples. Values of Ldiv are Ldiv1 = 2.2154·1052 erg·s−1, Ldiv2 =
2.3874 ·1052 erg ·s−1, Ldiv3 = 2.5306 ·1052 erg ·s−1, Ldiv4 = 4.7712 ·1052 erg ·s−1, Ldiv5 =
4.8621 ·1052 erg ·s−1. All values of pω=0 are computed for three different SFR function,

ρ̇cole, ρ̇hop and ρ̇hop,pw.

Procedure above might become fruitful if the confidence interval for the ω, defined

by the significance level of the p-value of the K–S test, will be in the order of tenth.

Therefore, more GRBs with known redshifts would be useful.

Another approach for determination of the luminosity function evolution is to per-

form the two-sample K–S test on the luminosity subsamples described above. This

approach might be more useful, because the biases, which are functions of redshift, are

attenuated. However, biases which have a luminosity dependence are not. Further, the

assumption of correlation with the SFR is irrelevant. The null hypothesis is that the

subsamples comes from the same distribution, which means – no luminosity evolution.

The p-values of the two-sample K–S test applied to five pairs of GRB subsamples are

listed in Table 5.8.

5.3.3 Choosing the ztr

The approach of maximizing the number of bursts in the region defined by condition

L > Llow
0.1,10 000 and z < ztr, may not be adequate in a situation of having a small number

of bursts. Although having a maximum number of bursts increases the robustness of

the statistical analysis, the measure of the improvement is slight. It may happen that

by choosing a different Llow
0.1,10 000 and z < ztr, allowing smaller number of bursts in the

7Stating the null hypothesis as: there is no evolution assuming particular ρ̇SFR.
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p-value〈
Llow, Ldiv

〉
〈Ldiv, L

max〉
Ldiv1 0.148
Ldiv2 0.032
Ldiv3 0.129
Ldiv4 0.352
Ldiv5 0.063

Table 5.8: P-values of the two-sample K–S test computed for five different pairs
of GRB subsamples. Each pair is defined by the low luminosity boundary Llow =
1.36 · 1052 erg · s−1, the high luminosity boundary Lmax = 7.53 · 1053 erg · s−1 and
by different value of the ”dividing” luminosity, Ldiv, which separates the bursts into
two subsamples. Values of Ldiv are Ldiv1 = 2.2154 · 1052 erg · s−1, Ldiv2 = 2.3874 ·
1052 erg · s−1, Ldiv3 = 2.5306 · 1052 erg · s−1, Ldiv4 = 4.7712 · 1052 erg · s−1, Ldiv5 =

4.8621 · 1052 erg · s−1.

region, the results may change dramatically. This problem can be solved simply by

waiting for more GRBs with determined redshifts.

5.3.4 Ψ(z) = const

Assumption that is most likely erroneous is expressed by a simple equation Ψ(z) =

const. In this function all the biases are hidden. Generally, the situation may become

more complicated since Ψ can also be a function of luminosity. However, I will assume

that it is not.

Kistler et al. (2008) describes the fraction of observable bursts, Ψ, as a product

of multiple independent functions; Ψ(z) = ψE/AψAGψhumanψFERMIψGRBz. The ψE/A

function comprises the emission/absorption bias. Redshifts of closer bursts tend to

be determined by emission lines of the host galaxies and redshifts of more distant

bursts by an absorption lines in the afterglow spectra. ψAG denotes the observability

of the optical afterglow. In ψhuman function, non-intrinsic properties, like which ground

telescope is chosen for the observation of the afterglow, are included. ψFERMI denotes

the detectability of the bursts by the FERMI satellite. Finally, ψGRBz contains the bias

introduced by creating the GRBz sample.

In section 6.1 I have shown that the GRBz sample is not a random sampling from

the GRBall sample, indicating that ψGRBz is not a constant and should have an influence

on the results.

If we assume that the ψGRBz is not dependent on luminosity, then the p-values of

the two-sample K–S test in able 5.8 are not influenced by this bias. However, the p-

values should be considered as less reliable since the k = N1N2/(N1 + N2) ∼ 3.5, where

N1 and N2 are the sizes of the subsamples. For details of the K–S test see Appendix A.
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5.3.5 On the meaning of the significances

In section 5.3 the GRB rate evolution and GRB luminosity function evolution were

studied. Given the p-values of the K–S test in Table 5.7, the GRB rate of the GRBs

with luminosities in the interval ∼
〈
1.36 · 1052, 2.5 · 1052

〉
erg · s−1 is incompatible with

the SFR function ρ̇hop on ∼ 95 % significance level. However, for the SFR functions

ρ̇cole and ρ̇hop,pw the GRB rate is compatible with them. The GRBs with luminosi-

ties in the interval ∼
〈
2.5 · 1052, 7.5 · 1053

〉
erg · s−1 look as they are compatible with

the star formation rate. However, the confidence interval, on the ∼ 95 % significance

level, for the ω is ∼ 〈−3, 7〉, therefore one cannot conclude the compatibility. Strictly

speaking, the null hypothesis – the observed distribution of the GRBs is drawn from

the theoretical distribution, which depends on ω – is not rejected on given significance

level ∼ 95 % for ω ∈∼ 〈−3, 7〉.
The p-values in Table 5.8 indicate possible luminosity function evolution, however,

it is hard to establish the significance level. The p-values fluctuate noticeably, which

shows sensitivity on the Ldiv. If we discard the highest p-value, then the null hypothesis

that the two subsamples come from the same distribution (no luminosity evolution) is

rejected on ∼ 85 % significance level.

