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konečností výpočetní mřížky atd. V dalším kroku se soustředíme na kompliko-
vanější modely. S pomocí Bornovy aproximace počítáme seismogramy ve 2D
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Abstract:
One of the aims of this thesis was coding of program grdborn.for for computing
the 2D and 3D ray-based Born approximation of the first order in an inhomoge-
nous isotropic medium without attenuation. The computation of 3D amplitudes
using the 2D Born approximation is based on the correction term, which is de-
rived. The program is further used in computing the Born approximation in
various models. We test its performance in three simple models. We study the
effect of the discretization, the spurious waves introduced by the finite size of
the grid etc. In the next step, we focus on the computations in more compli-
cated models. We compute the Born seismograms in 2D heterogenous models.
We study the diffracted waves, the effects of caustics etc.
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Preface

This master thesis is based on the articles named “3D and 2D computations of 3D
synthetic seismograms using the ray-based Born approximation in simple mod-
els”, “2D computations of 3D synthetic seismograms using the ray-based Born
approximation in heterogenous model P1”, “Effect of caustics to the ray-based
Born approximation” and “Born and ray theory seismograms in 2D heteroge-
nous isotropic models”. The first and second article were published in report 21
of consortium SW3D (Seismic waves in complex 3-D structures). These articles
were slightly revised for this master thesis. The poster based on the first paper
was presented in the 73rd EAGE Conference & Exhibition incorporating SPE
EUROPEC 2011 in Vienna in the student section.

The first chapter explains the theory of the Born approximation, provides
a short introduction to the ray theory and explains the concepts used in the
seismic wave modelling, which are mentioned in the thesis. These information
are probably familiar for people working in the seismic wave modelling, but we
think that it might be useful to brush them up for somebody working in a slightly
different field.

The second, third, fourth and fifth chapter contain the four mentioned arti-
cles. The articles focus mainly on the numerical tests of the Born approximation.
The important difference between the articles is the use of a homogenous back-
ground model in the first article and the use of a heterogenous background model
in the remaining articles.

There are several appendices. Appendix A is devoted to the software used
during the computations. The programs from SW3D packages which have been
already coded are just listed, the programs newly programmed are shortly de-
scribed.

Appendix B is about program grdborn.for. For the direct use of the program,
the commentaries at the beginning of the program code should be sufficient. The
text in this appendix tries to explain more deeply how the program works, it is
not a manual.
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Appendix C describes the one of two prepared sample computations. Part C.1.
introduces the sample computation and describes its structure. This text to-
gether with the commentaries in the data files, history files and program codes
could be sufficient to show how to use program grdborn.for in cooperation with
the certain SW3D programs. Of course, there are many input files and parame-
ters and their settings could be slightly different for a different model. For this
reason, part C.2. explains the functionality of the input files and parameters in
the computation.

The newly coded programs described in appendix A and appendix B as well
as the sample computations from appendix C are available on the attached CD.
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Chapter 1

Theory

1.1 Elastodynamic equation
We shall use the Lagrangian description of motion in an elastic continuum. In
the Lagrangian description, we study the motion of a particle specified by its
original position at some reference time. Assume that the particle is located at
the position described by Cartesian coordinates xi at the reference time. The
vector distance of a particle at time t from position ~x at the reference time is
called the displacement vector and is denoted by ~u. Obviously, ~u = ~u(~x, t).

In a linear, anisotropic, perfectly elastic solid, the elastodynamic equation
has the form

(cijkluk,l),j + fi = ρüi, i = 1, 2, 3 (1.1)

Here fi denote the Cartesian components of body forces (force per volume), and
ρ is the density. The term with fi in elastodynamic equation (1.1) will also be
referred to as the source term. Quantities üi = ∂2ui/∂t

2, i = 1, 2, 3, represents
the second partial derivatives of ui with respect to time (that is, the Cartesian
components of particle acceleration ~̈u) and cijkl are components of the elastic
tensor. The elastic tensor has, in general, 3× 3× 3× 3 = 81 components. These
components, however, satisfy the following symmetry relations:

cijkl = cjikl = cijlk = cklij,

which reduce the number of independent components of the elastic tensor from
81 to 21.

The components cijkl of the elastic tensor are also often called elastic con-
stants, elastic moduli, elastic parameters or stiffnesses.
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In the isotropic solid, the components of elastic tensor cijkl can be expressed
in terms of two independent elastic moduli λ and µ as follows:

cijkl = λδijδkl + µ(δikδjl + δilδjk) (1.2)

see (Jeffreys, 1956) and (Aki,2002). Here δij is the Kronecker symbol,

δij = 1 for i = j, δij = 0 for i 6= j

Elastic moduli λ, µ are also known as Lamé’s elastic moduli; µ is called the
rigidity (or shear modulus).

Elastodynamic equation (1.1) is written in the time domain. It can be written
in the frequency domain as well. It reads

(cijkluk,l),j + ρω2ui = −fi, i = 1, 2, 3. (1.3)

Here ω = 2πf is the circular frequency, where f is frequency. Remark that
despite the fact that we use in both forms of elastodynamic equation ui and fi,
it has different meaning. It means ui(x, t) and fi(x, t) in the time domain and
ui(x, ω) and fi(x, ω) in the frequency domain (Červený, 2001).

1.2 Green function
In order to avoid coefficient (2π)−

1
2 at the force density in the definition of the

frequency–domain Green function, we consider here Fourier transform

u(ω) =

+∞∫
−∞

dt u(t) exp(iωt),

see (Červený, 2001) eq. A.1.2, without coefficient (2π)−
1
2 . Then the frequency–

domain elastodynamic Green function is the solution of equation[
cijkl(x)Gkm,l(x,x

′, ω)
]
,j

+ ω2%(x)Gim(x,x′, ω) + δim δ(x−x′) = 0 (1.4)

The frequency–domain Green function obeys reciprocity relation

Gim(x,x′, ω) = Gmi(x
′,x, ω) (1.5)
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Taking scalar product of equation (1.4) with fm(x′, ω) and integrating at least
over the support V of fm(x′, ω), we see that

ui(x, ω) =

∫
V

d3x′ Gim(x,x′, ω) fm(x′, ω)

is the solution of the frequency–domain elastodynamic equation (Klimeš, 2009).
It is possible to find the expressions for the elastodynamic Green function for

isotropic homogenous media (Červený, 2001, eq. 2.5.54), elastodynamic Green
function for anisotropic homogenous media (Červený, 2001, eq. 2.5.73) and the
ray-theory Green function for anisotropic heterogenous media, see Klimeš (2011).

1.3 Born approximation

1.3.1 Perturbations

The Born approximation is one of the so called perturbation methods. Perturba-
tion methods play an important role in ray methods. They can be used for fast
but approximate solution of forward problems in complicated models. Pertur-
bation methods play an equal or even more important role in inverse problems
(Červený et al., 2007).

We introduce perturbation parameters fα. For cijkl=cijkl(x, f
α), %=%(x, fα)

and fi = fi(x, ω, f
α), we obtain wavefield ui =ui(x, ω, f

α) dependent on pertur-
bation parameters fα. The background model is given by fα = fα0 , the perturbed
model is given by fα = fα1

The wavefield in the perturbed model can be related to the wavefield in the
background model using Taylor (perturbation) expansion

ui(x, ω, fα1 ) = ui(x, ω, fα0 ) + ui,α(x, ω)(fα1 − fα0 ) + . . . ,

where ui,α means derivative of the wavefield with respect to the perturbation
parameters fα computed in the background model (Klimeš, 2009).

1.3.2 General form

We differentiate the frequency–domain elastodynamic equation (1.3) with re-
spect to fα, and obtain elastodynamic equation for first–order perturbation
derivatives ui,α:

(cijkl uk,αl),j + ω2% ui,α + Fiα = 0 (1.6)
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where
Fiα = (cijkl,α uk,l),j + ω2%,α ui + fi,α

For exact background wavefield ui(x, ω, fα0 ), perturbation derivatives fi,α proba-
bly vanish.

We may express the solution of this equation in the form of integrals over
volume Ω which covers the supports of the perturbation derivatives of cijkl, %
and fi:

ui,α(x, ω) =

∫
Ω

d3x′ Gim(x,x′, ω)Fmα(x′, ω)

In order to avoid the spatial derivatives of perturbation derivatives of elastic
moduli in the integral, we may express∫

Ω

d3x′ Gim (cmjkl,α uk,l),j

=

∫
Ω

d3x′ (Gim cmjkl,α uk,l),j −
∫
Ω

d3x′ Gim,j cmjkl,α uk,l

=

∫
∂Ω

d2x′ Gim cmjkl,α uk,lnj −
∫
Ω

d3x′ Gim,j cmjkl,α uk,l

≈ −
∫
Ω

d3x′ Gim,j cmjkl,α uk,l,

where we used the Green theorem and neglected the surface integral, because we
can choose Ω so big that the integrand is sufficiently small.

The first–order perturbation derivatives ui,α then read

ui,α(x, ω) =

∫
Ω

d3x′
[
Gim(x,x′, ω)Kmα(x′, ω)−Gim,j(x,x

′, ω)Lmjα(x′, ω)
]
(1.7)

where
Kiα = ω2%,α ui + fi,α

and
Lijα = cijkl,α uk,l.

The higher order perturbation derivatives can be obtained similarly (Klimeš,
2009).
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Note, that if we have only one perturbation parameter α and if we sup-
pose linear dependence of cijkl(x, α), %(x, α) on α and put α = 0 for the back-
ground model and α = 1 for the perturbed model, we get eq. (2.6.18) from
Červený (2001).

1.3.3 Another view

Matyska (2011) noted that there is another view on this problem. We perform
the dot product between vector elastodynamic equation in the time domain
(1.1) without body force fi and time independent vector test function Ψ(x) and
integrate the result over bounded domain Ω with Lipschitz boundary.∫

Ω

(cijkluk,l),jΨi d3x =

∫
Ω

ρ
∂2ui
∂t2

Ψi d3x. (1.8)

In the case of the perturbed medium we have∫
Ω

[(cijkl + ∆cijkl)(uk + ∆uk),l],j Ψi d3x =

∫
Ω

(ρ+∆ρ)
∂2(ui + ∆ui)

∂t2
Ψi d3x, (1.9)

where the quantities with ∆ are the perturbations. Equation (1.9) minus equation
(1.8) reads∫
Ω

(cijkl∆uk,l),j Ψi d3x =

∫
Ω

ρ
∂2∆ui
∂t2

Ψi d3x+

∫
Ω

(
∆ρ

∂2ui
∂t2
− (∆cijkluk,l),j

)
Ψi d3x,

(1.10)
where we neglected terms∫

Ω

(∆cijkl∆uk,l),j Ψi d3x ,

∫
Ω

∆ρ
∂2∆ui
∂t2

Ψi d3x, (1.11)

because each of them contains two “small” quantities. We apply the Green the-
orem at the most left term in equation (1.10),∫
Ω

cijkl∆uk,lΨi,j d3x = −
∫
Ω

ρ
∂2∆ui
∂t2

Ψi d3x+

∫
Ω

(
−∆ρ

∂2ui
∂t2

+ (∆cijkluk,l),j

)
Ψi d3x,

(1.12)
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where we omitted the surface integral, because it is equal to zero due to the Diri-
chlet boundary conditions and test functions Ψ which are zero at the boundary
in the sense of trace. Term

Fi = −∆ρ
∂2ui
∂t2

+ (∆cijkluk,l),j, (1.13)

can be interpreted as the body force. Notice, that if ∆cijkluk,l is not continuous,
for example due to the jump in the elastic parameters cijkl at the interface
between two different materials (which happens in the models used in the first
paper), (∆cijkluk,l),j represents the surface force. Then it is necessary to rewrite
(1.12) using the Green theorem to obtain (the surface integral is equal to zero
again)∫
Ω

cijkl∆uk,lΨi,j d3x = −
∫
Ω

ρ
∂2∆ui
∂t2

Ψi d3x+

∫
Ω

(
−∆ρ

∂2ui
∂t2

Ψi −∆cijkluk,lΨi,j

)
d3x,

which is already correct, because cijkl ∈ L∞(Ω) and we suppose that uk is smooth
enough, for example uk ∈ C∞(Ω) or it is at least a function from Sobolev space
W 1,2(Ω), because it is the ray-theory solution. Alternatively, using cijkl = cklij,
we may rewrite (1.12)

((∆u,Ψ)) = −
(
ρ
∂2∆u

∂t2
,Ψ

)
+ (F,Ψ), (1.14)

where
((a,b)) =

∫
Ω

cijkl
∂ai
∂xj

∂bk
∂xl

d3x,

is an elliptical bilinear form due to the fact that cijkl ≥ 0 for each combination
of i,j,k,l ∈ {1, 2, 3} and

(a,b) =

∫
Ω

aibi d3x,

is a scalar product.
We add that equation (1.14) in the frequency domain has the form

((∆u,Ψ))− ω2ρ (∆u,Ψ) = (F,Ψ). (1.15)

Equations (1.14), (1.15) are suitable for the weak formulation of the problem.
They are both hyperbolic. For the properties of the hyperbolic systems like
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the existence of the solution or its uniqueness we refer to Rektorys (1982) or
Evans (1998).

Note that in Červený (2001) the derivation of the first-order Born approxi-
mation starts with subtracting the wave equation in the perturbed medium and
in the background medium, i.e. similarly to the derivation of (1.10), but with-
out the multiplication by the vector test function and integration. The author
then neglects terms (1.11) (again no multiplication by the vector test function
and integration) and obtains equation (1.6), where ∆ui, Fi (see (1.13)) stand
instead of ui,α, Fiα. It would be possible to construct the following iteration pro-
cess: In the first step, we compute the wavefield perturbations in the specified
receiver and in our computational grid. In the next step we use them to compute
the neglected terms and add them to force Fi. We again compute the wavefield
perturbations using the corrected Fi and so on. Unfortunately this algorithm
is too time demanding, because it requests the computation of the wavefield
perturbations using the Born approximation at each gridpoint.

1.4 Ray theory, a short introduction
We compute the quantities in the background model using the ray theory. This
section presents the key ideas of the ray theory. We use Einstein summation
convention.

Ray theory ansatz

For each elementary wave, we express the displacement in terms of vectorial
amplitude ai and travel time τ ,

ui(x
m, ω) = ai(x

m) exp
[
iωτ(xm)

]
.

We insert this ansatz into anisotropic elastodynamic equation (1.3) with fi=0:

(iω)2Ni(ak, τ,l) + iωMi(ak, τ,l) + Li(ak) = 0. (1.16)

Terms Ni, Mi, Li are expressed in Červený (2001, eq. 2.4.41).

Christoffel equation

We wish equation (1.16) to be satisfied for arbitrary frequency ω. Therefore,
the coefficients Ni, Mi, Li should be zero. Three highest–order equations with
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respect to ω,
Ni(ak, τ,l) = 0,

constitute the matrix Christoffel equation

Γik ak − ai = 0

(Červený, 2001, eq. 2.4.42). Here

Γik =
cijkl
%

τ,jτ,l

(Červený, 2001, eq. 2.4.43) is the Christoffel matrix.
We see that ai must be a multiple of unit eigenvector gi of Γik,

ai = Agi.

Vector gi is called the polarization vector.

Eikonal equation

We select unit eigenvector gi and the corresponding eigenvalue G of Γik. Travel
time τ is the solution of eikonal equation

G
(
xm, τ,n(xr)

)
= 1

(Červený, 2001, eq. 2.4.44), where G(xm, τ,n) is the eigenvalue of Γik(x
m, τ,n)

corresponding to eigenvector gi(xm, τ,n).
This eikonal equation is a special case of the Hamilton–Jacobi equation.

Transport equation

If the eigenspace corresponding to eigenvalue G(xm, τ,n) is one–dimensional, only
one of equations of order ω in (1.16) can be satisfied:

aiMi(ak, τ,l) = 0.

This transport equation for amplitude A reads

(% aijklgigkτ,lA
2),j = 0.
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Phase–space derivatives

We denote the partial derivatives with respect to spatial coordinates xi by lower–
case Roman subscripts following a comma, and the partial derivatives with re-
spect to components pj = τj of the slowness vector by lower–case Roman super-
scripts following a comma,

H ,ab...f
,ij...n (xr, ps) =

∂

∂xi
∂

∂xj
...

∂

∂xn
∂

∂pa

∂

∂pb
...

∂

∂pf
H(xr, ps).

Hamilton–Jacobi equation

The eikonal equation for travel time is a special case of the Hamilton–Jacobi
equation. The Hamilton–Jacobi equation is a general first–order partial differen-
tial equation

H
(
xm, τ,n(xr)

)
= C

for travel time τ = τ(xr), where C is a constant. Sufficiently smooth function
H = H(xm, pn) defined in the phase space is called the Hamiltonian function. The
Hamilton–Jacobi equation may be replaced by Hamilton’s equations (equations
of geodesics, ray–tracing equations)

dxi

dγ
=H ,i (1.17)

dpi
dγ

=−H,i. (1.18)

These Hamilton’s equations may be used for calculation of the gradient of travel
time τ along rays (geodesics).

Travel time τ is then given by equation

dτ

dγ
=

∂τ

∂xi
dxi

dγ
= piH

,i.

Meaning of independent parameter γ along rays depends on the form of the
Hamiltonian function.

Ray coordinates

The system of rays corresponding to action τ = τ(xm) is referred to as the
orthonomic system of rays. In D–dimensional manifold, the initial conditions
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for Hamilton’s equations corresponding to the orthonomic system of rays are
parametrized by D−1 ray parameters

γ1, γ2, ..., γD−1.

The ray parameters together with independent parameter

γD = γ

along rays form ray coordinates.

Hamiltonian equations of geodesic deviation

We define matrices
Qi

a =
∂xi

∂γa

and
Pia =

∂pi
∂γa

representing the geodesic deviation (ray deviation) corresponding to ray coordi-
nates γa. These matrices are often referred to as the paraxial matrices. Matrix
Qi

a is called the matrix of geometrical spreading.
The equations for Qi

a and Pia are linear Hamiltonian equations of geodesic
deviation (paraxial ray equations, dynamic ray tracing equations) read (Červený,
1972)

d

dγ
Qi

a = H ,i
,j Q

j
a +H ,ij Pja

d

dγ
Pia = −H,ij Q

j
a −H

,j
,i Pja.

The solution of the transport equation can be expressed using the determinant
of matrix Qi

a:

A = A0

√
%0

%

H ,kpk
(H ,kpk)0

det Q0

det Q
,

where quantities with subscript 0 are the initial values at the initial point of the
ray.

The second order derivative of travel time can be calculated using

τ,ij = PiaQ
−1
aj ,

where Q−1
aj is the inverse matrix to Qj

a.
The third–order and higher–order spatial derivatives of travel time can be

calculated by quadratures along rays (Klimeš, 2002).
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1.5 Concepts used in the seismic wave modelling
In applications, the whole system of rays is usually needed. The rays are para-
metrized by two ray parameters γ1 and γ2. For example, for an elementary
wave generated by a point source, the two ray parameters may be chosen as the
take–off angles of initial slowness vectors at the source.

The velocity model specifies the spatial distribution of the density–reduced
elastic moduli in anisotropic media, or the spatial distribution of the P–wave or
S–wave propagation velocities in isotropic media. The velocity model should also
specify the spatial distribution of the density.

The velocity model specifies the spatial distribution of these medium proper-
ties inside the finite model volume and in its vicinity. The model volume is
usually limited by coordinate surfaces,

ximin ≤ xi ≤ ximax ,

but may also be limited by other surfaces.
If the n–th derivatives of the travel time are to be continuous, the n–th

derivatives of the density–normalized elastic moduli must be continuous. If the
amplitudes are to be continuous, the second derivatives of the density–normalized
elastic moduli must be continuous. The minimum requirement on a smooth ve-
locity model for the zero–order ray theory are the continuous second derivatives
of the density–normalized elastic moduli.

