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t.j. Chain-ladder, Bornhuetter-Ferguson, Benktander-Hovinen a Cape-Cod s je-
jich vlastnostmi a principy. V další části pak hledáme jejich stochastické rozšíření
za použití zobecněných lineáních modelů (GLM) a Mackových obecných (nedis-
tribučních) přístupů, zkoumáme druhé momenty odhadnutých škodních rezerv
a zavedeme Merz-Wüthrichův způsob měření rizika škodních rezerv. Na závěr je
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Chapter 1

Introduction

This thesis presents an overview of common stochastic claims reserving methods
in non-life insurance. Examining variability of claims reserves became an impor-
tant component of reserving process in last decades, for the most part due to
more common usage of dynamic risk models, more thorough solvency require-
ments and rating agencies expectations. Yet, there is a obstacle in expansion
of stochastic claims reserving methods usage, since even if we choose a spe-
cific analytic reserving method, there is not usually only one generally accepted
stochastic approach. This issue is presented in this paper - we show several ways,
how common non-stochastic reserving methods can be reproduced/extended to
stochastic ones.

We present both distributional and distribution-free models, with each having
their own pros and cons. Distributional models can, under certain assumptions,
provide us with possible hypothesis testing and outcome distribution (analytic
of simulation). On the other hand, there is a considerable loss of generality and
it is usually difficult to rationally justify the choice of the specific distribution
class. Distribution-free models are essentially more general, but their structure
is mostly defined to achieve a specific goal (in our case obtaining an analytic
formula for second moments of ultimate claim estimate), which could be difficult
to justify as well. Also treatment of higher than second moments is usually out
of reach. Great potential is offered with bootstrap simulations, since it provides
estimate of the shape of the parameters distribution even in distribution-free
models.

Purpose of this paper is to compare more approaches to stochastic reserv-
ing and therefore we are not able to show the whole derivations or proofs for
every statement. The structure is arranged so that the reader finds for each

5



model its assumptions, including their interpretations, parameter estimates and
major model a estimates properties. In case of stochastic methods, we present
estimates of claims reserves’ second moments with explaining the main steps of
the derivation including estimation assumptions, attached with a reference to
detailed derivation. The reader should be able to apply all methods based on
information from this paper.

Note, that in methods presented in this paper, we do not consider claims de-
velopment after the last observed development year. There have been suggestions
for tail factors for example in Mack Chain-ladder or Mack Bornhuetter-Ferguson
method, but since the issue represents more expert or regression problem specific
to each data set, the tail factors are not considered.

In Chapter 3 we introduce Chain-ladder, Bornhuetter-Ferguson, Benktander-
Hovinen and Cape-Cod methods as purely computational methods to obtain ul-
timate claims estimate. Principles of individual methods are explained, followed
by model assumptions and parameter estimates.

Chapter 4 deals with several stochastic versions of Chain-ladder, Bornhuetter-
Ferguson and Benktander-Hovinen. We introduce Generalized linear models fra-
mework and connect the Over-dispersed Poisson model and Over-dispersed Nega-
tive Binomial model with Chain-ladder technique. Next, we state Mack’s versions
of Chain-ladder and Bornhuetter-Ferguson method and search for optimal cred-
ibity mixture in Benktander-Hovinen method. Conditional and unconditional
versions of mean square errors are introduced and estimated for each approach.

In Chapter 5 we subscribe the bootstrap algorithm for structured data and
state how it could be applied in claims reserving methods. In Chapter 6 the
methods are applied on real data and results are compared.
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1.1 Notions and notations
Xi,j incremental payments at time j from accident year i
Ci,j cumulative payments until time j from accident year i
DI available observations at time I (upper triangle)
Bk set of observations at time I with development year up to k
Ri,j outstanding loss liabilities for accident year i at time j
Ri outstanding loss liabilities for accident year i at time I
R total outstanding loss liabilities at time I

X̂ prediction or estimation of X
XB bootstrap pseudo-observation
b′ transposition of row vector b
E[·] expected value
Var(·) variance
msep(·)(·) unconditional mean square of error
msep(·|·)(·) conditional mean square of error
BF Bornhuetter-Ferguson
BH Benktander-Hovinen
CC Cape-Cod
CDR claims development result
CL Chain-ladder
EDF Exponential dispersion family
GLM Generalized linear models
ODP Over-dispersed Poisson model
ODNB Over-dispersed Negative Binomial model
MLE maximum likelihood estimator
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Chapter 2

Claims process

Claims reserving issue results from a delay between claim occurrence and set-
tlement. The target is to cover the unsettled claims of past exposures. These
are

• A. claims, that have occurred, but have not been reported before the end
of insurance period (IBNR - incurred but not reported)

• B. claims that have been reported, but we still expect claim costs in the
future (RBNS - reported but not settled).

For the claims development process description, we use common notation
from Merz and Wüthrich [13]. We assume that we are at time I and one period
represents one year. Previous accident/origin years are denoted by i ∈ {0, . . . , I}
and development years are denoted by j ∈ {0, . . . , J}, with I ≥ J . Xi,j denotes
incremental payments in period j for claims that occurred at accident year i and
Ci,j denotes cumulative payments for accident year i until development year j

Ci,j =

j∑
k=0

Xi,k. (2.1)

Ci,J is called ultimate claim and we assume, that there is no (significant) claims
development after the delay J .

Observations available at time I are given by upper triangle

DI = {Xi,j; i+ j ≤ I, i ≤ I}. (2.2)

In specific cases, we will work with a set of observations with development year
lower or equal to k

Bk = {Xi,j; i+ j ≤ I, 0 ≤ j ≤ k} ⊆ DI . (2.3)
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The outstanding loss liabilities for accident year i at time j are given by

Ri,j = Ci,J − Ci,j. (2.4)

Present outstanding loss liabilities (at time I) for accident year i are indexed
only by accident year:

Ri = Ci,J − Ci,I−i. (2.5)

Total outstanding loss liabilities at time I are given by

R =
I∑

i=0

Ri. (2.6)

Figure 2.1: Development triangle for incremental claims
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Chapter 3

Methods overview

In this chapter we introduce four analytic claims reserving methods used in this
work. Each method is defined with its assumptions; further, we subscribe model
properties and algorithm for parameters a ultimate claim estimation.

3.1 Chain-ladder method
One of the most common methods used for claims development triangle analysis
is the Chain-ladder method. Despite its simplicity, this method often shows more
accurate results than more complex models and it is commonly used as a basis
for comparison with other methods.

Assumptions 1 (Chain-ladder) We introduce (distribution-free)
Chain-ladder model using following assumptions:

1. Cumulative claims Ci,j of different accident years i are independent.

2. There exist development factors f0, . . . , fJ−1 > 0 such that for all 0 ≤ i ≤ I
and all 0 ≤ j ≤ J we have

E[Ci,j | Ci,0, . . . , Ci,j−1] = E[Ci,j | Ci,j−1] = fj−1Ci,j−1. (3.1)

Lemma 1 (Chain-ladder properties) Under Assumptions 1 we have:

• For 0 ≤ i ≤ I

E[Ci,J | DI ] = E[Ci,j | Ci,I−i] = Ci,I−ifI−i . . . fJ−1. (3.2)
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• Unbiased estimator for Chain-ladder factors fj, j = 0, . . . , J − 1 is given
by

f̂j =

∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

. (3.3)

• Unbiased Chain-ladder estimator for E[Ci,J | DI ] is given by:

ĈCL
i,J = Ci,I−if̂I−i . . . f̂J−1. (3.4)

Proof can be found in Merz and Wüthrich [13].

3.2 Bornhuetter-Ferguson method
Bornhuetter-Ferguson method considers prior estimates of expected ultimate
claim µi = E[Ci,J ], 0 ≤ i ≤ I. These values are mostly based on expert opinion
and should be determined before the end of development year 0.

Assumptions 2 (Bornhuetter-Ferguson) We introduce Bornhuetter-Fergu-
son model using following assumptions:

1. Cumulative claims Ci,j of different accident years i are independent.

2. There exist parameters µ0, . . . , µI > 0 and a pattern β0, . . . , βJ > 0 with
βJ = 1 such that for all 0 ≤ i ≤ I and all 0 ≤ j ≤ J −1 and 1 ≤ k ≤ j−J
we have

E[Ci,0] = β0µi, (3.5)

E[Ci,j+k | Ci,0, . . . , Ci,j] = Ci,j + (βj+k − βj)µi. (3.6)

Under these assumptions we have:

E[Ci,j] = βjµi, (3.7)

E[Ci,J ] = µi. (3.8)

To find a relationship between Chain-ladder and Bornhuetter-Ferguson, we
have to restrain ourselves only on Assumption 3.7, which is implied by Chain-
ladder Assumptions 1. Under Assumption 3.7 the estimators for the pattern
β0, . . . , βJ can be obtained using Chain-ladder development factors as follows:
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β̂j =
J−1∏
k=j

1

f̂k
. (3.9)

Unbiased Bornhuetter-Ferguson estimator for E[Ci,J | DI ] is given by

ĈBF
i,J = Ci,I−i + (1− β̂I−i)µ̂i. (3.10)

Proof can be found in Merz and Wüthrich [13].

Note 1 Another approach to parameters estimation within the Bornhuetter-
Ferguson method was suggested by Mack [8] and can be found in Section 4.5.

3.3 Benktander-Hovinen method
Benktander-Hovinen method combines Chain-ladder and Bornhuetter-Ferguson
approach. While Chain-ladder estimate of expected ultimate claim E[Ci,J ] fully
depends on observations, Bornhuetter-Ferguson on the contrary uses only prior
estimate µi (adjusted by the last-diagonal claim). In this method we use ĈBF

i,J as
a prior estimate and with increasing knowledge of claim development we iterate
it using a credibility mixture of both previous approaches

ui(c) = cĈCL
i,J + (1− c)µi, (3.11)

for 0 ≤ c ≤ 1 increasing with obtaining better information on Ci,J .

Lemma 2 (Benktander-Hovinen properties) For estimating Benktander-
Hovinen ultimate claim ĈBH

i,J we choose so called Gunnar Benktander substitution
c = βI−i. Then we have

ĈBH
i,J = Ci,I−i + (1− βI−i)

(
βI−iĈ

CL
i,J + (1− βI−i)µi

)
. (3.12)

• If we assume that (βj)0≤j≤J is known and use identification 3.9, we have

ĈBH
i,J = Ci,I−i + (1− βI−i)Ĉ

BF
i,J . (3.13)

• Then, for m ≥ 0, we can define an iteration process:

Ĉm+1 = Ci,I−i + (1− βI−i)Ĉ
m, (3.14)

lim
m→∞

Ĉm = ĈCL
i,J , (3.15)

where Ĉ0 = µi.

