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Abstrakt: V této préci studujeme ruzné aspekty chovani volnych testovacich ¢astic v Einsteinové
obecné teorii relativity a analyzujeme fyzikalni vlastnosti prostorocasi, v nichz se tyto Castice
pohybuji. V prvni ¢asti zkoumame geodetické pohyby ve ¢tyirozmérnych prostorocasech kon-
stantni kiivosti, tj. Minkowského a (anti-)de Sitterové vesmiru, s obecnou expandujici impulsni
gravita¢ni vinou. Jsou odvozeny jednoduché refrakéni vztahy pro Castice prechazejici impuls
a popsan vliv nenulové kosmologické konstanty. V druhé casti této prace prezentujeme obec-
nou metodu pouzitelnou ke geometrické a fyzikdlni interpretaci prostorocasu v libovolné dimenzi.
Tato metoda je zalozena na systematickém analyzovani relativnich pohybu volnych testovacich
castic. Rovnice geodetické deviace je vyjadiena vzhledem k pfirozené ortonormalni bazi. Disku-
tujeme jednotlivé piispévky odpovidajici ruzné algebraické struktufe tenzoru kfivosti a obsazené
hmoté. Tento formalizmus je nésledné uzit ke zkouméani velké t¥idy netwistujicich prostorocasu.
Piedevsim pak analyzujeme pohyby ¢astic v neexpandujici Kundtové a expandujici Robinsonové—
Trautmanoveé rodiné feseni.
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Abstract: In this work we study various aspects of the behaviour of free test particles in Einstein’s
general relativity and analyze specific physical properties of the background spacetimes. In the
first part we investigate geodesic motions in the four-dimensional constant curvature spacetimes,
i.e., Minkowski and (anti-)de Sitter universe, with an expanding impulsive gravitational wave. We
derive the simple refraction formulae for particles crossing the impulse and describe the effect of
nonvanishig cosmological constant. In the second part of this work we present a general method
useful for geometrical and physical interpretation of arbitrary spacetimes in any dimension. It
is based on the systematic analysis of the relative motion of free test particles. The equation
of geodesic deviation is rewritten with respect to the natural orthonormal frame. We discuss
the contributions given by a specific algebraic structure of the curvature tensor and the matter
content of the universe. This formalism is subsequently used for investigation of the large class
of nontwisting spacetimes. In particular, we analyse the motions in the nonexpanding Kundt and
expanding Robinson—Trautman family of solutions.
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CHAPTER

1

INTRODUCTION

A hundred years ago, in July 1912, Albert Einstein left Prague after his sixteen months appoint-
ment as a regular professor at the German Charles—Ferdinand University. During this stay he
found the basic ideas of his future gravitational theory. Yet, it took him another three years until
general relativity was completely finished (see the original paper [1]) and brought a fully new
viewpoint into the understanding of such fundamental concepts as space, time and gravity.

In this theory, the three dimensional space is inseparably connected with the time dimension,
and together they form the unified continuum called spacetime. In Einstein’s description, the
coordinates lose their directly measurable meaning, and the extraction of physically important
information becomes more complicated. The effects of gravity elegantly correspond to the curva-
ture of the spacetime which is naturally induced by the presence of matter and energy. On the
other hand, the spacetime curvature necessarily induces motion of the matter distribution, and
the theory thus becomes nonlinear. The gravitational field represented by such curved spacetime
then, in the mathematical terms, corresponds to the manifold with Lorentzian metric. Its ten in-
dependent components have to satisfy a set of nonlinear partial differential equations of the second
order describing the Einstein gravitational law. Due to the inherent nonlinearity, it is obviously
difficult to analytically solve these field equations except in very special cases which are usually
characterized by a high degree of symmetry. Therefore, perturbative approaches, or recently also
sophisticated numerical simulations, are often used to study the more realistic astrophysical situ-
ations. For pedagogical descriptions of the Einstein gravity theory and the related topics see, e.g.,
the textbooks [2, 3].

In spite of the mathematical difficulties and the necessary idealizations, the role of exact
analytical solutions of Einstein’s field equations is really essential. They bring more profound
insight into the structure of the theory, and help to elucidate the completely new aspects which
follow from the understanding of gravity as an inherent property of the surrounding space and time.
Such “exotic” phenomena as the black holes, bending of the light rays, evolution of the universe,
and gravitational waves were first introduced by investigations of specific exact solutions. The
detailed summary of the known four-dimensional exact spacetimes can be found in the classical
book [4], and physical interpretation of the most important of them in the work [5].

Let us briefly mention some of the most interesting effects predicted by the Einstein general
relativity. The examples listed below of the completely new physically relevant effects have been
tested precisely and confirmed during the last century, and they established the general relativity
as the best fitting theory of gravitation that we know. However, unification of the general relativity
with the quantum theory still remains an open problem.



2 1 INTRODUCTION

FEinstein’s work was initially motivated by the anomalous precession of Mercury which was
immediately explained using his new theory [6]. In the case of Mercury the relativistic correction
is only approximately 43 arc seconds per century. However, such effects are much stronger in the
recently discovered compact and massive systems of binary neutron stars, e.g., the periaspis shift
of the binary pulsar PSR 1913416 is about 4.2 arc degree per year, and for the double pulsar PSR,
JO73743039 is about 16.9 arc degree per year.

The influence of a gravitational field on the propagation of the light rays was already studied
by Einstein during his Prague stay [7]. The first direct test of general relativity thus naturally
became the measurement of the light bending which Eddington realized during the total solar
eclipse in 1919. The specific deflection of light rays caused by the strong gravitational field of the
compact masses such as galaxies is nowadays used for exploring the deep universe (gravitational
lensing). In the case where the lens is created by a star, the effect of light bending can be used
for the detection of exoplanets possibly orbiting the lensing star (gravitational microlensing).

Another important relativistic prediction is the existence of objects so massive and dense
that everything, even the light, is prevented from escaping out of the surrounding area called
event horizon. The exact spacetime describing the simplest (static and spherically symmetric)
such object was (surprisingly) the first nontrivial solution of the Einstein equations found by
Schwarzschild in 1916, see [8]. However, this geometry was better understood much later during
the golden age of general relativity in the sixties. More realistic rotating generalization was
presented by Kerr [9] in 1963. In our universe, these “black holes” can be formed as a final state
of the evolution of sufficiently massive stars when the internal pressure is not able to resist the
star’s own gravity. The supermassive black hole (about four millions solar masses) is observed
indirectly via the motion of orbiting stars in the center of the Milky Way Galaxy, and reside in
the centers of almost all galaxies.

The Einstein gravitational law can be also applied for simplified global modeling of the whole
universe. Employing the observed large scale isotropy and homogeneity of the known surrounding
space, the general relativity immediately predicted the non-stationary evolution since the possibly
static Einstein solution found in 1917 is not stable under perturbations. The universe is thus
necessarily either expanding or collapsing (for the review of the first cosmological attempts see
the work [10]). In 1929, the expansion of the universe was experimentally discovered by Hubble’s
measurements of the red-shift of the light emitted by distant galaxies, which is proportional to
the distance between the source and the observer.

One of the most fascinating features of Einstein’s relativity is the propagation of the gravi-
tational interaction with the finite speed of light in the form of weak ripples in the curvature of
the spacetime. Their existence was predicted by Einstein using the weak field limit in 1918, see
[11]. The particular example of large exact family of gravitational waves was subsequently found
by Brinkmann [12], however, the physical meaning of these solutions was understood much later.
The gravitational waves have quite similar properties as the electromagnetic waves. They are
transverse and (in four dimensions) have two independent polarization modes. The main differ-
ence is that the electromagnetic waves are of dipole character while the gravitational radiation is
quadrupole. Typical astrophysical source of the gravitational waves is thus an asymmetric col-
lapse of a star (ideally the explosion of supernova). Gravitational waves are also produced by the
system of two massive objects orbiting each other. General relativity then predicts that during
this motion the orbital energy is converted into the radiation and emitted away in the form of
ripples in the curvature. This necessarily leads to the decrease of the orbital period, and finally to
the merging of the orbiting objects. The first discovered system of this type was the binary pulsar
PSR 1913416 detected by Hulse and Taylor using the Arecibo antenna in 1974. It consists of two
neutron stars with the orbital period 7.75 hours. The measured decrease of this period is about
76.5 microseconds per year. By the precise observations of this binary system during the following



years it was shown that the cumulative decrease of the orbital period exactly corresponds to the
predictions given by the Einstein general relativity. Such measurements thus give us an indirect
but very strong evidence of the existence of gravitational waves, and the discovery made by Hulse
and Taylor was awarded the Nobel Prize in 1993.

The first attempts to directly detect the gravitational waves were performed by Joseph Weber
in the late sixties using his own resonance detectors which were able to measure the relative
deformations caused by the wave of the order 10~ !¢, Although the sensitivity was pretty high,
the gravitational waves were not detected. The current models for the possible wave amplitudes
from the common astrophysical sources predict the relative deformations about 10722 and lower.
This sensitivity corresponds to the measurements of the distance between the Sun and the Earth
with the precision a single atom.

In the last decade, there has been a considerable effort dedicated to the direct detection of
gravitational waves. The international network of detectors containing LIGO observatories in the
United States, VIRGO in Italy and GEO 600 in Germany, has been built. However, even using
these huge ground interferometric detectors with sensitivity about 10722, the gravitational waves
have not yet been directly observed. Nowadays the LIGO and VIRGO detectors are upgraded for
the higher sensitivity up to 10723 (Advanced LIGO) which should lead to the significant increase
of the possibly detectable sources. Also, the future space project of the European Space Agency
called the New Gravitational wave Observatory (NGO) should be prepared for launch in 2020. In
fact, it is based on the revised previous project LISA of ESA and NASA. The direct detection of
gravitational waves should thus be expected in the following years.

Regardless of these observable astrophysical and cosmological consequences of general relativ-
ity, our work presented in this thesis has purely theoretical character. We are mainly interested
in the physical interpretation of exact solutions of Einstein’s field equations in any dimension. A
special attention is paid to the idealized models of gravitational waves and to the interactions
of such waves with geodesic observers. We hope this may help us to understand the theory of
gravitational radiation in four and possibly any higher number of spacetime dimensions.

In the first part (Chapter 2) we analyze the behaviour of freely falling test particles in the four-
dimensional spacetimes of constant curvature with an expanding impulsive gravitational wave. The
class of solutions can be obtained as a null limit of two point masses accelerated in opposite direc-
tions, see [5]. We provide a detailed description of the observer’s transition across the expanding
wave surface with the J-distribution profile. The effects given by the presence of a nonvanishing
cosmological constant are also discussed.

In the second part we introduce the general method describing the relative motions of free
test particles in an arbitrary spacetime of any dimension (Chapter 3). This method can be
useful for a deeper understanding of the specific properties induced by the particular algebraic
structure of the given spacetime. We demonstrate that the Weyl components cause the specific
effects corresponding to their boost weight. In Chapter 4 we apply this method to investigation
of the general nontwisting D-dimensional class of spacetimes. In Chapter 5 we investigate the
relative behaviour of geodesics in the shearfree and nonexpanding Kundt class. The properties
of important subclasses, namely pp-waves, VSI spacetimes and simple gyratons, are discussed in
detail. In Chapter 6 we analyze the relative motion in the nontwisting, shearfree, and expanding
Robinson-Trautman family of solutions. The differences between four and any higher dimension
are described from the viewpoint of the geodesic observers.






CHAPTER

2

GEODESICS IN IMPULSIVE
GRAVITATIONAL WAVES

In this chapter we analyze geodesic motion in spacetimes of constant curvature with an impulsive
spherical gravitational wave. Our results are presented in the form of the paper Refraction of
geodesics by impulsive spherical gravitational waves in constant-curvature spacetimes with a cos-
mological constant which was published in Physical Review D in 2010, for a full citation see [13].

In the classical work [14] Penrose described an elegant geometric construction of impulsive
gravitational waves. This approach is the so-called “cut” and “paste” method which is based on
the identification of two pieces of Minkowski spacetime with a suitable wrap, obtaining thus an
impulsive wave surface. Later Nutku and Penrose in [15] and Hogan in [16, 17] found explicit
continuous coordinate systems covering the whole spacetime, i.e., both Minkowski halfspaces and
the bordering impulsive surface. These results were extended for the case of a nonvanishing
cosmological constant in the works of Hogan [18] and Podolsky and Griffiths [19, 20]. More details
and references can be found in [5].

The geodesic motion in such impulsive spherical gravitational waves propagating on a flat
Minkowski background spacetime was studied by Podolsky and Steinbauer in [21]. Their main
attention was paid to an important family of explicit continuous Z = const. geodesics.

We subsequently investigated a more general class of C' geodesics, i.e., continuous curves
with continuous first derivatives. Our results naturally cover and extend the previous case of
Z = const. geodesics on a flat background described in [21], and also generalize the discussion for
motion affected by a presence of an arbitrary cosmological constant, i.e., for de Sitter or anti-de
Sitter backgrounds.

Using only the assumption that these geodesics belong to the C! class, and employing an
explicit form of coordinate transformations between the continuous coordinate system and natural
background coordinates on the subspaces “in front of” and “behind” the impulse, we found a simple
refraction formulae fully describing the effects of the wave. These relations identify position and
velocity of an observer before its interaction with the impulse, i.e., on the border of the halfspace
“in front of” the wave, with those resulting from the influence of the impulsive gravitational wave,
i.e., on the border of halfspace “behind” the impulse. Because the geodesics in the background
spaces of constant curvature are well known, these refraction formulae thus completely describe
the behaviour of continuous C! observers in Minkowski, de Sitter and anti-de Sitter universe with
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arbitrary impulsive spherical gravitational waves.

We also apply the derived refraction relations to the axially symmetric case of an impulse
generated by a snapped cosmic string. The influence of the wave on free test particles than results
in focusing of particles in the directions of moving ends of the snapped string. These effects depend
only on the initial positions and velocities of the particles, and on the deficit angle characterizing
the cosmic string. Combination of a homogeneous expansion given by the presence of a positive
cosmological constant in de Sitter background spacetime and the refraction effects of the wave
was also described.

These results provide us with a physical and geometrical intuition of possible behaviour of
free test particles in spacetimes with impulsive spherical gravitational waves and can serve as
a heuristic ansatz for a rigorous mathematical discussion based on the algebras of generalized
functions.
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We investigate motion of test particles in exact spacetimes with an expanding impulsive gravitational
wave which propagates in a Minkowski, a de Sitter, or an anti-de Sitter universe. Using the continuous
form of these metrics we derive explicit junction conditions and simple refraction formulas for null,
timelike, and spacelike geodesics crossing a general impulse of this type. In particular, we present a
detailed geometrical description of the motion of test particles in a special class of axially symmetric
spacetimes in which the impulse is generated by a snapped cosmic string.

DOI: 10.1103/PhysRevD.81.124035

I. INTRODUCTION

In the fundamental work [1] Roger Penrose introduced
an elegant geometric ““cut and paste” method for construc-
tion of impulsive spherical gravitational waves in a flat
background. This is based on cutting Minkowski space
along a null cone and then reattaching the two pieces
with a suitable warp. An explicit class of such spacetimes,
using coordinates in which the metric functions are con-
tinuous across the impulse, was subsequently given by
Nutku and Penrose [2], Hogan [3,4] and, to include a
nonvanishing cosmological constant, in [5-7]. An addi-
tional acceleration parameter can also be introduced [8].

This gives the complete family of expanding spherical
waves of a very short duration which propagate in a
Minkowski, a de Sitter, or an anti-de Sitter universe, that
is in spacetimes with a constant curvature (zero, positive,
or negative, respectively). Such solutions can naturally be
understood as impulsive limits of Robinson-Trautman
type-N vacuum solutions [9,10], namely, a suitable family
of spherical sandwich waves of this type [6,11].

A stereographic interpretation of complex spatial coor-
dinate involved in the Penrose junction condition across
the impulse can be used for an explicit construction of
specific solutions of this type, in particular, those which
describe impulsive spherical waves generated by colliding
and snapping cosmic strings [7]. A first such solution given
already in [2] represents the snapping of a cosmic string,
identified by a deficit angle in the region outside the
spherical impulsive gravitational wave. The collision and
breaking of a pair of cosmic strings can also be described in
this way.

The particular solution for a spherical gravitational im-
pulse generated by a snapping cosmic string in Minkowski
space was alternatively described by Bic¢ak and Schmidt
[12]. This was obtained as a limiting case of the Bonnor-

*podolsky @mbox.troja.mff.cuni.cz
robert.svarc @mff.cuni.cz

1550-7998/2010/81(12)/124035(19)

124035-1

PACS numbers: 04.20.Jb, 04.30.Nk, 11.27.+d

Swaminarayan solution for an infinite acceleration of a pair
of Curzon-Chazy particles (see Chapter 15 of [10]). It was
observed in [13] that such a situation is equivalent to the
splitting of an infinite cosmic string as described in [14] or,
rather, of two semi-infinite cosmic strings approaching at
the speed of light and separating again at the instant at
which they “collide.”

The same explicit solution was also obtained in the limit
of an infinite acceleration in the more general class which
represents a pair of uniformly accelerating particles with
an arbitrary multipole structure [15], or as an analogous
limit of the C metric which describes accelerating black
holes [16]. In the latter case, a nonvanishing cosmological
constant can also be considered. This leads to a specific
expanding spherical impulse generated by a snapping cos-
mic string in the (anti)de Sitter universe [17].

More details concerning these impulsive metrics and
other references can be found in the review works
[18,19] and in Chapter 20 of [10]. Note also that particle
creation and other quantum effects in such spacetimes were
investigated, e.g., by Hortagsu and his collaborators [20-
23].

The main objective of the present work is to study
specific properties of these spacetimes, namely, the motion
of test particles influenced by the spherical impulsive
waves. In fact, Podolsky and Steinbauer in [24] already
investigated and described the behavior of exact geodesics
in the case when the impulse expands in Minkowski flat
space. Here we will generalize this study to any value of the
cosmological constant, i.e., we will analyze the effects on
geodesics when the spherical impulse expands in a
de Sitter or an anti-de Sitter universe. Moreover, we will
present the results in a form which is more convenient for
physical and geometric interpretation.

Our paper is organized as follows. In Sec. II we review
the class of spacetimes under consideration and describe
the geometry of the expanding impulses. By employing a
continuous form of the metric, in Sec. III we investigate a
large class of C! geodesics crossing the spherical impulse.

© 2010 The American Physical Society
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We explicitly derive the junction conditions and the refrac-
tion formulas, we study a subfamily of privileged global
geodesics, and rewrite the junction conditions in a conve-
nient five-dimensional formalism when A # 0. In Sec. IV
we focus on impulsive waves generated by a snapped
cosmic string. We discuss in detail the physical and geo-
metric interpretation of the motion of test particles influ-
enced by an impulse of such type.

II. EXPANDING IMPULSIVE WAVES IN
CONSTANT-CURVATURE BACKGROUNDS

As a natural background for constructing the family of
spherical expanding impulsive waves, we consider the
conformally flat metric

2dnd7 — 2dUdV

2 —
T TA (7 — UV

2.1

This is a unified form for all spaces of constant curvature,
namely, Minkowski space when A = 0, de Sitter space
when A > 0, and anti-de Sitter space when A < 0.

Indeed, with the standard representation of the double
null coordinates

1 1
U=—7(r—2, V=—"rlt+2), =—(x+1iy),
ﬁ( ) \/i( )M 2( )
2.2)
the metric (2.1) reads
— 2+ 2+ 2+ 2
), dt* + dx* + dy* + dz 2.3)

ds ,
DT T LA+ 2+ + AP

which for A = 0 is the familiar form of the flat space. In
the case A # 0, it is well known that the corresponding
de Sitter and anti-de Sitter spaces can be represented as a
four-dimensional hyperboloid,

—ZE+ 3+ 73+ 22 + 7% = ed?, 24

embedded in a flat five-dimensional spacetime,
ds} = —dZ} + d7? + dZ3 + dZ3 + edZ3, (2.5)
where € = 1 for the de Sitter space (A > 0), e = —1 for

the anti-de Sitter space (A <0), and a = +/3/|A|. The
specific parametrization of (2.4) given as

PHYSICAL REVIEW D 81, 124035 (2010)

7, 7_(W/+ u>[1 A7 - qu)] ,
1 B _

Zi= (V- ’U)[l +6A(nn - qu)]

z= s+ a1+ AU ]

z= =) 1+gAma - UV,

7, = a[l —éA(m‘; - UV)][l +éA(m‘7 - qu)]_],

(2.6)
or inversely
Zy—Z
U=
+
Zy+7Z
V= 0 1
V2a Zi+a’
Zz‘l’lZg
=V2a———, 2.7
n=V2aZ—— @7)

takes (2.5) to the metric form (2.1). Consequently, for U,
V € (—, +0), and 1 an arbitrary complex number,
these coordinates cover the entire (anti)de Sitter manifold
(except the coordinate singularities at ‘U, V = o). For
more details about these coordinates and other properties
of maximally symmetric spacetimes, see Chapters 3—5 of
[10].

The Penrose “‘cut and paste”” method [1] for construct-
ing impulsive spherical waves in such backgrounds of
constant curvature can now be performed explicitly as
follows (see [5,7]).

In the region U = 0, let us consider the transformation

V="V*t=AV - DU,
U=U"=BV—EU,
n=mn"=CV-FU, 2.8)
to coordinates (U, V, Z, Z), where
4 _ __h
pln'l’ pln'l’
p L2 - VA A
= Lt + +2
I {4 |h’ E[ 202 h/]}’
B | p | A" W12
B {Z o Th
Z (h" h’ Z E// E!
1+2 + (% 22 |
e[ ( h) 2 (h’ h)]}
h p h// h/ h//
B h_{z (_ ) i
Z(h" n A%
320 2wl 29

124035-2
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with

p=1+¢€ZZ, e=—1,0+1 (2.10)

(the parameter € is the Gaussian curvature of the spatial 2-
surfaces in the closely related Robinson-Trautman folia-
tion of the spacetimes, cf. Sec. 19.2 of [10]). Here

h = h(Z) 2.11)

is an arbitrary complex function, and the derivative with
respect to its argument Z is denoted by a prime. The
Minkowski and (anti)de Sitter metric (2.1) then becomes
_2|(V/p)dZ + UpHdZ|* + 2dUdV — 2edU*
[1+:AUWV - eU)P

2
ds;

>

(2.12)

where H is the Schwarzian derivative of & given as

LTA" 3 /h'\2
w55 =56 |

In the complementary region U = 0, we apply a highly
simplified form of the transformation (2.8) which arises for

the special choice of the function #(Z) = Z. In view of
(2.9), this implies relations

(2.13)

\%
V=V =_—¢U,
p
Z2
’U=U7=uV—U,
p
V4
n=n =-V (2.14)
p

Since H = 0 in this case, by applying the transformation
(2.14) the metric (2.1) takes the form
_ 2(V/p)*dZdZ + 2dUdV — 2edU*

d 2
5o [1+LAU(V - )P

(2.15)

Both in the coordinates of (2.12) and in the ones used in
(2.15), the boundary hypersurface U = 0 is a null cone
given by 7 — UV = 0. Using (2.2), it is obviously an
expanding sphere x*> + y> + z> = > in flat Minkowski
space. In view of (2.7), it is also an expanding sphere Z? +
73 + 7% = 7} in the (anti)de Sitter universe. Considering
the relation (2.4), it follows that such null hypersurface
U = 0 is the vertical cut Z, = a through the de Sitter and
anti-de Sitter hyperboloid in a flat five-dimensional space-
time, as shown in Fig. 1. This represents a spherical
impulse which originates at time Z, = 0 and subsequently
for Zy > 0 expands with the speed of light in these back-
grounds (alternatively, for Z, <0 the impulse is
contracting).

An explicit global metric which is continuous across the
impulse at U = 0 is now easily obtained by attaching the
line element (2.15) for U <0 to (2.12) for U > 0. The
resulting metric takes the form

PHYSICAL REVIEW D 81, 124035 (2010)

FIG. 1. An expanding spherical impulse can be visualized as a
section Z, = a of the four-dimensional hyperboloids represent-
ing de Sitter (left) and anti-de Sitter (right) spaces. The bold lines
are trajectories of opposite poles of an expanding spherical wave
surface given by Z, = 0 = Z3. The time-reversed situation in the
region Z, < 0, indicated by dashed lines, corresponds to con-
tracting impulsive waves.