All this means, that the apparent gap in the shaded region in Figure 5.11, is not

statistically significant.

5.4 Computation of the Uncertainties

In this section I describe the method I used for the computation of the uncertainties.

Generally, the calculation of error is possibly the trickiest thing to do. It requires many

assumptions, which are hard to validate. The method I choose, is a widely known

Monte Carlo technique, which relies on the capability of producing random numbers

and brute computational force.

To estimate the probability density function (PDF) and confidence interval of the

quantity g = f(a1, . . . , an), which is a function of n parameters a1, . . . , an (denoted~a),

one have to have a covariance matrix of these parameters. Further, assuming that

~a come from a multivariate normal distribution, defined by this covariance matrix,

one can generate a correlated random vector ~b. That will be used in the function

g = f(b1, . . . , bn). By generating many (∼ 10 000) random vectors ~b and calculating g

for each one of them, one can construct the PDF of g. The confidence interval can be

determined by calculation of an appropriate quantiles of the PDF (for further details

see Appendix C).
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In Table 5.4, the uncertainties of L〈0.1,10 000〉 are shown. They were computed

by, a) taking the relevant covariance matrixes from the FERMIGBRST database8,

b) calculation of the relevant PDF using 10 000 iterations, c) setting the quantiles of

the confidence interval as 〈0.159, 84.1〉, so that 68.2 % of the all simulated values of

L〈0.1,10 000〉 lie in this interval.

The uncertainties of Pb,best listed in Table 4.1 are computed similarly.

This method can produce reasonable estimates of the uncertainties if the assump-

tion of multinormality of ~a is met. For the bursts GRB081121858 and GRB090902462,

the assumption, that the spectral parameters come from a multivariate normal distri-

bution, is probably not met, since the simulated PDF covered wide range of values and

the estimated confidence intervals of the relevant quantities were unrealistic.

In figure 5.15 the uncertainties of L〈0.1,10 000〉 are shown as error bars. One can

make a suggestion that the error bars are smaller if the burst is further away from the

detection threshold curve.

8http://heasarc.gsfc.nasa.gov/FTP/fermi/data/gbm/triggers/



Chapter 5. The Analysis of the GRBz Sample 49

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

Detection threshold curve

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

1050

1051

1052

1053

1054

0 1 2 3 4 5

L
<

0.
1,

10
00

0>
  [

er
g·

s−
1 ]

z

[2.374,1.36·1052erg·s−1]

Figure 5.15: Distribution of the L〈0.1,10 000〉, computed for Fb,best (blue circles)
using the eq. 5.4, as a function of the redshift z. Red curve denotes the detection
threshold limit derived by assuming a sharp threshold with Pthresh = 0.7 ph · s−1 ·
cm−2 in 〈50, 300〉 keV energy range. Shaded region denotes the area obtained by
maximizing the number of bursts in that area. Horizontal lines denotes the ”dividing”
luminosities Ldiv1 = 2.2154 · 1052 erg · s−1, Ldiv2 = 2.3874 · 1052 erg · s−1, Ldiv3 =
2.5306 · 1052 erg · s−1, Ldiv4 = 4.7712 · 1052 erg · s−1, Ldiv5 = 4.8621 · 1052 erg · s−1 ,
that separates the GRBs in the shaded region into two subsamples. Critical –black–

point denotes the
[
ztr, L

low
〈0.1,10 000〉

]
=
[
2.374, 1.36 · 1052 erg · s−1

]
. The error bars are

computed by Monte Carlo technique described in section 5.4 and Appendix B. The
lower value of L〈0.1,10 000〉 is obtained as a 0.159 quantile of the relevant probability
density distribution. The upper value of L〈0.1,10 000〉 is obtained as a 0.841 quantile
of the relevant probability density distribution. Number of iterations in Monte Carlo

simulation is n = 10 000.
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Analyses of the GRBall,

GRBtrun and GRBz Sample

6.1 Statistical Tests

Because I studied the intrinsic physical properties of the GRBs, the knowledge of the

redshifts (assuming particular cosmology) greatly helped. Therefore, all previous cal-

culations of these properties were done for the GRBz sample alone. The question arises

whether the GRBz sample does represent a random sampling from the GRBall sam-

ple. If it does not, the properties derived using GRBz sample, are not representative

of all GRBs detected by the FERMI satellite. Oppositely, if it does, then the derived

properties may characterize the intrinsic properties of the GRBs detected by FERMI

satellite well. All three samples, GRBz, GRBtrun and GRBall, will be needed in the

study of the random sampling.

6.1.1 The GRBtrun Sample

Statistical tests, which I will use have several assumptions. In order to carry out a

proper statistical analysis these assumptions must be satisfied. To test the randomness

of sampling, which is the goal, I choose several measured physical quantities, considering

both the GRBall and the GRBz sample. An inconvenience occurs, when the F-test and

the t-test are applied directly. One of the assumptions of these tests, is the independence

of the samples, which is not the case for the GRBall and GRBz samples. Therefore, the

GRBtrun sample1, instead of the GRBall sample, will also be used. The first question

is, how much the GRBall and the GRBtrun samples differ. The expectations is that

the sample does not change significantly, when excluding a small number of bursts

from the GRBall sample. To test the significance of the change I use the K–S test (see

Appendix A for details). P-values of the tests are shown in Table 6.1. Since all p-values

1For the definition of the GRBtrun sample see the section 4.1.
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are identically or very close to 1, one can really say that the GRBtrun and GRBall do

not differ on high level of significance. Thus the expectation is met. For illustration, a

cumulative plot of the quantity T90 for the GRBall and GRBtrun sample is shown in

Figure 6.1.

