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Preface

It has been more than 180 years since the American poet H. W. Longfellow wrote
in his book Outre-Mer: A Pilgrimage Beyond the Sea often quoted and now
well-known sentence:

Music is the universal language of mankind.

He de�nitely was not the �rst nor the last one who had such ideas. Obviously, his
thoughts behind this sentence were something slightly di�erent at the beginning of
Romantic era than any explicit relation between music and language. Comparison
and search for similarities between music and language appear thorough the whole
history of science and art. The most probable prehistorical vocal origin of music,
from the non-linguistic utterances as expressing happiness or crying and weeping,
just supports the proximity of such relation.

Importance of the language-music relation can be seen on how often music
composers and theoreticians were interested in such question. A good example
can be the Czech composer Leo² Janá£ek who at the beginning of the 20th cen-
tury studied melody of speech in order to use natural melody of utterances in
his operas. For many years he collected �speech tunes� and rhythms of people
speaking around him and then he used them while composing.

On the other hand, for example the Russian-born American composer Igor
Stravinsky was convinced that music cannot be treated as a language at all. In
his Chronicle of My Life he claimed that music is powerless to express anything.
In The Birth of Tragedy from the Spirit of Music Friedrich Nietzsche said that
music is totally incomparable with language too, but his reasons were exactly
opposite. He believed that music has a really strong expressive power and that
any words �cannot bring us one step closer to the deepest meaning of music�.

It is mostly my personal intuition that tells me that studying the relation
between music and language could be useful. My experience from learning music
strongly reminds me experience from learning foreign languages and a way of
thinking about musical composition, especially while performing a piece of music,
is very similar to thinking about language.

Thomas Kuhn claimed in his The Structure of Scienti�c Revolutions that
science seems to be so successful because it focuses only on problems � puzzles,
requiring nothing more than enough invention and wit. Following this advice, I
will put aside the big thoughts of previous paragraphs and I will try to at least
slightly contribute to few puzzles concerning application of Natural Language
Processing methods in music processing. Doing so, using all the rigorous and
�dry� techniques I hope I will manage not to forget that music is an art at the
�rst place � art with a strong proportion of Dionysian element � best described
by quotation from Nietzsche's The Birth of Tragedy from the Spirit of Music:

Even under the in�uence of the narcotic draught, of which songs of all
primitive men and peoples speak, or with the potent coming of spring
that penetrates all nature with joy, these Dionysian emotions awake,
and as they grow in intensity everything subjective vanishes into com-
plete self-forgetfulness.
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Introduction

As previously mentioned in the preface a lot of people have been thinking about
how similar language and music are. There exist many views on that problem
� linguistic, musical, philosophical, the information theory one. The research in
this �eld can take very di�erent directions � an example can be a neurological
study [1] showing that the human brain activity measured by magnetic resonance
during a jazz improvisation when musicians react to each other is very similar
to the brain activity during a spoken dialog. On the other side of spectrum of
possible approaches, Dobrian in [2] sees as the most signi�cant similarity that
both for language and music, the western civilization developed sophisticated
written forms and uses this observation as a basis for other ideas.

The written form meant in [2] was the western musical notation. Despite
being very elaborated, it is never able to capture all performing aspects, and sim-
ilarly to prosody in language, its interpretation is culturally dependent. The only
parts of musical performances precisely captured in the notation are the pitches
of individual notes and the rhythm, again with some exceptions. Usually, the
dynamics and some other interpretative remarks, which can be hardly formal-
ized, are mentioned in the score too. The notation is not the only way how to
formally capture these features of music. Except the classical notation, punched
tapes were used to program orchestrions and player pianos from the 19th century,
and the same principle was used a century later in MIDI �les. Both of them can
be vaguely called a programming languages for music playing machines.

In the rest of the thesis, we silently assume that music notation has a lot in
common with the written language, but this could and also should be a topic for
a deep discussion. Music is considered to be a semiotic system in the Saussurean
sense and a lot of work has been done in this area since the second half of the
20th century. At least this fact can somehow justify our assumption that notes
can be treated similarly as graphemes in language.

The Natural Language Processing (NLP) focuses mainly on the written form
of languages. In the last twenty years the statistical NLP methods became
very popular in a large number of applications and outperformed the tradition-
al knowledge-engineering-based methods in many tasks. In these days, methods
based on the theory of probability and the information theory are used in vari-
ous applications including speech recognition, information retrieval and machine
translation.

The theoretical foundations of statistical NLP are largely based on the infor-
mation theory. In some way it is natural to use the information theory while
thinking about music as well. Meyer in [3] provides strong arguments for treating
music like this, which were later in 1990s partially con�rmed by experiments by
Manzara et al. in [4].

Previous thoughts lead us to the main goal of this thesis, which is to explore
possibilities of using statistical NLP methods in processing music and discuss
areas where such methods can be useful. For the simplicity we focus only on
the western music and only on its melody as the prominent perceptional feature
which is understandable for everyone without necessity of having any musical
education. A melody model using techniques from language modeling as an
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experimental practical application of these thoughts was developed, and further
used in the Audio Melody Extraction (AME) task.

A lot of work in this �eld has been done � from theoretical works from the
�early time� of the information theory in 1950s to practical applications in recent
time. Deeper theoretical insight and summary of previous work in this �eld is
provided in the chapter 1.

The following chapter describes ways of extracting symbolic melody from MI-
DI �les. Language modeling techniques are used to create a melody model and
further methods of processing the symbolic melodies data are proposed.

In the last chapter a practical usage of the model on an AME task is shown.
Performance of the system is compared with the state-of-the-art techniques.
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1. Related Work

In this theoretical introduction we focus on the linguistic and information theory
views on music and the western music notation. These directions of thinking
about music are the most important for this thesis. We do not include any
Digital Signal Processing (DSP) theory in this chapter and focus only on the
abstract view on music and its symbolic notation. The DSP is brie�y discussed
in Chapter 3.

1.1 More Detailed Theoretical Insight

There are some apparent analogies between linguistic theories and musicological
theories. Currently widely used tonal theory of music, developed by a German
musicologist Heinrich Schenker at the beginning of the 20th century, uses a system
of transformational rules very similar to those which introduced Noam Chomsky
in his theory of generative grammar in 1957. A deeper analogy between the gen-
erative grammar and the tonal music theory was developed later by Lerdahl and
Jackendo� in [5], where the tonal musical theory is fully formalized. Despite be-
ing Chomsky's student, Jackendo� was skeptical about all Chomsky's linguistic
theories considering them to be too �syntactocentric�, and in linguistics sympa-
thized more with the cognitive semantics school. The cognitive semantics is a
part of the Cognitive Linguistics Movement. It rejects the traditional separation
of linguistics into phonology, syntax, pragmatics, etc. and claims that the deep-
est underlying layer for utterances is the deep semantics from which everything
is generated. These opinions are re�ected also in the Generative Tonal Music
Theory, where the authors focus more on describing the mental representation
of music than on grammar, which is treated just as a consequence of the deeper
levels.

A research about composer recognition [6] brought a table summarizing the
analogies between particular levels of NLP and music processing (see Table 1.1).
This distinction of levels is still a little bit ambiguous and can make an impression
of being inconsistent in some cases. For example Bod in below mentioned research
[7] about parsing melodies into phrases (see Section 1.4) works on a syntactical
level according to this table, the same as the melody model we introduce in
Chapter 2 which stays much more on surface.

text processing music processing

phonetics recorded voice recording
phonology phonemes of the language separated notes
morphology word structure notes in the score
syntax word order n-grams, note order
semantics word meaning, POS harmonic functions
pragmatics meaning of sentences musical phrase structure
discourse context of a text interpretation of a piece

Table 1.1: Levels of NLP and music processing (copied from [6])

6



Di�erent mapping between the linguistic layers and music is brought by the
famous conductor Leonard Bernstein in his series of lectures [8] from 1970s. He
considers the notes to be phonemes, motifs to be morphemes, musical phrases
words, sections clauses and movements to be sentences. Besides that he suggests
a hypothesis that the melodic motifs can play the role of subjects whereas the
accompanying harmony the role of predicates. He stresses the vocal origin of
music which gives the music and language a common grounding. He sees s the
biggest di�erence that languages can have both the communication and aesthetic
function whereas the music has only the aesthetic function and is therefore a
pure poetry. He considered the poetry itself to be a super-surface layer of the
language generated by a set of transformation rules from the usual surface layer
� the prose. The situation with music is di�erent in this sense because the only
observable layer is the super-surface layer and the deeper layers remain hidden
for listeners.

In many ways similar ideas were experimentally con�rmed in [9]. In this study
n-grams model is created from pieces parsed into elementary motifs. Listeners
are supposed to have �stored� the motifs in a lexicon the same way as words
of language. These motifs then create the musical phrases which are claimed
to be equivalents of sentences. This approach can be seen as a re�ection of a
more lexical approach in formal linguistics. A very detailed lexicon of motifs was
manually created for this purpose but unfortunately is not publicly available.

A big di�erence between linguistics and musicology, mentioned both in [8] and
[2] is that musicology has bigger in�uence on the music than linguistics on lan-
guages. Composers use the theoretical �ndings in their work and the theoreticians
use existing pieces as a source of their research. This is so apparent that Dobrian
in [2] calls that situation an egg-chicken confusion. Similar phenomena appear
in languages just in exceptional situations as was the time of the Czech National
Revival movement activity in 19th century for the Czech language, or 19th century
in Norway where similar situation led to current existence of diglossia.

It was already mentioned that the capability to transfer meaning and its ex-
plicit use in communication is a typical language property. According to [2], music
can certainly have a non-musical meaning, usually expressed by clichés, but most-
ly it has just the musical meaning, sometimes called the implicit meaning. Having
said this we should clarify what the meaning in music is. In contrast to language,
music lacs functional semantics. Of course, sometimes music is supposed to ex-
press some non-musical content, but it is usually limited to onomatopoetic-like
�pictures� or invoking a particular mood.[16]

There have been several ways to approach music semantics since the half of
the 20th century, usually corresponding with what was the mainstream paradigm
in the language semantics. The paradigm shift can be illustrated on examples
of two characteristic papers, �rst from 1980 [10], second from 2010 [11], both of
them claiming they were a novel approach to music semantics and that they build
upon the state-of-art techniques in NLP.

In the �rst one, usage of Conceptual Dependency representation is suggested
for music. In such representation, sentence �Mary took John a book� is written
as: (PTRANS (ACTOR MARY) (TO JOHN) (OBJECT BOOK)). For the case of mu-
sic semantics a set of semantic primitives was designed. It contains harmonic
functions and their modi�cationsca, information which note from the melody is
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rhythmically accented etc. An implementation of such system is discussed, but
was probably never done.

In the newer one of the mentioned papers, the WordNet semantic network
was used to create an ontology of tags users assigned to songs and their parts on
web services like Last.fm. Then various machine learning classi�ers were trained
to tag unseen songs to provide the high-level semantic information � e.g. where
is the refrain of the song, to what style does it belong, what is the mood of the
song, where are the dramatic moments etc.

Having seen examples of how music semantics can be approached we can now
come up with more abstract views on musical semantics. Very in�uential, almost
exclusively information theory based approach to musical semantics is introduced
by Meyer in [3]. It is a theoretical work with aesthetic and philosophical back-
ground. Despite this view was suppressed by more Chomskian-like approach for
almost three decades, recently it became frequently cited. Meyer thinks that
musical meaning manifests itself in confrontation of the listener expectation and
perceived reality, which leads to a straightforward use of information theory. He
uses the following de�nition:

Musical meaning arises when an antecedent situation, requiring an
estimate as to the probable modes of pattern continuation, produces
uncertainty as to the temporal-tonal nature of the expected consequent.

Three stages of developing a meaning by the listener are distinguished. The
hypothetical meaning is derived basically just by admitting information. Just
a deviation in an expected consequence is perceived � something less probable,
but still possible in the particular style. The evident meaning is based on a
mental feedback, it provides backward understanding of what just happened. We
can say it is a result of �nding that the situation was actually much higher in
entropy than it was originally thought to be. Final stage of perceiving musical
meaning is deriving the determinate meaning. It means understanding music on
the architectonic level � di�erent themes and phrases are recognized and given
into a broader context.

From this point of view, music can be modeled as a Markov process. It is
important to mention that not a simple n-gram based model as is used in this
thesis, but a much more complex model is meant, which can capture also the
determinate meaning. The big information redundancy in music is caused by the
non free choice of symbols and is therefore similar to what we can observe in
language. In language, grammar rules are the reasons for this, whereas in music
cultural rules play important role. Meyer calls this redundancy �cultural noise�.

Being familiar with Meyer's conclusions and some later practical applications
using information theory (some of them are mentioned in 1.3), Dobrian in [13]
does not support information theory view on music. He claims that the key to
understand music is not in trying to �nd structures in the music itself, but to
properly model the listeners perception which according to him cannot be reduced
to quanti�cation of listeners expectation in form of probability distributions. He
illustrates this idea on a thought experiment. When people come to a piano con-
cert and hear a following beginning of the piece:
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G ˇ > ˇ > ˇ > ˇ
,

they would probably expect to hear the same note again. Considering the Oc-
cam's razor to be a natural way of critical thinking, Dobrian concludes there can
hardly exist a cognitive model based on expectation not predicting the same note
again. The whole piece would then be expected to consist just of separated g′

notes, which would certainly be a false expectation.
This point of view, probably in�uenced by a general skepticism to quantita-

tive methods in social sciences and humanities starting in 1990s, underestimates
possibilities of how a statistical model can look like. Still, it indicates possible
limitations of information theory approach, especially the problem of very sim-
plistic models. He may be right in the sense that Markov processes in general are
not strong enough to capture also the determinate meaning in music, similarly
as the language modeling tools fail to capture long distance dependencies within
sentences or even within whole texts. Anyway, developing musical meaning from
expectation can be considered to be a valid paradigm now in all NLP-like musical
applications.

Further arguments for information theory usefulness are presented by Man-
zara's and Witten's experiment in [4]. It is a music remake of the famous experi-
ments Claude Shannon made at the end of 1940s and in early 1950s with written
English.[12]

Shannon's goal at that time was to compute information redundancy of print-
ed English. In the experiment people were asked to try to guess a letter following
in a text while seeing all the previous letters, until they guessed right. The
perceptional entropy of English language was estimated from that data.

Melodies of Bach Chorales were used for the music version of this experiment.
People who participated in the experiment were trained musicians, all of them
familiar with Bach's music. The musicians were chosen to avoid higher entropy
caused by surprise of participants who were not familiar with the style of the
music. Harmony was totally eliminated and rhythm was known beforehand, so
the only feature being guessed was the pitch of the melody notes. Results show
that an information theory approach similar to the language one can be easily
applied and can help to characterize the short-term structure of music.

A computational model for the Bach's chorales in [14], which was a linear
combination of n-gram models using various ways of parsing the scores, led to a
little bit higher entropy. The observed di�erence between the human cognitive
model and computational model is comparable with the Shannon experiment with
English. Using n-grams statistics, the hypothetical and partially also the evident
meaning from the Meyer's hierarchy can be captured. This shows computational
models do not have to be much complex to provide satis�able results. The model
in [6] using music parsed by beats which is based only on simple n-grams gives
also good results. In that study it was experimentally discovered that best results
are obtained with 7-grams, which is history of approximately 2 bars, which corre-
sponds to Meyer's estimate of human memory in deriving hypothetical meaning.

Another interesting fact considering the similarity between music and lan-
guage was observed in several studies. The distribution of musical phrases in
classical pieces (see [6]), chords in popular music (see [15]) and also individual
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notes (with a very detailed feature set) in most of the classical pieces for piano
and organ [16] satis�es the Zipf-Mandelbrot law.

1.2 The Role of Melody

Because in this thesis we work with melody extracted from the polyphonic scores
we should also discuss the role of melody from a more theoretical point of view.

According to the The New Grove Dictionary of Music the melody has a fol-
lowing de�nition [17]:

Melody, de�ned as pitched sounds arranged in musical time in accor-
dance with given cultural conventions and constraints, represents a
universal human phenomenon traceable to prehistoric times.

Even though the melody is one of the fundamental aspects of the music com-
position, sometimes it is di�cult to say what exactly the melody is, even for
the human listeners. In more complicated compositions (as symphonies or other
big classical pieces) the melodic motifs often overlap and in some parts harmony
plays much more important role than the melody. On the other hand, in case of
simpler compositions (folk music, popular music, simpler classical pieces), it is
the melody what is most important for listeners and it is almost unambiguous.

Melody is one of the simplest features of music, relatively clearly de�ned and
understandable for everyone. This may be one of the reasons why melody is very
often a subject of computational analyses of music. Because of their theoretical
knowledge and cultural experience trained musicians usually do not have problems
to assign a suitable harmony to any melody. Assuming the knowledge of harmonic
rules, harmony must be somehow encoded in the melody, even though not entirely.
We can think of melody extraction as of a loss compression of a piece. All the
further processing of the melody of a piece means some loss of information which
is unfortunately often vital for the listeners music experience. No matter how
interesting the conclusions of melody analysis can be, it is unlikely to bring us
closer to understanding human perception of music which is probably the hidden
ultimate goal of any computational analysis of music.