Proof can be found in Mack [9].
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3.4 Cape-Cod method
Cape-Cod method was suggested to deal with a dependency of the estimated
ultimate claim on all observations within the particular accident year. For that,
we use modified values of diagonal observations, that reflect long-term trend and
should eliminate the outliers.

Assumptions 3 (Cape-Cod method) We introduce Cape-Cod method using
following assumptions:

1. Cumulative claims Ci,j of different accident years i are independent.

2. There exist parameters π0, . . . , πI > 0, κ > 0 and a claims development
pattern β0, . . . , βJ with βJ = 1 such that for all 0 ≤ i ≤ I and all 0 ≤ j ≤ J
we have

E[Ci,j] = κπiβj. (3.16)

Lemma 3 (Cape-Cod properties) Under Assumptions 3 and identification
(3.9) we have:

• Unbiased Cape-Cod estimator for κ is given by

κ̂CC =

∑I
i=1Ci,I−i∑I
i=1 βI−iπi

. (3.17)

• For estimating the ultimate claim, we use modified values of diagonal ob-
servations

ĈCC
i,I−i = κ̂CCπiβI−i. (3.18)

• Cape-code estimator is then given by

ĈCC
i,J = Ci,I−i − ĈCC

i,I−i +
J−1∏

j=I−i

fjĈ
CC
i,I−i. (3.19)

Proof can be found in Merz and Wüthrich [13].

Note 2 (Cape-Cod vs. Bornhuetter-Ferguson method) We assume that
µ̂i = Ĉi,J = κ̂πi, where πi represents premium volume and κ loss ratio. Op-
posed to BF method, where the loss ratio κ is estimated priori and therefore
is independent of claims development, in the CC method the loss ratio (3.17)
changes/adjusts with increasing knowledge of the claims development.
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Chapter 4

Stochastic reserving

In the previous chapter several reserving models have been introduced as me-
chanical methods to obtain an estimate of the ultimate claim Ĉi,J . Main ad-
vantage of these models is their simplicity - they can be easily understood and
programmed, but they provide information only about the expected value and
do not consider variability of the estimate. When we want to estimate second
moments, quantiles or even the full predictive distribution of the ultimate claim,
we introduce stochastic reserving models.

In this chapter we will try to expand the analytic methods from Chapter 3
with additional stochastic framework and then examine their stochastic proper-
ties. This is done via:

• additional assumptions on variance,

• additional assumptions on distribution,

• defining a new stochastic model that justifies/implies usage of a specific
analytic method.

In first two approaches we begin with our non-stochastic model and search for
reasonable stochastic extension. Concerning the third approach, the procedure
is reversed, since we begin with a stochastic model and try to fit it to our non-
stochastic one.

This chapter starts with a definition of a criterion for measuring the variabil-
ity of prediction. Based on it, we can perform a comparison of models’ precision.
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4.1 Mean square error of prediction
Common approach to measure quality/uncertainty of prediction is considering
second moments, i.e. determining (conditional) mean square error of prediction
(MSEP). Conditional MSEP for the estimate of ultimate claim Ĉi,J is defined as
follows

msepCi,J |DI
(Ĉi,J) = E[(Ci,J − Ĉi,J)

2 | DI ]. (4.1)

For a DI-measurable estimate Ĉi,J , the conditional mean square error of predic-
tion can be decomposed

msepCi,J |DI
(Ĉi,J) = Var(Ci,J | DI)︸ ︷︷ ︸

conditional process variance

+(Ĉi,J − E[Ci,J | DI ])
2︸ ︷︷ ︸

parameter estimation error

. (4.2)

If we assume that R̂i = Ĉi,J −Ci,I−i , then all the uncertainty of the estimate
Ĉi,J is contained in estimated future claims X̂i,j, j > I−i and we can equivalently
express the conditional MSEP of Ĉi,J as MSEP of estimated outstanding loss
liabilities

msepCi,J |DI
(Ĉi,J) = msepRi|DI

(R̂i) = E[(Ri − R̂i)
2 | DI ]. (4.3)

The unconditional mean square error of prediction is then defined as expected
value of conditional MSEP:

msepCi,J
(Ĉi,J) = E[msepCi,J |DI

(Ĉi,J)] = E[Var(Ci,J | DI)]+E[(Ĉi,J−E[Ci,J | DI ])
2]

(4.4)
= Var(Ci,J) + E[(Ĉi,J − E[Ci,J ])

2]− 2E
[(

Ĉi,J − E[Ci,J ]
)(

E[Ci,J | DI ]− E[Ci,J ]
)]

.

(4.5)
If Ĉi,J is unbiased estimator for E[Ci,J ], then we have

msepCi,J
(Ĉi,J) = Var(Ci,J) + Var(Ĉi,J)− 2Cov(Ĉi,J ,E[Ci,J | DI ]). (4.6)

In all methods introduced in Chapter 3, we have assumed that the claims de-
velopments of different accident years are independent. Under this assumption,
the total conditional process variance of aggregated ultimate claims

∑I
i=1Ci,J

is a sum of individual process variance errors. This shall not apply in case of
parameter estimation errors for different accident years, since there is no gen-
eral assumption on claims estimates independence and therefore the conditional
MSEP for aggregated ultimate claims cannot be simply obtained by summing
MSEP of individual accident years. We have following relationship:
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msep∑I
i=1 Ci,J |DI

(
I∑

i=1

Ĉi,J) =
I∑

i=1

Var(Ci,J | DI) + (
I∑

i=1

Ĉi,J −
I∑

i=1

E[Ci,J | DI ])
2 =

=
I∑

i=1

Var(Ci,J | DI)+
I∑

i=1

(Ĉi,J − E[Ci,J | DI ])
2+

+2
∑

1≤i<k≤J

(Ĉi,J − E[Ci,J | DI ])(Ĉk,J − E[Ck,J | DI ]).

(4.7)

4.2 Distribution-free stochastic Chain-ladder
Due to simplicity and frequent usage, Chain-ladder stochastic models represent
the majority of researched stochastic claims reserving models. In this section we
state distribution-free stochastic models, that have been suggested for estimation
of conditional MSEP. We start with Mack Chain-ladder model and state two
approaches based on different additional assumptions; for the whole derivation
see Mack [7] and Buchwalder et al. [3].

Assumptions 4 (Mack Chain-ladder)
We introduce Mack Chain-ladder method using following assumptions:

1. Cumulative claims Ci,j of different accident years i are independent.

2. (Ci,j)j≥0 are Markov processes for all 0 ≤ i ≤ I and there exist development
factors f0, ..., fJ−1 > 0 and variance parameters σ2

0, . . . , σ
2
J−1 > 0 such that

for all 0 ≤ i ≤ I and all 0 ≤ j ≤ J we have

E[Ci,j | Ci,j−1] = fj−1Ci,j−1, (4.8)

Var(Ci,j | Ci,j−1) = σ2
j−1Ci,j−1. (4.9)

Lemma 4 (Variance estimate in Mack CL) Under Assumptions 4 we have
unbiased estimate for σ2

j , 0 ≤ j ≤ J − 1 in a form of

σ̂2
j =

1

I − j − 1

I−j−1∑
i=0

Ci,j

(
Ci,j+1

Ci,j

− f̂j

)2

. (4.10)

Proof can be found in Merz and Wüthrich [13].
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Note 3 We can see, that previous lemma does not provide an instruction of
how to estimate the last variance parameter σ̂2

J−1. This is caused by the fact that
there is not enough data to estimate variability of claims development with such
a delay. Mack [7] suggested putting σ̂2

J−1 = min(σ̂4
J−2/σ̂

2
J−3,min(σ̂2

J−2, σ̂
2
J−3)).

Since the lack of data for bigger j can generally bring less representative variance
estimates, we can go even further and extrapolate more than just the last element
using for example fitted regression model.

Theorem 1 (Conditional process variance for Mack CL)
Under Assumptions 4, using the unbiasedness of estimates f̂j (3.3) and σ̂2

j (4.10),
the conditional process variance for ultimate claim Ci,J is given by

Var(Ci,J | DI) = (E[Ci,J | Ci,I−i])
2

J−1∑
j=I−i

σ2
j/f

2
j

E[Ci,j | Ci,I−i]
(4.11)

and estimated by

V̂ar(Ci,J | DI) = (ĈCL
i,J )2

J−1∑
j=I−i

σ̂2
j/f̂

2
j

ĈCL
i,j

. (4.12)

Proof can be found in Mack [7].

Parameter estimation error is given by:

(ĈCL
i,J − E[Ci,J | DI ])

2 = C2
i,I−i(f̂I−i · · · f̂J−1 − fI−i · · · fJ−1)

2 =

= C2
i,I−i

( J−1∏
j=I−i

f̂ 2
j +

J−1∏
j=I−i

f 2
j − 2

J−1∏
j=I−i

f̂jfj

)
.

(4.13)

Since E[Ci,J | DI ] as well as true values of development factors fj are unknown,
the explicit analytical determination of parameter estimation error is not possible
and approximation through additional assumptions is needed. We start with
Mack’s derivation following Mack [7].

Assumptions 5 (Mack CL estimate of parameter estimation error)
We define Sk as

Sk = f̂I+1−i · · · f̂k−i(fk − f̂k)fk+1 · · · fI−1. (4.14)

Then, we assume that:
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1. S2
k can be estimated by E[S2

k | Bk],

2. SjSk, j < k can be estimated by E[SjSk | Bk].

Theorem 2 (Parameter estimation error for Mack CL)
Under Assumptions 5 the parameter estimation error for Mack Chain-ladder
estimate Ci,J is given by

(Ĉi,J − E[Ci,J | DI ])
2 = (ĈCL

i,J )2
J−1∑

j=I−i

σ̂2
j/f̂

2
j∑I−j−1

i=0 Ci,j

. (4.15)

Proof can be found in Mack [7].

In the following theorem we bring previous estimators together to obtain
conditional MSEP and we complete it with an estimator for aggregated accident
years following (4.7).