T90 Fbest Fb,best P64 P256 P1024 Pb,64 Pb,256 Pb,1024

p-value 1 0.933 0.928 1 1 1 1 1 1

Table 6.1: P-values of the two–sample K–S test comparing the GRBtrun and GRBall
sample.
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Figure 6.1: Cumulative plot of the T90 for the GRBall (blue) and GRBtrun (red)
samples.

6.1.2 Test of Log-normality

The log-normality assumption is a common feature of many statistical tests. Many

procedures may be used to test this assumption. One of them is the Lilliefors test for

normality, which is a modification of the Kolmogorov–Smirnov test of goodness of the

fit. The test is also suitable for small samples, which is the main reason why was it

chosen (see Appendix A for details).

Since I am using the Lilliefors test to assess the log-normality assumption of the

F-test and t-test, p-values for GRBtrun and GRBz sample are important. For complete-

ness, p-values for GRBall sample are also computed. Physical quantities, log-normality

of which I have tested are as follows: T90, Fbest, Fbbest, P[64,256,1024], Pb[64,256,1024]. The

p-values obtained by applying the Lilliefors test on the selected quantities are shown in

Table 6.2.
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T90 Fbest Fb,best P64 P256 P1024 Pb,64 Pb,256 Pb,1024

GRBall 0.809 0.329 0.718 0 0 0 0 0 0

GRBtrun 0.836 0.668 0.300 0 0 0 0 0 0

GRBz 0.156 0.918 0.626 0.022 0.012 0.020 0.324 0.265 0.285

Table 6.2: P-values of the Lilliefors test applied on T90, Fbest, Fb,best, P64, P256,
P1024, Pb64, Pb256, Pb1024 for GRBall and GRBz sample.

P-values can be viewed, arguably, as a measure of validity of the log-normality

assumption. Strictly speaking, if p-value is greater than significance level alpha one

cannot reject the null hypothesis on the given significance level. The alpha level I

have chosen for rejecting the null hypothesis is alpha = 0.05 (i.e. a standard 2-sigma

level). If a p-value is greater than alpha, then one does not reject the null hypothesis

(log-normality), otherwise one accepts the alternative hypothesis (non-log-normality).

Table 6.2 tells us that the log-normal assumption of T90 is not rejected for all

three samples. Similarly, log-normality of F zbest, F
all
b,best and F z

b,best is not in doubt.

However, all the other quantities, on high level of significance, do not have log-normal

distributions. It should be noted that p-values of the quantities of the GRBz sample

tend to be higher than those of the GRBtrun sample. A second interesting fact is that

the physical quantities computed in the 50–300 keV energy range tend to have greater

p-values than quantities computed in the 10–1000 keV energy range.

6.1.3 Tests of the Randomness of the Sampling

F-test

Now I may apply F-test on the measured quantities for which an assumption of the

log-normality is not rejected on the given level of significance (α = 0.05): T90, Fbest

and Fbbest. The F-test tests the null hypothesis that the two samples (GRBtrun and

GRBz) have the same variance. The assumptions are the independence and normality

(see Appendix A for details), respectively. P-values of the F-test are listed in Table 6.3.

Validity of the null hypothesis is not in question.

T90 Fbest Fb,best

p-value 0.385 0.402 0.648

Table 6.3: P-values of the F-test applied on T90, Fbest, Fb,best comparing the GRB-
trun and GRBz sample.

t-test

The t-test tests the null hypothesis that the samples have equal means assuming in-

dependence, normality and same variance of the samples (see Appendix A for details).



Chapter 6. Analyses of the GRBall, GRBtrun and GRBz Sample 53

For T90, Fbest and Fbbest in GRBtrun and GRBz these assumptions are met. P-values

for the test are listed in Table 6.4. The results are conclusive. For the quantities Fbest

and Fbbest in the GRBtrun and GRBz sample the p-values are basically zero. The null

hypothesis is rejected on high level of significance. P-value p = 0.02 for T90 implies the

rejection of the null hypothesis on the given level of significance (α = 0.05).

T90 Fbest Fb,best

p-value 0.010 6.8x10−11 5.1x10−10

Table 6.4: P-values of the t-test applied on T90, Fbest, Fb,best comparing the GRB-
trun and GRBz sample.

K–S test

F-test and t-test requires many assumptions, therefore only on three of the measured

quantities they can be applied. For the rest of the quantities a more robust test is

needed. One of the most common nonparametric statistical tests is the two–sample

Kolmogorov–Smirnov test. The null hypothesis I posed is the equality of the continuous

distributions of the samples (see Appendix A for details). I performed the test on the

quantities of the GRBtrun and GRBz samples as shown in Table 6.1. The p-values

are listed in Table 6.5 – second row. The test may be applied directly on the GRBall

and GRBz sample, because the assumption of the independence is not necessary. For

completeness I calculated the p-values for this case. The p-values are listed in Table 6.5

– first row. As can be seen the p-values are basically the same. The p-value is reasonably

accurate for samples which satisfies the condition: k = N1N2/(N1 + N2) ≥ 4, where

N1 and N2 are the sizes of the samples. In both of the cases GRBtrun vs. GRBz and

GRBall vs. GRBz sample: k = 26. For illustration, a cumulative plot of the quantity

Fbest for the GRBall and GRBz sample is shown in Figure 6.2. They differ significantly.