In [18] Umberto Eco blames the mass culture for reducing very complicated
pieces of music, like classical symphonies, to simple melodies one can whistle.
Making this �brutal� simpli�cation a lot of the composers' intentions is totally
ignored. On the other hand, melody is still a fundamental aspect of music. The
possibility to extract and represent it quite easily, makes it a perfect object of the
computational analysis. Furthermore, even in case of complicated compositions,
melody is something that one can sing to each other in order to refer to a partic-
ular part of a composition or that can be used as an identi�cation sign in music
retrieval system. Therefore studying it is useful also from the practical point of
view.

1.3 History of Computational Music Processing

Development of paradigms in the music processing during its history follows
the paradigm development in computational linguistics and in other arti�cial-
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intelligence-like �elds of study. After some initial experiments with the informa-
tion theory in 1950s and 1960s, simple systems using the hand-written rules ap-
peared. Researchers mostly preferred the knowledge-engineering approach which
led to hardly any generally and easily applicable results. The increase of availabili-
ty of computational capacity allowed statistic-based systems to grow in popularity
from 1990s till nowadays.

Pearce in [19] mentions a work of Lejaren Hiller and his colleagues from 1960s.
They made a deep information theory analysis of a quite restricted domain of mu-
sic compositions � Mozarts' and Beethovens' sonatas and one Anton Webern's
symphony � and found signi�cant regularities. Based on that they were able to
infer a lot of mathematically formalized rules that apply in these compositions.
Few years before that Hiller together with Leonard Isaacson had created a soft-
ware using textbook rules of harmony, voice leading, and style which imitated
pieces of German composers from 19th century. The authors described the results
as boring pieces which sounded like having been composed by a forgotten Ger-
man country composer. Soon after that another algorithmic composition projects
came (see [20]), usually working on the same principle.

These relatively good results led to optimism in 1960s and 1970s when re-
searches believed that the music processing tasks could not be so di�cult and
that at least some tasks like style recognition could have soon achieved a good
solution. A lot of domain restricted prototypes were developed at that time. The
paper [21] shows how demanding developments of such a system can be on an
example of a magni�cent work by David Cope who has patiently derived gram-
mars and logics for di�erent styles of composition and using them he was able to
generate music in the style of Bach, Beethoven, Mahler and others. It took him
more than 20 years to make the system work well. The �nal result was presented
in 2001.

The development of the MIDI format which �rst appeared in 1983 was impor-
tant moment for the music processing. It is a binary format originally designed for
the instrument interconnection, later used also for storing the music. It contains
the same kind of information as the classical notation does � which instrument
plays, times of starts and ends of notes, their loudness, current position of the
sustain pedal etc. The format captures a life performance for further processing.
It became the dominant standard for storing symbolically written music. As a
consequence of that a lot of data of all music styles is now available in this format.

At the end of 1980s and in 1990s the neural networks raised in popularity
in the arti�cial intelligence �elds of studies. Some music related research papers
using neural networks also appeared. [27] [28]

In the recent research almost exclusively statistical methods are used. Some-
times we can �nd the term empirical induction methods used to stress the fact
that all knowledge is inferred just from data.

Except the n-gram approach which is discussed in a more detailed way in the
next section, dictionary based approach appears in some applications. First a
dictionary of possible melody motifs is used to �nd the most probable parsing
of the melody and then these motifs are treated as states of a Markov chain.
Dubnov et al. in [9] use this technique successfully for the style recognition on
MIDI �les in a wide range of pieces from early renaissance and baroque music to
hard-bop jazz.
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Hidden Markov Models are used in programs M and Jam Factory by David
Zicarelli from 1987 [29] which generate jazz solos based on the MIDI input they
receive. Big progress in this area was brought by an experimental software The
Continuator [30] developed by Sony Computer Science Laboratory in Paris in
2002. The software continues with the music it received via a MIDI sequencer in
a real time. Very e�cient pattern recognition mechanism based on pre�x trees
was designed for analysis of the input in real time. On its webpage1 there is also a
short information about this program passing a �music version of the Turing Test�.
People taking part in the experiment were asked to determine which performances
are completely done by humans and which were from a certain moment machine
generated. The result was that the number of correct answers was not signi�cantly
higher than the number of false answers.

Seeing all of the history from todays perspective Cont in [21] thinks that
the biggest problem of all these applications was that they were very domain
restricted and did not cover the usual way of humans thinking about music. By
that she meant mostly switching the cognitive model according to larger context,
which actually means changing the perceived style. In overcoming this problem
of switching models she sees the crucial step in further development of music
processing. Her conclusions also correspond with Meyer's idea that just simple
studying of n-grams cannot describe the whole structure of a piece of music and
that di�erent musical styles are di�erent �languages� where di�erent rules hold.

1.4 An Overview of Recent Work

In this section we will describe recent applications of the NLP-like methods in
music processing. The mentioned tasks cover most of the music processing prob-
lems being currently solved. The tasks are provided with an example solution
on which the principles are shown, but an exhaustive overview of state of the
art methods is not provided. It is typical for most of the mentioned works that
they do not use explicitly any of the linguistic formalisms and usually use n-gram
statics in a similar manner as they are used in NLP.

From the view of the classical linguistics which considers all morphology, syn-
tax and semantics, it is still a little bit surprising how well can n-gram models
describe the language. This gives us a strong hope that in music, where an imme-
diate expectation plays an important role in the human perception, the n-gram
model could be successful as well.

One of the most interesting uses of linguistic methods is Rens Bod's work [7]
about creating probabilistic grammars for melodies of folk songs based on the
Essen Folksong Collection.

The Essen Folksong Collection [22] is a corpus of melodies of mostly European
folk songs. Except other information (origin, lyrics etc.) it contains hierarchical
structures of phrases, because natural parsing of melodies into phrases di�ers
among di�erent nations. Basically it is a treebank for folk song. Melody is
represented relatively to the tonality as do, re, mi etc. syllables.

Bod tried various ways of creating a probabilistic grammar for folk song phras-
es trained on the collection. Using an extended version of Markov Grammar

1http://csl.snoy.fr/∼pachet/Continuator
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Figure 1.1: An example of phrases parsing of the beginning of the Mozart's G
minor Symphony

Technique he achieved precision of 86% on the test data randomly chosen from
the collection.

In this work we can see a similar approach as in a work of Dubnov [9], but
Bod could avoid using the dictionary of motifs and use just n-grams because he
had additional information from the phrase structure annotation.

Bod considers the notes to be equivalents of graphemes or phonemes and tries
to infer syntactic rules for them. What is called syntax in this paper is in fact
something as a generative morphology gradually changing to a generative syntax.
Moreover, these grammars were build on the folk music where assigning the har-
mony to the melody can be done almost unambiguously. The trained grammars
in fact use the harmonic and melodic information simultaneously. Anyway, this
seems to be the only study which attempted to use machine learning to build
some music grammars. These can be utilized in the AME.

In [6] n-gram statistics are used for composer recognition task. A table of
melodic and rhythmic trigrams called a �pro�le� is computed for each piece and
compared with reference pro�les compiled from sets of pieces of particular styles.
The style having the closest pro�le to the examined piece's pro�le is then assigned
to the piece. Despite being relatively simple, the method achieved very good
results. The paper also contains a detailed theoretical introduction about using
analogies between NLP and music processing.

In recent years a big progress in a lot of music processing methods has
been done thanks to the annual contest Music Information Retrieval EXchange
(MIREX). The contest covers a large spectrum of both symbolic processing and
DSP tasks, in particular there are: audio artist identi�cation, audio chord de-
tection, audio classical composer identi�cation, audio genre classi�cation, audio
melody extraction, audio music mood classi�cation, query-by-singing/humming,
query-by-tapping, real-time audio to score alignment and symbolic melodic sim-
ilarity. In two other symbolic processing tasks and symbolic genre classi�cation,
symbolic key detection, no one participated in last seven years.

However, these two problems were mostly approached as a machine learning
problem where features like interval frequency, frequency of syncopations were
used to train various machine learning classi�ers.

Algorithms for symbolic genre classi�cation often use n-gram statistics as in
case of [6]. Almost the same method was used for example in [23]. More infor-
mation retrieval methods and similarity metrics were explored in [24], submission
by authors of the previous study [6]. A hierarchical index based on n-grams is

13



shown in [25]. The most successful algorithm [26] and many others use a totally
di�erent approach. The melodies are interpreted geometrically as curves in a
two-dimensional plain and by comparing curves produced by this transformation
the genre to which the piece belong is determined.

1.5 Summary

Unfortunately, in this theses we did not manage to do a theoretical research
which would be deep enough to �rmly say what exactly the relationship between
language and music is. The history of computational processing of music gives
us hope there are some deep theoretical connections giving raise to possibility of
successful applications of linguistic tools as grammars or n-gram statics in music
processing.

Both �elds also experienced very similar development of scienti�c paradigms
in the second half of the 20th century. Statistical methods now applied in com-
putational linguistic are much more likely to be applied in music processing than
earlier methods relying heavily on the linguistic formalism. This may lead us to
unsubstantiated speculations that using statistical methods may bring us closer
to revealing some very basic common features of music and language. Maybe
only the arbitrarily chosen scienti�c views of linguists and musicologists on their
�elds of study prevent us to see such connections directly.
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2. Symbolic Melody Processing

The aim of this chapter is to describe and discuss extracting melody from poly-
phonic symbolic data and further processing of such melodies using techniques
common in NLP.

Unfortunately, there is no general corpus of raw melodies available except the
Essen Folksong Collection [22] (described in 1.4), which focuses on folk songs.
A useful dataset was created for purposes of [31]. It is a training corpus for
melody track identi�cation consisting of more than 700 hours of classical, popular
and jazz music. However, only the potentially polyphonic tracks containing the
melody are annotated, not the melodies themselves. Besides that, a big amount
of unannotated data is freely available on the Internet. Melody extraction from
such data is described in the next section.

On the extracted melodies various NLP method can be applied, among them
language modeling as the most straightforward use of the data. In Section 2.2
building of a statistical melody model from the data by the language modeling
techniques is described and evaluated.

Another possibilities, unfortunately remaining beyond the scope of this thesis,
are unsupervised �word� segmentation and parsing which can be used to create
grammar rules as in [7] possibly applicable in the audio melody extraction. Semi-
otic and musicological analysis of all previously mentioned methods can be also
very interesting. These ideas are brie�y described in Section 2.3 despite not being
supported by any experiments.

2.1 Melody Extraction

Because of the lack of the pure melody data, the �rst step in preprocessing of
the symbolic melody data must be the melody extraction from the MIDI �les.
By extracting the melody we mean computing a sequence of consecutive notes
represented just by their pitch and duration, which is supposed to be as close
as possible to what humans perceive as a melody. Interpretative aspects of the
performances such as dynamics and tempo changes are neglected as well as all
the music background information contained in the harmony.

2.1.1 State of the Art

The melody extraction from polyphony is an important task in Music Information
Retrieval (MIR) and several algorithms have been developed. Widely used skyline
algorithm (introduced in 1998 [32]) follows the simple psychoacoustic fact that the
highest pitched note in the polyphony is usually a part of the perceived melody.
The simplest implementation of the algorithm leads to frequent changes of pitches
in the estimated melody which have very disturbing e�ects for the listeners. Later
some heuristics to get rid of the negative properties of the algorithm appeared.
The skyline algorithm also fails on complicated orchestral music, where violins
often play the highest pitches despite the main melody being played by lower
pitched, but louder instruments. An example of an algorithm result for a simple
piano score is in Figure 2.1.
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Figure 2.1: An Example of the algorithm from [32] applied on simple piano score.
Figure copied from [34]

Another approach is selecting a track containing the melody most likely. Some
algorithms are based on the assumption that the track with the melody is the
loudest one or that it has the highest entropy. This assumes that the melody
is richer in information than the accompanying instruments. Anyway, this ap-
proaches fails if the melody is split into more tracks. Later, more complex al-
gorithms combining properties of these two approaches appeared. One of the
most complex ones [33] uses the agglomerative clustering on pitch histograms to
group similar tracks. From each track cluster a track with the highest entropy is
chosen and a modi�cation of the skyline algorithm is applied just on the selected
tracks. Despite the declared accuracy of more than 90%, the empirical evaluation
of our implementation of this algorithm on our dataset gave very poor results.
An example of applying this algorithm on the same score as the previous one is
in Figure 2.2. Only the modi�cation of the skyline algorithm is apparent in the
�gure.

Figure 2.2: An example of the algorithm from [33] on the same simple piano score
as in Figure 2.1 copied from [34].

The algorithm [31] which reported the highest accuracy in selecting the melody
track is based on supervised machine learning techniques. The training data for
the algorithm consist of 3,000 MIDI �les downloaded from the Internet. Tracks
in these �les were manually annotated whether they contain the melody or not.
The corpus consists of 331 �les of classical music, 1,223 of jazz music and 1,360
karaoke accompaniment �les of popular music.

From each track a set of features described in Table 2.1 is extracted. For all
the features, except those in the category of track information, there is also a
normalized form where the normalized value of feature v in track i in �le F is
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category features
track information normalized duration

duration relative to other tracks in the �le
number of notes
relative duration of non silence
relative duration of polyphony moments

pitch highest
lowest
mean
standard deviation

pitch intervals number of di�erent intervals
largest
smallest
mean
mode
standard deviation

note durations longest
shortest
mean
standard deviation

Table 2.1: Overview of features used for the melody track identi�cation, taken
from [31]

v
(norm)
i =

vi −minj∈F vj
maxj∈F vj −minj∈F vj

.

From each style 200 �les were chosen as training data and the rest of them as
test data. The training data consisted of the most unambiguous cases according
to the annotators. The random forest classi�er turned to be the best performing
one for this task (probably because the feature set is quite large and the chosen
method does not su�er from the curse of dimensionality). It also showed up that
the classi�er gives the best performance when it all the train data joined together.
The paper reports the average successful melody track identi�cation percentage
of 81.2%.

2.1.2 The Used Algorithm

Thousands of MIDI �les from Classical Piano Midi Project, The Classical MIDI
collection, web page of Music Files ltd., server Free MIDI and the Mutopia project
were downloaded. See Table 2.2 for overviews of the �les by styles. To these 556
hours of raw MIDI �les, 161 hours of MIDI �les from the corpus with annotated
melody tracks from [31] were added.

Previous empirical evaluation of the result of the skyline algorithm with some
added heuristics showed that such algorithm can be successfully used only for �les
which are relatively simple. After an unsuccessful experiment with [33], method
from [31] was used to select the melody tracks.
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3.3 Repetition Structure of Music 

Music is generally self-similar [5], and many songs have a 
repetitive structure consisting of two or three similar verses. 
Figure 3 shows the ratio of songs that contain identical parts 
within themselves, with the song chopped up into overlap- 
ping parts every four beats with a length of 16 beats. The 
figure shows that  about 50% or 60% of the parts of the songs 
are exactly the same. This implies that  many songs may 
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Figure 3: Ratio of songs that have a x% identical portion. 

have a second verse. Most of the songs that  have a high ra- 
tio of repetition ( i.e., more than 80%) are highly rhythmical 
songs, such as dance music, and very easily learned songs, 
such as cheering songs for sports events. 

3.4 Tempo Analysis 

When people sing, they themselves decide what tempo to 
maintain, and it may well happen that the tempo they 
choose is not the same as that  of the song in the database. 

Figure 4 shows the distribution of the tempo of all the 
songs. We found that the faster a song is, the more people 
will use a tempo that is only half the correct one. This point 
is also relevant to the discussion in Section 3.2. 
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Figure 4: Distribution of tempo of all songs. 

Why is that  people sing a faster song at a tempo that  
is half the correct one? Let us consider two songs, A and 
B (Figure 5 - 6). The tempo of song A is 180 and that  
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Figure 5: Segment of song A. The tempo is 180. 

t 2 a 4 5. 

Figure 6: Segment of song B. The tempo is 90. 

of song B is 90. These songs may seem to be very different 
from each other, but they are performed in the same way 
with respect to the note length. This is because an eighth- 
note in tempo 90 is performed with the same length as that  
of a quarter-note in tempo 180. 

3.5 Interval Distribution 

Generally, there is not a wide range of difference in the pitch 
between successive notes in many songs. Figure 7 shows the 
distribution of the pitch difference between successive notes. 
In MIDI data, a difference of a half step is represented with 
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Figure 7: Distribution of the pitch difference between successive 
notes. 

the numeral 1, so +12 represents a tone an octave higher, 
and-12  represents a tone an octave lower. 

As shown in Figure 7, the difference in successive notes is 
concentrated in 0, -2, and +2. This means that  most of the 
notes are either the same or within one step of each other. 
Another interesting point is that  the difference for six half 
steps is much less than that  for 5 or 7. This interval is called 
"tritone" and is the most dissonant interval. 

