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Abstrakt:

Jsme motivováni otázkou vztahu lokálńıch a globálńıch vlastnost́ı operace o ve
struktuře tvaru 〈B, o〉 s ohledem na aplikaci pro studium model̊u 〈B, ·〉 Peanovy
aritmetiky, kde B je model aritmetiky Presburgerovy. Zaj́ımá nás zejména pro-
blém závislosti, který formulujeme jako otázku určeńı uzávěru závislosti

iclO(E) = {d ∈ Bn; (∀o, o′ ∈ O)(o � E = o′ � E ⇒ o(d) = o′(d))},

kde B je struktura, O množina n-árńıch operaćı na B a E ⊆ Bn. Ukážeme, že
tento problém lze převést na otázku definovatelnosti v jisté expanzi B. Speciálně,
je-li B saturovaný model Presburgerovy aritmetiky a O množina všech (saturo-
vaných) peanovských součin̊u na B, dokážeme, že pro a ∈ B je iclO({a} × B)
nejmenš́ı možný, tj. obsahuj́ıćı právě ty dvojice (d0, d1) ∈ B2, kde jedno z di je
tvaru p(a) pro nějaký polynom p ∈ Q[x].

Uvedená problematika úzce souviśı s deskriptivńı analýzou lineárńıch teoríı,
což jsou (až na změnu jazyka) teorie jistých diskrétně uspořádaných modul̊u nad
určitými diskrétně uspořádanými obory integrity. Dokážeme tvrzeńı o eliminaci
kvantifikátor̊u v lineárńıch teoríıch a nalezneme prvomodely jejich jednoduchých
kompletńıch extenźı. Provedeme detailńı analýzu definovatelných množin v mo-
delu A lineárńı teorie a odvod́ıme, že každá definovatelná množina je sjednoceńım
lineárńıch obraz̊u mnohostěn̊u v An pro nějaké n ∈ N.

Zvláště d̊uležitým př́ıkladem lineárńı teorie je lineárńı aritmetika LA (přesněji
jej́ı ,,Z-verze” ZLA) – aritmetická teorie s plnou indukćı rozšǐruj́ıćı Presburgerovu
aritmetiku o násobeńı jediným nestandardńım prvkem. Jako d̊usledek výše uve-
deného dokážeme, že LA je modelově kompletńı (eliminačńı množina je tvořena
primitivně pozitivńımi formulemi) a rozhodnutelná, nalezneme jej́ı jednoduché
kompletńı extenze a sestroj́ıme jejich prvomodely. Dokážeme též, že modely
LA jsou až na elementárńı ekvivalenci právě nehlavńı ultraprodukty struktur
〈N, 0, 1,+,≤, n · 〉 s n ∈ N.

Jako algebraickou aplikaci uvedených výsledk̊u ukážeme, že prvomodely jed-
noduchých kompletńıch extenźı LA určuj́ı 2ω r̊uzných obor̊u integrity R s Z[x] ⊆
R ⊆ Q[x], které jsou ω-stage euklidovské, ale nejsou k-stage euklidovské pro
žádné 0 < k ∈ N. To řeš́ı problém položený G. E. Cookem v [Coo76].

Kĺıčová slova:

lineárńı aritmetika, eliminace kvantifikátor̊u, Peanova aritmetika, extenze Pres-
burgerovy aritmetiky, kvazieuklidovské okruhy
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Abstract:

We are motivated by a problem of understanding relations between local and
global properties of an operation o in a structure of the form 〈B, o〉, with regard
to an application for the study of models 〈B, ·〉 of Peano arithmetic, where B is a
model of Presburger arithmetic. We are particularly interested in a dependency
problem, which we formulate as the problem of describing the dependency closure

iclO(E) = {d ∈ Bn; (∀o, o′ ∈ O)(o � E = o′ � E ⇒ o(d) = o′(d))},
where B is a structure, O a set of n-ary operations on B, and E ⊆ Bn. We show,
that this problem can be reduced to a definability question in certain expansion of
B. In particular, if B is a saturated model of Presburger arithmetic, and O is the
set of all (saturated) Peano products on B, we prove that, for a ∈ B, iclO({a}×B)
is the smallest possible, i.e. it contains just those pairs (d0, d1) ∈ B2 for which at
least one of di equals p(a), for some polynomial p ∈ Q[x].

We show that the presented problematics is closely connected to the descrip-
tive analysis of linear theories. That are theories, models of which are – up
to a change of the language – certain discretely ordered modules over specific
discretely ordered integral domains. We prove a quantifier elimination result in
linear theories, and we find the prime models of their simple complete extensions.
We perform a detailed analysis of definable sets in a model A of a linear theory,
and show that definable sets are unions of linear images of polyhedra in An, with
n ∈ N.

A particularly important example of linear theories is the linear arithmetic LA
(more precisely, its “Z-like” variant ZLA). That is an arithmetical theory with
the full induction, which extends Presburger arithmetic by multiplication by a
single nonstandard element. As a corollary of the results above, we show that
LA is model-complete (elimination set consists of primitive positive formulas)
and decidable, we find its simple complete extensions and construct their prime
models. We also prove that models of LA are, up to elementary equivalence,
exactly all non-principal ultraproducts of the structures 〈N, 0, 1,+,≤, n · 〉, with
n ∈ N.

As an algebraic application of the presented results, we show that the prime
models of the simple complete extensions of LA determine 2ω different integral
domains R, with Z[x] ⊆ R ⊆ Q[x], which are ω-stage Euclidean, but not k-stage
Euclidean, for any 0 < k ∈ N. This solves the problem posed by G. E. Cooke
in [Coo76].

Keywords:

linear arithmetic, quantifier elimination, Peano arithmetic, extensions of Pres-
burger arithmetic, quasi-Euclidean rings
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Wir müssen wissen.
Wir werden wissen.

– David Hilbert
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supported by the Asian Initiative for Infinity.

During the period of writing this thesis, I attended dozens of another confer-
ences, workshops and summer or winter schools, which inspired me in my work.
Part of the travel costs was financed by a number of governmental and privately
funded organizations. All of them deserve my acknowledgment.

Last but not least, I would like to thank my family for their support, and Ria
for being so tolerant and for letting me spend many hours and days with my work
rather than with her.

In Prague, June 12, 2013 Petr Glivický
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Introduction

In this thesis, we are motivated by a problem of understanding relations between
local and global properties of an operation o in a first-order structure of the form
〈B, o〉, with a particular interest in the case where B is a model of Presburger
arithmetic Pr and o is a “Peano product” on B, i.e. 〈B, o〉 is a model of Peano
arithmetic P.

Dependency problem
The problem above may be specified as follows: Given a “background model”

B and a set O of all n-ary operations on B satisfying certain global property (e.g.
being a Peano product), we want to describe the dependency closure

iclO(E) = {d ∈ Bn; (∀o, o′ ∈ O)(o � E = o′ � E ⇒ o(d) = o′(d))},

for E ⊆ Bn (see 2.1.1). We call this task the (B, O,E)-dependency problem.
A Peano dependency problem is a (B, O,E)-dependency problem where B is

a (saturated) model of Pr and O is the set of all (saturated) Peano products
on B. Its solution may contribute to new constructions of models of arithmetic,
different from the known methods (cuts, end-extensions, ultraproducts, . . . ; see
the historical remark at the end of the introduction).

Reduction to definability
A (B, O,E)-dependency problem with saturated B may be solved by study-

ing a definability problem in certain expansion of B, called a fixator. This is
formulated in the DD-theorem 2.1:2.

In chapter 2, Proposition 2.2:1 and Corollary 2.2:2, we completely solve an
important case of the Peano dependency problem, for E = Ea = {a} × B, with
a nonstandard (an “a-slice”). We prove that, in this case, icl(E) is as small as
possible, i.e. it contains only the trivially dependent points d = (d0, d1) where at
least one of di equals p(a), for some polynomial p ∈ Q[x].

By the DD-theorem, the key for the proof is understanding definability in the
respective fixator. The fixator is a model of linear arithmetic1 LA – an extension

1The name “linear arithmetic” is used somewhat vaguely and/or inconsistently through the
literature. It denotes more different concepts where an important role is played by inequalities
of “linear” combinations of “unknowns”. In this thesis, linear arithmetic denotes the first order
theory LA from section 1.1.4.1 (or an equivalent theory).

21



INTRODUCTION 22

of Pr by multiplication by a nonstandard scalar, with the full induction scheme.
The needed definability results follow from Corollary 1.4:7 1) of theMain Theorem
on Linear Theories 1.3:4.

Peano products
Proposition 2.2:1, in particular, enables us to construct interesting examples

of (Peano) products. The first of them are meeting pairs of Peano products,
constructed in Corollary 2.3:1. Another is a construction of a Robinson product
which satisfies a portion of induction (Proposition 2.3:2).

Corollary 2.4:2 solves the question of possible interpolation of a Peano product
through a given point 〈b, d〉 ∈ B3.

Linear theories
The mentioned fundamental Main Theorem on Linear Theories 1.3:4 is a re-

sult of the study of chapter 1 on linear theories – a class of theories which general-
ize the linear arithmetic LA. Models of linear theories are (up to a change of the
language) certain (integrally-divisible) discretely ordered modules over specific
(regularly quasi-Euclidean and with degrees) discretely ordered integral domains.

Linear theories are of its own interest, and a large part of this thesis is devoted
to the analysis of them.

Besides a quantifier elimination result for linear theories, contained in the
Main Theorem on Linear Theories 1.3:4, we perform a detailed analysis of terms
(the Harmonic Form Theorem 1.3:6) and definable sets and functions in their
models (corollaries of the Bases Theorem 1.3:8). In particular, we prove that
every definable set in a model A of a linear theory is a finite union of linear
images of polyhedra in Ak, for some k ∈ N.

The theorems 1.3:4, 1.3:6 and 1.3:8 are proven in section 1.5. The proofs are
based on three fundamental Propositions – S, H and B (1.5:2, 1.5:3 and 1.5:4) –
and on a calculus which is a generalization of the calculus of continued fractions.

Let us note that linear theories can be understood as extending both of the
following – the theory of Z-groups (which is, in fact, the simplest linear the-
ory) and the theory of modules over some associative ring (the first one is ex-
tended by allowing multiplication by some non-integer scalars, the second one
by adding an ordering). From this point of view, our results on linear theories
generalize the classical results of Mojżesz Presburger [Pre29] on Z-groups (Pres-
burger arithmetic) and, partially, the results of Walter Baur [Bau76] and Leonard
Monk [Mon75] on modules.

Two-sorted quantifier elimination for ordered ring-modules

In section 1.6, we apply our method of proof of the Theorem 1.3:4 to genera-
lize and strengthen known quantifier elimination results for two-sorted structures
of the type “ring-module” (or “ordered ring-ordered module”).
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Our Corollary 1.6:2 of Theorem 1.6:1 states a quantifier elimination result
for doded-modules (see 1.6) – certain two-sorted structures of the type “ordered
ring-ordered module” (in fact, just two-sorted variants of models of linear the-
ories). This is an ordered analogue of the quite well-known result by Lou van
den Dries and Jan Holly in [vdDH92] for two-sorted unordered modules and it
strengthens the result by Volker Weispfenning in [Wei97, Theorem 4.1] for two-
sorted discretely ordered modules over the ring Z of integers (more precisely for
the models of a two-sorted variant of Presburger arithmetic). See section 1.6 for
more details.

Let us note that in [vdDH92] the problem of generalizing the results to ordered
modules (even for the simplest case of the module Z of integers) is considered as
“very interesting” but as one that “seems to be very hard”.

Our proof of Corollary 1.6:2 requires substantially different methods than
those used in [vdDH92] or [Wei97]. The absence of ordering in [vdDH92] is,
clearly, a great simplification. In Remark 1.5:1, we point out the reasons why
the general case stated in Corollary 1.6:2 is essentially more difficult than the
Presburger case from [Wei97].

Properties of linear arithmetic
As an application of the Main Theorem on Linear Theories 1.3:4 and results

from section 1.2, we find basic model-theoretic properties of LA (Corollary 1.4:7)
– we prove that LA is decidable and model-complete (in fact, that every formula
is in LA equivalent to a disjunction of primitive positive formulas), we describe
all its simple complete extensions and construct their prime models. Models of
LA are characterized as non-principal ultraproducts of definable expansions of
the standard model 〈N, 0, 1,+,≤〉 (Corollary 1.4:8). It is also proven that LA
is equivalent to a theory La (see 1.1.4.1) which arises from LA by replacing the
induction scheme by the scheme of integral divisibility (see 1.1.2). All is done in
section 1.4.2.

Although the properties of LA are similar to those of Pr, the proof is much
more difficult. This is, as we will argue in Remark 1.5:1, mainly due to the fact
that, for n ∈ N, any remainder modulo n may be expressed as one of finitely
many constant terms, while this is no more true for n non-standard.

The results on LA contribute to the ongoing research on extensions of Pres-
burger arithmetic (see the survey paper [Bès01] for details concerning this prob-
lematic).

An application to the theory of quasi-Euclidean integral domains
Chapter 3 contains an interesting application of results from chapter 1 to

the theory of quasi-Euclidean integral domains. We find 2ω different integral
domains R, with Z[x] ⊆ R ⊆ Q[x], which are quasi-Euclidean but not k-stage
Euclidean, for any 0 < k ∈ N. This solves an open question of George E. Cooke
from [Coo76].
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The domains R are constructed from the prime models of simple complete
extensions of LA by taking their mirror “Z-like” versions and endowing them
with a natural ring structure.

Remark : Historical remark on constructions of models of Peano arithmetic
Nonstandard models of Peano arithmetic were implicitely found by Kurt

Gödel as a consequence of his famous incompleteness theorems [Göd31], and
were explicitely constructed (using an ultraproduct) by Thoralf Skolem only a
few years later ([Sko33] and [Sko34]).

However, an enormous complexity of such models was apparent already in
those days. By the incompleteness theorems, no class of elementary equivalent
models of P can be recursively axiomatized. Moreover, Gödel’s proof showed that
each model of P contains such a complicated structure as a model of the finite
set theory. These results were supported in late fifties by a theorem of Stanley
Tennenbaum [Ten59], which stated that in every countable nonstandard model
of P both, addition and multiplication, are non-recursive.

Despite of these facts, Robert MacDowell’s and Ernst Specker’s work on el-
ementary end-extensions [MS61] showed that some constructions of interesting
nonstandard models are possible. The results of Jeff Paris, Laurie Kirby and
Leo Harrington ([Par78], [KP82] and [PH77]), obtained by methods of cuts and
indicators, provided the first examples of natural combinatorial statements, true
in the standard model but unprovable in P.



Chapter 1

Descriptive Analysis of Linear
Theories

In this chapter, we are motivated by the problem of understanding the theory
of linear arithmetic (LA). LA is an arithmetical theory in the language Llin =
〈0, 1,+, a,≤〉, where a is intended as multiplication by a single element (see 1.1.4.1
for the axiomatic). It is a theory with the full induction for its language, and
as such it should be understood as standing between Presburger (Pr) and Peano
(P) arithmetics.

Our study of LA is led not only by our interest in the problem itself; in chapter
2 we will use it to prove non-trivial results about the structure of Peano products
on a fixed saturated model of Pr (a more direct approach to this can be found
in [Gli09]).

Instead of the “N-like” theory LA, we are going to work in its equivalent, but
technically more pleasant, “Z-like” variant, which is denoted ZLA (see 1.1.4.2).
Similarly, the Z-like variant of Presburger arithmetic (additive arithmetic AA;
see 1.1.3.1) is the theory of Z-groups (Z-additive arithmetic; ZAA see 1.1.3.2).

The theories ZLA and ZAA are examples of what we call linear theories.
That are theories, models of which are – up to a change of language – some
(expansions by constants of) discretely ordered modules over certain discretely
ordered integral domains. The module is required to be integrally-divisible over
the domain (i.e. integer division works), and the domain needs to be regularly
quasi-Euclidean (i.e. the regular Euclidean algorithm stops in finite time) and
has to have degrees (such that deg(r) ≤ deg(q)⇔ |r| ≤ n|q| for some n ∈ N); see
section 1.3.1 for the detailed definitions. We consider the expansion

F = 〈F, 0, 1,+,−,≤, r, c, q−1〉r∈DF ,c∈CF ,q∈+DF

of a model described above by definitions of integral division q−1 by all positive
scalars q from its integral domain DF and by some definable constants c, such
that CF is the universe of a substructure of F . Such an expansion F is called a
lineal (see 1.3.1.3).

25



26 CHAPTER 1. DESCRIPTIVE ANALYSIS OF LINEAR THEORIES

The main results of this chapter are the following three theorems, formulated
in section 1.3.2: the Main Theorem on Linear Theories 1.3:4, the Harmonic Form
Theorem 1.3:6 and the Bases Theorem 1.3:8.

The Main Theorem on Linear Theories states that in every lineal each non-
empty set definable over parameters a contains the value t(a) of a term t. More-
over, t may be chosen “almost uniformly” with respect to different lineals and
different tuples a; see concepts of solvability (1.2.2.1) and almost uniform solvabil-
ity (1.2.2.3). As a corollary of the Main Theorem, we get a quantifier elimination
result for linear theories; in particular, we will see that every lineal admits quanti-
fier elimination. We also describe all simple complete extensions of a given linear
theory T and their prime models (see Corollary 1.3:5).

Working in a fixed lineal, we show that every term can be, up to a “finite
noise”, equivalently written in harmonic form, i.e. as a linear combination of
the basic harmonic functions r−1 (see 1.3.2.2.1), and every formula is equivalent
to a harmonic one. This is the Harmonic Form Theorem 1.3:6. Moreover, we
perform a detailed analysis of definable sets in a lineal F and give a geometric
characterization of them as unions of linear images of polyhedra in F k, for some
k ∈ N. A similar characterization of definable functions as “piecewise linear”
is also stated (see Corollary 1.3:9 of the Bases Theorem 1.3:8). The last result
justifies the name “linear theory”.

As we mentioned in the Introduction chapter, the results above generalize the
classical results of Presburger [Pre29] on Z-groups and, partially, of Baur [Bau76]
and Monk [Mon75] on modules.

We apply the Main Theorem on Linear Theories to determine basic properties
of the Z-linear arithmetic ZLA (see Theorem 1.4:5). It is shown that ZLA is
model-complete (in fact, that every formula is in LA equivalent to a disjunction
of primitive positive formulas) and decidable. The simple complete extensions
of ZLA correspond to elements τ ∈ ∏

p∈P Jp, where P denotes the set of prime
numbers, and Jp, for p ∈ P, the set of all p-adic integers. The prime models
of the complete extensions are constructed as structures Cτ , with Z[x] ⊆ Cτ ⊆
Q[x]. As a corollary, it is shown that the models of ZLA are, up to elementary
equivalence, just ultraproducts ZU = (

∏

n∈N〈Z, 0, 1,+,−, n · ,≤〉)/U , where U is
a non-principal ultrafilter on N (see Corollary 1.4:6).

Let us note that the sets Cτ , endowed with the structure of a ring, are examples
of integral domains, which are ω-stage Euclidean but not k-stage Euclidean for
any k ∈ N. This answers the open question by G. E. Cooke from [Coo76]; see
chapter 3 for more details on this topic.

The mentioned results about ZLA can be almost automatically translated to
similar statements about LA (see Corollary 1.4:7) and understood as stating that
LA is a theory typologically similar to Pr (and far away from P). Whether the
same is true also for the theory LA2 (extension of Pr by multiplication by two
independent scalars; see 1.1.5.1), is posed as the Open question 1.
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Our quantifier elimination and decidability results for LA contribute to the
long and ongoing research on extensions of Presburger arithmetic. A good survey
paper for this problematics is [Bès01]. 1

Our proof of the three main theorems relies on a calculus of terms in a lineal.
This calculus can be seen as a generalization of the calculus of continued fractions.
Basic steps of the proof are sketched in 1.5.1.

In section 1.6, we formulate an easy consequence of the proof – a quanti-
fier elimination result (Corollary 1.6:2 of Theorem 1.6:1) for certain two-sorted
structures of the type “ordered ring-ordered module” (in fact, just for two-sorted
variants of models of linear theories). As we already mentioned in the Introduc-
tion, this generalizes results by Lou van den Dries and Jan Holly in [vdDH92] for
two-sorted unordered modules and by Volker Weispfenning in [Wei97] for two-
sorted discretely ordered modules over the ring Z of integers (more precisely for
the models of a two-sorted variant of Presburger arithmetic). See section 1.6 for
more details.

1.1 Arithmetical theories

We state here a few axiomatics of theories which will play a role of important
and motivating examples in our further explanation.

All the presented theories are “arithmetics” or “Z-arithmetics”, i.e. exten-
sions of the basic additive arithmetic, in the language Ladd = 〈0, 1,+,≤〉 or
LaddZ = 〈0, 1,+,−,≤〉 respectively, by fragments of multiplication and the full
induction scheme. As we already mentioned in the prologue of this chapter,
this problematics is connected with the study of expansions of the structure
〈N, 0, 1,+〉; we again refer to the survey article [Bès01] for more details.

All of our example theories are extensions of the additive arithmetic by multi-
plication by some fixed scalars (i.e. extensions by some “slices” of the full binary
multiplication). They form a linearly ordered chain between Presburger (Pr)
and Peano (P) arithmetics (which are its least and largest elements), where the
ordering is given by the number of scalars.

Besides the “N-like” and “Z-like” versions of the theories, we will distinguish
two equivalent but different axiomatics for each theory – the “inductive” one
(based on the induction scheme for all formulas) and the “divisible” one (based on
the scheme of integral-divisibility). All the axiomatics, we define, are summarized
in the Table 1.1.

1It seems that no attention has been yet paid to the extensions of Pr by linear functions.
The reason is, probably, that they are trivial when eximined in the standard model 〈N, 0, 1,+〉.
Even the quite general result of Semënov in [Sem84, Theorem 2, p.617] dismisses linear functions
as trivial definable cases.
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Level N-like ind. N-like div. Z-like ind. Z-like div.

additive Pr=AA Aa ZAA ZAa
linear LA La ZLA ZLa
κ-linear LAκ – ZLAκ –
Peano P – ZP –

Table 1.1: Arithmetical theories

1.1.1 Induction and Z-induction

Let us remind that, for a formula ϕ in a language extending 〈0, 1,+,≤〉, the
axiom of induction for ϕ is the following formula:

I(ϕ): (ϕ(0)& (ϕ(x)→ ϕ(x+ 1)))→ (∀x)ϕ(x).

For a formula ϕ in a language extending 〈0, 1,+,≤〉, the following is called the
axiom of Z-induction for ϕ:

IZ(ϕ): ((∃z)ϕ(z)& (ϕ(x)↔ ϕ(x+ 1)))→ (∀x)ϕ(x).

For a set Γ of formulas, I(Γ) and IZ(Γ) denote the sets of all axioms I(ϕ) and
IZ(ϕ), for ϕ ∈ Γ, respectively. If Γ is the set of all L-formulas, we write I(L),
IZ(L) instead of I(Γ), IZ(Γ).

1.1.2 Integral divisibility

Let α be an unary term in a language extending 〈0, 1,+,≤〉. The formula

id(α): (∃y)(α(y) ≤ x < α(y + 1))

is called the axiom of integral-divisibility for α.

Let Λ be a set of unary terms. We define id(Λ)= {id(α);α ∈ Λ}.

1.1.3 Additive arithmetics

The following theories are just different axiomatics of Presburger arithmetic. We
define them in order to introduce a consistent and systematic notation for all
presented theories. We also want to specify the axioms we use for “Presburger
arithmetic” since they vary through the literature.
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1.1.3.1 AA and Aa

Additive arithmetic (AA) is a theory in the language Ladd = 〈0, 1,+,≤〉. Its
axioms are

(A1) 0 6= z + 1 (A2) x+ 1 = y + 1→ x = y
(A3) x+ 0 = x (A4) x+ (y + 1) = (x+ y) + 1

(D≤) x ≤ y ↔ (∃z)(x+ z = y)

and the scheme I(Ladd) of induction for all Ladd-formulas. AA without the in-
duction scheme is denoted AA−.

The axiomatic Aa contains the following axioms:

(a1) 0 6= z + 1& (x 6= 0→ (∃z)(x = z + 1)) (a2) x+ z = y + z → x = y
(a3) x+ 0 = x (a4) x+ (y + z) = (x+ y) + z

(a5) x+ y = y + x

(D≤) x ≤ y ↔ (∃z)(x+ z = y)

and the scheme of integral-divisibility id(n), for 0 < n ∈ N, where n(x) denotes
x + · · · + x, with n summands. We also write 0(x) = 0, −n(x) = −n(x) and
z = z1, for z ∈ Z. Aa without the integral-divisibility scheme is denoted Aa−.