The density–normalized elastic moduli may be discontinuous only along in-
terfaces. Interfaces thus divide the velocity model into blocks. The variation of
the density–normalized elastic moduli within each block should be smooth in the
same sense as in the smooth velocity model. A velocity model composed of these
blocks, which are separated by interfaces, may be called the block velocity
model.

The surfaces forming the interfaces may be defined implicitly, as the zero
isosurfaces of given functions f(xi). Each surface divides the whole model volume
into two parts, the positive part, in which f(xi) > 0, and the negative part, in
which f(xi) < 0.

As in Červený et al. (1988), we construct the block velocity model from two
types of blocks formed by smooth surfaces: simple blocks which are the “building
bricks” of the velocity model and have no physical meaning, and complex blocks,
which represent the physical units of the velocity model. A simple block is
defined by two finite sets F+ and F− of surfaces f(xi) = 0. A point xi lies
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within the simple block if and only if

f(xi) > 0 for any f ∈ F+ , f(xi) < 0 for any f ∈ F− .

The simple block is an intersection of the positive parts of the velocity model
corresponding to the surfaces from F+ and the negative parts of the model
corresponding to F−.

A complex block is formed as a union of several simple blocks (it may, of
course, be also formed by one simple block). While the simple blocks need not
form a disjunct system, the complex blocks must form it.

In velocity models with structural interfaces, the ray tracing must be supple-
mented by the prescription specifying which of the reflected or refracted waves
should be considered after incidence at an interface. We refer to this prescription
as the code of the elementary wave.

Rays of the same ray history pass through an equal sequence of blocks and
interfaces. Each sequence of blocks and interfaces encountered during ray tracing
thus defines the corresponding ray history.

Controlled initial–value ray tracing consists in dividing the ray–parameter
domain into regions of the same value of the history function, and in sampling
these regions. See e.g. Bulant (1996) and Bulant (1999).

The two–point ray tracing means finding all rays of a given elementary
wave, which take off from the source and pass through the receiver. The receiver
is a given point, situated at the reference surface (Klimeš, 2009).
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3D and 2D computations of 3D synthetic seismograms
using the ray-based Born approximation
in simple models
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Summary
Program grdborn.for for computing the 2D and 3D ray-based Born approximation of the
first order in an inhomogenous isotropic medium without attenuation has been coded.
The program calculates the 3D amplitudes. The computation of 3D amplitudes using
the 2D Born approximation is based on the correction term, which is derived in this
paper. The 2D computation is, of course, due to the reduction of one dimension, much
faster, but the results are very good. Three simple models are used to show the program
performance. The P-waves are considered in all computations apart from one numerical
example in which we show that the program can compute S-wave seismograms too. The
effect of discretization is numerically shown in the 3D computations, and we have also
attempted to explain this theoretically. We numerically touch upon the effect of increasing
perturbations.

Key words: Born approximation, ray theory, velocity model, perturbation

1 Introduction

In computing seismograms in a complex structure, we can meet a situation for which the
method we are using is not suitable, or to which it cannot be even applied. A good example
is the ray theory, which has certain advantages when compared with other methods, but is
not applicable if the medium is not “smooth enough”. A possible solution is to use a model
which is “close” to the original one and satisfies the theory requirements. Let us call this
model background and the original one perturbed. We know approximately the wavefield
in the background model and wish to estimate the wavefield in the perturbed model. The
method how to modify the wavefield is using the first-order Born approximation, which
requires the quantities computed in the background model and differences between the
perturbed and background model called perturbations. The result is a correction of the
wavefield.

Seismic Waves in Complex 3-D Structures, Report 21, Charles University, Faculty of Mathematics and

Physics, Department of Geophysics, Praha 2011, pp. 69-98
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2 The Born approximation in an isotropic medium, with point-
source and high-frequency approximation

Consider an isotropic medium. We insert the expression

cijkl = λδijδkl + µ(δikδjl + δilδjk)

for the components of the elastic tensor in the isotropic solid into the first-order Born
approximation (Červený, 2001, eq. 2.6.18)

∆un(x, ω) =

∫
Ω

[
ω2ui(x

′, ω)∆ρ(x′)Gni(x,x
′, ω)

− uk,l(x′, ω)∆cijkl(x
′)Gni,j(x,x

′, ω)
]
d3x′, (1)

where ω is the circular frequency, ∆cijkl(x) and ∆ρ(x) are the perturbations of elastic
moduli and density, Ω is a domain where these perturbations are non-zero, ui(x

′, ω) is
the solution of the elastodynamic equation for the background medium, Gij(x,x

′, ω) is
the Green function in the background medium and Gij,k(x,x

′, ω) is the spatial derivative
of the Green function with respect to x′k. In adition we use the reciprocity of the Green
function Gij(x,x

′, ω) = Gji(x
′,x, ω). We obtain

∆ui(x, ω) =

∫
Ω

[
ω2∆ρ(x′)Gmi(x

′,x, ω)um(x′, ω)

+ ∆λ(x′)Gji,j(x
′,x, ω)uk,k(x

′, ω)

+ ∆µ(x′)Gki,j(x
′,x, ω)(uk,j(x

′, ω) + uj,k(x
′, ω))

]
d3x′, (2)

where Gij,k(x
′,x, ω) is the spatial derivative of the Green function with respect to x′k.

Assume further that we have a point source located at point xs. Let us decompose
the wavefield and the Green function into amplitudes ai, Aij and phase terms exp(iωτ),
exp(iωT ). We arrive at

ui(x
′, ω) = ai(x

′) exp(iωτ), (3)

Gij(x
′,x, ω) = Aij(x

′,x) exp(iωT ), (4)

where τ is a travel time from xs to x′, i.e. from the point source to an integration point,
and T is a travel time from x to x′, i.e. from the receiver to an integration point.

Using the high-frequency approximation of the spatial derivatives,

ui,j(x
′, ω) ≈ iωai(x

′)pj exp(iωτ), (5)

Gij,k(x
′,x, ω) ≈ iωAij(x

′,x)Pk exp(iωT ), (6)

where τ,i is the spatial derivative of travel time τ with respect to x′i, which is denoted by
pi. T,i is the spatial derivative of travel time T with respect to x′i, which is denoted by
Pi. Gij,k(x

′,x, ω) is the spatial derivative of the Green function with respect to x′k.
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Using equations (3), (4), (5) and (6), Equation (2) becomes

∆ui(x, ω) = ω2

∫
Ω

exp[iω(τ + T )][∆ρAjiaj + ∆λAjiPjakpk

+ ∆µAmiPj(ampj + ajpm)]d3x′, (7)

where ∆ρ = ∆ρ(x′), ∆λ = ∆λ(x′), ∆µ = ∆µ(x′), ai = ai(x
′), Aij = Aij(x

′,x). Note that
the reciprocity is applied for numerical reasons only. Computing the Green function from
the receiver to each gridpoint is much easier than computing the Green function from
each gridpoint to the receiver when using SW3D programs.

3 Models

The x3-axis is oriented downwards in both background and perturbed models. The back-
ground model is homogenous without interfaces. The values of the elastic parameters
are

vp = 6 km/s, vs = 3 km/s, ρ = 2000 kg/m3.

Each perturbed model contains two homogenous layers. The models differ in the shape
of the interface between the layers and in the model volume. The values of the elastic
parameters in the upper layer are equal to the values in the background model. The
values of the elastic parameters in the lower layer are

vp = 6.01 km/s, vs = 3.01 km/s, ρ = 2010 kg/m3.

Model 1 has a horizontal interface at a depth of 10 km. The model volume is
(0 km, 10 km)× (0 km, 10 km)× (0 km, 20 km). See Figure 1.

Model 2 has an inclined interface with slope 2/5. The model volume is (−5 km, 10 km)×
(0 km, 10 km)× (0 km, 20 km). See Figure 2.

Model 3 has a curved interface. The model volume is (−5 km, 15 km)×(0 km, 10 km)×
(0 km, 20 km). See Figure 3.

4 Numerical examples of 3D computations of 3D seismograms

In all 3 models, the explosive source is situated at point (2 km, 1 km, 1 km), the receiver
at point (8 km, 9 km, 0 km). The source time function is a Gabor signal with a prevailing
frequency of 10 Hz, filtered by a frequency filter which is non-zero only for frequencies f ,
1 Hz < f < 20 Hz. There is a cosine tapering for 1 Hz < f < 2 Hz and 19 Hz < f < 20 Hz
while for 2 Hz < f < 19 Hz the filter is equal to one. Just P-waves are considered in all
numerical examples except for one numerical example focused on S waves.

In the SW3D programs, the following specification of the grid is used: O1, O2, O3

specify the coordinates of the origin of the grid. N1, N2, N3 are the numbers of gridpoints
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Figure 1: The model volume, the interface and the reflected ray in Model 1. The figures of the models
were created in program GOCAD.
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Figure 2: The model volume, the interface and the reflected ray in Model 2.
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Figure 3: The model volume, the interface and the reflected rays in Model 3.
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along the x1, x2, x3 coordinate axes, respectively. D1, D2, D3 are the grid intervals in
the directions of the x1, x2, x3 coordinate axes, respectively. We use this notation in this
paper.

4.1 Model 1

4.1.1 Model 1 - Grid density

The position of the grid with respect to the horizontal interface is depicted in Figure 4.
The white circles represent the gridpoints where perturbations are zero. The interface
is situated precisely between two gridpoint planes. The distance between the model
boundary and the nearest gridpoint plane is equal to half the grid interval, because the
value of any quantity at each gridpoint represents the value in the block centred at the
gridpoint with sides equal to the grid intervals.

s s s s s s s s s
s s s s s s s s s
s s s s s s s s s
c c c c c c c c c

Figure 4: Position of the grid in Model 1, which discretize the interface in the best way. Bold line:
Model boundary. Thin line: Interface.

For the position of the coordinate axes, refer to Figure 1 in Section 3. The grid interval
is chosen to be 0.1 km, which is smaller than quarter of wavelength λ = vp/fd ⇒ λ

4
=(

1
4

6
10

)
km = 0.15 km, where we have inserted the value of the prevailing frequency of

the Gabor signal fd = 10 Hz and P-wave velocity vp = 6 km/s. The size of the grid is
100×100×100 points and covers only the lower part of the model, where the perturbation
is non-zero in order to save memory. Figure 5 shows the resulting seismogram. We can see
that the main features have been captured, but obviously some discrepancies are present.
In order to get rid of them, we try to densify our grid. First, we densify it twice in the
direction of the third axis (For the position of the coordinate axes, refer to Figure 1.). The
resulting seismogram displayed in Figure 6 is better than the previous one. Second, we
try to densify the grid additionally in the direction of the first axis. It is slightly surprising
that it has no impact on the seismogram. Therefore, we step back, use 100 gridpoints in
the direction of the first axis, but apply additional densification in the direction of the
third axis. The seismogram has improved, see Figure 7. There are virtually no differences
between the Born and ray-theory seismogram.

We try to understand the effect of discretization. Let us assume the paraxial approxi-
mation with the first-order Taylor expansion of travel with respect to the spatial coordi-
nates. The central point is the point of reflection, therefore, the derivatives of travel time
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Figure 5: Model 1, grid 100 × 100 × 100 grid-
points.

Figure 6: Model 1, grid 100 × 100 × 200 grid-
points.

3 . 4

3 . 5

3 . 6

3 . 7

3 . 8

T IME

B L A C K . . . B o r n  a p p r o x i m a t i o n
R E D . . . R a y  t h e o r y

r e c 1r e c 1

Figure 7: Model 1, grid 100 × 100 × 400 grid-
points.
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with respect to the first and second coordinate axes are equal to zero and the integral in
the Born approximation in the homogenous model can be simplified to

I0 =

∞∫
0

exp(iωp̂3x3)dx3 = − 1

iωp̂3

, (8)

where

ω =
2πv

λ
, p̂3 = p3 + P3 =

2 cosα

v
, (9)

α being the angle between the slowness vector of the incident wave and the normal to the
interface.

Discretization with the grid interval h affects the integral in the following way:

I1 =
∞∑
n=0

h exp

[
iωp̂3

(
h

2
+ nh

)]
= h exp

(
iωp̂3

h

2

)
1

1− exp(iωp̂3h)
. (10)

Expressions (8) and (10) yield

I1

I0

− 1 = −iωp̂3h
exp

(
iωp̂3

h
2

)
1− exp(iωp̂3h)

− 1,

which becomes
I1

I0

− 1 =
ωp̂3

h
2

sin(ωp̂3
h
2
)
− 1. (11)

The expression in (11) is real and, therefore, the discretization error influences the ampli-
tude of the wave, but not the phase. Equation (11) using (9) becomes

I1

I0

− 1 =
2π h

λ
cosα

sin
(
2π h

λ
cosα

) − 1, (12)

which reads approximately

I1

I0

− 1 ≈ 1

6

(
2π
h

λ
cosα

)2

. (13)

We compare the numerical results with theoretical predictions (12) and (13), see Table 1.

h = D3 [km] Equation (13) [%] Equation (12)[%] Measured [%]
0.1 14 16 17
0.05 3.6 3.7 2.2
0.025 0.89 0.90 0.90

Table 1: Effect of the discretization error on the wave amplitude. Comparison of the theoretical
prediction and the numerical results. D3 is the grid interval in the direction of the third coordinate
axis.

Both theoretical predictions (12) and (13) agree well with the numerical modelling in
case of the smallest grid interval D3 = 0.025 km. The differences between the theoreti-
cal predictions and numerical results are observed for D3 = 0.05 km and 0.1 km. The
difference between the full formula (13) and its first approximation (12) is negligible for
D3 = 0.025 km. The difference grows for D3 = 0.05 and is important for D3 = 0.1 km.
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4.1.2 Model 1 - Spurious waves

In Section 4.1.1, we studied the seismogram in the time window 3.4− 3.8 s, and when we
used a sufficiently dense grid we observe no differences between the seismograms computed
using the Born approximation and the ray theory. However, the differences are apparent
when we extend our time window from 3.4− 3.8 s to 3.0− 7.2 s, see Figure 8. The diffe-
rences are caused by interfaces artificially introduced by the grid. The perturbed model
has one defined interface. The model is defined within the model volume, but it smoothly
continues across the model boundaries. The elastic parameters are not zero outside the
model volume and the model perturbations can thus be non-zero there, too. In other
words, model boundaries (side boundaries, bottom and top boundary) are not interfaces.
On the contrary, our choice of the grid is equivalent to putting model perturbations zero
elsewhere. In the case of Model 1, the boundaries of the lower part of the model are
treated as interfaces. From what was said, we expect various types of reflections present
in the seismogram, for example the wave reflected from the bottom model interface, as
well as diffractions.

How to distinguish these spurious waves from the genuine? They are sensitive to
positions of the grid boundaries. Therefore, if we shift these boundaries, the seismograms
should change slightly. A good shift is λ

4
because the wave has to travel ∆l = 2λ

4
= λ

2

more/less in the case of normal incidence. If the incidence is not normal, the length
of the trajectory changes by ∆l = λ

2
cosα, where α is the angle between the normal

to the interface and the vector tangent to the ray. We decide to reduce the grid, so
that ∆l < 0 and the shift present in the seismogram should be towards shorter times.
D1 = D2 = 0.1 km, D3 = 0.025 km, λ

4
= 0.15 km, therefore, we erase 2 side gridpoint

planes and 8 bottom gridpoint planes, which is equivalent to |∆l| = 0.2 cosα km. This
value is larger than λ

4
for normal incidence, but due to the cosine modification for oblique

incidence, a larger value is better than smaller. The seismogram is displayed in Figure 9.

The waves which are shifted in the seismogram should be eliminated. There are at
least two ways of doing this. The first one is safe but computationally expensive. It
consists in a sufficient extension of the grid. If the grid boundaries (interfaces) are far
enough, reflections, etc. arrive sufficiently late. The seismogram depicted in Figure 10 is
computed using the grid which covers the volume of (−10 km, 20 km)×(−10 km, 20 km)×
(10 km, 20 km). The grid density is the same as in computing the seismograms in Figures 7
and 8, but the grid contains 9 times more points. Compare the three waves visible in the
seismograms in Figures 8, 9, 10. The first wave is obviously the true wave, because we
see no shift in the seismogram in Figure 9. The second wave and the third wave are both
shifted in the seismogram in Figure 9, but notice that no shift is present in the seismogram
in Figure 10 in case of the third wave. We enlarge the model in the horizontal direction,
which means that the third wave is the reflection from the bottom of the grid.

One might think that we can use a sparser grid if we are sufficiently far from the
source and the receiver. If this were true, we would be able to cover a large volume with
only slightly more computational effort using varying grid density. Unfortunately we
can be unpleasantly surprised. We try to cover the same volume (−10 km, 20 km) ×
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Figure 8: Model 1, grid 100 × 100 × 400 grid-
points, enlarged time window.

Figure 9: Model 1, grid 100 × 100 × 400 grid-
points vs grid 96× 96× 392 gridpoints.
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Figure 10: Extended Model 1, grid 300× 300×
400 gridpoints.
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(−10 km, 20 km) × (10 km, 20 km), but now using a combination of two grids. The
first grid is sparse and covers the whole volume except the middle part (0 km, 10 km) ×
(0 km, 10 km) × (10 km, 20 km). The second grid is dense and covers the middle part.
SW3D programs work with regular rectangular grids. We thus have to compose the first
grid of two rectangular grids. Grid A is sparse and covers the whole volume, grid B is also
sparse and covers the middle part. The first grid is grid A minus grid B. The seismograms
from the second grid and grid B are correct, but the seismogram from grid A is incorrect,
see Figure 11. It is probable that constructive apart from destructive interference have
occurred.

The second way of eliminating a spurious wave is to apply the cosine window at the
artificial grid boundaries. The 1D cosine window starting at point xs of length L is
function

w(x)


= 0 for x < xs

= 1
2

(
1− cos

[
π(x−xs)

L

])
for x ∈ 〈xs, xs + L〉

= 1 for x > xs + L.

(14)

We introduce the following numbering of the model boundaries, see Table 2.

Axis perpendicular to the boundary Assigned number
1st, negative direction 1
1st, positive direction 2

2nd, negative direction 3
2nd, positive direction 4
3rd, negative direction 5
3rd, positive direction 6

Table 2: Numbering of the model boundaries

If we apply the cosine window of length L to the 1st boundary at (x0
1, •, •), then the

cosine window is function w(x1) defined by (14) with xs = x0
1 − D1

2
. Similarly for the

other boundaries.

We apply the cosine windows of equal length to each grid boundary except the 5th,
where we model the reflection. The tested lengths are L = 1 km, L = 1.5 km, L = 2 km,
L = 2.5 km, L = 3 km The corresponding seismograms are displayed in Figures 12, 13,
14, 15, 16.

Notice that the amplitudes of the spurious waves decrease and the waves arrive earlier.
The values of L = 2.5 km or L = 3 km are obviously too large; the spurious wave arrives
so early that it interferes with the true wave. Another important fact is that the reflection
from the bottom grid boundary is very well damped, while the diffractions from the side
grid boundaries are damped less.

This phenomenon can be explained similarly as we derived formula (13). We change
expression (14) for cosine window of length L to read

w(x) =
1− cos

(
π x
L

)
2

=
1

2
− 1

4
exp

(
iπ
x

L

)
− 1

4
exp

(
−iπ x

L

)
. (15)
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Figure 11: Extended Model 1, grid 75×75×400
gridpoints.

Figure 12: Model 1, grid 100 × 100 × 400 grid-
points, cosine window of length 1 km applied to
grid boundaries 1,2,3,4,6 (see Table 2).