4 Music Retrieval System 

This section describes how we generated a query-by-humming 
system based on the analysis in Section 3. 

4.1 Database Construction 

We chose MIDI music data for the database elements. A 
lot of MIDI music data, including the latest pop hits, can 
be easily obtained in Japan because of the popularity of 
kaxaoke. MIDI music data  can be regarded as musical indi- 
cators for each channel. Most karaoke recordings store the 
melody data on one channel. This allows the melody to be 
easily recognized. 

To construct a music database, the melody data have 
to be extracted first. Currently, only melodies are used 
for matching because most people remember a song by its 
melody. 

Then, the song is analyzed according to its tempo. As 
described in Section 3.4, for faster songs users tend to choose 
a tempo that is half the correct one. Thus, for fast tempos, 
two copies of the song data are made: one at the correct 
tempo and another at half that  tempo. As a result, users 
can retrieve the same song by humming at either tempo. 

Next, all the chords are deleted. A chord here means 
"notes that  partially overlap each other in time". Chords 
that are found in accompaniments are not included because 
the melody data are extracted by the process described 
above. Most of the chords are made from a succession of 
notes that partially overlap (overlaps are included as MIDI 
performance effects by the manufacturer). However, most 
people cannot sing two tones at  the same time when they 
hum. Thus, chord deletion is done to enable the melody data  
information to be coordinated with that from the hummed 
tunes. The note in a chord that  occurred earliest is deleted. 
For example, if note B begins to sound while note A is sound- 
ing, the note A part of the chord is deleted (see Figure 8). 
If two notes start to sound simultaneously, the higher note 
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Figure 2.3: Interval histograms of melodies from popular music songs in our
corpus (on the left) and interval histogram copied from [36] (on the right)

The skyline algorithm is then applied on the tracks either classi�ed as melodic
by the classi�er or manually annotated in the corpus. Despite the reported success
rate of 81.2% in detecting melody tracks in MIDI �les, the classi�er was able to
�nd the melody only in 63 % of �les with classical music and in 47% of �les with
popular music in our corpus. On the other hand, while listening to the results it
seemed that the tracks were selected very well. The algorithm probably su�ers
from low recall, while having relatively high precision. Because the classi�er
captures the melodicity of tracks very well, we allow the classi�er to select more
tracks from a single �le as the melodic ones. In the classical music �les the
tracks often alternate at containing the melody, therefore it is relatively frequent
phenomenon that more tracks are classi�ed as melodic.

The psychoacoustics based heuristic from [35] is used. Notes shorter than
0.02 s are removed and notes longer than 2 s are shortened to this length. As
another heuristic all notes having the pitch lower than small g are removed.

Then the skyline algorithm is performed in the way it was used in Kosugi's
MIR system [36]. It means that notes which are at least at one moment the
highest in the score are selected to be a part of the melody. Then the notes
are shortened to end at the latest at the moment the next selected note starts
regardless of which one is higher.

The melody tracks may contain a lot of silence. Therefore the long periods of
silence are cut out from the tracks. That splits the melodies into more melody
snippets. Only snippets containing at least 8 notes are kept.

From 10,420 MIDI �les of total length 716:52:16, 22,612 melody snippets were
extracted of total length of 408:03:35. An overview of the amount of available
data sorted by genres is presented in Table 2.2.

It is di�cult to evaluate the performance of the algorithm precisely without
having painstakingly created test data. Listening to randomly picked melodies
revealed that the extracted melodies might not be exactly what listeners perceive
as the melodies in the particular pieces. Still, the results sound always very
melodically and �t to the styles and composers they belong to.

Another argument to support the opinion that the algorithm performs reason-
ably well may be the comparison of the interval histogram with the one presented
in [36]. The paper depicts the histogram of intervals and reports it to look ex-
actly as expected. Unfortunately, the exact �gures from [36] are not available,
but the visual comparison of the plots in Figure 2.3 suggests that the interval
distributions are similar.
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all �les extracted melody

Renaissance
11:18:28 12:49:21
404 �les 2 209 snippets

Baroque
97:33:32 91:09:59
2 502 �les 5 353 snippets

Classicism
86:18:06 48:40:30
810 �les 2 636 snippets

Romanticism
143:59:13 59:58:06
1 484 �les 3 092 snippets

Impressionism
10:04:35 5:02:18
164 �les 347 snippets

20th century
83:50:58 34:54:55
1 003 �les 2 209 snippets

Classical music
434:04:52 252:35:09
6 366 �les 14 359 snippets

Jazz
44:42:42 38:11:10
837 �les 1 308

Rock
83:15:29 32:33:41
1 453 �les 2 380 snippets

Pop
37:58:12 18:32:56
712 �les 1 004 snippets

Popular music
121:13:41 51:06:37
2 165 �les 3 384 snippets

Training data from [31]
117:36:07 66:10:39
1 052 �les 3 561 snippets

Total
716:52:16 408:03:35
10 420 �les 22 612 snippets

Table 2.2: Overview of the data amount available for the computations

2.2 Melody Modeling

2.2.1 Language Modeling Overview

A language model is a statistical model that assigns a probability to a sequence of
m words P(w1, . . . , wm) which is supposed not to di�er much from the probability
of the word sequence being uttered in a given language.

Texts are usually approximated as an n-th order Markov chain where each
word probability is conditioned only on the previous n− 1 words. For a sequence
of m words we can formally write:

P(w1, . . . , wm) =
m∏

i=1

P(wi|w1, . . . , wi−1) ≈
m∏

i=1

P(wi|wi−(n−1), . . . , wi−1).

The n-gram probabilities are estimated from a training corpus using the max-
imum likelihood estimate. Because it often happens that a lot of n-grams which
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are plausible in the language were not observed in the training data, it is nec-
essary to modify the estimated probabilities in order to prevent the model from
assigning zero probabilities to sentences containing unobserved n-grams.

Generally, there are two approaches to avoid this problem. These are dis-
counting � which means redistributing a part of the probability mass to the
unobserved n-grams � and interpolation � using a linear combination of higher
and lower order models to be able to cover all the possible n-grams.

There are various methods both for interpolation and discounting. Here, we
will explain the Good-Turing discounting method which is used in the melody
model introduced later.

Estimated frequency F of n-gram wi, . . . wi+n−1 is de�ned as

FX =
c(w1, . . . wi+n−1)

c(w1, . . . , wi+n−2)
· E(c(w1, . . . wi+n−1)) + 1

E(c(w1, . . . wi+n−1))
,

where c(x) is the count of n-gram x and E(y) is a number of n-grams that appear
exactly y times in the training corpus.

A more detailed overview of language modeling techniques can be found in
[38].

Except for the methods based on counting n-gram occurrences in the training
corpus, neural networks can be used for language modeling. Better availability of
computational capacity recently allowed researchers to train deep neural networks
with many hidden layers. In [39] a neural network language model is trained and
performs slightly better than an 4-gram language model.

To model the melody development not only methods from NLP can be applied.
A computational model of melody [40] has been created based purely on the hand-
written formulas. Except for the pitch and rhythm it also uses other features such
the as local pitch variance, the key of the piece or accompanying harmony. The
formulas are based both on cognitive science results and author's introspection.
Most of the parameters were estimated from data or from known psychoacoustics
facts.

2.2.2 Melody Preprocessing

The corpus of melodies represented as a sequence of notes' pitches and durations
would be extremely sparse and hardly any sequence of notes would appear more
than once in the data. Therefore we represent the melody similarly as in [23]
and as in the music visualization system MIDVIS [37] � as a sequence of di�er-
ences between the consecutive notes. This representation also somehow captures
equality of melodies as humans understand it � when a melody is shifted in pitch,
slowed-down or accelerated, people usually recognize it as being the same one.
The di�erences between notes are represented as pitch interval as a number of
semitones from the previous note or string �pause� in case of pauses respective-
ly, and a ratio between the lengths of the consecutive notes. Various methods
of encode the duration changes were tested � in particular various precisions of
rounding the ratios and their binary logarithms. To be able to capture the short-
ening of notes as accurately as their prolonging while using a plain ratio the
following notation was used:
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toString(d1, d2) =

{
round(d2/d1) d2 ≥ d1

”1/” + round(d1/d2) otherwise
, (2.1)

where d1 and d2 are durations of two adjacent notes. Both recently mentioned
papers use rounded binary logarithm to encode the duration change, using the as-
sumption that the note durations most frequently di�er by powers of two. While
using the 2.1 method, melody models achieved lower perplexity than while us-
ing the rounded binary logarithm of the ratios. These computations, described
in more detail in Section 2.2.3, showed the most suitable way of encoding the
duration changes is 2.1 rounded to integers.

The previous theoretical discussion about music and language leads us to a
curiosity whether the note changes as units of melody, extracted in the described
way, satisfy the Zipf-Mandelbrot's law as the lexical units in languages do [38].
Moreover, exponential dropping of word frequencies is an important assumption
used in various language modeling techniques.

If the Zipf-Mandelbrot's law holds, the frequencies f of tokens and their po-
sition r in the ordered list of the frequencies satis�es equation:

f ≈ P (r + ρ)−B

for some P, ρ > 0 and B ≥ 1.
For all particular styles the best-�tting Zip�an curves were computed using

the linear regression on 85% of randomly chosen data. The square error of the
rest 15% of data �tting the curves was tested to be unequal to zero using the
t-test.
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Figure 2.4: Ordered distribution of notes in the whole training corpus (black) with
the best-�tting Zip�an curve (red) with logarithmically scaled relative frequency.
The values of parameters are: P = 0.47, ρ = 0.24, B = 1.57.
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The computations showed that the Zipf'-Mandelbrot's law does not hold for
any of the styles, except for the whole corpus together. The plots in Attach-
ment A.1 show that the distribution of notes in other styles is very close to the
Zip�an. The plot of the Zip�an curve �tting the whole corpus note distribution
is in Figure 2.4. The fact that the law does not hold for the individual styles
may be caused by too many rarely occurring tokens. Such tokens then have
similar relative frequency even though their real music probability di�ers more
signi�cantly.

Using the NLP terminology we call the set of tokens observed in the training
data the vocabulary. No matter which melody representation we choose, there
still will be some out-of-vocabulary tokens in the test data and a lot of others
out-of-vocabulary tokens could occur during actual use of the model in an AME
system where also a lot of improbable hypotheses must be evaluated. The rea-
son for that is that the theoretically possible vocabulary set is very large. It
includes all possible combinations of pitch intervals and discretized duration ra-
tios. Choosing the precision of the duration ratios is in fact a very simple method
of clustering the similar tokens. Additional clustering methods could be used to
ensure that the whole vocabulary is covered. We can understand it as an analogy
of creating hand-crafted word classes based on rules which were used for example
in the named entity recognizer in [41].

To eliminate out-of-vocabulary tokens we choose following heuristic clustering
method. A duration ratio d ≥ 1 is substituted by cd(d), ratio in form of �1/d� is
substituted by �1/cd(d)� where

cd(d) =





d if d ≤ 8
”9to16” if d > 8 & d ≤ 16
”17to32” if d > 16 & d ≤ 32
”over32” if d > 32

.

For the pitch interval heuristic clustering two methods were tested. In the
�rst one intervals from -16 to 16 remain unchanged, bigger intervals are divided
into groups of smaller than two octaves, bigger than two octaves but smaller
than three octaves, and over three octaves, separately for both the positive and
negative intervals. In the second method, intervals were substituted by their
size modulo 12, again separately for the positive and negative intervals. Despite
the last method signi�cantly lowers the perplexity of models, it is not suitable
to be used in an AME system because such model would not help with octave
mismatches which are the most frequent errors in such systems.

2.2.3 Building the Model

Melody n-gram models of music of di�erent styles were created based on the
machine extracted melodies.

After �rst experiments with our own implementation in Perl, the SRILM
toolkit [42] was used to make the computations faster. It is a toolkit for building
and applying statistical language models, primarily for use in speech recognition,
statistical tagging and segmentation, and machine translation, developed at the
John Hopkins University.
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The Good-Turing discounting was used. Unlike Witten-Bell and Kneser-Ney
smoothing it does not use a set of back-o� models and we can therefore expect
the computation to be fast even for longer note sequences.

For each style 90% of melody snippets was used as training data, the rest
10% was used as test data. Overview of the data size is in Table 2.2.

Di�erent n-grams length were tested. Detailed results are tabulated in A.2.1.
As the n-gram length grows, perplexity of the test data drops. The last big drop
in perplexity is between order 9 and 10. The most suitable n-gram order would
therefore be 10.

Models for each of the styles were tested on a test set of the same style and
also on test sets of all the other styles. It holds that the more training data is
used, the better performance on all test sets is achieved. The only exception
is the Renaissance music which is in many senses di�erent from the rest of the
styles. The model trained on Renaissance melodies beats all other models on the
Renaissance test set, on the other hand it has very bad results on all the other
sets. For all the other test sets the lowest perplexity was reached using the model
trained on all available training data. Based on that experiment only the model
trained on all data is used in the AME system.

This is also interesting from the theoretical point of view. Meyer in [3] claimed
that while creating a model of human music perception, di�erent styles must be
treated separately because they are as di�erent as natural languages are. Hardly
any conclusion can be made from this result because our model does not include
harmony. Moreover, it is possible that the results would be totally di�erent if we
had much more data from each style.

The models reach per token perplexity of more than twenty on each of the test
sets of di�erent styles. These numbers are higher than those that were computed
in [14] in the experiments with the Bach chorale, but in those experiments the
rhythm was already known and just pitches were estimated.
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Figure 2.5: Examples of melodies generated by the language models
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A random walk on the model can be used for melody generation. Examples
of such melodies can be seen in Figure 2.5. Because the model uses only note
changes, quarter note e was arbitrarily chosen as the melody start. Some phe-
nomena which would be normally expressed using e.g. the staccato sign or music
ornamentation are captured explicitly. This causes problems with the resulting
notation readability. The melodies sounds locally plausible, but it can be easily
recognized that they were not created by a human composer. Generally, we can
say that the generated melodies tend to be in minor scales and in the 4-beat
rhythm and do not sound naturally.

2.3 Other Options for Using NLP Techniques

A challenging problem we originally wanted to address in this thesis was what
could be an analogy of a word or of a morpheme in the context of music. As a
baseline solution it would be possible to re-implement the Morfessor [44], a tool for
unsupervised morpheme segmentation originally from 1989. The method is based
on optimization of a cost function that minimizes both information necessary to
store a set of morphemes and information necessary to encode the training corpus
using the set of morphemes. The cost function C is formally expressed as

C =
∑

i∈morphemes

k · length(mi) +
∑

j∈tokens

− log2 (p̂(mj)) ,

where k is a number of bits needed to encode one character of the alphabet and
p̂(mi) is the maximum likelihood estimate of the probability of the token mi in
the training corpus.

Trying all possible splits of the corpus would lead to exponential complexity.
Originally a heuristic solution was used. Recently more e�cient optimization
methods based on sampling appeared.

The only experiment we did in this area was trying to use the �latticelm�
tool based on Bayesian statistics [43] where the segmentation is modeled as the
Chinese Restaurant Process and Gibbs sampling is used. Unfortunately, the tool
was not able to converge to a solution on our data because of the large vocabulary
size.

First, it would be necessary to test how much the received segmentation covers
a test data. In case of success it would be interesting to compare such note
sequences with what the musicologists call motifs or phrases and test another
statistical NLP methods.

One of easily explorable methods is creating Brown's classes by agglomera-
tive clustering of words based on mutual information. While used on language,
these classes usually correspond to parts of speech and other morphological fea-
tures of the words. In case of music motifs correspondence of the classes with
musicological classi�cation could be explored.

From the compositional perspective it would be meaningful to explore machine
estimated collocations (sequences of tokens that occur together more frequently
that they would by chance given their frequencies in the corpus). Unsupervised
parsing could be used to estimate melody grammars. However, methods of un-
supervised parsing still does not perform particularly well and chance success
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of their application would be doubtful. Exploration of both methods mentioned
above could lead to �ndings which compared with monographs about composition
could give interesting theoretical results.

2.4 Summary

In this chapter some methods of symbolic melody processing were discussed.
Various methods of symbolic melody extraction were tested. A method combining
machine learned classi�er for melody track selection and a set of psychoacoustics
heuristics to receive the actual melody was used to extract melodies from a big
corpus of MIDI �les downloaded from the Internet. Although the results seem
to be acceptable, they were not tested on a reliable test set and therefore there
is a danger that there might be a systematic error which could in�uence further
computations and which cannot be noticed by random proof listening to the
melodies .

Consecutive notes changes were used to represent the melody to avoid data
sparseness. We veri�ed that the melodies represented this way satisfy the Zipf-
Mandelbrot's law which was mentioned in many previous works. The fact that
the melody model using the whole corpus performed best on all the test sets and
that the Zipf-Mandelbrot's law reliably holds only for the whole corpus probably
means that the size of the corpus (approx. 400 hours of melodies) is close to a
minimum size when the statistical methods are worth of use.