_2(V/p)dzZ + UBW)pHAZP + 2dUdV — 2edU?
[1+1AU(V - eU)P '
(2.16)

ds?

where O(U) is the Heaviside step function. Such a com-
bined metric is continuous, but the discontinuity in the
derivatives of the metric functions across U = 0 yields
an impulsive gravitational wave term in the curvature
proportional to the Dirac & distribution. More precisely,
in a suitable null tetrad, the only nonvanishing component
of the Weyl tensor is W, = (p*>H/V)8(U) (for more details
see [7]). The spacetime is thus conformally flat everywhere
except on the impulsive-wave surface U = 0. Also, the
only nonvanishing tetrad component of the Ricci tensor is
®,, = (p*HH/V*)US(U). This demonstrates that the
spacetime is vacuum everywhere, except on the impulse
at V = 0 and at possible singularities of the function p>H.

The expanding spherical impulse located at U = 0 ob-
viously splits the spacetime into two separate conformally
flat vacuum regions (Minkowski, de Sitter, or anti-de Sitter,
according to A). For brevity, in the following we shall
denote the constant-curvature half-space U > 0 as being
“in front of the wave”, and the other constant-curvature
half-space U < 0 as being “‘behind the wave.”

III. GEODESIC MOTION IN SPACETIMES WITH
EXPANDING IMPULSIVE WAVES

The purpose of this paper is to investigate the effect of
expanding impulsive waves on motion of freely moving
test particles. We start by recalling geodesics in Minkowski
and (anti)de Sitter spaces, then we will derive junction
conditions for complete geodesics in the impulsive space-
times summarized in the previous section and we will
present the refraction formulas.
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A. Geodesics in the backgrounds

Geodesic motion in spaces of constant curvature (2.3),
the background spaces in which an impulse propagates, is
well known.

When A = 0, this is just flat Minkowski space. General
geodesics are, of course, given by

t =y, x=x; +x(r—1),

3.1

y=y; +yi(r—1), 7=zt (r— 1),

with y = 4/32 + 32 + 72 — e, i.e., 7 is a normalized affine

parameter of timelike (e = —1) or spacelike (e = +1)
geodesics. For null geodesics (e = 0) it is always possible
to scale the factor vy to unity. The constants x;, y;, z; and
X;, ¥;, Z; characterize the position and velocity, respectively,
of each test particle at the instant

1
T = —‘[xl? + y% + z%,
Y

when the geodesic intersects the null cone U = 0. At 7;
each particle is hit by the impulse and its trajectory is
refracted, see Sec. III C.

In the case of a nonvanishing cosmological constant A,
to express all geodesics in the corresponding de Sitter and
anti-de Sitter spaces it is very useful to employ the five-
dimensional formalism. It can be shown [25] that, using the
coordinates of (2.5), the explicit geodesic equations have a
very simple and unified form, namely Zp + %AeZp =0,
where p =0, 1,2,3,4. Thus, explicit geodesics on the
hyperboloid (2.4) are

(3.2)

Z,="2Zy +Zy(t— 1) whenge =0, (3.3)
Z, =17y cosh(T — Ti) + aZp,- sinh(T — 7-i)
a (3.4)
when ge <0,
T—T; . . T T;
Z, =17y cos( P ) + dZ,; sm( P ) (3.5)

when ge > 0,

where a = 4/3/|A|. The relation (3.3) describes null geo-
desics, expression (3.4) represents timelike geodesics in
de Sitter space (¢ = 1) or spacelike geodesics in anti-
de Sitter space (¢ = —1), whereas (3.5) corresponds to
spacelike/timelike geodesics in de Sitter/anti-de Sitter
space, respectively. Here 7 is an affine parameter and
Zpis Zp,« are constants of integration, namely, the positions
and velocities at the instant of interaction with the impulse
7 = 7;. These ten constants are constrained by the follow-
ing three conditions:

= (Zg)* + (21> + (2o + (Zy)* + e(Zy)* = e,
(3.6)

PHYSICAL REVIEW D 81, 124035 (2010)

= (Zo)* + (Z1)* + (Zy)* + (Z3)* + 8(Zy)* = ed®,
3.7)

= ZoiZoi + ZiiZy; + Zoilo; + L2y + €Z4iZ4y; = 0.
(3.8)

Equation (3.6) is the normalization of the affine parameter,
Eq. (3.7) follows from the constraint (2.4), and Eq. (3.8)
from its derivative.

By combining relations (2.7), (3.3), (3.4), and (3.5) it is
now straightforward to express explicitly all geodesics in
the four-dimensional metric representation of the (anti)
de Sitter universe (2.1). Considering (2.2), which implies

242z, _ 2dZ,
Z,+a CZu+a
¢ N (3.9)
. 2&22 o 2aZ3
* Zs+a’ Y Zy+a’

we also obtain geodesics in the metric (2.3), and by using
other parametrizations of the hyperboloid (2.4), as summa-
rized in [10], we may easily derive geodesics in any
standard metric form of these constant-curvature space-
times. Some of them will be given below.

Notice finally that close to the impulse (where 7 — 7; is
small) and also in the limit A — 0 (so that 1/a is small)
expressions (3.3), (3.4), and (3.5) take the same linear form
Z, = Zy; + Zy(t = 7;). In view of (3.9) this is fully con-
sistent with Eq. (3.1).

B. Explicit continuation of geodesics across the impulse

Now we will investigate geodesics in complete space-
times (2.16) with the wave localized on U = 0. Geodesics
which pass through the impulse have the same form (3.1)
or (3.3), (3.4), and (3.5) both in front of the impulse and
behind it. However, the constants of integration Z Zp,-
may have different values on both sides.

We thus have to find explicit relations between these
constants. To apply the appropriate junction conditions, we
assume that the geodesics are C' across the impulse in the
continuous coordinate system of (2.16). It means that the
corresponding functions Z(7), V(7), U(7) and also their
first derivatives with respect to the affine parameter 7,
evaluated at the interaction time 7 = 7; [such that U(7;) =
0], are continuous across the impulse. With this assump-
tion, the constants

Z; = Z(r)), V; = V(r), U =U(r) =0,
Z; = 2, Vi=V(m), U; = U(m),

pir

(3.10)

describing positions and velocities at 7; have the same
values when evaluated in the limits U — 0 both from the
region in front (U > 0) and behind the impulse (U < 0).
To express the corresponding values in the conformally
flat coordinates of (2.1), it is now straightforward to sub-
stitute (3.10) into the transformations (2.8) and (2.14),

124035-4



11

REFRACTION OF GEODESICS BY IMPULSIVE ...

PHYSICAL REVIEW D 81, 124035 (2010)

Vo= Ay Vo= \Z Since we wish to express the ““—"" parameters behind the
i are L impulse in terms of the “+” parameters in front of the
Z,2 impulse, we invert expressions (3.11) and (3.12) in the half
U = BV, U; = i 1 3.11) space in front of the wave, which yields
p
7 n; ut _vi _w
ni =Cv, n; =;V,-, h(Zz)=—v—i+, Vi=7=7=?,
and their derivatives, p2 - - i V N
; . Zi=—(Czn +C;n" —A; U —B;V;
= Vi(A,Z, + AZ) + AV, — DU, i =y, Cani F Can = AZUS = B2 V)
. - . . ; i St - -
U? = ViB,Z + B,Z)+ BV, - EU,  (3.12) Vi=DUf +EV; — Fif — Fi} +2eU,
i = Vi(CzZ: + C3Z) + CV, — FU, U; = —(n, W+ e - ViU - U vy
: €Vl- = - . Vi .
Vi =—-—5ZZ+2Z)+——eU, (3.14)
p p
Ve = |Z]? . In order to obtain these relations, we employed the iden-
- =_1(z7. 7. 3.13 ’
U; P (22i+ 2,2)) + p I ( ) tities valid for the coefficients (2.9),
Vi . - z _ _
0, =—=(Z; — €2,Z,Z;) + =V AB— CC =0, DE — FF = ¢, 3.15)
p _ _ .
respectively [here A, B, C, D, E, F, p and their derivatives AE+BD — CF — CF =1,
are constants, namely, the coefficients (2.9) and (2.10)
evaluated at Z = Z;]. and also for their derivatives
DE,+ D4E—FF,—F,F =0, AzE+B,D—C,F—C,F=0, AE;+BD,—CF,—CF,=0,
AB+AB,—-C,C—-CC,=0, AzB,—C,C,=0, D,E,; —F,F;=0,
- - - - 1
AE,+B;zD;,—C,F,—C,F,=H, c,C;,+C;C,—A;B; —A;B, = ?
F,ZF,Z + F,ZF,Z —DyE; —DzE; = plelz,
AzE;+A;E;+B;D;+B;D,;—C,F;—C;F,—C,F;—C;F,=0, (3.16)
\
plus their complex conjugates. |h|? h” n' |2
Now it only remains to substitute (3.14) into the expres- v = 4| h’I woh
sions for positions (3.11) and velocities (3.13) behind the W
impulse. For the positions we thus obtain a | (3.19)
v = i ’
Vi =y, 4|h !
|Z I h (/’l” 2/1/) /,;//
cy = — )=,
U; =|w |h|2 Uy, 3.17) % 4|h/| 7 n) i
Ih/l n;,
while for the velocities, after straightforward but somewhat
lengthy calculation, we get b — |h)? Z h” h/>
Vi =by Vi +ay U +eynf + eyt w2
U7 = by Vi +aqU +eynt +cynf,  (318) au = g | %Z— ) (3.20)

L Yo i+ J— o=
n; fb,,V,v +a, U +c,nt +cynf,

where

B =,L[1+é(h_",2h_')][1+§ﬂ:|
u || 2\ “h 2 0l
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|h|2 Zi ! h ﬁ// ﬁ/
= 1+ (—=-2—) |- -2+
b 2Ih’I[ 2 (h’ h)](h’ h)

1 Z; W\ B
@n = 2|h’|( 2 W)ﬁ
_ h (1 L7 h")(ﬁ” 2;2'> 62D
C, = — —— N=—2=)
7 21h'| 2 WJ)\h h

h Z; h WNTR
“n 2|h’|[1 3 (h/ Zh)] W
and, naturally, ¢, = ¢~,, ¢y = Cqy. Again, all these co-
efficients are constants which are obtained by evaluating
the function /4 and its derivatives at Z = Z,. Interestingly,
they do not depend on the parameter €. For h(Z) = Z there
is no refraction effect, which is consistent with the fact that
H = 0, i.e., the impulse is absent.

Finally, using the transformation (2.2) we may rewrite
the expressions for junction conditions (3.17) and (3.18) in
the natural conformally flat background coordinates,

|

PHYSICAL REVIEW D 81, 124035 (2010)

namely,
Z+Z Zi—Z
ap = WA TSy = ) B
; ||h+h, ¥i IIh_hy,
1Z> =1 1Z> + 1
To= W=z, t7 = || —5——1},
G =g =W
(3.22)
for positions and
X7 =ax; + byt + ezl +dif,
c— ot - + .+ it
yi =a,x + by + 7 +dif,
¥ y ¥ ¥ (323)

i =ax; + by +czt +dif

Fa

ir = ax + by +czf +dif,
for velocities. The coefficients in (3.22) and (3.23) are
somewhat complicated functions of Z;, h = h(Z;) and its
derivatives h' = h'(Z;), h" = h"(Z;):

1 _ _ i 1
ax=§(cn + ¢yt Tyt Cy) bx=§(—cn ¢yt 3yt Cy) Cy =§(—an —a; + b, +by),
1 1 _ _ 1 _ _
dX:E(aT,+a,—]+b,]+b,7), ay:Z(c,,—c— + ¢, — Cy) by:E(—cn+cT»,+c,]—cﬁ),
1 1 1 _ _
cy=Z(—a,7+a,7+b,7—b;7), d},=5(a,7—aﬁ+b,,—b7), az=§(—CU—Cu+C'y+Cy),
; 1 | (3.24)
i
bz=§(cu—5u—6y+5y), CZ=§(afu—ay—bfu+by), dz=§(—aru+ay—b«u+by),
1 1
a,=§(cu+5u+cV+Ey), b,=%(*cu+5u*cV+Ey), c,=§(*au*ay+bu+by),
1
dt = E((l/u + ay, + b/u + b'y),
where the constants on the right-hand sides are given by _x; iy 396
expressions (3.19), (3.20), and (3.21). i Mtz (3.26)
To complete the derivation, it only remains to express
the complex number Z; explicitly in terms of the initial
position of the test particle in front of the impulse. From xt+iyt
Egs. (3.14) and (2.2) it follows immediately that h(Z;) = WZ) =+ (3.27)
1 1

0t/ V=0 +iyh)/ ), e,

g _ hfl(xi+ + iyi*)
1 >

3.25
o (3.25)

where h~! denotes the complex inverse function to .

C. Geometric interpretation and refraction formulas

In fact, relation (3.25) and its analogous counterpart in
the region behind the impulse admits a nice geometric
interpretation of the junction condition for positions across
the impulse. Let us observe that from expressions (3.11),
(3.14), and (2.2) it follows that

Therefore, the complex mapping Z; < h(Z;) can be under-
stood as an identification of the corresponding positions of
a test particle in the region behind the impulse (U < 0) and
the region in front of the impulse (U > 0), which is
uniquely determined by expressions (3.22). In other words,
if the particle, moving along a geodesic, is located at
(x;f, yf, z;") when it is hit by the impulsive wave (U = 0)
at the time 7;', then it emerges from the impulse at the time
t; at the position (x;, y;', z;).

Moreover, when the interaction time #;” is rescaled to be
equal 1, expression (3.26) and its inverse
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. Zi+ 7 . Zi—7

A T T2 EAE N I A 18
1=z (3:28)
RN A

become the well-known relations for a stereographic one-
to-one correspondence between a unit Riemann sphere and
a complex Argand plane. As shown in Fig. 2, such mapping
is obtained by projecting a straight line from the pole
through P onto the equatorial plane. A point P on the
sphere is thus uniquely characterized by a complex number
Z in the complex plane (for more details see [7]).

Because of the stereographic relations (3.26) and (3.27),
the complex mapping Z; < h(Z;) thus represents a geo-
metric identification of the points P~ = (x;, y;, z; ) and
P = (x,y/, z/") on a unit sphere, which may be consid-
ered as a rescaled spherical impulsive surface U = 0. The
mapping Z < h(Z) thus naturally encodes the junction
conditions for position of a test particle on both sides of
the impulse.

Interestingly, relations (3.26) and (3.27) do not involve a
cosmological constant A. In other words, in the confor-
mally flat coordinates (2.3), this geometric interpretation is
valid for expanding spherical impulses in Minkowski,
de Sitter, as well as in anti-de Sitter space.

For an illustrative geometrical description of the com-
plete effect of the spherical impulsive wave on test parti-
cles moving along geodesics, it is useful to introduce
suitable angles which characterize position of the particle
and inclination of its velocity vector at the instant of
interaction. Specifically, in the (x, z) section we define

-+

tana™ = x;: tanB* = x—’: (3.29)
i <
while in the perpendicular (y, z) section we define
any* =21 tans* =i (3.30)
= 2

i i
The superscript “+” applies to quantities in front of the
expanding impulse (outside the sphere where U > 0),
whereas the superscript ““—"" applies to the same quantities

FIG. 2. Mapping in the complex plane Z < h(Z) is equivalent
to identifying the points P~ inside the impulsive spherical
surface with the corresponding points P* outside through the
stereographic projection.
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behind the impulse (inside the sphere where U < 0).
Geometrical meaning of these angles is obvious from
Fig. 3.

It is also useful to introduce components of the velocity
of the test particle with respect to the frames outside and
inside the impulse as

Lt Lt
= pE pE) = XoVi &
(v)r,v),,vZ ===

1 1 1

(3.31)

If we now substitute the definitions (3.29), (3.30), and
(3.31) into the equations (3.22) and (3.23), we obtain the
following expressions which identify the positions:

_(Ihl? — 1)Rez,
~ (1ZP = DReh
(nP - DImz, |
(ZP = Dimn 7

tana~ tanat

>

(3.32)

tany =

and inclinations of the velocity vector,

tan 8- vi(a,tanB* + b, tand™ + c,) + d,

anf~ = ,
vi(a tanB* + b tand* +¢,) +d. (3.33)
v (aytanB* + bytand* + ¢) + d, '
vi(a tanB* + b tand* +¢,) +d,’

tand~ =

on both sides of the impulse. These explicit relations are
the general refraction formulas for motion of free test
particles influenced by the expanding impulsive gravita-
tional wave.

U>0 z

&

FIG. 3. Definition of the angles «, y characterizing position of
the particle and inclination B, & of its velocity in the (x,z)
section (top) and (y, z) section (bottom), respectively. Here the
superscript ““+’’ denotes quantities outside the spherical impulse
(left), while “—"" labels analogous quantities inside the impulse
(right). The points of interaction P* = (x;,y/,z;") and P~ =
(x;7, y7, z;7) correspond to those in Fig. 2. The impulsive gravi-
tation wave is an expanding sphere indicated in each section by
the bold outer circle.
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D. Privileged exact geodesics Z = const

In this part of Sec. III we restrict our attention to a
privileged class of exact global geodesics given by the
condition

7 = 7% = const. (3.34)

Indeed, using the continuous form of the impulsive-wave
solution (2.16) it can easily be observed that the Christoffel
symbols I'};,,, '/}, and I'},, vanish identically when u =
Z,7. Therefore, the geodesic equations always admit
global solutions of the form (3.34), including across the
impulse localized at U = 0O (i.e., without the necessity to
assume that the geodesics are C1).

In such a case, Z; = 0 and expressions (3.12) and (3.13)
thus reduce to

Vi=Av,-DU, V;=2i-eU,
p

P+ : : N V.

U; =BV, — EU,, Uy ===v,-uv, 335
p

) ; : L _Zi

0 =CV, = FU, i =;Vi’

respectively. Using the relations (3.14) for velocities we
obtain the (complex) constraint

NiCy+iCy—UfA; — ViB, =0, (3.36)
and the following equations:
\ ; — \ 7+ i — . =
V= b%/'V,- + a%’ll;r + c%/'n;r + c%/ni*,
Uy =9, Vi +aQ U + Sy + S, (3D

. \ 7+ i+ -0 - -
0y = b5V, + QU+t + Gag

ReZ; ReZ;

al= -2 Re(F — 2€C),

ReZ;

ImZ,
0 ="2[E+D-2eA+B)] = -2-2%
. ;

—2—— Re(F — 2€0),
P

_lziP -1
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where

1
b%, = —(E — 2€B) + €B,
p

1
aQV = —(D — 2€A) + €A, (3.38)
14
1
c%/ = ——(F —2€C) — €C,
p
7. 2
b9, = u(E —2¢B) + B,
0 _ |Zi|2
ay = » (D —2€A) + A, (3.39)
7. 2
Ay = lzl (F—2eC) - C,
A
b = —(E — 2€B),
p
A
a) == (D — 2€A),
P (3.40)

7. _ _
& = —ZL(F —2e0),
p

Z
) = —=(F - 2€0).
P

The constants A, B, C, D, E, F, and p are given by the
values of the functions (2.9) and (2.10) at Z = Z; = Z°.

In terms of the real conformally flat coordinates of
metric (2.3), the velocities on both sides of the impulse
are given by relations (3.23), where now

ReZ,'

PO = -2 Im(F — 2¢C), % =—2[E— D+ 2e(A — B)],
p p

ImZ;

b) = —2—— Im(F — 2€0),
’ P

Im(F — 2€C) + (1 — €) ImC,

ZI>+1
al = —%Re(F —2€C) — (1 + e)ReC,
ZP+1 1
L[E—D +2e(A—B)]—=(1+ €)(A—B),
2p 2

(3.41)

ImZ; ImZ.
O ="2E - D+2eA-B)], d="2[E+D-2eA+B)]
p
0 _ |Zi|2 -1 0
a) = ———Re(F — 2€C) + (1 — €)ReC, b
o 1z -1 1
W=l T e D - 2eA - B)]+~(1 - €A - B),
2p 2
o1z =1 1
O = Do+ B]-L(-e@+B),
2p 2
Z I+ 1
b = _lak e Im(F — 2€eC) — (1 + €)ImC, =
o lZ*+1 1
d) = 2—[E+ D —2e(A + B)] +§(1 + €)(A + B).
4
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Moreover, from the complex constraint (3.36) we may express two real components of the velocity in terms of the

remaining two, namely,

vy =[&[(B—A)ImF — (E — D) ImC] + 2z (ReCImF — ImCReF)]/[(B — A)ReF — (E — D) ReC],
it =[x/ (BD — AE) — z[(B + A)ReF — (E + D)ReC]]/[(B — A)ReF — (E — D)ReC].

Substituting these two relations and the coefficients (3.41)
into (3.23), and using Egs. (3.22) which relate the interac-
tion positions, we finally obtain

P (E — D)ij + 2ReFz;
! " (E— D)xj +2ReFz;}’
_(E — D) +2ReFz}
Vi (E= D)xj + 2ReFz;’
z7 = [z [(E — D)i} +2ReFz;']
— (1 — &)z % — 27 xH/[(E — D)x; + 2ReFz;'],
i; =[t; [(E — D)x/ + 2ReFz}]
+ (1 + )z %7 — z7x7))/[(E — D)x; + 2ReFz; ]
(3.43)

v =

These relations are valid for any value of the cosmological
constant A and for an arbitrary spherical impulse. They
generalize Eqs. (4.5) obtained previously in [24] for a
special impulse generated by a snapping cosmic string in
the case when A = 0.

E. Junction conditions in the five-dimensional
representation of (anti)de Sitter space

Finally, it will be illustrative to rewrite the explicit
junction conditions for positions (3.22) and velocities
(3.23) of test particles crossing the impulse in terms of
the representation of de Sitter or anti-de Sitter space as the
four-dimensional hyperboloid (2.4) in flat five-dimensional
spacetime (2.5). Conformally flat coordinates of the metric
(2.3) are obtained by the parametrization (2.6) with (2.2),
ie.,

t X
Zl = é, Zz = -,

2
Z :%, Z, :a(ﬁ— 1),

where O = 1 + 5 A(=1* + x? + y* + 22), or inversely by

(3.44)

2(120 2aZl
Zy+a’ ¢ Z,+a’
(3.45)
2(122 2aZ3
X = , y= ,
Zy +a Zyta

with Q = 2a/(Z, + a).

As explained in Sec. II, the expanding spherical impulse
located at U = 0 corresponds to the cut Z, = a through the
hyperboloid, see Fig. 1. Therefore, at the instant of inter-

(3.42)
\
action the particle is located at
t; =Zy;, z; =27y xX; =7y
0 ! ? (3.46)
Vi =Zy; Q=1
The junction conditions (3.22) for positions thus imply
|Z> + 1 |Z:1> =1
Zoi = || —5—Z4, 75 =W ——Z,
0i | ||]’l|2+1 0i 1i | ||h|2*1 1i
Z,+ 7 Z;,— 7
7y, = || —=Z7, 77 = || =—2t7t,
2i ||h+h 2i 3i ||]’l_h 3i
Z,, =a=17;. (3.47)

By differentiating Eqs. (3.44) and evaluating them at the
interaction time we obtain the relations

Zoi = i; — Qit;, Zyi =%~z
Zyi =% — Qyx;, Zy =y — Qiyi, (3.48)
241‘ = —ZaQ,»,

where (); = éA(—tit'i + x;x%; + yv; + z;2;), which are
valid both in front and behind the impulse. From expres-
sions (3.23) and (3.46) we thus obtain the following rela-
tions between velocities on both sides of the impulse:

Z = ayZy + byZ3 + ¢ 2 + dyZ5; + nyZ5,

. . . (3.49)

Z,, = —2a8); =7},
where we denoted p = 0, 1, 2, 3. The constant coefficients
(ag, ay, ay, a3) = (a,, a,, a, a,), and similarly by, c,, d,,
are given by (3.24). The coefficients n,, are defined as

1
My = =50 (@5 + by, + &2+ dyls; = Zy),
a

(3.50)

where Z; should be expressed using (3.47). Relations
(3.49) can also be written in the matrix form:

Z5. a, b, ¢, d, n.\ (75
Zs; a, by, ¢, d, ny Z3
Zi|=|a b oeoodoon || 2| (5D
Z(i a b, ¢ d n Z&
7y 0 0 0 0 1 VAT

Expressions (3.47) and (3.51) are explicit junction condi-
tions which relate the positions and velocities of test par-
ticles when they cross an expanding spherical impulse.
They are expressed in the natural five-dimensional coor-
dinates of constant-curvature spaces with A # 0, namely,
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the (anti)de Sitter half space in front of the impulse, and the
analogous half space behind it. Obviously, the junction
conditions depend on the complex function h(Z) which
defines the specific impulse of this type.