The Born approximation with applied cosine window can be reduced to

I1 =

L∫
0

w(x) exp(iωp̂3x3)dx3 +

∞∫
L

exp(iωp̂3x3)dx3

=
1

2iωp̂3

[exp(iωp̂3L)− 1]− 1

4
(
i π
L

+ iωp̂3

) [exp(iπ + iωp̂3L)− 1]

− 1

4
(
−i π

L
+ iωp̂3

) [exp(−iπ + iωp̂3L)− 1]− 1

iωp̂3

exp(iωp̂3L),

which can be expressed in factorized form:

I1 =

[
1

4
(
iωp̂3 + i π

L

) +
1

4
(
iωp̂3 − i πL

) − 1

2iωp̂3

]
[1 + exp(iωp̂3L)] (16)

=
1
2

(
π
L

)2

iωp̂3

[
(ωp̂3)2 −

(
π
L

)2
] [1 + exp(iωp̂3L)] . (17)
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Figure 13: Model 1, grid 100 × 100 × 400 grid-
points, cosine window of length 1.5 km applied to
grid boundaries 1,2,3,4,6.

Figure 14: Model 1, grid 100 × 100 × 400 grid-
points, cosine window of length 2 km applied to
grid boundaries 1,2,3,4,6.
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Figure 15: Model 1, grid 100 × 100 × 400 grid-
points, cosine window of length 2.5 km applied to
grid boundaries 1,2,3,4,6.

Figure 16: Model 1, grid 100 × 100 × 400 grid-
points, cosine window of length 3 km applied to
grid boundaries 1,2,3,4,6.
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Using expressions (8) and (17) we can put

I1

I0

=

(
π
L

)2(
π
L

)2 − (ωp̂3)2

1 + exp(iωp̂3L)

2
. (18)

If we assume that ωp̂3L� π, ∣∣∣∣I1

I0

∣∣∣∣ < ( π

ωp̂3L

)2

,

and finally, employing (9), ∣∣∣∣I1

I0

∣∣∣∣ < ( λ

4L cosα

)2

. (19)

4.1.3 Modified Model 1 - Applicability of the ray-based Born approximation

We shall now study, how well the Born approximation behaves if medium perturbations
increase. The grid is identical with the one used in the computation of the seismogram
shown in Figure 7. The values of the elastic parameters in the lower layer are gradually
increased to obtain the following perturbations of elastic parameters:

∆vp = 0.1 km/s, ∆vs = 0.1 km/s, ∆ρ = 100 kg/m3, (20)

∆vp = 0.5 km/s, ∆vs = 0.5 km/s, ∆ρ = 500 kg/m3, (21)

∆vp = 1 km/s, ∆vs = 1 km/s, ∆ρ = 1000 kg/m3. (22)

The resulting seismograms are displayed in Figures 17, 18, 19. The scale is chosen in
order to have practically equal ray-theory seismograms. It is interesting that, though
perturbations (20) are 10 times greater than in the computation of the seismogram of
Figure 7, the seismograms still appear to be quite satisfactory. Discrepancies appear and
grow for larger perturbations. This is probably the consequence of the non-linearity of
the reflection coefficient, see also Šachl (2011, sec. 3.2, fig. 22).

4.1.4 Model 1 - Other types of waves

So far we have tested the algorithm for P waves. Now we shall focus on other possible
situations, i.e. incident P wave and scattered S wave (P-S for short), S-P and S-S. The
resulting seismograms corresponding to the first two cases are displayed in Figures 20
and 21. Good agreement is observed. In the last case composed purely of S waves,
discrepancies are observed, see Figure 22. Note that vp = 6 km/s, vs = 3 km/s and thus

λs = λp
2

. Therefore, the grid should be twice denser to be effectively the same as in the
case of P waves. If the grid is twice denser in the vertical direction, the discrepancies
disappear, see Figure 23.
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Figure 17: Model 1, grid 100 × 100 × 400 grid-
points, perturbations (20).

Figure 18: Model 1, grid 100 × 100 × 400 grid-
points, perturbations (21).
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Figure 19: Model 1, grid 100 × 100 × 400 grid-
points, perturbations (22).
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Figure 20: Model 1, incident P wave, scattered
S wave, grid 100× 100× 400 gridpoints.

Figure 21: Model 1, incident S wave, scattered
P wave, grid 100× 100× 400 gridpoints.
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Figure 22: Model 1, incident S wave, scattered
S wave, grid 100× 100× 400 gridpoints.

Figure 23: Model 1, incident S wave, scattered
S wave, grid 100× 100× 800 gridpoints.
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4.2 Model 2

4.2.1 Model 2 - Grid

We choose N2 = 100 for the computations in this 3D model. This number of gridpoints
along the second coordinate axis is equal to the value used in Section 4.1. For the position
of the coordinate axes, refer to Figure 2 in Section 3. The slope of the inclined interface
is 2

5
. We choose the grid which fits the shape and position of the interface, i.e. the interface

lies between two gridpoint planes, see Figure 24. We thus take

D1 =
5

2
D3 (23)

We set N3 = 400. The interface begins at the depth of 6 km, so that D3 = 0.034956 km ≈
20−6
N3+0.5

km, therefore, D1 ≈ 0.087391 km and N1 = 171 ≈ 15 km
D1

.

s s s s
s s s s
s s s s
s s s saaaaaaaaaaaaaaaaaaaaaa

Figure 24: Grid which fits the shape and position of the interface in Model 2. Cross section in x1 − x3

plane. Bold line: Model boundary. Thin line: Interface.

Using this configuration, we calculate the seismogram displayed in Figure 25. The
Born and ray-theory seismograms agree very well, although grid interval D3 is larger than
in the computation of the seismogram in Figure 5 and the discretization of the interface
is worse, too. Indeed, in Model 1, the discretization is h = D3 = 0.025 km. In Model 2,
h is equal to the altitude in the right triangle with legs D1, D3,

h =
D1D3√
D2

1 +D2
3

, (24)

inserting (23) we obtain

h =
5√
29
D3 ≈ 0.0232 km. (25)

4.2.2 Model 2 - Spurious waves

Spurious waves are revealed in the same way as in Model 1, see Figure 26. They are
suppressed by using cosine windows 0.5 km, 1 km and 1.5 km in length, respectively. The
results are depicted in Figures 27, 28, 29.
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Figure 25: Model 2, grid 171 × 100 × 400 grid-
points.

Figure 26: Model 2, grid 171 × 100 × 400 grid-
points, enlarged time window.

4.3 Model 3

For the position of the coordinate axes, refer to Figure 3 in Section 3. A grid of 300 ×
100 × 800 points is chosen. The grid intervals are D1 = 0.066667 km, D2 = 0.1 km and
D3 = 0.025 km. The grid interval in the direction of the third axis is the same as in the
computation of the seismogram in Figure 7. The shape of the interface does not depend
on x2, therefore, 100 gridpoints in the direction of the second coordinate axis would seem
enough. The seismogram computed using this grid is displayed in Figure 30. We can see
the differences between the Born and ray-theory seismogram in Figure 30, therefore, we
compute the Born approximation with more precise grid values of the elastic parameters.
We discretize the density, P-wave and S-wave velocity in the grid twice denser in the
direction of the first and third axes. The quantities are then averaged to the grid described
above. The density is averaged by taking its geometrical mean, which corresponds to the
conservation of mass inside the volume determined by the averaged grid cell. The P-wave
and S-wave velocities are averaged by taking their harmonic mean, which corresponds to
the conservation of travel time inside the volume determined by the averaged grid cell.
We obtain the seismogram in Figure 31. We can see the improvement in the first wave,
but the more important effect is the reduction of the oscillations visible on the previous
seismogram around 3.72 s, i.e. after the second wave. We further try to densify the grid
used, interface is quite complicated in plane x1-x3 and, therefore, the discretization in the
direction of the 1st axis could be insufficient. We then use the grid with 600× 100× 800
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Figure 27: Model 2, grid 171 × 100 × 400 grid-
points, cosine window 0.5 km in length applied to
grid boundaries 1,2,3,4,6.

Figure 28: Model 2, grid 171 × 100 × 400 grid-
points, cosine window 1 km in length applied to
grid boundaries 1,2,3,4,6.
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Figure 29: Model 2, grid 171 × 100 × 400 grid-
points, cosine window 1.5 km in length applied to
grid boundaries 1,2,3,4,6.

Figure 30: Model 3, grid 300 × 100 × 800 grid-
points.
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Figure 31: Model 3, grid 300 × 100 × 800 grid-
points, averaged elastic parameters.

Figure 32: Model 3, grid 600 × 100 × 800 grid-
points, averaged elastic parameters.

gridpoints, i.e. we densify it twice in the direction of the 1st axis. The elastic parameters
are again computed in the grid twice denser in the direction of the first and third axes and
then averaged as in the previous example. The resulting seismogram, see Figure 32, is
satisfactory for lower arrival times, say until 3.4 s. But there is evidently something wrong
with the waves which arrive later. This discrepancy radically improves after applying
cosine window L = 1.5 km in length, see Figure 33. Our opinion is that it is caused by
diffracted waves produced by introducing the grid needed for the numerical calculation.
More precisely, we claim that these spurious waves come from the intersection between
the grid boundary perpendicular to the second coordinate axis and the interface. The
next computation provides the proof.

The grid contains 666×100×3200 gridpoints. The elastic parameters are discretized in
the same grid. We apply the cosine window only in the direction of the second coordinate
axis. We obtain Figure 34, which is similar to Figure 33. The agreement between the Born
and ray-theory seismograms is even slightly better. On the other hand, almost 4.5 times
as many gridpoints are used (though elastic parameters are not computed in the denser
grid and averaged). Notice also Figure 35 where we shift the grid boundary perpendicular
to the second coordinate axis, i.e. we have made the grid smaller in the direction of the
second coordinate axis. The shift is equal to 0.2 km, i.e. approximately λ

4
as in similar

previous situations. The first wave in the seismogram is unaffected, while the second
wavegroup is shifted. The wavegroup is distorted, which means that the wavegroup is a
superposition of two waves. One wave shifts and the other does not. The reflected wave
is mixed with the numerically diffracted wave.
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Figure 33: Model 3, grid 600 × 100 × 800 grid-
points, averaged elastic parameters, cosine win-
dow 1.5 km in length applied to grid boundaries
1,2,3,4,6.

Figure 34: Model 3, grid 666× 100× 3200 grid-
points, cosine window 1.5 km in length applied to
grid boundaries 3,4.
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Figure 35: Model 3, grid 666× 100× 3200 grid-
points vs grid 666× 96× 3200 gridpoints.
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5 Theory of 2D computations of 3D seismograms

If the source and receiver are situated in a symmetry plane of a 2D model, we can
compute the Born approximation numerically in a 2D slice and perform the remai-
ning one-dimensional integration in the direction perpendicular to the slice analytically
(Červený & Coppoli, 1992). Of course, we do not know the values of the quantities present
in the Born approximation there. We use paraxial approximation:

ui(x) = ai(x0) exp

[
iω

(
τ0 + τ,i∆xi +

1

2
τ,ij∆xi∆xj

)]
, (26)

where x0 is a point in the slice, ∆x = x − x0 and ∆x is perpendicular to the slice,
τ0 = τ(x0), τ,i = τ,i(x0), τ,ij = τ,ij(x0). Let us introduce the coordinate system in which
all points in the slice have the second coordinate equal to zero. Then x0 = (x1, 0, x3),
∆x = (0, x2, 0) and (26) takes the form

ui(x) = ai(x0) exp

[
iω

(
τ0 +

1

2
τ,22x

2
2

)]
, (27)

Notice that the first-order spatial derivative of travel time with respect to x2 is not present,
because it is equal to zero. The travel time is an even function of x2. The derivative of
an even function is an odd function and an odd function is zero for x2 = 0. In fact, also
the third-order spatial derivative of travel time with respect to x2 is equal to zero, since
the second-order spatial derivative of travel time with respect to x2 is an even function.
The spatial derivatives in the high-frequency approximation read

ui,j(x) = iω(τ0,j + δj2τ,22x2)ai(x0) exp

[
iω

(
τ0 +

1

2
τ,22x

2
2

)]
, (28)

where we have neglected 1
2
τ,22jx

2
2 = 1

2
(δj1τ,221 + δj3τ,223)x2

2 (see the discussion following
formula (43)). Similarly for the Green function:

Gij(x) = Aij(x0) exp

[
iω

(
T0 +

1

2
T,22x

2
2

)]
, (29)

Gij,k(x) = iω(T0,k + δk2T,22x2)Aij(x0) exp

[
iω

(
T0 +

1

2
T,22x

2
2

)]
. (30)

Recall the Born approximation in an isotropic medium (2) and decompose it into three
parts:

IA = ω2

∫
Ω

∆ρ(x′)Gmi(x
′,x, ω)um(x′, ω)d3x′, (31)

IB =

∫
Ω

∆λ(x′)Gji,j(x
′,x, ω)uk,k(x

′, ω)d3x′, (32)

IC =

∫
Ω

∆µ(x′)Gki,j(x
′,x, ω)(uk,j(x

′, ω) + uj,k(x
′, ω))d3x′. (33)
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We insert (27) and (29) into the first part of Born approximation (31) with notation S
for the slice and obtain:

I1 = ω2

∫
S

∆ρAjiaj exp[iω(τ0 + T0)]


∞∫

−∞

exp
[
i
ω

2
(τ,22 + T,22)x2

2

]
dx2

 dx1dx3, (34)

The integral over slice S is calculated numerically; we focus on the integral in brackets.
We call this integral Icor1. We introduce a small imaginary part of the derivatives of the
travel times and arrive at

Icor1 =

∞∫
−∞

exp
[
i
(ω

2
(τ,22 + T,22) + iε

)
x2

2

]
dx2 =

∞∫
−∞

exp
[
−(ε− iA)x2

2

]
dx2, (35)

where A = ω
2
(τ,22 + T,22), ε > 0, ε � 1. We employ the expression for the integral of a

complex Gaussian

∞∫
−∞

exp(−pt2)dt =

√
π

p
, ∀p ∈ C : Re(p) > 0 (36)

to obtain

Icor1 =

√
π

ε− iA
≈
√

π

−iA
=

√
2π

A

1

1− i
=

√
π

ω(τ,22 + T,22)
(1 + i). (37)

The second part of Born approximation (32) is more complicated due to spatial deriva-
tives. Using (27), (28), (29) and (30)

I2 =

∫
S

∆λAjiP0jakp0k exp[iω(τ0 + T0)]


∞∫

−∞

exp
[
i
ω

2
(τ,22 + T,22)x2

2

]
dx2

 dx1dx3 (38)

+

∫
S

∆λAjiP0ja2τ,22 exp[iω(τ0 + T0)]


∞∫

−∞

x2 exp
[
i
ω

2
(τ,22 + T,22)x2

2

]
dx2

 dx1dx3

(39)

+

∫
S

∆λA2iT,22akp0k exp[iω(τ0 + T0)]


∞∫

−∞

x2 exp
[
i
ω

2
(τ,22 + T,22)x2

2

]
dx2

 dx1dx3

(40)

+

∫
S

∆λA2iT,22a2τ,22 exp[iω(τ0 + T0)]


∞∫

−∞

x2
2 exp

[
i
ω

2
(τ,22 + T,22)x2

2

]
dx2

 dx1dx3,

(41)

where P0j = T0,j and p0k = τ0,k. Integrals (39) and (40) are equal to zero because in the
parentheses we integrate an odd function over a symmetrical interval. The integral in the
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parentheses in (38) is equal to (37). To compute the integral in the parentheses in (41)
we use formula

∞∫
−∞

t2k exp(−pt2)dt =
1.3 . . . (2k − 1)

(2p)k

√
π

p
, ∀p ∈ C : Re(p) > 0, k = 1, 2, . . . (42)

and obtain

Icor2 ≈
√
π

2(−iA)3/2
= −

√
π

2A3

1

1 + i
= −

√
π

ω3(τ,22 + T,22)3
(1− i). (43)

Comparing (37) and (43) we see that

Icor2 ≈
Icor1
ω

, (44)

therefore, in the high-frequency approximation we can neglect (41) and only (38) remains.
In other words we can neglect corrections δj2τ,22x2 and δk2T,22x2 in (28) and (30). Similarly
using (42) it can be proved that it is possible to neglect terms 1

2
τ,22jx

2
2 and 1

2
T,22jx

2
2, as

we did in (28) and (30).

The third part of Born approximation (33) has a structure similar to the second part
(32). Therefore, we can compute the Born approximation in the 2D grid in the same way
as we did in the 3D grid, the only modification being the multiplication of the integrand
in the Born integral by term Icor1:

∆ui(x, ω) =

∫
S

√
π

ω(τ,22 + T,22)
(1 + i)

[
ω2∆ρ(x′)Gmi(x

′,x, ω)um(x′, ω)

+ ∆λ(x′)Gji,j(x
′,x, ω)uk,k(x

′, ω)

+ ∆µ(x′)Gki,j(x
′,x, ω)(uk,j(x

′, ω) + uj,k(x
′, ω))

]
d3x′. (45)

6 Numerical examples of 2D computations of 3D seismograms

Models 1,2,3 are exactly the same as those used in the 3D computations of Section 4 and
are described in Section 3, but the source and the receiver positions are different. We
have moved the source and the receiver into the symmetry plane. Namely the explosive
source is at point (1.5 km, 5 km, 1 km) and the receiver at point (8.5 km, 5 km, 0 km).

6.1 Model 1

Using the experience from the computations in the 3D version of Model 1, we start directly
with the grid containing 100 × 400 gridpoints. The obtained seismogram displayed in
Figure 36 shows good agreement with the reference solution. It is interesting to see how
important correction (37) is. The seismogram in Figure 37 was computed without this
correction. The magnification had to be 100 times smaller to visualize it.
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Figure 36: Model 1, 2D computation, grid 100×
400 gridpoints.

Figure 37: Model 1, 2D computation, grid 100×
400 gridpoints, without correction (37), 100 times
smaller magnification.

6.2 Model 2

According to the grid used in the computation of the seismogram in Figure 25, we firstly
select a grid with 171 × 400 points. The resulting seismogram displayed in Figure 38 is
slightly less accurate than the seismogram in Figure 25. For the denser grid with 343×800
points we get the excellent seismogram in Figure 39.

2D computations have undoubtedly one advantage compared to 3D computations.
They are much faster. We used 100 times less points in Model 2. Therefore, one can
easily experiment and get quick results. As an example, we try to shift the whole grid of
171 × 400 points downwards. The shift is smaller than D3

2
but it is close to this value.

Figure 40 shows the same seismograms as in Figure 38, but they are shifted against each
other. That is correct. The interface is discretized between two gridpoint planes. We shift
these planes downwards, so that the Born approximation shifts the interface downwards
and the wave thus arrives later.

The second experiment shows what happens if the gridpoints lie exactly on the inter-
face. This is obviously not a good choice, because one might expect seismogram shifts as
in the previous experiment and in addition the rounding error can make the interface non-
planar. The chosen grid covers the part of the model with vertical coordinate larger than
6 and it is quite dense, 375× 875 gridpoints. Nevertheless, the seismogram in Figure 41
is much worse than the seismograms computed with more suitable grids.
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Figure 38: Model 2, 2D computation, grid 171×
400 gridpoints.

Figure 39: Model 2, 2D computation, grid 343×
800 gridpoints.

2 . 9

3 . 0

3 . 1

3 . 2

3 . 3

T IME

B L A C K . . . B o r n  a p p r o x i m a t i o n
R E D . . . R a y  t h e o r y

r e c 1r e c 1
2 . 9

3 . 0

3 . 1

3 . 2

3 . 3

T IME

B L A C K . . . B o r n  a p p r o x i m a t i o n
R E D . . . R a y  t h e o r y

r e c 1r e c 1

Figure 40: Model 2, 2D computation, grid 171×
400 gridpoints, wrong discretization causes shift
of the interface.