1.1.3.2 ZAA and ZAa

Z-additive arithmetic (ZAA) is the theory in the language LaddZ = 〈0, 1,+,−,≤〉
consisting of the axioms

(ZA1) (∃z)(x = z + 1) (ZA2) x+ 1 = y + 1→ x = y
(ZA3) x+ 0 = x (ZA4) x+ (y + 1) = (x+ y) + 1

(D−) −x+ x = 0

(O1) (x = −1 ∨ 0 ≤ x)↔ 0 ≤ x+ 1 (OD) x ≤ y ↔ 0 ≤ −x+ y

and the scheme IZ(L
add
Z ) of Z-induction for all LaddZ -formulas. ZAA without the

induction scheme is denoted ZAA−. Note that (ZAi) is the same axiom as (Ai),
for i 6= 1.

The axiomatic ZAa is given by the axioms

(Za1) (∃z)(x = z + 1) (Za2) x+ z = y + z → x = y
(Za3) x+ 0 = x (Za4) x+ (y + z) = (x+ y) + z

(Za5) x+ y = y + x

(D−) −x+ x = 0

(o1) x ≤ 0 ∨ 0 ≤ x (o2) (x ≤ 0& 0 ≤ x)→ x = 0
(o3) (0 ≤ x&0 ≤ y)→ 0 ≤ x+ y (o4) x ≤ 0 ∨ 1 ≤ x

(oD) x ≤ y ↔ 0 ≤ −x+ y
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and the scheme of integral-divisibility id(n), for 0 < n ∈ N. ZAa without the
integral-divisibility scheme is denoted ZAa−.

Remark 1.1:1. It is not difficult to see that AA is an extension of Aa, and ZAA is
an extension of ZAa. Later, we show that AA, Aa and ZAA, ZAa are both even
equivalent (see Proposition 1.4:1). Moreover, ZAA is equivalent to the theory of
Z-groups, i.e. Th(〈Z, 0, 1,+,−,≤〉).

Lemma 1.1:2. The following is provable in ZAa:

1) the axioms of Abelian groups, i.e.

a) x+ (y + z) = (x+ y) + z,

b) x+ y = y + x,

c) x+ 0 = x,

d) −x+ x = 0,

2) ≤ is discrete linear ordering, with 1 as the least positive element, and compat-
ible with +, i.e.

a) ≤ is a linear ordering,

b) 0 < 1, x ≤ 0 ∨ 1 ≤ x,

c) (u ≤ x& v ≤ y)→ u+ v ≤ x+ y.

Proof. Easy.

1.1.4 Linear arithmetics

1.1.4.1 LA and La

Linear arithmetic (LA) is a theory in the language Llin = 〈0, 1,+, a,≤〉, where a
is an unary functional symbol (with the intended meaning “multiplication by a
scalar a”). The axioms of LA are

all axioms of AA−

(L1) a(x+ 1) = ax+ a1 (L2) 0 ≤ a1
(L0) a1 6= n for all n ∈ N

and the scheme I(Llin) of induction for all Llin-formulas. LA without the induc-
tion scheme is denoted LA−.

Remark 1.1:3. The name “linear arithmetic” is used somewhat vaguely and/or
inconsistently through the literature. It denotes more different concepts where an
important role is played by inequalities of “linear” combinations of “unknowns”.
Therefore, we stress that, for us, linear arithmetic means always the first order
theory LA above.
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The axiomatic La is given by

all axioms of Aa−

(l1) a(x+ y) = ax+ ay (l2) 0 ≤ x→ 0 ≤ ax
(l0) a1 6= n for all n ∈ N

and the scheme of integral divisibility id(p), for every polynomial 0 < p ∈ Z[a].
Here, for 0 < p =

∑

i<m cia
i ∈ Z[a], with ci ∈ Z, we denote p(x) the term

∑

i<m ci(a
i(x)), where ai(x) = a(. . . (a(x)) . . .) with n occurances of a. Moreover,

for r = p

n
∈ Q[a], with p ∈ Z[a] and 0 < n ∈ N, we define r(x)= y ↔ p(x) = n(y).

We write r for the constant term r(1).
La without the integral-divisibility scheme is denoted La−.

Example 1.1:4. Let A = 〈A, 0, 1,+, ·,≤〉 be a non-standard model of Peano arith-
metic (see 1.1.6), and let a ∈ A − N. Then Aa = 〈A, 0, 1,+, a,≤〉, where
a(x) = a · x, is a model of LA. Moreover, if A is κ-saturated then Aa is as
well.

1.1.4.2 ZLA and ZLa

Z-linear arithmetic (ZLA) is the theory in the language LlinZ = 〈0, 1,+,−, a,≤〉
with axioms

all axioms of ZAA−

(L1) a(x+ 1) = ax+ a1 (L2) 0 ≤ a1
(L0) a1 6= n for all n ∈ N

and the scheme IZ(L
lin
Z ) of Z-induction for all LlinZ -formulas. ZLA without the

induction scheme is denoted ZLA−.
The axiomatic ZLa consists of axioms

all axioms of ZAa−

(l1) a(x+ y) = ax+ ay (l2) 0 ≤ x→ 0 ≤ ax
(l0) a1 6= n for all n ∈ N

and the scheme of integral divisibility id(p), for every polynomial 0 < p ∈ Z[a].

ZLa without the integral-divisibility scheme is denoted ZLa−.

1.1.5 κ-linear arithmetics

1.1.5.1 LAκ

For a cardinal number κ, κ-linear arithmetic (LAκ) is a theory in the language
Lκ−lin = 〈0, 1,+, aα,≤〉α<κ, where aα are unary functional symbols (with the
intended meaning “multiplication by a scalar aα”).
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The axioms of LAκ are

all axioms of AA−

(κL1) aα(x+ 1) = aαx+ aα1 (κL2) 0 ≤ aα1 (κL3) aα(aβx) = aβ(aαx)
(κL0) “aα is not definable by any formula not containing aα”,

for all α, β < κ, and the scheme I(Lκ−lin) of induction for all Lκ−lin-formulas.
LAκ without the induction scheme is denoted LAκ−.

1.1.5.2 ZLAκ

For a cardinal number κ, κ-Z-linear arithmetic (ZLAκ) is the theory in the lan-
guage Lκ−linZ = 〈0, 1,+,−, aα,≤〉α<κ with the axioms

all axioms of ZAA−

(κL1) aα(x+ 1) = aαx+ aα1 (κL2) 0 ≤ aα1 (κL3) aα(aβx) = aβ(aαx)
(κL0) “aα is not definable by any formula not containing aα”,

for all α, β < κ, and the scheme IZ(L
κ−lin
Z ) of Z-induction for all Lκ−linZ -formulas.

ZLAκ without the induction scheme is denoted ZLAκ−.

Remark 1.1:5. The 0-linear arithmetic LA0 is just the additive arithmetic AA,
while the 1-linear arithmetic LA1 is equivalent to the linear arithmetic LA.

1.1.6 Peano arithmetics

Peano arithmetic (P) is a theory in the language Lar = 〈0, 1,+, ·,≤〉. Its axioms
are

all axioms of AA−

(M1) x · 0 = 0 (M2) x · (y + 1) = x · y + x

and the scheme I(Lar) of induction for all Lar-formulas. P without the induction
scheme is denoted P− (the Robinson arithmetic Q is the extension of P− by
x 6= 0→ (∃z)(x = z + 1)).

Z-Peano arithmetic (ZP) is the theory in the language LarZ = 〈0, 1,+,−, ·,≤〉
given by the axioms

all axioms of ZAA−

(M1) x · 0 = 0 (M2) x · (y + 1) = x · y + x

and the scheme IZ(L
ar
Z ) of induction for all LarZ -formulas. ZP without the induc-

tion scheme is denoted ZP−.
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Observation 1.1:6. The following diagram, where T ` S denotes that T is an
extension of S, and where 1 < κ < λ, holds:

AA ` Aa ZAA ` ZAa
⊥ ⊥ ⊥ ⊥
LA ` La ZLA ` ZLa
⊥ ⊥

LAκ ZLAκ

⊥ ⊥
LAλ ZLAλ

1.1.7 Models of N-like and Z-like variants

Let T be one of the theories AA, Aa, LA, La, LAκ, P, and ZT be the corre-
sponding Z-like variant of T . It can be easily shown that, for every model A =
〈A, 0, S,+,≤, . . .〉 |= T , its canonical “Z-version” A±= 〈A∪−A, 0, 1,+,−,≤, . . .〉
is a model of ZT . On the other side, the positive part B+= 〈B+, 0, 1,+,≤, . . .〉
of any model B |= ZT is a model of T .

For an L(T )-formula ϕ, the formula ϕ+, created by replacing every quantifi-
cation Qx in ϕ by Qx ≥ 0, satisfies

A |= ϕ[a]⇔ A± |= ϕ+[a], (1.1)

for every a ∈ A. Similarly, it is easy (but a bit more technical), for an L(ZT )-
formula ψ, to construct an L(T )-formula ψ±, such that it is

A |= ψ±[a]⇔ A± |= ψ[a], (1.2)

for every a ∈ A.

1.2 Model-theoretical background

At this place, we formulate a theoretical background for our next explanation.
The concepts presented in this section are simple and the proofs mostly elemen-
tary; the reason, why we introduce them, is that they show themselves very useful
for formulating and proving the presented results.

1.2.1 Σ1-separability and decidability

We prove an easy but useful equivalent for decidability of recursively axiomatiz-
able theories (Proposition 1.2:1). This criterion is particularly useful for theories
which have “well described” but uncountable (and thus not recursively enumer-
able) set of non-equivalent simple complete extensions.

In the following, by a theory we mean (a numeric presentation of) some ax-
iomatic in a recursive language L. Then Th(T ) denotes the set of all L-sentences
provable in T and CS(T ) the set of all L-sentences consistent with T .
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1.2.1.1 Γ-separability

Let Γ ⊆ P(N). A theory T is Γ-separable if there is S ⊆ CS(T ), S ∈ Γ and dense
in CS(T ), i.e. such that for ϕ ∈ CS(T ) there is ϕ′ ∈ S with T, ϕ′ ` ϕ.

Proposition 1.2:1. For a recursively axiomatizable theory T , the following are
equivalent:

1) T is decidable,

2) T is ∆1-separable,

3) T is Σ1-separable.

Proof. 1)⇒2): CS(T ) is ∆1 and dense in itself.
2)⇒3): Clear.
3)⇒1): Let S be Σ1 and dense in CS(T ). Then ϕ 6∈ Th(T ) ⇔ ¬ϕ ∈ CS(T ) ⇔
there is ϕ′ ∈ S such that ¬ϕ ∈ Th(T, ϕ′); therefore N− Th(T ) is Σ1.

1.2.1.2 Γ-almost-completion

A binary relation C ⊆ N2 is a Γ-almost-completion of a theory T if C ∈ Γ, for
each n ∈ dom(C) the set C[n] is a simple complete extension of T , and C is dense
in the set of all simple complete extensions of T , i.e., for any ϕ ∈ CS(T ), there
is n ∈ dom(C) such that ϕ ∈ Th(C[n]).

Proposition 1.2:2. If a recursively axiomatizable theory T has a Σ1-almost-
completion then it is decidable.

Proof. If C is a Σ1-almost-completion of T then CS(T ) =
⋃

n∈dom(C) Th(C[n]) is
Σ1.

1.2.2 Solvable theories

We formulate a property of solvability of a theory T , which states that every
non-empty definable set in a model of T contains a “solution” expressible as a
value of a term. In Proposition 1.2:6, we show that solvability implies quantifier
elimination. The property of solvability will prove itself very helpful for the
detailed analysis of definable sets in models of linear theories, which we perform
in section 1.3.1.

We also show that if a theory T satisfies a stronger condition of almost uniform
solvability then every function definable in a model of T can be written as a
“piecewise term”.
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1.2.2.1 Solvable and n-solvable theories

We define concepts of solvable and n-solvable theories. Although these can (and
will) be defined in general, we will make use of solvability and 0-solvability only.

We say that a theory T is [n-]solvable [for n ∈ N] if, for every modelM |= T ,
every L-formula ϕ(x, y) [with l(y) ≤ n] and an l(y)-tuple a from M , it holds

M |= (∃x)ϕ(x, a)⇒M |= ϕ(t(a), a), for some LT−term t.

Remark 1.2:3. It easily follows from the proof of Lemma 1.2:5 that, in the def-
inition of solvable theory, we could equivalently replace the arbitrary ϕ by a
quantifier-free formula. However, this is not true for n-solvability. Let us also
note that in both cases we may equivalently replace the single variable x by a
tuple x.

The following statement is a classical result:

Lemma 1.2:4. Let T be an L-theory and ϕ(x) an L-formula, such that l(x) > 0,
or L contains a constant symbol. Then the following are equivalent:

1) There is a quantifier-free ψ(x), such that T ` ϕ↔ ψ.

2) For anyM,N |= T with a common substructure C and every a ∈ C, it is
M |= ϕ(a)⇔ N |= ϕ(a). (1.3)

Proof. Folklore.

Lemma 1.2:5.
1) If a theory is solvable then it has quantifier elimination.

2) Suppose that n > 0, or L contains a constant symbol. If T is n-solvable then
every ϕ(x), with l(x) ≤ n, is equivalent to some quantifier-free ψ(x).

Proof. 1): Suppose that a theory T is solvable and let M,N and a be as in
Lemma 1.2:4 2). Clearly, it is enough to prove (1.3) for a formula (∃x)ψ(x, y) with
ψ quantifier-free. Let M |= (∃x)ψ(x, a). Then, by solvability, M |= ψ(t(a), a)
for some term t, and since t(a) ∈ C ⊆ N , we have N |= (∃x)ψ(x, a).
2): By induction on the least number m of quantifiers in a prenex normal form
of ϕ. The case m = 0 is trivial. For the induction step, we may suppose that
ϕ is (∃x)χ(x, y), for some χ such that l(y) ≤ n. Let M,N , a be as in Lemma
1.2:4 2), and suppose M |= ϕ(a). By n-solvability, there is a term t such that
M |= χ(t(a), a). χ(t(y), y) has at most n free variables, hence it is in T equivalent
to a quantifier-free formula, by induction assumption. Therefore N |= χ(t(a), a),
and ϕ is equivalent to a quantifier-free formula by Lemma 1.2:4.

For a structure M and X ⊆ M , we denote M〈X〉 the substructure of M
generated by X and M〈X〉 its universe. M(X) stands for the structure of all
definable elements inM over X, andM(X)= {a ∈M ; {a} ∈ Df1(X,M)} denotes
its universe.
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Proposition 1.2:6. For a theory T in a language with a constant symbol, it is
equivalent:

1) T is solvable.

2) T has quantifier elimination and is axiomatizable by open formulas.

3) T is model-complete and is axiomatizable by open formulas.

4) For N ⊆M |= T , it is N ≺M.

5) ForM |= T , X ⊆M , it is M〈X〉 =M(X), and it is a dense set (of all atoms)
in Df1(X,M).

Proof. 1)⇒2): T has quantifier elimination by Lemma 1.2:5. LetM ⊆ N |= T .
Then, by the Tarski-Vaught test, it isM≺ N , and henceM |= T . Indeed: For
a ∈ M , if N |= (∃x)ϕ(x, a), there is, by solvability of T , a term t(y) such that
N |= ϕ(t(a), a), and clearly t(a) ∈M .
2)⇒3): Clear.
3)⇒4): We get N |= T , by open-axiomatizability of T , and thus N ≺ M, by
model-completeness.
4)⇒5): Let {a} ∈ Df1(X,M), and ϕ(x, b), with b ∈ X, define {a} inM. Then,
by M〈X〉 ≺ M, there is exactly one a′ ∈ M〈X〉 such that M〈X〉 |= ϕ(a′, b),
and hence also M |= ϕ(a′, b), which implies a = a′. Density of M〈X〉: Let
∅ 6= D ∈ Df1(X,M). Then, byM〈X〉 ≺ M, it is D ∩M〈X〉 6= ∅.
5)⇒1): Let M |= T , a ∈ M , and ψ(x, y) be an open formula such that it is
M |= (∃x)ψ(x, a). Then, by the assumptions, there is an atom of the form
{t(a)}, with t a term, under {b;M |= ψ(b, a)}, and clearlyM |= ψ(t(a), a).

We formulate the following two strengthenings of solvability. Let us remind
that, by Remark 1.2:3, in the definition of solvable theory, it suffices to verify the
condition only for quantifier-free formulas.

1.2.2.2 Uniformly solvable theory

We say that a theory T is uniformly solvable if, for each quantifier-free formula
ψ(x, y), there is a term t such that

T ` (∃x)ψ(x, y)→ ψ(t(y), y).

Example 1.2:7. Let L be the language 〈0, 1, P 〉, where 0, 1 are two constant sym-
bols, and P is an unary predicate symbol. Then the theory

T = {0 6= 1, (∀x)(x = 0 ∨ x = 1), (∃!x)P (x)}

is solvable but not uniformly solvable.
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1.2.2.3 Almost uniformly solvable theory

We say that a theory T is almost uniformly solvable if, for each quantifier-free
formula ψ(x, y), there are finitely many terms ti, i < n, such that

T ` (∃x)ψ(x, y)→
∨

i<n

ψ(ti(y), y).

By the following lemma, almost uniform solvability may be formulated as a seem-
ingly weaker condition.

Lemma 1.2:8. The following are equivalent:

1) T is almost uniformly solvable.

2) For each quantifier-free formula ψ(x, y) and M |= T , there are finitely many
terms ti, i < n, such thatM |= (∃x)ψ(x, y)→ ∨

i<n ψ(ti(y), y).

Proof. 1) ⇒ 2) is clear.

2) ⇒ 1): For a model M |= T , we get n(M) and t
(M)
j , for j < n(M). We set

X = {t(M)
j ;M |= T, j < n(M)} and

S = T ∪ {(∃x)ψ(x, c)} ∪ {∧t∈F ¬ψ(t(c), c);F ⊆ X finite},
where c are new constant symbols with l(c) = l(y).

We prove that S is inconsistent. Otherwise it has a model 〈M, c〉 such that

M |= (∃y)((∃x)ψ(x, y)&
∧

j<n(M)

¬ψ(t(M)
j , y)),

andM |= T ; this contradicts the choice of the terms t
(M)
j . Hence, for some finite

F ⊆ X, it is T ` (∃x)ψ(x, c)→ ∨

t∈F ψ(t(c), c), and thus

T ` (∃x)ψ(x, y)↔
∨

t∈F

ψ(t, y).

1.2.2.4 Piecewise terms

An [open] piecewise term, or shortly an [open] p-term, is a tuple τ = (ti, ψi)
n−1
i=0 ,

more suggestively written as a piecewise defined function

τ(x) =
{

ti(x) if ψi(x); i = 0, . . . , n− 1, (1.4)

where n > 0, ti are terms, and ψi are [open] formulas such that, for every a,
exactly one of ψi(a) holds. A subterm of a p-term τ = (ti, ψi)

n−1
i=0 is any subterm

of some ti or of some ψi.
The value of a term τ(x) from (1.4) at point a ∈ M in structureM is ti(a),

where i is such thatM |= ψi(a). We identify each term t with the p-term (t,>)
(here > denotes “truth”).
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Proposition 1.2:9. Let T be almost uniformly solvable, M |= T and X ⊆ M .
Then every X-definable (in M) function f : Mn → M is the realization of an
open p-term τ(y, a) with a ∈ X.

Proof. Clearly, T is solvable, hence it has quantifier elimination, by Proposition
1.2:6. Therefore we may suppose that f is defined in M by an open formula
χ(x, y, a), with a ∈ X. By the almost uniform solvability of T , there are terms
ti(y, z), for i < m, such thatM |= ∨

i<m χ(ti(y, a), y, a).

Now, we may set τ = (ti, ψi)i<m, where ψi is the formula

χ(ti(y, a), y, a)&
∧

j<i

¬χ(tj(y, a), y, a).

1.2.3 Solvable extensions by definitions

In this section, we deal with theories which have solvable extensions by definitions.
Proposition 1.2:11 provides a characterization of such theories.

Example 1.2:10. All arithmetical theories with the full induction, such as Pr,
LA or P (see section 1.1 for definitions), can be extended by definitions of new
functions in such a way that the resulting extensions are solvable. For each
formula ϕ(x, y), it suffices to define a function which, for given parameters a,
outputs the minimal element of the set defined by ϕ(x, a) (if it is non-empty).

Let L = LF ∪ LR be a language containing the constant symbol 0, LF be its
algebraic part and LR the relational part. For an L-formula ϕ(x, y), we denote

cor(ϕ): the L-formula “ϕ is a correct defining formula of a function”,
δ(ϕ): the conditional definition of ϕ:

(cor(ϕ)&ϕ(x, ϕ(x))) ∨ (¬cor(ϕ)&ϕ(x) = 0),

where ϕ is a new l(x)-ary functional symbol. For F ⊆ FmL, we write

T F = T ∪ {δ(ϕ);ϕ ∈ F}

for the extension of T by functions definable by formulas from F . For an L-
structure M, we denote MF the corresponding expansion of M and LF the
respective extension of L. If s is a new symbol of T F , we write ṡ for the L-
formula ϕ which defines s (i.e. such that s = ϕ). When there is no danger of
misunderstanding, we write just s instead of ṡ.

We say that T is F -solvable [F -n-solvable] if T F is solvable [n-solvable]. Then
∅-solvable means just solvable and similarly for the n-solvability.
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Proposition 1.2:11. Let T be an L-theory and n ∈ N. The following statements
are equivalent:

1) T is FmL-[n-]solvable.

2) For every M |= T and X ⊆ M [with |X| ≤ n], each non-empty X-definable
set inM contains an X-definable element.

3) For everyM |= T and X ⊆M [with |X| ≤ n], it isM(X) ≺M.

4) For everyM |= T and X ⊆M [with |X| ≤ n], the structureM(X) is a prime
model over X inM.

Proof. 1) ⇒ 2) is immediate.
2) ⇒ 3) follows from the Tarski-Vaught test.
3) ⇒ 1) is easy by observing that, for b ∈M(a), there is a ∅-definable function f
with f(a) = b.
3) ⇒ 4): Let N be an L-structure and f : M → N a partial elementary map,
with dom(f) = X. Then f can be extended to an isomorphism between M(X)

and N(f [X]), by setting f(a) = b, where b ∈ N is defined in N by the same L-
formula as a inM. Then, by 3), f is an elementary embedding.
4) ⇒ 3): Clearly, the only elementary embedding ofM(X) intoM extending the
identity on X is the identity.

The following corollary states that the prime models and the simple complete
extensions of F -0-solvable theories are at most as “complex” as F .

Corollary 1.2:12. Let T be an L-theory and F ⊆ FmL be such that T is F -0-
solvable. Then, forM |= T , it is:

1) M(∅) =MF 〈∅〉|L is the unique (even if ‖L‖ > ω) prime model of Th(M),

2) Th(M) is equivalent to T ∪OThL(MF ) (equivalently to T ∪OThL(MF 〈∅〉)),

where OThL(N ) denotes the set of canonical L-translations of open sentences
true in N .

Moreover, if T F is open-complete then T is complete.

Proof. 1)M(∅) =MF 〈∅〉|L is a trivial consequence of 0-solvability of T F . M(∅)

is a prime model by Proposition 1.2:11. The uniqueness is clear.
2): Let N |= T ∪OThL(MF ). ThenMF 〈∅〉 ∼= N F 〈∅〉, and thusM≡ N , by 1).
“Moreover” follows from Lemma 1.2:5 2).
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1.2.4 Syntactic presentation of prime models

In the previous section, we proved that prime models of simple complete ex-
tensions of a F -0-solvable L-theory can be seen as having universes consisting
of (some) constant LF -terms (see Corollary 1.2:12 1)). We, informally, call this
presentation of the prime models “syntactic”.

The way in which syntactic presentations of the prime models of different
complete extensions of a theory T overlap, provides an interesting information
about properties of T . In this section, we draft some possibilities of this method.