Theorem 3 (Mack CL MSEP - single and aggregated accident years)
Under Assumptions 5 we have following estimators for conditional MSEP of out-
standing claims for single and aggregated accident years:

m̂sep
Mack
Ci,J |DI

(ĈCL
i,J ) = (ĈCL

i,J )2
J−1∑

j=I−i

σ̂2
j

f̂ 2
j

( 1

ĈCL
i,j

+
1∑I−j−1

i=0 Ci,j

)
, (4.16)

m̂sep
Mack∑I

i=1 Ci,J |DI
(

I∑
i=1

ĈCL
i,J ) =

I∑
i=1

m̂sep
Mack
Ci,J |DI

(ĈCL
i,J )+

+ 2
∑

1≤i<k≤I

ĈCL
i,J ĈCL

k,J

J−1∑
j=I−i

σ̂2
j/f̂

2
j∑I−j−1

i=0 Ci,j

.

(4.17)

Proof can be found in Mack [7].

Buchwalder et al. [3] deal with another approach of estimating the parameter
estimation error. It is based on introduction of a stronger model which implies
Mack Chain-ladder model:

Assumptions 6 (Autoregressive Mack Chain-ladder)

1. Cumulative claims Ci,j of different accident years i are independent.
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2. There exist development factors f0, . . . , fJ−1 > 0, variance parameters
σ2
0, . . . , σ

2
J−1 > 0 and random variables εi,j, such that for all 0 ≤ i ≤ I

and all 0 ≤ j ≤ J we have

Ci,j+1 = fjCi,j + σj

√
Ci,jεi,j+1, (4.18)

where εi,j are independent a identically distributed with E[εi,j] = 0 and
Var(εi,j) = 1.

Theorem 4 (Parameter estimation error for Autoregressive CL)
Under Assumptions 6 the parameter estimation error for Ci,J is given by:

(Ĉi,J − E[Ci,J | DI ])
2 = C2

i,I−i

( J−1∏
j=I−i

(
f̂ 2
j +

σ̂2
j∑I−j−1

j=0 Ci,j

)
−

J−1∏
j=I−i

f̂ 2
j

)
. (4.19)

Proof can be found in Buchwalder et al. [3].

If slightly modified, we could see that Mack’s estimation (4.15) is always
lower than the autoregressive model estimation (4.19) and Buchwalder et al. [3]
showed, that Mack estimate is a linear approximation of autoregressive estimate.
Next theorem summarizes MSEP for autoregressive approach.

Theorem 5 (AR CL MSEP - single and aggregated accident years)
Under Assumptions 6 we have following estimators for conditional MSEP of
outstanding claims for single and aggregated accident years:

m̂sep
AR
Ci,J |DI

(ĈCL
i,J ) = (ĈCL

i,J )2
( J−1∑

j=I−i

σ̂2
j/f̂

2
j

ĈCL
i,j

+
J−1∏

j=I−i

( σ̂2
j/f̂

2
j∑I−j−1

i=0 Ci,j

+1
)
−1

)
, (4.20)

m̂sep
AR∑I

i=1 Ci,J |DI

( I∑
i=1

ĈCL
i,J

)
=

I∑
i=1

m̂sep
AR
Ci,J |DI

(ĈCL
i,J )+

+ 2
∑

1≤i<k≤I

Ci,I−iĈ
CL
k,I−i

( J−1∏
i=I−i

(
f̂ 2
j +

σ̂2
j∑I−j−1

i=0 Ci,j

)
−

J−1∏
i=I−i

f̂ 2
j

)
.

(4.21)
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4.3 Merz-Wüthrich method
Merz and Wüthrich [12] presented another approach to measure uncertainty
within Mack Chain-ladder model (Assumptions 4). Their target is not the vari-
ability of ultimate claims estimate but variability of one-year change of the esti-
mate - claims development result (CDR).

If we assume that E[Ci,J | DI ] is a predictor for Ci,J as well as E[Ci,J | DI+1]

and if ĈI
i,J and ĈI+1

i,J are appropriate estimators, then we define claims develop-
ment result after one year for accident year i as follows

CDRi(I + 1) = E[Ci,J | DI ]− E[Ci,J | DI+1], (4.22)

with estimate
ĈDRi(I + 1) = ĈI

i,J − ĈI+1
i,J . (4.23)

It is apparent (using martingale property), that the expected value of CDR
equals to zero. One of Solvency II targets is to estimate uncertainty of CDR to
determine the amount of required risk capital. Natural way is considering mean
square error of CDR. In contrast to estimating MSEP of ultimate claims, this
basically means transition from long-term risk valuation to short-term.

Merz and Wüthrich [12] quantified two criteria of variability within the CDR.
These are

msep
ĈDRi(I+1)|DI

(0) = E
[(

ĈDRi(I + 1)− 0
)2

| DI

]
, (4.24)

msepCDRi(I+1)|DI
(ĈDRi(I + 1)) = E

[(
ĈDRi(I + 1)− CDRi(I + 1)

)2

| DI

]
.

(4.25)
In the first approach we quantify the variability of estimated CDR from its

expected zero value. In the second approach we retrospectively analyze the differ-
ence between estimated and observable CDR. We call the expression (4.24) the
prospective conditional MSEP of CDR and (4.25) the retrospective conditional
MSEP of CDR for accident year i. For the estimation of these two expressions,
we need to state some additional assumptions. We start with definitions, that
will simplify the form of MSEP.

∆̂i,J =
σ̂2
I−i/f̂

2
I−i∑i−1

k=0Ck,I−i

+
J−1∑

j=I−i+1

( CI−j,j∑I−j
k=0Ck,j

)2 σ̂2
j/f̂

2
j∑I−j−1

k=0 Ck,j

, (4.26)
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Φ̂i,J =
J−1∑

j=I−i+1

( CI−j,j∑I−j
k=0Ck,j

)2 σ̂2
j/f̂

2
j

CI−j,j

, (4.27)

Ψ̂i,J =
σ̂2
I−i/f̂

2
I−i

Ci,I−i

, (4.28)

Λ̂i,J =
Ci,I−i∑i
k=0Ck,I−i

σ̂2
I−i/f̂

2
I−i∑i−1

k=0 Ck,I−i

+
J−1∑

j=I−i+1

( CI−j,j∑I−j
k=0Ck,j

)2 σ̂2
j/f̂

2
j∑I−j−1

k=0 Ck,j

. (4.29)

Assumptions 7 For 1 >> aj > 0 we can use following approximation

J∏
j=0

(1 + aj)− 1 ≈
J∑

j=0

aj. (4.30)

This approximation is applied to

a
(1)
j =

σ̂2
j/f̂

2
j

CI−j,j

CI−j,j∑I−j
k=0 Ck,j

, a
(2)
j =

σ2
j/f

2
j∑I−j−1

k=0 Ck,j

,

a
(3)
j =

∑I−j−1
i=0 Ci,j(σ

2
j/f

2
j )

(
∑I−j

k=0Ck,j)2
, a

(4)
j =

σ2
j/f

2
j∑I−j

k=0Ck,j

.

Now, we can state Merz-Wüthrich estimators for prospective and retrospec-
tive conditional MSEP of claims development result.

Theorem 6 (MSEP of CDR for single accident year) Under Assumptions
4 and approximation Assumptions 7 we have following estimators for prospective
and retrospective conditional MSEP of claims development result

msep
ĈDRi(I+1)|DI

(0) = (ĈCL
i,J )2(∆̂i,J + Φ̂i,J + Ψ̂i,J), (4.31)

msepCDRi(I+1)|DI
(ĈDRi(I + 1)) = (ĈCL

i,J )2(∆̂i,J + Φ̂i,J). (4.32)

Proof can be found in Merz and Wüthrich [12].
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Theorem 7 (MSEP of CDR for aggregated accident years)
Under Assumptions 4 and approximation Assumptions 7 we have following esti-
mators for prospective and retrospective conditional MSEP of aggregated claims
development results

msep∑I
i=1 ĈDRi(I+1)|DI

(0) =
I∑

i=1

msep
ĈDRi(I+1)|DI

(0)+

+2
∑

0<i<k≤J

ĈCL
i,J ĈCL

k,J

(
Φ̂i,J + Λ̂i,J +

σ̂2
I−i/f̂

2
I−i∑i

k=0 Ck,I−i

)
,

(4.33)

msep∑I
i=1 CDRi(I+1)|DI

(
I∑

i=1

ĈDRi(I + 1)) =
I∑

i=1

msepCDRi(I+1)|DI
(ĈDRi(I + 1))+

+2
∑

0<i<k≤J

ĈCL
i,J ĈCL

k,J (Φ̂i,J + Λ̂i,J).

(4.34)

Proof can be found in Merz and Wüthrich [12].

There is a question of whether one should concentrate on the variability
of ultimate claims estimate or CDR estimate. The MSEP of ultimate claim
currently represents the main target in majority of stochastic claims reserving
methods, but as in other of risk management branches, one should pursue both.
Short term risk should be considered in one-year based processes like product
pricing/premium volume determination or business plans processing.

There is a difficulty with measuring CDR variability that since it is quite new
approach, there is only one well-known analytic formula for MSEP of CDR and
under different model than Mack Chain-ladder, we cannot manage with analytic
approach. But we can expect that with solvency requirements and increasing
usage of simulation methods in claims reserving the proportional representation
of short-term risk measurement in claims reserving will gradually grow.

4.4 Chain-ladder Generalized linear models
An intuitive way to measure the variability of ultimate claim is to expand non-
stochastic reserving method with a distributional underlying framework, i.e. to
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find a distributional model which returns same estimates for the expected value
as our original analytic method.

Majority of commonly used distributions for claims modelling (with the ex-
ception of log-normal) belongs to so called exponential dispersion family (EDF).
This provides us the use of generalized linear models (GLM). Generalized linear
model is a generalization of ordinary linear regression and it unifies various sta-
tistical models. Unlike the linear regression, it provides more complex (nonlinear)
relationship between the response and explanatory variables and it expands the
distribution boundaries of these variables.

In this section we introduce general framework of GLM for incremental claims
with its basic properties and then follow England & Verrall [5] and focus on the
Over-dispersed Poisson and Over-dispersed Negative Binomial model and their
connection to Chain-ladder method.

Assumptions 8 (Generalized linear models) GLM in based on the frame-
work consisting of following assumptions:

1. Distribution of incremental claims Xi,j belongs to exponential dispersion
family (EDF) with following density, mean and variance:

f(x, θ, ϕ, wi,j) = a(x,
ϕ

wi,j

)exp
{xθ − b(θ)

ϕ/wi,j

}
, (4.35)

E[Xi,j] = xi,j = b′(θ), (4.36)

Var(Xi,j) =
ϕ

wi,j

b′′(θ), (4.37)

where ϕ > 0 is a dispersion parameter, wi,j > 0 are known weights, b(·) is
twice continuously differentiable function with invertible second derivation
and a(·, ·) is a real-valued function ensuring the integral over all x is equal
to one.