Figure 41: Model 2, 2D computation, grid
375 × 875 gridpoints, grid rectangles centred on
the interface.
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6.3 Model 3

Motivated by the computation of the seismogram in Figure 34 in Section 4.3, we choose a
grid containing 600× 3200 gridpoints. The calculated Born seismogram corresponds very
well to the ray-theory seismogram, see Figure 42.

In the 2D computation, there is no grid boundary perpendicular to the second coordi-
nate axis thanks to the numerical method used (analytical integration in the direction of
the second coordinate axis). Remember that using an analogous grid in the 3D computa-
tion in Section 4.3, the Born and ray-theory seismograms did not agree until we applied
cosine window L = 1.5 km in length in the direction of the second coordinate axis.

We shall also try a grid, which contains 600 × 800 gridpoints, see Figure 43. It is
interesting that the first wave is already well resolved using this grid, while there are
apparent wrong oscillations in the second wave.
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Figure 42: Model 3, 2D computation, grid 600×
3200 gridpoints.

Figure 43: Model 3, 2D computation, grid 600×
800 gridpoints.
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7 Concluding remarks

We have tested the ray-based first-order Born approximation in homogenous background
models. If the Born integral (2) is evaluated numerically using a computational grid,
we should expect spurious waves to be introduced by the finite size of the grid. These
waves are either reflections or diffractions from the grid boundaries. This effect was
observed and suppressed by applying the cosine window of the appropriate length to the
integrand of the Born integral, see Sections 4.1.2, 4.2.2 and 4.3. The effect of the cosine
window on the spurious wave reflected from the grid boundary depends on the angle of
incidence considerably. If the angle of incidence is large, application of the cosine window
is problematic. This phenomenon was numerically observed and theoretically described
in formula (19). Another possibility how to get rid of these spurious waves is to enlarge
the computational volume, which is a safe but computationally expensive method. The
discretization of the Born integral also introduces errors in the amplitude of the wave.
Formulas (11) and (12) describe this effect.

The Born approximation is suitable for small differences in the elastic parameters
between the perturbed and background model. In Model 1, see Section 3, we touched on
the problem of growing perturbations. The elastic parameters in the background were vp =
6 km/s, vs = 3 km/s and ρ = 2000 kg/m3. If the perturbations of all elastic parameters
were equal to (20) the seismogram was modelled correctly. For perturbations equal to (21)
discrepancies were observed and they grew and became significant for perturbations equal
to (22).

If the interface is shifted due to wrong discretization, the seismogram is shifted in
time, see Figure 40.

We derived the form of the Born approximation usable if the source and receiver are
situated in a symmetry plane of a 2D model. The integral is two-dimensional in the
resulting formula (45). The formula works with 3D amplitudes of the incident wavefield
and of the Green function. The formula was numerically tested in Sections 6.1, 6.2 and
6.3 with very good results.
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Summary
The accuracy of the ray-based Born approximation of the first order is tested in a smooth
2D heterogenous background model P1. Only P waves are considered. 3D synthetic
seismograms are numerically calculated using the Born approximation in a 2D grid and
are compared with the ray-theory seismograms. The Born seismograms contain reflected
and diffracted waves. The individual reflected and diffracted waves are identified.
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1 Introduction

The Born approximation is a method which allows us to use quantities computed using
the method of our choice, here the ray theory, in a simple background velocity model for
calculating seismograms in a more complex velocity model. Let us call the more complex
model perturbed. The requirement is that the background and perturbed models are
“close” to each other.

This study was motivated by the synthetic seismogram computations of Bulant & Mar-
takis (2011) in the 2D heterogenous model P1I, see Section 2, using the ray theory. We
wished to compute the Born seismograms in this model and compare them with Bu-
lant’s & Martakis’s (2011) results. We used smooth 2D background model P1. We per-
formed the computations, but, unfortunately, the seismograms were very different and we
were unable to explain the results. Therefore, we have simplified the model perturbations,
and studied the differences between the Born and ray-theory seismograms. We have calcu-
lated the 3D wavefield using the 2D Born integral according to Červený & Coppoli (1992)
and Šachl (2011, eq.45)

Seismic Waves in Complex 3-D Structures, Report 21, Charles University, Faculty of Mathematics and

Physics, Department of Geophysics, Praha 2011, pp. 99-114
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2 Models

2.1 Background model and model perturbations

Model P1 was created by Bulant & Martakis (2011). It is a 2D velocity model situated
in a rectangle (0 km, 47.3 km)× (0 km, 6 km). The model has two versions. The smooth
version of the model should be suitable for ray-theory computations. In our computations
it serves as an background model for the ray-based Born approximation. We use the
second version, model P1I, as our inspiration for the construction of simple perturbed
models.

P-wave velocity vp in smooth model P1 is depicted in Figure 1. The S-wave velocity
vs = vp√

3
. The density ρ = 1000 kg/m3 everywhere. Figure 1 of the P-wave velocities

is created using a grid which contains 4730 × 600 grid points. The largest value of the
discretized P-wave velocities is (vp)max ≈ 5.93 km/s.

Figure 1: P-wave velocity in smooth model P1. The colour changes from blue to green and red as the
P-wave velocity grows.

Model P1I is quite complicated because it is composed of 16 blocks and 13 surfaces,
which form 15 interfaces where reflected waves may be generated. The blocks in model
P1I are displayed in Figure 2. The colours are determined by the index of the block.

Figure 2: Blocks in model P1I. The colour of the block is determined by its index. The colour changes
from green to red and blue. Block 1 is the leftmost green block.

The largest absolute value of the discretized P-wave perturbations is |∆vp|max ≈
0.21 km/s. See Figure 3 for the spatial distribution of the P-wave velocity perturbation
and of the absolute value of the perturbation. The perturbation of the S-wave velocity is
not depicted, because in the models, which we have constructed from model P1I, we have
set vs = vp√

3
analogously to the background model.

2.2 Model P1-9-homo

This is the first of the 4 perturbed velocity models we have constructed. The density is
the same as in smooth model P1 and equal to ρ = 1000 kg/m3 everywhere. The S-wave
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Figure 3: P-wave velocity perturbation in model P1; upper: without absolute value, lower: with absolute
value. The extent of values corresponding to the whole colour circle RGB is set to 0.44 km/s. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

velocity is related to the P-wave velocity by expression vs = vp√
3
. The P-wave velocity

is the same as in smooth model P1 except for the domain which corresponds to block 9
of model P1I. Block 9 is displayed in Figure 4. The distribution of the P-wave velocity
in this domain is created by adding the homogenous perturbations of P-wave velocity
∆vp = 0.01 km/s to the smooth version of model P1.

Figure 4: Block 9 in model P1I.

The P-wave velocity in the background model is specified on the bicubic-spline grid
containing 24× 7 points (from 0 km to 46 km steps of 2 km in the x1 direction and from
0 km to 6 km in steps of 1 km in the x3 direction); the values at the other points are
determined by interpolation. If the grid were smaller, the values of the P-wave velocities
would be different even at the interior points. In view of sidetracking this behaviour, we
specified the P-wave velocity in block 9 in the same grid of 24× 7 points.

2.3 Model P1-9-10%

Everything which we wrote about model P1-9-homo applies to model P1-9-10% except
for the P-wave velocity in block 9. The distribution of the P-wave velocity in this domain
is constructed as a linear combination of the distribution in smooth model P1 and model
P1I:

vp = 0.9(vp)background + 0.1(vp)perturbed. (1)

2.4 Model P1-8-10%

This model is similar to model P1-9-10%, but perturbation (1) of the P-wave velocity is
applied to block 8 rather than block 9. Block 8 is depicted in Figure 5.
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Figure 5: Block 8 in model P1I.

2.5 Model P1-8&9-10%

In this velocity model, P-wave velocity perturbation (1) is applied to both blocks 8 and 9.

3 2D computations of 3D seismograms

In all numerical examples we compute the ray-theory seismograms using once reflected
P waves and compare them with the seismograms computed using the ray-based Born
approximation of the first order. Only P waves are considered. The receiver is at point
(16 km, 0 km, 0 km), the source is at point (25 km, 0 km, 0 km).

3.1 Shooting rays

First of all, it was necessary to decide how to shoot the rays. Bulant & Martakis (2011)
shot rays in the angular interval 〈−1.4, 1.4〉 radians, where zero corresponds to a ray shot
downwards, −π

2
to a ray shot horizontally to the left and π

2
to a ray shot horizontally to

the right. They thus did not shoot rays into the whole lower half-plane. The reason is
that otherwise they would calculate the direct wave as well, although they were interested
in the once reflected waves only. In using the Born approximation, we shoot rays in the
background medium, thus producing only direct waves, and we wish to cover the domain
where the perturbations of the elastic parameters are nonzero with ray tubes. Shooting
rays in the angular interval 〈−1.4, 1.4〉 radians is suitable, because the perturbations are
present only in block 8 and block 9 in these computations.

The ray tubes cannot be “too wide”, because the quantities in the specified grid are
calculated by interpolation between them. Bulant & Martakis (2011) covered the angle,
into which they shot the rays, by 11 rays. This basic system of rays is sufficient for two-
point ray tracing, but probably insufficient for controlled initial-value ray tracing, which
we are interested in. We have tried basic systems of rays composed of 11, 21, 46, 91, 121
rays for the rays shot from the position of the source. We have tried basic systems of rays
composed of 11, 21, 46, 91, 121 rays for the rays shot from the position of the receiver. We
propose to use interval 〈−1.4, 1.4〉 radians and 91 basic rays in shooting from the position
of the source, see Figures 6 and 7. We propose to use interval 〈−1.4, 1.4〉 radians and 91
basic rays in shooting from the position of the receiver, see Figures 8 and 9.
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Figure 6: Coverage of smooth model P1 with the rays in shooting from the position of the source. The
rays are depicted together with the P-wave velocity.

Figure 7: Coverage of smooth model P1 with the rays in shooting from the position of the source. The
rays are depicted together with the number of arrivals.

Figure 8: Coverage of smooth model P1 with the rays in shooting from the position of the receiver.
The rays are depicted together with the P-wave velocity.

Figure 9: Coverage of smooth model P1 with the rays in shooting from the position of the receiver.
The rays are depicted together with the number of arrivals.

3.2 Model P1-9-homo

In the SW3D programs, the following specification of the grid is used: O1, O2, O3 are the
coordinates of the origin of the grid. N1, N2, N3 are the numbers of gridpoints along the
x1, x2, x3 coordinate axes, and D1, D2, D3 are the grid intervals in the directions of the
x1, x2, x3 coordinate axes. We use this notation also in this paper.

The minimum P-wave velocity at the grid points is equal to (vp)min = 4.65235 km/s
(the maximum is (vp)max = 5.91815 km/s). In the 2D models, which we have used
previously, see Šachl (2011), the grids used had the smallest value of the grid interval
in vertical direction. The best values of the vertical grid interval were D3 = 0.025 km
in Model 1, D3 = 0.017489 km in Model 2 and D3 = 0.00625 km in Model 3. If we
recalculate these values using (vp)min, we obtain values D3 = 0.019 km, D3 = 0.014 km
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and D3 = 0.0048 km, respectively. Therefore, we choose grid intervals D1 = 0.005 km,
D3 = 0.005 km.

Note that a grid, which covers the whole model is too large for computing the Born
approximation, because the perturbations are non-zero only in block 9. In the case of
model P1-9-homo, we use a smaller grid, given by parameters N1 = 2500, D1 = 0.005 km,
O1 = 21.0025 km, N3 = 500, D3 = 0.005 km, O3 = 2.005 km, which covers the part of
the model displayed in Figure 10.

Figure 10: Small grid with 2500 × 500 points used in the computations with block 9 covers only the
displayed part of model P-9-homo in Figure 13.

After applying all the discussed options and parameters, we calculate the seismogram
displayed in Figure 11. The seismogram contains 2 reflected waves computed by the ray
theory, as one can see from Figure 13. The ray reflected from the upper interface arrives
first, at approximately 2.06 s. The ray reflected from the lower interface arrives, as one
would expect, later, at approximately 2.93 s. The agreement between the Born and ray-
theory seismograms is not bad, but there are some discrepancies and we are interested
in the reasons for the difference. We thus subtract the ray-theory seismogram from the
Born seismogram, see Figure 12. The abscissae in Figures 11 and 12 are travel times
which correspond to the waves diffracted from 4 edges of block 9. The travel times of the
individual diffracted waves are given in Table 1, where each diffracted wave is described by
the edge, from which it is diffracted. In Figures 14, 15, 16 and 17, we see the isochrones

Edge left upper left lower right upper right lower
Travel time [s] 2.12 2.45 5.05 4.80

Table 1: The travel times of the waves diffracted from the edges of block 9

of the travel times which correspond to the travel times of these diffracted waves. We
think that the major discrepancies can be explained by the absence of the diffracted waves
in the ray-theory seismogram. Note that, to determine the travel time of the diffraction,
we firstly make a rough guess of the position of the edge from Figure 2. The numbers of
blocks in the dense rectangular grid centred at our guessed position are computed. The
edge is determined using this grid, with a discretization error of the order of D1. The
position of the edge is entered into the computation of the isochrone with an accuracy of
2 decimal places.

If the P-wave perturbation is small and homogenous, we are able to compare both
seismograms and we think that we know, more or less, what causes the differences. But
in the original version of the P1 model, the perturbations are larger, see Section 2.1. It
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Figure 11: Model P1-9-homo, grid with grid in-
tervals 0.005 km× 0.005 km.

Figure 12: Model P1-9-homo, grid intervals
0.005 km × 0.005 km, the Born seismogram mi-
nus the ray-theory seismogram.

Figure 13: The reflected rays in model P1-9-homo.

is, therefore, necessary to acquire insight into how much perturbations can be increased
without loss of accuracy. We tested the values of P-wave velocity perturbations 0.02 km/s,
0.04 km/s, 0.08 km/s, 0.1 km/s, 0.2 km/s and 0.3 km/s. The results are shown only for
0.02 km/s, 0.1 km/s, 0.2 km/s and 0.3 km/s, see Figures 18, 19, 20 and 21, where the time
window is shortened in order to see the effect better. The figures are scaled with respect
to the largest value in the ray-theory seismogram to compare them easily. In case of the
first wave, reflected from the upper interface, the discrepancies in amplitude grow. In case
of the second wave this happens too, but moreover we observe a time shift. The reason is
that there are no perturbations of material parameters (except the interface itself) along
the path of the first ray, whereas the perturbations in block 9 are present along the path
of the second ray. We see that we cannot increase the perturbations too much. If we
take the largest amplitude in absolute value in the seismogram computed using the Born
approximation for P-wave velocity perturbations equal to 0.01 km/s and perform a linear
prediction with respect to the perturbations, which matches the behaviour of the Born
approximation, we obtain the blue curve in Figure 22. But the ray-theory result is slightly
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Figure 14: Isochrone of travel time 2.12 s in background model P1.

Figure 15: Isochrone of travel time 2.45 s in background model P1.

Figure 16: Isochrone of travel time 5.05 s in background model P1.

Figure 17: Isochrone of travel time 4.80 s in background model P1.

57



1 . 8

2 . 2

2 . 6

T IME

B L A C K . . . B o r n  a p p r o x i m a t i o n
R E D . . . R a y  t h e o r y

R01R01
1 . 8

2 . 2

2 . 6

T IME

B L A C K . . . B o r n  a p p r o x i m a t i o n
R E D . . . R a y  t h e o r y

R01R01

Figure 18: Model P1-9-homo, grid intervals
0.005 km× 0.005 km, ∆vp = 0.02 km/s

Figure 19: Model P1-9-homo, grid intervals
0.005 km× 0.005 km, ∆vp = 0.1 km/s
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Figure 20: Model P1-9-homo, grid intervals
0.005 km× 0.005 km, ∆vp = 0.2 km/s

Figure 21: Model P1-9-homo, grid intervals
0.005 km× 0.005 km, ∆vp = 0.3 km/s
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Figure 22: Maximum amplitudes in absolute values in the Born and ray-theory seismograms for growing
perturbations.

different, see the red points. We conclude that this is the consequence of non-linearity
of the reflection coefficient, because the largest value in the seismogram belongs to the
reflection from the upper interface. In principle, we see its Taylor expansion with respect
to the perturbations. Only the linear term is important for very small values, further
the quadratic term plays the role and so on. Table 2 summarizes the relative amplitude
difference ∆A between the ray-theory amplitude Art and the Born amplitude ABa. The
formula for ∆A reads

∆A =
Art − ABa

ABa
100%. (2)

∆vp [km/s] 0.01 0.02 0.04 0.08 0.1 0.2 0.3
∆A [%] 1.22 2.17 4.10 8.19 10.36 22.79 38.42

Table 2: The evolution of the relative amplitude difference ∆A with respect to the P-wave velocity
perturbations.

3.3 Model P1-9-10%

Due to what was shown and said, we questioned the use of model P1I because the maxi-
mum measured perturbations were |∆(vp)|max ≈ 0.21 km/s, and Figure 20 indicated some
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Figure 23: Model P1-9-10%, grid intervals
0.005 km× 0.005 km

Figure 24: Model P1-8-10%, grid intervals
0.005 km× 0.005 km

problems. Therefore, we prepared a model with suitably low perturbations, see Sec. 2.3.
The perturbations in this model are ten times smaller than in the original model P1I.
With regard to Figure 18 this seems sufficient.

We obtained the seismograms displayed in Figure 23. The differences between the
Born and ray-theory seismograms are larger in Figure 23 than with the homogenous
perturbation displayed in Figure 11. Nevertheless, the drawn diffractions again play a
role. We see that the differences between the seismograms appear in both wavegroups at
later times.

3.4 Model P1-8-10%

The Born seismogram computed in this model is compared with the ray-theory seismo-
gram in Figure 24. Similarly to the previous cases, the times of the diffracted waves are
computed and marked. The travel times of the individual diffracted waves are given in
Table 3. There is only one reflected wave, see Figure 25, but the displayed features are
common with the previous example.

Edge left upper left lower right upper right lower
Travel time [s] 2.45 2.61 4.80 4.02

Table 3: The travel times of the waves diffracted from the edges of block 8
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Figure 25: The reflected ray in model P1-8-10%
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Figure 26: Model P1-8&9-10%, grid intervals
0.005 km× 0.005 km

Figure 27: Model P1-8&9-10%, grid intervals
0.005 km×0.005 km, the Born seismogram minus
the ray-theory seismogram

3.5 Model P1-8&9-10%

In this computation, we applied the perturbations to both block 8 and block 9. The travel
times of the individual diffracted waves are given in Table 4. Considering the separate

Edge left left left right right right
upper middle lower upper middle lower

Travel time [s] 2.12 2.45 2.61 5.05 4.80 4.02

Table 4: The travel times of the waves diffracted from the edges of block 8 and block 9

computations in these blocks, we expect to obtain a seismogram similar to the ray-theory
result. Figure 26 is, therefore, quite a surprise. There is a significant discrepancy in
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Figure 28: Model P1-8&9-10%, grid intervals
0.01 km× 0.01 km, λ

4 shift of the lower interface
Figure 29: Model P1-8&9-10%, grid intervals
0.01 km×0.01 km, λ4 shift of the middle interface

the second wavegroup. To see the discrepancy precisely, we subtracted the ray-theory
seismogram from the Born seismogram, see Figure 27. Now it appears that the difference
is again caused by diffraction, but why is it so strong?