T90 Fbest Fb,best P64 P256 P1024 Pb,64 Pb,256 Pb,1024

all–z 0.142 1·10−6 9·10−7 0.009 0.007 0.005 0.002 0.002 0.002

bias–z 0.095 1·10−7 9·10−8 0.004 0.003 0.002 8·10−4 5·10−4 8·10−4

Table 6.5: P-values of the two–sample K–S test comparing the GRBall with GRBz
sample (row ”all–z”) and GRBtrun with GRBz sample (row bias–z).

The p-values in Table 6.5 of the K–S test shows that only for the T90 the null

hypothesis cannot be rejected on the given level of significance. For all the other quan-

tities one may conclude that their distributions are different on high level of significance.

Thus the original hypothesis ”randomness of the sampling from GRBall sample” can

be rejected on a high level of significance.
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Figure 6.2: Cumulative plot of the Fbias for the GRBall (blue) and GRBz (red)
samples.

All this means that in the definition of the GRBz sample probably some unknown

selection effect played a role.

6.2 Percentages of the BAND, PLAW, COMP and SBPL

Model

Further, I compare the percentages of the spectra, best fitted by the BAND,...,SBPL

model in the GRBz sample, with the percentages of the spectra, best fitted by the

BAND,...,SBPL model in the GRBall sample. Table 6.6 shows the topical numbers

and percentages according to the best fitted spectral function. One can see that the

percentage of the PLAW model in the GRBz sample is approximately two times smaller

than in the GRBall sample. One explanation may be as follows: the PLAW model is

best fitted for bursts with low fluence (peak flux). Assuming that they have high

redshifts, they are harder to be observed by ground telescopes.
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Fluence spectra Peak flux spectra

GRBall GRBz GRBall GRBz

BAND 66(16.6 %) 6(21.4 %) 62(15.6 %) 9(32.1 %)

PLAW 83(20.9 %) 2(7.1 %) 168(42.3 %) 6(21.4 %)

COMP 201(50.6 %) 12(42.9 %) 130(32.7 %) 9(32.1 %)

SBPL 47(11.8 %) 8(28.6 %) 37(9.3 %) 4(14.3 %)

Table 6.6: List of actual numbers and relevant percentages for the best fitted spectral
functions with respect to the GRBall (397 bursts) and GRBz (28 bursts) sample. First
two columns describe the fluence spectra (obtained by considering the duration of the
bursts) and last two columns describe the peak flux spectra (obtained by considering

the 1024ms time scale for the peak flux over the duration).



Chapter 7

Conclusions

In Chapter 2 I summarized the present observational characteristics of the GRBs. Chap-

ter 3 introduced the Fermi satellite and its data products.

In Chapter 4 I described the creation of the three GRB samples and the process

of acquiring the data from the FERMIGBRST database. First, the GRBall sample

was created. It contained the sample of GRBs that were longer than 2 s and their

spectral characteristics in the FERMIGBRST were determined. Second, the bursts

from the GRBall sample that have determined redshifts, were designated as the GRBz

sample. The redshifts were obtained from the heavily referenced Greiner table. Third,

the GRBtrun sample was defined as GRBall minus GRBz sample.

The quantities Fbest and Fb,best were defined as the fluence that is obtained by

integrating the best fitted spectral function over the duration of the burst in 〈10, 1000〉
keV and 〈50, 300〉 keV energy range, respectively. The quantity Pb,best was defined as

the fluence that is obtained by integrating the best fitted spectral function over the

peak flux of the burst in 〈50, 300〉 keV energy range.

In Chapter 5 I investigated the intrinsic properties of the bursts in the GRBz

sample. Intrinsic quantities Eiso, the isotropic equivalent energy, and Liso, the isotropic

equivalent peak luminosity on 1024 ms timescale, were calculated from the Fbest, Fb,best

and Pb,best, respectively. The source frame energy range in which Eiso and Liso were

computed was 〈0.1, 10 000〉 keV. The calculation encompassed the proper usage of the

k-correction in gamma-band. The relevant k-correction factors for Fbest, Fb,best and

Pb,best were computed.

A correlation between Eiso and a function of the redshift was found, ρ ∼ −0.5

(Figure 5.1). The correlation coefficient ρ was determined by the statistical method of

Maximum Likelihood Estimation (MLE). Assumption of bivariate log-normality of Fbest

was addressed by a computation of p-values of the multivariate Jarque-Bera tests. The

p-values were always higher than the significance level α = 0.05, implying correctness

of the assumption. It has been shown that the strength of this correlation does not
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depend on the usage of the k-correction. Additionally, correlation coefficient between

Eiso and redshift z was found to be ρE = 0.63.

A correlation between Liso and redshift was also found. The correlation coefficient

is ρL = 0.65.

The key question is if these two correlations are given either by observational biases

or are real astrophysical phenomena. In essence, this thesis searches for an answer to

this question.