The advantage of expressing the junction conditions for
geodesics in the “geometrical” five-dimensional formal-
ism is that they may easily be applied to obtain the corre-
sponding explicit conditions in terms of any standard
coordinates of de Sitter or anti-de Sitter background space.
We will demonstrate this procedure in the next section in
which we concentrate of spherical impulses generated by a
snapping cosmic string. Their influence on particles will
most naturally be expressed in global coordinates in
de Sitter space with a synchronous time coordinate, see
Sec. IVC.

IV. GEODESICS CROSSING THE IMPULSE
GENERATED BY A SNAPPED COSMIC STRING

The general results obtained above will now be applied
to an important particular family of spacetimes in which
the expanding spherical impulsive wave is generated by a
snapped cosmic string (identified by a deficit angle in the
region U > 0 in front of the impulse). Such exact vacuum
solutions were introduced and discussed in a number of
works, e.g. [2,7,12—17]. These can be written in the form of
the metric (2.16) with

18(1-16)
H(Z) =12 = 2, 4.1)
which is obtained from the complex function
h(Z) =273, (4.2)

using the expression (2.13). Here § € [0, 1) is a real con-
stant which characterizes the deficit angle 276 of the
snapped string that is located in the region outside the
impulse along the z axis given by n = 0, as shown in
Fig. 4 (see [2,7] for more details).

A. Explicit junction conditions

Expressions (3.22) which are the junction conditions for
positions (in the natural conformally flat background co-

z?

ST =)

_zl LY s
_8(1-19)

“Tui-e

81 -1

de= 41 — 9)

PHYSICAL REVIEW D 81, 124035 (2010)

FIG. 4. Geometry of a spherical impulse expanding with the
speed of light. It is generated by a snapped cosmic string, whose
remnants are two semi-infinite strings located along the z axis
outside the impulsive wave. Any point P on the impulse is
described by two angles a and y which characterize its projec-
tions to the (x, z) and (y, z) planes, respectively (cf. Fig. 3).

ordinates on both sides of the impulse) are thus

Z,+ 7
E— _ -6 i i
xi = (1- 9z er’
— — Zi - Zi
vi ==z Sy

1 1
e @3)
= AT

1Zi| + 12,
=1 -8 Ll TIal e
FT U
where, in view of relation (3.25),
s _ X iy
Z! ‘S:ﬁJer. (4.4)

Let us also recall that (xi°)> + (y)? + (z7)* = (t7)? be-
cause the positions are evaluated on the impulse U = 0.

Similarly, it is straightforward to evaluate the specific
form of the coefficients (3.24) which relate the velocities in
Egs. (3.23), namely,

1.)2 . 1 .
[(1 - E6) (Z7% +Z7%) + ZSZIZ,-I‘Z(Z,?‘a + Z,H)],

_ 1 -
2,0 + 81zl - 20 |

(4.5)

|Z,1°[(z;7 ' + Z7Y) = 1Z,17%%(zZ, + Z))],

1ZPL(Z7 + Z7Y) + |z 72z, + Z)),
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ilz;1° L \2 - 1 _
= : 1—-8)(z7%—77%) — =~ 82| z;|7 22278 — 727¢ ]
a =g (1-50) @0 - 20 - iz @ - 2
b, :ﬂ[Q - a) (277 + Z70) — L 21z, 22 +zz—s):|
Y201 = 6) 2 4 ! ! ! ’
51 5) (4.6)
i _
=227 Pz~ Z7Y) + 1z 7z~ Z,
&= 3= 5)||[< 2+ 1212 - 7))
4, =202 7 iz~ 2 - 2z, )
y 4i (1 ) i i i /b
51 —59) 1-8 1-8 2(71-6 1-8
a. = 7IZI[(Z +ZI7) =1z 2 + Z170)
41 -9)
(1~ 39) S[(71-86 _ 71-6 —2(71-5 _ 71-8
bz 4i (1 5) |Z| [(Z Z,' ) - |Zi| (Zi - Z,' )]»
(4.7)
1 1
. Z°+ 12,170 - 52242*5+Z~5*2]
o= sy (1= 50) 020 + 12170 - oz + 1z ]
1 1
1—-=8)(Z° —1z,]7%) + -8 Z-Hsz]
d. =55 (1-50) 020 — 1200+ pa0zp - 1z )]
_ =38 srp-s 1-8 2(71-8 1-8
0=~ Sy AN 2 1@+ 2 )
16(1 - -
b =202 10— 210 ¢ 1z - 2L
( ) (4.8)
= 5| (1-30) 020 = 1210 = g5z — 121072 |
fo2(1-9) 2 : ! 4 ! i ’
4 =55 [ (1=30) 020 + 12170 + 80z, + 1210 |
to2(1-9) 2 : ! 4 ! i '
{
Considering the structure of these relations, it is very _ cos® +
convenient to reparametrize the complex number Z; in the == S)W)Ci ’
polar form as
- _(1- 5) sin® v
. (=@
Z; = Re'®, (4.9) R—R" '
7 = (1= 8) 5 ——5=7 % »
R'"°—R
where R = |Z;] and ® are constants representing its modu- =01-9) R+R! +
lus and phase, respectively. It immediately follows from ! RO+ RS-
the relation (4.4) that and the coefficients (4.5), (4.6), (4.7), and (4.8) simplify to
1 _ 1, _
. ((x;)z n (yi*)2)1/2(1—5) B (If _ Zl,*)l/z(lf&) a, = ﬁ[(l 75) cos(6P) + 15 cos((2 3)<I>):|,
“Carvar )
@+ =) T = 16[<1 ) sin(6®) — - 8%sin((2 — 5)@)],
tan((1 — 8)®) = 2 (4.10) 1)
i ctz ——2 (R = R'""%) cos,
: ( = 90)
The juncti ditions (4.3) for positions then take th 8(1=38) 5ot 4 pis
junction conditions (4.3) for positions then take the g — — (R + R'"9) cosd, 4.12)
form 2(1 = 6)
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a, = ﬁ[@ - %5)2 sin(6®) + § sin((2 - a)cp)],
- [(1 )2 cos(5®) — + 52 cos((2 — 5)<I>)],

¢, = 5(( - %55)) (RO1 — R'"?) sin,

d, = wma I+ R'9)sin®, (4.13)

a,= 2((117 1 56)) (R—R")cos((1 - 8)®),

b,= 62((11 )) (R—R )sin((1—8)D),

o 1_ 5)[(1 —%5)2(1%5 +R?)——8(R* %+ RH)],

d, :2(1__1 5)[(1 —%B)Z(Rﬁ —R9) +%32(sz‘S - RH)],

(4.14)
a,= 52((11 - :)) (R+R Vcos((1— 8)d),
b,= 752((11;—%;))(13 + R Ysin((1—8)D),
¢ =2(1_—_15)[(1 —%5)2(1%5 —R %) —-8(R*°— RH)],

=)

Notice finally that the terms involving R could also be
conveniently expressed using the hyperbolic functions as

2
—%5) (R°+R7?) +%52(R2*5 + RH)].

(4.15)

R — R~! = 2sinhr,
R+ R~ ! = 2coshr,
R® — R7% = 25sinh(67),
R?® + R7% = 2cosh(87),
(4.16)
R'=9 — R%=1 = 2sinh((1 — 6)r),
R‘*‘s + R%~1 = 2cosh((1 — &)r),
R27% — R=2 = 2inh((2 — &)r),
R27% 4+ R%=2 =2 cosh((2 — 6)r),
where
1 1=z
r =logR = () g(t+ e 4 ) 4.17)

Employing the relation ¢ = \/(xf)2 + O+ ()=

74/l + tana™ + tan?y*, this can be written explicitly

PHYSICAL REVIEW D 81, 124035 (2010)

in terms of the initial position as

1 1 + tan’a™ + tan’y" — 1
- og(‘/ are Ty ) (4.18)
2(1-9) J1+ tanZa® + tan2y* + 1
Moreover,
t
tan((1 — 8)®) = a;‘Z+. (4.19)

The above formulas enable us to investigate behavior of
arbitrary geodesics which cross the spherical impulse gen-
erated by a snapped cosmic string.

B. Analysis and description of the resulting motion

For simplicity, let us consider a family of test particles
which are at rest in front of the impulse (i.e., in the
constant-curvature region U > 0). Specifically, we will
first assume that the velocities of the particles in the
coordinates (2.3) of Minkowski, de Sitter or anti-de Sitter
space vanish, 7 = 37 =z = 0.

Junction conditions (3.23) for the velocities across the
impulse thus simplify considerably to

T=d i,y =d,if, ;=d.if

Fat A

ir =dif,
(4.20)

where the constants d,, d),, d,, d, are given by (4.12),
(4.13), (4.14), and (4.15), respectively. Using the defini-
tions (3.29) and (3.30) and relations (4.11) for positions, it
is straightforward to obtain the following refraction for-
mulas:

_ sinh((1 — &)r) cos®

t = tana ",
ana sinhr cos((1 — 8)®) ana

5(1 *%5) cosh((1 — 8)r) cos®

anf = (1— % 8)? sinh(8r) + %32 sinh((2 — 8)r)’
“21)
and
tany~ = sinh((.l —8)r) ' sin® any*,
sinhr sin((1 — 8)d)
ans- — 5(1 — %5)cosh((1 — 8)r) sind

(1 —16)*sinh(8r) + £ 8% sinh((2 — 8)r)’
4.22)

Because of the axial symmetry of the spacetime along
the z axis (where the string is located in front of the im-
pulse), it is natural to restrict attention to a ring of test par-
ticles located in the (x*, z*) plane, i.e., assuming y* = 0.
From (3.30) it follows that y* =0 and, using (4.19), this
implies ® = 0. Consequently, Eqgs. (4.22) reduce to

~ =0=06". It follows that y; = 0 = y;, and motion
of such particles will thus remain in the (x~,z) plane
behind the impulse. Relations (4.21), which describe the
motion in the (x, z) plane, now reduce to
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__sinh((1 — 8)r)
B sinhr
5(1 — 18) cosh((1 — &)r)
1 - %5)2 sinh(8r) + %82 sinh((2 — 8)r)”
(4.23)

tana tana ™

)

tang~ =

where the parameter r is given by Eq. (4.18). Because
vyt = 0, this further simplifies to

1 | at
% og(tan 5 )

It is now possible to visualize the effect of the impulse
generated by a snapped cosmic string on such a ring of test
particles by plotting the corresponding graphs. In Figs. 5
and 6 we draw the functions a~(a*) and 8~ (a™), respec-
tively, which are given by (4.23) with (4.24), for several
discrete values of the parameter 6. The geometrical mean-
ing of these angles is described in Figs. 3 and 4. The angle
ot parametrizes position of a particle of the ring in front of
the impulse, while o™ and 8~ determine, respectively, its
position and velocity vector inclination behind the
impulse.

Combining these two relations, we plot in Fig. 7 the
motion of the (initially static) ring caused by the impulse. It
can be seen that the particles are displaced towards the
string, and directions of their velocities are oriented
“along” the string. Particles located close to the string in
front of the impulse are accelerated almost to the speed of
light behind the impulse, and are ‘“‘dragged” along the
string (except those in the perpendicular plane z = 0 cor-
responding to @™ = 7). In Fig. 8 we plot the magnitude

voo= ‘[(u; )2 4 (v )? of the resulting velocity vector as a

function of a™ for several values of the parameter §.

r =

(4.24)

i
1.4} 7/ 4
1.2 [
/
/|
1 /
a o8 6=9 /
06
04 —
§=0.8
02 4
Zj//:/
o . ;
0 02 04 06 08 1 L2 L4 16
ot

FIG. 5. The function @~ (a™) which determines the displace-
ment of the position of a particle when it crosses the impulse
generated by a snapped cosmic string. The curves correspond to
different values of the deficit angle parameter & =
0,0.1,0.2,...,0.8.

PHYSICAL REVIEW D 81, 124035 (2010)

0 = T

——

o2

ol
\

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
at

FIG. 6. The function 8~ (@") which determines the depen-
dence of the velocity vector inclination behind the impulse on
the particle’s position in front of the impulse. The curves plotted
correspond to 6 = 0.1,0.2,...,0.8.

Indeed, for small values of the angle a™ the speed ap-
proaches that of light, v~ — 1. The components v, =
(&7 /t7) =d./d, and v = (z; /i;) =d./d, are sepa-
rately drawn in Fig. 9. Since v;(0) =0, v (0) =1 for
any 0 > 0, the particles close to the string are accelerated
“parallelly” along it. For § — 0, v; (a™) becomes zero
everywhere except at @™ = 0 where the string is located.
Also, v; (§) =0 which means that the particles in the
transverse plane z = 0 are accelerated “‘perpendicularly”
and they thus stay in this plane, which is consistent with the
symmetry of the system. The velocity vectors correspond-
ing to such components are indicated in Fig. 7 by arrows.

LD
AR

. T
\ S~
0.4
0 02 04 06 08 1 12 14 1.6 1.8 2
z

FIG. 7. The effect of the impulse with 6 = (0.2 on a ring of
initially static test particles in the (x, z) plane. The particles are
shifted and they start to move, as indicated by their velocity
vectors with components (vy, v ) behind the impulse. The
impulse is scaled here in such a way that it is given by a unit
sphere on both sides of the impulse.
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! \ . =F

0.8 \
0.6

0.4

0=0.1

0.2

FIG. 8. The magnitude v~ of the velocity vector behind the
impulse as a function of the particle’s initial position @™. The
curves plotted correspond to different values of the parameter
6=0.102...,08.

To compare these velocity vectors for different values of
the initial position @™, we plot them in Fig. 10 from the
common origin. The end points of these arrows for all
a* €0,7] form a smooth curve, which is drawn in
Fig. 11 for several discrete values of the conicity parameter
6. For small & there is a single minimum in such curves,
while for large values of & the curves approach a unit circle
since the particles are accelerated by the impulse almost to
the speed of light in all directions.

Finally, in Figs. 12 and 13 we visualize the deformation
of the ring of test particles, initially at rest, as it evolves
with time. It can be concluded that the circle [which may
be considered as a (x, z) section through a sphere] is

PHYSICAL REVIEW D 81, 124035 (2010)

\

-0.1

\

—0.2 M

-0.3

-0.4

-0.5

-0.6

z

FIG. 10. The velocity vectors for 6 = 0.2 plotted as a function
of the initial position a* of the particle in the ring.

deformed by the gravitational impulse into an axially
symmetric pinched surface, elongated and expanding
along the moving strings in the positive z direction. Also,
the particles which initially started at x > 0 have v, <0,
while those with x < 0 have v > 0. This explicitly dem-
onstrates the “dragging” effect in such spacetimes caused
by the moving strings and the corresponding impulse. With
a growing value of the parameter &, the deformation in the
z direction is bigger.

In the complementary case, in which the ring of static
test particles is located in the (x™, y*) plane perpendicular
to the string (see Fig. 4), z;7 = 0 which corresponds to
at = 7 - It thus follows from (4.17) that r = 0,i.e., R = 1.
In such a case, the explicit junction conditions for positions
simplify to

FIG. 9. The components v; (left) and v> (right) of the velocity vector behind the impulse as a function of initial position a*. The

curves correspond to 6 = 0.1,0.2,...,0.8.
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0

0=0.1

-0.1

-0.2

T

—

-0.4 ?

v, -05

-0.3

-0.6

-0.7

-0.8

-0.9

-1

Uy

FIG. 11. Envelope of the velocity vectors for all o™ € [0, 5],
plotted for 6 = 0.1,0.2,...,0.8.

o cos® N
KA

o sin® . (4.25)
i == 59
=0 =0-9r

and the coefficients in Egs. (4.20) relating the velocities on
both sides of the impulse become

FIG. 12. Time sequence showing the deformation of the ring of
test particles (indicated here by an initial semicircle of unit
radius for o™ € [—7,75]) caused by the spherical impulse
generated by a snapping cosmic string with 6 = 0.2.
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1-1s 1-18
d,=—0 1 _25 cos®d, dy=—9o 1 _25 sin®,
=0 q=120%3% (4.26)
o ! 1-5 '
Since z; = 0 = z;, motion of the particles will remain in

the perpendicular (x~, y~) plane behind the impulse. In
fact,

—_/ —)2 -2 — 17%5
v =4/(vy) +(Uy) *5m,

(4.27)

<
5

= tan®.

a
=

This implies geometrically that all the particles will move
radially inward with the same speed, and the circular ring
will thus uniformly contract. This is in full agreement with
the corresponding partial result obtained previously in
Sec. IV B of [24].

For more general situations, in which the test particles in
front of the impulse are not static in the x, y, z coordinates,
the resulting motion can similarly be investigated using the
relations (4.11) and (3.23). In particular, employing (4.12),
(4.13), (4.14), (4.15), and (4.16) for the case when ® = 0,
we obtain

xp=0=0x  y =0=y,

o sinhr N
G =0 —am (4.28)
coshr
f=(1—08)— >
! ( )cosh((l -9’
and
o 1-s+ls . 1-ls 3
i =T N b =3 [sinh((1 — &)r)z;
+ cosh((1 — 8)r)i ],
i =y
1-16 (1—-168)?
- 2 . o4 2 S+
=20 3 sinhr X; =5 [cosh(8r)z;
152
— sinh(8r)i ] — 14_ 3 [cosh((2 — 8)r)zf
+ sinh((2 — &)r)if ], (4.29)
1-1s 1-16)2
i;=-98 1 725 coshri; + %[— sinh(87)z;

152

0
+ cosh(8r)i ]+ 14_ 5

+ cosh((2 — 8)r)i ],

[sinh((2 = &)r)z/

where r is given by (4.24).
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FIG. 13. Deformation of the ring of particles, as in Fig. 12, for § = 0.005 (left) and 6 = 0.8 (right).

C. Effect on particles comoving in de Sitter space

Finally, it will be illustrative to investigate the effect of
the impulsive spherical wave generated by a snapped cos-
mic string on test particles which are comoving in the
de Sitter (half)space in front of the impulse. Specifically,
these particles are initially given by
0=07=0, =0 =d,

(4.30)

X=Xx=xo

where x(. 0y, ¢ are constants, in the coordinates which
naturally cover the de Sitter universe in the standard form
of the metric

dsj = —di* + acosh? -
a 431)
X (dx? + sinx(d6> + sin*0d ¢?)).

Such a parametrization of the de Sitter hyperboloid (2.4) is
obtained by

Lt
Zy = asinh—,
a

r .
Z, = acosh— siny cos6,
a

7, =ua coshé siny sinf cos¢, (4.32)
Zy=a coshé siny sinf sin¢,
Zy,=a coshé cosy,
where (€ (=00, +0), y, &[0, 7], ¢ €[027]
Inversely,

t Z 7>+ 72+ 72
sinh— =22, tan?y = %
a a
72 + 72 Z ' @39
tan?6 = =2 5 3 tangp = =2
iz Z

The expanding impulse is located at Z, = a (see Fig. 1),
i.e., it is given by cosh(z/a) = 1/cosy which can be
rewritten as

tanhé = siny. (4.34)
The snapped cosmic string is located at Z, = 0 = Z; in the
de Sitter region in front of the impulse, which corresponds
to #* = 0, 7. The spacetime can thus be visualized as in
Fig. 14.

Notice that the impulse is always located at the fixed
value Z, = a but, as the spherical de Sitter universe ex-
pands, the impulse propagates from its north pole y = 0 at
t = Otoitsequator y = 7 as t — 00. The cosmic string was
initially a closed loop around the whole meridian 6 = 0, 7,
but it snapped in the north pole at = 0 (when the universe
had the minimum radius @) generating the impulsive gravi-
tational wave.

The convenient form of the junction conditions for geo-
desics is given in the five-dimensional representation by
Egs. (3.47) and (3.51). Using (4.4), (3.46), (4.32), and
(4.34) we obtain a simple expression for the complex
interaction parameter

-6 6y -
Z;° = tanE el (4.35)
(notice that this is consistent with the stereographic inter-
pretation shown in Fig. 2). In view of (4.9) we thus obtain
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g

“‘ww" <

FIG. 14. The de Sitter universe with the snapped cosmic string
(indicated by a dashed line at Z, = 0 = Z3) and the related
impulse (Z; = a) at a given time (the coordinate Z; is sup-
pressed). As the universe expands, the impulse propagates from
the north pole to the equator.

log(tan%), b = lﬁlio 5

r=

1
s 4.36)

In terms of these initial data we may rewrite (3.47) and
(3.51), employing (4.16), explicitly as

coshr
Zo=0-8)————-77,
o = )cosh((l —8)r) Y
sinhr
Zi=(1-8—" 75
= )sinh((l — &)
_ cos® (4.37)
Zo=(1—-8)—2" 7%
2= ( )cos((l - 8)d) ¥
sin®
Zi=(1-8— "0 7%
5 = ( )sin((l —8)d) ¥
Zy=a=17].
and
Z{, ay bx Cy dx ny ZZ
Zs; ay by ¢, dy, n, Z;z
Zi|=|a b oc. doon || Zf; ] (438)
Zy; a, b, ¢ d, n, Za’l
Za 0o 0o 0o o 1/\z;

where the constant coefficients a,,, b, ¢, d,, are given by
(4.12), (4.13), (4.14), (4.15), and (4.16) and n,, is deter-
mined by expression (3.50). It follows from (4.32) and
(4.34) that

Zs; = atany,

Z; = atany, cosf, (4.39)
Z5; = atany sinf cosdy,

Z;;

atany sinf sing,,.

Similarly, by differentiating (4.32) with respect to the
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proper time 7 = ¢ of a comoving particle we obtain

. 1
+
25 = ,
Cos o
2
. sin
Zi= S Xo cosb,
COs X
o, sin’yg (4.40)
75, = —== sinf, cos ¢y,
Cos X
2
. sin . .
73 = S Xo sinf sing,,
COs X
7, = sin
4i Xo-

These parameters explicitly satisfy the constraints (3.6),
(3.7), and (3.8) for a timelike geodesic in de Sitter space
(e=—1l,e=1).

We can thus visualize the effect of the impulse on
initially comoving particles in a de Sitter universe in the
“five-dimensional” pictures shown in Figs. 15 and 16,
where we plot the corresponding velocity vectors (with
the spherical space, impulse and the snapped string as in
Fig. 14).

In Fig. 15 the arrows indicate the velocities of different
test particles, given by (4.38) and (4.40) with the same
values of y, (and ¢ suppressed), behind the impulsive
wave. The outer semicircle indicates the position of the
same particles if the impulse would be absent—they would
(comovingly) move because the de Sitter universe itself
expands. Therefore, the difference gives the “net” effect of
the impulse on these particles (by subtracting a natural
comoving motion due to the global expansion of the uni-

FIG. 15 (color online). The de Sitter universe with the snapped
string and the impulsive wave, at a given time. The arrows
indicate the velocities of different test particles behind the
impulse. The outer semicircle locates the same comoving parti-
cles at a later time if the impulse would be absent, i.e., if they
would move solely due to the expansion of the universe.

124035-17



24 2 GEODESICS IN IMPULSIVE GRAVITATIONAL WAVES

JIRI PODOLSKY AND ROBERT SVARC

—_—

llll;/lym

i

i

Y%
N\

N/

\
A

\\

N

|
L
\

q

FIG. 16 (color online). The net effect of the impulse on the test
particles, obtained by subtracting a comoving motion due to
expansion of the universe. The particles are accelerated and
dragged along the string.

verse). This is shown in Fig. 16. It can be seen that the
particles close to the string are accelerated to higher speeds
and are dragged along the string, while the particles in the
transverse plane are accelerated perpendicularly to the
string. In fact, Fig. 7 can be understood as a projection
onto the horizontal section Z, = a through Fig. 16.