In order to get some hint, we tried to slightly (λ
4
) shift each of 5 interfaces (4 outer and

one between blocks). The left interface was shifted to the right, the right to the left and
the lower, middle and upper interfaces downwards. These computations employ a coarser
grid which covers the whole model volume with grid intervals D1 = D2 = 0.01 km. We
want to study the shifts of the waves on the seismogram, and this should not interfere
our conclusions. Let us observe Figures 28, 29, 30, 31 and 32. The first wavegroup
marked by the abscissa at 2.12 s reacts to the shift of the upper interface, because it is
the reflection from this interface. The first wavegroup is also sensitive to the shift of the
left interface; we observe signal deformation. This sensitivity is caused by the diffracted
wave superposed on the reflected wave. Similarly, the second wavegroup marked by the
abscissa at 2.45 s is sensitive to the shift of the middle and left interface. The wave marked
by the abscissa at 2.61 s is sensitive to the shift of the lower and left interface. The wave
marked by the abscissa at 4.02 s is sensitive to the shift of the lower interface and it should
be sensitive to the shift of the right interface, but this is not apparent. Two significant
waves at the end of the seismogram are sensitive to the shift of the right interface. The
wave marked by the abscissa at 4.80 s is sensitive to the shift of the middle interface. The
wave marked by the abscissa at 5.05 s is sensitive to the shift of the upper interface.
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Figure 30: Model P1-8&9-10%, grid intervals
0.01 km× 0.01 km, λ4 shift of the upper interface

Figure 31: Model P1-8&9-10%, grid intervals
0.01 km× 0.01 km, λ

4 shift of the right interface
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Figure 32: Model P1-8&9-10%, grid intervals
0.01 km× 0.01 km, λ

4 shift of the left interface

Figure 33: Model P1-8&9-10%, grid intervals
0.005 km × 0.005 km, shift of 0.1 km of the left
interface to the left
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Figure 34: Model P1-8&9-10%, grid intervals
0.005 km × 0.005 km, shift of 0.15 km of the left
interface to the left

Figure 35: Model P1-8&9-10%, grid intervals
0.005 km × 0.005 km, shift of 0.2 km of the left
interface to the left

Figure 36: The reflected rays in model P1-8&9-10% with the left interface shifted by 0.15 km.

This motivated us to shift the left interface not only to the right, but also to the left by
0.1 km, 0.15 km and 0.2 km; the corresponding seismograms are displayed in Figures 33,
34 and 35. One thing is obvious. A very dramatic change of the ray-theory seismogram
occurs if the shift is increased from 0.1 km to 0.15 km. Figure 36 demonstrates that a new
reflected ray is generated. From the ray-theory point of view this change is immediate, but
in the Born approximation this process is different. The diffraction contains the reflection
and grows gradually. That is why the diffraction is so strong. In addition, we observe
that the first wavegroup is really composed of 2 waves. Their separation is apparent and
grows, because the reflected wave does not change its position, while the diffracted wave
does.

64



4 Concluding remarks

In this paper we have compared the seismograms of once reflected waves computed by
the ray theory with the seismograms obtained using the ray-based first-order Born ap-
proximation. Both the background and perturbed models are heterogenous and isotropic.
We observed differences between the seismograms computed using the two methods men-
tioned. The differences are caused by several factors:

(a) The absence of the diffracted waves in the ray-theory seismograms.

(b) The Born approximation breaks down if the perturbations of the medium parameters
are too large. One of the reasons is that the Born approximation is linear with respect
to the medium perturbations, while the reflection coefficient is non-linear. Another is
the time shift in the Born seismograms, because they are computed in the background
medium.

(c) If a ray is reflected from an interface close to the edge of the interface, a next close
ray need not be reflected and the reflected wave suddenly disappears from the ray-theory
seismogram. In the Born seismogram, the wave diffracted at the edge provides a smooth
transition from the reflected wave to the shadow.
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Effect of caustics to the ray-based Born approximation
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Charles University, Faculty of Mathematics and Physics, Department of Geophysics,
E-mail: sachl@karel.troja.mff.cuni.cz

Summary
The seismograms in several 2D isotropic heterogenous models are computed using the first-
order ray-based Born approximation and the ray theory. Only P waves are considered.
The seismograms are computed for the total number of 37 receivers. The weird wavegroups
are observed in the Born seismograms. The explanation that these problems are caused by
caustics on the direct wave is presented. Possible solutions are suggested. Seismograms
corrected using one of these solutions are shown. Furthermore, particular wavegroups
present in the Born seismograms and missing in the ray-theory seismograms are discussed.

Key words: Born approximation, ray theory, velocity model, caustic

1 Introduction

Common approaches to calculate synthetic seismograms in complex structures are either
methods based on direct numerical solution of the elastodynamic equation or approximate
high-frequency methods using asymptotic solutions of the elastodynamic equation. The
first group represents finite-difference or finite-element methods. The most important
representative of the second group is the ray method which is based on the asymptotic
ray theory. The ray method has several important advantages when compared with e.g.
finite differences: Large models and high frequencies do not represent any problem, the
wavefield is separated into individual types of waves and so on. On the other hand there
are also disadvantages: The models must be smooth (not changing rapidly with respect
to the wavelength), the wavefield does not contain several types of waves (e.g. diffracted
waves) and it fails in the singular regions (shadow zones, caustics etc.) (Brokešová, 2006).

It is desirable to benefit from the advantages of the ray method mentioned above and
try to fix its disadvantages. One possibility is to use some perturbation method. Červený
et al. (2007) describes them: We assume that a model, in which we wish to study wave
propagation, differs only little from another model called the background or reference
model. If only the first term of the series is considered, which is often the case, we speak
of the first-order perturbation expansion.

We use the first-order ray-based Born approximation. We use the ray method to com-
pute and discretize the appropriate quantities in the computational grid in the background
model. The Born approximation uses these quantities to compute the seismograms. The
method is slower than the ray method but it should be faster than the finite difference
method. The separation of the wavefield into the individual types of waves is not possible.
It is possible to model the P-P (the incident P wave, the reflected P wave), P-S, S-P and
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S-S reflections only. On the other hand, the method is applicable to the larger class of
models than the ray method because it requires the background model not the original
(perturbed) model to be smooth. Furthermore, the method models diffracted waves, see
e.g. Šachl (2011).

In this paper we show that also the first-order ray-based Born approximation can have
problems in some situations.

2 Perturbed models and the background model

The models where we would like to obtain seismograms (perturbed models) are called
P1-j-10%, j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15}. They are constructed from model P1I, which
is described in Bulant & Martakis (2011). The background model is smooth model P1
described in the same paper. All models are 2D isotropic heterogenous velocity models
situated into rectangle (0 km, 47.3 km)× (0 km, 6 km).

The density in the perturbed models is the same as in the background model and
equal to ρ = 1000 kg/m3 everywhere. The S-wave velocity vs = vp√

3
. The P-wave velocity

in each model is the same as in the background model except for one domain. The P-
wave velocity in each of these domains is equal to the P-wave velocity in the background
model plus 10% of the perturbation between the background model and model P1I. The
perturbation is reduced to 10% in order to satisfy sufficiently small differences between the
perturbed and the background model. This is the requirement of the Born approximation.
The P-wave velocity perturbation between model P1-j-10% and the background model is
depicted for each model P1-j-10%, j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15}, in Figures 1 to 11.

Figure 1: P-wave velocity perturbation between model P1-1-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

Figure 2: P-wave velocity perturbation between model P1-2-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

Figure 3: P-wave velocity perturbation between model P1-3-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.
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Figure 4: P-wave velocity perturbation between model P1-4-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

Figure 5: P-wave velocity perturbation between model P1-5-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

Figure 6: P-wave velocity perturbation between model P1-6-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

Figure 7: P-wave velocity perturbation between model P1-7-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.
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Figure 8: P-wave velocity perturbation between model P1-8-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

Figure 9: P-wave velocity perturbation between model P1-9-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

Figure 10: P-wave velocity perturbation between model P1-10-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.

Figure 11: P-wave velocity perturbation between model P1-15-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are drawn yellow.
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3 Computation of the seismograms

The x1 coordinate is the horizontal coordinate, it grows from the left to the right. The x3
coordinate is the vertical coordinate, it grows downwards. The origin of the coordinate
system is in the upper left corner of the model.

Motivated by Bulant & Martakis (2011) we choose 37 receivers placed at the upper
model boundary. The first receiver has the horizontal coordinate x1 = 16 km. The spacing
between the receivers is 0.5 km, therefore, the last receiver has the horizontal coordinate
x1 = 34 km.

The explosive source is also placed at the upper model boundary, x1 = 25 km, x3 =
0 km. Its position is the same as the position of the 19th receiver. The source time
function is a Gabor signal with a prevailing frequency 10 Hz, filtered by a frequency filter
which is non-zero only for frequencies f , 1 Hz < f < 20 Hz. There is a cosine tapering
for 1 Hz < f < 2 Hz and 19 Hz < f < 20 Hz while for 2 Hz < f < 19 Hz the filter is
equal to one. Only P waves are considered.

The rays are shot into the whole lower half plane. We use the basic system of rays
containing 121 rays, which covers the straight angle into which the rays are shot.

The Born seismograms are computed using these settings . The reference solution is
the ray-theory seismogram. The detailed analysis of the seismograms is not presented in
this paper. We try to do it in Šachl (2011b). Here we focus just on the effects caused by
the caustics.

4 Caustics on the direct wave

Let us start with the seismograms computed in models P1-5-10% and P1-6-10%. The
seismograms are depicted in Figure 12 and Figure 13 respectively.

There are apparent some weird wavegroups in the computed seismograms. They are
marked by ghost green in Figures 12 and 13. Let us have several close receivers. If
the weird wavegroups are present in the seismograms computed for these receivers, they
usually differ significantly among themselves, see Figure 12. The amplitude is different,
the phase can change, sometimes the signals are not similar at all. On the other hand, the
wavegroups present in several close receivers have similar travel times. Our explanation
is that these wavegroups are caused by the caustics on the direct wave.

We focus on the seismograms computed in model P1-6-10%. There are just two weird
wavegroups in the seismograms for the receivers with horizontal coordinates x1 = 33.0 km
and x1 = 33.5 km. The Born approximation is computed using the grid, in which the
needed quantities are discretized. The computation of the quantities at the gridpoints of
the computational grid is following: The model volume is decomposed into ray cells on
the direct wave using the controlled initial-value ray tracing. The interpolation within
these ray cells follows. The algorithm is described in Bulant (1999). Thus, it is desirable
to check the rays and the ray coverage of block 6. The Born approximation uses both
the Green function from the source and from the receiver. The Green function from the
source is the same for all receivers, therefore, if there are any problems, they should be
caused by the Green function from the receiver. The Figures 14, 15, 16, 17 depict the ray
coverage of block 6 in shooting rays from the receivers at x1 = 32.5 km, x1 = 33.0 km,
x1 = 33.5 km, x1 = 34.0 km.
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Figure 12: Born and ray-theory seismograms computed in model P1-5-10%
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Figure 13: Born and ray-theory seismograms computed in model P1-6-10%
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Figure 14: Coverage of the background model with the rays in shooting from the position of the receiver
at x1 = 32.5 km

Figure 15: Coverage of the background model with the rays in shooting from the position of the receiver
at x1 = 33.0 km

Figure 16: Coverage of the background model with the rays in shooting from the position of the receiver
at x1 = 33.5 km

Figure 17: Coverage of the background model with the rays in shooting from the position of the receiver
at x1 = 34.0 km

72



The intersection of rays is observed in Figure 15 and Figure 16. These figures corre-
spond to the receivers with the weird wavegroups in the seismograms.

The places where two neighbouring rays intersect are called caustics. Vavryčuk (2002)
warns that caustics often cause difficulties in modelling wavefields. They produce infinite
ray amplitudes, phase shifts of signals and triplications of the wave front. Caustics usually
appear in wavefields propagating in inhomogenous media such as gradient media or media
with curved interfaces.

We mostly worry about the infinite ray amplitudes. This problem is typical for the
ray theory and is caused by zero ray Jacobian (and its square root called the geometrical
spreading), see Červený (2001, sec. 3.10.5). We perform the following experiment:

First, we find the “biggest values” in the file containing the discretized amplitudes
of the Green function. We analyze component G11 of Green function Gij. The Green
function is discretized in the grid with the grid intervals 0.005 km. The “biggest values”
of the amplitudes are one order larger than the typical values of the amplitude. The
gridpoints with the “biggest values” are marked in Figures 18 and 19 by red crosses. Note
that only gridpoints which lie in block 6 are shown.

Figure 18: Positions of the “biggest values” of the amplitudes of component G11 of the Green function
marked by red crosses. The rays are shot in the background model from the position of the receiver at
x1 = 33.0 km.

Figure 19: Positions of the “biggest values” of the amplitudes of component G11 of the Green function
marked by red crosses. The rays are shot in the background model from the position of the receiver at
x1 = 33.5 km.

The red crosses in Figures 18 and 19 correspond to the position of the caustic. Do not
be misleaded by the position of the crossing of thicker lines created by several near rays.
They have a bit different meaning. The caustic is located closer to the source.

Second, we compute the Born seismograms for the receivers at x1 = 33.0 km and
x1 = 33.5 km using 2 small grids. The first small grid is a grid for the receiver at
x1 = 33.0 km, it contains the gridpoints marked by the red crosses in Figure 18. The
second small grid is a grid for the receiver at x1 = 33.5 km, it contains the gridpoints
marked by the red crosses in Figure 19. The original grid is a regular rectangular grid
which covers block 6 (not the whole model). The second small grid is composed of only
approximately 2 % of the original gridpoints. The first small grid is even smaller, it
contains about 0.3 % of the original gridpoints. The newly computed Born seismograms
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are compared with the original seismograms in Figure 20. The seismograms are ten times
enlarged to see the details better.
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Figure 20: The Born seismograms computed using the grid which covers whole block 6 (black) and
using the small grid which contains gridpoints with the “biggest values” of the amplitude of component
G11 of the Green function (red). The seismograms are computed for the receivers at x1 = 33.5 km and
at x1 = 34.0 km.

Figure 20 shows that the Born seismograms computed using the small grids do not
contain the waves diffracted from the edges of block 6. That is nothing surprising, none
of the two small grids covers these edges. However, the weird wavegroups do not differ
too much. There are some differences, but they can be caused by the diffractions at the
boundaries of the small grid.

4.1 Possible solutions of the problem

We have at least 3 possibilities how to solve the observed problem:

1. Use smoother background model, where caustics are not present.

2. Dampen the “biggest amplitudes” choosing an appropriate cut-off.

3. Use the Gaussian wave packets, which do not suffer by infinite amplitudes in the
caustics.

The first possibility could work in some models. However, too violent smoothing is not
desirable, because the Born approximation requires the background model to be close to
the perturbed model.

The second possibility is easy to accomplish, but the value of the cut-off depends on
the user.

The third possibility sounds interesting and it is probably the only right solution.
Unfortunately, it requires new attitude to the computation of the Born approximation,
new programs etc..
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4.2 Corrected seismograms

We tested the second possibility. The seismograms computed in models P1-5-10% and P1-
6-10% using appropriate cut-offs are depicted in Figures 22 and 24 respectively. Figure 21
and Figure 23 are the same as Figure 12 and Figure 13. We repeat them for a better
comparison with the figures displaying the seismograms computed using the amplitude
cut-offs.

The choice of the value of the cut-off is not unique. We choose the value in order to
preserve the genuine waves and dampen the weird waves. The genuine waves are the waves
reflected from the interfaces of the block and the diffracted waves, see also Šachl (2011b).

The weird wavegroups in the seismograms computed in model P1-5-10% are still vi-
sible, but their amplitudes are much smaller now. The weird wavegroups virtually dis-
appeared from the seismograms computed in model P1-6-10%.

The discussed problem is observed also in the seismograms computed in models P1-1-
10%, P1-2-10%, P1-3-10%, P1-4-10%, P1-10-10%, P1-15-10%. The coresponding seismo-
grams computed using no amplitude cut-off and using the amplitude cut-offs are depicted
in Figures 25 and 26, Figures 27 and 28, Figures 29 and 30, Figures 31 and 32, Fig-
ures 33 and 34, Figures 35 and 36 respectively.
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Figure 21: Born and ray-theory seismograms computed in model P1-5-10% using no amplitude cut-off.
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Figure 22: Born and ray-theory seismograms computed in model P1-5-10% using the amplitude cut-offs.
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Figure 23: Born and ray-theory seismograms computed in model P1-6-10% using no amplitude cut-off.
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Figure 24: Born and ray-theory seismograms computed in model P1-6-10% using the amplitude cut-offs.
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Figure 25: Born and ray-theory seismograms computed in model P1-1-10% using no amplitude cut-off.
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Figure 26: Born and ray-theory seismograms computed in model P1-1-10% using the amplitude cut-offs.
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Figure 27: Born and ray-theory seismograms computed in model P1-2-10% using no amplitude cut-off.
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Figure 28: Born and ray-theory seismograms computed in model P1-2-10% using the amplitude cut-offs.
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Figure 29: Born and ray-theory seismograms computed in model P1-3-10% using no amplitude cut-off.
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Figure 30: Born and ray-theory seismograms computed in model P1-3-10% using the amplitude cut-offs.
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Figure 31: Born and ray-theory seismograms computed in model P1-4-10% using no amplitude cut-off.
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Figure 32: Born and ray-theory seismograms computed in model P1-4-10% using the amplitude cut-offs.
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Figure 33: Born and ray-theory seismograms computed in model P1-10-10% using no amplitude cut-off.
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Figure 34: Born and ray-theory seismograms computed in model P1-10-10% using the amplitude cut-
offs.
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Figure 35: Born and ray-theory seismograms computed in model P1-15-10% using no amplitude cut-off.
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Figure 36: Born and ray-theory seismograms computed in model P1-15-10% using the amplitude cut-
offs.
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5 Caustics on the reflected wave

So far, we discussed the problems caused by caustics on the direct wave. However, another
effect caused by caustics is still contained in the computed seismograms. The caustics
can be present on the reflected wave. The ray-theory seismograms could have significant
problems if the receiver is situated at the caustic or in its close vicinity. The seismogram
could be greatly magnified. On the other hand, the Born approximation may not suffer
from this problem, because it is computed in the background model where no caustics on
the direct wave could be present. Moreover, the ray-theory seismograms are zero for the
receivers located in the shadow zone. The Born seismograms are nonzero. We observe
the diffractions from the caustic.

We present 6 examples. We comment 3 of them:
In the first example, the seismograms are computed in model P1-2-10%. The seismo-

grams are depicted in Figure 38, light yellow highlights the first and last receiver where we
observe the triplication. The Born seismograms computed for the close receivers continue
with the waves diffracted from the caustic. The ray diagram is depicted in Figure 37,
the triplication is perfectly visible. The rays shot closer and closer to the upper model
boundary incident more and more to the right, then they return back to the left, and
again incident more to the right.

In the second example, the seismograms are computed in model P1-5-10%. The seis-
mograms are depicted in Figure 41. Notice the strong wavegroup in the seismogram for
the receiver at x1 = 23 km highlighted by light yellow. Figures 39 and 40 depict the ray di-
agrams. There are two arrivals for the receivers beween x1 = 16 km and x1 = 23 km. This
is the consequence of the caustic. We would probably observe a triplication if the interface
did not end suddenly. The ray-theory seismograms depicted in Figure 41 are zero for the
receivers with the horizontal coordinate x1 ≥ 23.5 km. The Born seismograms smoothly
continue to the shadow zone, the amplitudes of the wavegroups gradually decrease.

In the third example, the seismograms are computed in model P1-7-10%. The seis-
mograms are depicted in Figure 44. Quite complicated ray diagrams are depicted in
Figure 42 and Figure 43. Two occurences of the triplications are observed. The first and
last receiver where we observe the triplication are highlighted by light yellow in the first
case and light blue-green in the second case.
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Figure 37: Model P1-2-10%, the first elementary wave
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Figure 38: Born and ray-theory seismograms computed in model P1-2-10% using amplitude cut-offs.
The wavegroups highlighted by light yellow continue to the shadow zone with the waves diffracted from
the caustic.
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Figure 39: Model P1-5-10%, the first elementary wave

Figure 40: Model P1-5-10%, the second elementary wave
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Figure 41: Born and ray-theory seismograms computed in model P1-5-10% using amplitude cut-offs.
The wavegroups highlighted by light yellow continue to the shadow zone with the waves diffracted from
the caustic.