In section 5.2 I showed that most of the correlation can be explained by the de-

tection threshold effect – the lowest peak luminosity of the bursts that could trigger

a detector is an increasing function of the redshift. The detection threshold curve

was computed assuming a sharp detection threshold model with threshold peak flux

Ptr = 0.7 ph·cm−2 ·s−1 and typical Band spectrum with spectral parameters as medians

of the spectral parameters of the GRBz sample.

In Section 5.3 the apparent deficit in observed rate of the bright bursts Liso &

5 · 1052 erg · s−1 on low redshifts z . 1.5, was analyzed. To test the hypothesis that

this deficit is caused by the luminosity function evolution, a sample of GRBs with

Liso ≥ 1.36 · 1052 erg · s−1 and z ≤ 2.374 was chosen. This sample was divided into

two independent subsamples, each containing bursts within non-overlapping luminosity

ranges. Assuming that the deficit in observed rate is caused by the GRB rate evolution

and that the luminosity function is redshift independent, the GRB rate should have the

same functional form on the redshift for each of the subsamples of GRBs within the

non-overlapping luminosity ranges. The GRB rate was assumed to be proportional to

the star formation rate (SFR) times a power law function (1+z)ω. Power law exponent

ωmax, that explained the observed distribution of the luminosity subsamples the best,

was found by maximizing the p-value of the K-S test. The null hypothesis of the

K-S test was that the observed distribution of the bursts comes from the theoretical

distribution, that was the function of z and ω. The values of ωmax were computed.

They were found to be strongly dependent on the way of splitting the GRBs into the

luminosity subsamples and slightly dependent on the assumed form of the SFR function.

The confidence intervals (for p-value> α = 0.05) of ω were found to have ranges∼ 6−10

and that they are overlapping for the GRBs within different luminosity intervals. This

means that the hypothesis of the luminosity function evolution is not supported by the

data. P-values of the two-sample K-S test applied on the two independent luminosity

subsamples yielded the same conclusion.

In Chapter 6 the statistical analysis of the GRBz, GRBall and GRBtrun samples

was performed. It was shown that the GRBz sample is not a random sampling from the

GRBall sample. The null hypothesis that the GRBz sample and GRBall sample comes

from the same distribution was rejected on high level of significance. The physical

quantities of the bursts in the GRBz and GRBall samples that were actually tested are
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T90, Fbest, Fb,best and peak fluxes on various time scales and energy ranges. Except for

T90, the p-values of the K-S test ranges from 0.009 to 9 · 10−8.

The Lilliefors test of normality applied on the log-normal values of the physical

quantities T90, Fbest and Fb,best, yielded high p-values (p > α = 0.15), concluding

that the assumption of log-normality is not rejected on the given significance level. On

the other hand, p-values of the Lilliefors test for the peak fluxes are virtually zero for

GRBall and GRBtrun sample, rejecting the log-normality assumption.

All these statistical efforts suggest that the correlations, shown in Figures 5.1, 5.2,

5.9, 5.8 and 5.9, can be probably explained by observational biases (compare with the

findings of Wanderman and Piran (2010) and Lloyd-Ronning et al. (2002) in subsection

2.3.3). Also the sample GRBz itself is observationaly biased, if it is compared either with

GRBall or with GRBtrun sample (Chapter 6). On the other hand, a real dependence

on the redshift of Eiso and Liso, respectively, is not excluded yet, but simply it cannot

be proclaimed unambiguously.



Appendix A

Used Statistical Tests

In this section of the thesis I shortly describe the statistical tests used in Chapters 5 and

6. Except of the multivariate Jarque–Bera test of normality, all tests were performed

by using the relevant functions in The Statistics Toolbox in Matlab. For more detailed

information one should look in the Statistics Toolbox Manual and the references within1.

A.1 Lilliefors Test of Normality

The Lilliefors test is a two-sided goodness-of-fit test used when the exact form of the

null distribution is unknown. However, the null distribution must be a member of a

location-scale family of distributions. The null hypothesis is that the sample comes

from the null distribution. The test has an advantage of giving accurate results even

if the size of the sample is small N < 50. It is a modification of the well-known

Kolmogorov–Smirnov test.

The Lilliefors test statistic is

D∗ = max
x
|F (x)−G(x)| ,

where F (x) is the empirical CDF of the sample and G(x) is the CDF of the hypothesized

distribution with estimated parameters equal to the sample parameters2. On the given

significance level α, the null hypothesis is rejected if D∗ will be greater than or equal to

the critical value Dcritical, which is a critical value for the distribution of the Lilliefors

test. It must be computed by using the Monte Carlo technique.

1www.mathworks.com/help/stats/index.html
2www.mathworks.com/help/stats/lillietest.html
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A.2 Two-sample t-Test

The two-sample t-test is a parametric test which is used for testing if two indepen-

dent normally distributed random samples, {xi = 1, . . . , Nx} and {xi = 1, . . . , Nx}, have

equal population means. Further, suppose that the population variances are equal.

There exist many variations, from which I choose the following. The test statistic is

given as

t =
x− y

sxy
√

1
Nx

+ 1
Ny

,

where

sxy =

√
(Nx − 1)s2

x + (Ny − 1)s2
y

Nx +Ny − 2
,

where x and y are the sample means, s2
x and s2

y are the sample variances and Nx and

Ny are the sizes of the samples.

The null hypothesis (means are equal) is rejected (in favor of the two sided alter-

native hypothesis that the means are not equal) on the significance level α, when the

test statistic |t| > t1−α/2,Nx+Ny−2, where t1−α/2,Nx+Ny−2 is (1 − α/2)-quantile of the

t-distribution with Nx +Ny − 2 degrees of freedom.