V. CONCLUSIONS

We presented a complete and explicit solution of geo-
desic motion which describes the effect of expanding
spherical impulsive gravitational waves propagating in
constant-curvature backgrounds, provided the trajectories
of test particles are of class C! in a continuous coordinate
system. This generalizes results obtained previously for

PHYSICAL REVIEW D 81, 124035 (2010)

Minkowski background space [24] to any value of the
cosmological constant, i.e., the de Sitter universe (A > 0)
or anti-de Sitter universe (A < 0). Also, it is a counterpart
of paper [25] in which motion of test particles in these
background spaces with nonexpanding impulses was
analyzed.

We derived a convenient form of the junction conditions
(3.22), (3.23), and (3.24) and the corresponding refraction
formulas (3.32) and (3.33), employing the natural coordi-
nates in which the background metric (2.3) is conformally
flat. Interestingly, the expressions are independent of the
parameter € = —1,0, +1 which occurs in the continuous
metric (2.16) for the impulsive-wave spacetimes. We also
considered the five-dimensional formalism which is suit-
able when A # 0, see Egs. (3.47) and (3.51).

Subsequently, we discussed in detail the behavior of test
particles in axially symmetric spacetimes in which the
gravitational impulse is generated by a snapped cosmic
string. In particular, we demonstrated that the particles are
dominantly dragged by the impulse in the direction of the
moving strings, and are accelerated to ultrarelativistic
speeds in their vicinity, see Figs. 7-9. These results apply
to any value of the cosmological constant. The strings and
the associated impulse would thus effectively create oppo-
site “‘beams” of particles, dominantly moving along the
strings with the speed close to the speed of light, as
visualized in Figs. 12 and 13.
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CHAPTER

3

GEODESIC DEVIATION
IN HIGHER DIMENSIONS

The main purpose of this chapter is to investigate the general properties of relative motions of
free test particles in spacetimes of an arbitrary dimension. The obtained results are presented in
the form of the paper Interpreting spacetimes of any dimension using geodesic deviation which
was published in Physical Review D in 2012. Full citation of this paper is [22].

Due to a freedom in the choice of particular coordinate system in general relativity (and also
in other covariant theories) it is quite difficult to distinguish net effects of the gravitational field
from those given by unsuitable choice of the coordinates. An important tool which can help us to
analyze the physical properties of a given spacetime is a systematic study of relative accelerations
between freely falling nearby test particles. Their relative motion is described by the equation of
geodesic deviation (sometimes also called the Jacobi equation), see e.g. [3], which was generally
analyzed in standard four-dimensional relativity by Szekeres [23] and many others. Rewriting the
Szekeres results in a more convenient form using Newman-—Penrose coefficients, see [24, 25] gives
a direct connection between algebraic type of the spacetime and relative behaviour of free test
particles.

Also the equation of geodesic deviation posses a tool how to directly measure the curvature of
the spacetime since, e.g., the interferometric detectors of gravitational waves are based on precise
measurements of relative changes of the test bodies positions.

Motivated by a growing interest in exact solutions of Einstein’s equations in higher-dimensions
in recent years, see [22] for references, we extend here the description of relative motion to an
arbitrary spacetime in any dimension, and analyze the general behaviour of geodesic congruences
with respect to the algebraic structure of a given spacetime. Such algebraic classification of higher-
dimensional Lorentzian manifolds was developed by Coley, Milson, Pravda and Pravdové [26]. We
use a fully equivalent notation introduced by Krtous and Podolsky in [27] because it is closer to
those standardly used in four-dimensions.

To obtain invariant results we express the equation of geodesic deviation in an orthonormal
frame connected to an observer. The components of Riemann curvature tensor are expressed
by a traceless Weyl tensor representing a free gravitational field, specific combinations of energy—
momentum tensor and its trace describing the matter content of a given spacetime. We rewrite the
orthonormal frame components of the Weyl tensor in terms of the null fame aligned to the algebraic
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structure of the spacetime. In correspondence with four-dimensional case we find that the overall
effect of general gravitation field consists of purely transverse deformations, i.e., gravitational
waves (in general propagating in opposite spatial directions), longitudinal effects, Newton-like
deformations, isotropic influence of a cosmological constant, and effects connected with particular
matter content of the universe. We also describe the dependence of our results on a particular
observer, corresponding to a freedom in the choice of the frame given by Lorentz transformations.

The utility of the presented approach is demonstrated in our paper [22] by applying it on the
case of pp-waves. More general and explicit examples will follow in this thesis, namely discussion
of general nontwisting solutions of Einstein’s equations in Chapter 4, nontwisting, nonexpanding
and shearfree Kundt solutions in Chapter 5, and expanding Robinson—Trautman spacetimes in
Chapter 6. For the transverse gravitational waves we found a more complex behaviour than in
four spacetime dimensions.
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Interpreting spacetimes of any dimension using geodesic deviation
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We present a general method that can be used for geometrical and physical interpretation of an arbitrary
spacetime in four or any higher number of dimensions. It is based on the systematic analysis of relative
motion of free test particles. We demonstrate that the local effect of the gravitational field on particles, as
described by the equation of geodesic deviation with respect to a natural orthonormal frame, can always
be decomposed into a canonical set of transverse, longitudinal and Newton—Coulomb-type components,
isotropic influence of a cosmological constant, and contributions arising from specific matter content of
the Universe. In particular, exact gravitational waves in Einstein’s theory always exhibit themselves via
purely transverse effects with D(D — 3)/2 independent polarization states. To illustrate the utility of this
approach, we study the family of pp-wave spacetimes in higher dimensions and discuss specific
measurable effects on a detector located in four spacetime dimensions. For example, the corresponding
deformations caused by generic higher-dimensional gravitational waves observed in such physical

subspace need not be trace-free.

DOI: 10.1103/PhysRevD.85.044057

I. INTRODUCTION

In the last decade, there has been a growing interest in
exact spacetimes within the context of higher-dimensional
general relativity, primarily motivated by finding particular
models for string theories, AdS/CFT correspondence, and
brane-world cosmology. Such investigations thus concen-
trated mainly on various types of black holes and black
rings, see [1-8] for reviews and further references. More
general static or stationary axisymmetric [9-15], multi-
black hole Majumdar—Papapetrou-type [16-23], and static
solutions with cylindrical/toroidal symmetry [24-28] were
also considered, including uniform and nonuniform black
strings [29-36] with the aim to elucidate their instability
[37-39]. Other important classes of higher-dimensional
exact solutions of Einstein’s equations have also been
studied recently, for example, Robinson-Trautman and
Kerr-Schild spacetimes [40-45], extensions of the
Bertotti-Robinson, (anti-)Nariai, and Plebanski-Hacyan uni-
verses [46], higher-dimensional Friedmann-type [47-51]
and multidimensional cosmological models [20,52] (see
also references therein), specific solitons [24,53,54], or
various exact gravitational waves—in particular those that
belong to nonexpanding Kundt family [55,56], namely,
generalized pp-waves [57-63] (for a study of their colli-
sions see [64]), vanishing scalar invariant (VSI) [62,63],
and constant scalar invariant [65] spacetimes, or relativ-
istic gyratons [66-71].

Fundamental general questions concerning the classifi-
cation of higher-dimensional manifolds based on the alge-
braic structure of the curvature tensor have been clarified

*podolsky @mbox.troja.mff.cuni.cz
robert.svarc @mff.cuni.cz
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[72-75], including generalizations of the Newman-Penrose
and the Geroch-Held-Penrose formalisms [76-80]. This
paved the way for a systematic study of wide classes
of algebraically special spacetimes in higher dimensions
[81-84]. Investigation of asymptotic behavior of the
corresponding fields and their global structure, in particu-
lar, properties of gravitational radiation, has also been
initiated [85-99].

Nevertheless, in spite of the considerable effort devoted
to this topic, there are still important aspects concerning
the nature of gravitational fields in higher-dimensional
gravity that remain open. Any sufficiently general method
that could be used to probe geometrical and physical
properties of a given spacetime would be useful. In the
present work, we suggest and develop such an approach,
which is based on investigation and classification of spe-
cific effects of gravity encoded in relative motion of nearby
test particles.

In fact, in standard four-dimensional general relativity,
this has long been used as an important tool for studies of
spacetimes. Relative motion of close free particles helps us
to clarify the structure of a gravitational field in which the
test particles move. When they have no charge and spin,
this is mathematically described by the equation of geo-
desic deviation (sometimes also called the Jacobi equa-
tion), which was first derived in the n-dimensional
(pseudo-)Riemannian geometry by Levi-Civita and
Synge [100-103], see [104] for the historical account.
Shortly after its application to Einstein’s gravity theory
[105-114], it helped, for instance, to understand the be-
havior of test bodies influenced by gravitational waves or
the physical fate of observers falling into black holes.
Textbook descriptions of this equation, which is linear
with respect to the separation vector connecting the

© 2012 American Physical Society
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test particles, are given, e.g., in [115-118]. Let us also
mention that generalizations of the equation of geodesic
deviation to admit arbitrary relative velocities of the
particles were obtained in the works [119—127]. Further
extensions, higher-order corrections to the geodesic de-
viation equation, their particular applications, and refer-
ences can be found in the recent papers [127-134] and in
the monograph [118].

In 1965, Szekeres [114] presented an elegant analysis of
the behavior of nearby test particles in a generic four-
dimensional spacetime. He demonstrated that the overall
effect consists of specific transverse, longitudinal, and
Newton—Coulomb-type components. This was achieved
by decomposing the Riemann curvature tensor into the
Weyl tensor and the terms involving the Ricci tensor (and
Ricci scalar). While the former represents the “‘free gravi-
tational field,” the latter can be explicitly expressed,
employing Einstein’s field equations, in terms of the cor-
responding components of the energy-momentum tensor,
which describes the matter content. In order to further
analyze the Weyl tensor contribution, Szekeres used the
formalism of self-dual bivectors [135,136] constructed
from null frames. This enabled him to deduce the effects
of gravitational fields on nearby test particles in spacetimes
of various Petrov types. When these results are reexpressed
in a more convenient Newman-Penrose formalism
[137,138], explicit physical interpretation of the corre-
sponding complex scalars W, is obtained. In particular,
the Weyl scalar W, (the only nontrivial component in type-
N spacetimes) represents a purely transverse effect of exact
gravitational waves, the scalar W5 (present, e.g., in type-III
spacetimes) is responsible for longitudinal effects, and V¥,
(typical for spacetimes of type D) gives rise to Newton-like
deformations of the family of test particles (see [139-141]
for more details; inclusion of a nonvanishing cosmological
constant was described in [128]).

It is the purpose of the present work to extend these
results to arbitrary spacetimes in any dimension D = 4.
The paper is organized as follows. In Sec. II, we recall the
equation of geodesic deviation, including its invariant form
with respect to the interpretation orthonormal frame
adapted to an observer. In Sec. III, we perform the canoni-
cal decomposition of the curvature tensor using Einstein’s
equations and the real Weyl tensor components W ,... with
respect to an associated null frame. We thus derive an
explicit and general form of the equation of geodesic
deviation. Section IV analyses the character of all canoni-
cal components of a gravitational field. Section V is de-
voted to the discussion of uniqueness of the interpretation
frame, and derivation of explicit relations that give the
dependence of the field components on the observer’s
velocity. In Sec. VI, we describe the effect of pure
radiation, perfect fluid and electromagnetic field on test
particles. Final Sec. VII illustrates the method on the
family of pp-waves in higher dimensions. There are also

PHYSICAL REVIEW D 85, 044057 (2012)

3 Appendices: In Appendix A, we give relations to the
standard complex formalism of D = 4 general relativity,
and in Appendix B we summarize alternative notations
commonly used in literature on D =4 spacetimes.
Finally, in Appendix C the Lorentz transformations of
the W,... scalars are presented.

II. EQUATION OF GEODESIC DEVIATION

The main objective of the present work is to investigate
and characterize the curvature of an arbitrary spacetime of
dimension D = 4 by its local effects on freely falling test
particles (observers). The gravitational field manifests it-
self, in Newtonian terminology, as specific “tidal forces”
that cause the nearby particles to accelerate relative to each
other. This leads to a deviation of corresponding geodesics
whose separation thus changes with time: in various spatial
directions the particles approach or recede from them-
selves, exhibiting thus the specific character of the space-
time in the vicinity of a given event.

In standard and also higher-dimensional general rela-
tivity, such a behavior of free test particles (without
charge and spin) is described by the geodesic deviation
equation [100-118]

2
D*ZE
dr? pv

uubzv, (1)

where R* g, are components of the Riemann curvature
tensor, u® are components of the velocity vector u =
u®d, of the reference (fiducial) particle moving along a
timelike geodesic y(7) = {x*(7), ..., xP7 ()}, u® =&,
the parameter 7 is its proper time (so that u-u =
8ap u®uf = —1), and Z* are components of the separation
vector Z = Z*d,,, which connects the reference particle
with another nearby test particle moving along a timelike
geodesic (7). The situation is visualized in Fig. 1.

FIG. 1. In a curved D-dimensional spacetime, nearby test
particles moving along geodesics accelerate toward or away
from each other, as given by the equation of geodesic deviation
(1). Here, u is the velocity vector of a reference particle, and Z is
the separation vector that represents actual relative position of
the second test particle at a given proper time 7.

044057-2
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Equation (1) explicitly expresses the relative accelera-
tion of two nearby particles by the second absolute (cova-
riant) derivative of the vector field Z along y(7),

D2z
dr?

= (Z";yu”);(;u5 = Z“;yalﬂua, ()

in terms of the local curvature tensor and the actual relative
position of the particles, described by the separation vector
Z(7) at the time 7.

To be geometrically more precise, the two geodesics
should be understood as specific representatives of a
congruence (7, z), i.e., smooth one-parameter family of
geodesics, such that y(7) = y(r,z=0) and ¥(7) =
y(7, z = const). The proper time 7 and the parameter z,
which labels the geodesics, can be chosen as coordinates
on the submanifold spanned by the congruence. Thus,
u =0, and Z = 9_, and the deviation vector field Z is Lie-
transported along the geodesics generated by u. Consider now
the positions of two test particles at a given time, for example,
P (located at z = 0) and Q (for which z = 1,say)at 7 = 0,
as shown in Fig. 1. Their coordinates are related by the
exponential map xp = exp(zZ)x‘;) generated by Z at P,
where we set z = 1 to locate Q. If the higher-order terms
are negligible, this expression reduces to x’é — xlp =
(Zx*) p, demonstrating that the separation vector Z describes
the relative position of the two test particles, and Z(7)
gives its evolution that is obtained by solving the Eq. (1).
Such linear approximation improves when the second test
particle moves very close to the reference one, i.e., along
the geodesic z = const < 1, in which case the separation
is described by the vector field zZ(7).

It should also be recalled that the equation of geodesic
deviation (1) is linear with respect to the components of the
separation vector, neglecting higher-order terms in the
Taylor expansion of exact expression for relative accelera-
tion of free test particles. It can thus be used when the
relative velocities of the particles are negligible, i.e., their
geodesics are almost parallel. Generalizations of Eq. (1) to
admit arbitrary relative velocities were obtained and ap-
plied in the works [119-127]. Further extensions, higher-
order corrections to the geodesic deviation equation, and
their specific applications can be found in [129-134] (for
reviews and other references see [118,127,130,134]). Our
aim, however, in this paper is to investigate local relative
motion of nearby free test particles that are initially at rest
with respect to each other. For such an analysis, the clas-
sical geodesic deviation Eq. (1) will be fully sufficient.

Now, in order to obtain invariant results independent of
the choice of coordinates, it is natural to adopt the Pirani
approach [105,106] based on the use of components of the
above quantities with respect to a suitable orthonormal
frame {e,}. At any point of the reference geodesic, this
defines an observer’s framework in which physical mea-
surements are made and interpreted. In particular, the
separation vector is expressed as Z = Z“e,. The timelike
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vector of the frame is identified with the velocity vector of
the observer, e = u, and e, wherei=1,2,...,D — 1,
are perpendicular spacelike unit vectors that form its local
Cartesian basis in the hypersurface orthogonal to u (see
also Fig. 2),

e, ey = gapelel = m, =diag(—1,1,...,1). (3)

Because of the fact that u is parallelly transported, for the
zeroth frame component Z© = ¢© - Z = —u - Z we im-
mediately obtain

D2z

27(0)
2z0 _ R

dr2 M”W uruufzy =0, (4)

mafBr
using the skew-symmetry of the Riemann tensor.
Therefore, Z®(7) must be at most a linear function of
the proper time. By a natural choice of initial conditions,
consistent with the above construction of the geodesic
congruence y(r, z), we set Z(©) = 0. The temporal compo-
nent of Z thus vanishes and the test particles always stay in
the same spacelike hypersurfaces synchronized by 7.

Physical information about relative motion of the test
particles is thus completely contained in the spatial frame
components Z9(7) = e® - Z of the separation vector Z.
These determine the actual relative spatial position of the
two nearby particles. By projecting the geodesic deviation
Eq. (1) onto e = e(;), we obtain

29 = RO 2", ®)
where i,j =1,2,...,D — 1, and we denote the physical
relative acceleration as

S0 = 0. D2 _ D2

dr? ®odr?

The frame components of the Riemann tensor are
RiyoyoG = ngye(‘i‘)u“uﬁeg). Let us note that Pirani
[105,106] labeled, in D = 4, the frame components of
the “tidal stress tensor” that occurs in Eq. (5) (with an
opposite sign) as K, = R4y, = R%_, ,u‘u’. They are
equivalent to the electric part of the Riemann tensor
Eab = Raopo = Racpau‘u, see [118].

Following Pirani, it is also usually assumed that the
orthonormal frame {e,} is parallelly propagated along the
reference geodesic. However, in our work we do not make
such an assumption. In fact, as a key idea of the proposed
interpretation method, we align the orthonormal frame
with the algebraic structure of a given spacetime instead
(see also Sec. V). This makes the investigation of its
physical properties much easier.

6

III. CANONICAL DECOMPOSITION OF THE
CURVATURE TENSOR

The next step is to express the frame components
of the Riemann tensor R Using the standard

044057-3
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decomposition of the curvature tensor into the traceless
Weyl tensor C,,.; and specific combinations of the
Ricci tensor R, and Ricci scalar R,

2
Rupea = Capea T ﬁ(gu[erd]b = 8eRata)

2
- R : 7
(D — 1)(D — 2) 8a[c8dlb (7
we immediately obtain
1
Riooi = Coooon + =3 Roo ~ diRow)
(D—1)(D-2)

Before substituting this into the geodesic deviation
Eq. (5), we also employ the Einstein field equations,
generalized to any dimension D = 4,

Rab - %Rgah + Agah = 87TTahv (9)

where A is a cosmological constant and T, is the
energy-momentum tensor of the matter field. Using (9)
and its trace R = 525 (87T — DA), we rewrite (8) as

R o 2A&
0000 = p-p =2 OO0
87 2T
) [T(i)u') - 5ij(T<0)(o> 51 1)]

(10)

The equation of geodesic deviation (5) thus takes the
following invariant form:

2A

70) — =
=502

Z9 + Cop02Y
2 T)Z“)].
D1
(11)

The first term represents the isotropic influence of the
cosmological constant A on free test particles, the
second term describes the effect of a ‘“‘free” gravita-
tional field encoded in the Weyl tensor, while the
second line in (11) gives a direct effect of specific
matter present in a given spacetime.

The terms proportional to the coefficients Cg0)0)()
can further be conveniently expressed using the
Newman—Penrose-type scalars, which are the components
of the Weyl tensor with respect to an associated (real) null
frame {k, I, m;}. This frame is introduced by the relations

8

o [T(i)(j)z(” - (T<0)(o> +

1 1
k=—@+eq), l=—(@u—eqy)

V2 o V2 o (12)
m;=e; fori=2..D-1,
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where u = e is the velocity vector of the observer. Thus,
k and [ are future-oriented null vectors, and m; are D — 2
spatial Cartesian vectors orthogonal to them, satisfying

k-mi=0=1-m;. (13)

Using the notation of [93], the components of the Weyl
tensor in such a null frame are determined by the following
scalars (grouped by their boost weight):

Wi = Cnbcdk“mfkfmff,
Wi
1

\Ifzi_,kl = Cabcdmj‘m

= Cupeak®mimimy, Wi = Copegk® 1"k my,
j Wos = Capeak® 1" I°k?,
\I,Tf - Cﬂbﬂdkdlbm’qm}i’ qIQT'f = Cabcdkam?lcm,[iiy
\P3’f" = Cabz?dlami')m;:mlf’ \II3T' = Cabcdlakbl('m?,

\Il4r/ = Cabcdlam?lcmj, (14)

b yprCoad
mgmy,

where i, j, k, [ =2,...,D — 1. All other frame compo-
nents can be obtained using the symmetries of the Weyl
tensor. The scalars in the left column are independent, up to
the obvious constraints

\I,()[l,i] =0, lllok* =0,

\Illr(jlf) =0, q’]['/k] =0,

q’zi_ykl = \szli_/, qu(m = 0, (15)
\Ifz(mkl = ‘I’zuw) = \Ifzi[/m = 0,

‘1’31(11\;) = O, 1If3[i_,k] = O,

Wy =0, v, =0,

while those in the right column of (14) are not independent
because they can be expressed as the contractions (hence
the symbol “7,” which indicates “tracing’”)

q’]T' = \Plkkz,
Vs =V, = %\sz’“’
\I,ZT’/ = %(qu,”k + q’zi/)
where quT‘if‘ = %‘I’z,kjk, \PZT["'] = %\I’Zi,,
Wi =Wt (16)

In the case D = 4, these Weyl tensor components in the
null tetrad reduce to the standard Newman-Penrose
[137,138] complex scalars W,. Explicit expressions are
given in Appendix A.

Using relations e(y, = VIE(k +1), ey = 715(k —1), and
the definition (14), a straightforward calculation then leads
to the following expressions for the components Ci;))(0)()
of the Weyl tensor, which appear in Eq. (11):

044057-4
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Cooom = Yo
1
Coooy = ﬁ(‘l’m = Vi),

1 17
Caoom = ﬁ(‘l’m = Vyp), an

Cooon = ~3(Wor + Wau) = ¥yri,

where i,j=2,...,D — 1 label the spatial directions

orthogonal to the privileged spatial direction of e(;).
Putting this into (11), we obtain the final invariant and

fully general form of the equation of geodesic deviation:

) 2A 1 :
A =m2(1> + Wz +ﬁ(q’m = Wyp)ZY
8 .
+t5 5 Z[Tm(l)Z(” + Ty 2”
2
—( Ty +=—T Z<1>], 18
(<o><o> D=1 ) (18)
. 2A . .
R e
1 1 :
+ ﬁ(\vm B VARES 5(‘1’0"/ + W) Z0
. 1) ()
o3| TomZ™” + TopZ
2 0
~(Too +5=57)2" | (19)

This completely describes relative motion of nearby free
test particles in any spacetime of an arbitrary dimension D.
In the next section, we will discuss the specific effects
given by particular scalars that represent the contributions
from various components of the gravitational and matter
fields.

Finally, we remark that our notation, which uses W,... in
any dimension, is simply related to the notations employed,
e.g., in [72,73], in [76,81], and recently in [79]. The iden-
tifications for the components present in the invariant form
of the equation of geodesic deviation are summarized in
Table I. More details are given in Appendix B, in particular,
see expressions (B8), (B11), and (B13).

TABLE I. Different equivalent notations used in the literature
for the Weyl scalars that occur in the equations of geodesic
deviation (18) and (19).

Refs. [72,73] Refs. [76,81] Ref. [79]
W —Coiol - -
‘Ifzr'f _C()ilj _(Dij _(I’ij
\PIT’ _COIOj _‘I’j
e Ciot; v, i
Wi Coioj ij
Wy Ciitj Z‘I’ij Qﬁj
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IV. EFFECT OF CANONICAL COMPONENTS
OF A GRAVITATIONAL FIELD ON
TEST PARTICLES

Let us consider a set of freely falling test particles,
initially at rest relative to each other, which form, e.g., a
small (hyper)sphere. In any curved spacetime, such a
configuration undergoes tidal deformations that can be
deduced from the accelerations measured by the fiducial
observer attached to the reference test particle in the center.
The resulting relative motion represents the effect of a
given gravitational field, whose specific structure is explic-
itly characterized by the system (18) and (19).