86



Figure 42: Model P1-7-10%, the first elementary wave

Figure 43: Model P1-7-10%, the second elementary wave
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Figure 44: Born and ray-theory seismograms computed in model P1-7-10% using amplitude cut-offs.
The wavegroups highlighted by light yellow and light blue-green continue to the shadow zones with the
waves diffracted from the caustics.
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Figure 45: Model P1-8-10%, the first elementary wave

Figure 46: Model P1-8-10%, the second elementary wave
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Figure 47: Born and ray-theory seismograms computed in model P1-8-10% using amplitude cut-offs.
The wavegroups highlighted by light yellow and light blue-green continue to the shadow zones with the
waves diffracted from the caustics.
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Figure 48: Model P1-9-10%, the first elementary wave

Figure 49: Model P1-9-10%, the second elementary wave
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Figure 50: Born and ray-theory seismograms computed in model P1-9-10% using amplitude cut-offs.
The wavegroups highlighted by light yellow and light blue-green continue to the shadow zones with the
waves diffracted from the caustics.
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Figure 51: Model P1-10-10%, the first elementary wave

Figure 52: Model P1-10-10%, the second elementary wave
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Figure 53: Born and ray-theory seismograms computed in model P1-10-10% using amplitude cut-offs.
The wavegroups highlighted by light yellow continue to the shadow zone with the waves diffracted from
the caustic.
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6 Concluding remarks

The ray-based Born approximation overcomes some difficulties of the ray theory such as
required smoothness of the model. Unfortunately, also this method has certain problems.
One such problem is the generation of the weird waves, if the caustics are present in the
background model. The possible solution consists in cutting the biggest amplitudes of the
Green function discretized in the computational grid. However, the solution is not fully
satisfactory and other possibilities should be studied in the future.

The caustics can also be present on the reflected wave in the perturbed model. The
Born approximation is computed in the background model, but the diffractions from the
caustics can be observed in the Born seismograms. These diffracted wavegroups are visible
also for the receivers in the shadow zone, where the ray-theory seismogram is zero.
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isotropic models

Libor Šachl
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Summary
The seismograms computed using the first-order ray-based Born approximation in the 2D
heterogenous background model with the 2D heterogenous perturbation are presented.
The Born seismograms are compared with the ray-theory seismograms computed in the
perturbed model. The seismograms are computed for a set of receivers in order to see how
the seismograms change. The rays in the perturbed model are computed to be able to
identify the wavegroups in the seismograms. Similarly, the travel times of the diffracted
waves are computed and highlighted in the seismograms.

Key words: Born approximation, ray theory, velocity model, perturbation

1 Introduction

This paper follows Šachl (2011) and Šachl (2011b). All three papers concern the compu-
tation of the Born approximation in the perturbed models constructed using model P1I.
This last paper attempts, in a sense, to conclude this task. The first paper is dedicated to
the choice of the P-wave velocity perturbation and the seismogram computation for one
receiver in 2 (3) perturbed models. The second paper deals with the effects of caustics.
Now we present the seismograms and ray diagrams computed in 16 perturbed models
for 37 receivers. Some of them are presented also in Šachl (2011b). Here they appear
again because first, they constitute one collection with the other seismograms and second,
there remain pieces of information which were not mentioned yet, because they have no
connection with the caustics.

2 Perturbed models and the background model

We have 16 models where we would like to obtain seismograms (perturbed models). The
models are called P1-1-10%, P1-2-10%, . . . , P1-16-10%. They are constructed using model
P1I, which is described in Bulant & Martakis (2011). The background model is smooth
model P1 described in the same paper. All models are 2D isotropic heterogenous velocity
models situated into rectangle (0 km, 47.3 km) × (0 km, 6 km).

The density in the perturbed models is the same as in the background model and equal
to ρ = 1000 kg/m3 everywhere. The S-wave velocity vs = vp√

3
. The P-wave velocity in

each model is the same as in the background model except for one domain. The domain
corresponds to “block j” of model P1I in the case of model P1-j-10%, see Figure 1. The
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P-wave velocity in each of these domains is equal to the P-wave velocity in the background
model plus 10% of the perturbation between the background model and model P1I. The
perturbation is reduced to 10% in order to satisfy sufficiently low differences between the
perturbed and the background model. This is the requirement of the Born approximation.

Figure 1: Blocks in model P1I. The colour of the block is determined by its index. The colour changes
from green to red and blue. Block 1 is the leftmost green block.

3 Numerical computations

The x1 coordinate is the horizontal coordinate, it grows from the left to the right. The x3
coordinate is the vertical coordinate, it grows downwards. The origin of the coordinate
system is in the upper left corner of the model.

Motivated by Bulant & Martakis (2011) we choose 37 receivers placed at the upper
model boundary. The first receiver has the horizontal coordinate x1 = 16 km. The spacing
between the receivers is 0.5 km, therefore, the last receiver has the horizontal coordinate
x1 = 34 km.

The explosive source is also placed at the upper model boundary, x1 = 25 km, x3 =
0 km. Its position is the same as the position of the 19th receiver. The source time
function is a Gabor signal with a prevailing frequency 10 Hz, filtered by a frequency filter
which is non-zero only for frequencies f , 1 Hz < f < 20 Hz. There is a cosine tapering
for 1 Hz < f < 2 Hz and 19 Hz < f < 20 Hz while for 2 Hz < f < 19 Hz the filter is
equal to one. Only P waves are considered.

The two-point ray tracing in models P1-1-10%, . . . , P1-16-10% is performed first. The
two-point rays computed in these models are depicted in Figures 4,. . . ,27. The rays from
the first elementary wave reflect at the first reached interface. The rays from the second
elementary wave transmit through the first and reflect at the second reached interface.

The rays are shot into the whole lower half plane in computing the Born seismograms.
We use the basic system of rays containing 121 rays, which covers the straight angle into
which the rays are shot.

We use the appropriate amplitude cut-off applied to the Green function in computing
the Born seismograms. For more details see Šachl (2011b).

We computed the Born seismograms using these settings . The reference solution is
the ray-theory seismogram. The seismograms computed in models P1-1-10%, . . . , P1-16-
10% are depicted in Figures 28, . . . , 47 respectively. The first component is shown. Each
set of seismograms computed in one model is scaled by one number, which is written in
the caption under the figure depicting the seismogram.

The abscissas in the seismograms denote the travel times of the diffracted waves. The
waves are diffracted from the edges of the block containing the perturbation of the elastic
parameters. The travel times are computed in the background model, because the Born
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approximation uses quantities from the background model. Most blocks in model P1I
have 4 edges. The colours associated with the edges are in Table 1.

Edge left upper left lower right upper right lower
Color green pink forest green blue

Table 1: The edges of the block and the colours of the corresponding abscissas highlighting the travel
times of the waves diffracted from the edges.

Three blocks are exceptional. Block 3 and block 16 have only 3 edges, block 10 has
5 edges: In block 3, there are no diffracted waves (computed by the ray theory) from
the rightmost edge. The remaining two edges are taken as the left upper and left lower
edges. In block 16, there are no diffracted waves from the leftmost edge. The remaining
two edges are taken as the right upper and right lower edges. In block 10, there are no
diffracted waves from the two edges located at the upper model boundary. The two edges
at the right hand side are taken as the right upper and right lower edges, the remaining
edge is taken as the left lower edge.

We shall describe the computed seismograms now. The weird wavegroups described
in Šachl (2011b) and the diffractions from the caustics are no more discussed.

4 Description of the computed seismograms

4.1 Model P1-1-10%

The seismograms are depicted in Figure 28. The ray diagrams of the first elementary
wave are depicted in Figure 4. The reflected waves in the ray-theory seismograms are
weak until x1 = 19 km. They end at x1 = 21 km. The ray reflects very close to the right
lower edge of the block, see Figure 4. The Born seismograms continue with the diffracted
waves highlighted by the blue abscissas. This phenomenon is often observed also in other
the seismograms.

The waves diffracted from the right upper edge are visible for the receivers between
x1 = 16 km and x1 = 22 km. These waves arrive too late for the other receivers. The
waves diffracted from the left upper and left lower edges are not visible. They arrive later.
The first diffracted wave from these edges does not arrive earlier then in approximately
7.9 s.

4.2 Model P1-2-10%

The seismograms are depicted in Figure 29. The ray diagrams of the first elementary
wave are depicted in Figure 5. The ray-theory seismograms are non-zero for the receivers
between x1 = 21.5 km and x1 = 33 km. Concerning the diffracted waves, only the waves
diffracted from the left upper and left lower edge are visible, similarly as in model P1-
1-10%. For example: The last ray, which incidents to the receiver at x1 = 21.5, reflects
very close to the left lower edge, see the ray diagram displayed in Figure 5. The Born
seismograms are therefore nonzero for the receivers between x1 = 16 km and x1 = 21 km
and smoothly continue with the diffractions from the left lower edge highlighted by the
pink abscissas.

This model is discussed in Šachl (2011b).
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4.3 Model P1-3-10%

The seismograms are depicted in Figure 30. There are no any two-point rays in this
model, therefore, there is neither a ray diagram nor ray-theory seismograms. There are
diffracted waves in the Born seismogram. The wavegroups visible in the seismogram for
the receiver at x1 = 16 km in approximately 1.9 s and also slightly for the receiver at
x1 = 16.5 km are discussed below.

4.4 Model P1-4-10%

The seismograms are depicted in Figure 31. The ray diagrams of the first and second
elementary wave are depicted in Figure 6 and Figure 7 respectively. There are waves
penetrating to the shadow in the Born seismograms, some diffracted waves (Notice that
the reflections visible in the ray-theory seismograms e.g. between x1 = 16 km and x1 =
18 km have virtually the same travel times as the diffractions from the right lower edge
highlighted by the blue abscissas.), but the most interesting are the strong wavegroups in
the Born seismograms for the receivers between x1 = 16 km and x1 = 19 km.

The Born approximation computed in the background model contains not only the
reflected and the diffracted waves but also the corrections of the direct waves. The ray dia-
gram of the direct wave computed in the background model is depicted in Figure 2 together
with the blocks in model P1I. The rays in Figure 2 travel through blocks 10, 12, 14, 15, 16.

Figure 2: The ray diagram of the direct wave computed in the background model depicted together
with the blocks in model P1I.

Thus, we expect the most important contribution to the correction of the direct wave in
models P1-10-10%, P1-12-10%, P1-14-10%, P1-15-10%, P1-16-10%, because in these mo-
dels the perturbation of the elastic parameters is nonzero in some of the listed blocks.
This behaviour is really observed, see the seismograms computed in these models. It
seems that these corrections of the direct waves are generated also in models P1-3-10%
and P1-4-10%. The corrections are rather weak in the seismograms computed in model
P1-3-10% but the positions of these wavegroups correspond to the already mentioned
strong wavegroups in the Born seismograms computed in model P1-4-10%.

There are no rays crossing block 3 or block 4 in Figure 2. All two-point rays incident
to the receivers situated on the right hand side of the model. However, there would be
probably also rays incident to the receivers situated on the left hand side of the model if
the model was defined for x3 < 0 km. Notice that the amplitude of the wavegroups grow
from x1 = 19.5 km to x1 = 16 km in both Figure 30 and Figure 31. This behaviour is
expected as the length of the ray effected by the perturbation of the elastic parameters
grows. Our conclusion is that the strong wavegroups observed in the Born seismograms in
model P1-4-10% for the receivers between x1 = 16 km and x1 = 19 km and much weaker
wavegroups observed in model P1-3-10% are the corrections of the direct waves.
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4.5 Model P1-5-10%

The seismograms are depicted in Figure 32. The ray diagrams of the first and second
elementary wave are depicted in Figure 8 and Figure 9 respectively. There are 4 arrivals
for the receivers between x1 = 16 km and x1 = 20.5 km, 2 arrivals for the receivers
between x1 = 21 km and x1 = 23 km and 1 arrival for the receivers at x1 = 29 km and
x1 = 29.5 km, see the ray diagrams. Four waves visible at x1 = 20.5 km are:

The first two waves are from the first elementary wave. The stronger wave is the
reflection from the upper part of the block. The weaker wave is reflected close to the right
upper edge.

The next two waves are from the second elementary wave. The wave which arrives
earlier is the reflection from the right lower interface. This wave continues for the receivers
at x1 ≥ 21 km with the diffractions from the right lower edge highlighted by the blue
abscissas. The wave which arrives later is reflected from the left lower interface. This
wave continues for the receivers at x1 ≥ 21 km with the diffractions from the left lower
edge highlighted by the pink abscissas.

A similar continuation to the shadow zone is observed in case of the waves visible at
x1 = 29 km and x1 = 29.5 km.

This model is discussed in Šachl (2011b).

4.6 Model P1-6-10%

The seismograms are depicted in Figure 33. The ray diagrams of the first and second
elementary wave are depicted in Figure 10 and Figure 11 respectively. The ray-theory
seismograms contain mainly the rays from the first elementary wave. Only one ray from
the second elementary wave incidents to the receiver at x1 = 21 km. There is a stronger
wavegroup in the ray theory seismogram for the receiver at x1 = 28.5 km. This wavegroup
is a superposition of two waves as we can see from the diagram in Figure 10. We observe
the diffracted waves in the seismogram. The remaining unexplained waves distinguishable
between the dark green and the blue abscissas for the receivers between x1 = 16 km and
x1 = 23 km seem to be the reflections from the lower boundary of the computational grid.
This problem is discussed in Šachl (2011c).

4.7 Model P1-7-10%

The seismograms are depicted in Figure 34. The ray diagrams of the first and second
elementary wave are depicted in Figure 12 and Figure 13 respectively. We observe the
diffracted waves which provide smooth transition to the shadow zone in the Born seis-
mograms. One example: The single wave visible in the ray-theory seismogram for the
receiver at x1 = 21 km reflects very close to the left upper edge of block 7, see Figure 12.
The receivers between x1 = 16 km and x1 = 20.5 km record the waves diffracted from the
left upper edge highlighted by the green abscissas.

This model is discussed in Šachl (2011b).

4.8 Model P1-8-10%

The seismograms are depicted in Figure 35. Quite complicated ray diagrams of the first
and second elementary wave are depicted in Figure 14 and Figure 15 respectively. There
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are only waves from the first elementary wave in the seismograms for the receivers between
x1 = 16 km and x1 = 20.5 km. Further, we see that the ray from the second elementary
wave reflects from the lower interface of block 8 close to the left lower edge and incidents
to the receiver at x1 = 21 km at 2 s. The receivers placed at x1 ≤ 21 km detect the
waves diffracted from the left lower edge. The waves are highlighted by the pink abscissas
in the Born seismograms. A similar situation is observed for 2 rays from the second
elementary wave, which reflect from the left interface of block 8, see the ray diagram
and the seismograms for the receivers at x1 = 29 km and x1 = 29.5 km at approximately
2.6 s. And notice also the wavegroups highlighted by the forest green abscissas in the Born
seismograms for the receivers between x1 = 30 km and x1 = 31 km. These wavegroups
should be the transition of the waves reflected close to the right upper edge to the shadow
zone.

4.9 Model P1-9-10%

The seismograms are depicted in Figure 36. The ray diagrams of the first and second
elementary wave are depicted in Figure 16 and Figure 17 respectively. The ray diagrams
are quite complicated similarly to the ray diagrams in model P1-8-10%. We observe a
triplication on both elementary waves, see Šachl (2011b) too. We can also see several
diffracted waves. One example: The waves arriving last to the receivers between x1 =
27.5 km and x1 = 29.5 km in the ray-theory seismograms are the reflections from the left
interface of block 9. They continue as the diffracted waves in the Born seismograms.

4.10 Model P1-10-10%

The seismograms are depicted in Figure 37. The ray diagrams of the first and second
elementary wave are depicted in Figure 18 and Figure 19 respectively. The locations of
these waves in the seismograms are following. The waves from the first elementary wave
are visible for the receivers between x1 = 18 km and x1 = 27 km, they arrive first. There
is a triplication on the second elementary wave apparent in the ray diagram in Figure 19.
The triplication is visible in the seismograms for the receivers between x1 = 25 km and
x1 = 26.5 km at approximately 1.3 s. The rays from the second elementary wave reflected
from the right interface of block 10 arrives to the receivers at x1 = 32 km and x1 = 32.5 km
at approximately 2.3 s. The remaining waves in the ray-theory seismograms are the waves
from the second elementary wave.

We point out that the Born seismograms coincide well with the ray-theory seismogram
in the whole set of seismograms (with the exception of the correction of the direct wave,
see below). However, the Born seismograms are nonzero even in the shadow zone. See
e.g. the wavegroups in the Born seismograms for the receivers between x1 = 16 km and
x1 = 18 km highlighted by the pink abscissas. These wavegroups are the diffractions from
the left lower edge of block 10.

The strong wavegroups in the seismograms are the corrections of the direct waves.
The seismograms for the receivers between x1 = 28 km and x1 = 34 km are depicted
once more separately using smaller scale in Figure 44. The ray-theory signal is computed
by subtracting the direct wave computed in the background model from the direct wave
computed in the perturbed model. If we compare the ray-theory and Born corrections,
the travel times coincide well, but there are some differences in the amplitudes.
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4.11 Model P1-11-10%

The seismograms are depicted in Figure 38. The ray diagrams of the first and second
elementary wave are depicted in Figure 20 and Figure 21 respectively. The waves from
the first elementary wave arrive first in the ray-theory seismograms. The waves from the
second elementary wave reflected from the left interface of block 11 are detected by the
receivers between x1 = 24 km and x1 = 27.5 km. These waves arrive last in the ray-theory
seismograms. Notice that these signals continue in the Born seismograms by the waves
diffracted from the left upper and left lower edge of block 11. The remaining wavegroups
in the ray-theory seismograms are the reflections from the right and lower interface. The
diffracted waves which continue these waves are again observed in the Born seismograms.

4.12 Model P1-12-10%

The seismograms are depicted in Figure 39. The ray diagrams of the first and second
elementary wave are depicted in Figure 22 and Figure 23 respectively. The waves from the
first elementary wave incident to the receivers between x1 = 16 km and x1 = 25.5 km. The
waves from the second elementary wave incident to the receivers between x1 = 20.5 km
and x1 = 27 km. The receivers between x1 = 20.5 km and x1 = 25.5 km detect waves
from both elementary waves. The waves from the first elementary wave arrive earlier.

The strong wavegroups in the Born seismograms are the corrections of the direct waves
similarly as in model P1-10-10%. The seismograms for the receivers between x1 = 26 km
and x1 = 34 km are depicted once more separately using smaller scale in Figure 45.

The waves diffracted from the left lower edge of block 12 are observed in the Born
seismograms. The waves are highlighted by the pink abscissas for the receivers between
x1 = 16 km and x1 = 20 km. The waves diffracted from the other edges of block 12 are
probably also computed by the Born approximation. Unfortunately, they are not clearly
visible due to the corrections of the direct waves.

4.13 Model P1-13-10%

The seismograms are depicted in Figure 40. The ray diagrams of the first and second
elementary wave are depicted in Figure 24 and Figure 25 respectively. We recognize the
waves from the second elementary wave reflected from the left interface. These waves are
visible in the seismograms for the receivers between x1 = 22.5 km and x1 = 23.5 km, they
arrive at about 1.5 s.

It is interesting, that we observe significant discrepancy between the ray-theory and
Born seismograms for the receivers between x1 = 19.5 km and x1 = 21 km, although the
ray-theory and Born seismograms coincide well for the receivers between x1 = 22.5 km
and x1 = 23.5 km.