Let further T be an L-theory, and F ⊆ FmL be such that T is F -0-solvable.
For M |= T , we denote M•,F the LF -structure of constant terms of the theory
Th(MF ); the realization rM of a symbol r ∈ LR inM•,F is given by

rM(s)⇔MF |= r(s), (1.5)

for any tuple s of constant LF -terms. By the formula (1.5) for r equal to =, we
also define the equivalence =M on the set of all constant LF -terms.

For a constant LF -term s, we write cor(s) instead of
∧{cor(ϕ);ϕ occurs in s},

and we denoteMc,F= {s;M |= cor(s)}. Finally, we define the canonical structure
of Th(M)F asM∗,F=M•,F/=M.

By Corollary 1.2:12 1), ∅-definable elements inM are just the values of con-
stant LF -terms, and they form the universe of the prime-model of Th(M). Thus,
we have the following:

Observation 1.2:13. M∗,F |L ∼=M(∅) is the unique prime model of Th(M), and
thus

M≡ N ⇔M∗,F = N∗,F ,

forM,N |= T .

It is easy to see that every equivalence-class [s]=M
∈ M∗,F contains some

s′ ∈ Mc,F . The set Mc,F itself may carry some information about the structure
M∗,F . That is why we define the F -correctness diagram ofM:

∆cor(M, F ) = {cor(ϕ);ϕ ∈Mc,F} ∪ {¬cor(ϕ);ϕ /∈Mc,F}.

1.2.4.1 Completeness up to/in correctness

The two extremal cases, where Mc,F carries the full and no information about
M∗,F , are considered in the following definitions.

A theory T is said to be complete up to correctness w.r.t. F , or shortly F -cuc,
if, for everyM,N |= T , it is Mc,F = Nc,F ⇒M∗,F = N∗,F .

T is called complete in correctness w.r.t. F , or shortly F -cic, if, for every
M,N |= T , it is Mc,F = Nc,F .
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1.2.4.2 Compatibility

Two L-structures M,N are said to be F -compatible if, for every r ∈ LR or r
being =, it is rM = rN on the set Mc,F ∩ Nc,F . T is F -compatible if every pair
M,N |= T is.

Observation 1.2:14. The following implications hold:

1) T is complete ⇔ T is F -cuc and F -cic.

2) T is complete ⇒ T is F -compatible ⇒ T is F -cuc.

The following examples show that the implications in the Observation 1.2:14
2) can not be reversed.

Example 1.2:15.

a) Let Prc = Pr ∪ {c > n;n ∈ N}, with c a new constant symbol, and F be
the set of the canonical formulas formally defining fractions of the form mc+n

k
,

with m,n, k ∈ Z, k > 0. Then Prc is F -0-solvable and F -compatible but not
complete.

b) Let Prc,d = Pr ∪ {c, d > n;n ∈ N}, with c, d new constant symbols, and F
be the set of the canonical definitions of fractions of the form mc+nd+i

k
, with

m,n, i, k ∈ Z, k > 0. The theory

T = Prc,d ∪ {(2|c&nc < d) ∨ (¬2|c&nd < c);n ∈ N}

is F -0-solvable and F -cuc but not F -compatible.

1.2.4.3 Prime-envelope

We show that all prime models of an F -compatible theory T can be “faithfully”
embedded into a single structure – a prime-envelope of T .

An LF -structure Q is called an F -prime-envelope of T if every M∗,F , with
M |= T , is an LFc,M-substructure (where Fc,M = {ϕ ∈ F ;M |= cor(ϕ)}) of Q,
and Q is generated by

⋃

M|=T M∗,F .

Proposition 1.2:16. Let F ⊆ FmL be such that T is F -0-solvable. Then the
following holds:

1) T is F -cuc ⇔ Th(M) is equivalent to T ∪ ∆cor(M, F ), for every
M |= T .

⇔ ⋃

M|=T{
∧

Γ; Γ ⊆ ∆cor(M, F ) finite} is dense in the set

CS(T ) of all sentences consistent with T .

2) T is F -cic ⇔ T ` ∆cor(M, T ), for everyM |= T .
⇔ ∆cor(M, F ) = ∆cor(N , F ), for everyM,N |= T .
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3) T is F -compatible ⇔ T has an F -prime-envelope.
⇔ The theory T ∪ {cor(ϕ);ϕ ∈ F ′} decides all

atomic LF
′
-sentences, for every finite F ′ ⊆ F .

Proof. 1): The first “⇔” is an easy consequence of Observation 1.2:13. The
second “⇔” is trivial.
2): Directly from definition.
3): The first equivalence: “⇒”: We set Q =

⋃

M|=TMc,F/=Q
, where =Q is the

transitive closure of
⋃

M|=T (=M� Mc,F ). For each symbol r ∈ LR, we define

rQ =
⋃

M|=T rM/=Q
and fQ([q]=Q

) = fM([q]=M
), if q ∈ Mc,F , and 0 otherwise.

The definitions are correct, and Q = 〈Q, rQ, fQ〉 is an F -prime-envelope of T .
“⇐” is immediate. The second equivalence is easy.

1.3 Analysis of lineals and linear theories

In this section, we define the key concepts of this chapter – the notions of a
lineal and a linear theory – and formulate our main results concerning them; the
proof of the results is postponed to section 1.5. We prove that ZAa and ZLa
(defined in section 1.1) are examples of linear theories; in section 1.4, we will use
the results of this section to perform a basic model-theoretic analysis of ZAa and
ZLa.

1.3.1 Lineals and linear theories

As we allready stated in the prologue of this chapter, linear theories are, informa-
tively (up to a change of the language), theories of some (expansions by constants
of) discretely ordered modules over certain discretely ordered integral domains.
More precisely, T is a linear theory if every model A |= T is equidefinable with
certain expansion of a discretely ordered module (called lineal; see 1.3.1.3) over
a domain which is a doded (see 1.3.1.2). Note that, by Corollary 1.3:5, every
A |= T has quantifier elimination in the language of the corresponding lineal.

1.3.1.1 Notation

For a structure M in a language L = 〈0, 1,+,−,≤, . . .〉, we denote +M the set
of all non-negative elements from M .

For an unary increasing function f on M , f−1 denotes the integral inverse
of f (if it exists), i.e. the function f−1 such that f−1(x) is the largest y with
f(y) ≤ x. For linear f , this is equivalent to

〈M, f, f−1〉 |= 0 ≤ x− f(f−1(x)) < f(1). (1.6)
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1.3.1.2 Doded

An ordered integral domain D = 〈D, 0, 1,+,−, ·,≤〉 is called a doded if it

(R1) is discretely ordered by ≤, with 1 being the least positive element, i.e.

(R1-a) ≤ is a linear ordering of D,

(R1-b) r ≤ s→ r + t ≤ s+ t,

(R1-c) 0 ≤ r, s→ 0 ≤ r · s,
(R1-d) 0 < 1&¬(∃r)(0 < r < 1),

(R2) is regularly quasi-Euclidean, i.e. the Euclidean algorithm in D (with one
step given by (q, r) 7→ (r, q− rr−1(q))) is correctly defined and always stops
in finitely many steps (at some (q′, 0)),

(R3) has degrees, i.e. there is a function deg : D → N∪{−∞} such that rng(deg)
is a lower set in N∪{−∞}, and deg r ≤ deg q ⇔ |r| ≤ n|q|, for some n ∈ N.

Example 1.3:1.

a) The ordered ring of integers is a doded; the degree map is defined as deg z = 0,
for 0 6= z ∈ Z, and deg 0 = −∞.

b) Let τ = 〈τp〉 ∈
∏

p∈P Jp, where P is the set of all prime numbers, and Jp, for
p ∈ P, is the ring of p-adic integers. Let Z[a] ⊆ Dτ ⊆ Q[a] be defined as

Dτ =
{ r

n
∈ Q[a]; 0 < n ∈ N, r ∈ Z[a], and (∀p ∈ P) πvp(n)(r(τp)) = 0

}

.

Here, vp denotes the usual p-valuation, πk the canonical projection of Jp to
Zpk . Further, τp is the pth projection of τ , and the substitution r(τp) is done
inside Jp, where Z is embedded via z 7→ (z mod p, z mod p2, z mod p3, . . . ).
See section 3.2 for details.

Equivalently:

r
n
∈ Dτ ⇔ n|r(a),

where a is such that a ≡pk τp(k), for p ∈ P and k ∈ N.

The ring Dτ is a doded: It is discretely (linearly) ordered since no q ∈ Q[a]
with 0 < q < 1 is in Dτ . The degree map is the usual degree of polynomials.
Dτ is regularly quasi-Euclidean by Theorem 3.4:2.



44 CHAPTER 1. DESCRIPTIVE ANALYSIS OF LINEAR THEORIES

1.3.1.3 Lineal

A lineal is any structure F = 〈F, 0, 1,+,−,≤, r, c, q−1〉r∈DF ,c∈CF ,q∈+DF
where

• DF is an universe of a doded DF ,

• F and CF = F � CF are expansions of discretely ordered DF -modules (with
the least positive element 1) by constants c and integral inverses q−1.

The definition above implicitly states that the functions q−1, for q ∈ +DF ,
are all correctly defined, and CF is closed on all q−1. Moreover, since, for given
q ∈ +DF , the mapping r 7→ r1 is an embedding of 〈DF , 0, 1,+,−,≤, q · 〉 into
〈F, 0, 1,+,−,≤, q〉, and q−1 is defined in both these structures by the same for-
mula (as in (1.6)), we get the following, for all q, r ∈ DF , q > 0:

F |= (q−1r)1 = q−1(r1).

This observation enables us to consider 〈DF , 0, 1,+,−,≤, r · , q−1〉r∈DF ,q∈+DF
as

a substructure of 〈F, 0, 1,+,−,≤, r, q−1〉r∈DF ,q∈+DF
and to identify r ∈ DF with

r1 ∈ F .
We extend the degree map deg : DF → N ∪ {−∞} to the whole F by

deg(x) = min{deg(r); r ∈ DF , |x| ≤ r}, (1.7)

where min(∅) =∞.

Example 1.3:2.

a) The structure 〈Z, 0, 1,+,−,≤, z, z, n−1〉z∈Z,0<n∈N is a lineal (the ring of inte-
gers is a doded by Example 1.3:1 a)). More generally, for A |= ZAa, the
structure FA = 〈A, 0, 1,+,−,≤, z, z, n−1〉z∈Z,0<n∈N is a lineal.

b) Let us recall that, for a formula ϕ, we denote cor(ϕ) the formula “ϕ is correct
defining formula of a function”, and if s is a symbol defined by ϕ, we write ṡ
for ϕ (see section 1.2.3).

Let A = 〈A, 0, 1,+,−, a,≤〉 |= ZLa. We set

CA = DA = {r ∈ Q[a];A |= cor(ṙ)} =
= {r ∈ Q[a]; r = p

n
with p ∈ Z[a], n ∈ N and A |= n|p} =

= Q[a] ∩ A.
Clearly, Z[a] ⊆ DA ⊆ Q[a], and DA is closed under operations of the polyno-
mial ring Q[a]; we denote DA the ordered subring of the ordered polynomial
ring Q[a] with the universe DA.

By Proposition 3.3:2 (it is easy to verify that the proof uses only properties
of A provable in ZLa), the rings DA, for A |= ZLa, correspond (not uniquely)
to the rings Dτ from Example 1.3:1 b) and vice versa.
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More precisely,

Dτ = DA ⇔ A |= pk|a− πk(τp) for all p ∈ P, 0 < k ∈ N.

The structure FA= 〈A, 0, 1,+,−,≤, r,p, q−1〉r∈DA,p∈CA,q∈+DA
is a lineal.

Proof: DA is a doded by Example 1.3:1 b). FA is an expansion of an ordered
DA-module by Lemma 1.1:2. To show that CA is a universe of a substructure
of FA, it suffices to show that it is closed under the functions q−1, for all
0 < q ∈ DA; this is proved in Lemma 3.4:1 (the proof can be done in ZLa).

c) Let A |=ZAac= ZAa ∪ {c ≥ n;n ∈ N}. We denote DA the ring of integers,
and we set

CA = Q〈cA, 1〉 ∩ A =

{

icA + j

l
; i, j, l ∈ Z, l > 0, A |= l|ic+ j

}

.

Then the structure FA = 〈A, 0, 1,+,−,≤, z, k, n−1〉z∈Z,k∈CA,0<n∈N is a lineal.
Indeed, it is enough to prove that CA is closed under the functions n−1, for
0 < n ∈ N: Let k = ic+j

l
∈ CA and 0 < n ∈ N. By integral divisibility in ZAac,

there is 0 ≤ m < n such that n|k −m. Then n−1k = k−m
n

= ic+(j−ml)
nl

∈ CA.

1.3.1.4 Linear theory, linealization

Let L be a language extending Lz = 〈0, 1,+,−,≤〉 (where − is unary), T be an
L-theory, and let D,C ⊆ FmL. A (D,C)-linealization of T is any map A 7→ FA,
for A |= T , such that every FA = 〈A, 0, 1,+,−,≤, r, c, q−1〉r∈DFA

,c∈CFA
,q∈+DFA

is a lineal equidefinable with A, and the sets ˙DFA
, ˙CFA

of definitions in A of
functions from DFA

and constants from CFA
satisfy ˙DFA

⊆ D and ˙CFA
⊆ C.

An L-theory T is a linear theory if it has an (FmL, FmL)-linealization.

Example 1.3:3.

a) Let Ż1 and Ż0 denote the sets of LaddZ -formulas ż and ż which define symbols
z and z, for z ∈ Z, respectively. ZAa is a linear theory, and

A 7→ FA = 〈A, 0, 1,+,−,≤,m,k, n−1〉m∈Z,k∈Z,n∈N−{0},

for A |= ZAa, is its (Ż1, Ż0)-linealization.

b) Let Q̇[a]1 and Q̇[a]0 be the sets of all LlinZ -formulas ṙ and ṙ which define
symbols r or r respectively, for r ∈ Q[a]. ZLa is a linear theory, and

A 7→ FA = 〈A, 0, 1,+,−,≤, r,p, q−1〉r∈DA,p∈CA,q∈+DA
,

for A |= ZAa, is its (Q̇[a]1, Q̇[a]0)-linealization.
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c) Let Q̇〈c, 1〉0 denotes the set of all formulas k̇ which define constants k ∈ Q〈c, 1〉
(see Example 1.3:2 c)). The theory ZAac from Example 1.3:2 c) is a linear
theory, and

A 7→ FA = 〈A, 0, 1,+,−,≤,m, k, n−1〉m∈Z,k∈CA,n∈N−{0},

for A |= ZAac, is its (Ż1, Q̇〈c, 1〉0)-linealization.
We further identify DFA

with the set ˙DFA
⊆ FmL of L-definitions of functions

r ∈ DFA
and similarly for CFA

. When a linealization is fixed, we often write DA,
CA instead of DFA

, CFA
.

Also, for a set D ⊆ FmL of definitions of unary functions, by D−1 we denote
the set of definitions of their integral inverses (see section 1.3.1.1).

1.3.2 Main results

At this place, we state our three main theorems on linear theories and lineals
(1.3:4, 1.3:6 and 1.3:8) and their important corollaries. The Main Theorem
on Linear Theories 1.3:4 is essential for our descriptive analysis of linear the-
ories, the other two theorems are its refinements, which help us to provide a
detailed characterization of definable functions and sets in models of linear the-
ories.

1.3.2.1 Solvability and quantifier elimination

The following is a fundamental statement concerning descriptive complexity of
(models of) linear theories. The concept of solvability is defined in section 1.2.2;
see also section 1.2.3 for the explanation of the notation T F .

Theorem 1.3:4 (Main Theorem on Linear Theories). Let T be a linear theory
in a language L, A 7→ FA be a (D,C)-linealization, and E = D ∪C ∪D−1. Then

1) TE is almost uniformly solvable.

2) TC is 0-solvable.

From Theorem 1.3:4 2), it follows that, for every A |= T , the set CA is the
universe of a substructure of A; we set CA= A � CA.

Corollary 1.3:5.
1) TE admits quantifier elimination and is axiomatizable by open formulas.

2) For A |= T , the structure CA is the unique prime model of Th(A).
3) For A |= T , the theory Th(A) is equivalent to T ∪OThL(AC) (or equivalently

to T ∪OThL(CAC)),

where OThL(N ) is the canonical L-translation of the set of all open sentences
true in N .

Proof. 1) follows from Proposition 1.2:6, 2) and 3) from Corollary 1.2:12.
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1.3.2.2 Harmonic forms

We prove that every term or formula can be, in a given lineal, equivalently written
in “harmonic form”, i.e. as composed solely of linear combinations of expressions
of the form r−1x, where x is a variable. Let, further, F be a fixed lineal. We
write D and C instead of DF and CF .

1.3.2.2.1 Harmonic term We say that a term t(x) is harmonic (or equiva-
lently in harmonic form) if

t(x) =
N−1
∑

i=0

qiri
−1(xf(i)) + c,

for some qi, ri ∈ D, c ∈ C and f : N → l(x). A formula or a p-term (see 1.2.2.4)
is harmonic if all its maximal subterms are.

1.3.2.2.2 Almost-term The following special case of a p-term is worth to
be named. A p-term τ is called an almost-term if it is of the form

τ(x) =
{

s(x) + ci if ψi(x), i < n,

where s(x) is a term, and ci ∈ C, for i < n. We write core(τ) for s and cond(τ)
for the set of all “conditions” ψi, i < n.

Theorem 1.3:6 (Harmonic Form Theorem). Let F be a lineal.

1) For every term t(x), there is an open harmonic almost-term τ(x) such that
F |= t(x) = τ(x).

2) For every formula ϕ(x), there is an open harmonic formula ψ(x) such that
F |= ϕ(x)↔ ψ(x).

Remark 1.3:7. Our proof of Theorem 1.3:6, in fact, proves more than stated – the
equivalent harmonic forms can be found not only for each lineal F separately but
at once for a given linear theory. However, proving this explicitely would cause
that all the statements and subproofs of our proof would be recognizably longer
and more complicated.

1.3.2.3 Bases and definable functions and sets in lineals

The machinery, we are going to develop for the proof of the Main Theorem 1.3:4,
enables us to perform a detailed analysis of definable functions and sets in a lineal
F . In particular, we prove that every definable set D ⊆ F n is a union of linear
images of polyhedra in Fm, for some m ∈ N (see Corollary 1.3:9 2)).
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1.3.2.3.1 Divisor Let α be a formula or a p-term in harmonic form. A scalar
r ∈ D is called an x-divisor [divisor ] of α if α contains a subterm of the form r−1x
[for some variable x]. The set of all x-divisors [divisors] in α is denoted Divx(α)
[Div(α)]. α is said to be over a set S ⊆ D [in x] if Div(α) ⊆ S [Divx(α) ⊆ S]. If
Div[x](α) = ∅, we call α linear [in x].

1.3.2.3.2 Basis Let d ≤ e ≤ ω and B ⊆ +D. We say that B is a [d, e]-basis
if there is an enumeration B = 〈bi〉d≤i<e such that deg bi = i. [0, ω]-basis is often
called just basis.

Theorem 1.3:8 (Bases Theorem). Let δ ∈ F n, Cp(δ) =
∏

i<n[δi, δi+p−1] ⊆ F n

be a cube with edges of scalar length p ∈ D, e = deg(p), and B be a [0, e]-basis.
Let l(x) = n. Then the following holds:

1) Every term t(x) is on Cp(δ) equal to a harmonic almost-term τ(x) which is
over mB for some m ∈ N.

2) Every formula ϕ(x) is on Cp(δ) equivalent to an open harmonic formula ψ(x)
which is over mB for some m ∈ N.

Moreover:

• m can be chosen as any number sufficiently large with respect to divisibility.

• If t or ϕ contain parameters from a set X then τ and ψ contain only pa-
rameters from X ∪ δ.

1.3.2.3.3 Box, polyhedron For 0 < a ∈ F n, we denote

K(a)=
∏n−1

i=0 [0, ai − 1]

the n-dimensional box with edges a. Let Y ⊆ F n and β ∈ F . A set P ⊆ Y ⊆ F n

is called a polyhedron in Y over parameters from X ⊆ F if P is the set of all
solutions x ∈ Y of a system of inequalities of the form L(x) ≤ s(β), where s is a
term, β ∈ X are parameters, and L is a linear form (in F , i.e. with coefficients
from D).

1.3.2.3.4 Linear coordination of F n Let δ = (δ0, . . . , δn−1) ∈ F n, m =
a0 ∈ N, and let a = (a0, a1, . . . , aN) and p be scalars such that deg(ai) = 1, for
1 ≤ i ≤ N , deg(p) = N , and mbN ≥ p, where b0 = 1, bj =

∏

1≤i≤j ai (then
〈bj〉0≤j≤N is a [0, N + 1]-basis).

We define g′ : K(a)× F → F as

g′(α, u) = α0 +
N−1
∑

j=0

mbjαj+1 + pu (1.8)
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and g : (K(a)× F )n → F n as g = (g′ + δ0, . . . , g
′ + δn−1), i.e.

g((αi, ui)i<n) = (g′(αi, ui) + δi)i<n. (1.9)

We call such a g the (linear) (δ, a, p)-coordination of F n.
Obviously, g is surjective, thanks tombN ≥ p. IfmbN = p then g is a bijection.
We set

Pg= {(αi, ui)i<n;
∧

i<n αi,0 +
∑N−1

j=0 mbjαi,j+1 < p}.

It is easy to see that g � Pg : Pg → F n is a bijection.
An important property of a coordination is that, for x = g′(α, 0), (mbi)

−1x is
a linear combination of α:

(mbi)
−1x =

N−1
∑

j=i

bj
bi
αj+1, (1.10)

where bi|bj, for i ≤ j.

Corollary 1.3:9. Let F be a lineal, δ = (δ0, . . . , δn−1) ∈ F n, 〈ai〉∞i=1 be scalars
with deg(ai) = 1, for all i, and let X ⊆ F be a set of parameters. Then the
following holds:

1) Every X-definable (in F) function f : F n → F is given by a formula

f ◦ g = λ on Pg,

i.e. f(g((αi, ui)i<n)) = λ((αi, ui)i<n) for ((αi, ui)i<n) ∈ Pg, where the map
g : (K(a) × F )n → F n is a (δ, a, p)-coordination of F n, with a0 = m ∈ N,
a = (a0, . . . , aN) and p a scalar, and λ((αi, ui)i<n) is a linear p-term over
parameters from X ∪ δ.
In a particular case when f is a term, λ can be chosen as a linear almost-term.

2) Every set D ⊆ F n X-definable in F can be written as

D =
⋃

i<k

g[Pi],

where g : (K(a)×F )n → F n is a (δ, a, p)-coordination of F n, with a0 = m ∈ N,
a = (a0, . . . , aN) and p a scalar, and Pi ⊆ Pg, for i < k, are finitely many
polyhedra in (K(a)× F )n over parameters from X ∪ δ.

Moreover, a0 = m and p may be chosen as any elements sufficiently large with
respect to divisibility (the choice of m depends on p).
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Proof. 1): By Proposition 1.2:9, f is the realization of a p-term τ with parameters
from X. Therefore it is enough to prove the statement for f = t(x) where t is a
term (with parameters from X). We may also suppose δ = 0 (the general result
may be then obtained by setting t′(y) = t(y + δ)).

Let t(x) be a term and δ = 0. There is a scalar p which is a linear period of
t, i.e. there are scalars γ such that t(x + pu) = t(x) + γu holds for all x, u. We
set N = deg(p), b0 = 1, bj =

∏

1≤i≤j ai (then 〈bj〉0≤j≤N is a [0, N + 1]-basis) and
take a0 = m ∈ N such that mbN ≥ p and such that there is an almost-term τ(x)
over 〈mbj〉j<N with τ(x) = t(x), for 0 ≤ x < p (this can be achieved by Theorem
1.3:8; τ is with parameters from X). Let g be the (0, a, p)-coordination of F n.

Every x ∈ F n can be uniquely written in the form x = g((αi, ui)i<n), with
(αi, ui)i<n ∈ Pg. Set h(αi) = αi,0 +

∑N−1
j=0 mbjαi,j+1. Then it is

t(g((αi, ui)i<n)) = t((h(αi))i<n) + γu = τ((h(αi))i<n) + γu.

By (1.10), it is τ((h(αi))i<n) + γu = λ((αi, ui)i<n), for some linear almost-
term λ.

The “moreover” part of the statement is clear from our choice of p and m.

2): LetD be defined by a formula ϕ(x) with parameters fromX. By Corollary
1.3:5 1), we may suppose that ϕ is open.