A.3 Two-sample F-Test

The two-sample F-test is a parametric test which is used for testing if two indepen-

dent normally distributed random samples, {xi = 1, . . . , Nx} and {xi = 1, . . . , Nx}, have

equal population variances. The test statistic is given as

F =
s2

x

s2
y

,

where s2
x and s2

y are the sample variances.

The null hypothesis (variances are equal) is rejected (in favor of the alternative

hypothesis that the variances are not equal) on the significance level α, when the

test statistic F > Fα/2,Nx−1,Ny−1 or F > 1/Fα/2,Nx−1,Ny−1, where Fα/2,Nx−1,Ny−1 is

(1− α/2)-quantile of the F-distribution with Nx − 1 and Ny − 1 degrees of freedom.

A.4 One-Sample Kolmogorov–Smirnov Test

The one-sample Kolmogorov–Smirnov test is a non-parametric statistical test which is

used for testing if the sample, {xi = 1, . . . , n}, comes from the hypothesized continuous
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distribution g(x). The test statistic is given as

D = max
x
|F (x)−G(x)| ,

where F (x) is the empirical CDF of the sample and G(x) is the hypothesized cumulative

distribution obtained from g(x).

The null hypothesis (sample comes from the hypothesized distribution) is rejected in

favor of two-sided alternative hypothesis (sample does not come from the hypothesized

distribution G(x)) on a given significance level α if the test statistic D > Dcrit/
√
n,

where n denotes the sample size and Dcrit is found from

Prob(K ≤ Dcrit) = 1− α,

where

Prob(K ≤ x) =

√
2π

x

∞∑
k=1

exp−(2k−1)2π2/(8x2) .

A.5 Two-sample Kolmogorov–Smirnov Test

The two-sample Kolmogorov–Smirnov test is a non-parametric statistical test which

is used for testing if two samples, {xi = 1, . . . , n} and {yi = 1, . . . ,m}, come from the

same distribution. The test statistic is given as

D = max
x
|F1,n(x)− F2,m(x)| ,

where F1,n and F2,m are empirical CDFs of the samples.

The null hypothesis (samples come from the same distribution) is rejected in favor

of two-sided alternative hypothesis (samples do not come from the same distribution)

on a given significance level α if the test statistic D meets the condition√
nm

n+m
D > Dcrit,

where Dcrit is defined in previous section.

A.6 Multivariate Jarque–Bera Test

The univariate Jarque–Bera test is a well known statistical test of normality. For as-

sessing a multivariate normality Koizumi et al. (2009) proposed four new test statistics.

Two of them are described below.
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For small sample size Koizumi et al. (2009) recommend to use the test statistics

MJB∗M and MJB∗S, whose definitions are as follows,

MJB∗M = z∗M,1 + z∗
2

M,2

and

MJB∗S = z∗S,1 + z∗
2

S,2,

where

z∗M,1 =
N

6
bM,1

(p+ 1)(N + 1)(N + 3)

N [(N + 1)(p+ 1)− 6]
,

z∗M,2 =

√
(N + 3)(N + 5) [(N + 1)bM,2 − p(p+ 2)(N − 1)]√

8p(p+ 2)(N − 3)(N − p− 1)(N − p+ 1)
,

z∗S,1 =
(N + 1)(N + 3)

6(N − 2)
pbS,1,

and

z∗S,2 =

√
p(N + 3)(N + 5) [(N + 1)bS,2 − 3(N − 1)]√

24N(N − 2)(N − 3)
.

Further

bM,1 =
1

N2

N∑
i=1

N∑
j=1

[
(~xi − ~x)′S−1(~xj − ~x)

]3
,

bM,2 =
1

N

N∑
i=1

[
(~xi − ~x)′S−1(~xi − ~x)

]2
,

bS,1 =
1

N2p

p∑
i=1

ω− 3
2

i

N∑
j=1

(vij − ~vi)3

2

and

bS,2 =
1

Np

p∑
i=1

ω−2
i

N∑
j=1

(vij − ~vi)4 ,

where ~x = 1
N

N∑
j=1

~xj , S = 1
N

N∑
j=1

(~xj − ~x)(~xj − ~x)′, vij = ~h′i~xj , ~vi = 1
N

N∑
j=1

vij . Finally,

~xi, i = 1, . . . , N is the multivariate sample with N observations and the dimensionality

of ~xi is p. ωi and ~hi are eigenvalues and eigenvectors of the matrix S, respectively.

The test statistic MJB∗M has a χ2-distribution with f + 1 degrees of freedom,

where f = p(p + 1)(p + 2)/6. The null hypothesis (the data comes from p-variate

normal distribution) is rejected (in favor of the alternative hypothesis that the data do

not come from p-variate normal distribution) on a given significance level α if the test

statistic MJB∗M > χ2
1−α,f+1, where χ2

1−α,f+1 is (1−α)-quantile of χ2-distribution with

f + 1 degrees of freedom.

The test statistic MJB∗S has a χ2-distribution with p+ 1 degrees of freedom. The
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null hypothesis (the data comes from p-variate normal distribution) is rejected (in

favor of the alternative hypothesis that the data do not come from p-variate normal

distribution) on a given significance level α if the test statistic MJB∗S > χ2
1−α,p+1,

where χ2
1−α,p+1 is (1− α)-quantile of χ2-distribution with p+ 1 degrees of freedom.