First concentrating on the vacuum case, i.e., 7, = 0,
the system of equations describing purely gravitational
interaction simplifies considerably to

. 2A
7 = 70 4, .z
(D -1D(D-2) »
1 .
* Wi~ Va2, (20)
. 2A . .
A — AU R [ AV)]
(D-D(D -2) Y
1 1 .
+ ﬁ(q’lr = Wy)ZV — 5(\1’01/ +Wy)Z0,
2D

The overall effect of the gravitational field on test particles
is thus naturally decomposed into clearly identified com-
ponents proportional to the cosmological constant A and
the Weyl scalars W,.... Of course, for algebraically special
spacetimes some (or many) of these coefficients vanish
completely, and even in algebraically general cases specific
numerical values of the scalars W,... can distinguish the
dominant terms from those that are negligible. Let us now
briefly describe the character of each term separately,
including its physical interpretation.
(1) A: isotropic influence of the
background
The presence of the cosmological constant A is
encoded in the term

7 2A 1 0 YA
(Z<f> ) GEN 2)(0 5,.j><z<j> )

which can be written as Z0 = 52— 7% for all
spatial componentsi = 1,2, ..., D — 1. In parallelly
propagated frames, this yields the following explicit

solutions:

cosmological

(22)

044057-5
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A=0:7Z0 = A7+ B,

A [ 2
A>0:Z0 = Ajcosh| o[ ——
e B [NV e

2A
®-DD-2) |

) 2|A|
A<0: 20 = 4, 1’7
0 ; cos D= 1)(D_2)T
tBsinl [ AL
MDD -2 |

where A;, B; are constants of integration. These
are characteristic relative motions of test particles
in spacetimes of constant curvature, namely,
Minkowski space, de Sitter space and anti-de Sitter
space, respectively, as derived by Synge [102,103].

+ B; sinh

(i) Wui: transverse gravitational wave propagating in

the direction +e())
This part of a gravitational field influences the test
particles as

70 1/0 0 \/z®
(2) =36 w)G) @

Obviously, this is a purely transverse effect because
there is no acceleration in the privileged spatial
direction e(yy. The set of scalars W,; forms a sym-
metric (W, = W,i) and traceless (‘lf4k" = () ma-
trix of dimension (D — 2) X (D — 2), cf. the last
line in (15), so that it has 1 D(D — 3) independent
components corresponding to polarization modes
(see also [72,78,79]). In direct analogy with a line-
arized Einstein gravity in four [115,116] and higher
dimensions [86,93], W,; represents the gravita-
tional wave that propagates along the null direction
k, i.e., in the spatial direction +e(;) [in view of
relations (12) there is k) =k-eq >0 while
k(,«)Ek~e(,-)=0 for i=2...,D—1].
Spacetimes of algebraic type N (for which only
the components W, = C,;;; are nonvanishing
[72,73]) can thus be interpreted as exact gravita-
tional waves in any dimension D = 4.

(iii) W3pi: longitudinal component of a gravitational

field with respect to +e)
Such terms cause longitudinal deformations of a set
of test particles given by

VAS 1 0 Wy \[z®
L =——= : )o@
70 V2\Ty 0 AU
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These (D — 2) scalars W57, which combine motion
in the privileged spatial direction e(;, with motion
in the transverse directions e(;, are also obtained
using Wy = W,.%, where Wy = —Vy and
Wi + Wi + Wy = 0. Longitudinal effects of
this type occur in spacetimes of type III and in
algebraically more general cases.

W5, Wyrw: Newton-Coulomb components of a
gravitational field

The terms

7(1) (1)
({_>:<‘I’zs 0 )(Z> (25)
7 0 —Wyrm J\ 20
give rise to deformations that generalize the classi-
cal Newton—Coulomb-type tidal effects in D = 4,
namely, those in the vicinity of a spherically
symmetric static source. Recall that W,g = \I’ZTk‘
[see (16) and (15) for further relations], so that the
(D — 1) X (D — 1)-dimensional matrix in (25) is
symmetric and traceless. These terms are typically
present in type-D spacetimes, for which the nota-
tion W = —® and =W, = q)’_sj is commonly
used [76,78-82,99], see (B11). As shown in (A6),
the only nonvanishing coefficients of this type in
four dimensions are the diagonal -elements
%‘1’25 = ‘I’zr(zzi = ‘PZT‘”’ = —Re ‘I’z.
W, rit longitudinal component of a gravitational
Sfield with respect to —e(;
The corresponding effect on test particles is

ZON 1[0 Wu\fz0

(zm ) = ﬁ(‘l’w’ 0 )( Z0) ) (26)
which is very similar to the acceleration caused by
the longitudinal component W54, as described by
(24). In fact, it is its counterpart: it follows from the
definition (14) that the scalars WV, = \I/]k ¥ (where
Vi = =W and Wy + Ww + Wy = 0) are
equivalent to W3z under the interchange k < [.
Since k) =k-eq >0 while [;)=1-e;) <0,
the scalars W, represent the longitudinal compo-
nent of the field associated with the spatial direc-
tion —e(y).

(vi) Wi transverse gravitational wave propagating in

the direction —e(j)
This component of a gravitational field is charac-
terized by

20 10 0 \[/zV
(2)- 10 0 )E) o

which is fully equivalent to (23) under k < I. The
scalars W; [which form a symmetric and traceless
(D —2) X (D — 2) matrix: Vg = Wy, \Ifokk =0]
thus describe the transverse gravitational wave
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propagating along the null direction [, i.e., in the
spatial direction —e;y. Superposition of gravita-
tional waves that would propagate in both direc-
tions simultaneously (that is, an ‘“‘outgoing” wave
given by W, and an “ingoing” wave given by
W) can only be present in spacetimes that are of
algebraically general type.

V. UNIQUENESS OF THE INTERPRETATION
FRAME AND DEPENDENCE OF THE FIELD
COMPONENTS ON THE OBSERVER

The canonical components of a gravitational field de-
scribed in the previous section are represented by the real
coefficients W,.... These are projections of the Weyl tensor
onto particular combinations of the null frame {k, I, m }, as
defined in (14). They are spacetime scalars and in this
sense the above physical interpretation is invariant. On
the other hand, the values of W,... depend on the choice
of the basis vectors of the frame. In this section, we will
argue that such a dependence corresponds to simple local
Lorentz transformations related to the choice of specific
observer in a given event, and that the natural interpretation
null frame is essentially unique.

Let us consider an observer attached to the reference
(fiducial) test particle moving through some event in the
spacetime, such as the point P in Fig. 1, whose velocity
vector is u. This timelike vector (normalized as u - u =
—1) defines an orthogonal spatial hypersurface of dimen-
sion D — 1 spanned by the Cartesian vectors e, where
i=12,...,D— 1. Assuming the spacetime is of an
algebraic type I or more special, it is most natural to
associate the corresponding Weyl-aligned null direction
(WAND) with the null vector k of the interpretation
reference frame, see Fig. 2.

The privileged unit vector e, defining the longitudinal
spatial direction, is then uniquely obtained by projecting k
onto the spatial subspace orthogonal to u. This also fixes
the normalization of k [to satisfy the first relation in (12)

FIG. 2. Natural choice of the interpretation null frame and the
related orthonormal frame (12) and (13). Up to spatial rotations
of m; = e(;, they are uniquely given by the velocity vector u of
the observer and the WAND k at any event P of the spacetime.

PHYSICAL REVIEW D 85, 044057 (2012)

we require k - u = — \/%]. The complementary null vector
[ of the frame is then also uniquely given via the relation
= \/iu — k. It only remains to choose the transverse
spatial vectors ey, ..., ep-1), i.e., m; = e;). As shown
in Fig. 2, these must lie in the (D — 2)-dimensional sub-
space orthogonal both to u and e(;), so that k - m; = 0 =
[ - m; as required by (13). Neglecting possible inversions,
the only remaining freedom is thus standard spatial
rotations represented by the rotation group SO(D — 2),
which acts on the space spanned by m;, see the explicit
relation (C4) presented in Appendix C.

For any spacetime of type N (in which the WAND has
maximal alignment order) the null vector k is unique. In
spacetimes of other algebraic types (namely III;, II;, I;,
and D), different WANDs exist. These can alternatively
be used as the vector k of the interpretation null frame
{k,l, m;}. Because the distinct WANDs can always be
related using the null rotation with fixed I, as given
explicitly by Eq. (C2) in Appendix C, it is straightforward
to evaluate the “new” values of the Weyl scalars W,...
using the expressions (C6). Notice that the coefficients
W,;;, which are the amplitudes of transverse gravitational
waves propagating along k, are invariant under such a
change.

Let us now consider another observer moving through
the same event P with a different velocity @. Locally, this
transition is just the Lorentz transformation from the origi-
nal reference frame {e,} to {€,} for which

LD Ry (28)
1- 3212

2
where vy, ..., vp_; are components of the spatial velocity
of the new observer with respect to the original Cartesian
basis eg). This can be obtained as the combination of a
boost in the k — I plane followed by a null rotation with
fixed k, see Eqgs. (C3) and (C1) in Appendix C, if we take
the specific parameters

1,D12

v )
B=17], L[,:#) (29)
— v
! 1- 10:11”12
where i = 2,.. ., D—1:
_ 1—$D- 1v2
k: Z| | ’
1—v,
B 1 D—1,2
127[1—U11+\/—va +z’ 2v’k:l
1— »D:_llv-2
ii=m;+ 2" k. (30)
l_lll

Indeed, iz = 7'5(15 + I) gives exactly the relation (28). The

corresponding change of the Weyl scalars W ... can thus be
obtained by combining (C7) with (C5), which yields

044057-7
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1 - 1
A (O S (T 22950 X,

q,zl/kl = qui/u - 2\/§(X[1\P]k]u
Uy = Wy + V20 s X5 — 242V 10X

1 -~
E\PIT’
- X[i\lflj]k,) + 4(W0i[le]Xj + \PO,[IX](]X,'),
— 4V XX~

PHYSICAL REVIEW D 85, 044057 (2012)
= ‘Ple + ﬁ\POIJXj,

Pog = Vo — 220, X1 — 20, XiXY,

Vo = Wapi + V20 X5 — V207X, — 2W 0 XEX; + Woul X2,

By = Wy + V2(Wyin X! — VX, + 2X;Vora) + 49 16X X,
2\/-2-\1,01[/Xk]|X|2y
V2(W, XK+ WogX,) + 2%, 1 X; — V0 X)X — X[

+ Wl X1+ 42V XX X! —
By = Wy + V2Wp X —
+ 2V2W XIXEX; — 2% X7 | X,
BV = Wy + 22y X —

Wi XF) + 20y XEX! — 4V, 0 X XE + 29,0 | X

=2V Xy + VX, — VX)X

= 2W,6X,X; — 4V X)X

— Zﬁ(qulkl(;Xj)X"X’ + qfl(,j)ka|X|2 + ‘IflTqu)IXlz — 2\If1TkX"X,-X_,-) + 4q,0k[XkX[Xin

— 4V X XHX1? + W XT4,

where we denoted

Vi
Xi = BLI =

(32

1 —v,’

In particular, for spacetimes of algebraic type N, which
admit a WAND of the maximal alignment order, the only
nonvanishing component of the gravitational field is Wy
representing the transverse gravitational wave propagating
in the spatial direction e(;). It immediately follows from
(31) and (29) that the transition to any other observer
results just in a simple rescaling of the gravitational wave
amplitudes

2
v, (33)
V?

If the new observer moves only in the spatial direction in
which the wave propagates, v; >0 and v; =0 for i =
2,...,D—1,then ¥, = (1 — v;)/(1 + v,)¥,y, which is
smaller than W,;;. If the observer’s velocity approaches the
speed of light, v; — 1, the amplitudes of the gravitational
wave disappear, W,; — 0. Contrarily, when the observer
moves against the wave its amplitudes grow, and for
v, — —1 they diverge.

VI. THE EFFECT OF MATTER ON
TEST PARTICLES

Let us now consider the direct effect of specific forms of
matter on relative motion of test particles, as described by
the invariant form of the equation of geodesic deviation
(18) and (19). Setting the cosmological constant A and all
components of the Weyl tensor to zero, it reduces to

(€29

.. 8 i
Z0 = m[TmmZ(” + T(l)(j)Z(”

(T(O)(O) +—— T)Z(U]

70 = 8_77- I:T('>

7ZW 4 7 70)
D—2 D)

2 .
- (T(o)(0> o T)Z('>:|~ (34)

It will be illustrative to investigate some important types of
matter usually contained in the families of exact solutions
of Einstein’s equations, namely, pure radiation, perfect
fluids, and electromagnetic fields.
(i) pure radiation
The energy-momentum tensor of a pure radiation
field (or “‘null dust’’) aligned along the null direction
k is

Tab = pkakh’ (35)

where p is a function representing the radiation
density. Its trace vanishes, 7 = 0, and using (12)
we derive that the only nonvanishing components
of T,, in the equation of geodesic deviation are
Toy0) = Taya) = 3 p. Equations (34) thus reduce

considerably to
70 4 0O 0 YA
") =-1TP ) a6
70 D—-2\0 0jj 7
In an arbitrary dimension D, there is thus no accel-
eration in the longitudinal spatial direction e(}y. The
effects in the transverse subspace are isotropic and

(since p > 0) they cause the radial contraction that
may eventually lead to an exact focusing.

044057-8
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(ii) perfect fluid
For a perfect fluid of energy density p and pressure
p (which is assumed to be isotropic), the energy-
momentum tensor is

Ty = (p + pluguy, + pgap- (37

Provided the fluid is comoving, its velocity u co-
incides with the observer’s velocity, which is the
vector e of the orthonormal frame. The trace is
T = (D — 1)p — p, and the relevant nonvanishing
frame components are 7)) = p, Ty = p, and
T(yjy = p9ij- The equation of geodesic deviation
thus takes the form

Z0N_ g (D=3)p+D-1)p(1 0 (7
20) T D-nm-2) \0s;)\z0)
(38)

The resulting motion is isotropic, the same in the
longitudinal and all transverse spatial directions.
For positive p and p, the fluid matter causes a
contraction, such as in the case of dust (p = 0),
incoherent radiation (p = g—jp), or stiff fluid
(p = p). However, for matter with a negative pres-
sure, the set of test particles may expand. In par-
ticular, if the matter is described by the equation of
state p = —p = const, it mimics the cosmological
constant A = 87p since (38) is then completely
equivalent to (22).

(iii) electromagnetic field
The energy-momentum tensor of an electromag-
netic field is given by

1 1
Ty = G(FachC - ZgachdFCd), (39)
so that its trace is T = i-(4 — D)F,, F**. The

frame components of 7', which occur in expres-
sions (34), are

1 1
T = E(F 0cFo) T 3 Fa Fab>,

1 1
T(l)(l) = 7<F(1) F, . ¢—-F bFab ,
4\ W g e
40
J— 1 c ( )
Tow = g FneF e
1 c 1 ab
Tog = g \Fack " = 705FaF®)

In this case, the equation of geodesic deviation
takes the following more complicated form:

Z() T T;\(z0
()7, 7)) @

where

PHYSICAL REVIEW D 85, 044057 (2012)

2 .
T = —(F(I)CF(I)C - F(O)cF(O)L)

D -2
3
_ F Fab’
(D-1)MD -2
2
Ti= 55 Fueky's
T — 2 c c
§j= ﬁ(F(i)cF(j) = 8iiF0)cF )
3

We observe that the clear distinction between the
longitudinal and transverse spatial directions is not
present, except at very special situations. Some
important particular subcases can be easily identi-
fied and analyzed, for example, a null electromag-
netic field for which the invariant vanishes,
F,,F? = 0, or purely electric aligned field in the
vicinity of static black holes.

VII. AN EXPLICIT EXAMPLE: PP-WAVES
IN HIGHER DIMENSIONS

We conclude this paper by demonstrating the usefulness
of the above interpretation method on an important family
of exact spacetimes, namely, the pp-waves. These are
defined geometrically as admitting a covariantly constant
null vector field k. Such spacetimes thus form a special
subclass of the Kundt spacetimes because the geodesic
congruence generated by k is twist-free, shear-free, and
nonexpanding.

In [55], we investigated general Kundt spacetimes in
higher dimensions, admitting a cosmological constant A
and a Maxwell field aligned with k (which is necessarily a
multiple WAND). In natural coordinates, the metric of all
such pp-waves can be written in the Brinkmann form [57]

ds? = 8ij dxidy/ + 2e; dx'du — 2dudr + cdu?, ~ (43)

where k o« @, and g;;, ¢;, ¢ are functions of the transverse
spatial coordinates x* and the null coordinate u. The ex-
plicit Einstein-Maxwell equations can be found in [55],
namely, Egs. (115)-(118).

For the metric (43), the interpretation null frame
adapted to a general observer that has the velocity
u=7id,+ud, + 0.+ ...+ P70 is

1

k=—29,
V2i

1
1= (ﬁ' - —)a,. + 209,
7 \/fu i

+ V28202 + .+ 25P719 0,

1 .
m; = — (et + g )mtd, + m?dz2 + ...+ mP710,01,
i .

(44)
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where gymfm! = 8;;, and nontrivial components of

the Weyl tensor are

ijs

1
Cruru = _mSR,
Coim— L R ! SRg;;
i == N (D= 1)(D—2) i
Cruwi = 1 R, — !

DR T =2 Rer

2
Cijit = "Ryjy — ﬁ(gi[ksR[]j — &’ Rpy)

2
+ SRe. ) 45
(D — 1)(D — 2) 8ilk81j (45)

_ 2 S
Cuijk = Ruijk - m(e[j Rk],- - gi[ij]u)
+o T SRepgw
(D—1)(D—2) s
1
inju — ﬁ(c *R;; — 2e(Rju + gijRu)
. 1
(D—=1)(D—-2)

Ciiv=R

iuju
R(cgij — ee;).

Using definition (14), we evaluate the Weyl tensor (45) in
the interpretation null frame (44). Lengthy calculation
(with some ‘“‘miraculous” cancellations) gives the follow-
ing nonvanishing Weyl scalars that enter the equations of
geodesic deviation (18) and (19):

1
Vyg=— SR
®D-DD-2)
1 1
— s kol _ S
Wars = 55 "Riamim; D=1 -2 Ko
2
Wi = — L(Slekmxm + Ry, t1)mk,

D -2

1 .
- mgklsRmn)xmx

1 .
+ 2(kalu - mgklRmu)xmu

1 .
T 5K _ A gklRuu)uz :Imf,mj) (46)

+ (Rkulu D—2

This is a general result valid for any pp-wave spacetime
because no particular field equations have not yet been
imposed.

Notice that W,z = W,.). Moreover, in accordance
with the relations (16) and (15), W3 =W and
W," =0 so that any pp-wave is traceless.

The relative tidal motion of nearby test particles in
general pp-waves will thus be caused by the combination
of the transverse gravitational wave (23) propagating along
k with amplitude ¥,;;, the longitudinal component (24) of
the gravitational field with amplitude W5z, and the

k
21k
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Newton-Coulomb contribution (25) determined by the
scalars W,5 and Wi

.. 1 .
70 =W,z — W, 70),
25 \/-2' 3T
» 1 1 .
Z0 = W, 20 — EW3T'Z(I) —5YwzV. (47

There is also the isotropic background influence (22) if the
cosmological constant A is present, or the interaction (41)
with the electromagnetic field.

The scalars (46) that enter (47) combine kinematics
(namely the velocity components %™, i of the observer)
with the specific curvature of spacetime encoded in the
only nonvanishing components of the Riemann and Ricci
tensors, namely,

Riju= SRijkl’
_1
Ruije=5(erij = €+ Qijuk — &ikuj)
+ sl“rj (%gkm,u + e[m,k]) - gI—Trllg(%g]mu + e[m,j])v

—1
Riuju - f(ei,uj + ej,ui

—CijiT gij,uu)
+ MG+ e i) Ggia + e )

- Srffj(ek,u - %C,k)’ (48)
and

— S
Rij ="R;;

Riy = [8™Ggiju + erjip))e + [87Ggiju + e 1(ny/g) x
+ g% g™ (gimrer ) — 38kmi&ine) — (I0J8) 4

R, = —3(gYc;); — gc)(nyg); + (g7e;.);
+ (gYe;,)(Inyg),; + ggMep; e;,
— 878" guugjiu = (I0Y2) 49)

where °R; ;;, and °R;; denote, respectively, the Riemann and
Ricci tensors corresponding to the spatial metric g;; only.
The Ricci scalar *R (equal to R) of this transverse (D — 2)-
dimensional Riemannian space enters, in fact, only the
Newton-Coulomb scalars W, and W,;i;. Interestingly,
these are also independent of the velocity of the observer.

There is a big simplification if we restrict ourselves to
vacuum pp-waves. As shown in [55], the absence of an
aligned electromagnetic field requires that the cosmologi-
cal constant A also vanishes, so that the transverse
Riemannian space must be Ricci flat, SR,-j = 0. In such a
case, Vg = 0 = W,pi;. Moreover, since R;, =0=R,,,
the Weyl scalar W5, also vanishes and the gravitational
wave amplitudes reduce to

Wy = 2[Ry X" 5" + 2Ry X"t + Ry it®mfsm.

(50)

044057-10
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Taking the simplest possibility of a flat transverse space,
8ij = 9; i (51)

we obtain an important family of exact vacuum plane-
fronted gravitational waves (possibly representing an ex-
ternal field of gyratons [66,67]), which propagate in
Minkowski space. In fact, these metrics with

SRijkl =0, Ruijk = %(ek,ij - ej,ik)’
Riyju = %(e,-‘uj +ejui — c,l-j) + 5"’6[,{,,-]6[1,]-], (52)
belong to the family of VSI spacetimes [63].
If the functions e; can be globally removed by a suitable
coordinate transformation (in the absence of gyratonic
sources), the metric reduces to

ds? = 8;dx‘dx/ — 2dudr + c(x, u)du?. (53)

In such a case, the spatial vectors of the null frame (44) are
simply m; = (i'/i)d, + d,;, and the frame is parallelly
transported. This implies that the physical relative accel-
erations (6) are, in fact, ordinary time derivatives of the
components of the separation vector, Z® = %Z(i).
Moreover, i = const along the geodesic since there is
F‘;B = () for the metric (53).

The scalar components of the gravitational field (50)
and (52) simplify to

q’4i/ = _M.zcvij. (54)

Using (49), the only remaining Einstein’s vacuum equa-
tion R, =0 reads Ac = 8Yc;; =0, which explicitly
guarantees that the (D — 2) X (D — 2) symmetric matrix
of the wave amplitudes W, is traceless. The equations of
geodesic deviation thus reduce to

27(1) d2z0 1 .
&z o, =it 70, (55)
dr? dr 2

exhibiting the transverse character of the vacuum gravi-
tational pp-waves propagating along e(. In general,
there are %D(D — 3) independent polarization modes
corresponding to the same number of free components
of the matrix Wyi;.

In particular, if the metric function c is a quadratic form

of the transverse spatial coordinates,
D-1 _
c= Z A(x)?, (56)
i=2
where the constant coefficients A ; must satisfy

D—1
> A, =0, (57)
i=2
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W,; is a traceless diagonal matrix with eigenvalues
W, = —2A;i%. The amplitudes are constant, i.e., the
corresponding gravitational waves are homogeneous. If
the test particles are initially at rest [Z0(r =0) =0,
Z0(r =0) = Zg) = const], equations of geodesic devia-
tion (55) for (56) can be explicitly integrated to

z0 =z,
Zg) cosh(y/ A li|r) for A; >0,
Z0 = Zg) cos(y/— A lilr) for A; <0,
z{ for A; = 0.

(58)

Therefore, in the transverse spatial directions e(; with
A ; > 0 the test particles recede, while in those directions
with A; <0 they focus. There is also a possibility that
A; =0, in which case there is no influence of the
gravitational wave in the corresponding transverse spatial
directions.

This results in completely new effects that are not
allowed in classical D = 4 general relativity for which
i =2, 3 and the constraint (57) is simply A, = —A;.
Therefore, either a vacuum gravitational pp-wave in four-
dimensional spacetime is absent (A, = —A; = 0), or it
generates specific particle motions in both transverse di-
rections e(y) and e(3) (focusing in one of them). In higher
dimensions, however, the amplitudes are coupled via the
D-dimensional ~ constraint A, = —A; - Y2 A,
From the point of view of a detector located on a
(1 + 3)-dimensional brane with spatial directions e,
€(y), €3), this would clearly exhibit itself as a violation of
standard 77-property of gravitational waves (unless
>b 1A, =0, which corresponds to a very special sub-
case). Such an anomalous behavior could possibly serve as
a sign of the existence of higher dimensions (see also
discussion of a similar effect within the context of line-
arized five-dimensional gravitational waves [91]).