For every atomic subformula t(x) ≤ 0 of ϕ, let λt be a linear almost-term and
gt a (δ, a, p)-coordination such that t ◦ gt = λt (this is possible by 1)). By the
“moreover” part of the statement, we may suppose that all gt are mutually equal
and denote them just g. Every x ∈ F n can be uniquely written in the form x =
g((αi, ui)i<n), with (αi, ui)i<n ∈ Pg. Then t(x) ≤ 0 ⇔ λt((αi, ui)i<n) ≤ 0. The
last inequality defines a finite union of polyhedra in (K(a×F ))n with parameters
X ∪ δ. This proves the theorem.

Remark 1.3:10. The statement of the Corollary 1.3:9 2) can be understood as
stating that the Boolean algebra of definable sets (over parameters X) in F is
isomorphic to the algebra generated by polyhedra over X in K(a).

The similar statement for the Lindenbaum algebra of a linear theory can be
proven as well. However, we do not do that for the same reasons which we already
explained in the Remark 1.3:7.

Remark 1.3:11. Let us note that, alternatively, linear theories may be defined
as two sorted (“ordered ring-ordered module”) theories. In that case the proof
of the Main Theorem on Linear Theories 1.3:4 yields a quantifier elimination
statement for ordered modules with scalar variables – see section 1.6 for details.
This problem has been studied in [vdDH92] for unordered modules and in [Wei97]
for discretely ordered modules over the ring Z of integers (more precisely for the
two-sorted variant of Presburger arithmetic).
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1.4 Application of the main results

We use the Main Theorem on Linear Theories 1.3:4 to examine basic model-
theoretic properties of linear theories ZAa and ZLa (and consequently of their
N-like versions Aa and La).

The results are stated in Propositions 1.4:1 and Theorem 1.4:5, respectively,
and in their corollaries.

1.4.1 Properties of ZAa and Aa

The theory ZAa (which is only a Z-like version of Presburger arithmetic Pr) is
well-explored. In this section, we mostly reprove long-known results. We do
that in order to show the possibilities of our method and to give the reader an
opportunity to become more familiar with concepts we defined. If the reader feels
confident in understanding our previous definitions, he or she may safely skip this
section.

In Example 1.3:3 a), we showed that ZAa is a linear theory and we described
its linealization. Let us remind that Ż1 and Ż0 stand for the sets of LaddZ -formulas
ż and ż which define symbols z and z, for z ∈ Z, respectively. We denote
Ż= Ż1 ∪ Ż0 ∪ +Ż−1

1 , where +Ż−1
1 denotes the set of definitions of integral inverses

of positive scalars z. It is easy to see that all formulas from Ż are in ZAa
equivalent to existential ones.

The Main Theorem on Linear theories 1.3:4 and the results from section 1.2
make it easy to prove the following properties of the theory ZAa:

Proposition 1.4:1 (Properties of ZAa).

1) ZAaŻ is almost uniformly solvable, ZAaŻ0 is 0-solvable.
Hence: ZAa is model-complete.
Moreover: Every formula is in ZAa equivalent to a disjunction of primitive
positive formulas, i.e. to a formula of the form

∨

i<n(∃z)ψi, where each ψi is
a system of linear inequalities.

2) ZAa is decidable, complete, and 〈Z, 0, 1,+,−,≤〉 is its prime model.

3) Theories ZAa, ZAA and Th(〈Z, 0, 1,+,−,≤〉) are equivalent.

Proof. 1) is a corollary of Theorem 1.3:4 and the fact that each formula from Ż

is equivalent to a disjunction of primitive positive formulas.
2): 〈Z, 0, 1,+,−,≤〉 is the prime model of every Th(A) with A |= ZAa, by Corol-
lary 1.3:5 2), hence it is the prime model of ZAa. Completeness and decidability
are immediate consequences.
3): Clearly, ZAA and Th(〈Z, 0, 1,+,−,≤〉) are extensions of ZAa; the statement
then follows from 2).
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Let Ṅ1 and Ṅ0 be the sets of Ladd-formulas ṅ and ṅ which define symbols
n and n, for n ∈ N, respectively. We denote Ṅ= Ṅ1 ∪ Ṅ0 ∪ +Ṅ−1

1 , where +Ṅ−1
1

denotes the set of definitions of integral inverses of positive scalars n.

Corollary 1.4:2 (Properties of Aa).

1) AaṄ is almost uniformly solvable, AaṄ0 is 0-solvable.
Hence: Aa is model-complete.
Moreover: Every formula is in Aa equivalent to a disjunction of primitive
positive formulas, i.e. to a formula of the form

∨

i<n(∃z)ψi, where each ψi is
a system of linear inequalities.

2) Aa is decidable, complete, and 〈N, 0, 1,+,≤〉 is its prime model.

3) Theories Aa, AA and Th(〈N, 0, 1,+,≤〉) are equivalent.

Proof. The statements follow easily from Proposition 1.4:1, by using relations
(1.1) and (1.2) from 1.1.7.

1.4.2 Properties of ZLa and La

We state here basic properties of ZLa – we show its elimination set of formulas,
describe its simple complete extensions including their prime models and prove
its decidability (see Theorem 1.4:5). Moreover, we provide a characterization
of models of ZLa as non-principal ultraproducts of definable expansions of the
standard model 〈Z, 0, 1,+,≤〉 (see Corollary 1.4:6). As a corollary, we get similar
results also for La (Corollaries 1.4:7 and 1.4:8).

The results can be interpreted as stating that LA is model-theoretically very
similar to Pr and far away from P (although the proof of the properties for LA
is much more difficult than the same for Pr; we will discuss that in section 1.5).
Whether this is true also for LAκ with κ ≥ 2, is posed as the Open question 1.

Let us remind that Q̇[a]1 and Q̇[a]0 are the sets of all LlinZ -formulas ṙ and ṙ
which define symbols r or r respectively, for r ∈ Q[a]. The following lemma states
that ZLa proves the “full” scheme of integral-divisibility (see 1.1.2 for definition).

Lemma 1.4:3. ZLa ` cor(ṙ)→ id(r), for 0 < r ∈ Q[a].

Proof. Let r = p

n
, with p ∈ Z[a], 0 < n ∈ N. Further, we work in a fixed

A |= ZLa.
Suppose that A |= cor(ṙ), i.e. n|p in A. By id(p), there is y such that

0 ≤ nx− py < p1; then 0 ≤ x− ry < r1.

In Example 1.3:3 b), we showed that ZLa is a linear theory, and we de-
scribed its linealization. In order to formulate the consequences of the Main
Theorem on Linear Theories 1.3:4 for ZLa, we need to introduce some nota-
tion.
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1.4.2.1 Extensions ZLaτ , structures Cτ
Motivated by the Example 1.3:2 b), we define ZLaτ , for τ ∈

∏

p∈P Jp, to be the

extension of ZLa by axioms expressing pk|a− πk(τp), for all p ∈ P, 0 < k ∈ N.
We also set Cτ= 〈Dτ , 0, 1,+,−,≤, a〉, where a is the unary function of multi-

plication by the variable a (i.e. Cτ is an LlinZ -structure, which is a restriction of
Dτ as a module over itself).

1.4.2.2 Syntactic presentation of DA

ForA |= ZLa, we identify the set DA (see Example 1.3:2 b)) with the set A∗,Q̇[a]0
of

all equivalence-classes of correct constant terms of AQ̇[a]0 (A∗,Q̇[a]0
is the universe

of the canonical structure of Th(A)Q̇[a]0 ; see section 1.2.4 for details). This is
possible since A |= r 6= r′, for two different elements r, r′ ∈ DA.

Lemma 1.4:4. The naturally defined LQ̇[a]0-structure Q with the universe Q[a]
is a Q̇[a]0-prime-envelope of ZLa. Therefore, ZLa is Q̇[a]0-compatible and Q̇[a]0-
cuc.

Proof. It is A∗,Q̇[a]0
= DA ⊆ Q[a], for every A |= ZLa. Hence, Q is a Q̇[a]0-prime-

envelope of ZLa. The rest of the statement follows from Proposition 1.2:16 and
Observation 1.2:14.

1.4.2.3 Properties of ZLa

Denote Q̇[a]= Q̇[a]1∪Q̇[a]0∪+Q̇[a]−1
1 , where +Q̇[a]−1

1 denotes the set of definitions
of integral inverses of positive scalars q. It is easy to see that all formulas from

Q̇[a] are in ZLa equivalent to existential formulas.

Theorem 1.4:5 (Properties of ZLa).

1) ZLaQ̇[a] is almost uniformly solvable, ZLaQ̇[a]0 is 0-solvable.
Hence: ZLa is model-complete.
Moreover: Every formula is in ZLa equivalent to a disjunction of primitive
positive formulas, i.e. to a formula of the form

∨

i<n(∃z)ψi, where each ψi is
a system of linear inequalities.

2) ZLaτ , for τ ∈
∏

p∈P Jp, are all simple complete extensions of ZLa.

For A,B |= ZLa, it is A ≡ B ⇔ aA ≡ aB mod n, for all 0 < n ∈ N.

3) Cτ is the unique prime model of ZLaτ , for τ ∈
∏

p∈P Jp.

4) ZLa is decidable.
ZLaτ is decidable if and only if τ is recursive.

5) Theories ZLa and ZLA are equivalent.
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Proof. 1) is a corollary of Theorem 1.3:4 and the fact that each formula from
Q̇[a] is equivalent to a disjunction of primitive positive formulas.

2): By Example 1.3:2 b), every model A |= ZLa is a model of some ZLaτ ,
with τ ∈ ∏

p∈P Jp. ZLa is Q̇[a]0-cuc, by Lemma 1.4:4. Now, by Proposition
1.2:16, it is enough to prove that for A,B |= ZLaτ it is DA = DB. This is true
since r

n
∈ DA ⇔ A |= n|r, and the last is decided by the new axioms of ZLaτ .

The characterization of models up to elementary equivalence is an immediate
consequence.

3) follows from 2) and Corollary 1.3:5 2).

4): The set {∧p0>p∈P,k<k0
a ≡pk τ(p, k); p0 ∈ P, k0 ∈ N, τ : (P ∩ p0) × k0 → N

such that τ(p, k′) ≡pk τ(p, k) < pk, for all k ≤ k′ < k0, p0 > p ∈ P} is dense in
CS(ZLa), and it is easy to verify that it is Σ1. Therefore, ZLa is Σ1-separable
and hence decidable, by Proposition 1.2:1.

ZLaτ is decidable if and only if it is recursively axiomatizable.

5): For each τ ∈∏

p∈P Jp, the theory ZLAτ is a simple extension of ZLaτ , and
therefore these theories are equivalent, by 2). Then ZLA and ZLa have the same
simple complete extensions, thus are equivalent.

Corollary 1.4:6. Up to elementary equivalence, models of ZLa are exactly all
ultraproducts

ZU = (
∏

n∈N

〈Z, 0, 1,+,−, n,≤〉)/U ,

where U is a non-principal ultrafilter on N, i.e. U ∈ βN− N.

Proof. 1) Let U ∈ βN− N. We show that ZU |= ZLa.

All axioms of ZLa, except the axioms a1 6= m, are true in all structures
〈Z, 0, 1,+,−, n,≤〉. The axiom a1 6= m holds in all 〈Z, 0, 1,+,−, n,≤〉 with
n > m, and {n;n > m} ∈ U since U is non-principal. Therefore, ZU |= ZLa.
2) Let ZLaτ , with τ ∈

∏

p∈P Jp, be a simple complete extension of ZLa. We find
U ∈ βN− N such that ZU |= ZLaτ .

Let Sτ = {[m,∞);m ∈ N} ∪ {πm(τp) + pm · N; p ∈ P, 0 < m ∈ N}. By
the Chinese Remainder Theorem, finite intersections of elements from S are non-
empty, hence there is an ultrafilter U ⊇ S. Clearly, U is non-principal and
ZU |= ZLaτ .

1.4.2.4 Properties of La

Let +Q̇[a]1 and
+Q̇[a]0 be the sets of all L

lin-formulas ṙ and ṙ which define symbols

r or r respectively, for 0 ≤ r ∈ Q[a]. Denote +Q̇[a]= +Q̇[a]1 ∪ +Q̇[a]0 ∪ +Q̇[a]1
−1
,

where +Q̇[a]1
−1

denotes the set of definitions of integral inverses of positive
scalars q.
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We define Laτ , for τ ∈
∏

p∈P Jp, to be the extension of La by axioms expressing

pk|a − πk(τp), for all p ∈ P, 0 < k ∈ N. We also set C+τ = 〈+Dτ , 0, 1,+,−,≤, a〉,
where a is the unary function of multiplication by the variable a.

Corollary 1.4:7 (Properties of La).

1) La
+Q̇[a] is almost uniformly solvable, La

+Q̇[a]0 is 0-solvable.
Hence: La is model-complete.
Moreover: Every formula is in La equivalent to a disjunction of primitive
positive formulas, i.e. to a formula of the form

∨

i<n(∃z)ψi, where each ψi is
a system of linear inequalities.

2) Laτ , for τ ∈
∏

p∈P Jp, are all simple complete extensions of La.

For A,B |= La, it is A ≡ B ⇔ aA ≡ aB mod n, for all 0 < n ∈ N.

3) C+τ is the unique prime model of Laτ , for τ ∈
∏

p∈P Jp.

4) La is decidable.
Laτ is decidable if and only if τ is recursive.

5) Theories La and LA are equivalent.

Proof. Follows easily from Theorem 1.4:5, by using relations (1.1) and (1.2) from
1.1.7.

Corollary 1.4:8. Up to elementary equivalence, models of La are exactly all
ultraproducts

NU = (
∏

n∈N

〈N, 0, 1,+,−, n,≤〉)/U ,

where U is a non-principal ultrafilter on N, i.e. U ∈ βN− N.

Proof. Similarly, as for Corollary 1.4:2.

As we have already noted, the theories LAκ, with κ cardinal, form an ascend-
ing chain of theories between Pr and P. We have also remarked that Corollary
1.4:7 can be understood as stating that LA = LA1 is model-theoretically similar
to Pr = LA0 and different from P. In particular, no model of P is definable in a
model of LA. Therefore, it is natural to ask the following:

Open question 1.

a) Are model-theoretical properties of LAκ, with κ ≥ 2, still similar to those of
Pr? In particular, are theories LAκ, with κ ≥ 2, model-complete and decid-
able?

b) Could be some model of P definable in a model of LAκ?
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1.5 Proofs

In this section, we prove Theorems 1.3:4, 1.3:6 and 1.3:8. For reader’s convenience,
we sketch the key steps of the proofs here.

1.5.1 Proof prologue

In section 1.5.2, we derive the theorems from three crucial propositions, denoted
S, H and B. All these propositions are statements considering a single lineal.
Therefore we fix a lineal F with universe F and denote the sets DF and CF of
scalars and constants of F shortly as D and C.

We prove the Propositions S, H, and B in the following steps. First, in
Proposition 1.5:12, we manage to decompose every “basic non-harmonic” term
[

q

r

]

(x) = r−1qx into a sum of simpler terms. We use this result to show that we

can get rid of non-harmonic terms completely (Proposition H, 1.5:3). This will
enable us to prove Proposition B 1.5:4 and finally use its special case for a base
〈bi〉i<ω with bi|bi+1, to deduce Proposition S 1.5:2, too.

Our method of proof relies on a calculus of terms in F , which is a generaliza-
tion of the calculus of continued fractions.

Remark 1.5:1. The problem of descriptive analysis for linear theories (such as
ZLA) turns out to be considerably harder than the same task for similar theories,
e.g. the theory of Z-groups (ZAA) – which is the simplest linear theory – or the
theory of modules over an associative ring R. In fact, linear theories can be seen
as generalizing both these cases.

The reason of greater complexity of definable sets in ZLA, compared to the
theory of modules, lies, of course, in the presence of the ordering. The difference
between ZLA and ZAA can be better understood by considering the following
example:

Let ϕ(x) be the formula r−1(qx) − q

r
x ≤ c, where q, r are scalars and c is a

constant.
The set D defined by ϕ is, clearly, r-periodical. In ZAA, it is r ∈ Z, therefore

D can be written as a union of finitely many arithmetical progressions. Never-
theless, in ZLA, r may be non-standard. That is why the finite decomposition
trick does not work and D needs to be examined in detail.

1.5.2 Main propositions

Here, we state three propositions, denoted S, H and B, which form three pillars
of our proof of the theorems 1.3:4, 1.3:6 and 1.3:8. We prove the propositions in
the following sections. In this section, we derive the theorems from them.

The following proposition is the crucial step in the proof of the Main Theorem
on Linear Theories 1.3:4.
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Proposition 1.5:2 (Proposition S). Let ψ(x, y) be an open formula. There are
finitely many terms ti(y), i < n, such that

(∃x)ψ ↔
∨

i<n

ψ(ti, y).

The proposition below proves the Harmonic Forms Theorem 1.3:6.

Proposition 1.5:3 (Proposition H). Every term t(x) is equivalent to a harmonic
almost-term τ(x).

Moreover, if a variable x does not occur in any subterm of the form r−1s
(where s is a term) in t then the same is true in τ .

The following proposition states the key step for the proof of the Bases The-
orem 1.3:8.

Proposition 1.5:4 (Proposition B). Let δ ∈ F , p, r ∈ +D be scalars, e = deg(p),
d = deg(r), and B = 〈bi〉d≤i<e be a [d, e]-basis. Then r−1x is on [δ, δ + p − 1]
equal to a harmonic almost-term τ(x) (possibly with parameter δ) which is over
mB = 〈mbi〉d≤i<e, for some m ∈ N.

Moreover, m can be chosen as any number sufficiently large with respect to
divisibility.

The proof of the Propositions S, H and B occupies a significant portion of
this text. At this place, we derive the theorems 1.3:4, 1.3:6 and 1.3:8 from
them.

1.5.2.1 Proof of the Main Theorem on Linear Theories

Theorem 1.3:4 (Main Theorem on Linear Theories). Let T be a linear theory
in a language L, A 7→ FA be a (D,C)-linealization, and E = D ∪C ∪D−1. Then

1) TE is almost uniformly solvable.

2) TC is 0-solvable.

Proof. 1): By Lemma 1.2:8, it is enough to prove that

AE |= (∃x)ψ(x, y)→
∨

i<n

ψ(ti(y), y), (1.11)

for every A |= T , quantifier-free LE-formula ψ and some LE-terms ti, i < n,
depending on A, ψ. In fact, we prove (1.11) even for arbitrary LE-formula ψ and
with ti, i < n, L(FA)-terms.

Note that AE is an expansion of the lineal FA. Let ψ be an LE-formula. By
easy translation, ψ is in AE equivalent to an L(FA)-formula ϕ. By Proposition S
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(1.5:2), Th(FA) is almost uniformly solvable, hence solvable and admits quantifier
elimination, by Proposition 1.2:6. Therefore,

FA |= (∃x)ϕ(x, y)→
∨

i<n

ϕ(ti(y), y),

for some L(FA)-terms ti, i < n. Then, clearly, (1.11) holds for these ti, i < n.
2): Let ψ be an LC-sentence. In 1), we proved that there are constant L(FA)-
terms ti, i < n, such that (1.11) holds. By the definition of lineal (see 1.3.1.3),
every ti is equal in FA to some constant ci ∈ CA.

1.5.2.2 Proof of the Harmonic Form Theorem

Theorem 1.3:6 (Harmonic Form Theorem). Let F be a lineal.

1) For every term t(x), there is an open harmonic almost-term τ(x) such that
F |= t(x) = τ(x).

2) For every formula ϕ(x), there is an open harmonic formula ψ(x) such that
F |= ϕ(x)↔ ψ(x).

Proof. 1) is an immediate consequence of the Proposition H 1.5:3. We may sup-
pose that τ is open, thanks to Corollary 1.3:5 1) of Theorem 1.3:4.
2) follows from 1), by replacing all maximal subterms in ϕ by their harmonic
equivalents.

1.5.2.3 Proof of the Bases Theorem

Theorem 1.3:8 (Bases Theorem). Let δ ∈ F n, Cp(δ) =
∏

i<n[δi, δi+p−1] ⊆ F n

be a cube with edges of scalar length p ∈ D, e = deg(p), and B be a [0, e]-basis.
Let l(x) = n. Then the following holds:

1) Every term t(x) is on Cp(δ) equal to a harmonic almost-term τ(x) which is
over mB for some m ∈ N.

2) Every formula ϕ(x) is on Cp(δ) equivalent to an open harmonic formula ψ(x)
which is over mB for some m ∈ N.

Moreover:
• m can be chosen as any number sufficiently large with respect to divisibility.

• If t or ϕ contain parameters from a set X then τ and ψ contain only pa-
rameters from X ∪ δ.

Proof. 1): By Proposition H 1.5:3, t(x) is equivalent to a harmonic almost-term
σ(x). Now it suffices to replace every subterm r−1(xi) of σ by its equivalent from
Proposition B 1.5:4.
2) follows directly from 1), by replacing all maximal subterms of ϕ by their
equivalents.
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1.5.3 Preliminaries of the proof

From now on, we are heading towards the proof of the Propositions S, H and B
(see section 1.5.2).

We consider all the new symbols defined in the rest of this section just as
abbreviations, i.e. we do not add them formally to the language. Elements from
D (and their realizations in F) are further often called just scalars, elements from
C are referred to as constants. For a scalar r, we denote the constant r1 also as r.

For better clarity of our formulas, we also freely use fractions with denomi-
nators from D − {0}; expressions as x

r
or x/r always denote fractions, while the

integer division is strictly denoted as r−1x.
The following Lemma is easy:

Lemma 1.5:5. Let q, r, r′ ∈ D. Then the following holds:

a) deg(q) < deg(r)⇒ |q| < |r|

b) deg(r) = 0⇔ r ∈ Z− {0}

c) For q 6= 0 it is deg(r′) < deg(r)⇔ deg(qr′) < deg(qr)

d) deg(q + r) ≤ max(deg(q), deg(r))

e) deg(qr) ≥ deg(q) + deg(r)

Proof. We prove only e); the other statements are trivial. We show that it is
deg(qr) ≥ deg(q) + deg(r), for a fixed q, by induction on deg(r). The case
deg(r) = 0 follows from b). For the induction step, we have, for all r′ with
deg(r′) < deg(r), the following: deg(qr) > deg(qr′) ≥ deg(q) + deg(r′). Hence,
deg(qr) ≥ deg(q) + deg(r).

For 0 < q ∈ D, we define the remainder function for division by q:

µq(x)= x− qq−1x.

Moreover, we write shortly µr1,...,rn(x) instead of µr1(µr2(. . . (µrn(x)) . . .)).
The following is easy to prove:

Lemma 1.5:6. For all scalars r, q > 0 and x ∈ F , it is:
a) r−1q−1x = (rq)−1x = q−1r−1x,

b) (qr)−1(qx) = r−1x,

c) 0 ≤ µr(x) < r,

d) r−1x = x−µr(x)
r

,

e) r−1(x + y) = r−1x + r−1y + ir,x,y, where ir,x,y = 0 if µr(x) + µr(y) < r, and
ir,x,y = 1, otherwise.
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1.5.4 Continued fractions

We start to build the calculus of terms in F . It is based on and generalizes the
calculus of continued fractions.

For scalars a1, . . . , an ∈ D, where ai > 0 for i > 1, we denote

[a1, . . . , an] = a1 +
1

a2 +
1

...+ 1
an

the continued fraction with coefficients a1, . . . , an.
The axiom (R2) from the definition of doded (see 1.3.1.2) ensures that for

every q, r ∈ D, with r > 0, there are n ∈ N and a1, . . . , an ∈ D such that
q/r = [a1, . . . , an]. Indeed, we may define ai = ti

−1si, where (si, ti) is the partial
result after the (i − 1)-th step of the Euclidean algorithm, starting from (q, r),
i.e.

s1 = q, t1 = r,
si+1 = ti, ti+1 = µti(si).

By (R2), the algorithm stops after n + 1 steps, for some n ∈ N. We define the
nominators qi and denominators ri of the partial continued fractions [a1, . . . , ai],
for 1 ≤ i ≤ n. For technical purposes, we also set q−1 = r0 = 0, q0 = r−1 = 1.
Further, we fix this notation, i.e. unless stated otherwise, given the pair q, r ∈ D,
r > 0, the symbols n, ai, qi and ri are defined for q, r as above.