2. For each xi,j, 0 ≤ i ≤ I,0 ≤ j ≤ J , we have a linear predictor ηi,j

ηi,j = Γi,jb, (4.38)

linked by monotonic a differentiable response function h(·) and link func-
tion g(·):

xi,j = h(ηi,j), (4.39)

g(xi,j) = ηi,j = Γi,jb. (4.40)
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We can see that the generalization of linear regression therefore brings new
challenges in a sense of required choice of:

1. distribution of Xi,j defined by function b(·) and parameters ϕ and θ,

2. systematic component structure Γi,jb and number of regressors,

3. response h(·) or link function g(·).

Table 4.1: Exponential dispersion family overview
EDF distribution Var(Xi,j)
Poisson xi,j

Over-dispersed Poisson ϕxi,j

Gamma ϕx2
i,j

Tweedie’s compound Poisson ϕxp
i,j, p ∈ (0, 1)

Over-dispersed negative binomial ϕλi,jxi,j

Normal (and all Gaussian) ϕ

We can find a summary overview of common EDF distributions used for
claims reserving in Table 4.1. Further discussion of appropriate parametrization
and model adjustment can be found in McCullagh and Nelder [11] and Merz and
Wüthrich [13]. In the following section we concentrate on two GLM models, that
are related to the Chain-ladder model.

Assumptions 9 (Over-dispersed Poisson model)
We introduce Over-dispersed Poisson model using following assumptions:

1. Xi,j are independent and have Over-dispersed Poisson distribution with
following expected value and variance:

E[Xi,j] = xi,j, Var(Xi,j) = ϕxi,j. (4.41)

2. Expected value xi,j is given by linear component structure linked through a
logarithmic link

log(xi,j) = c+mi + gj (4.42)

with restriction m0 = 0, g0 = 0.
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The over-dispersion is introduced due to deficiency of Poisson distribution
when applied to data with higher variability, since it has the same variance and
expected value. Over-dispersion is in GLM adopted through quasi-likelihood
approach, where the first two moments are used to fit data to GLM and quasi-
distribution parameters remain proportionally unchanged. The dispersion pa-
rameter ϕ is estimated via weighted Pearson residuals (see Section 5.2). Quasi-
likelihood approach also facilitates working with non-integer data, since the dis-
crete random variables can be treated as continuous, while distribution parame-
ters remain unchanged. For detailed estimation of parameters c,mi, gj, 0 ≤ i ≤ I,
0 ≤ j ≤ J via quasi-maximum likelihood see McCullagh and Nelder [11] and
England and Verrall [5].

Although the requirement for observations to be integer is solved in quasi-
likelihood approach, the requirement for observation to be positive on the other
hand is quite restrictive and it cannot be easily circumvented (for suggestions,
see Verrall [15]).

The Over-dispersed Poisson distribution is not a distribution in a strict an-
alytic sense. It cannot be assigned with analytical form of density of cumulative
distribution function. Another way to increase the variance of Poisson distribu-
tion without changing the expected value is using the Negative Binomial distri-
bution as Gamma-Poisson mixture. Assume that we have a random variable with
Poisson distribution X ∼ Po(λ) and parameter λ is appropriately parametrized
Gamma distributed random variable, then the X has Negative Binomial distri-
bution. The connection between the Poisson and Negative Binomial distribution
encourages the usage of Over-dispersed Negative Binomial distribution in claims
reserving. The Over-dispersed Negative Binomial model is defined more directly,
since there is a requirement for Chain-ladder behavior on the expected value of
incremental claims.

Assumptions 10 (Over-dispersed Negative Binomial model)
We introduce Over-dispersed Negative Binomial model using following assump-
tions:

1. Cumulative claims Ci,j of different accident years i are independent.

2. Incremental claims are conditionally independent of the cumulative claims
at the previous time period.

3. Xi,j are over-dispersed negative binomial distributed with following expected
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value and variance:

E[Xi,j | Ci,j−1] = (fj−1−1)Ci,j−1,Var(Xi,j | Ci,j−1) = ϕfj−1(fj−1−1)Ci,j−1,
(4.43)

If we want to estimate the development factors fj via GLM maximum likeli-
hood, we need to specify systematic component structure and link function for
xi,j. We follow England and Verrall [4], where logarithmic link is used:

log(xi,j) = log(fj−1 − 1) + log(Ci,j−1) = c+ gj−1 + log(Ci,j−1), (4.44)

where
c+ gj = log(fj − 1),with g0 = 0. (4.45)

Now we can state the theorem about Over-dispersed Poisson and Negative
Binomial Chain-ladder properties.

Theorem 8 (Over-dispersed Poisson & Negative Binomial properties)
Under Assumptions 9 or 10 the Over-dispersed Poisson and Over-dispersed Neg-
ative Binomial model lead to the same estimate of ultimate claim Ci,J as Chain-
ladder method (Assumptions 1).

Proof can be found in Renshaw and Verrall [14] and Verrall [15].

Note that in Chapter 3, the Chain-ladder was formulated for cumulative
claims, while the two GLM models are defined for incremental claims, but since
the Chain-ladder method can be applied to cumulative and incremental claims
with the same result, this difference has no impact.

Following theorem defines the estimator for unconditional MSEP of Over-
dispersed Poisson model from England and Verrall [4]

Theorem 9 (ODP CL MSEP - single & aggregated accident years)
Under Assumptions 9 the unconditional MSEP of estimated outstanding claims
for accident year i is approximated by:

msepODP
Ci,J

(ĈCL
i,J ) ≈

J∑
j=I−i+1

Var(Xi,j)+
J∑

j=I−i+1

Var(X̂i,j)+2
∑

I−i<k<l≤J

Cov(X̂i,k, X̂i,l)

(4.46)
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and estimated by

m̂sep
ODP
Ci,J

(ĈCL
i,J ) =

J∑
j=I−i+1

(
ϕ̂x̂i,j + x̂2

i,jVar(η̂i,j)
)
+ 2

∑
I−i<j<l≤J

x̂i,jx̂i,lCov(η̂i,j, η̂i,l).

(4.47)
The estimate of unconditional MSEP for aggregated accident years is given by

m̂sep
ODP∑I

i=1 Ci,J
(

I∑
i=1

ĈCL
i,J ) =

I∑
i=1

J∑
j=I−i+1

ϕ̂x̂i,j +
I∑

i=1

J∑
j=I−i+1

x̂2
i,jVar(η̂i,j)+

+2
I∑

i=1,k=1

∑
I−i<j≤J
I−k<l≤J

j≤l
(i,j)̸=(k,l)

x̂i,jx̂k,lCov(η̂i,j, η̂k,l),
(4.48)

where ηi,j is GLM linear predictor, for which ηi,j = c+mi + gj = log(xi,j).

Proof can be found in England and Verrall [4].

The variance of the linear predictor ηi,j is a standard output of GLM software
packages and can be obtained via Fisher information matrix, which, if inversed,
represents the asymptotic variance of MLE estimates.

Detailed expression of MSEP using Fisher information matrix for Over-
dispersed Poisson model can be found in Chapter 6 in Merz and Wüthrich [13].
We deal with further derivation of GLM MSEP in Section 4.6, where the esti-
mation of linear predictor variance is not sufficient and additional expressions
need to be estimated.

Now, we state the procedure for estimation of Negative Binomial model
MSEP using the recursive property (4.43).

Theorem 10 (ODNB CL MSEP - single & aggregated accident years)
Under Assumptions 10 the unconditional MSEP of estimated outstanding claims

for accident year i is approximated by:

msepODNB
Ci,J

(ĈCL
i,J ) ≈ Var(Ci,J) + Var(Ĉi,J), (4.49)

and estimated by

m̂sep
ODNB
Ci,J

(ĈCL
i,J ) = ϕ̂Ci,I−i

J−1∏
j=I−i

f̂j

( J−1∏
j=I−i

f̂j − 1
)
+ C2

i,I−iVar
( J−1∏

j=I−i

f̂j

)
. (4.50)
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The estimate of unconditional MSEP for aggregated accident years is given by

m̂sep
ODNB∑I

i=0 Ci,J
(

I∑
i=0

ĈCL
i,J ) =

I∑
i=0

m̂sep
ODNB
Ci,J

(ĈCL
i,J ) + 2

∑
1≤i<k≤I

Cov(Ĉi,J , Ĉk,J),

(4.51)
where Var

(∏J
j=I−i+1 f̂j

)
and covariances Cov(Ĉi,J , Ĉk,J) are estimated via re-

cursive algorithm following Assumptions 11.

Proof can be found in England and Verrall [4].

Assumptions 11 (ODNB recursive algorithm)
Under Assumptions 10 the expression Var(f̂J−2f̂J−1) is given by

Var(f̂J−2f̂J−1) =
(
E[f̂J−2]

)2

Var(f̂J−1)+
(
E[f̂J−1]

)2

Var(f̂J−2)+Var(f̂J−1)Var(f̂J−2)

(4.52)
and estimated by

V̂ar(f̂J−2f̂J−1) = f̂ 2
J−2Var(f̂J−1) + f̂ 2

J−1Var(f̂J−2) + Var(f̂J−1)Var(f̂J−2), (4.53)

V̂ar(f̂j) = exp(ĉ+ ĝj)
2Var(ĉ+ ĝj). (4.54)

For estimation of Var(f̂J−k · · · f̂J−1), k > 2, recursive formula is used:

Var(f̂J−k · · · f̂J−1) =
(
E[f̂J−k]

)2

Var(f̂J−k+1 · · · f̂J−1)+

+
(
E[f̂J−k+1 · · · f̂J−1]

)2

Var(f̂J−k) + Var(f̂J−k+1 · · · f̂J−1)Var(f̂J−k).