A.7 Maximum Likelihood Estimation

The maximum likelihood estimation is a method used to estimate the parameters of

hypothesized statistical model. Let us have a sample of n independent and identically

distributed observations {~xi, i = 1, . . . , n}, that follow a certain parametric statistical

distribution f(·|~θ0). The parameter vector ~θ0 is unknown and MLE defines its estima-

tion from the sample ~xi by maximizing the likelihood function

L
(
~θ|~x1, . . . , ~xn

)
=

n∏
i=1

f
(
~xi|~θ

)
.

In practice one works with the logarithm of L. In that case it is maximized

lnL
(
~θ|~x1, . . . , ~xn

)
=

n∑
i=1

ln
[
f
(
~xi|~θ

)]
.
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Computation of Uncertainties

In this section I briefly describe the method used to compute the uncertainties for

L〈0.1,10 000〉 in table 5.4. The method is a widely known Monte Carlo technique (Gentle

2003).

Let us have a continuous function g = f(a1, . . . , aN ). Assume that the multivariate

error distribution function for the parameters a1, . . . , aN is a multivariate normal distri-

bution, NN (µ,Σ), where Σ is covariance matrix of the parameters a1, . . . , aN . Having

a random vector ~x, each of its component coming from the normal distribution N (0, 1),

correlated random vector ~b is computed as follows

~b = ~µ+ T T~x,

where T T is defined such that T TT = Σ. T is a Cholesky factor of Σ.

Now generate n random vectors ~bi, i = 1, . . . , n and for each compute ~gi = f(~bi).

Sample of vectors ~gi comes from the probability density distribution of g (gPDF).

To compute a confidence interval of the g, 〈glower, gupper〉, one need to choose the

lower and upper quantiles (qlower and qupper).

One may, by brute computational force, estimate the gPDF very accurately. The

accuracy is better for larger n. Reasonable results can be obtained with n ∼ 10 000.
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Selected Parameters from the

FERMIGBRST Database

The parameters selected from the FERMIGBRST database, which were used in the

calculation of the E〈0.1,10 000〉, Lave,〈0.1,10 000〉, L〈0.1,10 000〉 and the relevant k-correction

factors, are listed below. For their detailed description one should look on the web page

of the FERMIGBRST database1.

t90 flnc sbpl pivot
flux 64 flnc sbpl indx1
flux 256 flnc sbpl brken
flux 1024 flnc sbpl brksc
flux batse 64 flnc sbpl indx2
flux batse 256 flnc sbpl ergflnc
flux batse 1024 flnc sbpl ergflncb
flnc best fitting model pflx best fitting model
flnc band ampl pflx band ampl
flnc band epeak pflx band epeak
flnc band alpha pflx band alpha
flnc band beta pflx band beta
flnc band ergflnc pflx plaw ampl
flnc band ergflncb pflx plaw pivot
flnc plaw ampl pflx plaw index
flnc plaw pivot pflx comp ampl
flnc plaw index pflx comp epeak
flnc plaw ergflnc pflx comp index
flnc plaw ergflncb pflx comp pivot
flnc comp ampl pflx sbpl ampl
flnc comp epeak pflx sbpl pivot
flnc comp index pflx sbpl indx1
flnc comp pivot pflx sbpl brken
flnc comp ergflnc pflx sbpl brksc
flnc comp ergflncb pflx sbpl indx2
flnc sbpl ampl

Table C.1: Selected parameters from the FERMIGBRST database.

1heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
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Designations of the GRBs in the

GRBall and the GRBtrun

Samples

GRB080714086 GRB081130212 GRB090518244 GRB090912660 GRB100219026

GRB080714425 GRB081130629 GRB090519462 GRB090915650 GRB100221368

GRB080714745 GRB081204004 GRB090519881 GRB090917661 GRB100224112

GRB080715950 GRB081206275 GRB090520850 GRB090920035 GRB100225115

GRB080717543 GRB081206604 GRB090520876 GRB090922539 GRB100225249

GRB080719529 GRB081206987 GRB090522344 GRB090922605 GRB100225580

GRB080723557 GRB081207680 GRB090524346 GRB090925389 GRB100225703

GRB080723985 GRB081215784 GRB090528173 GRB090926181 GRB100228544

GRB080724401 GRB081215880 GRB090528516 GRB090926914 GRB100228873

GRB080725435 GRB081217983 GRB090529310 GRB090928646 GRB100301223

GRB080727964 GRB081221681 GRB090529564 GRB090929190 GRB100304004

GRB080730520 GRB081222204 GRB090530760 GRB091002685 GRB100304534

GRB080730786 GRB081224887 GRB090602564 GRB091003191 GRB100306199

GRB080803772 GRB081225257 GRB090606471 GRB091005679 GRB100307928

GRB080804456 GRB081226156 GRB090608052 GRB091010113 GRB100311518

GRB080804972 GRB081231140 GRB090610648 GRB091015129 GRB100313288

GRB080805496 GRB090101758 GRB090610723 GRB091017861 GRB100313509

GRB080805584 GRB090102122 GRB090610883 GRB091017985 GRB100315361

GRB080806584 GRB090107681 GRB090612619 GRB091020900 GRB100318611

GRB080806896 GRB090112332 GRB090618353 GRB091020977 GRB100322045

GRB080807993 GRB090112729 GRB090620400 GRB091023021 GRB100323542

GRB080808451 GRB090113778 GRB090621185 GRB091024372 GRB100324172

GRB080808565 GRB090117335 GRB090621417 GRB091024380 GRB100325246

GRB080808772 GRB090117632 GRB090621447 GRB091026485 GRB100325275

GRB080809808 GRB090117640 GRB090623107 GRB091026550 GRB100326294

GRB080810549 GRB090126227 GRB090623913 GRB091030613 GRB100326402

GRB080812889 GRB090129880 GRB090625234 GRB091030828 GRB100330309

GRB080816503 GRB090131090 GRB090625560 GRB091031500 GRB100330856
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GRB080816989 GRB090202347 GRB090626189 GRB091101143 GRB100401297