Lemma 1.5:7. Let q, r ∈ D, and 1 ≤ j ≤ n. For i < j, we set xi = [ai+1, . . . , aj ].
Then

a) qj = ajqj−1 + qj−2, rj = ajrj−1 + rj−2,

b) qj−1rj − qjrj−1 = (−1)j+1,

c) If i+ 1 < j then xi = ai+1 +
1

xi+1
,

d)
qj
rj

= qixi+qi−1

rixi+ri−1
,

e) q/r = [a1, . . . , an] = qn/rn, and qn, rn are co-prime.

Proof. Easy.

1.5.5 Bracket

[

q

r

]

and its decomposition

We introduce an useful concept of a bracket function

[

q

r

]

(x), for scalars q, r,

r > 0, as a cornerstone for our calculus of terms.
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Brackets

[

1

r

]

= r−1 should be understood as “basic harmonic functions”,

while

[

q

r

]

, with q 6= 1, as non-harmonic ones, where the rate of non-harmonicity

roughly corresponds to the complexity of the continued fraction of q/r. In this

section, we prove that the graph of

[

q

r

]

is a curve parametrized by a pair of linear

forms defined on a “spiraloid” (see Proposition 1.5:12 1)). As a consequence,

every bracket

[

q

r

]

can be decomposed into a sum of “more harmonic” terms

(Proposition 1.5:12 2)).

1.5.5.1 Bracket

[

q

r

]

Let q, r be two scalars, r > 0. We define the bracket
[

q

r

]

(x) = r−1qx.

If q, r are not coprime, and q′, r′ are coprime and such that q

r
= q′

r′
then,

clearly,

[

q

r

]

(x) =

[

q′

r′

]

(x), for all x, by Lemma 1.5:6 b). Further, let q, r be be

fixed coprime scalars, r > 0, [a1, . . . , an] (where a1 < 0 if q < 0) be the continued
fraction of q

r
and qi, ri the nominators and denominators of the partial continued

fractions (for instance, qn = q and rn = r).
For the proof of Proposition 1.5:12, we will need the following lemmas.

Lemma 1.5:8. For i = 0, . . . , n− 1, let mi = ri · [ai+1, . . . , an] + ri−1. Then the
following holds for any zi ∈ F :

qn
rn
· rizi = qizi +

(−1)i+1

mi

zi.

Proof. Denote xi = [ai+1, . . . , an]. Then, by Lemma 1.5:7,

qn
rn
· rizi =

qixirizi + qi−1rizi
rixi + ri−1

=

=
(qixirizi + qiziri−1) + (qi−1rizi − qiziri−1)

rixi + ri−1

=

= qizi +
qi−1ri − qiri−1

rixi + ri−1

· zi =

= qizi +
(−1)i+1

rixi + ri−1

zi.
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Lemma 1.5:9. Let z = (z1, . . . , zn−1) ∈ [0; a2 − 1] ×∏n−1
i=2 [0; ai+1], and let mi

denotes ri · [ai+1, . . . , an] + ri−1. Then

n−1
∑

i=1

zi
mi

≤ 1− 1

rn
.

Moreover, the bound is tight.

Proof. Clearly, it is enough to prove

n−1
∑

i=1

ai+1

mi

− 1

m1

= 1− 1

rn
. (1.12)

Denote xi = [ai+1, . . . , an] as in the previous proof. At first, we express all mi’s
in terms of xj’s. For i < m− 1, it is, by Lemma 1.5:7 c),

mi = rixi + ri−1 = (riai+1 + ri−1) +
ri
xi+1

= ri+1 +
ri
xi+1

=
mi+1

xi+1

,

m0 = r0x0 + r−1 = 0 · x0 + 1 = 1.

Hence,

mi =
i

∏

j=1

xj. (1.13)

Let xi = si
ti
, where si, ti are relatively prime. For i = 0, . . . , n − 2, using

Lemma 1.5:7 c), we can get si
ti
= ai+1si+1+ti+1

si+1
and thus (since ai+1si+1 + ti+1 and

si+1 are, clearly, relatively prime)

si+1 = ti (1.14)

and

ai+1si+1 = si − ti+1,

ai+1ti = si − ti+1. (1.15)

For i = n− 1, we have tn−1an = 1 · an = sn−1.
From (1.14), we get

mi

(1.13)
=

i
∏

j=1

=
s1
t1
· s2
t2
· · · · · si

ti
=
s1
ti
, (1.16)

and further,

n−1
∑

i=1

ai+1

mi

(1.16)
=

n−1
∑

i=1

tiai+1

s1

(1.15)
=

∑n−2
i=1 (si − ti+1) + sn−1

s1

(1.14)
=

s1 + s2 − tn−1

s1
.

(1.17)
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Since, obviously, s1 = rn, s2 = t1, tn−1 = 1, m1 =
s1
t1
, we have

n−1
∑

i=1

ai+1

mi

− 1

m1

(1.17)
=

rn + t1 − 1

rn
− t1
rn

= 1− 1

rn
.

1.5.5.2 Cqr , forms fr, fq

We define the “cuboid” Cqr and linear forms fr, fq: Cqr → F as

Cqr = [0; a2 − 1]×
n−1
∏

i=2

[0; ai+1]× (←;→),

fr(z) =
n

∑

i=1

(−1)i+1rizi, fq(z) =
n

∑

i=1

(−1)i+1qizi.

The following lemma states that the form fr gives a “cuboid parametrization”
of F .

Lemma 1.5:10. The form fr is surjective and (≤ 2)-to-1.

Proof. Easy.

Remark 1.5:11. Let Sqr⊆ Cqr be the set of all ≤Lex-maximal elemets of ∼q,r-factor
classes (where ≤Lex is the lexicographical order of Cqr , and the equivalence ∼q,r is
defined by z ∼q,r z′ ⇔ fr(z) = fr(z′)).

It is easy to see that the form fr � Sqr is an isomorphism of 〈Sqr ,≤Lex〉 and
〈F,≤F 〉. Hence, 〈F,≤F 〉 can be imagined as a spiral “wrapped around” Sqr , that
is why we call Sqr a “spiraloid”.

Proposition 1.5:12 (cuboid decomposition of

[

q

r

]

). Let q, r be scalars, r > 0.

Then the following holds:

1)

[

q

r

]

◦ fr = fq on Cqr .

2) Let sq,r =
∑bn−1

2 c
i=1 r2ia2i+1, tq,r =

∑bn−1
2 c

i=1 q2ia2i+1. Then, for all x ∈ F ,
[

q

r

]

(x) =
n

∑

i=1

qi · ri−1µri+1,...,rn(x+ sq,r)− tq,r. (1.18)

We call the expression on the right side of (1.18) the cuboid decomposition of

the bracket

[

q

r

]

(x).



64 CHAPTER 1. DESCRIPTIVE ANALYSIS OF LINEAR THEORIES

Proof. (of Proposition 1.5:12)
1) Denote x = fr(z) =

∑n

i=1(−1)i+1rizi, for fixed z ∈ Cqr . Then we have

[

q

r

]

(x) =

⌊

qn
rn
x

⌋

Lemma1.5:8
=

⌊

n
∑

i=1

(−1)i+1qizi +
n−1
∑

i=1

zi
mi

⌋

=

=
n

∑

i=1

(−1)i+1qizi +

⌊

n−1
∑

i=1

zi
mi

⌋

Lemma1.5:9
=

n
∑

i=1

(−1)i+1qizi = fq(z).

2) is a corollary of 1) via a change of coordinates. Let x ∈ F be given. By
Lemma 1.5:10, we can choose coordinates z ∈ Cqr such that x =

∑n

i=1(−1)i+1rizi.
Set

z′i =







ai+1 − zi i < n even,
zi i < n odd,

(−1)n+1zn i = n.

Then

x+ sq,r =
n

∑

i=1

riz
′
i =

n
∑

i=1

riz
′′
i , (1.19)

where z′′ ∈ Sqr . By 1), we get also

n
∑

i=1

qiz
′
i =

n
∑

i=1

qiz
′′
i , (1.20)

and, by maximality of z′′ and (1.19),

z′′i = ri
−1µri+1,...,rn(x+ sq,r). (1.21)

Finaly, we can compute

[

q

r

]

(x)
1)
=

n
∑

i=1

(−1)i+1qizi =
n

∑

i=1

qiz
′
i − tq,r

(1.20)
=

n
∑

i=1

qiz
′′
i − tq,r

(1.21)
=

(1.21)
=

n
∑

i=1

qi · ri−1µri+1,...,rn(x+ sq,r)− tq,r.

1.5.6 Harmonization

In this subsection, we prove the Proposition H 1.5:3. That is, we show that every
term in F can be (up to a “noise”) expressed as a linear combination of basic
“harmonic” functions r−1, and, consequently, any open formula is equivalent to
one with all terms harmonic (see 1.3.2.2.1).
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We are going to develop a calculus of brackets

[

q

r

]

(see 1.5.5.1 for definition).

For the reason of simplicity, we will write

[

a1 . . . an
b1 . . . bn

]

instead of
[

a1
b1

]

◦ . . . ◦
[

an
bn

]

.

1.5.6.1 Harmonic terms

We rewrite here the definition of harmonic term (see 1.3.2.2.1) in the bracket
notation: A term t(x) is harmonic (or equivalently in harmonic form) if it is a

sum of expressions of the form

[

A 1

1 B

]

(xi), with A,B ∈ D, and possibly a scalar

r ∈ D.

1.5.6.2 Convention

The rest of this subsection is devoted to the proof of Proposition H 1.5:3. For
the purpose of this proof, we further consider (the so far abbreviations) binary
minus (-) and µr( ) to be symbols in our language. On the other hand, we
forbid the unary minus (it can be replaced using multiplication by the scalar
−1). (Formally, we get a modification L′ of our original language L(F). But the
difference between L(F) and L′ is of purely technical character, since there is a
simple translation between these two languages.) In the rest of this subsection,
the word “term” means L′-term and similarly for almost-term and formula.

The idea of the proof is to lower the “non-harmonicity” of a term (almost-

term) by decomposing its “strings”

[

a1 . . . an
b1 . . . bn

]

, using Proposition 1.5:12 and

“almost-distributivity” of strings over addition (see Lemma 1.5:16 below). The
non-harmonicity of newly created strings needs to be controled during the proces.
For these purposes, we introduce a few new concepts.

1.5.6.3 Strings

Let t be a term. In the tree of subterms of t, vertices correspond to subterms
(root to t, leafs to variables and constants) and edges to symbols.
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Example 1.5:13. Let t = q(r0s
−1x− r1(y+ t−1r2c)) be a term, with x, y variables,

c a constant and q, r0, r1, r2, s, t scalars. The corresponding tree of subterms of t
is

t

r0s
−1x− r1(y + t−1r2c)

r0s
−1x r1(y + t−1r2c)

s−1x y + t−1r2c

x y t−1r2c

r2c

c

q

+ −

r0 r1

s−1 + +

t−1

r2

.

Any sequence of symbols from edges and the leaf of a branch in the tree of
subterms of t, in the ascending order from the root to the leaf, in which we omit
all edges corresponding to symbols +,−, is called a string of t. The string is a
+-string [−-string ] if the number of omitted symbols − was even [odd]. The set
of all strings [+-strings,−-strings] of t is denoted str(t) [str+(t), str−(t)]. The set
of strings of an p-term τ [formula ϕ] (denoted str(τ) [str(ϕ)]) is the union of the
sets str(t), over all maximal subterms t of τ [ϕ].

Example 1.5:14. Let t = q(r0s
−1x − r1(y + t−1r2c)) be a term, as in Example

1.5:13. There are three strings of t: α0 = 〈q, r0, s−1, x〉, α1 = 〈q, r1, y〉 and
α2 = 〈q, r1, t−1, r2, c〉. Two of them, α1 and α2, are −-strings, while α0 is a
+-string.

The reduced string α̃ arises from a string α by removing the maximal initial
segment of α consisting only of scalar multiplications. We denote the set of
reduced strings of t as ˜str(t)= {α̃;α ∈ str(t)} and similarly for ˜str(τ) and ˜str(ϕ).

Example 1.5:15. Let α0 = 〈q, r0, s−1, x〉, α1 = 〈q, r1, y〉 and α2 = 〈q, r1, t−1, r2, c〉
be the strings from Example 1.5:14. Their reduced versions are α̃0 = 〈s−1, x〉,
α̃1 = 〈y〉 and α̃2 = 〈t−1, r2, c〉.

1.5.6.4 Notation T → T ′, JT KS, α vn β and α v β

The following notation will help us to keep the complexity of almost-terms under
control, during the proof of Proposition H.

For two strings α, β and n ∈ ω, we write α vn β if there are at most n symbols
f0, . . . , fi−1 such that β = 〈f0, . . . , fi−1〉`α. We write α v β if α vn β, for some
n ∈ ω.
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For two sets of terms T, S, we denote JT KS the set of all almost-terms τ with
core(τ) ∈ T and such that all maximal subterms in cond(τ) are of the form
∑

i qi · si + r, where r, qi ∈ D and si ∈ S. We will often write JtKS instead of
J{t}KS. We will also write JtK

�
instead of JtK{α;∃β∈ ˜str(t)(α�β)}, where � stands for

any symbol v,vn. We will sometimes write JtK instead of JtKv0
and JtK= instead

of JtK{t}. We may also use abbreviations with obvious meaning such as JtKvi∪=
.

Let T, T ′ be two sets of almost-terms. We say that T reduces to T ′ and denote
it T → T ′ if every almost-term τ ∈ T is equivalent to some τ ′ ∈ T ′. We will often
write τ → T ′ instead of {τ} → T ′ and similarly on the right side.

We say that a term t is distributed if it is a sum of strings. A p-term [a formula]
is distributed if all its maximal subterms are.

Lemma 1.5:16. Let t, s be terms and r ∈ D, r > 0. Then

a) r−1(t± s)→ Jr−1t± r−1sK{t,s,r−1t,r−1s}

b) µr(t± s)→ Jµr(t)± µr(s)K{µr(t),µr(s)}

c) t→ J∑ str+(t)−∑

str−(t)Kv

d) Every almost-term is equivalent to a distributed one.

Proof.
a) It is easy to see that

r−1x+ y =

{

r−1x+ r−1y if µr(x) + µr(y) < r,

r−1x+ r−1y + 1 if µr(x) + µr(y) ≥ r,

and similarly for x− y.
b) Similarly as a).
c) Follows from a) and b), by induction on the maximal depth of occurrence of
+,− in t.
d) Easy consequence of a) and b).

The following lemma lists basic techniques of complexity reduction, which we
are going to use throughout our proof.

Here and further on, we use notation s(T ), where s is a term, and Ti are sets
of terms, to denote the set of all terms s(t), where ti ∈ Ti. Let S be a set of
terms. Then sTm(S) denotes the set of all subterms of terms from S.
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Lemma 1.5:17. Let ti, t, s be terms, T, S, U, V,W, Ti, Si sets of terms and Xi, Yi
sets of almost-terms.

1) a) Relation → is a preorder on P(aTm), where aTm stands for the set of all
almost-terms.

b) If Xi → Yi then s(X0, . . . , Xn−1)→ s(Y0, . . . , Yn−1).

c) If t→ JsKS then JtKT → JsKT∪S.
d) If T → JSKV and U → JW KW then JT KU → JSKV ∪W .

2) a) The following holds

s
(

Jt0KT0 , . . . , Jtn−1KTn−1

)

→ Js(t0, . . . , tn−1)K⋃n−1
i=0 Ti∪sTm(s)(t) .

Moreover, if s does not contain divs nor mods then

s
(

Jt0KT0 , . . . , Jtn−1KTn−1

)

→ Js(t0, . . . , tn−1)K⋃n−1
i=0 Ti

.

b) JtKT ◦ (Js0KS0
, . . . , JsnKSn

)→ Jt ◦ sK⋃n−1
i=0 Si∪sTm(t,T )◦s.

Proof. 1): Easy verification.
2) a): By induction on complexity of s. In the induction steps for r−1 and µr,
Lemma 1.5:16 a) and b) is used.
2) b): Follows directly from 2) a).

By the Proposition 1.5:12 2), every bracket

[

q

r

]

can be expressed in a cuboid

form
[

q

r

]

(x) =
n

∑

i=1

qi ·
([

1

ri

]

µri+1,...,rn(x+ s)

)

− t, (1.22)

where qi, ri ∈ D are the nominator and the denominator of the i-th partial contin-
ued fraction of q

r
, and s, t ∈ C. In the following series of lemmas, we will reduce

[

q

r

]

to a simpler form. For the reason of simplicity, we often use functional no-

tation for terms, i.e. we write, for example, µr instead of µr(x) or id instead of
x.

Lemma 1.5:18. Let b0 ≤ . . . ≤ bk−1, with k > 1, be scalars having the same
degree (in the doded D). Then

a) µb1,...,bk−1
→

q
µbk−1

y
,

b)

[

1

b0

]

µb1,...,bk−1
→ J0Kµbk−1

.
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Proof. We will prove both statements, (a) and (b), of the Lemma simultaneously
by induction on k.

For k = 2, (a) is trivial. To prove (b), consider

[

1

b0

]

µb1(x). We have

µb1(x) < b1 ≤ m · b0,

for some m ∈ ω (since deg(b0) = deg(b1)). Then

[

1

b0

]

µb1(x) =
{

i if ψi; i < m+ 1,

where ψi(x) P ib0 ≤ µb1(x) < (i + 1) · b0. Clearly, the later is an almost-term
in J0Kµb1 .

For the induction step in (a), we have

µb1,...,bk−1
= µb1 ◦ µb2,...,bk−1

=

= µb2,...,bk−1
−
[

b1 1

1 b1

]

◦ µb2,...,bk−1
→

→
q
µbk−1

y
− J0Kµbk−1

→
q
µbk−1

y
,

where the first arrow follows from the induction assumptions and Lemma 1.5:17
1b), 2a) and the second from 2a). The induction step for (b):

[

1

b0

]

µb1,...,bk−1
→

[

1

b0

] q
µbk−1

y
→

s[
1

b0

]

µbk−1

{

v

→ J0Kµbk−1
,

where the first arrow follows from (a), the second one from Lemma 1.5:17 2a),
and the third one from the induction assumption for k = 2 and Lemma 1.5:17
1d).

Lemma 1.5:19. Let b0 ≤ . . . ≤ bk−1, k > 0, be scalars. For any finite set F ⊆ ω,
we take an enumeration F = {f0, . . . , f|F |−1} such that f0 < . . . < f|F |−1.

a) Then

µb1,...,bk−1
→

u
v ∑

F⊆{1,...,k−1}

(−1)|F |

[

bf0 bf1 . . . bf|F |−1
1

1 bf0 . . . bf|F |−2
bf|F |−1

]

}
~ ,

b) and

[

1

b0

]

µb1,...,bk−1
→

u
v ∑

F⊆{1,...,k−1}

(−1)|F |

[

bf0 bf1 . . . bf|F |−1
1

b0 bf0 . . . bf|F |−2
bf|F |−1

]

}
~

v1

.



70 CHAPTER 1. DESCRIPTIVE ANALYSIS OF LINEAR THEORIES

Proof. By simultaneous induction on k. The case k = 1 is trivial. Let k = 2.

a): µb1 = id−
[

b1 1

1 b1

]

∈
s
∑

F⊆{1}(−1)|F |

[

bf0 1

1 bf0

]{
.

b):

[

1

b0

]

µb1 =

[

1

b0

](

id−
[

b1 1

1 b1

])

→
s[

1

b0

]

−
[

b1 1

b0 b1

]{

v1

, where the arrow fol-

lows from Lemma 1.5:16 a).

Induction step: a):

µb1,...,bk−1
= µb2,...,bk−1

−
[

b1 1

1 b1

]

µb2,...,bk−1
. (1.23)

By induction assumptions on a) and b), we get

µb2,...,bk−1
→

u
v ∑

F⊆{2,...,k−1}

(−1)|F |

[

bf0 bf1 . . . bf|F |−1
1

1 bf0 . . . bf|F |−2
bf|F |−1

]

}
~ ,

[

b1 1

1 b1

]

µb2,...,bk−1
→

u
v ∑

F⊆{2,...,k−1}

(−1)|F |

[

b1 bf0 bf1 . . . bf|F |−1
1

1 b1 bf0 . . . bf|F |−2
bf|F |−1

]

}
~

v1

.

For the string β =

[

b1 bf0 bf1 . . . bf|F |−1
1

1 b1 bf0 . . . bf|F |−2
bf|F |−1

]

, there are only two

strings α v1 β̃, namely β itself and

[

bf0 bf1 . . . bf|F |−1
1

1 bf0 . . . bf|F |−2
bf|F |−1

]

. That is

why we get from (1.23) and Lemma 1.5:17 2a) the following:

µb1,...,bk−1
→

u
v ∑

F⊆{1,...,k−1}

(−1)|F |

[

bf0 bf1 . . . bf|F |−1
1

1 bf0 . . . bf|F |−2
bf|F |−1

]

}
~ .

To prove b), consider

[

1

b0

]

µb1,...,bk−1
→

t
[

1

b0

]

∑

F

(−1)|F |

[

bf0 bf1 . . . bf|F |−1
1

1 bf0 . . . bf|F |−2
bf|F |−1

]

|

(v1∪=)

→

→
t
∑

F

(−1)|F |

[

bf0 bf1 . . . bf|F |−1
1

b0 bf0 . . . bf|F |−2
bf|F |−1

]

|

v1

,

where the first arrow follows from a) and Lemma 1.5:17 2a), and the second one
from Lemma 1.5:16 a) and Lemma 1.5:17 1d).
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Lemma 1.5:20. Let q

r
= [a1, . . . , an] and i is maximal such that deg(ai) > 0

(i = 0 if all ai ∈ Z). Then

[

q

r

]

→

u
v

i−1
∑

j=1

∑

F⊆{j+1,...,i−1}∪{n}

(−1)|F |

[

qj rf0 rf1 . . . rf|F |−1
1

1 rj rf0 . . . rf|F |−2
rf|F |−1

]

+

[

qn 1

1 rn

]

}
~ .

In particular,
[

q

r

]

→
t
∑

j

sj

|

Sr

,

where sj ∈ Sr, and Sr is the set of all strings

[

a1 a2 . . . al−1 1

1 b2 . . . bl−1 bl

]

such that

deg(bi) < deg(r), for i < l, and deg(bl) ≤ deg(r).

Proof. At first, observe that

0 = deg r1 ≤ . . . ≤ deg(ri−1) < deg(ri) = . . . = deg(rn) = deg(r). (1.24)

In particular, if i = 0, 1 then rj ∈ N, for all j. Indeed, by Lemma 1.5:7, it is
rj = aj · rj−1 + rj−2. Since deg(ai) > 0, we have deg(ri) > deg(ri−1). Due to
maximality of i, we get deg(rj) = deg(ri), for j ≥ i.

By substitution y = x+ s into the cuboid form (1.22) of

[

q

r

]

, we get

[

q

r

]

(x) =
n

∑

j=1

qj ·
([

1

rj

]

µrj+1,...,rn(y)

)

− t =
n

∑

j=1

qj · tj(y)− t, (1.25)

where t ∈ D, and tj =

[

1

rj

]

µrj+1,...,rn .

For 1 ≤ j ≤ i− 1, we have

tj =

[

1

rj

]

µrj+1,...,ri−1
◦ µri,...,rn .

By (1.24) and Lemmas 1.5:18 and 1.5:19, it is

µri,...,rn → JµrnK→
s
id−

[

rn 1

1 rn

]{
,

[

1

rj

]

µrj+1,...,ri−1
→

u
v ∑

F⊆{j+1,...,i−1}

(−1)|F |

[

rf0 rf1 . . . rf|F |−1
1

rj rf0 . . . rf|F |−2
rf|F |−1

]

}
~

v1

.
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Then, by Lemma 1.5:17 2b), we get

tj →

u
v ∑

F⊆{j+1,...,i−1}

(−1)|F |

[

rf0 rf1 . . . rf|F |−1
1

rj rf0 . . . rf|F |−2
rf|F |−1

](

id−
[

rn 1

1 rn

])

}
~

v

→

→

u
v ∑

F⊆{j+1,...,i−1}∪{n}

(−1)|F |

[

rf0 rf1 . . . rf|F |−1
1

rj rf0 . . . rf|F |−2
rf|F |−1

]

}
~

v

. (1.26)

For i ≤ j < n, it is

tj → J0Kµrn → J0K




id,

[

1

rn

]






. (1.27)

Finally, for j = n, we get

tj =

[

1

rn

]

. (1.28)

Combining (1.26) – (1.28) with (1.25), we obtain

[

q

r

]

(x) →





i−1
∑

j=1

qj ·

u
v ∑

F⊆{j+1,...,i−1}∪{n}

(−1)|F |

[

rf0 rf1 . . . rf|F |−1
1

rj rf0 . . . rf|F |−2
rf|F |−1

]

}
~

v

+

+
n−1
∑

j=i

qj · J0K




id,

[

1

rn

]






+

[

qn 1

1 rn

]









(y)→

→

u
v




i−1
∑

j=1

∑

F⊆{j+1,...,i−1}∪{n}

(−1)|F |

[

qj rf0 . . . 1
1 rj . . . rf|F |−1

]

+

[

qn 1

1 rn

]



 (y)

}
~

v

→

→

u
v




i−1
∑

j=1

∑

F⊆{j+1,...,i−1}∪{n}

(−1)|F |

[

qj rf0 . . . 1
1 rj . . . rf|F |−1

]

+

[

qn 1

1 rn

]



 (x)

}
~

v

,

where the last arrow is by substitution x+ s for y and Lemma 1.5:16 c).