(4.55)

Assuming that the development factors are independent, the covariance
Cov(Ĉi,J , Ĉk,J), i < k is given by

Cov(Ĉi,J , Ĉk,J) = Cov(Ci,I−if̂I−i · · · f̂J−1, Ck,I−kf̂I−k · · · f̂J−1) = (4.56)

= Ci,I−iCk,I−k

I−i−1∏
j=I−k

f̂jVar
( J−1∏

j=I−i

f̂j

)
. (4.57)
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Note 4 (Mack Chain-ladder as GLM) Even though Mack Chain-ladder was
introduced as distribution-free model, England and Verrall [4] presented it in a
GLM framework with assumption that cumulative claims Ci,j are normally dis-
tributed with expected value and variance:

E[Ci,j | Ci,j−1] = fj−1Ci,j−1, Var(Ci,j | Ci,j−1) = σ2
jCi,j−1 (4.58)

and showed, that these assumptions returns the same estimates of f̂j and σ̂2
j ,

j = 1 . . . J − 1 as original estimates (3.3), (4.10).
And since the GLM with normally distributed cumulative claims can be used

as approximation to Over-dispersed Negative Binomial model, we can expect both
models to return similar MSEP estimates.

4.5 Distribution-free Bornhuetter-Ferguson
In this section we follow Mack [8], who introduced stochastic framework for
Bornheutter-Ferguson method, that corresponds with Mack Chain-ladder As-
sumptions 4. Mack also suggested estimation algorithm for Bornheutter-Ferguson
parameters, that are independent of Chain-ladder development factors to present
BF method as a standalone technique.

This model is designed for incremental claims, therefore we are transition-
ing from cumulative pattern β0, . . . , βJ to incremental pattern γ0, . . . , γJ , where
γ0 = β0 and γj = βj − βj−1, for 1 ≤ j ≤ J .

For simplicity, the variance parameters σ2
j are denoted as in Mack Chain-

ladder, even though they represent different variables.

Assumptions 12 (Mack Bornhuetter-Ferguson) We introduce Mack sto-
chastic Bornhuetter-Ferguson method using following assumptions:

1. All incremental claims Xi,j are independent.

2. There exist parameters µ0, . . . , µI > 0 and a pattern γ0, . . . , γJ > 0 with∑J
j=0 γj = 1 such that for all 0 ≤ i ≤ I and all 0 ≤ j ≤ J − 1 we have

E[Xi,j] = µiγj. (4.59)

3. There are unknown variance parameters σ2
0, . . . , σ

2
J−1 > 0 such that for all

0 ≤ i ≤ I and all 0 ≤ j ≤ J we have

Var(Xi,j) = µiσ
2
j . (4.60)
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Now, we focus at the parameter estimates following Mack [9] and [10]. As
in Section 3.2, we assume that we have a prior (expert) estimate of ultimate
claim µ̂i. BF parameters are then estimated by following procedure:

1. Obtain first-phase estimates of γj, 0 ≤ j ≤ J , from

γ̃j =
I−i∑
i=0

Xi,j/
I−i∑
i=0

µ̂i. (4.61)

2. Apply selected smoothing regression on γ̃j → γ̃⋆
j and normalize them.

3. Estimate variance parameters σ2
j , 0 ≤ j ≤ J − 1, from

σ̂2
j =

1

I − j

I−j−1∑
i=0

(Xi,j − µ̂iγ̃
⋆
j )

2

µ̂i

. (4.62)

4. If needed, apply smoothing regression on σ̂2
j → σ̂2⋆

j .

5. Obtain second-phase estimates of γj, 0 ≤ j ≤ J by minimizing

Q =
∑
i+j≤I

(Xi,j − µ̂iγ̂j)
2

µ̂iσ̂2
j

. (4.63)

After normalization, we obtained estimates γ̂j, σ̂
2
j , 0 ≤ j ≤ J (tail factor σ̂2

J can
be obtained by extrapolation consistent with applied smoothing model). Next
to the prior estimation of ultimate claim µ̂i, the actuary should be also able to
assign its uncertainty. Mack [8] suggested an estimate of V̂ar(µ̂i) using premium
volume πi connected through prior estimate of loss ratio κ̂i

V̂ar(µ̂i) =
πi

I − 1

I∑
i=0

πi

( µ̂i

πi

−
¯̂µ

π̄

)2

, (4.64)

where ¯̂µ, π̄ are appropriate average values over all 0 ≤ i ≤ I.

Using (4.3), we can replace MSEP of ultimate claim estimate with MSEP
of reserve estimate R̂

(BF )
i . This adjustment simplifies MSEP expression, since

under BF assumptions the future incremental claims are independent of past
development. The estimated reserve is given by

R̂
(BF )
i = µ̂i(1− β̂I−i). (4.65)
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Assuming the independence of incremental claims, we can express its conditional
MSEP as follows

msepRi|DI
(R̂

(BF )
i ) = E[(Ri − R̂

(BF )
i )2 | DI ] = Var(Ri) + Var(R̂

(BF )
i ). (4.66)

Again, we will estimate conditional process variance and parameter estima-
tion error separately.

Theorem 11 (Conditional process variance for distribution-free BF)
Under Assumptions 12 the conditional process variance for Bornheutter-Ferguson
ultimate claim estimate is given by

Var(Ri | DI) = µi(σ
2
I−i+1 . . . σ

2
J) (4.67)

and estimated by
V̂ar(Ri | DI) = µ̂i(σ̂

2
I−i+1 . . . σ̂

2
J). (4.68)

Proof - direct consequence of Assumptions 12.

Theorem 12 (Parameter estimation error for distribution-free BF)
Under Assumptions 12 the conditional process variance for Bornheutter-Ferguson
ultimate claim estimate is given by

Var(R̂i | DI) =
(
µ2
i + Var(µ̂i)

)
Var(β̂I−i) + Var(µ̂i)(1− βI−i)

2 (4.69)

and estimated by

V̂ar(R̂i | DI) =
(
µ̂2
i + V̂ar(µ̂i)

)
V̂ar(β̂I−i) + V̂ar(µ̂i)(1− β̂I−i)

2, (4.70)

where

V̂ar(β̂j) = min(V̂ar(γ̂0) + . . .+ V̂ar(γ̂j−1), V̂ar(γ̂j) + . . .+ V̂ar(γ̂J)), (4.71)

V̂ar(γ̂j) =
σ̂2
j∑I−j

i=0 µ̂i

. (4.72)

Proof can be found in Mack [8].

We can see that the estimation is straightforward. The only issue is the esti-
mate V̂ar(β̂j), which cannot be simply chosen as V̂ar(β̂j) = V̂ar(γ̂1) + . . .+ V̂ar(γ̂j),
since the requirement

∑J
j=0 γ̂j = 1 causes dependency between estimates γ̂j.

Therefore estimates (4.71) were suggested, so that for V̂ar(β̂k) with small k, we
use variance of row parameters γ̂j, j = 0 . . . k, and for large k, we use variance
of their supplement γ̂j, j = k + 1 . . . J , which should reduce the dependency.
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Theorem 13 (DF BF MSEP - single and aggregated accident years)
Under Assumptions 10, we have following estimator for the conditional MSEP
of estimated outstanding loss reserve for accident year i

m̂sepRi|DI
(R̂i) = µ̂i(σ̂

2
I−i+1 . . . σ̂

2
J−1)+

(
µ̂2
i+V̂ar(µ̂i)

)
V̂ar(β̂I−i)+V̂ar(µ̂i)(1−β̂I−i)

2.

(4.73)
The estimate of conditional MSEP for aggregated accident years is given by

m̂sep∑I
i=1 Ri|DI

(
I∑

i=1

R̂i) +
I∑

i=1

m̂sepRi|DI
(R̂i) +

∑
i<k

Ĉov(R̂i, R̂k), (4.74)

where Ĉov(R̂i, R̂k) is obtained as

Ĉov(R̂i, R̂k) = ρ̂µi,k

√
V̂ar(µ̂i)

√
V̂ar(µ̂k)(1− β̂I−i)(1− β̂I−k)+

+ρ̂βi,k

√
V̂ar(β̂I−i)

√
V̂ar(β̂I−k)µ̂iµ̂k

(4.75)

and ρ̂µi,j, ρ̂βi,j, i < k are estimated correlation coefficients (assuming constant
correlation coefficient of ultimate claims estimates µ̂i)

ρ̂µi,k =
√
(J + 1)/(J + 1), (4.76)

ρ̂βi,k =

√
β̂I−k(1− β̂I−i)

β̂I−i(1− β̂I−k)
. (4.77)

Proof can be found in Mack [8].

4.6 Bornheutter-Ferguson GLM
In Section 4.4 we have met Over-dispersed Poisson model, remarking, that it has
the same first moment estimates as Chain-ladder method. In Section 3.2 we have
expressed Bornheutter-Ferguson ultimate claim estimate by Chain-ladder devel-
opment factors. Alai et al. [1] actually omitted the Chain-ladder link and con-
nected Over-dispersed Poisson model directly to Bornheutter-Ferguson method.

We slightly modify the Over-dispersed Poisson model from Section 4.4 by
following transformations/substitutions:

c = 0, µi = exp(mi), γj = exp(gj). (4.78)

After this adjustment, we obtain following model:
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Assumptions 13 (BF Over-dispersed Poisson model)
We introduce Over-dispersed Poisson model using following assumptions:

1. Xi,j are independent and have Over-dispersed Poisson distribution with
following expected value and variance:

E[Xi,j] = xi,j, Var(Xi,j) = ϕxi,j. (4.79)

2. Expected value xi,j is given by multiplicative structure

xi,j = µiγj, (4.80)

which is in GLM point of view understood as logarithmic linked component
structure

log(xi,j) = log(µi) + log(γj) (= mi + gj), (4.81)
with restriction µ0 = 1.

Let us review the Bornheutter-Ferguson assumption from Section 3.2

E[Ci,j+k | Ci,0, . . . , Ci,j] = Ci,j + (βj+k − βj)µi.

We can see that under identification βj =
∑j

k=0 γk is the assumption satisfied and
usage of Over-dispersed Poisson model as stochastic basis is therefore in place.

It is clear that the use of estimates µi under Assumptions 13 would be incon-
sistent with the fundamental principle of the Bornheutter-Ferguson method - the
prior estimate µ̂i being independent of the claims development. This assumption
is preserved by modifying model parameters. It means, that µi, γj are estimated
under Assumptions 13 and then adjusted, so that the row factors are equal to
prior estimates µ̂i.

Estimation of parameters µi, 0 ≤ i ≤ I and γj, 0 ≤ j ≤ J via maximum
likelihood is divided in two points of view: in GLM approach, we use above
mentioned restriction µ0 = 1, in general MLE approach, there is more common
assumption that

∑J
j=0 γj = 1, which is consistent with classic BF estimates. Us-

ing one approach or another makes no difference, since the parameters estimates
are proportional, but we need both parameter estimates and therefore we use
µ̂
(GLM)
i , γ̂

(GLM)
j for GLM approach and µ̂

(MLE)
i , γ̂

(MLE)
j for MLE approach.