The melody models were trained on the data. The results show that regardless
of the style, the size of training data plays the crucial role for the model perfor-
mance. However, the reason may be that we did not gather enough training data
for the particular styles and only after joining all the data we got a corpus of a
reasonable data size.

A history of 10 notes seems to provide the best trade-of between the n-gram
order and performance of the model. According to [3] it might be enough to
capture the hypothetical meaning of music.

It also turned out that Renaissance music is very di�erent from all subsequent
music styles, both of classical and popular music. It was the only style for which
despite having relatively little training data the style speci�c model performed
better than the model from all of the data. It is probably because the tonality
which is common from Baroque times up today (major and minor scales) was not
fully developed at the time of Renaissance. Furthermore Renaissance music is
usually simpler in harmony, therefore the melody extraction works better on it.
This might support the idea that the melody models use also implicit harmonic
information hidden in the melodies.
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3. Development of an Audio

Melody Extraction System

In this section, development of an AME system is described. First a brief in-
troduction to the current techniques is given. Basic ideas of our approach, its
detailed description and evaluation follows.

The AME algorithms in the MIREX contest usually consist of two parts. The
pitch detection and pitch tracking. Sometimes also separate voicing detection is
used. The pitch detection algorithms often rely on the fact that the melody is
usually sang by human voices [45]. In such methods spectra are searched for par-
ticular structures of harmonic frequencies in order to estimate the fundamental
frequency. Other algorithms use series of very complicated �lters combined with
clever heuristics based on the rich experience with DSP. The erroneously detect-
ed pitches are then tracked by various dynamic programming algorithms based
on some heuristic rules. Often the Hidden Markov Model (HMM) formalism is
employed. The hidden states of such model represent the melody and the mea-
sured signal properties are the observation. Usually hand-written probabilities
are used. Recently, some machine learning approaches also appeared [46] [47] as
bigger datasets became available.

Our approach di�ers from all previously mentioned and relies on an exhaustive
search of a hypotheses space inspired by the speech recognition and the statistical
machine translation. Originally, we intended to use just a simple peak detection
to estimate melody pitch candidates, later some other methods were utilized.
Consecutive pitches of similar frequencies are grouped to tracks from which the
hypotheses are generated. The resulting melody is the best-scoring sequence of
hypotheses given the signal properties and the symbolic melody model. Except for
the simple peak detection we use harmonic spectrum product, cepstrum-biased
harmonic spectrum product and also a relatively complex algorithm of funda-
mentals frequencies detection. The last two mentioned method reach accuracy
comparable with the algorithms used in the contest.

The approach can be intuitively interpreted as avoiding bringing prior knowl-
edge while hand-crafting the probabilities to HMMs. We tried to keep the DSP
as simple as possible and gain most of the intelligent behavior from the melody
model.

All the DSP was implemented from scratch in the Scala programming lan-
guage. Scala is a multi-paradigm programming language strongly preferring
functional programming and is compiled to Java bytecode. We have chosen
the language because it is very natural to think about DSP functionally, even
though sometimes it is not very computationally e�cient. Implementing every-
thing from scratch was supposed to help us to have the full control of all parts
of the algorithms and to avoid acquiring components without fully understand-
ing them. Despite using Apache Commons library for linear algebra algorithms,
the computations are still signi�cantly slower than the same computations would
be in Octave. A visualization tool was developed to have better view how the
individual parts of the system work. Screenshots from this tool are used in the
following sections to show how the presented algorithms work.
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The algorithm could be possibly used on-line on a su�ciently fast machine
because all computations can be done in linear time and depend only on the signal
history. To keep the implementation simple, the system is not ready to be used
on-line now. Re-implementing the algorithm in such way would also decrease
memory requirements which are now linear with analyzed �le size.

3.1 Pitch Detection

As a �rst step of the algorithm the pitch detection is performed. All the following
methods use spectrogram computed using the Short Time Fourier Transform with
window size of 4096 samples and window shift of 2048 samples. Each signal frame
is zero-padded to twice of its length and is transformed by the Hanning window
before the transformation. Algorithms are presented from the simplest and worst
performing one to the most complex giving the best results. The last algorithm
does not entirely �t to the idea of very simple DSP with most of intelligence
incorporated in the hypotheses search, but it gives the best results.

Figure 3.1: A spectrogram cut-out from train01.wav, the correct melody line is
plotted in green.

For each algorithm a visualization of the algorithm result is provided. The
same spectrogram cut-out of one �le from the MIREX development set was used
for each algorithm. The spectrogram cut-out with plotted melody frequencies is
in Figure 3.1.

3.1.1 Simple Peak Detection

A very simple algorithm for peak detection was used. In each spectrum a local
maximum flm of amplitude alm is recognized as a peak if it is a maximum in an
interval [f1, f2] where f1 and f2 are the closest frequencies to flm such that their
amplitudes a1 and a2 satisfy inequality ai ≤ alm − δ where δ is the sensitivity of
the algorithm. An example of how the algorithm works is plotted in Figure 3.2.

This algorithm performed very poorly for our task. In generated a lot of false
candidates and it also often missed the correct pitch.

3.1.2 Harmonic Spectrum Product

The Harmonic Spectrum Product (HSP) is one of the oldest methods of pitch
estimation, originally introduced in 1969 [48]. The method is based on the idea
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Figure 3.2: Peak detection (red lines) on a spectrogram cut-out from
train01.wav, the correct melody line is plotted in green.

that the pitch is characterized not only by a signal peak, but also by the structure
of its harmonics. When a spectrum is down-sampled such that each n-th sample
is taken from the original spectrum, the peak of the n-th harmonic frequency
should appear on the same index as its fundamental frequency in the original
spectrum. By taking a sample-wise product of the down-sampled spectra we can
observe a peak at the position of the fundamental pitch frequency.

For the k-th bin in a discrete spectrum we can write:

HSP (k) =
R∏

r=1

|X(kr)|2, 0 ≤ k ≤ N.

The frequency bin containing the pitch frequency is then estimated as:

k̂ = arg max
i
HPS(i), 0 ≤ i <

N

R
.

The algorithm is very computationally e�cient, though it does not perform
particularly well in case of music. An example of how the algorithm result is
plotted in Figure 3.3.

Figure 3.3: Harmonic Spectrum Product (red lines) on a spectrogram cut-out
from train01.wav.

3.1.3 Cepstrum-Biased Harmonic Spectrum Product

The CBHSP algorithm[49] is a signi�cant improvement of the HSP algorithm
which combines the method with the cepstral analysis. Computing the funda-
mental frequency from the real cepstrum is a successful method in the speech
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pitch estimation, but it performs poorly in case of music. The combination of
cepstral analysis and HSP appeared to be very bene�cial for both the speech and
music pitch estimation.

In this particular case, we de�ne the real cepstrum of the n-th signal frame
as:

ceps(n) = |IDFT (log |X(n)|) |,
where IDFT is the inverse Fourier transform.

Because the cepstrum is indexed in the time domain (the quefrencies can be
interpreted as periods), we need to transform it to the frequency domain. For
that purpose the value of the k-bin of the frequency indexed cepstrum is de�ned
as:

FIC(k) = max

{
ceps(i)|0 ≤ n < N, k =

⌊
N

n

⌋}

The CBHSP is then computed as a sample-wise product of the frequency in-
dexed cepstrum and HSP. The frequency bin with the maximum CBHSP value is
used as the melody fundamental frequency estimate. An example of the algorithm
result is plotted in Figure 3.4.

Figure 3.4: Cepstrum Biased Harmonic Spectrum Product (red lines) on a spec-
trogram cut-out from train01.wav.

3.1.4 Salience Function Maximization on Whitened Spec-

trogram

The most complex method we used for the pitch detection is a method for fun-
damental frequencies detection using an optimization of a salience function on
a �ltered spectrogram [50]. The salience function should capture how likely is a
frequency to be a fundamental frequency in the spectrum given the frequencies
at positions of expected harmonics.

For purposes of this algorithm we rede�ne the problem from �nding a fre-
quency ff to �nding a period τ with relation ff = fs/τ , where fs is the sampling
frequency of the signal.

The fundamental period is then found by searching for the maximum value of
the salience function
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s(τ) =
M∑

m=1

g(τ,m) · |Y (fτ,m)|, (3.1)

where fτ,m = mfs/τ is the m-th harmonic frequency for the period τ , Y is the
Fourier transform of the signal �ltered by signal whitening (described in the
following paragraph) and g(τ,m) is the weight of the m-th harmonic frequency
in a spectrum with fundamental period τ .

The purpose of using �ltered spectra Y is to suppress di�erences in spec-
tra caused by di�erent timbre of musical instruments and human voices. This
approach is very similar to one that the author of [50] introduced in [51]. In
that paper a perceptually motivated algorithm is proposed. First the equivalent
rectangular bandwidth �lter is applied to simulate the properties of hair cells in
the inner ear. Afterwards the signal is �attened and the negative half-waves are
eliminated in order to simulate the transmissive characteristics of the auditory
nerve. Then a salience function similar to Equation 3.1 is applied to �nd the
fundamental frequency, without explicitly knowing how the auditory nerve signal
is processed

In order to get the whitened spectra, we �rst compute the sequence of 30
frequency centroids covering logarithmically the whole bandwidth of the spectrum
with frequencies cb = 229 · (10(b+1)/21.4− 1) for b = 1...30. Then for each centroid
cb function triangular of Hb is de�ned as:

Hb(f) =
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Figure 1. Responses Hb(k) applied in spectral whitening.

does not require evaluating s(τ) for all period candidates τ .
The three methods are evaluated using mixtures of musical
instrument sounds, and the results are compared with three
reference methods [3], [4] and [5].

2. Proposed methods
This section describes the proposed methods in detail.

2.1. Spectral whitening
One of the big challenges in F0 estimation is to make sys-
tems robust for different sound sources. A way to achieve
this is to try to suppress timbral information prior to the ac-
tual F0 estimation. This can be done by estimating the rough
spectral energy distribution (which largely defines the tim-
bre of a sound) and then flattening it entirely or partly by
inverse filtering. This process is called spectral whitening
and there are several ways of doing it (see e.g. [3]). Here
a frequency-domain technique is employed which is easy to
implement and leads to good results in practice.

First, the discrete Fourier transform X(k) of the input
signal x(n) is calculated in an analysis frame that is Hanning-
windowed and zero-padded to twice its length before the
transform. Then a bandpass filterbank is simulated in the
frequency domain. Center frequencies cb [Hz] of the sub-
bands are distributed uniformly on the critical-band scale,
cb = 229 × (10(b+1)/21.4 − 1), and each subband b =
1, . . . , 30 has a triangular power response Hb(k) that ex-
tends from cb−1 to cb+1 and is zero elsewhere (see Fig. 1).

Standard deviations σb within the subbands b are calcu-
lated by applying the responses Hb(k) in the frequency do-
main:

σb =

(
1

K

∑

k

Hb(k)|X(k)|2
)1/2

, (2)

where K is the length of the Fourier transform. Next, band-
wise compression coefficients γb = σν−1

b are calculated,
where ν = 0.33 is a parameter determining the amount of
spectral whitening applied. The coeffients γb are linearly in-
terpolated between the center frequencies cb to obtain com-
pression coefficients γ(k) for all frequency bins k.

Finally, a whitened spectrum Y (k) is obtained by weight-
ing the spectrum of the input signal by the compression co-
efficents, Y (k) = γ(k)X(k).

2.2. Calculation of the salience function in practice
Calculation of s(τ) using (1) directly requires evaluating
Y (f) for arbitrary frequencies f which is computationally

inefficient. Use of the fast Fourier transform becomes pos-
sible by replacing Y (f) in (1) by its discrete version Y (k)
and by approximating s(τ) by

ŝ(τ) =

M∑

m=1

g(τ,m) max
k∈κτ,m

|Y (k)|, (3)

where the set κτ,m defines a range of frequency bins in the
vicinity of the m:th overtone partial of the F0 candidate
fs/τ . More exactly,

κτ,m = [〈mK/(τ +∆τ/2)〉, . . . , 〈mK/(τ−∆τ/2)〉], (4)

where 〈·〉 denotes rounding to the nearest integer. It is clear
that ŝ(τ) ≈ s(τ) when ∆τ → 0. In practice, however, it is
useful to set ∆τ according to the spacing between succes-
sive period candidates τ in order to ensure that all spectral
components k belong to the range κτ,m of at least one pe-
riod candidate τ when m is fixed. Here we use the value
∆τ = 0.5, that is, the spacing between fundamental period
candidates τ is half the sampling interval. 2

2.3. Optimization of the weight function
A remaining task is to optimize the function g(τ,m) so as to
minimize the F0 estimation error rate of the system. For this
purpose, we generated training material consisting of ran-
dom mixtures of musical instrument sounds with their ref-
erence F0 data. The database from which the samples were
drawn is described in more detail in Sect. 3. The mixtures
were generated by first allotting an instrument and then a
random sound from its playing range, limiting F0s between
40 Hz and 2100 Hz. This two-stage randomizing was re-
peated until the desired number of sounds was obtained, and
the sounds were then mixed with equal mean-square levels.
One thousand mixtures of one, two, four, and six sounds
were generated, totalling 4000 training instances.

F0 estimation was performed simply by picking P high-
est local maxima in the function ŝ(τ). The number of F0s
in each mixture, P , was given to the estimator along with a
93 ms analysis frame. Multiple-F0 estimation error rate is
defined as the proportion of reference F0s that were not cor-
rectly found. In predominant-F0 estimation, the task is to
find only one F0 in each mixture. In this case, the maximum
of ŝ(τ) was taken and judged correct if it matched any of
the reference F0s in the mixture. A correct F0 estimate was
defined to deviate less than 3% from the reference. The cri-
terion to be minimized in the optimization was the average
of multiple-F0 and predominant-F0 estimation error rates in
different polyphonies.

Two different factorized forms of g(τ,m) were studied:

g(τ,m) = g1(τ)g2(m), (5)

g(τ,m) = g1(τ)g3(fτ,m). (6)

2 In Sect. 2.4 where the fast algorithm is presented, the sampling of τ
has only minor effect on computational efficiency, and therefore very dense
sampling can be implemented. In practice, ∆τ = 0.5 suffices.

Figure 3.5: Plot of function Hb for all b, copied from [50]

Then function γb is de�ned as

γb =

(
1

K

K−1∑

k=0

Hb(fk)|X(k)|2
)

We compute the k-th frequency bin of the whitened spectrum Y as

Y (k) = γ(k)X(k),

where γk is computed by linear interpolation of values of γdke and γbkc.
The constants were chosen based on empirical evaluation which is described

in more detail in [50].
Because we work with the discrete spectra approximated with the �nite num-

ber of frequency bins, we need to use an approximation of the salience function.
We do not know in which bin the corresponding harmonic frequency exactly is,
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therefore we de�ne a set of all possible candidates to be the m-th harmonic fre-
quency belonging to fundamental frequency τ as

κτ,m =

〈
round

(
mK

τ + ∆τ
2

)
, round

(
mK

τ − ∆τ
2

)〉
∩ N.

Then the approximation of salience function can be expressed as

ŝ(τ) = g(τ,m) max
k∈κτ,m

|Y (k)| (3.2)

The g function which captures the relative amplitude of the m-th harmonic
frequency in a whitened spectrum was machine learned and estimated as

g(τ,m) =
fs/τ + α

mfs/τ + β
,

with parameters α = 27 Hz, β = 320 Hz.
There also exist an e�cient algorithm to �nd the maximum of the salience

function based on splitting the period intervals. For that purpose the following
salience function estimate for interval (τ1, τ2) is used

M∑

m=1

fs/τ1 + α

mfs/τ2 + β
· max

k ∈
⋃
τ ′,m κτ ′,m

|Y (k)|,

where τ ′ are values between τ1 and τ2 with a given step. The pseudocode of
this algorithm is in Algorithm 3.1.

Algorithm 3.1 Searching for fundamental frequency using the bisection method
Q← {(τmin, τmax)}
qbest ← (τmin, τmax)
while τup − τlow > ∆τ , where (τlow, τup) = qbest do

Q← Q \ {qbest}
(τlow, τup)← qbest

τmiddle ← (τlow + τup)/2
Q← Q ∩ {(τlow, τmiddle), (τmiddle, τup)}
qbest ← arg max(τ1,τ2)∈Q ŝ(τ1, τ2)

end while

return (τlow + τup)/2, where (τlow, τup) = qbest

In the algorithm the spectrum we gradually split into smaller intervals for
which we estimate the maximum values of the salience function. We split the
interval with the maximum value salience function estimate into two and recom-
pute the salience function estimate for the new intervals. The algorithm ends
when the maximum valued interval is smaller than a given threshold.