The waves from the second elementary wave continue with the waves diffracted from
the left lower edge of block 13 for the receivers at x1 ≤ 22 km and from the left upper
edge of block 13 for the receivers at x1 ≥ 24 km. The waves diffracted from the right
upper and right lower edge of block 13 are virtually not observed. They are probably
weak.
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4.14 Model P1-14-10%

The seismograms are depicted in Figure 41. The ray diagram of the first elementary wave
is depicted in Figure 26. There are no two-point rays from the second elementary wave.
Despite the fact that the ray diagram in Figure 26 is not difficult, we observe discrepancies
between the ray-theory and Born seismograms. There is one exception. The strong waves
in the Born seismograms for the receivers between x1 = 25.5 km and 34 km are probably
the corrections of the direct waves. The ray-theory correction does not appear in so
many seismograms but if it appears, it is similar to the correction predicted by the Born
approximation.

4.15 Model P1-15-10%

The seismograms for the receivers between x1 = 16 km and x1 = 31 km are depicted in
Figure 42. The seismograms for the receivers between x1 = 31.5 km and x1 = 34 km
are depicted separately in Figure 46. The reason is that the Born seismograms for the
receivers between x1 = 31.5 km and x1 = 34 km contain big corrections of the direct
waves. In other words, we need two scales for one set of seismograms computed in model
P1-15-10%. Unfortunately, due to the smaller scaling in the seismograms in Figure 46 we
do not see anything else than the corrections of the direct waves. However, we do not
miss anything. The seismograms for the receivers between x1 = 31.5 km and x1 = 34 km
are similar to the seismograms for the receivers between x1 = 16 km and x1 = 31 km.
The only new thing, apart from the corrections of the direct waves, is one arrival for
the receiver at x1 = 33 km. The corresponding ray is depicted in the ray diagram in
Figure 27.

The seismograms displayed in Figure 46 depict the corrections of the direct waves.
The highest amplitudes are in the seismograms for the receivers at x1 = 33.5 km and
x1 = 34 km. The ray-theory seismogram for the receiver at x1 = 31.5 is zero, but the
Born approximation predicts some correction even for this receiver.

Still opened question is what are the other wavegroups.

4.16 Model P1-16-10%

The seismograms computed in this model are similar to the seismograms computed in
the previous model. There are no any two-point rays in this model, therefore, there is
neither a ray diagram nor ray-theory seismograms. The seismograms for the receivers
between x1 = 16 km and x1 = 28.5 km are depicted in Figure 43. They contain diffracted
waves and some other unknown wavegroups. The seismograms for the receivers between
x1 = 29 km and x1 = 34 km are depicted in Figure 47. The seismograms for the receiver
at x1 = 31.5 km are not shown. The ray-theory seismogram contains huge correction
of the direct wave. The reason is that there arise a new ray of the direct wave, which
incidents to this receiver in the perturbed model. This sudden change is not correct. The
amplitude should change smoothly as in the Born approximation.

As you see, we understand the main features of the presented seismograms. However,
there still remains some unrecognized wavegroups or differences between the ray-theory
and Born seismograms.
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One possibility is that the unrecognized wavegroups are the diffracted waves arisen
due to the imperfect coverage of the block which contains nonzero perturbations. Fi-
gure 3 depicts how the ray shot close to the upper model boundary can bend downwards.
Blocks 2, 10, 12, 14, 15, 16 are not covered perfectly. New incorrect edges and waves
diffracted from these edges arise.

Figure 3: Coverage of smooth model P1 with the rays in shooting from the position of the 2nd receiver.
The rays are depicted together with the blocks in model P1I.

5 Concluding remarks

The ray-theory and Born seismograms are computed and compared in heterogenous 2D
models. We try to identify and discuss the individual wavegroups. We state that the
Born seismograms contain, apart from the reflected waves, the diffracted waves and the
corrections of the direct waves. The ray-theory seismograms computed in the perturbed
model are zero in the shadow zone. The Born seismograms are nonzero. The reflected
waves often continue with the diffracted waves.
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Figure 4: The first elementary wave computed in model P1-1-10%.

Figure 5: The first elementary wave computed in model P1-2-10%.

Figure 6: The first elementary wave computed in model P1-4-10%.

Figure 7: The second elementary wave computed in model P1-4-10%.

Figure 8: The first elementary wave computed in model P1-5-10%.

Figure 9: The second elementary wave computed in model P1-5-10%.
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Figure 10: The first elementary wave computed in model P1-6-10%.

Figure 11: The second elementary wave computed in model P1-6-10%.

Figure 12: The first elementary wave computed in model P1-7-10%.

Figure 13: The second elementary wave computed in model P1-7-10%.

Figure 14: The first elementary wave computed in model P1-8-10%.

Figure 15: The second elementary wave computed in model P1-8-10%.
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Figure 16: The first elementary wave computed in model P1-9-10%.

Figure 17: The second elementary wave computed in model P1-9-10%.

Figure 18: The first elementary wave computed in model P1-10-10%.

Figure 19: The second elementary wave computed in model P1-10-10%.

Figure 20: The first elementary wave computed in model P1-11-10%.

Figure 21: The second elementary wave computed in model P1-11-10%.
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Figure 22: The first elementary wave computed in model P1-12-10%.

Figure 23: The second elementary wave computed in model P1-12-10%.

Figure 24: The first elementary wave computed in model P1-13-10%.

Figure 25: The second elementary wave computed in model P1-13-10%.

Figure 26: The first elementary wave computed in model P1-14-10%.

Figure 27: The second elementary wave computed in model P1-15-10%.
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Figure 28: Born and ray-theory seismograms computed in model P1-1-10% scaled by 2 × 105.
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Figure 29: Born and ray-theory seismograms computed in model P1-2-10% scaled by 2 × 105.
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Figure 30: Born and ray-theory seismograms computed in model P1-3-10% scaled by 2 × 105.
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Figure 31: Born and ray-theory seismograms computed in model P1-4-10% scaled by 3 × 104.
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Figure 32: Born and ray-theory seismograms computed in model P1-5-10% scaled by 2 × 105.
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Figure 33: Born and ray-theory seismograms computed in model P1-6-10% scaled by 2 × 105.
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Figure 34: Born and ray-theory seismograms computed in model P1-7-10% scaled by 2 × 105.
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Figure 35: Born and ray-theory seismograms computed in model P1-8-10% scaled by 1 × 105.
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Figure 36: Born and ray-theory seismograms computed in model P1-9-10% scaled by 3 × 104.
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Figure 37: Born and ray-theory seismograms computed in model P1-10-10% scaled by 2 × 104.
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Figure 38: Born and ray-theory seismograms computed in model P1-11-10% scaled by 1 × 104.
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Figure 39: Born and ray-theory seismograms computed in model P1-12-10% scaled by 6 × 103.
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Figure 40: Born and ray-theory seismograms computed in model P1-13-10% scaled by 4 × 103.
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Figure 41: Born and ray-theory seismograms computed in model P1-14-10% scaled by 2 × 103.
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Figure 42: Born and ray-theory seismograms computed in model P1-15-10% scaled by 2 × 105.
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Figure 43: Born and ray-theory seismograms computed in model P1-16-10% scaled by 6 × 105.
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Figure 44: Born and ray-theory seismograms computed in model P1-10-10% scaled by 3 × 103. Only
the seismograms for the receivers between x1 = 28 km and x1 = 34 km are depicted.
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Figure 45: Born and ray-theory seismograms computed in model P1-12-10% scaled by 103. Only the
seismograms for the receivers between x1 = 26 km and x1 = 34 km are depicted.
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Figure 46: Born and ray-theory seismograms computed in model P1-15-10% scaled by 103. Only the
seismograms for the receivers between x1 = 31.5 km and x1 = 34 km are depicted.
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Figure 47: Born and ray-theory seismograms computed in model P1-16-10% scaled by 103. Only the
seismograms for the receivers between x1 = 29 km and x1 = 34 km are depicted.
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Appendix A

Software used in the numerical
computations

The computations were performed using the SW3D consortium programs. The
documentation is available on consortium web page http://sw3d.cz/. Namely,
we speak about these programs:

• Package FORMS: grdcal.for, grdps.for, pictures.for, ss.for, sp.for and al-
ternatively grdnorm.for apart from newly programmed auxiliary program
average.for.

• Package MODEL: grid.for, modchk.for.

• Package CRT crt.for, crtray.for, crtpts.for mtt.for, green.for, greenss.for.

Apart from the already existing SW3D programs, we used several programs,
which we have newly coded. These programs are, as well as the SW3D programs,
coded in FORTRAN 77. The description of the parameters governing each pro-
gram’s performance is present at the begining of the code. A short presentation
of the coded programs follows.

grdborn.for

The coding of program grdborn.for, which computes the Born approximation, was
one of the aims of this master thesis. The theory is presented in the first chapter
and the first paper. The numerical implementation is described in Appendix B.
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pprf.for

This program is designed to Post Process files in the RF output format, see

http://sw3d.cz/software/sw3dcd15/forms/ss.for#RF

The program can be used e.g. if someone wants to subtract two seismograms or
add two or more seismograms. The seismograms are, in the SW3D programs,
stored in the GSE data exchange format, see

http://sw3d.cz/software/sw3dcd15/forms/gse.for#data

The GSE format is a bit complicated, so it was easier to code a program which
works with the RF format files, from which the seismograms are computed using
program ss.for.

The program reads the input files containing the seismograms and coeffi-
cients. The output is a file containing the seismogram created as a linear combi-
nation of the seismograms with the given coefficients.

The program checks the input data. The error is generated if the hypocentre,
the lowest frequency, frequency step, number of frequencies or coordinates of
each receiver are not the same in the given files. The warning is generated, if
there are different receiver names in the given files. The warning is also generated
if there are different header sections in the given files. The header section from
the first file is used.

average.for

The program averages quantities stored in the input VEL file. The type of ave-
raging is given by parameter ITYPE. Available is the geometric or harmonic
mean. The input are numbers N1, N2, N3, L1, L2, L3. The program reads
N1N2N3L1L2L3 values from the data file VEL. The first to L1L2L3th value,
(L1L2L3 + 1)th to 2L1L2L3th value and so on are averaged. The averaged data
are stored in the VEL file. They rewrite the old data.

The program can be used in computing the Born approximation using the grid
containing N1×N2×N3 grid points. The elastic parameters can be discretized in
the same grid, or they can be discretized in the finer grid withN1L1×N2L2×N3L3

gridpoints and then averaged using this program. The parameters L1, L2, L3

have the meaning of the refinements of each gridpoint of the original grid in the
directions of the x1, x2, x3 coordinate axes respectively.

126



grdmak.for

A frequent computation of the parameters of the grid arisen during computa-
tions, especially in Model 3 in the first paper. In the SW3D programs, these
parameters are usually the coordinates O1, O2, O3 of the origin of the grid, the
grid intervals D1, D2, D3 and the numbers N1, N2, N3 of gridpoints along the x1,
x2, x3 coordinate axes. Nevertheless, we usually know the domain to be covered
with the grid and the needed grid interval.

Moreover some grids contain so many gridpoints that we have to split them
up into more subgrids, compute the Born approximation using these subgrids and
add the results using program pprf.for, which is correct thanks to the linearity
of the Born approximation.

Program grdmak.for solves these two problems. The program firstly computes
the parameters of the subgrids which have no more than NPTSMX gridpoints
from the known domain specification and grid spacings. Secondly, the program
reproduce the given history file and subsequently writes the parameters of each
single subgrid into the copies. This information is written after the line which
contains the same string as the one specified by parameter EXPR.

ttdif.for

The program computes the travel times of the diffracted waves. The input file
PTS is supposed to be generated by program crtpts.for using the option KALL=-
2. We use program ttdif.for in computing the travel times of the diffracted waves
in the fourth paper. We perform the ray tracing using the edge of the block
as the source. Then we run program ttdif.for. The program searches for the
receiver name identical with the name of the real source, which is specified by
input parameter SRCNAM. The error is generated, if there is no such receiver.
Otherwise, this travel time is added to all travel times from the input file PTS.
The resulting travel times are stored in the output file TTDIF together with the
name of the receiver and real source. The output file is in the FTT format, see

http://sw3d.cz/software/sw3dcd15/forms/formsdat.htm#FTT

posbig.for

The program reads the input files FNAME and NUM. These files are supposed
to be generated by program mtt.for. File FNAME is supposed to contain the
amplitudes, file NUM is supposed to contain the number of arrivals at each
gridpoint. Program posbig.for searches file FNAME and if there is a number
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bigger than the value of input parameter BIG, the coordinates of that grid point
are written into the output file FOUT. The coordinates are computed using the
input grid dimensions. The output file has the PTS format, see

http://sw3d.cz/software/sw3dcd15/forms/formsdat.htm#PTS
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Appendix B

Program grdborn.for

B.1 Numerical implementation of the governing
formulas

Program grdborn.for is designed to compute the first-order Born approximation
in the isotropic medium using the high frequency approximation of the deriva-
tives at certain specified receivers.

We start with formula (7) from the first paper. We evaluate the integral
numerically because all quantities (perturbations of the elastic parameters, am-
plitudes of the Green functions and so on) are known in one particular grid (the
grid is the same for each quantity) containing N1, N2, N3 gridpoints with D1,
D2, D3 grid intervals along x1, x2, x3 coordinate axes respectively. We replace
the integration by summation1.

Furthermore, we have to realize that, due to caustics, there could be more
arrivals to each particular gridpoint. On the other hand, it can also happen that
no arrival is present. This fact holds for the incident wavefield and the Green
function as well, but the number of arrivals at one particular gridpoint could
be different. The reason is that despite the fact that both the wavefield and
the Green function incident in the chosen grid, the wavefield emanates from the
point source but the Green function emanates from the receiver. Let us denote
the number of arrivals of the incident wavefield and the Green function at I-th
gridpoint by Nwf (I) and Ngr(I) respectively.

1The Born integral is indefinite, therefore use of e.g. the trapezoidal rule or Simpson’s rule
is not desirable.
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Altogether formula (7) from the first paper has the form

∆ui(x, ω) = ω2D123

N123∑
I=1

Nwf (I)∑
o=1

Ngr(I)∑
q=1

{
exp

[
iω
(
τ (I,o) + T (I,q)

)]
[
∆ρ(I)A

(I,q)
ji a

(I,o)
j + ∆λ(I)A

(I,q)
ji P

(I,q)
j a

(I,o)
k p

(I,o)
k

+ ∆µ(I)A
(I,q)
mi P

(I,q)
j

(
a(I,o)
m p

(I,o)
j + a

(I,o)
j p(I,o)

m

)]}
, (B.1)

where index I stands for I-th gridpoint, index o stands for the o-th arrival at the
I-th gridpoint of the incident wavefield and index q stands for the q-th arrival at
the I-th gridpoint of the Green function, N123 = N1N2N3 and D123 = D1D2D3.

From the numerical point of view, it is useful to remark that the integrand
of (B.1) is composed of the following parts:

3 vectors
A

(I,q)
ji a

(I,o)
j , A

(I,q)
ji P

(I,q)
j , A

(I,q)
ji p

(I,o)
j , (B.2)

3 dot products

a
(I,o)
k p

(I,o)
k , a

(I,o)
k P

(I,q)
k , P

(I,q)
k p

(I,o)
k , (B.3)

the phase term
exp

[
iω
(
τ (I,o) + T (I,q)

)]
(B.4)

and the term

ω2D123. (B.5)

From the physical point of view, formula (B.1) is composed of the 3 terms.
They correspond to the perturbations of density ρ and Lamé’s elastic moduli λ
and µ. Each of these 3 terms is composed of some combinations of the above
mentioned vectors and dot products. The combinations are written in Table
(B.1).

Formula (B.1) is evaluated for nf frequencies in program grdborn.for. The
lowest frequency is fmin the frequency step is fstep. Terms (B.2), (B.3) are fre-
quency independent. The computation of (B.5) is straightforward. Computation
of (B.4) for frequency f = fmin + nfstep can be done straightforward too, but it
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Vector/dot product Term number
A

(I,q)
ji a

(I,o)
j 1,3

A
(I,q)
ji P

(I,q)
j 2

A
(I,q)
ji p

(I,o)
j 3

a
(I,o)
k p

(I,o)
k 2

a
(I,o)
k P

(I,q)
k 3

P
(I,q)
k p

(I,o)
k 3

Table B.1: Combinations of vectors and dot products in each term of the Born appro-
ximation

is more efficient to rewrite it in the following way:

exp
[
iω
(
τ (I,o) + T (I,q)

)]
= exp

[
i2π(fmin + nfstep)

(
τ (I,o) + T (I,q)

)]
=

= exp
[
i2πfmin

(
τ (I,o) + T (I,q)

)]
exp

[
i2πnfstep

(
τ (I,o) + T (I,q)

)]
=

= exp
[
i2πfmin

(
τ (I,o) + T (I,q)

)](
exp

[
i2πfstep

(
τ (I,o) + T (I,q)

)])n
(B.6)

As we can see, it is sufficient to compute exp
[
i2πfmin

(
τ (I,o) + T (I,q)

)]
for fre-

quency f = fmin and then multiply it by exp
[
i2πfstep

(
τ (I,o) + T (I,q)

)]
for each

following frequency. The advantage is that the computation of the exponential
is reduced to one complex multiplication, i.e. 4 multiplications and 2 adds.

If the source and receiver are situated in a symmetry plane of a 2D model
(identical with the plane x1-x3), we can compute the Born approximation nu-
merically in a 2D slice according to formula (45) in the first paper:

∆ui(x, ω) = ω
3
2D13π

1
2 (1 + i)

N13∑
I=1

Nwf (I)∑
o=1

Ngr(I)∑
q=1

{
exp

[
iω
(
τ (I,o) + T (I,q)

)]
[
∆ρ(I)A

(I,q)
ji a

(I,o)
j + ∆λ(I)A

(I,q)
ji P

(I,q)
j a

(I,o)
k p

(I,o)
k

+ ∆µ(I)A
(I,q)
mi P

(I,q)
j

(
a(I,o)
m p

(I,o)
j + a

(I,o)
j p(I,o)

m

)]
1√

τ
(I,o)
,22 + T

(I,q)
,22

}
, (B.7)

where N13 = N1N3.
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The spurious wavegroups can arise due to the finite size of the grid. We met
this situation in the first paper. We suggested to apply the cosine window at the
grid boundaries. The formula (B.1) is modified:

∆ui(x, ω, 0) = ω2D123

N123∑
I=1

w1(I)w2(I)w3(I)w4(I)w5(I)w6(I)

Nwf (I)∑
o=1

Ngr(I)∑
q=1

{
. . .

}
,

where w1(I), . . . , w6(I) are the values of the cosine windows applied at grid
boundaries 1, . . . , 6 (see Table 2 in the first paper) at the particular grid point.
Similarly with formula (B.7).

B.2 Skim through program, comments and dis-
cussion

First of all, the data directly specified in the history file are read. The very first
are read the specifications of the input grid because we can calculate N123 and
check the size of computing array RAM for storing Nwf (I), ∆ρ, ∆(ρv2

p), ∆(ρv2
s).

Then the data stored in some particular files are read. At first, the data speci-
fying the material perturbations and the incident wavefield are read. The order
is following: Nwf (I), material perturbations, τ (I,o), p(I,o)

i , τ (I,o)
,22 (in 2D model),

Re
(
a

(I,o)
i

)
, Im

(
a

(I,o)
i

)
. Nwf (I) are read preferentially, because then we know

the total number of arrivals and we can check our size of array RAM for storing
the other quantities. You may wonder why the perturbations ∆(ρv2

p), ∆(ρv2
s)

are read instead of perturbations ∆λ, ∆µ. In our opinion, it is more common to
specify the isotropic medium by the density and the P-wave, S-wave velocities.
It stands

ρv2
p = λ+ 2µ, ρv2

s = µ, (B.8)

therefore, both attitudes are equivalent.
The data specifying the Green functions are read at last. Program grdborn.for

is designed to compute the Born approximation for one source but possibly more
receivers, i.e. the incident wavefield is the same for different receivers but not
the Green functions.