It may also happen that A; = 0 for some & [in which
case the metric function ¢ given by (56) is independent of
the corresponding spatial coordinate x*] and thus there is
no effect of the vacuum gravitational pp-wave on test
particles in the transverse spatial direction e). Even the
special situations with A, = 0 or A3 = 0 are allowed.

VIII. CONCLUSIONS

Let us conclude this work by quoting from the classic
monograph [115], page 35: “In Einstein’s geometric the-
ory of gravity, the equation of geodesic deviation summa-
rizes the entire effect of geometry on matter.” This is true
not only in standard D = 4 general relativity, but also in its
extension to any higher number of dimensions. Indeed, we
have explicitly demonstrated that the geodesic deviation
equation, expressed in a suitable reference frame adapted
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to the observer’s geodesic and to the specific algebraic
structure of a given spacetime, can be used as a useful
tool for analyzing and understanding the specific effects of
the gravitational field in an arbitrary dimension.

In particular, we derived the general canonical decom-
position (18) and (19) of relative accelerations of nearby
test particles freely falling in any spacetime. The gravita-
tional contributions, identified and described in Sec. IV,
consist of the isotropic background influence (22) of the
cosmological constant A, transverse gravitational waves
(23) and (27), complementary longitudinal effects (24) and
(26), and the Newton-Coulomb component (25) of the
gravitational field. The matter contributions were dis-
cussed in Sec. VI, namely, the influence of a pure radiation
field (null dust) (36), perfect fluid (38), and generic elec-
tromagnetic field (41).

In the final Sec. VII, we also exemplified these results on
an important family of exact pp-waves in higher dimen-
sions (admitting a covariantly constant null vector field k).
Their nontrivial amplitudes are given by expressions (46).
The vacuum VSI subclass of such Kundt spacetimes rep-
resents purely transverse gravitational waves propagating
along the WAND £k (in general associated with gyratonic
sources). These exact gravitational waves have amplitudes
W, determined by Egs. (50) and (52), which form a
(D —2)X(D—2) symmetric traceless matrix. Its
%D(D — 3) components characterize the independent po-
larization modes. Explicit solution of the invariant equa-
tion of geodesic deviation for the metric function (56) is
given in (58). Because of coupling between the eigenvalues
of W,;, such higher-dimensional gravitational waves
could possibly be identified observationally in (1 + 3)-
dimensional brane as a violation of standard TT-property.

We hope that the presented general method of interpret-
ing exact spacetimes, based of the study of geodesic de-
viation, will help to elucidate the physical and geometrical
properties of various explicit solutions of Einstein’s equa-
tions in an arbitrary dimension.
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APPENDIX A: RELATION TO COMPLEX
NOTATIONIN D = 4

In standard D = 4 general relativity, it is usual—instead
of the real null frame {k, I, m,, ms}—to introduce a com-
plex null tetrad {k, I, m, m} and to parametrize the Weyl
tensor by the corresponding five complex components.
These Newman-Penrose scalar quantities W, first defined
in [137], are closely related to the real quantities intro-
duced in our text. Here, we present a dictionary relating
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these two notations. In D = 4, the transverse spatial index i
runs only over two values 2, 3 and we can combine the real
vectors m; into the complex vectors

1 1
m=—(m, +imjy).

2 V2

Any real spatial vector V spanned on m,, m; can be
parametrized by a complex number V via the relation

m = —=(m, — im;), (A1)

1 -
V =V’m, + V¥m; = —2(Vm + Vm), (A2)

7
sothat V.=V?> —iV3and |V|?> = (V?)? + (V3)? = VV.
In four dimensions, there are only two real independent
components of the Weyl tensor for each boost weight,
namely,
\I’On = —qfozz, \1’023 = ‘1’032,
\I’sz = ‘1’1332 = —\1’1323, \IIITK = \Plzz,a = —‘1’1212,
,\II22323 == \I,23232 == _,\II23223 - _‘1,22332
= Z\PZTZZ = Z\PZTSS = \1’25,
q’le = _\1,232 = 2’\1,27-23 = _2\1,27"32,
\1’37"2 - q’3332 - _\1’3323, \I,}T3 - l1,3223 - _\IISBZ,
\1’422 = —\1’411, \1’423 = q’4%2. (A})

These can be combined into five complex NP components
[140,141] defined by

’\PO = Cahrdk“mbkcmd, \I,l = Cahcdkalhkcmd,
\I’z = Cubcdk“mhrﬁcld, q’:; = Cub(.dlakhlcl’;ld, (A4)
W, = Cpegl®mPIcm?,
as
. 1 .
\Po = ‘1’022 - 1‘1’023, ‘1’1 = 72(\1,1T2 - l‘I’sz),

1
v, = — 2 (\1’22323 +iW,s ),

1
Yy = 7(?3# +iWyp), Y, =V¥m + W,

(A5)

Notice the differences with respect to the notation used in
[93]: here we have relabeled all transverse spatial indices
as i — i + 1 to achieve that the privileged spatial direction
is denoted as m; = e(;), and the scalars Wyg, W,z are
defined in (14) without the unnecessary factor 2. (Also,
there is a missing factor% in Eq. (A.7c) in [93].) Inversely,
we obtain
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\1’023 = \I’Ozz = *Im‘I’O,
W s = —2ImV,,

‘I’zs = Z\I’ZTzz = 2‘1’2733 = \1’22121 = -2 Re‘I’z,

\Pzzs = —ZIm\I’Z,
Wy = V2ReWs,
\1’422 = —‘P433 = RC‘I’4,

Wi = 2 ImW¥s,
‘I’4zs = l1’432 = Im‘I'4.

(A6)

According to (17), the orthonormal components Ci;)0)j) of the Weyl tensor are

Coyoom = —2ReWs,  Ciyoyo@ = TReW; — ReWs,

C(z)(g)(o)(z) = RB\I’Z - %RB\PO - %Re“lu,

C(3)(0)(0)(3) = RB\PZ + %RB\PO + %Re‘lﬂ,

Coyooe = ~ImW¥; — ImW;,
Cooom = Am¥, — HmW,.
(A7)

Explicit equations of geodesic deviation (11) in D = 4 thus take the form

. A
70 = §Z“) —2Re¥,ZW + (Re¥; — Re¥3)Z?® — (Im¥, + ImW¥;)Z®

_ 5 .
+da| Ty ZW + TaypZ? + ToyeZ® - (T<o><0) + gT)Z“) :

. A 1 1
7@ = §Z(2) + ReW,Z? + (ReW; — ReW;)z) — E(Rellfo + ReW,)Zz? + E(Im\I’O — Im¥,)Z®

i N
+ 4 TomZ" + ToeZ? + ToeZ® - (T<o><0) + §T>Z<2’ :

A

. 1 1
70 = §Z(3) + Re¥,Z®) — (Im¥, + ImW¥;)Z1) + E(Im‘lfo — ImW¥,)Z® + E(Re\l’o + ReW,)Z®

_ 5 -
+ 47| Ty ZW + Ty Z? + Ty 2™ — (T(O)(O) + §T)Z<3) .

This fully agrees with the results presented in our pre-
vious work [128] [after permuting the indices as
1 — 2 — 3 — 1, and changing the signs of all imaginary
parts due to a convention different from (Al)].

APPENDIX B: RELATION TO OTHER NOTATIONS
USEDIND =4

In the literature on higher-dimensional spacetimes, it
is common to use alternative conventions for the null
frame and the corresponding components. In particular,
in the fundamental papers on algebraic classification of
the Weyl tensor [72,73] the null frame {€, n, m;}, where
i=2..D-1,

€ =m,, n=m m, ..., mp_j, (B1)

is employed such that the metric is g,, = 2€(,n,) +
S;mimy, ie.,
¢-n=1, m; -m; = §;, (B2)

¢-€=0=n"n, ¢-m;=0=n-m,

(A8)

Following [72,73], the Weyl tensor can be decomposed
into the frame components

Cabea = 4C010j"{amﬁ,n(>mﬁ}
+ 8C010in{a€hncm;} + 4C0ijkn(am§;m£m§}
+ 4Coi01np.pn lyy + SCO,-ljn{,,m;',ecmg}
+ 4C01ij”{a€bm£-mé} + C,-jk1m£am',’;m’§m[’1}
+ 8C 01t ganptomiy + 4Culgmimimt,
+ 4C1i1j€{amf,€cmé); (B3)

where T{abad} = %(T[ub][cd] + T[(?d][ub]) is a useful
notation representing the standard symmetries of the
curvature tensor. The terms in the separate lines of
(B3) are sorted according to their boost weight corre-

sponding to the scaling
{= 2, fi=Aln, m; = m,. (B4)

Using (B2), we immediately infer that the various scalar
components in (B3) are explicitly given as
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Coioj = Capeal®m?€my, Coijt = Capeal®mm$my,
Coroi = Cahrdeanhermlg'l’ Cijkl = Cnbcdm?m_};mzfmfl:
Cotor = Capeat“n€7nc, Coiij = Cabcd”"bmfm_‘f’
Coitj = Capeal®minm, Ciijp = Capean®mimsmy,
Cioti = Capean“€*nm, Ciitj = Capean“min‘m.
(B5)

They are subject to a number of mutual relations that
follow from the symmetries and from the trace-free
property of the Weyl tensor, see [72]:

Con' =0, Coroj = COiji’ Coije1 = 0,
Coro1 = Coit', Cijtn = 0,
?l k1 - i (B6)
Coinj = —3Cu;" t3Coup Conj = —Cy;'s
Ciijiy = 0, Cmi =0.

Now, by comparing (B2) with our definition (13) it
follows that the two null frames (B1) and (12) are
related simply as

k =¢ l=—n, m; =m;. (B7)
Putting this identification into (B5), and comparing with
(14), we observe that

Woi = Coj;,

Wi = Cojje Wiri = =Cooir

q’zi]kl = Cijk/’ \Ifzu' = _C(Jlijr

Wys = —Copo1, Worii = —Coptj,

Wi = —Clyijp Wy = Ciop;,

Wy = Cyiyje (BS)

Moreover, the relations (B6) are equivalent to the con-
straints (15) and (16).

Also, in [62,63,76,83] the notation

vy = %Cm,w Wi = %Clki_jx W= Ci; (BY)
was introduced and employed, which is useful for studies
of type-N and type-III spacetimes, and

@;; = Coijs
® = Cyp =

A =1
@7 = 3Cou;:

1
G

S = _1 k
q)ij = —3Cu"

(B10)
(where CI)?]-, <I>f, ® denote antisymmetric, symmetric parts
of ®;; and its trace, respectively) which is convenient for
type-D spacetimes [78,81,82,99]. In view of (BS), we thus
easily identify
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Wzlfkl = Cijkl’ q’zu = 72@'?], qIZS = 7@)
\I,ZT’I = —q),-j, \I,:;u‘k = —Z‘I’jki, ‘I’3Ti = ‘I’,-,
\P4U = 2‘1’,] (Bll)

Very recently, in the generalization of the Geroch-Held-
Penrose formalism to higher dimensions [79], another
convention was suggested, namely,

Qj; = Conjp Wi = Coijpe -~ Wi = Coron
Q= Cajp - Vi =Cup V= Cuon
cI)ijkl = Cijkl' (B12)

These scalars are straightforwardly related to the quantities
used in the present paper:

Woi = Q)

Wi = Wi, Vi =-Y,

Wi = Dy, Wy = —2CD;‘,.,

Wy = —D, Wori = =Dy,

Wi = = Wi, Vi = W,

Wy = Q. (B13)

APPENDIX C: LORENTZ TRANSFORMATIONS
OF THE NULL FRAME AND THE
CHANGES OF ..

It is well known (see, e.g., [72,73,93]) that general
transformations between different null frames can be com-
posed from the following simple Lorentz transformations:

(i) null rotation with k fixed (parametrized by D — 2

real parameters L'):
k=k I=1+2Lim,+|LI’k, i;,=m,+2Lk,

(CDH

(ii) null rotation with 1 fixed (parametrized by D — 2
real parameters K'):

F=k+\V2Kim,+|KI’l, I=1 m,=m;+2K]l,
(C2)

(iii) boost in the k — I plane (parametrized by a real
number B):

k = Bk, I=B71, m; =m, (C3)
(iv) spatial rotation in the space of m; (parametrized by

an orthogonal matrix ®,/):
=1

. ()
with (I)ijq)klls.jl = 5”(.
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Because of (13), L' = L;, K' = K;, and we employ a shorthand |L|> = L'L;, |K|*> = K'K;. Under these Lorentz
transformations of the frame, the Weyl scalars change as
(i) null rotation with k fixed:

Ty = Py,
Wy = Wy — 242V Ly,
li’1T" =¥+ \/Eq’()’ij’
Wy = Wi — 2V2(L Wy — LW o) + 4(WouLgL; + WouLgLy),
Wy = Wog — 220 ;i Li — 2W, LiLJ,
Wy = W + 2W LK = 2V2W 1Ly — AW L gLk,
Vo = g + 20w LF = N2V L, — 2V L*L; + Wou|LI%,
Wy = Wy + V2(Wyin Ll — WL + 2L W y0)
+4W oLl — 2(W Ly + WLy — Wil )L + W L2 + 42 LigLi L' — 242, Lyg|LI%,
e = Wy + V2Wy L — V2A(Wypu Lk + WigL))
+2QW, L — W LYL — W, |L? + 2V2W LILFL; — 2%y, LI|L|%,
Wy = Wy + 2V2(WypiLj) — WyopLF)
+ 2y LA L — AWy Ly L* + 2V, |LI* — 2WysL,L; — 4W L j)LF
— 23200 Ly LA L + W o LHIL? + WLy |LI> — 2% L*L,L))
+ AW LFLILL; — 4 L) LF|L|? + Wi L]%, (C5)

(i) null rotation with / fixed:

Vyi = Wi + 2v2(¥, 1K) — V0 K¥)
+ 2Woni K*K! — 4K W, K5 + 2,00 [KI2 — 255K K + 450K ) KX
— 220V K KK + Wy K¥ K + Wy K | K> — 295 K*K K )
+ 4V WK KKK — 490K ) KK 2 + Wyl K Y,
Vo = W + V2(Wouk! + Wy K; — 2V, Kp)
+ 4V KK — 2(Wyn K + VK, — WyuK)K' + Wyl K|?
+ 420, K gK K — 28290 K K1,
U= Ui+ 200K = V2(Wop KV + WK,
+ 225 K; — Vau KK — W |[K? + 2V2W u KIKFK; — 2%, KT | K|,
Wi = Wi — 2V2(K Vs — K VWam) + 4V KK + Vo KgK),
Wyg = Wyg — 22V, KT — 2W KK,
Wy = Wy — V2Wyu K* + 2320, 0K + 4V 0K K,
Wyri = Wopis + V2Wau Kk — 203K, — 2 K* K, + Wyl K2,
\i's'fk = Wi — Zﬁ\Pka]’
i = Wy + V2V K,
Wy = Wy, (C6)
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(iii) boost in the k — I plane:

PHYSICAL REVIEW D 85, 044057 (2012)

Vo = B2V,
W = BY i, V=BV,
Wi = Wi, P = Wy, Py = Wy, Wi = Wi,
\I~’3i,k = 371W31jk, \I~’3Tx = Bil\PEBT‘:
P, = B2V, (€7
(iv) spatial rotation in the space of m;:
\Poi/‘ = q)l-pq)jq\lropq,
V=0 D IW oy, By = OV g,
q’zijkl = (Din®j0¢)kp¢)lq\l,2nopq, @25 = \1’25,
"ifzij = q)ipq)jq\llzw, \~I’27~il = (Dipq)jq\l,27ﬂq,
Vi = 00D, D, 1V 50, Uy = O, Wy,
Uy = DD IV, (C8)
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CHAPTER

4

PROPERTIES OF GENERAL
NON-TWISTING GEOMETRIES

In this chapter we will present specific geometrical properties of a general family of spacetimes
admitting a nontwisting null congruence of geodesics. Spacetimes of this type are well known
in standard four-dimensional relativity, see [4] for review, and some of their subclasses were also
investigated in the context of higher-dimensional theory, see e.g. [28, 31, 32, 34]. Employing the
general formalism derived in Chapter 3, we will decompose the equation of geodesic deviation into
specific components with respect to their boost weight which will be useful for subsequent analysis
of relative motions of free test particles in more specific classes of nontwisting spacetimes, namely
the Kundt (Chapter 5) and the Robinson—Trautman (Chapter 6) family.

4.1 Geometric description of the spacetimes

Following a standard approach, first we would like to heuristically construct a line element of
spacetimes which can be foliated by null hypersurfaces with normal (and also tangent) affinely
parameterized geodesic null vector field. In section 4.2, we will show that the congruence of integral
curves generated by this vector field is necessary nontwisting and, on the other hand, that the
requirement of a nontwisting geodesic field induces the foliation by orthogonal null hypersurfaces.

Initially, we consider a general Lorentzian manifold M of arbitrary dimension D > 4 which
is locally covered by coordinates z* where a = 0,..., D — 1. We introduce a family of null
hypersurfaces, labeled by u, by a constraint u(z®) = const. and we choose the function u as a new
coordinate on this manifold. The tangent and also normal of these hypersurfaces is simply given!
by k:a = —u,, = —0, which must satisfy g“bk kb = g“ by, aUp = 0 by the definition, and we thus
obtain restriction on the metric function g** = 0.

In the next step we construct a null vector field kb = g“bl; = —g"? whose integral curves are
affinely parameterized geodesics, i.e., kq bkb = 0.2 The corresponding affine parameter r will be

taken as the other coordinate on the manlfold M, i.e., the null vector field k is simply k=20,.

IWe could consider a more general case ko = —f(mb)u@7 but the corresponding integral curves will not be
affinely parameterized. We assume the affine parameterization for a simpler construction of optical scalars.

2Proof: the covariant differentiation of the scalar product 0 = l;bl;b gives 0 = (l;bffb);a = 2I~€bml~€b, and the explicit
form of the covariant derivative I;a;b = —uqp + ' u,c imply the a <> b symmetry.
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coordinate components it means k> = 6% which is also given by kb = —g“*. We thus immediately
obtain additional requirements on the metric functions, namely ¢*” = —1 and g% = 0.

Our set of adapted coordinates (r, u, x%) thus consists of the affine parameter r along null rays
generated by the vector field k, v which labels null hypersurfaces orthogonal to k, and D — 2
spatial coordinates 2’ covering the transverse Riemannian space. The resulting line element of
the spacetime takes the form

ds? = 95 (r, u, x) daz'da? + 2g,i(r,u, ©) dztdu — 2dudr + gy (7, u, ) du? | (4.1)

where g;;, i.e., the metric on the transverse space, and components g,; = ¢;jg™ and gy, =
—¢""+guig"" can be arbitrary functions of all coordinates, and the indices ¢, j range from 2 to D—1.

Finally notice that in the case of general metric function g,.,, which corresponds to a nonaffinely
parameterized vector field, we can always make a transformation of the parameter r — 7(r, u, )
and thus obtain line element with the gauge g, = —1, and with other metric functions rescaled.

4.2 Optical scalars

In [29, 30] properties of the null geodesic congruences and optical scalars in a general D-dimensional
spacetime were discussed. It is natural to introduce a frame® (k, 1, m;) consisting of two future
oriented null vectors k and 1, and D — 2 orthonormal spacelike vectors m;,

The metric is thus given by gap = —2k4ly) + 6Z-jm2mg, and the covariant derivative of the null
vector k can be rewritten in terms of this frame as?

ka;b = Ki1koky + Klokalb + Kukamé + Kilmflkb + Kiomfllb + Kijmflmi . (43)

The components K, can be expressed® inversely as

K11 = kapl®l” Ko = kapl®k” Kyi = —kapl®m]
Ki = —ka;bmflb y KiO = —ka;bmfkb ) Kij = ka;bmfm? . (44)
Using the decomposition (4.3), the condition of geodesicity can be rewritten as ka;bkb = —Kioks —

Kiom?, and we find that general vector field k could be geodesic, i.e. kq.,k® ~ k,, and even affinely
parameterized, i.e. ka;bkb =0, if and only if K;p =0 and K¢ = 0.

Geometrical properties of the congruence of integral curves generated by the null vector field k
are characterized by the matrix K;; which remains invariant under null rotations with k fixed, see
(4.44) below, and is only simply rescaled under boosts in the k — 1 plane, given in (4.45); detailed
description of the Lorentz transformations can be found in Chapter 3. For further analysis of
the congruence we now decompose the matrix Kj;; into its trace, traceless symmetric part, and
antisymmetric part,

Kij = ©dij + 0i; + Aij (4.5)

which are called expansion, shear matrix and twist matrix, respectively, and can be explicitly

written as T _—
TIN5 rK;;

3Particular choice of such frame will be given in Section 4.5.

4The components Ko1, Koo and Ko; are not present because of (g“bkakb);c = 0 and thus kq;ck* = 0.

5The coefficients K, correspond to L,y used in [30] except for sign changes given by a different normalisation
of the null vectors k-1= +1.
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These quantities are also preserved under the null rotations with fixed k. For affinely parameterized
geodesics we can construct scalars corresponding to the standard expansion, shear and twist,
expressed only in terms of covariant derivatives of the null vector k:
1 a 2 a;b 1 a \2 2 a;b
("') = mk;a 5 o = k(a;b)k - m(kf ;a) 5 A = —k[a;b]k . (47)
Vanishing 02 and A? scalars are equivalent to 0;; = 0 and A;; = 0 for all values i, j.
We may calculate the optical scalars (4.7) for the geodesic and affinely parameterized vector
field k introduced in the previous section and used for our initial construction of the line element
(4.1). Its covariant derivative is kg = % Jab,» and the optical scalars thus are

1

1 » 1
0= abaT: Ui'r: ldti'ra
2(D—2)g Yab, 2(D—2)g gJ, 2(D—2)(n ng)1
1 1 1 ., .
2 _ ac bd _ ab cd a’r’C’I":_Zk Jli'r ’I’_D_2@2 4.8
o 4(9 9 = 559" >gb,gd, 19" 9" G gk = )07, (4.8)
A2 =0,

where a,b,c,d=0,...,D—2and i,j,k,l=2,...,D—2. We conclude that the spacetime (4.1)
admit nontwisting null congruence of geodesics generated by the vector field k.

In a more general way, a congruence of null curves with tangent k% is (locally) orthonormal to
a family of null hypersurfaces u if and only if

Kiaske = 0. (4.9)

This is obviously satisfied by our tangent ko = —u,, which generates the existence of a nontwisting
congruence. On the other hand, the existence of hypersurfaces (locally) orthogonal to a general
vector field satisfying this condition is guaranteed by the Frobenius theorem, see [4] for more
details. Crucial observation is that the condition (4.9) for geodesic null congruence can be rewritten
using (4.3) only in terms of the twist matrix A;; as

1 . .
k[a;bkc] = gAijmfamikc] . (410)

For an arbitrary null vector [® we get kjq,pke)l® = —%Aijmflmg, from which it follows that non-
twisting requirement A;; = 0 is thus equivalent to the condition (4.9).

Finally, for further discussion of special cases such as shearfree and nonexpanding Kundt and
expanding Robinson-Trautman spacetimes it is useful to assume that spatial metric g;; can be
decomposed® as v;; = p?gi;, see e.g. [34], where 7;; is an unimodular matrix, i.e., det~;; = 1. For
the determinant of the complete metric we immediately get

D-2)
?

det gop = —det g;j = p*2( where Gij = p*Q%-j . (4.11)

The nonvanishing shear and expansion scalars (4.7) now become
1 .
O =—(lnp), , o? = 17 Iy e Vet (4.12)

which will be useful for determination of r-dependence of the spatial part of the line element with
respect to the optical properties of the geodetic congruence, see also [31, 34].