Due to its complexness, this method is the slowest one from all methods
mentioned above. However, it performs best from the tested algorithms. For
more detailed results see Section 3.3. An example of the algorithm result is
plotted in Figure 3.6.
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Figure 3.6: Salience function maximization results (red lines) on a spectrogram
cut-out from train01.wav.

3.1.5 Combination of CBHSP and Salience Function

We tested a combination of the two most successful methods as well. Only funda-
mental frequencies which were detected both by CBHSP and the salience function
maximization are taken into account. A tolerance of 0.4 semitone is used. This
is supposed not to produce any output in the more confusing signal segments.
The resulting gaps in the melody lines are supposed to be overcome in the track-
ing phase of the algorithm. An example of the algorithm result is plotted in
Figure 3.7.

Figure 3.7: Salience function maximization and CBHSP combination results (red
lines) on a spectrogram cut-out from train01.wav.

3.2 Searching the Extracted Tracks for the Target

Melody

3.2.1 Partial Tracking

We cluster the pitch frequency candidates using the partial tracking algo-
rithm [52]. It is a simple algorithm to �nd sequences of consecutive spectral
peaks and connect them into tracks. The spectrogram is processed iteratively
frame by frame from the lower frequencies to the higher ones.

Now suppose that all frames up to the k-th one been processed. A frequency
peak p representing frequency fp is added to a track t if it satis�es inequality
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Figure 3.8: An illustration of the partial tracking algorithm. Detected spectral
peaks with similar frequencies are being connected into tracks.

|fp − ftp | < ∆f

where ftp is frequency of the previous peak included in the track t. We terminated
tracks that have not been updated for longer period than e frames. We remove
the terminated tracks which are shorter than l frames and those with proportion
of the non-empty frames lower than d. Frequency peaks that have not been linked
to any of the previous tracks give raise to new ones. We use the multiplies of 12 of
the di�erence of the binary logarithms which represents by how many semitones
the pitches di�er.

There are various both purely numerical and statistical methods to improve
performance of this algorithm. They could be used for attempts for further
improving the task.

The algorithm parameters we chose for the particular pitch detection methods
are tabulated in Table 3.1.

∆t e l d
peak detection 0.8 12 0.9 7
HPS 0.6 11 0.9 6
CBHPS 0.7 3 0.7 1
salience function 0.8 3 0.5 2
combined 0.6 12 0.2 1

Table 3.1: Results of parameter optimization of the partial tracking

3.2.2 Track Interpretation Generation

When the partial tracks are identi�ed in the spectrogram, their possible interpre-
tations are generated. A set of rules is used to generate scored possibilities of the
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indication meaning value
op octave mismatch penalty 0.5
dt duration tolerance 0.01
∆d duration step 0.05 s

Table 3.2: Parameters used for track interpretation generation

tracks interpretation. First, the pitch of the note is estimated. We use the fol-
lowing formula to compute the MIDI notation pitch number from the frequency
mean:

pitch(f) = 69 + 12 log2

(
f

440 Hz

)
.

Score s1 = |1− pitch(f)
bpitch(f)c | is assigned to the pitch of bpitch(f)c and analogically

score s2 is assigned to pitch dpitch(f)e. To include also octave mismatches, an
octave lower and octave higher pitches are assigned a score of op · s1 and op · s2

respectively. The pitch scores are normalized to sum up to one.
For the note durations possible start and end times are generated within the

range of d times track duration around the track start and end time. Time
intervals around are split to discrete steps of size ∆d. To all possible combination
of start and end time a score is assigned:

s(start, end) =

∣∣∣∣1−
end− start

d

∣∣∣∣ ,

where d is the track duration. Only the duration of the note, not the exact
position is included in the score. We expect the melody model to adjust its
exact temporal position with respect to the surrounding rhythmic pattern. The
duration scores are normalized to sum up to one.

Finally, a list of scored note hypotheses is created from the track by computing
all possible combinations of pitches and duration and assigning them a score equal
to multiply of the pitch and the duration score. Parameters used in the algorithm
are tabulated in Table 3.2.

3.2.3 Searching the Hypotheses Space

For searching for the sequence of notes representing the melody we use an algo-
rithm which can be brie�y described as pruned breadth-�rst search.

The algorithm is described in detail in pseudocode Algorithm 3.2. An object-
like notation is used in the pseudocode. A track has its start and end, a pro-
cessed track also contains a list of hypotheses of note sequences ending with a
note generated from that particular track. An unprocessed track has method
getPossibleNotes which generates a list of scored notes (as was described in
the previous section). Scores are supposed to be expressed by the logarithms of
probabilities, or more precisely score which sum up to one. Parameters used in
the algorithm are tabulated in Table 3.3.

During the algorithm run, tracks are kept in two sets � a set of unprocessed
tracks and a set with already processed tracks containing n-best lists of hypotheses
of note sequences leading to notes generated from the tracks. When a track is
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Algorithm 3.2 Algorithm searching for the most likely tone sequence
k ... number of previous track taken in acount
m ... number of the best scoring hypotheses kept in processed tracks
l ... number of hypotheses at the begining and at the end of the analysed sound
that can be used to start or end resulting melody

T ← tracks sorted by start time
P ← ∅ . set of processed tracks
while T 6= ∅ do

t← t′ ∈ T with minimum start time
pred← P .sortBy(p.end - t.start, p ∈ P ).take(k)
newHypotheses← ∅
for all p ∈ ⋃p∈pred p.hypotheses do

for all n ∈ t.getPossibleNotes do
newHypotheses←

newHypotheses
⋃ {(h..notesadd(n.note), h.score + n.score)}

end for

end for

normedNewHyp←norm(newHypothese with score s′(h) = h.score
|h.notes|α )

recoredHypotheses← rescoreWithMelodyModel(normedNewHyp)
P ← P

⋃
(t, rescoredHypothese.take(m))

T ← T \ {t}
end while

return rescoreWithMelodyModel(
P .sortBy(p.track.end, p ∈ P ).take(l)).first

indication meaning value
k number of previous track to be connect-

ed with the processed ones
3

m number of best scoring hypotheses kept
in processed tracks

20

l number of edge tracks considered to be
the starting or ending ones

5

α hypothesis density bonus 3

Table 3.3: Parameters used for track interpretation generation
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being processed all notes generated from the track are used to extend all the
hypotheses from k previous tracks. This step gives raise to new hypotheses whose
scores are sums of the hypotheses scores and the added notes scores (note that
logarithms of scores are used). This is illustrated in Figure 3.9.

If only this value (sum of logarithms of the note scores) would be used as the
hypotheses score it would lead to preferring hypotheses with high proportion of
silence. Therefore we divide the score by the number of notes raised to the power
of α, where α is a parameter expressing the preference for denser sequences.

This hypotheses scores are then normalized to sum up to one and rescored
using the melody model. Only m best hypotheses after the model rescoring are
stored together with the track in the set of processed tracks.

Finally, hypotheses leading to the l last tracks are evaluated by the melody
model and the one having the best score is chosen to be the �nal solution.

time

pi
tc

h

already existing hypothesis
(stored in one of already

processed tracks)

a track to be added

( ( ( (

( ( ( (

( ( ( (

}
}observed track

duration ± Δ

estimated pitch
with potential octave 
mismatch

other already
unprocessed tracks

Figure 3.9: An illustration of one step of the hypotheses generation

3.3 System Evaluation

All the pitch detection algorithms except the simple peak detection perform al-
most perfectly in the very simple cases as singing in silence or singing with a
simple guitar accompaniment. Therefore it was necessary to test the algorithm
performance on a more challenging test set.

We have chosen the MIREX05 development data. It is a set of 13 excerpts
of popular music with melody sung by humans which claims to cover all possible
problems which can appear in the AME task. It is also supposed to be very
similar to the MIREX05 test set used for evaluation of algorithm participating in
the MIREX. So we can roughly compare performance of our algorithm with the
others. The test set itself is not publicly available.

The test data are very �ne graded both in the resolution of time and the
detected frequency. Therefore the tendency of our algorithm to produce an output
more similar to symbolic notation than to this signal based representation may
be a source of some errors.
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The algorithm was tested in di�erent setups � with di�erent pitch detection
algorithms and with di�erent melody models.

Detailed results are tabulated in Table 3.4, even more detailed results with
the score for each of the test �les are tabulated in Attachment A.3. For each
experiment the results contain the voicing accuracy (proportion of signal frames
where it was correctly estimated if it contains melody or not) on the �rst line, raw
pitch accuracy (proportion of melody signal frames where the pitch was estimated
not further than 0.25 tone from the correct value) on the second line, raw chroma
accuracy (proportion of melody signal frames where the pitch was estimated not
further than 0.25 from the correct value, disregarding the octave mismatch) on
the third line and overall accuracy (proportion of correctly marked silence frames
or correctly estimated pitch in the whole music excerpt) on the fourth line.

The results show that the most suitable method of pitch detection method
is the salience function maximization. It also turned out that suitable selection
of the track search algorithm parameters leads to better results than using the
melody model based on the symbolic data. Anyway, the model turned to be
at least partially useful in case when all the hypotheses were assigned uniformly
distributed score. The model based on unclustered data performed slightly better
than the model assigning at least some probability all possible tokens. In the best
setup we reached the voicing accuracy of 56% and raw pitch accuracy of 23%,
which is very low in a comparison with usual 90% voicing accuracy and 70%
raw pitch accuracy of the state-of-the-art algorithms. Reasons for this results are
discussed in detail in the next section.

The computation time is relatively high. The DSP implemented in Scala is
not as fast in Matlab or Octave which are commonly used for DSP experiments.
The slowest part of the algorithm is the melody model rescoring even though the
SRILM toolkit is used in the server-client con�guration. The model is loaded in
the the server process which can be quickly queried for the results.

We tried to apply further post-processing techniques to improve the system
performance, always without any success. The �rst worth of mentioning is an
attempt to align the generated notes to note onsets detected by a note onset de-
tection implemented according to [53]. The second originally seemingly promising
idea was �lling big pauses by notes generated by the melody model. Both of these
experiments the computation time signi�cantly and they also did not raise the
performance of the algorithm at all.

3.4 Discussion

At the beginning of the AME development we started with very simplistic and
also very naive approaches how to implement an AME system. Almost all of our
original beliefs turned to be false.

Even though it was formulated as a little complain in the previous section that
the only available standard data does not really matches the problem as it was
approached in this thesis, it seems very reasonable to formulate the AME problem
such that it should give output in the form of the provided data. When we look
at the data more carefully we can identify some moments when the melodic line
di�ers by more than a half tone from a steady line, although listeners would
interpret such moments just as tiny ornaments or interpretative imperfectness
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peak detection

0.378 0.392 0.395 0.392 0.394
0.000 0.006 0.006 0.006 0.012
0.011 0.018 0.012 0.018 0.022
0.220 0.221 0.221 0.221 0.225

HSP

0.244 0.244 0.224 0.224 0.224
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.224 0.224 0.224 0.224 0.224

CBHSP

0.558 0.484 0.486 0.484 0.486
0.167 0.067 0.060 0.067 0.061
0.196 0.114 0.097 0.114 0.101
0.273 0.182 0.180 0.182 0.180

salience function

0.568 0.601 0.606 0.601 0.606
0.231 0.104 0.056 0.104 0.063
0.265 0.151 0.122 0.151 0.134
0.247 0.153 0.117 0.153 0.123

combined

0.391 0.441 0.440 0.441 0.441
0.143 0.082 0.037 0.082 0.047
0.148 0.103 0.074 0.103 0.088
0.284 0.229 0.198 0.229 0.203

Table 3.4: Results of AME algorithms on the MIREX05 dataset.

in a longer steady note. It would be a longer steady note also in the symbolic
transcription and this is what the melody model expects as well. It is mostly this
phenomenon together with utilizing the partial tracking algorithm which plays
the crucial role for the low system accuracy on complicated data. Instead of
helping to overcome the problems originating in the erroneous pitch detection as
the tracking algorithms in AME system usually do, it tends to often separate
pitches belonging together and to produce a lot of short chromatic tracks. The
track searching algorithm with the melody model then expects something very
similar to the actually symbolic notation and fails to recognize the best sequence
of tracks which if transcribed to notes would be very unlikely.

The real goal of the AME task is to identify which frequencies are part of
the melody perceived by humans no matter what abstract representation will the
listeners assign to these frequencies. How a sequence of such frequencies will be
perceived on a more abstract level is a di�erent task. This di�erence between the
physical melody and the abstract melody has not been taken in account during
the algorithm development. On the other hand, all the literature dealing with
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the melody from the DSP perspective does not distinguish this two senses of
melody at all. Modeling the abstract melody given the physical melody belongs
more to the �eld of cognitive science. It could be approached as a machine
learning problem while having suitable training data. Nevertheless, dealing with
this problem su�ciently, including the previous work research, would give enough
material to produce another thesis.

Having made this experience we would suggest to approach this problem with
a di�erent algorithm, a much more similar to algorithm that succeeded in the
MIREX contest like [54]. The HMMs are used to estimate the most probable
melody. Melody is modeled as a sequence of hidden states and the emitted
observations are some statistics computed from the signal. Given the observation
the hidden states can be usually the observed pitch itself, octave mismatch, silence
or a value approximation based on the surrounding hidden states.

The state transition probabilities usually use hand-written rules. Instead we
could use a model trained on the development data. A suitable tool to estimate
the emission probabilities could be a Bayesian network with the signal properties
as terminal nodes. In fact, it would be a purely machine learning algorithm not
employing any NLP methods.

If a model transcribing the physical melody to the abstract would be available
for the proposed AME system, the current melody model could be used as a
back-o� model the transition probabilities. However, usefulness of integrating
such model in the system is doubtful because of a danger of bringing more errors
by combining not perfectly working components.

3.5 Summary

In this section a development of an AME system was described. Various meth-
ods of pitch detection were tested, with the CBHSP and perceptually motivated
salience function maximization on a �ltered signal giving the best results. In the
next phase of the algorithm similarly pitched frames were grouped to tracks. The
resulting sequence of notes was received by a pruned breadth-�rst search of the
possible note interpretation of the tracks. The melody model was used to score
the hypotheses for pruning in the search. The results showed that the scoring of
the hypotheses using �xed parameters leads to better results than using a melody
model. The salience function maximization turned to be the best pitch detection
method. The reached voicing accuracy of 56% and raw pitch accuracy of 23%
remains below the state-of-the-art algorithm performance.

The system scored worse than most of the recently published algorithms, most-
ly because of a conceptual misunderstanding of a di�erence between symbolically
represented melody in an abstract way and melody in a more physical sense as
a sequence of consecutive frequency values. On the other hand, the experiments
that have been made contributed to a better de�nition of the goal of the AME in
the DSP by distinguishing how it di�ers from what is commonly referred to be a
melody.
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Conclusion

The goal of the thesis was to summarize similarities between music and natural
languages with respect to their computational processing, make experiments with
some of the NLP inspired methods of music processing and develop a practical
application showing applicability of such methods.

A lot of theoretical research has been done since 1950s which gives a satisfac-
tory foundation for computational applications. The �rst experiments appeared
in 1950s and focused on machine composition or composer and style detection.
All work in this �eld closely follow the paradigm development in computation-
al linguistics and another arti�cial-intelligence-like �elds of study with a radical
shift from the systems based on hand-written rules to purely statistical systems
in 1990s. As in other �elds which are part of the humanities, alternating periods
of optimism and skepticism towards quantitative and computational methods ap-
peared and in�uenced the amount of work published on such topics in di�erent
periods of time. In more theoretical works many hypotheses about the relation
between language and music have been raised and computational methods have
potential to bring supporting or rejecting arguments for them.

A corpus of MIDI �les of various styles of total length of 717 hours was collect-
ed. State-of-the-art methods of melody extraction from MIDI �les were discussed
and an algorithm combining various known techniques was used to create a corpus
of extracted melodies. This corpus consists of 408 hours of melodies.

From this data a melody model using the language modeling techniques was
created. Various methods of melody representation were tested to increase the
robustness of the model. The best way of melody representation for this purpose
was to use only the di�erences between adjacent notes represented as pairs of
the pitch interval and ratio of their durations. The duration ratio is rounded to
integers in case it is bigger than one and as a fraction with numerator of one
and denominator rounded to an integer if it is smaller than one. Di�erences
occurring only rarely in the corpus were grouped to several clusters, to eliminate
the problem of out-of-vocabulary tokens.

Despite the melody extraction being far from perfect, the melody models
seem to provide very promising results while tested on melodies extracted from
MIDI �les using the same melody extraction algorithm. Results of measuring the
perplexity of the model on test sets of various styles (styles of classical music from
Renaissance to 20th century, jazz and popular music) show that more important
than the style correspondence is the amount of training data. The only exception
from this observation was the Renaissance music which is fundamentally di�erent
from all the later styles.

In the last part of the thesis development of an alternative AME system is
described. The audio signal is �rst transformed to the frequency domain, pitch
candidates are detected in each spectrum, similar consecutive pitch candidates
are gathered to tracks using the partial tracking algorithm and the tracks are
searched for the best sequence using the melody model.