As expected, using the ODP-CL connection (Theorem 8), we have the same
estimate for ultimate claim as we defined in Section 3.3:

ĈBF
i,J = Ci,I−i +

(
1−

I−i∑
j=0

γ̂
(MLE)
j

)
µ̂i = Ci,I−i + (1− β̂I−i)µ̂i. (4.82)

Now, we will take a closer look at conditional MSEP of this estimate.
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Theorem 14 (Conditional process variance for BF ODP model)
Under Assumptions 13 the conditional process variance for Bornheutter-Ferguson
ultimate claim estimate is given by

Var(Ci,J | DI) =
J∑

j=I−i+1

Var(Xi,j) (4.83)

and estimated by
V̂ar(Ci,J | DI) = ϕ̂µ̂i(1− β̂

(CL)
I−i ). (4.84)

Proof - direct consequence of Assumptions 13 and Theorem 8.

Parameter estimation error of Bornheutter-Ferguson ODP model deals with
uncertainty of estimates γ̂

(MLE)
j , j = 0 . . . J and µ̂i, i = 0 . . . I.

For ultimate claim estimate µ̂i, alternatively to Mack’s formula (4.64), we
can use expert estimate via coefficient of variation

V̂ar(µ̂i) = µ̂2
i V̂co(µ̂i)

2, (4.85)

where Alai et al. [1] describe, that reasonable rate for V̂co(µ̂i) is considered
between 5% and 10%.

Concerning the variability of row pattern, we need to estimate(
(1− βI−i)− (1− β̂I−i)

)2

=
( J∑

j=I−i+1

γj −
J∑

j=I−i+1

γ̂
(MLE)
j

)2

. (4.86)

This expression is estimated by Var(
∑J

j=I−i+1 γ̂
(MLE)
j ) but unlike the Mack’s

estimate (4.71), Alai et al. [1] used GLM framework to put bigger emphasis
to dependency between parameters γ̂

(MLE)
j . Estimation of correlations between

γ̂
(MLE)
j is done by converting from γ̂

(GLM)
j using Taylor approximation.

Covariance of GLM parameters b̂ = (m̂
(GLM)
1 , . . . , m̂

(GLM)
I , ĝ

(GLM)
0 , . . . , ĝ

(GLM)
J )

is given by inverse Fisher information matrix

Cov(b̂, b̂) = H−1(b̂). (4.87)

In exponential dispersion family the Fisher information matrix H−1 represents
the covariance matrix of asymptotically multivariate normal MLE estimates.
Fisher information matrix is a standard output of GLM software package. De-
tailed derivation of Over-dispersed Poisson BF MSEP can be found in Alai
et al. [1], Fisher matrix properties can be found in Chapter 6 in Merz and
Wüthrich [13].
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Theorem 15 (Parameter estimation error for BF ODP model)
Under Assumptions 13 the parameter estimation error for for BF ultimate claim
estimate is given by

(Ĉi,J − E[Ci,J | DI ])
2 = (1− β̂

(CL)
I−i )Var(µ̂i) + µ2

i

( J∑
j=I−i+1

γj −
J∑

j=I−i+1

γ̂
(MLE)
j

)2

(4.88)
and estimated by

(1− β̂
(CL)
I−i )2µ̂2

i V̂co(µ̂i)
2 + µ̂2

i

J∑
j,k=I−i+1

Ωj,k, (4.89)

where

Ωj,k = cj,k

(
γ̂ ′H(b̂)−1γ̂− µ̂

(MLE)
0 γ̂ ′H(b̂)−1(Γ̃j+Γ̃k)+(µ̂

(MLE)
0 )2H(b̂)−1

j,k

)
, (4.90)

cj,k = γ̂
(MLE)
j γ̂

(MLE)
k (µ̂

(MLE)
0 )−4, (4.91)

b̂ = (m̂
(GLM)
1 , . . . , m̂

(GLM)
I , ĝ

(GLM)
0 , . . . , ĝ

(GLM)
J )′, (4.92)

γ̂ = (0, . . . , 0︸ ︷︷ ︸
I

, γ̂0, . . . , γ̂J)
′, (4.93)

Γ̃j = (0, . . . , 0︸ ︷︷ ︸
I+j

, 1, 0, . . . , 0︸ ︷︷ ︸
J−j

). (4.94)

Proof can be found in Alai et al. [1].

Theorem 16 (ODP BF MSEP - single & aggregated accident years)
Under Assumptions 13 we have following estimators for conditional MSEP of
estimated outstanding claims for accident year i

m̂sep
ODP
Ci,J |DI

(ĈBF
i,J ) = ϕ̂(1− β̂I−i)µ̂i + (1− β̂I−i)

2µ̂2
i V̂co(µ̂i)

2 + µ̂2
i

J∑
j,k=I−i+1

Ωj,k,

(4.95)
The estimate of conditional MSEP for aggregated accident years is given by

m̂sep
ODP∑I

i=1 Ci,J |DI
(

I∑
i=1

ĈBF
i,J ) =

I∑
i=1

m̂sep
ODP
Ci,J |DI

(ĈBF
i,J )+

+ 2
∑

1≤i<k≤I

µ̂iµ̂k

( J∑
j=I−i+1

J∑
l=I−k+1

Ωj,l

)
.

(4.96)
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4.7 Stochastic Benktander-Hovinen
We continue with Benktander-Hovinen method, that was defined in Section 3.3
as credibility mixture of Chain-ladder and Bornhuetter-Ferguson. Estimate of
ultimate claim is given by

ĈBH
i,J = cĈCL

i,J + (1− c)ĈBF
i,J . (4.97)

It is clear, that the same relationship also holds for reserves Ri

R̂BH
i = cR̂CL

i + (1− c)R̂BF
i . (4.98)

Credibility factor c was set as c = βI−i. Following Mack [9], we examine, what
is the optimal credibility factor c∗. We define a function R̂i(c) depending on c

R̂i(c) = cR̂CL
i + (1− c)R̂BF

i , (4.99)

for which, we want to minimize its unconditional mean square error of prediction

msepRi
(R̂i(c)) = E[(Ri(c)−Ri)

2]. (4.100)

Theorem 17 (Benktander-Hovinen optimal credibility factor)
If we assume, that the payout pattern is given by

E[Ci,j] = βjE[Ci,J ] = βjE[µi], (4.101)

where µi is a random variable independent of Ci,I−i and Ci,J , then the optimal
credibility factor minimizing (4.100) is given by

c∗ =
βI−i

1− βI−i

Cov(CI,I−i, Ri) + βI−i(1− βI−i)Var(µi)

Var(CI,I−i) + β2
I−iVar(µi)

. (4.102)

Proof can be found in Mack [9].

We can see that additional assumptions are necessary to estimate c∗, since
Cov(CI,I−i, Ri) and Var(CI,I−i) are unknown. Mack [9] suggested following model:

Assumptions 14 (Mack Benktander-Hovinen model)
We introduce Mack [9] Benktander-Hovinen model using following assumptions:

1. Cumulative claims Ci,j of different accident years i are independent.
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2. The payout pattern is given by

E[Ci,j/Ci,J | Ci,J ] = βj, (4.103)

Var[Ci,j/Ci,J | Ci,J ] = βj(1− βj)ϑ
2(Ci,J). (4.104)

Theorem 18 (Mack Benktander-Hovinen optimal credibility factor)
Under Assumptions 14 and assumptions of Theorem 17, we have following opti-
mal credibility factor

c∗ =
βI−i

βI−i − ti
, with ti =

E[ϑ2(Ci,J)]

Var(µi) + Var(Ci,J)− E[ϑ2(Ci,J)]
. (4.105)

Proof can be found in Mack [9].

Theorem 19 (Mack Benktander-Hovinen model MSEP)
Under Assumptions 14 and assumptions of Theorem 17, the unconditional MSEP
of outstanding loss liabilities estimate is given by

msepRi
(R̂i(c)) = E[ϑ2(Ci,J)]

( c2

1− βI−i

+
1

βI−i

+
(1− c)2

ti

)
(1− βI−i)

2. (4.106)

Proof can be found in Mack [9].

Table 4.7 summarizes the form of unconditional MSEP depending on the
choice of credibility factor c.

Table 4.2: Mack Benktander-Hovinen model MSEP
Model c msepRi

(R̂i(c))
Optimal credibility mixture c∗ E[ϑ2(Ci,J)](1 + ti)(1− βI−i)/(ti + βI−i)
Chain-ladder c = 1 E[ϑ2(Ci,J)](1− βI−i)/(βI−i)
Bornhuetter-Ferguson c = 0 E[ϑ2(Ci,J)](1− βI−i)(1 + (1− βI−i)/ti)

Note 5 (Mack Benktander-Hovinen parameter assessment)
In order to apply the model, one needs to define the function ϑ2(Ci,J) and esti-
mate uncertainties in V̂ar(µi) and V̂ar(Ci,j). Mack suggested form of

ϑ2(Ci,J) =
1

1 + ϑ
C2

i,j, (4.107)
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which is for example implied if (Ci,j/Ci,J | Ci,J) is conditionally Beta distributed.
For V̂ar(µ̂i), the coefficient of variation V̂co(µ̂i)

2 (4.85) can be used.
Concerning the estimate of V̂ar(Ci,j), Merz and Wüthrich [13] use again co-

efficient of variation V̂co(µ̂i) adjusted by process error.

V̂co(Ci,j) =

√
V̂co(µi)2 +%procces error2. (4.108)

Note, that in Mack Benktander-Hovinen MSEP estimation (4.106) we as-
sumed, that the parameters βj are known, therefore the variability of this param-
eter is not included and the MSEP value is not comparable with other models.

Note 6 (Benktander-Hovinen Bayesian models)
Bayesian models belong to the class of distributional models and are used

when dealing with a combination of prior and posterior distribution of examined
variable. The structure of the model again is set so that we start with a prior dis-
tribution and with increasing knowledge of the system (number of observations),
we adjust the posterior distribution step by step.

Overview of commonly used Bayesian models in claims reserving can be found
in Merz and Wüthrich [13]. Mack [9] stated log-normal Bayesian model, that was
originally suggested by Gogol [6] and showed on a numerical example, that such
a strong assumption on distribution does not seem to be fully compensated by
model improvement. On the other hand, there is a clear benefit in possibility of
obtaining ultimate reserve predictive distribution.