GRB080817161 GRB090207777 GRB090629543 GRB091102607 GRB100406758

GRB080817720 GRB090217206 GRB090630311 GRB091103912 GRB100410356

GRB080818579 GRB090222179 GRB090701225 GRB091106762 GRB100410740

GRB080818945 GRB090225009 GRB090703329 GRB091107635 GRB100413732

GRB080821332 GRB090227310 GRB090704242 GRB091109895 GRB100414097

GRB080823363 GRB090228976 GRB090704783 GRB091112737 GRB100417789

GRB080824909 GRB090301315 GRB090706283 GRB091112928 GRB100420008

GRB080825593 GRB090304216 GRB090708152 GRB091115177 GRB100421917

GRB080828189 GRB090306245 GRB090709630 GRB091117080 GRB100423244

GRB080829790 GRB090307167 GRB090711850 GRB091120191 GRB100424729

GRB080830368 GRB090309767 GRB090713020 GRB091123081 GRB100424876

GRB080831921 GRB090310189 GRB090717034 GRB091123298 GRB100427356

GRB080904886 GRB090316311 GRB090718720 GRB091127976 GRB100429999

GRB080905570 GRB090319622 GRB090718762 GRB091128285 GRB100502356

GRB080905705 GRB090320045 GRB090719063 GRB091201089 GRB100503554

GRB080906212 GRB090320418 GRB090720276 GRB091202072 GRB100504806

GRB080912360 GRB090320801 GRB090720710 GRB091202219 GRB100506653

GRB080913735 GRB090323002 GRB090725838 GRB091207333 GRB100507577

GRB080916009 GRB090326633 GRB090730608 GRB091208410 GRB100510810

GRB080916406 GRB090327404 GRB090802666 GRB091209001 GRB100511035

GRB080920268 GRB090328401 GRB090804940 GRB091215234 GRB100513879

GRB080924766 GRB090330279 GRB090805622 GRB091219462 GRB100515467

GRB080925775 GRB090403314 GRB090807832 GRB091220442 GRB100516369

GRB080927480 GRB090409288 GRB090809978 GRB091221870 GRB100517072

GRB080928628 GRB090411838 GRB090810659 GRB091223511 GRB100517132

GRB081003644 GRB090411991 GRB090810781 GRB091227294 GRB100517154

GRB081006604 GRB090413122 GRB090811696 GRB091230260 GRB100517243

GRB081006872 GRB090419997 GRB090813174 GRB091230712 GRB100517639

GRB081008832 GRB090422150 GRB090814950 GRB091231206 GRB100519204

GRB081009140 GRB090423330 GRB090815300 GRB091231540 GRB100522157

GRB081009690 GRB090424592 GRB090815438 GRB100101028 GRB100527795

GRB081012549 GRB090425377 GRB090815946 GRB100111176 GRB100528075

GRB081017474 GRB090426066 GRB090817036 GRB100112418 GRB100530737

GRB081021398 GRB090426690 GRB090820027 GRB100116897 GRB100604287

GRB081022364 GRB090427688 GRB090820509 GRB100118100 GRB100605774

GRB081024851 GRB090428441 GRB090823133 GRB100122616 GRB100608382

GRB081025349 GRB090428552 GRB090824918 GRB100126460 GRB100609783

GRB081028538 GRB090429530 GRB090826068 GRB100130729 GRB100612726

GRB081101167 GRB090502777 GRB090828099 GRB100130777 GRB100614498

GRB081101532 GRB090509215 GRB090829672 GRB100131730 GRB100615083

GRB081102739 GRB090510325 GRB090829702 GRB100201588 GRB100619015

GRB081109293 GRB090511684 GRB090831317 GRB100204024 GRB100620119

GRB081110601 GRB090513916 GRB090902401 GRB100204566 GRB100621452

GRB081118876 GRB090513941 GRB090902462 GRB100205490 GRB100625891

GRB081120618 GRB090514006 GRB090904058 GRB100207665 GRB100701490

GRB081121858 GRB090514726 GRB090904581 GRB100207721 GRB100704149

GRB081122520 GRB090514734 GRB090907017 GRB100210101 GRB100707032
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GRB081124060 GRB090516137 GRB090908314 GRB100211440 GRB100709602

GRB081125496 GRB090516353 GRB090908341 GRB100212550

GRB081126899 GRB090516853 GRB090909487 GRB100212588

GRB081129161 GRB090518080 GRB090910812 GRB100218194

Table D.1: Designations of the bursts in the GRBall sample (all entries). Bold
entries denote the bursts in the GRBz sample and entries in normal font denote the

burst in GRBtrun sample.
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