The original idea that a simple peak detection in frequency domain in combi-
nation with the exhaustive search using the melody model will be enough turned
out to be very naive. Much more complex methods for pitch detection must have
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been employed to achieve at least acceptable accuracy. The performance of the
system measured on the standardized MIREX data remains below the state-of-
the-art techniques. Both the partial tracking algorithm and the melody model
expect the melody to be much more similar to the symbolic representation than
it actually was. This helped us to reveal a conceptual di�erence between the
melody understood from the DSP perspective as a sequence consecutive pitch
frequencies and melody perceived on an abstract level.

The whole AME system is implemented in Scala programming language. Gen-
eral signal processing classes can be used as a base of Scala DSP library.

Unfortunately, most of the methods we originally planned to experiment with,
most of them summarized in Section 2.3, remained unexplored. The thesis proba-
bly should have focused on a much narrower topic which could have been studied
to much bigger details and lead to more interesting results.

Still, the biggest contribution of the thesis is bringing a coherent overview of
the recent history of music processing and music and language relationship from
the perspective of computational linguistics. A melody corpus for the melody has
been created and is ready for further experiments. Finally, the experiments with
the AME system, despite not being successful in the AME task itself, helped us
de�ne the di�erence between physical and abstract melody.

41



Bibliography

[1] Limb, Charles J. � Braun, Allen R. Neural Sub-
strates of Spontaneous Musical Performance: An fM-
RI Study of Jazz Improvisation. [online] In: PLoS ONE,
http://www.plosone.org/ Public Library of Science, 2008. [cit. 22.6. 2011]
<http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0001679>

[2] Dobrian, Christopher. Music and Language [online]. Irvin (Cal-
ifornia, USA). Universtiy of California, 1992. [cit. 19.3. 2011]
<http://music.arts.uci.edu/dobrian/>

[3] Meyer, Leonard B. Meaning in Music and Information Theory. In The Jour-
nal of Aesthetics and Art Criticism, Vol. 15, No. 4 (Jun., 1957). Hoboken
(New Jersey, USA). Blackwell Publishing, 1957. pp. 412-424.

[4] Manzara, Leonard C. �Witten, Ian H. �Mark, James. On the Entropy
of Music: An Experiment with Bach Chorale Melodies. In: Leonardo Music
Journal, Vol. 2, No. 1 (1992) Cambridge (Massachusetts, USA). The MIT
Press, 1992. pp. 81-88.

[5] Lerdahl, Fred � Jackendoff, Ray. A Generative Theory of Tonal Music
Cambridge (Massachusetts, USA). The MIT Press, 1983.

[6] Woªkowicz, Jacek � Kulka, Zbigniew � Ke²elj, Vlado. n-gram-based
Approach to Composer Recognition. In: Archives of Acoustics, Vol. 33
(2008). Warszawa (Poland). Polish Academy of Sciences, 2008.

[7] Bod, Rens. Using Natural Language Processing Techniques For Musical
Parsing. In: In: Proceedings Association for Computers and the Humanities
and the Association for Literary and Linguistic Computing 2001. Springer,
2001.

[8] Bernstein, Leonard. The unanswered question: six talks at Harvard. Cam-
bridge (Massachusetts, USA). Harvard University Press, 1976.

[9] Dubnov, Shlomo � Gerard, Assayag � Olivier, Lartillot � Gil, Bejer-
ano. Using machine-learning methods for musical style modeling. In: IEEE
Computer Society, Vol. 36, No. 10 (Oct. 2003). IEEE Computer Society
Press, 2003. pp. 73-80.

[10] Meehan, James R. An Arti�cial Intelligence Approach to Tonal Music The-
ory. In Computer Music Journal, Vol. 4, No. 2 (Summer 1980), Arti�cial
Intelligence and Music Part 1. Cambridge (Massachusetts, USA). The MIT
Press, 1980. pp. 60-65.

[11] Wang, Jun � Chen, Xiaoou � Hu, Yajie � Feng, Tao. Predicting High-
level Music Semantics using Social Tags via Ontology-based Reasoning. In:
Proceedings of 11th International Society for Music Information Retrieval
Conference. International Society for Music Information Retrieval, 2010.

42



[12] Shannon, Claude E. Prediction and entropy of printed English. In: Bell
system technical journal, Vol. 30, No. 1 (1951). pp. 50-64. Bell Labs, 1951.

[13] Dobrian, Christopher. Music and Arti�cial Intelligence [online]. Irvin
(California, USA). Universtiy of California, 1993. [cit. 19.3. 2011]
<http://music.arts.uci.edu/dobrian/>

[14] Witten, Ian H. � Manzara, Leonard C. � Conklin, Darrell. Comparing
Human and Computational Model of Music Prediction. In: Computer Music
Journal, Vol. 18, No. 1 (Spring, 1994). Cambridge (Massachusetts, USA).
The MIT Press, 1994. pp. 70-80.

[15] Mauch, Matthias � Müllensiefen, Daniel � Dixon, Simon � Wiggins,
Geraint. Can Statistical Language Models be used for the Analysis of Har-
monic Progressions? In: International Conference on Music Perception and
Cognition Proceedings 2008. Hokkaido (Japan). Hokkaido Univeristy, 2008.

[16] Zanette, Damian H. Zipf's law and the creation of musical context. In: Mu-
sicae Scientiae, Vol. 10, No. 1. European Society for the Cognitive Sciences
of Music, 2006.

[17] Ringer, Alexander. Melody. In: Grove Music Online ed. L.
Macy [online] Oxford University Press, 2013. [cit. 5.3.2013]
<http://www.grovemusic.com>

[18] Eco, Umberto. Skeptikové a t¥²itelé. (Czech translation) Praha (Czech Re-
public). Argo, 2006.

[19] Pearce, Marcus T. Early Applications of Information Theory
to Music. [online] University of London, 2007. [cit. 17.7. 2011]
<http://www.doc.gold.ac.uk/∼mas01mtp/notes/music-information-
theory.pdf>

[20] Mauer, John. A Brief History of Algorithmic Composition. [online] Stanford
University, 1999. <http://ccrma.stanford.edu/∼blackrse/algorithm.html>

[21] Cont, Arshia. Arti�cial Intelligence and Music: A critical survey and pro-
posal. A result of research in the �rst year of Computer Music PhD program.
San Diego (California, USA). University of California, 2005.

[22] Schaffrath, Helmut � Huron, David. The Essen folksong collection in
kern format. [computer database] Menlo Park (California, USA). Center for
Computer Assisted Research in the Humanities, 1995.

[23] Suyto, Iman S. H. � Uitdenboerg, Alexandra L. Simple E�cient n-gram
Indexing for E�ective Melody Retrieval. In: 6th International Conference on
Music Information Retrieval. University of London, 2005.

[24] Woªkowicz, Jacek � Ke²elj, Vlado. Text Information Retrieval Ap-
proach to Music Information Retrieval. In: The Music Information Re-
trieval Evaluation eXchange Submitions [online] International Society for
Music Information Retrieval, 2011. [cit. 10.3. 2013] <http://www.music-
ir.org/mirex/abstracts/2011/WK1.pdf>

43



[25] Doraisamy, Shyamala � Rüger, Stefan. A Polyphonic Music Retrieval
System Using n-grams. In: Proceedings of the 5th International Conference
on Music Information Retrieval. International Society for Music Information
Retrieval, 2004.

[26] Urbano, Julian, Lloréns, Juan et al. MIREX 2012 Symbolic Melodic
Similarity: Hybrid Sequence Alignment with Geometric Representations. In:
The Music Information Retrieval Evaluation eXchange Submitions [online]
International Society for Music Information Retrieval, 2012. [cit. 10.3. 2013]
<http://www.music-ir.org/mirex/abstracts/2012/ULMS2.pdf>

[27] Mozer, Michael C. Neural network music composition by prediction: Ex-
ploring the bene�ts of psychoacoustic constraints and multi-scale processing.
In: Connection Science, Vol. 6, No. 2-3 (1994), pp. 247-280. Taylor & Fran-
cis, 1994.

[28] Hori, Toyokazu � Shinichiro, Wada � Howzan, Tai � Kung, S. Y. Au-
tomatic music score recognition/play system based on decision based neural
network. In: 3rd IEEE Workshop on Multimedia Signal Processing, pp. 183-
184. IEEE Computer Society, 2005.

[29] Zicarelli, David. M and Jam Factory. In: Computer Music Journal, Vol.
11, No. 4 (Winter, 1987), pp. 13-29. Cambridge (Massachusetts, USA). The
MIT Press, 1987.

[30] Pachet, François. The Continuator: Musical Interaction With Style. In:
International Computer music Conference, Gotheborg (Sweden), (ICMA
2002). Ann Arbor (Michigan, USA). MPublishing (University of Michigan),
2002.

[31] Rizo, David � León, PJ Ponce de � Pérez-Sancho, C. A Pattern Recog-
nition Approach for Melody Track Selection in Midi Files. In: Proceedings
of the 7th International Society for Music Information Retrieval Conference.
International Society for Music Information Retrieval, 2006.

[32] Uitdenbgerd, Alexandra � Zobel, Justin. Melodic matching techniques
for large music databases. In: Proceedings of the seventh ACM international
conference on Multimedia (Part 1) - MULTIMEDIA '99, pp. 57-66. ACM,
2012.

[33] Ozcan, Giyasettin � Isikhan, Cihan � Alpkocak, Adil. Melody Extrac-
tion on MIDI Music Files. In: Seventh IEEE International Symposium on
Multimedia. IEEE Computer Society, 2005.

[34] Robertson, Hannah. Slides for Music Technology Seminar course at
McGill University, Montreal, Canada. [online]. McGill University, 2012. [cit.
11.3. 2013] <http://www.music.mcgill.ca/∼hannah/MUMT621/robertson_
mumt621_melody.html>

[35] Velusamy, Sudha � Thoshkahna, Balaji � Ramakrishnan, K. A Novel
Melody Line Identi�cation Algorithm for Polyphonic MIDI Music. In: Lec-
ture Notes in Computer Science � Advances in Multimedia Modeling, pp.
248-257. Springer, 2006.

44



[36] Kosugi, Naoko �Nishihara, Yuichi �Kon'ya, Seiichi et al. Music retrieval
by humming-using similarity retrieval over high dimensional feature vector
space. In IEEE Paci�c Rim Conference on Communications, Computers and
Signal Processing, 1999. IEEE Computer Society, 1999.

[37] Woªkowicz, Jacek � Brooks, Stephen � Ke²elj, Vlado. Midivis: Visual-
izing music structure via similarity matrices. In: Proceedings of the Interna-
tional Computer Music Conference (ICMC), pp. 53�56. Montreal, (Quebec,
Canada). International Computer Music Association, 2009.

[38] Manning, Christopher D. � Schütze, Hinrich. Foundations of Statistical
Natural Language Processing. Cambridge (Massachusetts, USA). The MIT
Press, 1999.

[39] Ar�soy, Ebru � Sainath, Tara N. � Kingsbury, Brian � Ramabhadran
Bhuvana . Deep Neural Network Language Models. In: WLM '12 Proceed-
ings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the
N-gram Model? On the Future of Language Modeling for HLT, pp. 20-28.
Association for Computational Linguistics, 2012.

[40] David, Temperley. A Probabilistic Model of Melody Perception. In: Cogni-
tive Science, Vol. 32, No. 2 (March 2008), pp. 418�444. Cognitive Science
Society, 2008.

[41] Bikel, Daniel M. � Schwartz, Richard � Weischedel, Ralph M. An
algorithm that learns what's in a name. In: Machine learning Vol. 34, No.
1 (1999), pp. 211-231. Springer, 1999.

[42] Stolcke, Andreas. SRILM-an extensible language modeling toolkit. In:
Proceedings of the international conference on spoken language processing.
Vol. 2. 2002. International Speech Communication Association, 2002.

[43] Mochihashi, Daichi � Yamada, Takeshi � Ueda, Naonori. Bayesian unsu-
pervised word segmentation with nested Pitman-Yor language modeling. In:
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing
of the AFNLP. Vol. 1. Association for Computational Linguistics, 2009.

[44] Rissanen, Jorma. Stochastic complexity in statistical inquiry theory. Singa-
pore (Singapore). World Scienti�c Publishing Co., Inc., 1989.

[45] Chien, Yu-Ren � Wang, Hsin-Min � Jeng, Shyh-Kang An acoustic-
phonetic approach to vocal melody extraction. In: Proceedings of the In-
ternational Symposium on Music Information Retrieval 2011. International
Society for Music Information Retrieval, 2011.

[46] Marolt, Matija. Gaussian mixture models for extraction of melodic lines
from audio recordings. In: Proceedings of the 5th International Society for
Music Information Retrieval Conference, pp. 80-83. International Society for
Music Information Retrieval, 2004.

45



[47] Ellis, Daniel PW � Poliner, Graham E. Classi�cation-based melody tran-
scription. In: Machine Learning, Vol. 65, no. 2-3 (2006), pp. 439-456.
Springer, 2006.

[48] Noll, A. Michael. Pitch determination of human speech by the harmonic
product spectrum, the harmonic sum spectrum, and a maximum likelihood
estimate. In: Proceedings of the Symposium on Computer processing com-
munications. Vol. 779, 1967. Polytechnic Institute of Brooklyn, 1969.

[49] Master, Aaron S. Speech spectrum modelling from multiple sources. Doc-
toral Dissertation, University of Cambridge, 2000.

[50] Klapuri, Anssi. Multiple fundamental frequency estimation by summing
harmonic amplitudes. In: In: Proceedings of the 7th International Conference
on Music Information Retrieval. International Society for Music Information
Retrieval, 2006.

[51] Klapuri, Anssi. A perceptually motivated multiple-f0 estimation method.
In: IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, 2005. IEEE Computer Society, 2005.

[52] McAulay, Robert � Quatieri, Thomas. Speech analysis/synthesis based
on a sinusoidal representation. In: IEEE Transactions on Acoustics, Speech
and Signal Processing, Vol. 34, No. 4 (1986) IEEE Computer Society, 1986.
pp. 744-754.

[53] Alonso, Miguel � Gaël, Richard � Bertrand, David. Extracting note
onsets from musical recordings. In: IEEE International Conference on Mul-
timedia and Expo, 2005. IEEE Computer Society, 2005.

[54] Tzu-Chun, Yeh � Jyh-Shing, Roger � Jang, I-Bin Liao. Methods for Au-
dio Melody Extraction in MIREX 2012. The Music Information Retrieval
Evaluation eXchange Submitions [online] International Society for Music In-
formation Retrieval, 2012. [cit. 20.3. 2013]

46



List of Tables

1.1 Levels of NLP and music processing (copied from [6]) . . . . . . . 6

2.1 Overview of features used for the melody track identi�cation, taken
from [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Overview of the data amount available for the computations . . . 19

3.1 Results of parameter optimization of the partial tracking . . . . . 33
3.2 Parameters used for track interpretation generation . . . . . . . . 34
3.3 Parameters used for track interpretation generation . . . . . . . . 35
3.4 Results of AME algorithms on the MIREX05 dataset. . . . . . . . 38

47



List of Figures

1.1 An example of phrases parsing of the beginning of the Mozart's G
minor Symphony . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 An Example of the algorithm from [32] applied on simple piano
score. Figure copied from [34] . . . . . . . . . . . . . . . . . . . . 16

2.2 An example of the algorithm from [33] on the same simple piano
score as in Figure 2.1 copied from [34]. . . . . . . . . . . . . . . . 16

2.3 Interval histograms of melodies from popular music songs in our
corpus (on the left) and interval histogram copied from [36] (on
the right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Ordered distribution of notes in the whole training corpus (black)
with the best-�tting Zip�an curve (red) with logarithmically scaled
relative frequency. The values of parameters are: P = 0.47, ρ =
0.24, B = 1.57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Examples of melodies generated by the language models . . . . . 23

3.1 A spectrogram cut-out from train01.wav, the correct melody line
is plotted in green. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Peak detection (red lines) on a spectrogram cut-out from
train01.wav, the correct melody line is plotted in green. . . . . . 28

3.3 Harmonic Spectrum Product (red lines) on a spectrogram cut-out
from train01.wav. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Cepstrum Biased Harmonic Spectrum Product (red lines) on a
spectrogram cut-out from train01.wav. . . . . . . . . . . . . . . 29

3.5 Plot of function Hb for all b, copied from [50] . . . . . . . . . . . . 30
3.6 Salience function maximization results (red lines) on a spectrogram

cut-out from train01.wav. . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Salience function maximization and CBHSP combination results

(red lines) on a spectrogram cut-out from train01.wav. . . . . . 32
3.8 An illustration of the partial tracking algorithm. Detected spectral

peaks with similar frequencies are being connected into tracks. . . 33
3.9 An illustration of one step of the hypotheses generation . . . . . . 36

48



Acronyms

AME Audio Melody Extraction.