6This assumption is taken without loss of generality. Although this decomposition is not invariant with respect
to the choice of the spatial coordinates z*, it gives unique conditions for the r-dependence of the optical scalars.
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4.3 Riemann and Weyl tensors

Considering the general form (4.1) of the line element of a nontwisting spacetime we can now
calculate all quantities characterizing its curvature. Using the common expression for Christoffel
symbols,

1
be = §9ad(9db,c + gde,b — Gbe,d) (4.13)

where nontrivial components of an inverse metric ¢*° are

rr _

97, 4" =99,  Gu=-1, 97 =—Guu+979uigu; . (4.14)

we immediately obtain

1 1 . 1 1 ..
I’ =0 r,=—-= uu,r —g" ui,r oy :‘:__ wj,r —g" 7,7 s
T ’ U 29 +2gg 7 2gjy+2g Yij,
r 1 rr T4
Fuu = 5 [_g Guu,r — Juu,u + g (2guz,u - guu,l)] 5
T 1 rr [
Fuj = 5 [_g Guj,r — Guu,j + g (2gz(ug) - guj,i)} P
T 1 rr 7
k=3 (=9 Gk — 29u(ik) + Yok + 97 (29iG.0) — Gika)] (4.15)
e =0, e, =0, Iy, =0,
1 1 1
ry = S Y9uu,r Fu':_uir7 Fu':_i'rv 4.16
uu 29 , ut 29 5 (%] 29 Js ( )
i i 1 i 1
F’I‘T‘ =0 ) Fru = Eg Jguj-,T ) rk — Eg Jgjk-ﬂ“ )
7 1 T 1]
L = ) [_g Juu,r + 9 J(2guj,u - guu,j)} )
7 1 % 17
e = 5 (79" 9wk + 97 2950 = Jurs)]
i 1 i ij
K= 5 (=9 g.r + 97 (29500) — 911.5)] (4.17)
where 7,75,k =2,...,D — 1. The standard definition of the Riemann curvature tensor,
abcd = ng,c - Fgc,d =+ Fidrgc - Fic gd ) (418)
the indices lowering by Rapcd = Gae 19,4, and long calculations lead to
1 1 i
Ryprq = ~99parr + 19 9iprYiar (4.19)
1 1 ..
Rrpru = _§gup,7‘r + Zg Jgip,rguj,r 5 (420)

1 1 ..
Rruru:__ ww,rr —g" wi,rYug,r 4.21
5 9uurr + 79" Guirgus (4.21)
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1 1
Rrpkq = gp[k,q],r + Z (gpk,rguq,r - gpq,rguk,r) - ZQM (gpk,rgiq,r - gpq,rgik,r)
1 ..
+59" (910 (29500) = 9p3) = 9ikr (295,00 = Ipas)] (4.22)
1 1 .
Rrpug = Gplu,glr + 1 (Gup,rGua,r = Ipg,rGuu,r) — Zg” (Gup,rGiq,r — Ipq,rGui,r)

1
+Zg” [giq,r (2gj(u,p) - gup,j) = Gui,r (2gj(p,q) - gp%jﬂ ) (423)

1 .
Rrupq - gu[p,q],r - Zg” (gup,rgiq,r - guq,rgip,r)

1
+Zg J [giq,r (2gj(u,p) - gup,j) — YGip,r (2gj(u,q) - guq,j)] ) (4-24)
1
Rruup = gu[u,p],r - Zg” (guu,rgip,r - gup,rgui,r)

1.
+9” [9ipr 29uju — Guuj) — Guiir (295 (up) — Jup.j)] (4.25)

1
Rkplq = SRkplq + _gTT (gqurgplﬂ“ - gkl,TgPQﬂ”)

4
+igkl’r [gp‘m = 29u(p,q) + gri(2gi(p,Q) - gpq,i)}
+%gpq,r [9ktu = 20u(it) + 9" (29i(01) — i)
_%gkq,r [9p1,0 = 29u(pty + 97 (29i(p1) — Gpl.i)]
_igpl,r [Gkau = 29u(kig) T 9" (29i(k.q) — Ika.i)] (4.26)

1 .. 1
Rupkq = 9plk,ql,u — Gulk,q],p + Zg (guq,rgpk,r - guk,rgpq,r) + Z (guu,quk,r - guu,kgpq,r)

[Quk r (gpq,u - 2gu(p,q)) — Gug,r (gpk;u - 29“(?7’“))]

+

ﬂkl»—‘ﬂkl»—‘ﬂkll—'%l)—u& —_

T

g |Guk,r (291(;0 q) — gpq,i) - gpk,r(2gi(u,q) - guq,i)}

+

T

9 [Gug,r (291'(10716) - gpk,i) - gp‘],r(2gi(u,k) - gulmﬂ

+
s}
<

[
[
7 (295(ua) = Jua.d) (29ip.0) — Iph.i)
(

—=9" (29j(uk) = Guk.j) (29i(p.q) = Ipai) (4.27)
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1 1
Rupuq = gu(p,q),u (gpq,uu + guu,pq) + g (gup,rguq,r - guu,rgpq,r)

2 4
1 .
_Zguu r [2gu(p,q) — 9pq,u — gm (2gi(p,q) - gPQai)}
4gpq r [ wu,u 2guz u guu,Z)}
49up r [9uug = 9" (2i(uq) = Guai)]
4guq r [guu p (291( p) guw’)]

1
+59" (29(up) = 9up.3) (29i.0) = Juq.i)

1 l
19 7 (29uju = Guug) (29i(p.q) — Gpai) (4.28)

where the superscript © denotes tensors calculated from the spatial metric gi; only, with respect
to the spatial coordinates x*. The Ricci tensor is given by contraction R., = QCdRcadb = R 4
namely,

1 ii
_gpqg Jgip,rgjq,r ) (429)

1
Rrr = __gpquq,rr + 4

2

1 .
_gmgui,rr + gpqu[u,q],r

1
Rru:__ wu,rr
Guu, +2

2

1 - 1 -
+§gpqgup,r (guq,r - gmgiq,r) - ngquq,r (guu,r - gmgui,r)

1. .
+ngg I giq.r (295 (up) — Gupi) — Guiir 29jip.q — Ipa,j)] (4.30)

1 L.
Rek = —=Guker + 29" Gikirr + 9" Gpliq)r

2 2
1 Pq T 1 Pq i
+§g Ipk,r (guq,r —4g giq,r) - Zg 9pq,r (guk,r —4g gik,r)
1 .
+79"9" [9ia.r 295(p.k) = Gpkg) = Gik,r (29jp.a — Ipaj)] (4.31)
1 T T 1 yol]
Ruw = _59 Guu,rr — 29 Gulu,i],r T 59 (2974?1“‘1 ~ Ipquu g““ﬁ”q)

1 1
—|—§grpgrq (guu,rgpq,r - gup,rguq,r) + ZgTrgpq (2gup,rguq,r - guu,rgpq,r)

1 [
_Egpqg [gip,r(2guq,u - guu,q) - gup,r(2gq(u,i) - gui,q)}

1 .
_ngqguuw [29up7q — Ipgu — 9" (29ip,q — gp%i)]

1 .
+§gpqgup,r [guu,q - g” (2gz(u,q) - guq,i)}

1 .

_ngquq,r [guu,u - g” (2gui,u - guu,i)}
1 ii

+79"9" (20j(u.0) = Gup.5) (20i(0.) = Gua.i)

1 ii
199" (29uju — Guuj) (29ip.q — Ipai) (4.32)
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1 .
Ruk = _igrrguk,rr - gu[u,k],r + gm(gu[iyk]ﬂ“ - gk[u,i],r) + gpq(gp[qu]’u - gu[k,q],p)
1 1 .
_'_Zgrrgpq (zgpk,rguq,r - gpq,rguk,r) + 59” (guu,rgik,r - guk,rgui,r)

+%g”’ 9" (Guk,rIpg.r — Gkp.rJuq,r)

+%gmg” 129uq,rGkip,i] + 29pk.rGulai] — Jipr (29q(uk) — Guk,g))
+£gmg” Gk (29i(p.q) = 9pasi) + Ipar(29i(uk) = Guk,i)]

+£gpq [49pk,r9u[u,q] + 29up,rGua,k — Guk,r(2Gup,q — Ipg,u) — gpqmguuvk]
+£gpqg” (29)(u,0) = 9ua.s) (29i(p,4) = Iohii)

1 ii
_ngqg J (2gj(u,k) - guk,j) (2gip,q - gpq,i) P (433)

1
Rpq = Squ - 59”910:17” + Ipgur — Gu(p.g)r + 9" (gi(nq),r = Ypq,ir)

1
+ZQTTle(2gkp,Tglqm = Ykt Ipq,r)
1 1 .
+§ (gpq,rguu,r - gup,rguq,r) + 59 (gup,Tgiq,r + guq,rgip,r - 2gpq,rgui,7‘)
1 1 .
+59Tkgrl (gpq,rgkl,r - gpk,rgql,r) + §gkl (guk,r - g”gik,r) (2gl(p,q) - gpq,l)

1 kl i
_Zg 9kl,r [2gu(p,q) — 9pq,u — G (2gi(p,q) - gpq,i)}

1 .
_nglgpq,r [20uk,i — Grtu — 9" (29ik — Grii)]

0" gkarr (ol + 9" Gpiin) — 9" Gpr (Got) + 9" 9q1i)) - (4.34)

Finally, the Ricci scalar defined as R = g Ry, is

R = SR + Guu,rr + (grpgrq - gpquT)gpq,rr - 2grigui,rr + 4gpq (gp[q,u],r + grigp[i,q],r)

1 )
_§gpq (3gup,rguq,r - 2guu,rgpq,r) + gpqgrz (3gup,’rgiq,7‘ - 2gui,rgpq,r)

1 1
+19Trgpqgkl (3gkp,rglq,r - gkl,rgpq,r) - §gpqukng (3gpl,rgkq,r - 2gpq,rgkl,r)

1
_§gpq9kl (91, (29up,g = Ipa,u) + Gka,r (3Gptu — 2Gup,t) — 2Guk,r(29ip,q — Ipg,1)]

1 T
+§gpqgkl9 (91, (29ip,q = Gpa,i) + Gka,r (Bdpti — 2Gip,1) — 2Gik,r (291p,q — Ipg,1)] - (4.35)

Our main aim now is to combine the Riemann tensor, Ricci tensor and Ricci scalar into the
traceless Weyl tensor which, in arbitrary dimension D, is given by formula

R (gacgbd - gadgbc)
(D—-1)(D-2) ~

1
Oabcd - Rabcd = (gaCRbd - gadec + gbdRac - gbcRad) +

53 (4.36)
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the components of the Weyl tensor for the line element (4.1) are thus

1

Crprq - Rrprq - mgqurr )
1
Crpru = Rrpru - m (Rrp + gupRTT) )
1 R
Cruru - Rruru - N o 2Rru uuRrr T T AN Ty o) 0
p—3 Al 9ulr) = 5

1
Crpkq = Rrpkq - m (gqurk — gkarq) R
1 Rygpq

Crpuq = Rrpuq - m (_qu + quRT’U« - guPRT‘Z) - (D o 1)(D _ 2) ’

1
Crupg = Rrupq — D—_2 (GugRrp — GupRrq)

1 Ry,
Cruup = Rruup — m (_Rup + gupRru - guuRrp) - (D _ 1)(;; o 2) ’

R (9k19pq — Grqe9pl

Crplqg = Riplg — D_2 (g1 Rpq — grqBpt + gpg Rt — glekq) + ((D _T)(D _q;; ) )

1 R (guk9pq — Guq9pk)
Cupkq = Rupkq — D_2 (gukBpg — GugRpr + GpgRuk — gprRug) + (D _plq)(D _q;; ’
C - R -~ 1 ( R _ R + R _ R ) + R (guugpq - gupguq) (4 37)

upug = Hupug = o \Juultpg T Juqltup T IpgLtuu — Jupflug (D-1)(D-2) "7

For the following discussion it will also be useful to present the simplest of these expressions
explicitly, namely

1 1 9pag"! <

3 1 1 .
Crprg = —59parr + Zg”gip,rgjq.,r — 5 \ Tk Zg”gik,rgjl,r) - (4.38)

2

4.4 Einstein field equations
FEinstein’s equations for a metric tensor g4, can be written in the standard form as
1
Rap — §Rgab + Agab =811 , (4.39)

or, equivalently, substituting its trace R = 525 (AD — 877T) as

2 1
a :—A a Ta - T a . 44
Rap D3 gb+87T< b T pH g gb> (4.40)

At the moment we admit the presence of an arbitrary matter field given by its energy momentum
tensor Ty,p, and a nonvanishing cosmological constant A. The set of equations corresponding to
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the line element (4.1) thus becomes

Ry = 87T, ,
Row=——2 A+t8n <Tm + LT)
D -2 D -2 ’
R,, = 81T, ,
Ryw = LA + 871 <T —LT )
w T gt Juu wTp gt Ju )
R ZLAg +87T(T —LTg )
w =g Y wTp g )
Ry, = LAg + 87 (T — LTg ) (4.41)
pe = 5 Ira P ot Ira) >

where R, are explicitly given by (4.29)-(4.34).

4.5 Explicit null reference frames

In the previous discussion in section 4.2 we used some general properties of the real null frame
consisting of two future oriented null vectors k and 1, and D — 2 perpendicular spacelike vectors
m;, namely,

k'lz—l, mi-mj=5ij, k-k:1-1:0, kml:lmlzo (442)
Now we will show how to construct explicit such frames in general nontwisting spacetimes (4.1).
In the adapted coordinates (r, u, z*) with i = 2, 3,..., D — 1, introduced at the beginning of this
chapter, the metric can be rewritten in the matrix form as
0o -1 0 0
=1 Guu Gu2 YGus
Jab = 0 Guz 922 g23 .. . (4.43)
0 gus G23 ¢33

There are several possibilities how to choose our reference frame which may be motivated either by
mathematical simplicity or by specific relation to some physically preferred observer. The freedom
in the choice is given only by the Lorentz transformations, and is described in Chapter 3. Now
let us only recall the formulae for null rotations with k fixed, boosts in k — 1 plane, and spatial
rotations in the transverse space of m; which will be important for further relations between the
null frames (4.48), (4.49) and (4.50) introduced below:

e null rotations with k fixed are parameterized by D — 2 real parameters L; = L*:
k=k, 1=1++v2L'm; + |L)’k , m; =m; + vV2Lk , (4.44)
e boost in k — 1 plane is parameterized by a real number B:
k = Bk, 1=B7"1, m; =m; , (4.45)
e spatial rotation in the space of m; is parameterized by an orthogonal matrix @ij :

k=k =1, m; =®/m;,  where &P =dy . (4.46)

)
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4.5.1 Natural null frames

In this subsection we identify the first vector k of the null frame with the nontwisting, affinely
parameterized geodetic vector field k = 0, introduced in section 4.1. Employing the conditions
(4.42) we find that (necessarily) [* = 1 and m} = 0, but there is still a freedom in the remaining
components of 1 and m;, constrained by the conditions

0= —21" + Guu + 2guil" + gi; 'V, 0=m] — guym! — gjpmll* 8ij = grmim} . (4.47)

There are two natural choices

e assuming [ = 0 we immediately get

1 .
k=20,, 1= §guuar + Oy m; = gugm!0, +mld; , (4.48)

o if we wish the component m] to be vanishing, the resulting frame must take the form

1 . )
k=0,, 1=-5¢"0+0d,~g"0, m; = m!

10; . (4.49)
These simplest possibilities are useful, e.g., for algebraic classification of spacetimes. If we assume
identical spatial parts” of the vectors m; in both these frames, the relation between (4.48) and
(4.49) will be given only by the null rotation (4.44) with k fixed. The frame (4.48) can be obtained
from (4.49) using L; = %guqmg, and inversely by L; = —%guqmg.

4.5.2 Interpretation frame

In the context of equation of geodesic deviation, we need to construct a frame connected with a
particular observer moving along timelike geodesic v(7) = (r(7),u(7), 2%(7)). The D-velocity of
the observer is thus u = u%d, where u® = (7,1, "), the dot denotes differentiation with respect
to observer’s proper time 7, i.e., %. The observer’s velocity u will be identified with the timelike

vector constructed from the null vectors k and 1 as eg) = u = %(k + 1), where the vector k of

this null frame will be proportional to the nontwisting vector k = , introduced in section 4.1.
It means that its only nonvanishing component will be k", i.e., k = k"9,.. Using the properties
(4.42) we obtain

1 1
k- -u=gupkiu’=—, which implies k" = — ,
Jab \/5 p \/iu
1
epp=u=—k+1), and thus 1% = vV2u® — k%,
0) \/5( )
k-m; = gabk“mg = grbkrmé’ , but only g, # 0, so that m; =0,
.md
l-m; =I,m} =0, but m{ =0, so that mf:—qlml,
m; -mj = gabmfmg’- =45 , but g, =0 and m} =0, so that gpqumg» =0 ,

where the indices area, b=0,...,D—1and ¢, j, p, ¢ =2,...,D —1. The resulting interpretation
null frame is thus

1 1 ) L.md .
k=—20,, 1= (V2r — — ) 8, + V200, + V2i'0; , m; =219, +mlo; . (4.50
\/5’1'1 ( ﬁu) lr 1] ( )

If these parts are different we have to use spatial rotation (4.46).
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In components we get

1
k* = ——,0,0,0,...) .

¢ = (\/57'“— ﬁﬁu \/§x2\/§x3) ,

L.mi
mi = <— qlmz ,0,m7,m3, .. > , (4.51)
r
where I, = —/24, lg = ﬁ(guqﬁ + quj:k), and m] can thus be rewritten as m] = %(guqa +

qua’:k)mf. It is always possible to construct the spatial parts of the vectors m; from an arbitrary
basis by standard Gram-Schmidt orthogonalization procedure.

This interpretation frame (4.50) is also related to other frames, namely (4.49), by a simple
Lorentz transformations. Assuming again the same spatial parts of m; in both these frames, we
obtain (4.50) from the natural null frame (4.49) by the boost in k — 1 plane (4.45) and the null
rotation with k fixed (4.44), where

1

B=—, Li = (Gugt + gged™)m? . 4.52
NeT (Guq Jard") ( )

4.6 Geodesic deviation

We are going to follow the procedure introduced in Chaper 3 and investigate the relative motions
of free test particles in nontwisting spacetimes of type (4.1). Let us briefly recall the main concepts
and principal results of this approach, detailed description can be found in Chapter 3. The equation
of geodesic deviation is

D2Ze

dr2

where R%_, is the Riemann curvature tensor, u” are components of the velocity vector of the
reference particle (geodesic observer), the parameter 7 is a proper time of the observer’s timelike
geodesic, and Z“ are components of the separation vector which connects the reference particle
with another nearby test particle. We express this equation in coordinate-independent form. We
thus consider an orthonormal frame (e(,)), i.e.,

= R% utucZ¢ (4.53)

b

e(a) . e(b) = Jcd et(ja)egb) = Nab = diag(—l, 1, ceay 1) s (454)

consisting of one timelike vector e (), which we identify with observer’s velocity e = u, and D—1
perpendicular spatial vectors e(;). The only nontrivial components of the projected equation of
geodesic deviation (4.53) onto the orthonormal frame (e(,)) than are

S(1) _ p)
27 =R 000 (4.55)
where i, j=1,...,D — 1 and Z0 = eg) Djﬁ“. For more precise discussion of the relative motion

of free test particles it is natural to decompose Riemann tensor using (4.36) into the traceless
Weyl tensor, Ricci tensor and scalar curvature, and to rewrite the orthonormal components of
the Weyl tensor in terms of the null components, i.e., with respect to the real null frame (4.42).
Also the Ricci tensor and Ricci scalar are expressed using the Einstein equations (4.40) and their
trace. The null frame (k, 1, m;) satisfying the conditions (4.42) is than related to the orthonormal
frame (e(q)) by

1 1
k=—(eq +e , l=—(en) —e , m; =eg) , 4.56
\/5( ) +ew) \/5( 0) — €(1)) (i) (4.56)
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and orthonormal frame is inversely given by

1 1
€0) = NG 1) = ﬁ(k -1, e =m; . (4.57)

The components of the Weyl tensor W 4« with respect to the null frame (k, 1, m;) are defined® as

b d
‘I’oij = Cabcdkamikcmj ;

k+1),

\Iflijk = abcdk“mfm;?mz y \IflTi = abcdkalbkcm? y
Uoijnt = abcdm;‘lms‘msz ; Uog = Capeak®1P1°k?
Woyij = abcdkalbmfm;i s Wopi; = Oabcdkam?lcm;‘i ,
\Ij3i]‘k = abcdlaml;mjmz 5 \Ing'L = Oabcdlakblcmg 5
\Ij4ij = C’abcdl“mglcm;l 5 (458)

where the scalars in the left column are independent while the right column represents their
contractions:

Wi = Wy,
Wori = %(‘I/zikjk +Woi), Wag=Vop* = %‘I/zkl“ ;
The obvious symmetries of the Weyl tensor in the notation of (4.58) take the form
Yo =0, ok =0,
Vi =0, Uyirg =0,
Wi = Wortij | Wopr = Woisiwy = Woipny = 0, Pouy =0,
Uiy = 0, Waiey =0,
Wy =0, Uk =0. (4.60)

Using (4.57) the Weyl tensor frame components with respect to the orthonormal frame (e(,)),
which are important in the equation of geodesic deviation (4.55), can be expressed in terms of the
null frame components (4.58) as

a C 1 a C
C1)©0)0)(1) = Cabeaelyyeloy€fo ety = ZCabcd(k —Dk+ D (k+ 1)k —1)"
_ abcdkalblckd
- \1125' 3

a C 1 3 a C
C1)(0)0)(j) = Cabede(ryeloyeloyely = <ﬁ) Capea(k — 1)*(k + 1) (k + 1)°m¢

1 a & a c

= 7ioabcd(k 1°kem{ — 1°k"1°m)
1

= _\/i(qllTj = Wsri)

a C 1 a c
Cliyo©0)() = Caveacliy€(0)€{0)¢ly) = 5 Cavearn (b +1)" (k +1)°m]
1
= 5Capea (K*mikem + 1*m{iem{ + 2k m{,1°m)

1
= —5(‘1’0” + Wais) = Yopes - (4.61)

8Their relations to the other commonly used conventions are given in Chapter 3.
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Therefore, the geodesic deviation equation (4.55) can be written in the invariant and decomposed
form as

Z0) _ #f(\l)_l)zm ez 4 %(\pm W) 2
* D&_TQ :T(1)<1>Z(1) +Tay 2 ~ (T(O)(o) + %) Z“)] :
Z0 = %Z@ — Wypan Z9) + %(wm — gy ZM) — %(\Ifoij + Uyi;)Z0)
+ D&_T 5 :T<z'><1>Z(” + T2 ~ <T(o)(0) - %) Z“’} , (4.62)

where the indices i, j range form 2 to D —1. The overall effects of gravitational field on the relative
behaviour of free test particles is thus given by influence of the matter content of universe repre-
sented by projections of its energy-momentum tensor Typ, isotropic influence of the cosmological
constant A, transverse gravitational waves described by the symmetric traceless matrices Wgi; and
W,i5, longitudinal components Wy7: and War:, and Newton components of the gravitational field
given by Wog and Wypaj . Discussion of specific properties of these components can be found in
Chapter 3. Explicit form of the Weyl scalars W4« will be given in the following subsection 4.6.1.

4.6.1 The null frame components of the Weyl tensor

We now consider a general frame of the form (4.51), i.e., the null vector k has a component only
in the r direction, all components of the null vector 1 are nonvanishing, and spatial vectors m;
have only the u-component vanishing. Using these specific assumptions, which involve all three
frames (4.48), (4.49) and (4.50), and employing the definition of the ¥ 4« scalars (4.58), the frame
components of the Weyl tensor relevant to the equations (4.62) will be

Wois = Crprgk"mik"m7 ,
Uips = Crprgh" PR MY + Crppu "1 KM
\IJQS - _Crpqurlplqkr - 2crprukrlulpkr - Orurukrlulukr ’

R TP (1704 [/ T, Piu, T
Uori; = Crprgk™m; (1 mj—lmj)—Crpmk my 1m’;

o Piu, q r, Pk, 4
+Crpuqk mzl mj +C7«pkql€ mzl mj ,

Wars = CrprglP K" (1M — 'm) + Crpru K" (20Pm — I"'m?) + Crupu k" 1m0
—Corpugl’ k1" m? — CrppglP k1M — Crop“k"1“mE — Croypgl“k"1Pm?