As far as the computational structure goes, the outermost loop is over re-
ceivers. Following (B.1) or (B.7), the next loop is over gridpoints. Further, there
should be one loop over the arrivals of the Green functions and one loop over the
arrivals of the incident wavefield. It is better to choose the loop over the arrivals
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of the Green functions as the outer loop because the program copies the values
from array RAM into the auxiliary variables with the suitable names and the
Green functions are specified by more parameters. The innermost loop is over
frequencies. We use (B.6).

Terms (B.2), (B.3) which compose the 3 terms in (B.1) as described in Ta-
ble B.1 are computed only if the appropriate perturbations are present. If any
of parameters RHOPER, VPPER or VSPER is blank on input, it is supposed
that this particular perturbation is zero in the whole model. It can also happen
that there are material perturbations in the model, but at some gridpoint they
are equal to zero. Both possibilities are tested. The only problem is that due to
(B.8), ∆(ρv2

p) can be zero in the whole model, which implies ∆λ = −2∆µ in the
whole model. That does not mean ∆λ is zero in the whole model.
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Appendix C

Sample computations

Generally speaking, any computation consists of the used programs, input data
files and history files. The used programs are the topic of Appendix A. Term
data file is clear. The data files which are output of some program are named
*.out, the data files which are prepared by user are named *.dat.

Internet page http://www.sw3d.cz/software/sw3dcd15/forms/sep.htm de-
scribes the history files in details. The main points are: The history files are
designed to contain both the data and the information how to execute the pro-
grams. The history files may be executed by Perl script go.pl. The following items
are recognized in the history files:

• # Comments: Everything from a # (hash mark) to the end of line is
assumed to be a comment and is ignored.

• =Data: Each = (equal sign) immediately preceded by a string is interpreted
as the PARAMETER=VALUE couple specifying the value of the parame-
ter named PARAMETER. For example, N1=27 means that the value of
the parameter named N1 is 27.

• :Programs: Each : (colon) immediately preceded by a string is interpreted
as the instruction to execute a program.

C.1 Introduction and description of the structure
of the first sample computation

We present the computation of the 3D seismograms using the 2D ray-based
Born approximation in heterogenous model P1-8-10%. The background model is
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heterogenous smooth model P1 without interfaces. The reference seismogram is
computed using the ray theory. The observed differences between the Born and
ray-theory seismogram are caused by the diffracted waves. Their travel times
are marked by the green abscissas. The computation consists of the following 7
history files:

1. History file p1-main.h is the leading history file. It runs history files p1-
grid.h, p1-mtt.h, p1-iwf.h, p1-born.h, p1-ss2.h and p1-ss.h.

2. History file p1-grid.h computes the perturbations of the elastic parame-
ters between the perturbed and background medium. The history file also
generates several pictures.

3. History file p1-mtt.h computes the Green functions from the source and
from the receiver, slowness vectors, travel times and other quantities at the
gridpoints.

4. History file p1-iwf.h computes the incident wavefield necessary for the Born
approximation using the representation theorem.

5. History file p1-born.h computes the 2D Born approximation. The output
file is in the RF format.

6. History file p1-ss2.h generates the ray-theory seismogram.

7. History file p1-ss.h generates the Born seismogram from the RF format
file computed by history file p1-born.h and visualize it together with the
ray-theory seismogram computed by history file p1-ss2.h.

C.2 Detailed analysis of the first sample compu-
tation

There are comments of the parameters and the program itself at the beginning
of each program’s code. We used some of these sentences in the following text.

p1-mod1c.dat

In this file, there are defined model boundaries, surfaces, simple blocks, complex
blocks and the distribution of the elastic parameters in the perturbed model.
The original 16 simple blocks from model P1I are united into one complex block
except simple block 8. This simple block is also the second complex block.
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p1-mod2.dat

The file containing the definition of the background model. One simple block,
one complex block. Smooth distribution of the elastic parameters.

History file p1-grid.h

Perturbations ∆(ρv2
p), ∆(ρv2

s), ∆ρ could be input by manually created files in
some simplified cases, e.g. Model 1 in the first paper. This is not possible in a
heterogenous model with curved interfaces. The P-wave velocity, S-wave velocity
and density are gridded in the perturbed and background model using program
grid.for. Parameter MPAR specifies the quantity to be discretized. The output
files are input for program grdcal.for to compute the perturbations using script
pert2.cal. The resulting output files containing perturbations ∆(ρv2

p), ∆(ρv2
s),

∆ρ are named p1-vpper.out, p1-vsper.out and p1-rhper.out respectively.
The computational grid covers just block 8. The P-wave velocity perturba-

tion, indices of the blocks and P-wave velocity in the background model should
be visualized in the whole model. Thus, it is necessary to redefine the grid di-
mensions and discretize the P-wave velocity and indices of the blocks in this
grid. Note that in the “computational part” of this history file, the parameter
ICB which defines the output file with indices of the blocks is not specified.
The plotting is in all 3 cases performed by program grdps.for. The input and
output files are specified by parameters GRD and PS respectively. Different are
the settings of parameters VREF, CREF, VCIRC, VMIN, VMAX, R, G, B.
Let us explain how it works when plotting indices of the blocks. Value VREF
corresponds to colour CREF and VCIRC is the extent of values corresponding
to the whole colour circle RGB. Values less than or equal to VMIN or greater
than or equal to VMAX are drawn in colour specified by R, G, B. VREF=2
and CREF corresponds to blue colour. This ensures to plot block 8, specified
as the second complex block in p1-mod1c.dat, in blue colour. All other com-
plex blocks are drawn in default colour specified by R, G, B due to VMIN=1.9,
VMAX=2.1. There are two complex blocks in this model. The first complex
block, which unites all simple blocks except the 8-th simple (and also complex)
block, is drawn in default yellow colour.

p1-rec.dat

The data file containing the name and coordinates of the receiver.
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p1-src.dat

The data file containing the name and coordinates of the source.

p1-pts.dat

The data file containing the names and coordinates of various points. It contains
the name and coordinates of the source and receiver in this computation.

History file p1-mtt.h

The file performs controlled initial-value ray tracing and interpolation inside ray
tubes. The travel times, amplitudes and other quantities of the Green functions
from the receiver and from the source are computed at the gridpoints.

The history file computes the Green functions from the receiver first. Then it
plots several pictures with the rays. The same process is repeated for the Green
functions from the source.

The model is specified by the MODEL file. File p1-mod2.dat specifies the
background model, file p1-mod1c.dat specifies the perturbed model.

The SRC file specifies the position of the seismic source for the ray tracing.
The SRC file contains the position of the receiver when computing the Green
functions from the receiver. The SRC file contains position of the real source
when computing the Green functions from the source.

WRIT=’writall.dat’ is a setting suitable for the controlled initial-value ray
tracing. All rays are stored.

The code, i.e. the specification of the types of waves we are interested in,
is specified by parameter CODE. We use direct P waves, CODE=p1-codep.dat,
because the Born approximation is computed in the background model without
interfaces. The reflection-transmission code was chosen, because it is simple but
sufficient.

Parameters DCRT and RPAR specify the files that control the complete ray
tracing, and the take-off parameters of the desired rays. The files have different
names in shooting the rays from the position of the receiver and source. This
is left for the future extension. The both files have the same content in this
computation.

Azimuthal equidistant projection of a unit sphere is used to parametrize rays
(INIPAR=3). This option, if compared with geographic-like spherical coordi-
nates, has the advantage of only one singularity in the upward direction (Sphe-

137



rical coordinates have 2 singularities, in both downward and upward directions).
The source is at the surface, therefore these coordinates are useful.

The computational grid and the grid for plotting are, of course, the same as
in history file p1-grid.h.

The ray tracing is performed by program crt.for. The output data are post
processed by program mtt.for which interpolates travel times, amplitudes and
other quantities with respect to the gridpoints.

Program crtray.for is used to convert the unformatted output of program
crt.for into formatted file p1-r01.tmp with rays. The file is suitable for plotting.
File r01.out with the quantities at the initial points of rays and file r01i.out with
the quantities stored along rays are used. We wish to plot all rays not just two
point rays, therefore KALL=1.

The rays together with the boundaries of the model and the positions of
the receivers are plotted by program pictures.for. The information for plotting
is read from file picdat.tmp specified by parameter PICDAT. File picdat.tmp
controls the type and size of markers, the names of files with lines and points to
be plotted and so on. The output file specified by parameter PICTURE is called
p1-ray.ps.

Perl script copy.pl is used to copy file p1-vep.ps into new file p1-v-g.ps and
to copy file p1-icb.ps into new file p1-cov-g.ps. The rays are appended to these
newly created files using Perl script append.pl.

Plotting the number of arrivals is similar to the plots in history file p1-grid.h.

p1-crt-g.dat

The DCRT and RPAR data are merged in this data file.
DCRT

Parameters KSTORE, NEXPS, NHLF and MODCRT are left to their default
values: No amplitude conversion coefficients, the travel time as an independent
variable, the maximum of 5 allowed bisections of the initial increment of the
independent variable during the numerical integration.

Parameter STORE controls the step of the independent variable for storing
the computed quantities along a ray. In fact it sets the size of a ray cell used for
the interpolation in program mtt.for. STORE=0.02 seems to be the appropriate
value. The Born seismogram would be inaccurate if we use insufficiently small
ray cells.

The initial increment of the independent variable for the numerical integra-
tion is set to STEP=0.02.
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Figure C.1: Problems with uncovered corners when using PRMO(3)=1

The computational volume is the whole volume. This setting is not ideal. We
use PRMO(3)=1. The thin spaces uncovered by ray tubes are limited, because
the boundaries of the computational volume do not influence ray histories. This
option is suitable for the controlled initial-value ray tracing, however, problems
occur in the corners of the computational volume. Two rays that are incident at
the different boundaries of the computational volume have the same histories,
which causes the uncovered corners of the computational volume, see Fig. C.1.
The solution is to define the computational volume larger than the model volume.
Thus, it is useful to define the elastic parameters also in the neighbourhood of
the model boundaries. We do not want to change model p1-8-10%, but we used
this idea in the first sample computation.

RPAR
The reference surface, specified by parameter ISRFR, is the upper model boun-
dary.

The first coordinate is the same as the horizontal coordinate, therefore,
ISRFX1=1.

We perform one parametric ray tracing and thus ISRFX2=0.
XERR is not used in the controlled initial-value ray tracing. AERR is the

accuracy of the determination of the boundary rays between the different ray
histories.

The ray parameters domain is, in the case of one parametric ray tracing,
degenerated from a rectangle to a line. We shoot rays in the angular interval
〈−1.4, 1.4〉 radians and we use 91 basic rays, to sufficiently cover the whole
block 8.
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p1-bnd.dat

The file defining the lines that form the bounding box of the model.

History file p1-iwf.h

The history file computes the amplitudes of the incident wavefield using the
amplitudes and slowness vectors of the Green functions according to

um(x′, ω) ≈ Gmi(x
′,x0, ω)Mij sM(ω) pj(x0), (C.1)

where sM(ω) is the frequency–domain source–time functions and Mij is the mo-
ment tensor. The formula is derived using the representation theorem with ap-
plied high frequency approximation. It is valid for a points source at point x0

(Klimeš, 2009).
The amplitudes of the incident wavefield is computed by program grdcal.for

using script iwf.cal. The moment tensor is prescribed directly in the history file.
It has the form of the explosive source (when dealing with P waves).

Program grdcal.for was available in version 6.40 when this history file was
created. There is a limitation to this version. It can work with only 9 files at
a time. Unfortunately, we need 18 files containing real and imaginary parts of
the amplitudes of the Green function from the source to the gridpoints and 3
files containing slowness vectors at the source point. One more file for output is
necessary. A total of 22 files, which is too many. If we computed each component
separately, we would still need 10 files (6 files with amplitudes, 3 files with
slowness vectors plus 1 output file). Hence, it is necessary to compute even real
and imaginary parts separately. In this case 7 files are needed in each of the 6
runs. The disadvantage of this approach is that the slowness vectors have to be
loaded repeatedly which slows down the computation.

The appropriate quantities used in the runs are specified in Table C.1.
Remark that the vector opposite to the slowness vector in the source instead

of the slowness vector itself is loaded. The minus sign has to be present in the
script iwf.cal then. Unfortunately, program mtt.for does not allow to discretize
directly the slowness vector in the source.

History file p1-born.h

The file runs program grdborn.for which computes the Born approximation.
The Born approximation is gradually computed for the receivers specified

in file BORN. Data file BORN contains the names of the files, which contain
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Parameter name 6 runs, file specified by parameter contains
GRD1 −p1 −p1 −p1 −p1 −p1 −p1

GRD2 −p2 −p2 −p2 −p2 −p2 −p2

GRD3 −p3 −p3 −p3 −p3 −p3 −p3

GRD4 Re(A11) Re(A21) Re(A31) Im(A11) Im(A21) Im(A31)
GRD5 Re(A12) Re(A22) Re(A32) Im(A12) Im(A22) Im(A32)
GRD6 Re(A13) Re(A23) Re(A33) Im(A13) Im(A23) Im(A33)
GRD7 Re(u1) Re(u2) Re(u3) Im(u1) Im(u2) Im(u3)

Table C.1: Quantities specified by parameters GRD1-GRD7 in each of 6 runs of
program grdcal.for launched by history file p1-iwf.h. pi are the components of the
slowness vector in the source, Aij are the amplitudes of the Green function and ui are
the components of the incident wave field. Indices i, j ∈ {1, 2, 3}

the parameters of the Green functions belonging to the particular receiver. The
receiver is specified in data file BORN by its name. The receiver coordinates can
be found in datafile REC.

There is one receiver in this computation, therefore the index of the line
corresponding to the first receiver is IREC=1 and the number of the receivers is
NREC=1. So, parameters IREC and NREC are left to their defaults.

Parameters FMIN, FLOW, FHIGH and FMAX common with program ss.for
are only used to determine the frequencies for which the Born approximation is
computed. In fact, only parameters FMIN and FMAX are used.

Program grdborn.for allows the cosine smoothing applied to the grid boun-
daries. There is no cosine smoothing in this computation. Parameters CSWIN,
CSWIN1,CSWIN2, CSWIN3, CSWIN4, CSWIN5 and CSWIN6 are left to their
default values.

Files SRC and REC are not necessary for the computation of the Born appro-
ximation. They are used in generating the output file in the RF format. The co-
ordinates of the source and the name and coordinates of the receiver are written.

The history file works with the data files generated by the previously de-
scribed history files. The data files are summarized in Table C.2

Output is a frequency-domain response function in the RF format, which is
input for program ss.for in history file p1-ss.h.
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Quantity Input Program Parameter name in the program
∆(ρv2

p) VPPER grid.for + grdcal.for VEL, MPAR=1 (grid.for)
∆(ρv2

s) VSPER grid.for + grdcal.for VEL, MPAR=2 (grid.for)
∆ρ RHOPER grid.for + grdcal.for VEL, MPAR=3 (grid.for)

Nwf (I) NUM mtt.for NUM
τ (I,o) MTT mtt.for MTT
p

(I,o)
i MPi mtt.for MPi
τ

(I,o)
,22 MTTXX mtt.for MTT22

Re
(
a

(I,o)
i

)
AURi mtt.for + grdcal.for AMPRij (mtt.for)

Im
(
a

(I,o)
i

)
AUIi mtt.for + grdcal.for AMPIij (mtt.for)

Ngr(I) BORN mtt.for NUM
T (I,q) BORN mtt.for MTT
P

(I,q)
i BORN mtt.for MPi
T

(I,q)
,22 BORN mtt.for MTT22

Re
(
A

(I,q)
ij

)
BORN mtt.for AMPRij

Im
(
A

(I,q)
ij

)
BORN mtt.for AMPIij

Table C.2: Input data files for history file p1-born.h. The notation used in appendix B
and the first paper is used. Indices i, j ∈ {1, 2, 3}, I ranges the number of gridpoints,
o,q range the number of arrivals of the Green functions from the source and from the
receiver at each gridpoint respectively.

History file p1-ss2.h

The history file firstly runs program crt.for, which performs two-point ray trac-
ing, i.e. the rays from the source to the receiver are traced. The setting of parame-
ters for program crt.for is similar as in history file p1-mtt.h, where we performed
controlled initial-value ray tracing, but there are some important differences.

The DCRT file p1i-crt.dat defers from p1-crt-g.dat (or p1-crt-u.dat) by the
definition of one storing surface. The upper model boundary, where the receiver
is placed, is the storing surface.

The CODE file p1i-cod.dat specifies the once reflected P waves.
The RPAR file test5-rpa2.dat is also a bit different. Parameter PRMO(3)=0

not PRMO(3)=1. The rays terminating at different boundaries of the compu-
tational volume have different histories. This option is suitable for two-point
ray tracing. Parameter IPOINT is not left to its default value 999999, but
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IPOINT=1. Otherwise all rays would be unsuccessful. It is also important that
IPOINT> 0. The successful ray does not have to satisfy the whole code.

There is WRIT=’writ.dat’ in this history file apart from WRIT=’writall.dat’
used in history file p1-mtt.h. Not all rays but only two-point rays are stored now.

The rays are plotted similarly as in history file p1-mtt.for. The difference is
that we plot only two point rays, due to default KALL=0.

Program crtpts.for converts the unformatted output of program crt.for into a
formatted file containing coordinates, travel times, slowness vectors, and ampli-
tudes at the endpoints of two-point rays. The program may be used to determine
the indices of the reflected waves.

The ray-theory elastodynamic Green function is computed using program
green.for. Computing the response function follows, but now it is not performed
by grdborn.for but by greenss.for. The computation of the synthetic seismograms
in the GSE data exchange format from the response function is done by ss.for.

The source time function is a Gabor signal, filtered by a frequency filter which
is nonzero only for frequencies f , FMIN=1 Hz < f < FMAX=20 Hz. There is a
cosine tapering for FMIN=1 Hz < f < FLOW=2 Hz and FHIGH=19 Hz < f <
FMAX=20 Hz while for FLOW=2 Hz < f < FHIGH=19 Hz the filter is equal
to one.

Time step DT has been chosen in order to plot a smoothly looking seismo-
gram. Its choice depends on the length of plotting interval, i.e. on the details we
would like to study. We are choosing the time step, the number of time intervals
NFFT is set to the value covering the whole desired time interval.

Note that program greenss.for reads the complex-valued seismic force or mo-
ment from the input file specified by parameter SOURCE. This parameter is
left to its default value, SOURCE=source.dat. This setting corresponds to the
explosive source used in history file p1-iwf.h.

Program sp.for visualize the seismograms.
Parameters SPTLEN and SPXLEN control the length of the vertical time axis

and horizontal axis. Parameters SPTDIV, SPTSUB, SPXDIV, SPXSUB control
the number of intervals and subintervals along the vertical and horizontal axes.
In the following examples KODESP=0, so that the horizontal axis represents
the index of the receiver corresponding to the receiver position in file REC and,
due to SPXDIV>0, the horizontal axis is denoted by the names of the receivers.
The values SPTDIV and SPTSUB are chosen to divide the whole time interval
reasonably. Parameter SPAMP is the amplitude scale for all 3 components. Its
value is chosen to cover the whole figure in the horizontal direction with the
seismogram.
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SP1, SP2 and SP3 set the names of the output files with the first, second
and third components of the seismogram.

History file p1-ss.h

Two seismograms are drawn into one figure using program sp.for. The Born and
ray-theory seismograms are specified by parameter SS and SS1 respectively. The
Born seismogram is drawn black, due to KOLOR=1, the ray-theory seismogram
is drawn red, due to KOLOR1=2. The green lines marking the travel times
of the diffractions are read from SPTTC file. This file specifies the names of
the FTT files containing the list of travel times to be highlighted. The FTT
files are named p1-edge2.dat, p1-edge4.dat, p1-edge5.dat, p1-edge6.dat Parameter
KOLORTT specifies the colour to plot the travel times and SPHIWI the length
of the lines. The other settings are similar as in history file p1-ss2.h
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