CBHSP Cepstrum Biased Harmonic Spectrum Product.

DSP Digital Signal Processing.

HMM Hidden Markov Model.

HSP Harmonic Spectrum Product.

MIR Music Information Retrieval.

MIREX Music Information Retrieval EXchange.

NLP Natural Language Processing.

49



A. Attachments

A.1 Melody and Zipf's-Mandelbrot's Law

In the following table the distributions of melody units sorted according to their
frequencies are plotted (black). In each graph the best-�tting Zip�an curve is
plotted (red). Parameters of the curve

f = P (r + ρ)−B

are mentioned aside.
On the horizontal axis the ranks of the of frequencies are plotted, on the

vertical axis, the frequencies in the logaritmic scale.
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A.2 Perplexity of Langugage Models on Test Data

The following tables contain detailed results of melody modeling experiments. The following abbreviations are used for methods of the
notes changes representation from Section 2.2.2:
• rat0 � In this notation both pitch intervals and duration ratios are expressed exactly as they were computed from the melodies.

• rat0clust � In this notation intervals bigger than 16 and smaller than -16 semitones are clustered to few groups. Duration ratios
bigger than 8 and smaller than 1/8 are clustered as well.

• rat0mod � The intervals are expressed as the interval size modulo 12. The duration ratios are expressed in the same way as in the
previous method.

From each data set (see data size overview in Table 2.2) 90% randomly selected snippets was used as training data, the rest 10% as
test data.

A.2.1 Perplexity on Test Data of the Same Style

style parsing
n-grams order

1 2 3 4 5 6 7 8 9 10 11 12 13

renaissance

rat0 113.88 27.60 20.01 19.86 19.93 20.71 20.89 21.27 21.34 19.89 19.86 19.86 19.85
rat0clust 82.16 23.41 16.91 16.66 16.68 17.34 17.47 17.76 17.80 16.44 16.43 16.39 16.38
rat0mod 81.64 23.25 16.79 16.55 16.57 17.22 17.35 17.64 17.67 16.32 16.31 16.27 16.26

baroque

rat0 105.22 39.25 23.24 19.69 18.55 18.65 18.66 18.95 19.01 16.80 16.80 16.87 16.82
rat0clust 97.98 37.11 22.08 18.63 17.52 17.61 17.62 17.90 17.95 15.88 15.88 15.94 15.90
rat0mod 94.49 36.13 21.53 18.13 17.04 17.11 17.11 17.38 17.43 15.42 15.42 15.48 15.44

classicism

rat0 117.43 42.11 26.26 22.74 21.62 21.65 21.54 21.78 21.75 19.35 19.32 19.35 19.28
rat0clust 109.81 39.29 24.51 21.16 20.11 20.14 20.05 20.27 20.25 17.96 17.92 17.94 17.88
rat0mod 99.61 37.64 23.19 20.04 18.98 19.00 18.93 19.13 19.11 16.93 16.90 16.91 16.85

romanticism

rat0 131.54 52.71 36.32 34.18 32.95 33.18 33.27 33.60 33.49 31.94 31.93 32.03 31.95
rat0clust 120.57 48.81 33.86 31.71 30.52 30.72 30.80 31.10 30.99 29.54 29.53 29.63 29.55
rat0mod 109.71 45.33 31.43 29.41 28.22 28.39 28.52 28.81 28.73 27.41 27.39 27.49 27.42
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style parsing
n-grams order

1 2 3 4 5 6 7 8 9 10 11 12 13

impressionism

rat0 126.55 85.96 71.27 69.52 71.16 71.59 71.75 72.17 72.45 70.45 70.59 70.66 70.73
rat0clust 126.47 86.78 72.51 70.76 72.40 72.93 73.07 73.47 73.79 71.76 71.90 72.00 72.08
rat0mod 106.87 71.27 59.65 58.67 60.14 60.26 60.35 60.64 60.87 59.24 59.37 59.47 59.53

20thcentury

rat0 118.17 60.77 45.18 42.19 41.51 41.80 42.01 42.33 42.44 40.86 40.96 41.10 41.17
rat0clust 109.56 54.98 41.03 38.23 37.61 37.88 38.08 38.38 38.49 37.04 37.14 37.26 37.32
rat0mod 101.05 50.80 37.99 35.38 34.76 34.90 35.12 35.39 35.52 34.18 34.27 34.37 34.43

classical

rat0 124.35 48.59 30.54 26.24 24.58 24.58 24.48 24.74 24.73 22.74 22.73 22.81 22.78
rat0clust 112.89 44.65 28.29 24.20 22.62 22.61 22.51 22.76 22.75 20.90 20.89 20.96 20.94
rat0mod 104.95 42.37 26.78 22.88 21.33 21.31 21.24 21.47 21.47 19.72 19.70 19.78 19.75

jazz

rat0 137.31 100.33 122.11 133.01 130.30 129.22 128.80 128.53 128.15 122.43 122.33 122.25 121.95
rat0clust 111.61 74.66 91.27 102.10 99.00 97.99 97.68 97.49 97.21 92.61 92.53 92.47 92.24
rat0mod 108.55 154.54 148.81 166.42 161.32 159.70 159.20 158.88 158.45 151.00 150.87 150.77 150.37

pop

rat0 115.81 61.94 47.48 41.19 39.40 39.14 39.04 39.12 39.14 35.55 35.59 35.70 35.68
rat0clust 101.82 54.69 42.70 36.82 35.02 34.77 34.66 34.74 34.76 31.55 31.59 31.67 31.64
rat0mod 101.16 54.34 42.53 36.67 34.88 34.63 34.53 34.61 34.62 31.43 31.46 31.55 31.52

rock

rat0 114.67 58.93 40.28 33.95 31.45 31.40 31.11 31.20 31.17 28.13 28.12 28.13 28.12
rat0clust 101.43 52.49 36.35 30.26 27.92 27.87 27.60 27.66 27.63 24.85 24.84 24.84 24.84
rat0mod 99.59 51.97 35.98 29.92 27.62 27.55 27.28 27.35 27.31 24.58 24.56 24.57 24.57

popular

rat0 115.88 59.92 43.24 36.29 33.64 33.40 33.09 33.14 33.09 29.92 29.92 29.96 29.94
rat0clust 102.00 53.10 39.02 32.50 29.94 29.70 29.40 29.44 29.39 26.50 26.49 26.52 26.51
rat0mod 100.54 52.40 38.54 32.08 29.55 29.30 29.01 29.05 29.01 26.15 26.15 26.18 26.16

training

rat0 127.79 70.61 53.59 43.75 40.29 39.84 39.48 39.46 39.43 34.66 34.68 34.69 34.65
rat0clust 109.82 60.23 46.42 37.79 34.52 34.11 33.78 33.77 33.74 29.52 29.53 29.53 29.50
rat0mod 105.59 56.49 44.46 36.20 33.06 32.65 32.33 32.34 32.31 28.23 28.24 28.25 28.22

all

rat0 132.69 58.86 39.06 32.69 29.76 29.29 28.98 29.10 29.04 26.55 26.51 26.54 26.50
rat0clust 117.45 52.05 34.93 29.28 26.50 26.05 25.76 25.87 25.82 23.57 23.52 23.56 23.52
rat0mod 110.55 50.20 33.58 28.15 25.43 24.98 24.71 24.82 24.77 22.59 22.55 22.58 22.54
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A.2.2 Perplexity Measured on Test Data of Di�erent Styles

training set re
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renaissance

rat0 19.89 114.08 143.97 194.59 345.86 202.04 141.51 388.41 216.52 210.21 212.62 338.52 182.13
rat0clust 16.44 110.39 145.84 193.58 374.78 203.34 139.55 326.00 193.11 196.87 195.42 301.80 173.68
rat0mod 16.32 108.25 135.87 181.78 322.93 198.75 133.99 324.80 192.99 195.66 194.63 296.12 168.30

baroque

rat0 50.46 16.81 53.30 74.90 156.14 93.28 40.38 277.06 145.02 150.41 148.31 192.98 67.71
rat0clust 36.48 15.89 49.02 67.48 144.26 84.49 37.06 196.95 119.61 125.08 122.95 148.83 58.77
rat0mod 35.94 15.43 44.40 61.37 108.19 77.20 34.51 189.54 117.22 121.13 119.61 142.32 55.32

classicism

rat0 117.17 63.12 19.36 69.75 144.61 86.27 56.38 253.89 146.76 150.04 148.77 174.26 82.75
rat0clust 51.81 56.19 17.96 62.02 125.78 76.14 49.45 177.10 116.26 122.75 120.21 131.92 69.21
rat0mod 51.09 53.86 16.94 57.04 100.42 69.67 46.34 170.24 113.35 118.52 116.51 126.58 65.44

romanticism

rat0 87.86 60.05 48.03 31.95 108.13 71.69 52.20 231.15 134.18 142.94 139.51 153.93 76.03
rat0clust 51.83 54.57 43.02 29.56 94.94 63.26 46.68 164.30 108.98 118.31 114.64 119.21 64.87
rat0mod 50.43 51.83 39.77 27.42 78.38 57.81 43.53 156.52 105.11 112.89 109.84 112.49 60.85

impressionism

rat0 196.73 106.77 90.96 104.67 70.48 100.52 103.16 299.78 195.60 193.54 194.33 225.88 134.23
rat0clust 93.40 99.26 85.25 96.41 71.78 95.11 94.37 241.68 171.72 174.49 173.42 194.07 120.32
rat0mod 90.10 94.07 79.04 87.57 59.25 86.84 87.49 224.56 161.10 163.92 162.83 177.25 111.43

20thcentury

rat0 89.88 60.42 51.61 60.81 98.85 40.87 57.27 206.86 124.86 130.18 128.12 142.98 78.66
rat0clust 48.48 54.62 46.97 53.91 87.76 37.05 50.81 148.39 100.84 110.45 106.66 112.71 67.06
rat0mod 47.37 52.00 43.14 49.42 70.85 34.18 47.26 141.21 97.38 104.88 101.94 106.36 62.79

classical

rat0 21.69 16.50 18.27 30.05 68.11 40.49 22.76 199.28 113.40 119.91 117.37 131.06 41.38
rat0clust 18.42 15.49 16.86 27.51 59.01 35.94 20.92 139.02 92.41 98.92 96.37 100.72 35.85
rat0mod 18.13 14.99 15.83 25.49 47.97 33.25 19.73 133.66 89.89 95.48 93.30 96.20 34.02
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jazz

rat0 261.90 207.43 187.95 229.34 413.04 211.80 214.38 123.00 180.48 227.71 208.26 185.08 200.84
rat0clust 124.72 208.50 189.76 224.25 483.03 212.70 210.38 92.98 153.78 205.03 183.60 154.52 186.53
rat0mod 218.52 394.06 335.47 421.46 841.36 397.15 389.95 151.69 276.29 391.58 342.54 275.37 340.75

pop

rat0 114.44 113.91 110.25 140.14 240.95 132.89 123.63 172.82 35.55 102.87 68.38 128.40 119.98
rat0clust 65.36 108.53 108.23 135.15 253.71 129.28 117.62 132.92 31.55 89.14 59.83 105.56 108.94
rat0mod 64.89 102.86 93.03 118.07 180.58 117.02 106.17 128.80 31.43 87.07 58.89 100.54 100.57

rock

rat0 124.79 110.08 94.96 131.36 212.81 123.67 115.75 186.23 96.17 28.13 45.07 134.32 111.52
rat0clust 62.00 100.32 88.71 120.10 207.04 115.28 104.65 138.54 80.39 24.85 38.99 107.99 97.19
rat0mod 61.96 95.95 82.80 107.40 155.56 104.92 96.98 135.62 80.19 24.58 38.69 103.83 91.59

popular

rat0 97.19 101.28 90.48 123.78 217.84 118.47 108.11 170.65 35.00 27.14 29.92 118.67 99.64
rat0clust 54.98 93.01 84.27 111.83 207.88 109.63 97.95 126.07 30.87 24.11 26.51 95.43 87.13
rat0mod 54.72 88.37 77.19 98.94 154.54 98.44 89.81 121.78 30.73 23.66 26.16 90.77 81.26

training

rat0 104.98 102.91 87.18 111.15 229.68 121.08 106.06 164.66 83.34 106.82 97.11 34.68 90.37
rat0clust 58.64 96.39 82.01 102.22 214.99 112.19 97.35 122.94 70.62 92.68 83.50 29.54 80.27
rat0mod 57.66 92.90 73.67 92.35 162.78 103.58 90.21 120.07 69.10 90.58 81.64 28.24 75.43

all

rat0 20.27 16.01 17.44 29.06 68.25 39.33 22.00 97.35 31.08 28.88 29.70 31.02 26.57
rat0clust 17.48 15.07 16.16 26.68 59.39 35.05 20.29 72.77 26.56 25.24 25.74 25.61 23.58
rat0mod 17.33 14.67 15.30 24.78 48.09 32.65 19.24 70.95 26.31 24.95 25.46 25.00 22.60
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A.3 Detailed Evaluation of the AME system on

the MIREX05 Development Set

A.3.1 Hypotheses Search without a Melody Model

Peak Detection

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.609 0.001 0.028 0.284
train02.wav 0.402 0.000 0.010 0.332
train03.wav 0.490 0.000 0.008 0.396
train04.wav 0.480 0.000 0.031 0.255
train05.wav 0.548 0.000 0.005 0.292
train06.wav 0.565 0.000 0.010 0.489
train07.wav 0.387 0.000 0.005 0.332
train08.wav 0.469 0.000 0.014 0.291
train09.wav 0.548 0.001 0.012 0.177
train10.wav 0.155 0.000 0.000 0.009
train11.wav 0.004 0.000 0.000 0.000
train12.wav 0.152 0.000 0.013 0.000
train13.wav 0.110 0.000 0.008 0.000
average 0.378 0.000 0.011 0.220

Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.361 0.000 0.000 0.348
train02.wav 0.338 0.000 0.000 0.338
train03.wav 0.379 0.000 0.000 0.379
train04.wav 0.343 0.000 0.000 0.335
train05.wav 0.336 0.000 0.003 0.319
train06.wav 0.524 0.028 0.028 0.523
train07.wav 0.341 0.000 0.000 0.323
train08.wav 0.314 0.000 0.003 0.295
train09.wav 0.283 0.000 0.000 0.235
train10.wav 0.009 0.000 0.000 0.009
train11.wav 0.073 0.000 0.000 0.000
train12.wav 0.030 0.000 0.000 0.000
train13.wav 0.010 0.000 0.000 0.000
average 0.257 0.002 0.003 0.239

Cepstrum-Biased Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.558 0.249 0.315 0.381
train02.wav 0.384 0.038 0.062 0.273
train03.wav 0.538 0.290 0.292 0.480

55



train04.wav 0.425 0.151 0.177 0.252
train05.wav 0.394 0.252 0.285 0.282
train06.wav 0.529 0.148 0.196 0.401
train07.wav 0.405 0.101 0.125 0.287
train08.wav 0.471 0.173 0.195 0.299
train09.wav 0.542 0.451 0.461 0.448
train10.wav 0.356 0.087 0.093 0.088
train11.wav 0.316 0.157 0.158 0.157
train12.wav 0.492 0.030 0.089 0.030
train13.wav 0.473 0.049 0.106 0.049
average 0.453 0.167 0.196 0.264

Salience Function

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.552 0.484 0.491 0.445
train02.wav 0.518 0.303 0.312 0.326
train03.wav 0.547 0.172 0.184 0.276
train04.wav 0.482 0.137 0.204 0.179
train05.wav 0.522 0.495 0.513 0.389
train06.wav 0.478 0.138 0.148 0.254
train07.wav 0.519 0.273 0.277 0.303
train08.wav 0.591 0.209 0.300 0.240
train09.wav 0.530 0.206 0.248 0.204
train10.wav 0.715 0.209 0.209 0.209
train11.wav 0.590 0.148 0.217 0.148
train12.wav 0.732 0.176 0.208 0.176
train13.wav 0.611 0.056 0.131 0.056
average 0.568 0.231 0.265 0.247

CBHSP and Salience Function Combination

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.510 0.255 0.258 0.460
train02.wav 0.382 0.073 0.076 0.327
train03.wav 0.464 0.176 0.176 0.414
train04.wav 0.439 0.149 0.161 0.330
train05.wav 0.497 0.309 0.309 0.460
train06.wav 0.537 0.117 0.117 0.492
train07.wav 0.537 0.187 0.197 0.404
train08.wav 0.354 0.095 0.106 0.272
train09.wav 0.330 0.218 0.229 0.241
train10.wav 0.302 0.133 0.133 0.141
train11.wav 0.270 0.124 0.128 0.124
train12.wav 0.180 0.002 0.002 0.002
train13.wav 0.285 0.023 0.030 0.023
average 0.391 0.143 0.148 0.284
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A.3.2 Hypotheses Search with Raw Melody Model