This is after all key issue for actuary when choosing a stochastic model,
whether the distributional assumption is justified and distributional benefits are
worth the loss of generality.
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Chapter 5

Bootstrapping

Bootstrap is a very powerful simulation tool to obtain stochastic information
about a sample of data without additional distributional assumption. Assume
that we have a sample X1, . . . , Xk; following diagram shows, how the bootstrap
works:

X1, . . . , Xk
resampling−→ (XB

1 , . . . , X
B
k )1

estimating−→ f(XB
1 , . . . , X

B
k )1 = θ̂B1

...
...

...
...

...
...

X1, . . . , Xk
resampling−→ (XB

1 , . . . , X
B
k )n

estimating−→ f(XB
1 , . . . , X

B
k )n = θ̂Bn

Basic idea of bootstrapping is resampling data from itself, i.e. generating
new values from empirical distribution of the original sample X1, . . . , Xk. By
repeating this process, we obtain an arbitrary amount of new pseudo-samples
(XB

1 , . . . , X
B
k )m,m ≤ n and for each of them, we can estimate a parameter of

our interest θ̂Bm = f(XB
1 , . . . , X

B
k )m. Putting these estimates together, we get

bootstrap distribution of our parameter

θ̂Bm
(d)∼ F̂ θ

n .

Since we need X1, . . . , Xk to be independent and identically distributed for
the bootstrap to make sense, the basic approach is not designed for structured
data as it is in our case. In such cases, the bootstrap objects are the residuals,
which we can assume to be i.i.d., if appropriately prepared. Following algorithm
is used to obtain bootstrap distribution of ultimate claim Ci,J for development
triangle of cumulative claims:
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1. Select the model and estimate model parameters and fitted values.

2. Calculate the residuals ri,j = rmodel(Ci,j,E[Ci,J ]) from upper triangle DI .

3. Resample the residuals and get new pseudo-observations by reversing the
residual obtaining process CB

i,j = r−1
model(r

B,E[Ci,J)] using randomly selected
residual.

4. Estimate Ci,J from pseudo-observations CB
i,j, i+ j ≤ I, i ≤ I.

5. Repeat steps 3 - 5.

We can see that the bootstrap applied to ultimate claim estimation could be
considered more "powerful" than the analytical estimated MSEP, since it pro-
vides predictive distribution including the opportunity of obtaining quantiles or
the expected shortfall. So even though in this paper we use bootstrap results
mainly to be compared with the analytical MSEP, this does not mean that we
used the maximum potential that bootstrap possesses. Using the analytical esti-
mated MSEP (if available) and bootstrap technique and combining the benefits
of both approaches seems the most promising.

Bootstrap can also enlarge our stochastic understanding of specific claims
reserving method, in case that we have no stochastic underlying model like in
our case with Cape-Cod method. The main challenge is to ensure the bootstrap
assumptions are satisfied, in particular residuals being i.d.d., since we have no
assumptions on claims variance. The bootstrap is in these cases more intuitive
than mathematical, but this does not mean, that the result is not interpretable.

Note 7 Another simulation method used in claims reserving is the Monte Carlo
simulation. It is used exclusively for distributional models, since it is based on
generating pseudo-samples from selected distribution with estimated parameters.
Typical application of Monte Carlo methods are the Bayesian models (see Eng-
land and Verrall [4]).

5.1 Bootstrapping CL,BF,BH,CC
Bootstrap defined in the previous section can be applied to all analytic meth-
ods from Chapter 3. Finding i.i.d. residuals poses the biggest challenge. Merz
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and Wüthrich [13] looked for the most suitable residual function for Mack Chain-
ladder and came with following suggestion:

r̂i,j =
(
1− Ci,j−1∑I−j

i=0 Ci,j−1

)−1/2Ci,j/Ci,j−1 − f̂j−1

σ̂j−1C
−1/2
i,j−1

. (5.1)

Residuals in this form have conditional variance equal to one, therefore they
could be resampled (r̂i,j → r̂CL) and used in Autoregressive Mack CL equation
as residuals εi,j:

CB
i,j+1 = f̂jC

B
i,j + r̂CLσ̂j

√
CB

i,j, (5.2)

with CB
i,0 = Ci,0.

From pseudo-observations CB
i,j ∈ DI we can estimate pseudo-development

factors f̂B
j and obtain ultimate claim estimate. By repeating this process, we

obtain bootstrap distribution of ultimate claim.

Obtained pseudo-development factors fB
j immediately offer the possibility of

application to Bornhuetter-Ferguson, Benktander-Hovinen and Cape-Cod method
with help of identification

β̂j =
J−1∏
k=j

1

f̂k
. (5.3)

But, there is a large dependency on Chain-ladder technique, which could be
considered as a big disadvantage, not to mention that using autoregressive model
assumption is not justified by Bornhuetter-Ferguson, Benktander-Hovinen or
Cape-Cod method.

An alternative approach is based on Distribution-free BF Assumptions 12.
Residuals have following form

ri,j = rBF (Xi,j, x̂i,j, ϕ̂, wi,j) =
Xi,j − µ̂iγ̂j√

µiσ2
j

. (5.4)

Pseudo-observations are again obtained by inverting the process and resam-
pling the residuals:

XB
i,j = µ̂iγ̂j + rBF

√
µiσ2

j . (5.5)

Based on these pseudo-observations, we can estimate ultimate claims ĈBF
i,J ,

ĈBH
i,J and ĈCC

i,J . Therefore, we use one approach for distribution-free CL method
and two approaches (one based on CL (5.2) and one based on BF (5.5) method)
to distribution-free Bornhuetter-Ferguson, Benktander-Hovinen, Cape-Cod.
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5.2 Bootstrapping GLM
As in previous sections, the choice of bootstrap residuals is the main challenge.
We begin with definition of unscaled Pearson residuals, which are used to esti-
mate the dispersion factor

ri,j = rP (Xi,j, x̂i,j, wi,j) =
Xi,j − x̂i,j√

V (x̂i,j)

wi,j

. (5.6)

The scale parameter is then estimated by

ϕ̂(ODP ) =

∑
DI

rP (Xi,j, x̂i,j, wi,j)
2

#observations−#parameters
. (5.7)

For bootstrap simulation we use scaled Pearson residuals:

rsi,j = rPS(Xi,j, x̂i,j, ϕ̂
(ODP ), wi,j) =

Xi,j − x̂i,j√
V (x̂i,j)ϕ̂(ODP )

wi,j

. (5.8)

Pseudo-observations are then obtained by inverting the process:

XB
i,j = rPS

√
V (x̂i,j)ϕ̂(ODP )

wi,j

+ x̂i,j, (5.9)

which guarantees, that residuals are i.i.d. in case of Over-dispersed Poisson
model.

For the Over-dispersed Negative Binomial model, England & Verrall [5] sug-
gested to bootstrap the development factors and then apply the recursive prop-
erty of the model. Unscaled residuals are given by

ri,j = rNB(Ci,j+1, Ci,j, f̂j, wi,j) =

√
Ci,j(Ci,j+1/Ci,j − f̂j)√

f̂j(f̂j − 1)
. (5.10)

Dispersion parameter ϕ̂(NB) is obtained as (5.7), but in this case, the number
of observation means number of known values Ci,j+1/Ci,j. Bootstrap residual
function has following form

rsi,j = rNBS(Ci,j+1, Ci,j, f̂j, ϕ̂
(NB)) =

√
Ci,j(Ci,j+1/Ci,j − f̂j)√

ϕ̂(NB)f̂j(f̂j − 1)
. (5.11)
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Pseudo-development factors are then obtained by inverting the process:

fB
j = rNBS

√
ϕ̂(NB)f̂j(f̂j − 1)√

Ci,j

+ f̂j, (5.12)

Pseudo-observations for j > 0 are naturally given by

CB
i,j+1 = fB

j CB
i,j, (5.13)

with CB
i,0 = Ci,0 and Ci,j fulfills the role of weights wi,j.

5.3 Bootstrapping Merz-Wüthrich method
In Merz-Wüthrich method, we need to find stochastic properties of claims devel-
opment result. We use an intuitive way of getting CDR bootstrap distribution,
which is to bootstrap estimates of claims Ĉi,I+1−i, 0 ≤ i ≤ I, and then compare
the common estimate of ultimate claim from available observations DI with the
one using in addition also pseudo-observations from I + 1st diagonal. For that
cause, we use adjusted residual function (5.1).

CB
i,I−i+1 = f̂B

j Ci,I−i, (5.14)

ĈDR
B

i (I + 1) = Ê[Ci,J | DI ]− Ê[Ci,J | DI ∪ CB
i,I−i+1]. (5.15)

Finally, we will compare the standard deviation of bootstrap CDR pseudo-
observations with Merz-Wüthrich estimator for CDR variance

V̂ar
(
CDRi(I + 1) | DI

)
= (ĈCL

i,J )2Ψ̂i,J . (5.16)

43



Chapter 6

Results

Claims reserving methods are tested on product liability data presented in Merz
and Wüthrich [13]. These data show relative stability within accident years and
possess non-negative increment claims, which facilitates fitting of Over-dispersed
Poisson a Negative Binomial model. Triangle of incremental claims divided by
thousand is shown in Table 6.

For the practical part of the thesis, R-software was used, including Chain-
Ladder package, which offers basic claims triangle operations, CL parameters
and MSEP estimation and several GLM reserving techniques (not Negative Bi-
nomial). CD containing R-source codes is attached.