Finally, it is easy to see that if α v
[

qj rf0 . . . 1
1 rj . . . rf|F |−1

]

, for some j, then

α̃ v0 β̃, where β =

[

qj′ rf0 . . . 1
1 rj′ . . . rf|F |−1

]

, for some j′. Therefore, in the last

expression, the symbol v can be replaced by v0.
The “in particular” follows directly from (1.24).
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The following lemma is the first step in the inductive proof of Proposition H
1.5:3.

Lemma 1.5:21. Let ai, bi, i = 1, . . . , n be scalars such that deg(bi) = 0, for all i.
Then

[

a1 . . . an
b1 . . . bn

]

→
s[ ∏n

i=1 ai 1
1

∏n

i=1 bi

]{

v1

.

Proof. Set pj =
∏j

i=1 bi ∈ N, gj =
∏j

i=1 ai. Denote fn =

[

a1 . . . an
b1 . . . bn

]

. We

prove that
fn(x+ pnk) = fn(x) + gnk

by induction on n. If n = 1, it is clear.
For the induction step, we have

fn(x+ pnk) = fn−1

([

an
bn

]

(x) + pn−1an · k
)

=

= fn−1

([

an
bn

]

(x)

)

+ gn−1 · an · k =

= fn(x) + gnk,

where the first equality is due to bn|pn, and the second one is by the induction
assumption.

Now,

fn(x) = fn

(

µpn(x) + pn ·
[

1

pn

]

(x)

)

= fn (µpn(x)) + gn ·
[

1

pn

]

(x) =

=

{[

gn 1

1 pn

]

(x) + fn(i) if µpn(x) = i; i = 0, . . . , pn − 1 .

Now, we are ready for our proof of Proposition H 1.5:3.

Proposition 1.5:3 (Proposition H). Every term t(x) is equivalent to a harmonic
almost-term τ(x).

Moreover, if a variable x does not occur in any subterm of the form r−1s
(where s is a term) in t then the same is true in τ .

Proof. Let t be a term. By Lemma 1.5:16 d), t is equivalent to a distributed
almost-term σ. We may assume that σ does not contain binary minus nor any
symbol µr. Then it is, clearly, enough to prove that every string

α =

[

a1 . . . an
b1 . . . bn

]

(1.29)
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is equivalent to an almost-term in harmonic form.
Let assign to any string α of the form (1.29) the triple

Iα = (dα, Nα, Kα)

where dα = maxdeg bi, Nα = |{i; deg bi = dα}|, andKα = min{n−i; deg bi = dα}.
We prove the previous statement by induction on Iα ∈ 〈N3,≤Lex〉. We will denote
the only free variable in α as x, but we will often omit writing it.

If dα = 0, the statement follows from Lemma 1.5:21. Otherwise, let α be a
string as in (1.29). Denote dα, Nα, Kα just d,N,K, and set J = n−K (then bJ
is the rightmost bi with deg bi = d). Then

[

aJ
bJ

]

→
t
∑

j

sj

|

SbJ

,

with sj ∈ SbJ , according to Lemma 1.5:20. By Lemmas 1.5:16 and 1.5:17, then

α→
t
∑

j

[

a1 . . . aJ−1

b1 . . . bJ−1

]

◦ sj ◦
[

aJ+1 . . . an
bJ+1 . . . bn

]

|

v

.

Denote the j-th summand in the previous expression as αj , and let β v αj. We
complete the proof by showing that β is equivalent to a string β′ with Iβ′ < Iα.

By the definition of SbJ , it is dsj ≤ deg bJ = dα. If dsj < dα then, clearly, also

Iβ ≤ Iαj
< Iα. Otherwise, sj =

[

u1 . . . 1
1 . . . vl

]

, where deg vi < dα, for i < l, and

deg vl = dα. Suppose that J < n. Then

αj =

[

a1 . . . aJ−1 u1 . . . 1 aJ+1 . . . an
b1 . . . bJ−1 1 . . . vl bJ+1 . . . bn

]

,

and, since

[

1 aJ+1

vl bJ+1

]

=

[

aJ+1

vl · bJ+1

]

=

[

1 aJ+1

bJ+1 vl

]

, any β v αj is equiva-

lent to some β′ such that

β′ v α′
j =

[

a1 . . . aJ−1 u1 . . . 1 aJ+1 . . . an
b1 . . . bJ−1 1 . . . bJ+1 vl . . . bn

]

,

or

β′ v
[

aJ+1 . . . an
bJ+1 . . . bn

]

.

Again, it is easy to verify that Iβ′ ≤ Iα′
j
< Iα. Finally, if J = n then

αj =

[

a1 . . . aJ−1 u1 . . . 1
b1 . . . bJ−1 1 . . . vl

]

=

[

a1 . . . aJ−1 u1 . . . ul−1

b1 . . . bJ−1 1 . . . vl−1

]

(y),
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where y = y(j) =

[

1

vl

]

=

[

1

v
(j)
l

]

, and any β v αj is equivalent to some β′(y) such

that

β′ v α′
j =

[

a1 . . . aJ−1 u1 . . . ul−1

b1 . . . bJ−1 1 . . . vl−1

]

.

Clearly, Iβ′ ≤ Iα′
j
< Iα.

By the induction assumption, α is equivalent to an almost-term τ(x, y) in

harmonic form. After substituting y(j) =

[

1

v
(j)
l

]

, we get a term τ ′(x) in harmonic

form, equivalent to α.

1.5.7 Bases

In this subsection, we prove Proposition B 1.5:4. The proposition implies that
every p-term or open formula can be on any interval [Q,R], with Q,R ∈ D,
equivalently written over a multiple of a given basis. Bases 〈bi〉i<ω with bi|bi+1

will be of special importance, in particular, for the proof of Proposition S 1.5:2.

We will need the following lemmas.

Lemma 1.5:22. Let 0 < R < r ∈ D, 0 6= n ∈ N. Then

a) r−1x =
{

n · (nr)−1(x) + i if ir ≤ µnr(x) < (i+ 1)r; i = 0, . . . , n− 1,

b) r−1x =















[

R 1

r R

]

(x) if r

([

R 1

r R

]

(x) + 1

)

≥ x,
[

R 1

r R

]

(x) + 1 otherwise.

Proof. Direct computation.

Lemma 1.5:23. Let 0 < R, r ∈ D such that degR ≤ deg r, and 0 6= n ∈ N.

a) There is a harmonic almost-term τ(x) over {nr}, equivalent to r−1x.

b) There is a harmonic almost-term τ(x) over the set {r′;R|r′}, equivalent to
r−1x.

Proof. a) Directly from Lemma 1.5:22 a).
b) By a), we may suppose that R < r (there is n ∈ N such that nr > R).

Denote β = R−1x. Then, by Lemma 1.5:22 a), we have:

r−1x =















[

R

r

]

(β) if r ·
([

R

r

]

(β) + 1

)

≥ x,
[

R

r

]

(β) + 1 otherwise.
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Consider now β as a variable. By Proposition H 1.5:3, there is an almost-term
τ ′(β, x) in harmonic form, equivalent to r−1x and such that Divx(τ

′) = ∅. After
substituting β = R−1x into τ ′, we get an almost-term τ(x) in harmonic form such
that each r′ ∈ Divx(τ) is a multiple of R.

Now, we are ready for a proof of Proposition B 1.5:4.

Proposition 1.5:4 (Proposition B). Let δ ∈ F , p, r ∈ +D be scalars, e = deg(p),
d = deg(r), and B = 〈bi〉d≤i<e be a [d, e]-basis. Then r−1x is on [δ, δ + p − 1]
equal to a harmonic almost-term τ(x) (possibly with parameter δ) which is over
mB = 〈mbi〉d≤i<e, for some m ∈ N.

Moreover, m can be chosen as any number sufficiently large with respect to
divisibility.

Proof. Observe, first, that it is enough to prove the statement for δ = 0. Indeed,
r−1(y+δ) is, by Lemma 1.5:6 e), equivalent to an almost-term σ(y) with Div(σ) =
{r}, and hence, by the proposition’s case δ = 0, on [0, p − 1] equivalent to a
harmonic almost-term τ ′(y), with Divy(τ

′) ⊆ {m · bi; d ≤ i < e}, for a given m.
By substitution y = x−δ, we then have r−1x equivalent to τ ′(x−δ) on [δ, δ+p−1]
and τ ′(x − δ) (again by Lemma 1.5:6 e)) equivalent to an almost-term τ(x) in
harmonic form, with Divx(τ) = Divy(τ

′) ⊆ {m · bi; deg r ≤ i < e}.
Further, suppose δ = 0. It is enough to prove that r−1x is on [0, p − 1]

equivalent to a harmonic almost-term τ ′r(x) with

Div(τ ′r) ⊆ {m′ · bi; 0 < m′ ∈ N, deg r ≤ i < e}. (1.30)

Then we are done almost immediately: We choose mS to be the least common
multiple of all such m′ ∈ N that m′bi ∈ Div(τ ′r), for some i. Now, if 0 < m ∈ N is
a multiple of mS then τ ′r(x) is equivalent to a harmonic almost-term τr(x) with
Div(τr) ⊆ {m · bi; deg r ≤ i < e}, according to Lemma 1.5:23 a).

Now, we find τ ′r such that (1.30) holds. We proceed by backwards induction
on d. When d ≥ e, there is n ∈ N such that nr > p. Then r−1x is on [0, p − 1]
equivalent to

τ ′r(x) =
{

l if lr ≤ x < (l + 1)r; l = 0, . . . , n− 1.

Suppose that d < e and that the statement holds for all r′ with deg r′ > d.
Then r−1x is, by Lemma 1.5:23 b), equivalent to an almost-term σ(x) with all
r′ ∈ Div(σ) divisible by bd ∈ B. For r′ ∈ Div(σ), it is either r′ = m′bd, for some
m′ ∈ N, or deg r′ > d. Denote τ ′r the almost-term created from σ by replacing
all r′−1x with deg r′ > d by the respective almost-terms τ ′r′ from the induction
assumption; τ ′r has, clearly, the demanded properties.
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1.5.8 Solvability

Using the Proposition B 1.5:4 for B = 〈bi〉i<ω with bi|bi+1, we may now prove the
last of the three main propositions – Proposition S 1.5:2.

1.5.8.1 Linear period and linear growth

A scalar p ∈ D is called a linear period of a term t(x, y) in (a variable) x if
t(pu + v, y) is affine in u, for every v, y ∈ F , i.e. for every v, y ∈ F , there is
γx,p=γx,p(v, y)∈ D such that

t(pu+ v, y) = γx,p · u+ t(v, y) (1.31)

holds for all u ∈ F . It is not hard to see that the linear growth γx,p(v, y) does not
depend on v nor y; we denote it γx,p(t) (this follows from the easy observation that
if P is the product of all occurances of x-divisors in s(x, v, y) then s(Pu, v, y) =
s′(Pu) + s′′(v, y), for some terms s′, s′′).

We say that p ∈ D is a linear period of an open formula ψ [p-term τ ] if it is
a linear period of every maximal subterm of ψ [τ ].

1.5.8.2 Balanced form

We say that an open harmonic formula ψ is balanced [in x] (in a balanced form
[in x]) if there is an enumeration 〈ri〉i<n of Div(ψ) [Divx(ψ)] such that ri|ri+1.
Similarly, we define balanced form for an open harmonic p-term. If ψ is harmonic
and balanced in x then, clearly, the maximal x-divisor in ψ is a linear period of
ψ in x.

Lemma 1.5:24. Let ψ(v, y) be an open formula, and 0 < P ∈ D. Then there is
an open harmonic χ(v, y), having a linear period p in v with deg(p) < deg(P ),
and such that

(∀y)(∀0 ≤ v < P )(ψ(v, y)↔ χ(v, y)).

Proof. We apply the Proposition B 1.5:4 to (every maximal subterm of) ψ, the
interval [0, P ] and a [0, deg(P )]-basis B = 〈bi〉i<deg(P ) such that bi|bi+1. The
resulting formula χ is harmonic and over mB in v, for some m ∈ N, hence
balanced in v, and therefore its maximal v-divisor p (p = 1 if there are no v-
divisors) is a linear period of χ in v. It is p = mbi, for some i < deg(P ), and thus
deg(p) = i < deg(P ).

The following lemma proves Proposition S 1.5:2 for the case Divx(ψ) = ∅.
The algorithm it contains is known as the Fourier-Motzkin elimination.
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Lemma 1.5:25 (“Fourier-Motzkin elimination”). Suppose that ψ(x, y) is open
and such that Divx(ψ) = ∅. Then there are finitely many terms tj(y), j < n ∈ N,
such that

(∃x)ψ(x, y)↔
∨

j<n

ψ(tj, y).

Proof. Without loss of generality, we can assume that ψ is a system of linear
inequalities of the form aix− si ≤ 0, where ai ∈ D and si are terms with all their
variables among y. Denote I+ [I−, I0] the set of all indices i for witch ai > 0
[ai < 0, ai = 0]. Then

ψ ↔
∧

i∈I0

si ≤ 0&
∧

i∈I−

x ≥ si
ai

&
∧

j∈I+

x ≤ sj
aj
.

If both I+ and I− are empty then we can set n = 1 and t0 = 0. Suppose that
I+ 6= ∅ (the other case is symetric). Then

(∃x)ψ(x, y)↔
∨

j∈I+

ψ(aj
−1sj, y).

Now, we are going to prove Proposition S 1.5:2.

Proposition 1.5:2 (Proposition S). Let ψ(x, y) be an open formula. There are
finitely many terms ti(y), i < n, such that

(∃x)ψ ↔
∨

i<n

ψ(ti, y).

Proof. The case Divx(ψ) = ∅ follows immediately from Lemma 1.5:25; assume
further Divx(ψ) 6= ∅. We may also suppose that ψ is harmonic (thanks to Propo-
sition H 1.5:3). Let P be a linear period of ψ in x of the least degree; we prove
the statement by induction on deg(P ).

We denote ψ̃(u, v, y) the formula created from ψ by replacing its each maximal
subterm t(x, y) with γx,P (t) · u+ t(v, y). By (1.31) we have

ψ(Pu+ v, y)↔ ψ̃(u, v, y). (1.32)

Since Divu(ψ̃) = ∅, by Lemma 1.5:25, there are terms t′j(v, y), j < n′, such
that

(∃x)ψ(x, y)↔ (∃0 ≤ v < P )
∨

j<n′

ψ̃(t′j, v, y)↔ (∃0 ≤ v < P )
∨

j<n′

ψ(t′′j , y),
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where t′′j (v, y) = P · t′j + v. Here, the first equivalence follows from (the unique)
representability of x as x = Pu+ v with 0 ≤ v < P , and the second equivalence
from (1.32).

If deg(P ) = 0 then the last formula is equivalent to
∨

j<n′,m<P ψ(tj,m, y), where
tj,m(y) = t′′j (m, y), which is what we wanted to prove.

Let deg(P ) > 0. By Lemma 1.5:24, there is χ(v, y) with a linear period p in
v such that deg(p) < deg(P ) and

∨

j<n′

ψ(t′′j , y)↔ χ(v, y),

for 0 ≤ v < P . Denote χ′ the formula χ&(0 ≤ v < P ). By the induction
assumption, there are terms si(y), i < k, such that

(∃x)ψ(x, y)↔ (∃v)χ′(v, y)↔
∨

i<k

χ′(si, y).

Denote ti,j(y) = t′′j (si(y), y). Then

(∃x)ψ(x, y)↔
∨

i<k,j<n′

ψ(ti,j, y).

1.6 Two-sorted solvability

The proof of Theorems 1.3:4, 1.3:6 and 1.3:8 from section 1.5 proves, in fact, more
than we stated so far: For example, in the statement of Proposition S 1.5:2 (and
consequently also in Theorem 1.3:4), all scalars which occur in terms ti can be
constructed from scalars occuring in ψ by ring operations and integer division.

This observation may be formulated as solvability (or quantifier elimination)
for so called doded-modules – structures in a two-sorted language of the type
“ordered ring-ordered module” (i.e. in a language with a special sort for scalar
variables), which are just two-sorted variants of models of linear theories. This
is stated in Theorem 1.6:1 and its Corollary 1.6:2.

These results are an ordered analogues of the quite well-known results by Lou
van den Dries and Jan Holly in [vdDH92] for two-sorted unordered modules and
strengthen the result by Volker Weispfenning in [Wei97, Theorem 4.1] for two-
sorted discretely ordered modules over the ring Z of integers (more precisely for
the models of a two-sorted variant of Presburger arithmetic).

The results from [vdDH92] are generalized by adding an ordering to the lan-
guage but for a price of restricting ourselves only to modules over rings which
are dodeds (see 1.3.1.2) (and adding another order-related conditions). Let us
note that in [vdDH92] the problem of generalizing the results to ordered modules
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(even for the simplest case of the module Z of integers) is considered as “very
interesting” but as one that “seems to be very hard”.

The Weispfenning’s result is strengthened in two directions: first, we admit
the universe of the ring sort to be not only the ring Z of integers but an ar-
bitrary doded (see Example 1.3:1 for examples of dodeds); second, we give a
strictly smaller elimination set of formulas than Weispfenning’s “scalar bounded
formulas” (see Remark 1.6:3).

Let L denote the two-sorted language of the type “ordered ring-ordered mod-
ule”, i.e. L consists of

• the ordered ring sort R with a language 〈0, 1,+,−, ·,≤〉,

• the ordered group sort M with a language 〈0, 1,+,−,≤〉 (the symbol 1 is
intended for the least positive element),

• a binary function symbol · : R×M →M (scalar multiplication).

Further on, unless stated otherwise, symbols x, y, z denote M -variables while
symbols p, q, r stand for R-variables. We also refer to R-variables as scalar vari-
ables and to quantification of those variables as scalar quantification.

A doded-module is a (two-sorted) L-structure A = 〈R,M, ·〉 such that

1) R is a doded (see 1.3.1.2),

2) 〈M, r · 〉r∈R is a discretely ordered (with 1 being the least positive element),
integrally-divisible (i.e. (∀x)(∃y)(∃0 ≤ z < r·1)(x = r·y+z) holds)R-module.

We denote L′ the extension of L by

• a binary function symbol −1 : R2 → R (scalar integer-division),

• a binary function symbol −1 : R×M →M (integer-division).

Usually, we write r−1q or r−1x instead of −1(r, q) or −1(r, x).

For a doded-module A, we write A′ for its L′-expansion by definitions:

• 0 ≤ q − r · (r−1q) < r,

• 0 ≤ x− r · (r−1x) < r · 1.

Now, we are ready to formulate the main result of this section. The following
theorem may be understood as stating that every doded-module is “M -almost
uniformly M -solvable”.



1.6. TWO-SORTED SOLVABILITY 81

Theorem 1.6:1. Let A = 〈R,M, ·〉 be a doded-module, ϕ(r, y, x) be an L′-
formula without scalar quantifiers, and ρ ∈ Rl(r) be scalars. Then there are
finitely many L′-terms ti(r, y), for i < n, with n ∈ N, such that

A′ |= (∃x)ϕ(ρ, y, x)↔
∨

i<n

ϕ(ρ, y, ti(ρ, y)).

Proof. First observe that, for fixed scalars ρ ∈ Rl(r), the formula ϕ(ρ, y, x) can
be written naturally as a formula in the language of the (one-sorted) lineal which
corresponds to the (two-sorted) doded-module A.

Then it is enough to check that the proof of Proposition S 1.5:2 (which occu-
pies most of section 1.5) constructs terms ti which contain only scalars expressible
from the scalars occuring in ψ only by ring operations and the operation −1 of
scalar integer division (i.e. L′-scalar-operations).

This is obvious with only two exceptions:

a) In Lemma 1.5:24, we used an arbitrary balanced basis B. By doing that we
can only assure scalars in formula χ to be expressible by L′-scalar-operations
from the scalars occuring in ψ and scalars from the basis B.

b) In the final part of the proof of Proposition S 1.5:2, we defined P to be the
linear period of ψ of the least degree. Again, it is not clear that such P is
expressible by L′-scalar-operations from the scalars occuring in ψ.

Both these problems can be easily resolved:
a) Instead of taking an arbitrary balanced basis and applying Proposition B

1.5:4, we may use the backwards induction idea from the proof of Proposition
B directly with a simple modification: At the induction step do not use Lemma
1.5:23 b) to get all divisors be divisible by bd but use the same lemma to get all
divisors be divisible by the maximal divisor q such that all divisors q′ ≤ q are up
to multiplication by some m ∈ N linearly ordered by divisibility.

Then we get a balanced formula χ with all scalars expressible by L′-scalar-
operations from the scalars occuring in ψ.

b) It is enough to take P to be the least common multiple of all x-divisors in
ψ.

Corollary 1.6:2. Let A be a doded-module. Every scalar-quantifier-free L′-
formula is in A′ equivalent to a quantifier-free L′-formula.

Remark 1.6:3. To compare Corollary 1.6:2 with [Wei97, Theorem 4.1], let us note
that any quantifier-free L′-formula can be easily equivalently rewritten as a scalar
bounded (i.e. with all quantifiers of the form (∃x, |x| ≤ r ·1) with r a scalar term)
formula in the language L∪〈−1,≡〉, where −1 is the scalar integer-division, and ≡
is a ternary R×M2 congruence relation, defined as x ≡r y ↔ (∃z)(r · z = x− y).

Indeed, this is easy since r−1x = y ↔ (∃z, |z| ≤ (r−1) ·1)(z ≡r x& y = x−z
r
).





Chapter 2

Structure of Peano Products

In this chapter, we deal with a problem of understanding relations between local
and global properties of an operation o in a first-order structure of the form 〈B, o〉,
with a particular interest in the case where B is a model of Presburger arithmetic
Pr and o is a “Peano product” on B, i.e. 〈B, o〉 is a model of Peano arithmetic P.

This problem may be specified as follows: Given a “background model” B
and a set O of all n-ary operations on B satisfying certain global property (e.g.
being a Peano product), we want to describe the dependency closure

iclO(E) = {d ∈ Bn; (∀o, o′ ∈ O)(o � E = o′ � E ⇒ o(d) = o′(d))},

for E ⊆ Bn. We call this task the (B, O,E)-dependency problem.
Illustratively speaking, a point d lies in the dependency closure iclO(E) of the

set E if the value o(d) of any operation o ∈ O is uniquely determined by its values
on E.

Our particular interest is in the Peano dependency problem – a (B, O,E)-
dependency problem where B is a model of Pr and O is the set of all (saturated)
Peano products on B. Both, the general dependency problem and the Peano
dependency problem, may be further modified and specified by various modifica-
tions of the dependency closure (see the more general definition 2.1.1).

A (B, O,E)-dependency problem with saturated B may be solved by studying
a definability problem (regarding almost-uniform definability; see 2.1.3) in certain
expansion of B, called a fixator (2.1.4). This is formulated in the DD-theorem
2.1:2.

In Proposition 2.2:1, we completely solve two important cases of the Peano
dependency problem – for E = ∅ (which is easy) and for E = Ea = {a}×B, with
a nonstandard (an “a-slice”). We prove that, in these cases, icl(E) is as small
as possible, i.e. it contains only the trivially dependent points (for E = Ea that
are points d = (d0, d1) where at least one of di equals p(a), for some polynomial
p ∈ Q[x]).