Peak Detection

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.624 0.015 0.055 0.289
train02.wav 0.418 0.000 0.007 0.332
train03.wav 0.500 0.005 0.005 0.399
train04.wav 0.496 0.007 0.026 0.263
train05.wav 0.564 0.004 0.012 0.299
train06.wav 0.536 0.000 0.008 0.452
train07.wav 0.404 0.000 0.002 0.324
train08.wav 0.467 0.022 0.033 0.306
train09.wav 0.537 0.000 0.048 0.178
train10.wav 0.182 0.000 0.000 0.009
train11.wav 0.015 0.000 0.000 0.000
train12.wav 0.208 0.028 0.036 0.028
train13.wav 0.137 0.000 0.008 0.000
average 0.391 0.006 0.019 0.221

Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.459 0.003 0.038 0.346
train02.wav 0.338 0.000 0.000 0.338
train03.wav 0.357 0.000 0.001 0.300
train04.wav 0.368 0.003 0.005 0.330
train05.wav 0.354 0.046 0.063 0.269
train06.wav 0.524 0.000 0.000 0.509
train07.wav 0.339 0.000 0.000 0.308
train08.wav 0.300 0.000 0.000 0.268
train09.wav 0.350 0.000 0.010 0.188
train10.wav 0.009 0.000 0.000 0.009
train11.wav 0.109 0.000 0.000 0.000
train12.wav 0.055 0.000 0.000 0.000
train13.wav 0.035 0.010 0.021 0.010
average 0.277 0.005 0.011 0.221

Cepstrum-Biased Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.567 0.085 0.228 0.265
train02.wav 0.417 0.055 0.071 0.285
train03.wav 0.554 0.140 0.143 0.366
train04.wav 0.449 0.064 0.096 0.194
train05.wav 0.461 0.086 0.128 0.172
train06.wav 0.482 0.079 0.128 0.309
train07.wav 0.407 0.063 0.085 0.255
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train08.wav 0.495 0.051 0.101 0.220
train09.wav 0.587 0.202 0.245 0.252
train10.wav 0.365 0.020 0.044 0.022
train11.wav 0.443 0.021 0.113 0.021
train12.wav 0.546 0.009 0.025 0.009
train13.wav 0.523 0.007 0.051 0.007
average 0.484 0.068 0.112 0.183

Salience Function

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.576 0.245 0.295 0.273
train02.wav 0.544 0.101 0.157 0.194
train03.wav 0.533 0.129 0.138 0.217
train04.wav 0.483 0.169 0.180 0.208
train05.wav 0.576 0.076 0.158 0.117
train06.wav 0.524 0.056 0.077 0.213
train07.wav 0.533 0.098 0.151 0.177
train08.wav 0.607 0.184 0.221 0.247
train09.wav 0.571 0.140 0.189 0.159
train10.wav 0.736 0.037 0.093 0.038
train11.wav 0.692 0.080 0.205 0.080
train12.wav 0.695 0.004 0.080 0.004
train13.wav 0.743 0.064 0.110 0.064
average 0.601 0.106 0.158 0.153

CBHSP and Salience Function Combination

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.532 0.109 0.140 0.365
train02.wav 0.460 0.032 0.057 0.281
train03.wav 0.492 0.091 0.103 0.325
train04.wav 0.434 0.104 0.117 0.302
train05.wav 0.524 0.245 0.245 0.385
train06.wav 0.512 0.111 0.125 0.424
train07.wav 0.564 0.090 0.136 0.329
train08.wav 0.392 0.020 0.055 0.221
train09.wav 0.378 0.120 0.151 0.162
train10.wav 0.370 0.027 0.037 0.037
train11.wav 0.312 0.111 0.126 0.111
train12.wav 0.242 0.010 0.012 0.010
train13.wav 0.521 0.085 0.090 0.085
average 0.441 0.089 0.107 0.234
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A.3.3 Hypotheses Search with Clustered Melody Model

Peak Detection

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.628 0.001 0.009 0.279
train02.wav 0.418 0.000 0.003 0.332
train03.wav 0.504 0.001 0.004 0.396
train04.wav 0.502 0.009 0.019 0.264
train05.wav 0.562 0.004 0.017 0.299
train06.wav 0.550 0.000 0.011 0.452
train07.wav 0.404 0.004 0.008 0.327
train08.wav 0.467 0.040 0.042 0.319
train09.wav 0.557 0.009 0.018 0.186
train10.wav 0.182 0.000 0.000 0.009
train11.wav 0.015 0.000 0.000 0.000
train12.wav 0.208 0.003 0.010 0.003
train13.wav 0.137 0.000 0.011 0.000
average 0.395 0.006 0.012 0.221

Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.459 0.053 0.083 0.379
train02.wav 0.338 0.000 0.000 0.338
train03.wav 0.357 0.000 0.001 0.300
train04.wav 0.368 0.000 0.003 0.328
train05.wav 0.354 0.014 0.027 0.248
train06.wav 0.524 0.000 0.000 0.509
train07.wav 0.339 0.000 0.000 0.308
train08.wav 0.300 0.000 0.003 0.268
train09.wav 0.350 0.001 0.021 0.188
train10.wav 0.009 0.000 0.000 0.009
train11.wav 0.109 0.000 0.000 0.000
train12.wav 0.055 0.000 0.000 0.000
train13.wav 0.035 0.000 0.011 0.000
average 0.277 0.005 0.011 0.221

Cepstrum-Biased Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.567 0.105 0.189 0.278
train02.wav 0.417 0.032 0.051 0.269
train03.wav 0.554 0.153 0.173 0.373
train04.wav 0.449 0.049 0.106 0.184
train05.wav 0.461 0.050 0.100 0.149
train06.wav 0.482 0.014 0.038 0.277
train07.wav 0.407 0.043 0.072 0.241
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train08.wav 0.501 0.040 0.087 0.206
train09.wav 0.587 0.126 0.173 0.194
train10.wav 0.365 0.036 0.054 0.038
train11.wav 0.443 0.059 0.061 0.059
train12.wav 0.557 0.002 0.057 0.002
train13.wav 0.523 0.068 0.104 0.068
average 0.486 0.060 0.097 0.180

Salience Function

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.576 0.100 0.156 0.178
train02.wav 0.544 0.103 0.166 0.196
train03.wav 0.536 0.045 0.096 0.168
train04.wav 0.486 0.051 0.112 0.130
train05.wav 0.573 0.064 0.213 0.104
train06.wav 0.520 0.020 0.079 0.191
train07.wav 0.528 0.041 0.125 0.140
train08.wav 0.591 0.075 0.149 0.156
train09.wav 0.571 0.080 0.139 0.105
train10.wav 0.755 0.035 0.073 0.037
train11.wav 0.746 0.061 0.083 0.061
train12.wav 0.715 0.051 0.163 0.051
train13.wav 0.741 0.003 0.034 0.003
average 0.606 0.056 0.122 0.117

CBHSP and Salience Function Combination

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.532 0.090 0.157 0.352
train02.wav 0.460 0.012 0.037 0.268
train03.wav 0.492 0.026 0.038 0.286
train04.wav 0.445 0.075 0.110 0.280
train05.wav 0.524 0.060 0.139 0.263
train06.wav 0.512 0.000 0.039 0.370
train07.wav 0.564 0.051 0.115 0.303
train08.wav 0.392 0.007 0.047 0.212
train09.wav 0.378 0.016 0.092 0.083
train10.wav 0.370 0.017 0.036 0.026
train11.wav 0.290 0.072 0.094 0.072
train12.wav 0.242 0.010 0.012 0.010
train13.wav 0.521 0.048 0.049 0.048
average 0.440 0.037 0.074 0.198
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A.3.4 Hypotheses Search Using only the Raw Melody

Model

Peak Detection

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.626 0.009 0.050 0.285
train02.wav 0.418 0.000 0.007 0.332
train03.wav 0.501 0.005 0.005 0.399
train04.wav 0.495 0.007 0.026 0.263
train05.wav 0.564 0.004 0.012 0.299
train06.wav 0.536 0.000 0.000 0.452
train07.wav 0.404 0.001 0.002 0.325
train08.wav 0.468 0.021 0.031 0.306
train09.wav 0.537 0.000 0.045 0.178
train10.wav 0.182 0.000 0.000 0.009
train11.wav 0.015 0.000 0.000 0.000
train12.wav 0.208 0.031 0.040 0.031
train13.wav 0.137 0.000 0.008 0.000
average 0.392 0.006 0.018 0.221

Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.459 0.031 0.066 0.364
train02.wav 0.338 0.000 0.000 0.338
train03.wav 0.357 0.002 0.002 0.301
train04.wav 0.368 0.003 0.005 0.330
train05.wav 0.354 0.002 0.017 0.241
train06.wav 0.524 0.000 0.000 0.509
train07.wav 0.339 0.000 0.000 0.308
train08.wav 0.300 0.000 0.000 0.268
train09.wav 0.350 0.011 0.038 0.196
train10.wav 0.009 0.000 0.000 0.009
train11.wav 0.109 0.000 0.000 0.000
train12.wav 0.055 0.000 0.000 0.000
train13.wav 0.035 0.013 0.013 0.013
average 0.277 0.005 0.011 0.221

Cepstrum-Biased Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.567 0.083 0.230 0.263
train02.wav 0.417 0.055 0.075 0.285
train03.wav 0.554 0.115 0.126 0.351
train04.wav 0.449 0.064 0.097 0.194
train05.wav 0.461 0.075 0.126 0.165
train06.wav 0.482 0.079 0.128 0.309
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train07.wav 0.407 0.079 0.100 0.265
train08.wav 0.495 0.076 0.107 0.237
train09.wav 0.587 0.200 0.245 0.251
train10.wav 0.365 0.020 0.044 0.022
train11.wav 0.443 0.021 0.113 0.021
train12.wav 0.546 0.001 0.042 0.001
train13.wav 0.523 0.007 0.051 0.007
average 0.484 0.067 0.114 0.182

Salience Function

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.576 0.252 0.302 0.277
train02.wav 0.544 0.109 0.155 0.199
train03.wav 0.533 0.128 0.137 0.217
train04.wav 0.483 0.191 0.201 0.223
train05.wav 0.576 0.054 0.137 0.103
train06.wav 0.528 0.062 0.063 0.220
train07.wav 0.533 0.098 0.151 0.177
train08.wav 0.607 0.126 0.163 0.208
train09.wav 0.569 0.118 0.157 0.141
train10.wav 0.736 0.037 0.093 0.038
train11.wav 0.692 0.078 0.200 0.078
train12.wav 0.695 0.004 0.093 0.004
train13.wav 0.741 0.098 0.106 0.098
average 0.601 0.104 0.151 0.153

CBHSP and Salience Function Combination

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.532 0.119 0.165 0.372
train02.wav 0.460 0.038 0.060 0.285
train03.wav 0.492 0.092 0.097 0.325
train04.wav 0.434 0.099 0.115 0.299
train05.wav 0.524 0.128 0.174 0.307
train06.wav 0.512 0.111 0.125 0.424
train07.wav 0.564 0.105 0.154 0.339
train08.wav 0.392 0.017 0.049 0.219
train09.wav 0.378 0.120 0.151 0.162
train10.wav 0.370 0.072 0.082 0.081
train11.wav 0.312 0.109 0.112 0.109
train12.wav 0.242 0.010 0.012 0.010
train13.wav 0.521 0.043 0.048 0.043
average 0.441 0.082 0.103 0.229
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A.3.5 Hypotheses Search Using only the Clustered Melody

Model

Peak Detection

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.630 0.040 0.054 0.304
train02.wav 0.418 0.000 0.011 0.332
train03.wav 0.518 0.001 0.012 0.396
train04.wav 0.494 0.005 0.032 0.259
train05.wav 0.563 0.035 0.040 0.319
train06.wav 0.536 0.000 0.014 0.452
train07.wav 0.404 0.000 0.004 0.324
train08.wav 0.468 0.030 0.035 0.312
train09.wav 0.543 0.005 0.042 0.185
train10.wav 0.182 0.006 0.006 0.015
train11.wav 0.015 0.000 0.000 0.000
train12.wav 0.215 0.023 0.035 0.023
train13.wav 0.137 0.006 0.006 0.006
average 0.394 0.012 0.022 0.225

Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.459 0.000 0.058 0.344
train02.wav 0.338 0.000 0.000 0.338
train03.wav 0.357 0.000 0.001 0.300
train04.wav 0.368 0.000 0.003 0.328
train05.wav 0.354 0.002 0.015 0.241
train06.wav 0.524 0.000 0.000 0.509
train07.wav 0.339 0.000 0.000 0.308
train08.wav 0.300 0.000 0.000 0.268
train09.wav 0.350 0.001 0.004 0.188
train10.wav 0.009 0.000 0.000 0.009
train11.wav 0.109 0.000 0.000 0.000
train12.wav 0.055 0.000 0.000 0.000
train13.wav 0.035 0.000 0.035 0.000
average 0.277 0.000 0.009 0.218

Cepstrum-Biased Harmonic Spectrum Product

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.567 0.183 0.239 0.328
train02.wav 0.417 0.036 0.060 0.272
train03.wav 0.554 0.117 0.146 0.352
train04.wav 0.449 0.053 0.089 0.187
train05.wav 0.461 0.031 0.096 0.136
train06.wav 0.482 0.071 0.088 0.305
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train07.wav 0.407 0.065 0.094 0.255
train08.wav 0.501 0.041 0.089 0.207
train09.wav 0.587 0.017 0.077 0.111
train10.wav 0.365 0.014 0.050 0.016
train11.wav 0.443 0.070 0.108 0.070
train12.wav 0.557 0.007 0.062 0.007
train13.wav 0.523 0.093 0.116 0.093
average 0.486 0.061 0.101 0.180

Salience Function

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.576 0.061 0.164 0.153
train02.wav 0.544 0.088 0.140 0.185
train03.wav 0.550 0.116 0.145 0.208
train04.wav 0.494 0.076 0.126 0.138
train05.wav 0.575 0.057 0.147 0.104
train06.wav 0.523 0.069 0.108 0.218
train07.wav 0.533 0.030 0.106 0.132
train08.wav 0.603 0.041 0.138 0.143
train09.wav 0.563 0.086 0.171 0.117
train10.wav 0.754 0.073 0.136 0.075
train11.wav 0.692 0.019 0.163 0.019
train12.wav 0.723 0.083 0.149 0.083
train13.wav 0.743 0.019 0.048 0.019
average 0.606 0.063 0.134 0.123

CBHSP and Salience Function Combination

�le
voicing raw pitch raw chroma overall
accuracy accuracy accuracy accuracy

train01.wav 0.532 0.079 0.131 0.345
train02.wav 0.460 0.039 0.060 0.286
train03.wav 0.492 0.125 0.135 0.345
train04.wav 0.434 0.023 0.054 0.248
train05.wav 0.545 0.053 0.177 0.258
train06.wav 0.512 0.045 0.111 0.392
train07.wav 0.564 0.051 0.126 0.303
train08.wav 0.392 0.031 0.069 0.229
train09.wav 0.378 0.048 0.087 0.107
train10.wav 0.370 0.059 0.091 0.068
train11.wav 0.290 0.013 0.017 0.013
train12.wav 0.242 0.015 0.015 0.015
train13.wav 0.521 0.024 0.069 0.024
average 0.441 0.047 0.088 0.203
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B. Manual for the AME System

The AME system enclosed can be launched on a machine where installed Java
SE is installed in version 6 or higher.

If you stand in the directory with the executable �le, the program can be run
using the following command:

java -jar rozehra.jar [wav file]

where [wav file] is path to the wave �le containing the audio signal to be
analyzed. We recommend using monophonic signal with sampling frequency of
44,100Hz. The algorithm run is visualized in a new window. There are several
options to set up the algorithm properties.

Pith Detection Algorithms

The pith detection algorithm can be selected by option -pitch=[algorithm]

and it can have the following values:

• peaks � simple peak detection

• hsp � harmonic spectrum product

• cbhsp � cepstrum biased harmonic spectrum product

• salience � salience function maximization

• combined � combination of CBHSP and salience function maximization

While using the salience function maximization the program may have bigger
memory requirements. Therefore we recommend bigger heap space for the Java
Virtual Machine. It can be done by using option -Xmx6g.

If the option is not speci�ed salience function maximization is used.

Melody Modeling

The melody model can be speci�ed using option -model[format] where
format can have following values:

• plain � raw n-gram model

• clust � n-gram model with additional clustering

If the option is not speci�ed, no model is used.
The SRILM toolkit server process must be running while using the melody

models. For that the SRILM toolkit must be installed on the machine. The
process can be then run by command:

ngram -server-port [port number] -order 10 -lm [model file]

The raw melody model is in �le all-rat0.lm.gz and the clustered model in
�le all-rat0clust.lm.gz in the directory melody-models on the enclosed DVD.
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The server port number must be set also for the AME process. It can be
using option -srilmPort=[port number]. If the ngram program from the SRILM
toolking is not on the system path, the full path to the program can be speci�ed
using option -ngramPath=[path].
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