Table 6.1: Incremental claims (divided by 1000)
acc \ dev 0 1 2 3 4 5 6 7 8 9

0 5 947.0 3 721.2 895.7 207.8 206.7 62.1 65.8 14.9 11.1 15.8
1 6 346.8 3 246.4 723.2 151.8 67.8 36.6 52.8 11.2 11.6
2 6 269.1 2 976.2 847.1 262.8 152.7 65.4 53.5 8.9
3 5 863.0 2 683.2 722.5 190.7 133.0 88.3 43.3
4 5 778.9 2 745.2 653.9 273.4 230.3 105.2
5 6 184.8 2 828.3 572.8 244.9 105.0
6 5 600.2 2 893.2 563.1 225.5
7 5 288.1 2 440.1 528.0
8 5 290.8 2 357.9
9 5 675.6

Table 6.2 shows the reserve estimates R̂i of analytic methods defined in Chap-
ter 3. For prior BF estimates µ̂i, we take 75% of the premium Πi, which is quite
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Table 6.2: Reserves estimates
acc Πi β̂I−i R̂CL

i R̂BF
i R̂BH

i R̂CC
i

0 15 473 558 1.0000 0 0 0 0
1 14 882 436 0.9986 15 126 15 833 15 127 14 204
2 14 456 039 0.9975 26 257 26 701 26 259 23 954
3 14 054 917 0.9965 34 538 37 308 34 548 33 470
4 14 525 373 0.9914 85 302 94 131 85 378 84 446
5 15 025 923 0.9845 156 494 174 748 156 777 156 770
6 14 832 965 0.9701 286 121 332 668 287 513 298 442
7 14 550 359 0.9484 449 167 563 061 455 043 505 131
8 14 461 781 0.8800 1 043 242 1 301 817 1 074 278 1 167 882
9 15 210 363 0.5896 3 950 815 4 681 925 4 250 874 4 200 234∑

147 473 714 - 6 047 064 7 228 192 6 385 797 6 484 533

pessimistic in comparison with other methods. Chain-ladder reserve is the low-
est as a result of diagonal observation being below average. Therefore there is a
possibility of underestimation of R̂CL

i . A suggestion for adjustment can be found
in Chain-ladder boostrapping results, where zero residuals are used and upper
triangle of expected values is created (see Table 6.5).

Table 6.3 summarizes MSEP values 4.2 under Mack Assumptions 4 and Au-
toregressive CL Assumptions 6. We can see, that parameter estimation errors
are almost the same for both approaches.

Table 6.3: Distribution-free Chain-ladder MSEP
V̂ar(Ci,J | DI)

1
2 |Ĉi,J − E[Ci,J | DI ]| (m̂sepCi,J |DI

)1/2

acc R̂CL
i Mack & AR Mack AR Mack AR

0 0 0 0 0 0 0
1 15 126 191 187 187 268 268
2 26 257 742 535 535 915 915
3 34 538 2 669 1 493 1 493 3 059 3 059
4 85 302 6 832 3 392 3 392 7 628 7 628
5 156 494 30 478 13 517 13 517 33 341 33 341
6 286 121 68 212 27 286 27 286 73 467 73 467
7 449 167 80 076 29 675 29 675 85 398 85 398
8 1 043 242 126 960 43 903 43 903 134 336 134 337
9 3 950 815 389 783 129 769 129 770 410 817 410 818

agg 6 047 064 424 380 185 024 185 026 462 960 462 961
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Table 6.4: GLM Chain-ladder MSEP
V̂ar(Ci,J | DI)

1
2 |Ĉi,J − E[Ci,J | DI ]| (m̂sepCi,J |DI

)1/2

acc ODP ODNB ODP ODNB ODP ODNB
0 0 0 0 0 0 0
1 14 919 15 105 14 612 1 003 20 883 15 138
2 19 656 19 912 17 160 1 121 26 093 19 943
3 22 543 22 849 17 159 1 744 28 331 22 915
4 35 428 36 000 22 040 3 513 41 724 36 171
5 47 986 48 931 27 108 13 549 55 114 50 773
6 64 885 66 652 32 927 27 300 72 761 72 026
7 81 296 84 460 38 935 29 686 90 139 89 526
8 123 897 133 630 66 176 43 910 140 462 140 659
9 241 107 317 699 227 661 129 774 331 606 343 182

agg 298 290 367 699 309 564 185 203 429 892 411 707

Numerical values of estimated process estimation error a parameter estima-
tion error for Over-dispersed Poisson and Over-dispersed Negative Binomial
model are reported in Table 6.4. Estimated dispersion factors are following:
ϕ̂(ODP ) = 14714, ϕ̂(NB) = 15062. We can see that MSEP values for ODP and
ODNB are quite similar, but there is a difference in decomposition between pro-
cess and parameter risk, where Over-dispersed Negative Binomial decomposition
more closely resembles the decomposition in distribution-free CL (see Note 4).
Over-dispersed Poisson has due to higher number of model parameters lower
parameter estimation error but higher process error.

Table 6.5: CL, BF, BH, CC bootstrapping under AR Chain-ladder assumption
method analytic R̂i zero-res. mean(R̂B

i ) mean(R̂B
i ) sd(R̂B

i )
CL 6 047 064 6 105 882 6 096 152 208 084
BF 7 228 192 7 228 986 7 224 331 160 858
BH 6 385 797 6 525 530 6 432 789 197 452
CC 6 484 533 6 487 901 6 478 493 217 639

Table 6.5 shows us the bootstrap estimates of overall reserve R under the Au-
toregressive CL assumptions. For all bootstrap procedures we use 10 000 simula-
tions. The average value of bootstrap reserves for Chain-ladder is above the cal-
culated reserve estimate (Table 6.2). As mentioned, this is caused by the fact that
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diagonal observations Ci,I−i are rather bellow the expected value Ci,I−i−1f̂I−i−1.
This phenomenon was not taken into account in Merz and Wüthrich [13], where
only small negative bias of residuals was considered. Therefore we state analytic
values, simulation values with zero residuals (upper triangle of expected values
Ci,j = Ci,j−1f̂j−1) and bootstrap values of reserve Ri.

Residuals’ negative bias causes that the bootstrap values are bellow zero-
residual values.

The bootstrap distributions of R̂CL, R̂BF , R̂BH , R̂CC under the Autoregressive
Mack CL assumptions are shown in Figure 6.1.

Figure 6.1: Claims reserve bootstrap simulation histogram under AR CL
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Next, we state the results of GLM Chain-ladder bootstrap following Sec-
tion 5.2. GLM bootstrap reserve properties are shown in Table 6.6. We can
see that the Over-dispersed Negative Binomial model shows due to its recur-
sive property similar mean of estimated reserve as bootstrapped Chain-ladder
(Table 6.5), but it has higher standard error than CL pseudo-observations.

Bootstrap distributions of Over-dispersed Poisson and Over-dispersed Nega-
tive Binomial model reserve are shown in Figure 6.2.
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Table 6.6: GLM Chain-ladder bootstrap results
RCL

i mean (RB
i ) sd(RB

i )
acc CL ODP ODNB ODP ODNB
0 0 0 0 0 0
1 15 126 15 156 15 116 11 734 13 449
2 26 257 26 213 26 029 13 800 15 560
3 34 538 34 447 35 100 13 772 15 942
4 85 302 85 156 84 385 17 724 19 851
5 156 494 156 344 162 433 21 635 25 513
6 286 121 286 132 283 874 26 564 28 775
7 449 167 449 441 462 303 31 459 34 491
8 1 043 242 1 043 624 1 076 624 53 043 53 793
9 3 950 815 3 950 845 3 950 151 184 799 98 363

agg 6 047 064 6 047 358 6 096 015 249 305 223 554

Figure 6.2: ODP & ODNB claims reserve bootstrap histogram
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Estimates of Mack Distribution-free BF parameters from Section 4.5 are given
in Table 6. Since we based prior estimates µ̂i on the premium adjusted be con-
stant loss ratio µ̂i/Πi = 0.75, the Mack’s estimator for ultimate claim variance
(4.64) is replaced with coefficient of variation (4.85).

We can see, that the BF MSEP results clearly show higher values than pre-
vious methods. Such large numbers in model’s parameter and process error are
mainly caused by high variance parameters σ̂2

j for first development periods.
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Table 6.7: Mack Distribution-free Bornhuetter-Ferguson
acc β̂Mack

I−i R̂BF
i R̂BFMack

i V̂ar(Ci,J | DI)
1
2 |Ĉi,J − E[Ci,J | DI ]| (m̂sep)1/2

0 1.0000 1.0000 0 0 0 0
1 0.9986 0.9985 16 931 2 754 22 356 22 525
2 0.9975 0.9974 28 520 10 365 27 955 29 815
3 0.9965 0.9962 39 934 10 664 36 084 37 627
4 0.9914 0.9908 100 447 35 477 55 436 65 816
5 0.9845 0.9835 185 440 46 717 78 602 91 437
6 0.9701 0.9685 350 282 79 164 104 291 130 933
7 0.9484 0.9461 587 826 94 253 141 352 169 894
8 0.8800 0.8768 1 336 741 182 640 260 365 318 037
9 0.5896 0.5862 4 720 547 550 499 454 072 713 604

agg - - 7 366 670 596 009 583 224 833 893

Another sign, that model does not fit well is quite significant bias in model
residuals (mean = -0.44). This effect is reflected in bootstrap simulation, where
lower reserve values are therefore expected (see Table 6). Bootstrap distributions
for BF, BH, CC reserves are shown in Figure 6.3.

Table 6.8: BF, BH, CC bootstrapping under Mack Distribution-free BF
method analytic R̂i mean(R̂B

i ) sd(R̂B
i )

BF 7 228 192 7 084 962 195 388
BH 6 385 797 6 746 509 336 001
CC 6 484 533 6 605 771 199 332

Figure 6.3: Claims reserve bootstrap histogram under Mack Distribution-free BH
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Values of parameter process and estimation error for ODP Bornhuetter-
Ferguson can be found in Alai et al. [1], since we use the same data. Table 6
shows the mean and standard deviation of bootstrap BF reserve under ODP
model assumptions.

Table 6.9: Over-dispersed Poisson BF bootstrapping
method R̂i mean(R̂B

i ) sd(R̂B
i )

BF 7 228 192 7 224 318 181 298

Figure 6.4: Claims reserve bootstrap simulation histogram
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Finally, in Table 6.10 we present Merz-Wüthrich estimates for CDR MSEP
and bootstrap results. We can see, that the standard deviation of CDR pseudo-
observations coincides with Merz-Wüthrich variance formula (5.16).

An interesting information is provided by CDR bootstrap histogram, since
it is, unlike the reserve distributions, rather asymmetrical. Therefore other risk
factors like Value at Risk or Expected Shortfall could be in place.
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Table 6.10: Merz-Wüthrich CDR

acc
(
msep(ĈDR(I + 1))

) 1
2

(
msepCDR(0)

) 1
2

(
V̂ar(CDR(I + 1))

) 1
2

sd(ĈDR
B
)
)

0 0 0 0 0
1 268 187 191 189
2 885 518 717 710
3 2 949 1 440 2 573 2 544
4 7 018 3 128 6 283 6 210
5 32 470 13 156 29 685 29 292
6 66 178 24 645 61 418 60 853
7 50 296 18 729 46 679 46 269
8 104 311 34 121 98 572 97 316
9 385 773 121 417 366 168 364 838

agg 420 221 137 303 388 168 395 936

Figure 6.5: CDR bootstrap simulation histogram
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