83
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By the DD-theorem, the key for the proof is understanding definability in the
respective fixators. The fixators are models of Presburger arithemetic Pr (1.1.3.1)
and linear arithmetic LA (1.1.4.1), respectively. We use here the descriptions of
elimination sets of formulas for the fixators which we provided in Corollaries 1.4:2
and 1.4:7, respectively, in chapter 1.

An important special case of Proposition 2.2:1 proves the existence of pairs of
Peano products (·, ◦) which coincide on an “a-slice” Ea = {a}×B, with a ∈ B−N,
but differ in some d < a and in some d′ > a. We call such a couple a meeting pair
of Peano products. By “piecing together” a meeting pair, it is possible to obtain
a new “Robinson product” on B, which satisfies certain portion of induction. In
section 2.3, we put these ideas into the context of possible further research on
constructions of models of Peano arithmetic.

Finally, section 2.4 contains a summary of our partial results regarding the
problem of interpolating a given set of points in B3 by the graph of some Peano
product.

2.1 Dependency and definability

Given a saturated structure B (background-model) and a set O of n-ary oper-
ations on B, we want to know whether, for an operation o ∈ O, its value in
a point d ∈ Bn is determined by its values on a set E ⊆ Bn; this question is
precised in a concept of dependency in 2.1.1. The main result of this section, the
DD-theorem 2.1:2, provides an equivalent for dependency in terms of definability
in an expansion A of B, called fixator (see 2.1.4 for definition).

Throughout this section, A denotes a saturated expansion of a background-
model B, n > 0 is an integer, d ∈ Bn and E ⊆ Bn. Further, all considered
operations on A = B are n-ary.

2.1.1 Dependency and marriages

Let ∼ be an equivalence relation on a set O of n-ary operations on B, o ∈ O. We
say that a point d ∈ Bn ∼-depends on E ⊆ Bn [for o] if, for o′, o′′ ∈ O such that
o′ ∼ o′′[= o] and o′ � E = o′′ � E, it is o′(d) = o′′(d). The set

icl∼[o](E)= {d ∈ Bn; d ∼-depends on E [for o]}
is called the ∼-dependency closure of E [for o]. It is easy to see that it is

icl∼(E) =
⋂

o∈O

icl∼o (E).

A pair (o, o′) of operations on B is called a (d, E)-marriage if o � E = o′ � E,
and o(d) 6= o′(d). The purpose of marriages is to witness that a point d does not
belong to the dependency closure of a set E.
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2.1.2 Conjugation

We are going to construct marriages as pairs (o, og), where og= g−1og, for an
appropriate automorphism g of B. Clearly, it is 〈B, og〉 ∼= 〈B, o〉, via g, and

og(x) = o(x)⇔ og(x) = go(x), (2.1)

for all x ∈ Bn.
Instead of 〈B, o′〉 ∼= 〈B, o〉 [via g], we write shortly o′ ∼= o [via g].

2.1.3 Almost uniform definability

An useful criterion for dependency can be formulated using the concept of almost
uniform definability, which we state at this place.

Two sequences ε, ε′ of elements of A are said to be indistinguishable in A if
they have the same complete type over ∅ in A.

We say that a pair (c, c′) ∈ A2 is equidefinable from parameters (〈bi〉i∈I , 〈b′i〉i∈I)
in A if there is an L(A)-formula ϕ(x, y) which equidefines (c, c′) in A from
(〈bi〉i∈I , 〈b′i〉i∈I); i.e. there is {ij; j < l(x)} ⊆ I such that ϕ defines c from 〈bij〉j<l(x)
and c′ from 〈b′ij〉j<l(x).

An operation o is in A almost-uniformly definable (a.u.-definable) at a point

d ∈ An over a set E ⊆ An if, for all 〈e′, d′〉e∈E such that ε = t〈e, o(e), d〉e∈E
and ε′ = t〈e′, o(e′), d′〉e∈E are indistinguishable in A, the pair (o(d), o(d

′
)) is

equidefinable from (ε, ε′) in A.

Lemma 2.1:1. Let o be an operation on A and ε = 〈ai, d〉i∈I , ε′ = 〈a′i, d
′〉i∈I

be two indistinguishable (in A) systems of elements from A, with |I| < |A|,
l(d) = l(d

′
) = n. Then the following statements are equivalent:

1) (o(d), o(d
′
)) is equidefinable in A from parameters (ε, ε′).

2) For every g ∈ Aut(A) such that g(ai) = a′i and g(d) = d
′
, it is og(d) = go(d).

Moreover, the implication “1) ⇒ 2)” is true even for a non-saturated A.

Proof. 1) ⇒ 2): Easy.

2)⇒ 1): Suppose (o(d), o(d
′
)) is not equidefinable from (ε, ε′). Define g(ai) = a′i,

g(d) = d
′
and g(o(d)) = e, where e 6= o(d

′
) = og(d) is such that ε`〈o(d)〉 and

ε′`〈e〉 are indistinguishable (we construct such e later); then g can be extended
to an automorphism of A contradicting 2).

Existence of e: Let p(x) = {ϕ(x, ε′);A |= ϕ(o(d), ε)} ∪ {x 6= o(d
′
)}. Since

(o(d), o(d
′
)) is not equidefinable from (ε, ε′), p(x) is a type. Any e realizing p(x)

has the demanded properties.
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2.1.4 Fixators and DD-theorem

Let G ⊆ Aut(B) be a subgroup, o an n-ary operation on B, and E ⊆ Bn. We
say that a saturated expansion A of B is a (G,E)-fixator for o if

g ∈ Aut(A)⇔ g ∈ G, and og(x) = go(x) for all x ∈ E.

For o, o′ ∈ O, we write o ∼G o′ if o ∼= o′ via some g ∈ G. Clearly, ∼G is an
equivalence on O.

Proposition 2.1:2 (DD-theorem). Let o be an n-ary operation on B, d ∈ Bn,
and E = Es ∪ Ef ⊆ Bn, where |Es| < |B|, and suppose that there is a saturated
(G,Ef )-fixator A for o, with G ⊆ Aut(B). Then the following statements are
equivalent:

1) d ∈ icl∼
G

o (E),

2) o is a.u.-definable at d over Es in A.

Proof. We have the following:

d ∈ icl∼
G

o (E) ⇔ For all o′ ∼= o, via some g ∈ G such that o′ � E = o � E,
it is o′(d) = o(d).

⇔ For all g ∈ G and d′, e′ with e ∈ E, if g(d) = d′, and
g(e) = e′, g(o(e)) = o(e′), for e ∈ E, then g(o(d)) = o(d′).

⇔ o is a.u.-definable at d over Es in A.
Above, the first ⇔ is the definition of icl∼

G

o (E), the second ⇔ is by setting
o′ = og and by (2.1), and the third ⇔ follows by Lemma 2.1:1 and the definition
of a (G,Ef )-fixator.

2.2 Dependency of Peano products

In this section, B will be a fixed saturated model of Presburger arithmetic1 and
O the set sPP(B) of all saturated Peano products on B. Note that, up to an
isomorphism, there are all saturated models of Peano arithmetic of size |B| among
the structures 〈B, ·〉, where · ∈ sPP(B).

We are going to prove the following proposition, which describes iclsPP(B)(E)
for two particular cases: E = ∅ and E =Ea= {a} ×B, with a ∈ B − N.

1Let us note that existence of saturated models is, in general, not provable in ZFC. However,
a saturated model of Presburger aritmhetic of size κ exists provided that ω < κ = κ<κ. In
particular, under the assumption of continuum hypothesis, there is such a model of size 2ω.
Here and further on, we therefore assume continuum hypothesis (which even implies that every
countable structure in a countable language has a saturated elementary extension of size 2ω).
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For a ∈ B − N, let us denote

Da =
{ p

n
; p ∈ +Z[a], 0 < n ∈ N and B |= n|p

}

= Q[a] ∩ B

(compare to DA from Example 1.3:2 b)). We also write ◦ ∼=[a] · if there is an
isomorphism f of 〈B, ◦〉 and 〈B, ·〉 [such that f(a) = a].

Proposition 2.2:1. Let a ∈ B − N. The following holds:

1) icl
∼=
· (∅) = (N×B) ∪ (B × N), for every · ∈ sPP(B),

icl
∼=(∅) = (N×B) ∪ (B × N),

2) icl
∼=a

· (Ea) = (Da ×B) ∪ (B ×Da), for every · ∈ sPP(B),
icl

∼=a(Ea) = (Da ×B) ∪ (B ×Da).

Let P(B) denote the set of all commutative, associative and distributive Robin-
son products on B and PP(B) the set of all Peano products on B. We get the
following easy corollary:

Corollary 2.2:2. Let a ∈ B − N. The following holds:

1) iclP(B)(∅) = iclPP(B)(∅) = iclsPP(B)(∅) = (N×B) ∪ (B × N),

2) iclP(B)(Ea) = iclPP(B)(Ea) = iclsPP(B)(Ea) = (Da ×B) ∪ (B ×Da).

Proof. The inclusions “⊆” follow from Proposition 2.2:1.
The opposite inclusions in 1) are trivial. In 2) they follow easily from com-

mutativity, associativity and distributivity of the products.

Remark 2.2:3. Let us note that for the case |E| < |B| the dependency problem is
not difficult. Indeed, by the DD-theorem 2.1:2, d ∈ icl

∼=
o (E) ⇔ o is a.u.-definable

at d over E in B (because, clearly, B is an (Aut(B), ∅)-fixator for any operation
o on B). But B |= Pr, hence the definability problem can be easily solved.

Nevertheless, if |E| = |B|, the relevant fixator may be more complex structure
than B. For example, in the next section, we will see that for E = Ea the
respective fixator is a model of LA.

2.2.1 Fixators for Peano products

We will prove Proposition 2.2:1 using the DD-theorem 2.1:2. That is why we
need to know the respective fixators:

Observation 2.2:4.

a) B is an (Aut(B), ∅)-fixator for any operation o on B.

b) Ba,· = 〈B, a · 〉 is an (Sa, Ea)-fixator for · ∈ sPP(B), where Sa is the stabilizer
of a under the action of Aut(B).
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Let us note that B |= Aa and Ba |= La. We are going to prove both cases of
Theorem 2.2:1 at once. Further, we work in one of the following settings, which
we fix:

• A = B, G = Aut(B), E = ∅,

• A = Ba,· G = Sa, E = Ea, where a ∈ B − N and · ∈ sPP(B).

In both cases, we have the following properties:

(*a) A is saturated,

(*b) every formula is in A equivalent to
∨

i<n(∃z)ψi, where ψi, with i < n, are
systems of linear inequalities,

(*c) the substructure A(∅) of all elements definable without parameters in A is
an elementary substructure of A.

This follows from Corollary 1.4:2 or Corollary 1.4:7, respectively.
The following Lemma is an adaptation of an idea by Jan Šaroch.

Lemma 2.2:5 (J. Šaroch). Let p(x) be a complete type over ∅ in A. Then
U = {u;A |= p(u)} is closed under the operation u, v 7→ u+v

2
.

Proof. Let u, v ∈ U and ϕ(x) ∈ p. We prove ϕ(u+v
2
).

By (*b), we may suppose that ϕ is of the form
∨

i<n(∃z)ψi, where ψi, with
i < n, are systems of linear inequalities. Since u and v have the same complete
type, there is i < n and π ∈ l(z)2 such that (∃z ≡2 π)ψi holds for both u and v.
Then (∃z)ψi holds for u+v

2
, as well.

Lemma 2.2:6. Let u ∈ A2 and U = {u′ ∈ A2; tp(u) = tp(u′)}. Then the
following are equivalent:

a) None of u0, u1 is ∅-definable in A.

b) U contains u′ and u′′ such that u′i 6= u′′i , for i = 0, 1.

Proof. “b)⇒a)” is trivial.
“a)⇒b)”: Set

U0 = {v1; (u0, v1) ∈ U},
U1 = {v0; (v0, u1) ∈ U}.

We show that each of U0, U1 has at least two elements. Then there are v0 6= u0
and v1 6= u1 such that (u0, v1), (v0, u1) ∈ U , and, by Lemma 2.2:5, the point
(u′0, u

′
1) = (u0+v0

2
, u1+v1

2
) ∈ U is different from (u0, u1) in both coordinates.

Suppose that U0 = {u1}. Then, by (*a), u1 is definable from u0, and thus
it is U = {(u′, f(u′)); u′ ∈ dom(U)}, for some definable function f . By our
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assumption, f(u′) = u1, for all u
′ ∈ dom(U). Therefore, again by (*a), there is

ϕ ∈ tp(u) such that A |= ϕ(x) → f(x0) = u1. By (*c), there is a ∅-definable
w ∈ A2 such that ϕ(w), and hence u1 = f(w0) is ∅-definable.

The case U1 = {u0} is symmetric.

Now, we are ready to prove Proposition 2.2:1.

Proposition 2.2:1. Let a ∈ B − N. The following holds:

1) icl
∼=
· (∅) = (N×B) ∪ (B × N), for every · ∈ sPP(B),

icl
∼=(∅) = (N×B) ∪ (B × N),

2) icl
∼=a

· (Ea) = (Da ×B) ∪ (B ×Da), for every · ∈ sPP(B),
icl

∼=a(Ea) = (Da ×B) ∪ (B ×Da).

Proof. We need to prove that icl∼
G

· (E) = (A(∅) × A) ∪ (A× A(∅)). The inclusion
“⊇” is trivial. The opposite one is, by the DD-theorem 2.1:2 and Lemma 2.2:6,
equivalent to the statement

· is a.u.-definable at d over ∅ in A ⇒ U = {u; tp(u) = tp(d)} does not con-
tain u′ and u′′ such that u′i 6= u′′i , for
i = 0, 1.

Suppose that · is a.u.-definable at d over ∅ in A by a formula ϕ and that it is
u′, u′′ ∈ U . Then U ′ = {(u, u0 · u1); u ∈ U} is the set of all realizations of the

type tp(d) ∪ {ϕ(x, y)}. Therefore, by Lemma 2.2:5, (u
′+u′′

2
,
u′0·u

′
1+u

′′
0 ·u

′′
1

2
) ∈ U ′, and

hence
u′0·u

′
1+u

′′
0 ·u

′′
1

2
=

u′0+u
′′
0

2
· u′1+u′′1

2
. This implies u′0 = u′′0 or u′1 = u′′1.

2.3 Meeting pairs of Peano products

Let B be a fixed saturated model of Presburger arithmetic, as in section 2.2. For
a ∈ B − N, we denote Ea = {a} × B the “slice” of B at a.

2.3.1 Meeting pair

Let a ∈ B − N. A pair (·, ◦) of Peano products on B is called an a-meeting
pair if it is · � Ea = ◦ � Ea, and d0 · d1 6= d0 ◦ d1, d′0 · d′1 6= d′0 ◦ d′1, for some
d0, d1 < a < d′0, d

′
1. The following is an easy consequence of Proposition 2.2:1:

Corollary 2.3:1. Let a ∈ B − N, and · ∈ sPP(B) be a saturated Peano product
on B. Then there is ◦ ∈ sPP(B) such that (·, ◦) is an a-meeting pair of Peano
products on B. Moreover, ◦ can be chosen in such a way that · ∼=a ◦.
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Proof. By Proposition 2.2:1, there are points d, d′ /∈ icl
∼=a

· (Ea) with d < a < d′.
Let •, •′ be witnesses for d, d′ respectively, i.e. • ∼=a · ∼=a •′ coincide with · on Ea,
but d0 · d1 6= d0 • d1, d′0 · d′1 6= d′0 •′ d′1.

Suppose that neither (·, •) nor (·, •′) is an a-meeting pair, then (•, •′) is one.
Since • ∼=a ·, via some g, we get •′ ∼=a ◦, via g (where ◦ = •′g is the “g-conjugate”
of •′; see section 2.1.2), and (·, ◦) is an a-meeting pair.

Having a meeting pair (·, ◦), we construct a product × : B2 → B, different
from both · and ◦, such that 〈B,×〉 |= T , where T is an extension of Robinson
arithmetic Q by a set of induction axioms. This is stated as Proposition 2.3:2.

2.3.2 LBx and LcBx formulas

We denote LBx [LcBx] the set of formulas ϕ(x, y) in the language of arithmetic
Lar = 〈0, S,+, ·,≤〉 such that every occurrence of multiplication in ϕ has the
form x · z or z · x, where z is a variable which is bound by a quantifier Qz ≤ x
[Qz ≥ x].

The Lar-theory ILB [ILcB] is the extension of Robinson arithmetic Q by the
scheme of induction I(LBx) [I(LcBx)] for all formulas ϕ from LBx [LcBx] (here,
x is the “induction variable”).

Proposition 2.3:2. Let a ∈ B − N, and (·, ◦) be an a-meeting pair of Peano
products on B.

1) For × = · � [0, a]2 ∪ ◦ � (B2 − [0, a]2), it is 〈B,×〉 |= ILB.

2) For ×′ = · � [a,∞)2 ∪ ◦ � (B2 − [a,∞)2), it is 〈B,×′〉 |= ILcB.

Proof. 1): Clearly, 〈B,×〉 |= Q. Let ϕ(x, y) ∈ LBx. Then the following holds:

〈B,×〉 |= ϕ[b, c] ⇔ 〈B, ·〉 |= ϕ[b, c], for b ≤ a, c ∈ B, (2.2)

〈B,×〉 |= ϕ[b, c] ⇔ 〈B, ◦〉 |= ϕ[b, c], for b ≥ a, c ∈ B. (2.3)

We prove that the axiom of induction for ϕ holds in 〈B,×〉. Suppose that it
is 〈B,×〉 |= ϕ[0, c]. Then, by (2.2) and by induction in 〈B, ·〉 |= P, we get
〈B,×〉 |= ϕ[b, c], for all b ≤ a. Then, similarly, by (2.3) and by induction in
〈B, ◦〉 |= P, we prove 〈B,×〉 |= ϕ[b, c], for any b ≥ a.
2) can be proven similarly.

We ask the following, a bit vague, open question:

Open question 2. Is it possible, by using similar methods, to construct Robinson
products × which satisfy I(Γ) for other sets Γ ⊆ FmLar? In particular, is it
possible to construct Peano products this way?
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2.4 Peano interpolations

Let us remind that B stands for a fixed saturated model of Pr, and O denotes a
fixed set of n-ary operations on B. In this section, we deal with a more subtle
problem connected with dependency: Given points (bi, di) ∈ Bn+1, for i ∈ I, is
there an operation o ∈ O such that o(bi) = di, for all i ∈ I?

We are going to prove the following partial answer:

Proposition 2.4:1. Let o : Bn → B satisfies

o(b) > N · b, for all b > N, (2.4)

and N < b, d ∈ B be such that

i) d > N · b,
ii) d ≡ o(b) mod n, for all 0 < n ∈ N.

Then there is o′ ∼= o such that o′(b) = d.

Moreover, if b ≡ b′ mod n ⇒ o(b) ≡ o(b′) mod n, for all b ∈ B and 0 < n ∈ N,
then the other implication holds as well.

Proof. Since B is saturated, it is enough to show that, for a formula ϕ(x, y), with
l(x) = n, it is

B |= ϕ[b, d]⇒ B |= ϕ[b′, o(b′)], for some b′ ∈ B. (2.5)

Indeed, in that case we can find an automorphism g of B (as in the proof of
Lemma 2.1:1) such that g(b′) = b and g(o(b′)) = d, for some b′ ∈ B. Then
og(b) = d.

We prove (2.5). By Corollary 1.4:2 1), we may suppose that ϕ is a conjunction
of formulas t = 0, t > 0 and n|t, where t is of the form

∑

i kixi + ly +m, with
ki, l,m ∈ Z, and 0 < n ∈ N. Further, we work in B.

Let ϕ be t = 0, and suppose ϕ(b, d). Then, by i), it is l = 0, and hence also
ϕ(b, o(b)). Let ϕ be t > 0. If ϕ(b, d) holds then either l > 0, or l = 0. In both
cases, we get ϕ(b, o(b)); in the first case, we use (2.4). Finally, let ϕ be n|t, and,
again, suppose ϕ(b, d). Then ϕ(b, o(b)) holds, by ii).

The “moreover statement” is easy.

The following is an immediate consequence of Proposition 2.4:1.

Corollary 2.4:2. Let N < b0, b1, d ∈ B. There is a Peano product ◦ on B such
that b0 ◦ b1 = d if and only if

i) d > N · bi, for i < 2,

ii) “d ≡ b0 · b1 mod n”, for all 0 < n ∈ N.

(In ii), “· · · ” means the obvious additive equivalent of · · · .)
Moreover, ◦ may be chosen to be isomorphic to any given Peano product ·.





Chapter 3

Quasi-Euclidean Subrings of Q[x]1

We present an algebraic connection of the material introduced in the previous
chapters.

We show that the rings Dτ from Example 1.3:1 b) are quasi-Euclidean subrings
of Q[x] which are not k-stage Euclidean for any norm and positive integer k.
These subrings can be either PID or non-UFD, depending on the choice of τ .
In both cases, there are 2ω such domains up to ring isomorphism. This solves
the question of G. E. Cooke from [Coo76], where he asked whether there is an
example of quasi-Euclidean domain, which is not 2-stage Euclidean.

The quasi-Euclidean property of the rings Dτ is proved in Theorem 3.4:2. The
fact, that Dτ ’s are not k-stage Euclidean for any 0 < k ∈ N, is showed in Theorem
3.4:9.

This chapter stands aside the chapters 1 and 2 as an independent part, and
the connections to the previous chapters are rather loose. In order to keep the
material of this chapter completely self-contained, we do not presume anything
from chapters 1 and 2. This includes also a change in notation: Domains Dτ

from Example 1.3:1 b) are denoted Rτ in this chapter, as this fits better the
conventions of algebraic texts.

3.1 Introduction

Although Euclidean and principal ideal domains have been intensively studied
for almost a century, examples of non-Euclidean PIDs are still rather scattered
throughout the literature, and thought of as more or less singular, non-frequent
objects. The oldest of these examples are arguably the rings of integers of Q(

√
d)

for d = −19,−43,−67,−163. However, these are the only cases for negative d’s,

1This chapter is joint work with Jan Šaroch, and is essentially identical to the paper [GŠ13].
The authors would like to thank Josef Mlček and Jan Trlifaj for reading parts of this text and
giving several valuable comments.
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and the results from [Wei73] and [Har04] indicate that it is almost surely the case
of positive values of d, too.

Another type of examples was given by Samuel in his famous paper [Sam71].
Leutbecher (in [Leu78]) capitalized on his approach several years later, and proved
that there are non-Euclidean PIDs which are even quasi-Euclidean (this was
not the case of the four rings of integers mentioned above, as Cohn observed
in [Coh66]).

Throughout this paper, by a quasi-Euclidean domain, we mean a commutative
domain R for which there is a function φ : R2 → ω such that, for all (a, b) ∈ R2

with b 6= 0, there exists q ∈ R with φ(b, a − bq) < φ(a, b). The definition is
similar to the one of classical Euclidean norm, with the important difference that
by the norm function here, we do not measure elements of the ring but pairs of
those. Also, ω can be equivalently replaced by some/any infinite ordinal in the
definition; see Preliminaries section (in particular Proposition 3.2:1) for this and
further equivalent definitions of quasi-Euclidean domain, and related concepts.

There are a few more published results on non-Euclidean PIDs. Unfortunately,
they do not usually present a coherent class of these domains, or some sort of
characterization of rings which are non-Euclidean PIDs in some distinguished
class of domains. Nice attempts in this direction can be found in [And88] and
[EH73].

In this text, we present a parametric construction which is in some sense a
generalization of the approach used in [EH73]. We show that there are many
discretely ordered non-Euclidean (even non-k-stage Euclidean in the sense of
Cooke [Coo76]) subrings of Q[x] which are quasi-Euclidean. In fact, for each
τ ∈ ∏

p∈P Jp, where Jp denotes the ring of p-adic integers, we define one such
subring. Moreover, we observe that the set

∏

p∈P Jp splits into two parts of full
cardinalities, depending on whether the resulting ring is PID or non-UFD. Since
each quasi-Euclidean ring is Bézout (Proposition 3.2:1), there are no inbetween
cases, i.e. non-PID and UFD at the same time.

3.2 Preliminaries

Throughout this chapter, all rings are (commutative integral) domains. Further,
we denote by P the set of all primes in N. For each p ∈ P, Jp stands for the
ring of p-adic integers, while Zp denotes the field Z/pZ. Since Jp ∼= lim←−Zpk , we
shall view Jp as a subring of

∏∞
k=1 Zpk , and denote, for a positive integer k, by πk

the canonical projection from Jp to Zpk . It will not cause any confusion that the
notation πk does not reflect the prime p. Moreover, for technical reasons, we put
π0 : Jp → {0}; again, regardless of the prime p.

If we deal with elements from the ring Q[x], we define deg 0 = −1, and we
denote by lc(q) the leading coefficient of a polynomial q.
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3.2.1 Quasi-Euclidean and k-stage Euclidean domains

Various generalizations of the concept of a Euclidean domain were proposed and
studied in the past. The one we find very natural, is the concept of quasi-
Euclidean (used in [Leu78] and [Bou80]) or the equivalent notion of ω-stage Eu-
clidean domain (used by Cooke in [Coo76]).

Given a ring R and a partial order ≤ on R2, we say that ≤ is quasi-Euclidean
if it has the descending chain condition (dcc), and for any pair (a, b) ∈ R2 with
b 6= 0, there exists an element q in R such that (b, a − bq) < (a, b). We call R
quasi-Euclidean provided there exists a quasi-Euclidean partial order on R2.

Let (a, b) ∈ R2 and k be a non-negative integer. A k-stage division chain
starting from the pair (a, b) is a sequence of equations in R

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−2 = qkrk−1 + rk.

Such a division chain is called terminating if the last remainder rk is 0 (rk−1 is
then easily seen to be the GCD of a and b). Notice that a k-stage division chain
is determined by its starting pair and the sequence of quotients q1, . . . , qk. For
the sake of compactness, in what follows, we shall denote this chain also by

(

a q1 . . . qk
b r1 . . . rk

)

.

Given such a division chain, we define its 0-th remainder r0 as b.
In the following proposition, On denotes the class of all ordinal numbers.

Proposition 3.2:1. ( [Bou80], [Coo76], [Leu78]) For a commutative domain R,
the following conditions are equivalent:

1. There exists a function φ : R2 → On (with Rng(φ) ⊆ ω) such that, for all
(a, b) ∈ R2 with b 6= 0, there exists q ∈ R such that φ(b, a− bq) < φ(a, b).

2. R is quasi-Euclidean.

3. R is a Bézout domain, and the group GL2(R) of regular 2×2 matrices over
R is generated by matrices of elementary transformations.

4. Every pair (a, b) ∈ R2 with b 6= 0 has a terminating k-stage division chain
for some positive integer k.
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Proof. (1) =⇒ (2) is trivial, we just put (a, b) < (a′, b′) if φ(a, b) < φ(a′, b′).

(2) =⇒ (4) follows directly by the dcc.

The equivalence of (3) and (4) was proved already in [O’M64, 14.3].

(4) =⇒ (1): We put φ(a, 0) = 0 for all a ∈ R. If b 6= 0, we define φ(a, b) as the
minimal k ∈ ω for which the pair (a, b) has a terminating k-stage division chain.
(So we even manage to find φ with the range in ω.)

Notice that no notion of a norm is involved in the definition of a quasi-
Euclidean domain. However, given a norm N on R (i.e. a function N : R → N

with N(a) = 0 iff a = 0), we can measure how far N is from being Euclidean:
as in [Coo76], for 0 < k ≤ ω, we say that R is a k-stage Euclidean domain with
respect to N provided that, for every (a, b) ∈ R2 with b 6= 0, there exists a positive
integer l ≤ k such that for some l-stage division chain starting from (a, b) it is
N(rl) < N(b). As usual, we say that R is k-stage Euclidean if there exists such
a norm N on R. So, in our notation, 1-stage Euclidean means Euclidean (in the
classic sense). On the other hand, by Proposition 3.2:1, R is ω-stage Euclidean
(with respect to some/any norm) if and only if it is quasi-Euclidean.

Finally, observe that a quasi-Euclidean domain, being Bézout, is UFD if and
only if it is PID. An example of non-UFD 2-stage Euclidean domain was given
already by Cooke in [Coo76], at the end of §1. It is at this place, where he admits
that he does not know of any example of quasi-Euclidean domain which is not
2-stage Euclidean. Interestingly, all examples, we are going to construct, have
got this property.

3.2.2 Peano arithmetic and weak saturation

Although our construction will be purely algebraic, we are going to give also a
description derived from a nonstandard model of Peano arithmetic (PA). There
are several reasons to do this: the description is very natural, only basic logical
tools are needed, and it sheds more light at the entire situation.

Our models of PA are thought of as models in the language of arithmetic
L = (0, 1,+, ·,≤). The fact that it is an extension of the language of rings will
make it more convenient for us to work with. In particular, we can immediately
say that any model of PA is a (discretely ordered) commutative semiring with 0
and 1.

We will say thatM |= PA is weakly saturated if every 1-type inM without
parameters is realized inM, i.e. given any set Y = {ϕi(x) | i ∈ I} of L-formulas
with one free variable x, there is m ∈ M such that M |= ϕi[m] for all i ∈ I,
provided that, for each finite subset S of I, one hasM |= (∃x)∧i∈S ϕi(x). Indeed,
weakly saturated models of PA exist, we can even take an appropriate elementary
extension of N, however, as we shall see, for such a model M, it is necessarily
|M | ≥ 2ω.
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3.3 Examples

3.3.1 Logical description

Let us fix a weakly saturated model M. Then, as mentioned above, M forms
a commutative semiring. Formally adding negative elements, we turnM into a
commutative domain containing Z as a subring. We will denote this domainM±.
Notice thatM± shares several basic properties with Z, namely it is a discretely
ordered GCD domain; also for every q, r with r 6= 0, there exists 0 ≤ t < |r| such
that r divides q + t (where | | is the usual absolute value). However, unlike Z,
M± is not Noetherian.

Let a be a nonstandard element ofM, i.e. a ∈ M \ N. We define a subring
Ra ofM± in the following way:

Ra = {m ∈M± | (∃n ∈ N)(∃h ∈ Z[x])n 6= 0 & n ·m = h(a)}.
It is easily seen that Ra is a ring. It can be naturally approached if we, in

the first step, take a subring ofM± generated by a (which is nothing else than
Z[a] ∼= Z[x]), and then allow division by nonzero integers in case it is possible in
M±. We immediately observe that Ra is isomorphic to

R′
a =

{

h

n
∈ Q[x]

∣

∣

∣
n ∈ N \ {0}, h ∈ Z[x], and n |h(a) inM±

}

.

Remark 3.3:1.

1. Regardless of a, we have R′
a ∩Q = Z.

2. Notice that Ra = Ra+1 (for any nonstandard a ∈ M) but R′
a 6= R′

a+1 since
precisely one of these two rings contains x/2. On the other hand, as we
shall see later, it is possible that we have nonstandard a, b ∈ M such that
Ra 6= Rb but R

′
a = R′

b.

3. For our considerations, we do not need the full strength of PA. In fact,
instead of binary multiplication, it is enough to have an endomorphism a·
of the monoid (M,+, 0) such that a·1 6∈ N, and the induction for all formulas
in the language (0, 1,+, a·,≤); so the resulting theory can be viewed as an
extension of Presburger arithmetic rather than weakening of PA (see the
theory LA from 1.1.4.1).

3.3.2 Algebraic description

As we have seen above, the definitions of Ra and R′
a rely on the fixed modelM

of PA. However, there is only a little amount of information about a ∈ M that
we actually need. This makes it possible—as we are going to demonstrate—to
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manage without refering to any Peano model. For τ ∈ ∏

p∈P Jp, we define a
subring Rτ of Q[x].

Rτ =

{

h

n
∈ Q[x]

∣

∣

∣ n ∈ N \ {0}, h ∈ Z[x], and (∀p ∈ P) πvp(n)(h(τp)) = 0

}

.

Here, vp denotes the usual p-valuation. Further, τp is the pth projection of
τ , and the substitution h(τp) is done inside Jp where Z is canonically embedded
via z 7→ (z mod p, z mod p2, z mod p3, . . . ). We will use this substitution several
times in the next section.

It follows easily from the definition that σ 6= τ implies Rσ 6= Rτ . The corre-
spondence between the rings R′

a and Rτ is made precise by Proposition 3.3:2.

Proposition 3.3:2. LetM be a weakly saturated model of PA. Then:

1. For each nonstandard a ∈ M there exists precisely one τ ∈ ∏

p∈P Jp such
that R′

a = Rτ .

2. For each τ ∈ ∏

p∈P Jp there is at least one nonstandard a ∈ M such that
R′
a = Rτ .

Proof. (1) There is even a ring homomorphism ψ :M± →∏

p∈P Jp which assigns

to m ∈ M± an element τ such that τp = (m mod p,m mod p2,m mod p3, . . . )
for each p ∈ P. It is a matter of straightforward verification that R′

a = Rψ(a) for
any nonstandard a ∈M .

(2) Let us consider the set Y consisting of all congruences x ≡pk τp(k) and
inequalities x > k, where k ∈ N \ {0} and p ∈ P. Then Y is a 1-type in M
(without parameters—positive integers are just constant terms in the language
L) since any finite subset of Y has a solution in N ⊂ M by Chinese Remainder
Theorem. So there is a global solution, a ∈M , of all congruences and inequalities
from Y , using the weak saturation of M. (Now, it is clear that |M | ≥ 2ω.)
The inequalities assure that a is nonstandard, and checking the definitions, we
immediately see that R′

a = Rτ .

In the following section, we will freely use the fact (implicitly proved above)
that, for every τ , the ring Rτ inherits the discrete ordering fromM± via isomor-
phism with Ra for some/any a.

3.4 Properties of the examples

3.4.1 Terminating division chains

We are going to show that, for every τ , the ring Rτ is quasi-Euclidean. So let τ
be fixed for a while, put R = Rτ , and let us denote by R+ the subsemiring of R



3.4. PROPERTIES OF THE EXAMPLES 99

consisting of polynomials with nonnegative leading coefficients. First, we prove
the following auxiliary result.

Lemma 3.4:1. Let q, r ∈ R+ with r 6= 0, then there are (unique) p, s ∈ R+ such
that q = pr + s and s < r.

Moreover: Let p̃, s̃ ∈ Q[x] be such that q = p̃r+s̃ and deg s̃ < deg r. Further let
p̃ = p′/m where p′ ∈ Z[x], m ∈ N\{0} and 0 ≤ k < m such that (p′−k)/m ∈ R+.
Then the pair (p, s) satisfies

(p, s) =

{

(p̃− 1, s̃+ r) for k = 0 & lc(s̃) < 0,
(

p′−k
m
, s̃+ k

m
r
)

otherwise.

Proof. Straightforward verification.

If we look at Ra (for a with R′
a = R), there is only one pair (p, s) in the model

M satisfying the properties from Lemma 3.4:1, namely the pair (q div r, q mod r).
Here, div stands for the binary operation of integer division. Thus in particular,
we have that R+ as a subsemiring of M is closed under binary operations div
and mod.

Consequently, we say that a division chain

(

r−1 q1 . . . qn
r0 r1 . . . rn

)

in R+ with

r−1, r0 > 0 is quasi-Euclidean if qi+1 = ri−1 div ri and ri+1 = ri−1 mod ri, for
i ≥ 0. A consequence of the proof of the following theorem is that, for any
nonzero a, b ∈ R+, there exists a positive integer n such that the quasi-Euclidean
chain of length n starting from the pair (a, b) is terminating.

Theorem 3.4:2. R is a quasi-Euclidean domain . In particular, it is Bézout.

Proof. We will show that the condition (1) from Proposition 3.2:1 is satisfied. For
this sake, we define φ : R2 → (2 × N4, lex) by the formula φ(q, r) = (0, 0, 0, 0, 0)
for r = 0, and

φ(q, r) = (δq,r, deg q + 1, deg r, nq,r, nq,r · |lc(q)|)

otherwise. Here, δq,r is 1 if |q| ≤ |r|, and 0 otherwise; nq,r ∈ N denotes the least
common denominator of q, r. In the rest of the proof, we assume that q > r > 0.
The other cases follow easily. (Notice that φ(q, r) = φ(|q|, |r|).)

Since Q[x] is a Euclidean ring with the norm deg(−)+1, there are p̃, s̃ ∈ Q[x]
such that q = p̃r + s̃ and deg s̃ < deg r. By Lemma 3.4:1, we get p, s ∈ R+

satisfying s < r and q = pr + s.
Suppose s 6= 0. We need to show that φ(r, s) < φ(q, r) in the lexicographic

order of 2 × N4. Since 0 < s < r, we have δr,s = 0 = δq,r. We may assume
deg q = deg r = deg s (otherwise, we are done immediately). Then p ∈ N.

Further, we have q, r ∈ Z[x]
nq,r

, and hence s = q − pr ∈ Z[x]
nq,r

. Therefore nr,s ≤ nq,r.

Moreover, from r < q, we have lc(r) ≤ lc(q).
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Assume nr,s = nq,r and lc(r) = lc(q). Then, from the definition of p̃, we have
p̃ = 1, and thus p′ = 1 = m, k = 0 in Lemma 3.4:1. The first case in the definition
of (p, s) leads to a contradiction, since we get p = 0 (and so q = s < r). So it must
be that p = p̃ = 1 and s = s̃. In particular, we see that deg s = deg s̃ < deg r
which also contradicts one of our assumptions.

Finally, R is Bézout by Proposition 3.2:1.

3.4.2 Separating the PID cases

In the following few paragraphs, we distinguish the choices of τ which imply that
Rτ is a PID. We also show that there are 2ω pairwise nonisomorphic domains
among the rings Rτ which are PID, and the same cardinality of those which are
not PID. The next lemma will be useful.

Lemma 3.4:3. Let τ ∈ ∏

p∈P Jp. Then Rτ is a PID if and only if, for each
nonzero h ∈ Z[x], the set Sh = {(p, k) ∈ P× (N \ {0}) | πk(h(τp)) = 0} is finite.
Proof. Assume that Sh is infinite for some nonzero h ∈ Z[x]. Then either the set
{p ∈ P | h/p ∈ Rτ} is infinite, or there exists a prime p such that h/pk ∈ Rτ for
any k ∈ N. In the first case, we fix an enumeration {p1, p2, p3, . . . } of that set,
and—using the definition of Rτ—we see that (h/p1, h/(p1p2), h/(p1p2p3), . . . ) is
an infinite descending (with respect to divisibility) sequence of elements in Rτ ;
thus Rτ is not a UFD. In the second case, we use the same argument for the
sequence (h/p, h/p2, h/p3, . . . ).

If Rτ is not a PID, then (since it is Bézout by Theorem 3.4:2) there has to be an
infinite sequence of elements in Rτ descending in divisibility (h1/n1, h2/n2, . . . );
here hi ∈ Z[x] and ni are positive integers coprime with hi in Z[x], for all i > 0.
The polynomials hi will eventually have the same degree (Q[x] is Euclidean) and
absolute value of the leading coefficient (Z is Noetherian), and so we may w.l.o.g.
assume that all the polynomials hi are equal to a single nonzero h ∈ Z[x]. It
directly follows that, for this h, the set Sh is infinite.

Let us take a representative subset J of
∏

p∈P Jp in the sense that, for each ρ,
there is a τ ∈ J such that Rτ

∼= Rρ, and for all τ, σ ∈ J , τ 6= σ, we have Rτ 6∼= Rσ.
Then J is a disjoint union of the sets A and B, where A = {τ ∈ J | Rτ is a PID}
and B = {τ ∈ J | Rτ is not a UFD}.
Proposition 3.4:4. |A| = |B| = 2ω.

Proof. Let us assume that |A| < 2ω. For each p ∈ P, we define τp ∈ Jp in such a
way that:

1. π1(τp) = blog pc,
2. n · τp 6∈ {h(σp) | σ ∈ A & h ∈ Z[x]}, for every positive integer n,

3. τp is not a root in Jp of a nonzero polynomial from Z[x].
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This is clearly possible since the first two conditions are satisfied by 2ω dif-
ferent elements of Jp. Let τ =

∏

p∈P τp. We claim that Rτ is a PID which leads
immediately to a contradiction (by (2), there cannot be σ ∈ A with Rτ

∼= Rσ).
To prove this, we use Lemma 3.4:3. Let us fix a nonzero h ∈ Z[x]. Then,

using the limit comparison of h and log, we deduce that, for all sufficiently large
primes p, we have 0 < |h(blog pc)| < p which further implies π1(h(τp)) 6= 0.
Together with the condition (3), we get that Sh is finite. This finishes the proof
that |A| = 2ω.

To see that |B| = 2ω, it is enough to fix a σ ∈ A, and for each nonzero subset
P of P define τP ∈ B by setting τPp = (0, 0, 0, . . . ) for p ∈ P , and τPp = σp
otherwise.

3.4.3 Keeping distance from Euclidean domains

Here, we prove that no Rτ is a k-stage Euclidean domain, whatever positive
integer k we take. From now on, we work in a fixed ring Rτ . We start with two
slightly technical lemmas 2.

Lemma 3.4:5. Let Q =

(

a q1 . . . qk
b r1 . . . rk

)

be a division chain starting from

(a, b) with a, b, k > 0. There is a division chain Q′ =

(

a q′1 . . . q′l
b r′1 . . . r′l

)

with

q′i > 0 for i > 1 such that |rk| = |r′l| and l ≤ 2k − 1.

Proof. Denote T1, T2 the following two transformations on the set of all division
chains starting from (a, b):

T1 :

(

a q1 . . . qk
b r1 . . . rk

)

7→

(

a q1 . . . qi−1 qi − 1 1 −(qi+1 + 1) −qi+2 . . . −qk
b r1 . . . ri−1 ri + ri−1 −ri (−1)2ri+1 (−1)3ri+2 . . . ±rk

)

where i is the first index such that qi+1 < 0 (T1 is identity if there is no such i)

and ± stands for (−1)k−i+1;

T2 :

(

a q1 . . . qk
b r1 . . . rk

)

7→
(

a q1 . . . qi−1 qi + qi+2 qi+3 . . . qk
b r1 . . . ri−1 ri+2 ri+3 . . . rk

)

where i is the first index such that qi+1 = 0 (T2 is identity if there is no such i).
We will show a little bit more than stated; instead of l ≤ 2k − 1, we prove

even that l ≤ k+n where n = max{k− i+1; i > 1 & qi < 0} (n = 0 if there is no

2Lemma 3.4:5 is a modified version of a classical result on continued fractions by Perron
(see [Per13, §37]).
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such i). Put Q =

(

a q1 . . . qk
b r1 . . . rk

)

and denote the corresponding pair (n, k) as

pQ = (nQ, kQ). We prove the statement by induction on the pairs (nQ, kQ) with
lexicographic ordering. The case pQ = (0, 1) is trivial.

If there is i such that qi+1 = 0, we get pT2(Q) ≤lex (nQ, kQ− 2), and the induc-
tion assumption gives some Q′. It is easy to verify that this Q′ meets all the re-

quirements. (Note that in the case i+1 = k we get T2(Q) =

(

a q1 . . . qi−1

b r1 . . . ri−1

)

and ri−1 = ri+1.)
Otherwise, we have qi 6= 0 whenever i > 1, and using T1 we get

pT1(Q) ≤lex (nQ − 1, kQ + 1).

Again, the Q′ given by the induction assumption is what we wanted.

Lemma 3.4:6. Let

(

a q1 . . . qk
b r1 . . . rk

)

be a division chain starting from (a, b)

such that a, b, qi > 0 for i > 1, and let

(

a e1 . . . em
b f1 . . . 0

)

be the quasi-Euclidean

division chain in Rτ starting from (a, b). Assume m ≥ k.
Then |rk| ≥ fk+1, and in particular deg(rk) ≥ deg(fk+1) (we put fk+1 = 0 if

m = k).

Proof. Take the least l such that ql 6= el (if there is no such, we are done since (fi)
is decreasing). By an inductive argument, it is easy to observe that the following
holds (recall that we put f0 = r0 = b):

If ql < el then







rl+2i ≥ rl−1 for i ≥ 0,
rl+2i+1 ≤ −rl−1 for i ≥ 1,
rl+1 ≤ −rl−1 or rl+1 = −fl;

and if ql > el then







rl+2i < −rl−1 for i ≥ 1,
rl+2i+1 > rl−1 for i ≥ 0,
rl ≤ −rl−1 or (m > k & rl ≤ −fl+1).

The statement follows since rl−1 = fl−1 and (fi) is decreasing.

Combining both lemmas together, we obtain the following corollary which
gives us a bound on the speed of decrease of remainders in a division chain,
compared to the quasi-Euclidean one. By letting a, b be any two consecutive
Fibonacci numbers, one can see that the bound is optimal.

Corollary 3.4:7. Given a, b > 0, let

(

a e1 . . . en
b f1 . . . 0

)

be the quasi-Euclidean

division chain starting from (a, b), and

(

a q1 . . . qk
b r1 . . . rk

)

be an arbitrary divi-

sion chain. Then, for l ≤ min(k, n/2), we have |rl| ≥ f2l.
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Now, we have all the tools for proving that no Rτ is k-stage Euclidean domain,
independently of the choice of k > 0. For the sake of better readability, we state
the key step of the proof as a separate lemma.

Lemma 3.4:8. Let k be a positive integer and 0 < b ∈ Rτ such that deg(b) ≥ 1.

Then there is 0 < a ∈ Rτ such that every division chain

(

a q1 . . . ql
b r1 . . . rl

)

of

length l ≤ k starting from (a, b) satisfies deg(rl) ≥ deg(b).

Proof. By Corollary 3.4:7, it is enough to prove the statement for the quasi-
Euclidean division chain instead of an arbitrary one.

Set a = c
d
(b− β) where c, d ∈ N are such that no division chain in Z of length

l ≤ k starting from (c, d) is terminating (such c, d exist since Corollary 3.4:7 holds
also in Z) and 0 ≤ β < d is such that d|(b− β) in Rτ .

For a contradiction, let the quasi-Euclidean division chain
(

a e1 . . . el
b f1 . . . fl

)

starting from (a, b) satisfy deg(fl) < deg(b). We may w.l.o.g. assume deg(fl−1) =
deg(b); then we have ei ∈ Z for all i = 1, 2, . . . , l.

Define the operation ˆ : Rτ → Q as r̂ = lc(dr)/lc(b). Easily â, b̂ ∈ Z, and
therefore also f̂i ∈ Z, for all i 6= l. Hence,

(

â e1 . . . el−1 el
b̂ f̂1 . . . f̂l−1 0

)

is a division chain in Z starting from (â, b̂) = (c, d), a contradiction.

Theorem 3.4:9. Let τ ∈ ∏

p∈P Jp be arbitrary. Then the ring Rτ is not k-stage
Euclidean for any positive integer k.

Proof. Assume the contrary and let N be a norm such that Rτ is k-stage Eu-
clidean with respect to N . To get a contradiction, we construct an infinite se-
quence (b0, b1, . . .) of elements from Rτ with N(bi) > N(bi+1) and such that
deg bi+1 ≥ deg bi ≥ 1, for all i ∈ N.

As the first step, put b0 = x ∈ Rτ . Now assume we have defined bi for all
i ≤ j ∈ N. Suppose bj > 0. For bj we find some aj using Lemma 3.4:8. By the

k-stage Euclidean property, there is an l-stage division chain

(

aj q1 . . . ql
bj r1 . . . rl

)

with l ≤ k starting from the pair (aj, bj) such that N(rl) < N(bj). So we can set
bj+1 = rl. By Lemma 3.4:8, we know that deg bj+1 ≥ deg bj ≥ 1.

The case bj < 0 is similar. For −bj find −aj by Lemma 3.4:8, take a division

chain

(

aj q1 . . . ql
bj r1 . . . rl

)

with N(rl) < N(bj) and set bj+1 = rl. If it were
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deg rl < deg bj, we would have the division chain

(

−aj q1 . . . ql
−bj −r1 . . . −rl

)

with

deg−rl < deg−bj, contradicting the choice of −aj.

We conclude this chapter by the following

Open question 3. Is there an example of a k-stage Euclidean domain which is
not (k − 1)-stage Euclidean, for k > 2?
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und Berlin, 1913.

[PH77] J. Paris and L. Harrington, A mathematical incompleteness in Peano
arithmetic, Handbook of Mathematical Logic, Studies in Logic and the
Foundations of Mathematics, North-Holland P. C., 1977, pp. 1133–
1142.

[PJ91] M. Presburger and D. Jabcquette, On the completeness of a certain
system of arithmetic of whole numbers in which addition occurs as
the only operation, History and Philosophy of Logic 12 (1991), no. 2,
225–233.
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