Wi = OTprq(lefleg — lrmflqm; + Pmjl9m] — lpm;lrmg)

+Coprad (TP — MM + mIPm’; — mP 1 m?)

S S

S s

u qir,,P __ 1P T pyr _ TP 4
+Crpugl™ (Mm% — mfiPm’ + mil"m] — m;1Pm7)

Q

+Crprgl* (MU mE — miPmy + ml"m? — mj1Pm?)

J
+Churd "M 1M} — Crupl"(MF1"mE + mP1"m}) — Crupgl™(mf1Pm? + mi1Pm?)

—I—Cupuql"mfl“mg + Cupkql"(mflkmg + mglkmg) + Ckplqlkmfllmg . (4.63)



60 4 PROPERTIES OF GENERAL NON-TWISTING GEOMETRIES

For the sake of completeness we also present all the remaining Weyl components,

= T P Tond _ q,,7 Ty Py Mmoo 4
Wyise = Crprgk™my (mimy, — mimy) + Crpmgk"mimi my,
A T PorTond _ 0 To Py 40T P Qo _ 0y Pory "o T an 4
Woiser = Crprg(mimimmy —mimimymy + mimimgm; —m;mimimy)
T Pom, 4 Doy T oy Mgy 4 M4y T 0y P M4,y Poy T
+Crpmg(mimimitm; —mimimy'm{ +m"mimym; — m*mimim;)
m, P n,.q
+CmpngM; memgmy
q
J

+Crurpk” 1 (M m —mim’; 7+ Crupgk" 1" mim?

= q P4 P q roq
Ugijr = Crprg(I"mimjimy — I"mimimy, 4 Pmimimy, —l mimjmk)

Uais = Crprgk"IP(mim§ — mim}) + Crpmgk"1Pm;"m]

T p m q _]p T m q m q T P I q P T
+Cpmg (I"mim mif — Pmim mi + 1" mimimy — " mimEmy)

Uy T P T P Uy 4d T o P p,T
+Crurplmi (mimy, — mimy) + Crpugl“mi (mimy, — mimy)

Uy T oy Py d u, P, m, q m P 1, d
=Crupgl“mimzmy, + Cupmgl“mimi* my 4+ Crupngl ™ mimimy (4.64)

and a general form of the frame components of an arbitrary energy-momentum tensor,

a 1 LT I rir win 1 i

Tioyo) = Taveloyeloy = 5 Trr (K"K + 117 + 26717) + Twz 4 STl
AT (I + K1) + Tm(lrlz + krlz) + Tyl
1 (-

Tayw) = Tavelnelyy = 5 Trr(KTR 41707 = 2K717) + Tuul“zu+ 3 Tl
FTou (71 = K1) + Tm(lrll w’) + Tuil™l

Taye = Tavelyyely = 7 { Ty (K"m? — 1'm?) + Ty (K"md — 2Z(ng))}

1 w “ . .
-7 (Trul m; + Ty, ;1"m] +Tjkljmf> ;
Ty = Tavely€(yy = Tromim§ + 2Tpmigmyy + Tamim; . (4.65)

Substituting now the explicit form of the interpretation frame components (4.51), which are con-
nected to the geodesic observer with velocity vector u® = (7, u,4"), into equations (4.63) we get
the following expressions which include the kinematic effects given by the specific motion of our
observer.

The component of the gravitational field representing the effect of the transverse gravitational
wave propagating along the null direction L, i.e., in the spatial direction —e(y), is

\Iloij = —mpmgﬁCrprq . (466)

The terms which cause the longitudinal deformation of the congruence of free test particles in the
spatial direction —e(y) are

1
\IllTj = mg <u x Crprk + - Crpru> . (467)

1
V2
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The Newton-like components of the gravitational field are given by

1 .,..,/1
\I]2Tij = mi)mg |:Exkxl <§Crprqgkl - Crprleq)

1.
+E$k (Crprqguk - Orprkguq — Urprufkq + Crpkq)
1
+§Crprqguu - Crpruguq + Crpuq:| 9 (468)
1 kol 1 .k
\1125' = —,—2(E €T Crkrl - < 2Crkru - Cruru . (469)
u u

The longitudinal deformation in the direction +ey) is represented by the set of scalars

1 oom 1
\IJ3TJ' = \/§m§ [Exkxlx (Crkrlgmp - §Crprkglm)

1., 1
+axkxl (Orkrlgup — Crprkgul + 2crkruglp - 5 rprudkl — Crklp)

. 1
+a* <—§Crprkguu + 2Crkrugup — Crpruguk + Crurugkp — Criup — Omkp)

. 1
+u <_§Crp7‘uguu + Crurugup - Cruup) :| . (470)

Finally, the transverse gravitational wave propagating along null direction k, i.e., in the spatial
direction +e(q), corresponds to the deformation caused by matrix

1 o m. 1
\114"]' = 2m;27zmg){ﬁxkxl$mxn [Zcrprqgklgmn + Crkrlgpmgqn - rlrpgkmgqn:|

1., ..
—TrrTT |:Crprqgumgkl + 2Crkrlgupgqm - Crlrp (gqukm + 2gukgqm)
+2Orlrugpmqu - Crprugqmgkl + Orplqgmk - 2crqugmp:|

kel 1
+Ikxl |:§Orprq (2gukgul + guugkl) + Crkrlgupguq — Urlrp (2gukguq + guuqu)
+4Crlrugupqu - Crpru (2gqukl + gulqu) + Crpqukl - 2Crlqukp

+2Orplqguk - 2crqugup + Orurugpkglq - 2crulqgkp + Okplq:|

+’U/xk |:Crprqguuguk - Crkrpguuguq + 2Crk7‘ugupguq - Crpru (guuqu + 2gquuk)
+2Crpquuk - 2Crkquup + Crpkqguu

+2 (Crurugupqu - Cruupqu - Crukqgup + Cupkq)]

o1
+u2 |:Z Crprqguu - Crpruguuguq + Crpquuu

“Forurugupguq - 2Cruupguq + Cupuq:| } . (471)

General properties of these scalars Wye representing pure effects of the gravitational field are
discussed in more details in Chapter 3.
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4.6.2 Geodesics and parallel transport of the frame

Because of the connection of the interpretation frame (4.50) with a particular observer moving
along the timelike geodesic v(7) let us present the explicit form of equations for general geodesic
motion in the spacetime (4.1),

d?r dr du dr dz? du du du dz? dz? daF

2r + 2. mr ——4+21—— 41, ——=0
e o P L e e v e P L P
d?u du du du dz? dz? dz*

I m —— 4+ T, —— =0
A P T R L P T
A%zt . dr du o dr da? . du du o duda? o dad dak

ort, ——4+2r —— 4 —— o —— 1, —— =10 ,(4.72
dr? + dedT+ " dr dr * "udeT+ “dr dr Lk dr dr o( )

where the Christoffel symbols are given in (4.15)—(4.17). Notice that

e the second equation can be rewritten explicitly as

L1 . i1 Y
i+ Eguu-,ruz + Gujrud’ + Egjkmxjxk =0, (4.73)
e the first equation for r can be replaced by an explicit expression which follows from the
normalization of the velocity u-u= —1 as
r=o (14 guutt® + 2gujui? + gjral ") . (4.74)

For further discussion of the equation of geodesics deviation, it is sometimes useful to employ
parallelly transported frames (e(,)) along observer’s geodesic y(7) with tangent vector ey = u.
We thus explicitly express the corresponding conditions for the components of an arbitrary frame
vector, i.e., el(’a);cuc =0

o) | gy -0 W re 0, dela) .y 0. (475
dr heu'ela) =0, ar cu’ely = ar cubelyy = :
Using u - eq) = no, and u“;bub = 0 we find that u,e ( )bu + uye ( )bu + uze(a) bu = 0, i.e.,

if the components e?a) and efa) are parallelly transported than e(a) is necessarily parallelly trans-
ported too.

4.6.3 On general algebraic type

The relation (4.66) for the Weyl tensor component W¥g:; can be rewritten using (4.37) as

1 Rrr
ﬁ <RTprqum‘;- — D — 25”) . (476)

If the spatial vectors m; are eigenvectors of the matrix R, (;),(;), this becomes diagonal, and
Woi; = 0 prescribes simple conditions for the vanishing transverse gravitational wave propagating
along 1, i.e., all such eigenvalues have to be equal to ﬁRM. It is not obvious that these
conditions are automatically satisfied for an arbitrary nontwisting spacetime (4.1) without further
restrictions, and thus all possible effects of gravitational field on relative motion of test particles
are generally present. Geometrically, Wq:; # 0 is equivalent to the condition when the spacetime
is algebraically general (for ¥g:; = 0 it is at least of type I, with k being the Weyl-aligned null
direction — WAND).

The results of this chapter will now be used for description of geodesic deviation and algebraic
structure of spacetimes in more specific situations in Chapter 5 and 6.

\Ijoij -



CHAPTER

5

KUNDT SPACETIMES

In this chapter we will investigate the relative motion of free test particles in the important family
of Kundt spacetimes which are geometrically defined as solutions of Einstein’s field equations
admitting a nontwisting, nonexpanding and shearfree null congruence of geodesic. They thus form
a particular subclass of general nontwisting geometries (4.1) discussed in the previous Chapter 4.
Here, we will first recall general properties of the Kundt class given by its geometric definition and
employ the field equations to obtain more specific line element, see [31] for more details. Then
we will apply our general results of Chapter 3 and Chapter 4 and we will analyze the deviation of
geodesics in the particular subclasses of Kundt spacetime, such as pp-waves, VSI spacetimes and
simple gyratons.

5.1 Geometry of the Kundt spacetimes

In the case of general nontwisting spacetimes we introduced the scalars © (expansion), o (shear)
and A? (twist) characterizing optical properties of the null affinely parameterized geodesic con-
gruence, see equation (4.7) in section 4.2. We showed that line element (4.1) represents a D-
dimensional nontwisting spacetime, but its shear and expansion are still in general nonvanishing.
Using the decomposed form of the optical scalars (4.12),

1 ., .

©=—(Inp), , o’ = ZWlkW‘ﬂ%'j,r%l,r ; (5.1)
where g;; = p~2v;;, we find that the geometric definition of the Kundt family, i.e., spacetimes
admitting a nontwisting (A = 0), nonexpanding (© = 0) and shearfree (¢ = 0) null geodesic
congruence, imply the independence of the spatial part of metric g;; on the coordinate r, see also
[31]. The line element of general Kundt spacetime, in suitable coordinates, thus necessarily takes
the form

ds? = g;j(u, z)dx'da? + 2g,,;(r, u, v)dz*du — 2dudr + guu(r, u, x)du? (5.2)

where the metric on the transverse space g;; is a function only of the coordinates u and z*. The
other metric components g,,; and g, are still arbitrary functions of all coordinates, i.e., (r,u,x"),
and have to be specified employing the Einstein field equations (4.41).
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Considering the Kundt line element of the form (5.2), from expressions (4.15)—(4.17) for non-
vanishing Christoffel symbols we immediately get

1 1
FT = ——Guu.r —g" ut,r
. 2g ot 29 Yui,
, 1
I‘rj == _Eguj,r )
. 1 pa T4
Ll = 9 [_g Juu,r — Guu,u + g (2gui,u - guu,i)] ’
r 1 rr i
F'u.j = 9 [_g ujr = Guu,j T 9 (2gi(“7j) N guj’i)] ’
” 1 77
ik =735 [=29u(s) + Gk + 97 (29550) — Gini)] (53)

1

I =2 uw,r
uu 29 )
1
I = igui,r ) (5.4)

) 1 ..
hw = 59" 9ujr

2
7 1 77 17
I = 3 [_g Juu,r + 9 J(2guj,u - guu,j)} )
7 1 77 %
uk = 5 (79" Gukr + 97 (205uk) = Gurg)]
i 1
Kkl = 593(293*(1@,1) - grij) (5.5)

where the indices 4, j, k, [ range from 2 to D — 1. Using the constraint g;;, = 0 in (4.19)—(4.28)
for the Riemann tensor of a general nontwisting spacetime we immediately find that R,,,, and
R,prq vanish identically,

Ryprg =0, and Ryprg =0, (5.6)

while the remaining nontrivial components of the Riemann tensor are

1
Rrpru = _§gup,r7‘ 5 (57)
Rrure = —~guwrr + 0% Guingu; (5.8)
ruru — 2guu,7‘r 49 Gui,rJug,r s .
1 1 1,
Rrpuq — §gup,7‘q + Zgup,rguq,r - Zg Gui,r (2gj(p,q) - gpq,j) ) (59)
Rrupq = Gulp,q],r > (510)
1 T 1 ij
Rrwup = Gutuplr + 79" GuprGuie = 79" Guisr (2956up) = Gup3) (5.11)
Ripiq = °Riplq - (5.12)
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Rupkg = plk,al,u — ulk,ql,p

1

+7 [9ubr (90,0 = 29u.0)) = Guar (Gpkaw = 20u(o1))]

1
+79" [9ubr 291000 = 9903) = Guar 9ip1) = 9k

1,
+797 (295(.0) = Gua.s) (29i.k) = Gpk.i)

1 .
=797 (295000 = 9urs) (29ip.0) = Ipa) - (5.13)

1 1 ..
Rupuq = gu(p,q),u - 5 (gpq,uu + guu,pq) + Zg Gup,rGuq,r
1 [
— g Juur 20u0) = Ipa = 97 (29i(p.0) = Ipa.i)]

1 .
+Zgup,r [guu,q -g" (2gi(u,q) - guq,i)}

1 .
+Zguq,r [guu,p -g" (2gi(u,p) - gup,i)}

1,
+797 (29500) = Juns) (29i0.0) = Guas)

1 ..
_19” (29uju = Guu,j) (291'(107:1) - gpq,i) g (5.14)
where the superscript ° denotes again tensor quantities calculated using only the spatial metric

gij, and derivatives taken only with respect to the spatial coordinates x’. Simplification of the
expressions (4.29)—(4.34) for the Ricci tensor immediately gives R, = 0, and

1 1 i 1
Ry = _iguu,rr + 59 Gui,rr + Egpqg“pﬁrq
1 1 ij
+§9pqgupmguq,r - ngqg ! Guir (29jp.g — Gpa,j) (5.15)
1
Ry = —gguk,rr s (516)

1 . 1
Ry = _ig”guu,w - Qngu[u,i],T + §gpq (2971:07“4 ~ 9pquu — guu,pq)

—%g”’g”gup,rguq,r + %g”gpqgup,rguq,r
+%9pq9”9up,r(29q(u,i) — Guirg)

_igpqguu,r [29up,q — 9pqu — g (2ip,q — gpq,i)}
450" G [9una = 87 (2itaa) — 9ua)]
%gmgij (295(up) = 9up.7) (29i(u,0) = ug.)

1 ii
—3979" (20uju = Guuj) 29ip.q — Ipasi) (5.17)
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1 .

Ry = _§grrguk,r7‘ = Gu[u,k],r + gm(gu[i,k],r - gk[uz]r) + gpq(gp[k,q],u - gu[k,q],p)
1 T4 1 T4
T 99 JuksrJuir + ngqg [49“‘1»Tgk[p7i] + Guk,r (29i(p,q) — gpq-,i)}

1

+ngq [2gup,rguq,k - guk,r(2gup,q - gpq,u)]
1 ii

+7979" (29j0.0) = Gua.i) (29iw.0) = Ip.i)

1 i
—ngg J (2gj(u,k) - guk,j) (29ip,q - gpq.,i) , (5-18)

1 1
s Kl
Rpg = " Rpg = Gu(p,q),r — ggupmgmm + 59 Juk,r (29l(p,q) - gpq-,l) ) (5.19)

Finally, using (4.35) the scalar curvature of any Kundt spacetime is given by

- 3
R= "R + Guu,rr — 29”gui,w - 2gpqgup.,rq - igpqgup,rguq,r + gpqgklguk.,r(Zglp,q - gpq,z) . (520)

5.2 Applying the field equations

We have not specified the matter content of the spacetime so far. However, we may recall the
approach of [31] and simplify the r-dependence of the metric (5.2) using the Einstein field equations
(4.41). Notice that

e the explicit value of the Ricci tensor component R, = 0 together with g., = 0 gives a
restriction on the energy—momentum tensor, namely 7;., = 0,

e we can also directly integrate the Einstein’s equation connected with R, assuming T, = 0,
e assuming 7, = 0, the equation for R,., implies that T;., must be independent of r,

e using the trace of Einstein’s equations we can determine the r-dependence of gy.; if the
trace of energy-momentum tensor does not depend on r, the metric function g, could be
only quadratic in 7.

Following [31], we restrict ourselves to the vacuum spacetimes, possibly with a cosmological con-
stant A or spacetimes with the Maxwell field aligned with the null vector k (F,,k® = Qk,, where
Q is an arbitrary function). The energy—momentum tensor in such a case is

1
ATy = FuoF)© — ZgachdFCd , (5.21)

where F; in coordinates (7, u,z%) adapted to the field k = 9, has the components F,, = Q and
F,; = 0, and thus T,, = T,; = 0. The components F,; and F;; are constrained by source-free
Maxwell equations Fip.cj—o and F “Z;’b = 0. Their precise discussion can be found in [31], recall
only the main results:

e the components F,, = Q(u,z) and F;; = Fj;(u, z) are independent of r, and F,; is given by
Fui = —rQ,; — & where & (u,x) are arbitrary functions,

e the trace of energy—momentum tensor is T’ = —%FabFab, where F, F% = F;; F —2Q? =
F2? —20Q?, and it does also not depend on 7.
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Concerning these restrictions and employing Einstein’s field equations the line element of a general
Kundt spacetime can be written in the form

ds? = g;jda’da? + 2(e; + fir)daz'du — 2dudr + (ar? + br + ¢)du? | (5.22)

with the r-dependence fully determined. All the remaining functions, g;;, e;, fi, a, b and ¢, are
constrained by the specific Einstein—-Maxwell equations and only depend on the coordinates
and 2’. In particular, the function a(u,x) reads

I T i _ 2A P2 +2(D - 3)Q°
a(u,I)—E[ffz_"f,i_'—f(ln\/g)vl]+D_2_ D -2 ,

(5.23)

where f' = g f; and g = det g;;, see [31].

5.3 Geodesic deviation in general Kundt spacetime

The geometric restrictions leading to the line element (5.2) imply C,prq = 0, see (4.38) with
9pg,r = 0, and (4.63) then gives ¥oi; = 0. The Kundt spacetimes are thus necessarily of algebraic
type I or more special, see subsection 4.6.3.

Moreover, the assumption 7, = 0 and Einstein’s equations guarantee that g,; = e; + fir, i.e.,
additionally R,pr, = 0, Ry, = 0 which imply Cypry = 0 and Crprg = 0, see (4.37). Substituting
these vanishing components of the Weyl tensor into (4.63) and (4.64) we immediately find" that
Ui = 0 and ¥y = 0. Due to the vanishing Weyl tensor null components of boost weights 2
and 1, the line element (5.22) represents a Kundt spacetime which is (at least) of algebraic type II.

The equations (4.62) describing the geodesic deviation in general nontwisting spacetime, using
Upi; =0 and ¥yp; =0 in the case of the Kundt class (5.22), reduce to

A #[(&D_DZ(D e 2T AR %\I}g’j‘jz(‘j)
+ D87—T2 _T(1)(1)Z(1) T 29 (T(o)(o) N D2_Z”1) Z(l):| 7
Z0) #?D—l)z(i) Wy Z9) — %\Png(l) B %\IJMZ(J-)

+ D87_T2 _T<i><1>Z(1) + Tl 29 - (T(O)(o) + ;—Tl) Z“)] . (5.29)
where the trace of the energy—momentum electromagnetic tensor is T = —% F, F* with
F,Feb =2 — 202, and its frame components are

Too = 4i <F<0>“F<0>a * iF al ab) - Ton = %F(O)aF(i)a ,
d ™
T = i <F<1>“F<1>a N iF‘“’Fab) o Toe = %Fu)aF(i)a :
Ty = ﬁF(o)aF(l)a , Toy) = i (F(i)aF(j)a _ iéijFabFab) (5.25)

INotice that Wi = 0 implies ¥, ,; = 0 by the definition.
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The null interpretation frame (4.50) connected with a particular observer moving along timelike
geodesic (1) with velocity u = 70, + 10, + 2'0; is of the form
1
k = —67‘ P
V2i

1= (\/57;— L) O + V200, +V2i'0;
V21

1 B
m; = —(guqtt + ggrd®) m 0, +mj 0; (5.26)

where g, = eq + fqr. Using our previous results for the projections of the Weyl tensor on the
null frame (4.68)—(4.71) and the exact values

CT:DTq =0, Crpru =0, Crpkq =0, (5.27)

we obtain the only nonvanishing null frame components of the Weyl tensor, which are relevant in
equations (5.24), namely,

\I]2Tij = mi)mg Crpuq )
\IJQS - _Oruru 5
\/img’ [:Ek (Cruru Gkp — C’r‘kup - rukp) + (Oruru Gup — Oruup)] ,

Wsrs
\114”' = 2mz()lm;1) {xkxl (Orpuq 9kl — 2crluq 9kp + Cruru 9pkYiq — 2crulq 9kp + Ckplq)
+2uj7k (Crpuq Guk — Crkuq Gup + Cruru GupYqk — Cruup 9qk — Crukq Gup + Cupkq)

+’[1,2 (Crpuq Juu + Cruru GupYGuq — 2O'ru’u.p Guq + Cupuq) } . (528)

We may also substitute the explicit expressions for the Weyl tensor (4.37):

q R gpq }

1
Uopi; = mfmj |:Rrpuq “D_>3 (9pgRru — Rpq) — m

2
v = _Rruru Rru )
25 Tt D=2

. 1
\Ij3Tj = \/img){xk |:R7‘u7‘u 9kp — Rrkup - Rrukp - m (gkpRru + Rkp):|

. 1
+u |:Rruru Gup — Rruup - m (gupRru + Rup):| } )

\114"51 = 2m;(01m;1) {jjkj?l |:Rrpuq 9kl — 9pk (2eruq - glqum + 2Rrulq) + Rkplq - gi (gkeru + Rkl):|

D -2
+2u$k |:Rrpuq Guk — Rruup 9qk — gup(Rrkuq - Rruru 9qk + Rrukq) + Rupkq - %(gueru + Ruk):|
. 9
+u2 |:Rrpuq Guu — Juq (2Rruup - gupRruru) + Rupuq - D 111 2 (guuRru + Ruu):| } . (529)

where the components Rgp.q are explicitly given by (5.8)—(5.14), Rqp by (5.15)—(5.19) and the
scalar curvature R by (5.20).

In conclusion, concerning a general Kundt spacetime (5.22), the equations of geodesic deviation
(5.24) imply that the behaviour of a set of free test particles will be determined by presence of



5.4 Properties of pp-waves 69

the spacetime matter content (for example by aligned Maxwell field (5.25)), by isotropic influence
of cosmological constant A, and by pure gravitational effects consisting only of Newton-like tidal
deformation represented by Worj) and Wag, longitudinal accelerations with respect to +e(;) given
by Wsr;, and transverse gravitational wave propagating in +e(;) encoded in traceless symmetric
matrix Wyi;.

Notice finally that the Newton-type deformation does not directly depend on the velocity
of observer’s motion, see (5.29). On the other hand, longitudinal and radiative component are
affected by observer’s motion in the u direction by terms proportional to %, but also in all spatial
directions x?, i.e., by terms proportional to the velocities #°. The kinematic effects given by motion
in the transverse space and represented by terms proportional to #° can be transformed away by
transition to another observer moving with the same velocity in the opposite direction, for more
details see Chapter 3 and particular example in section 5.6.

5.4 Properties of pp-waves

It is natural to start the investigation of subclasses of Kundt’s spacetimes with an important exact
gravitational wave model, namely “plane fronted waves with parallel rays” which are also called
pp-waves. We only briefly recall the main results described in Chapter 3 and we will focus on
the properties of vacuum pp-waves which represent exact higher-dimensional type N solutions.
We show that these properties are in general different form those well known in classical four-
dimensional general relativity, and similar for all higher-dimensional radiative spacetimes.

This class of solutions was discovered by Brinkmann in the context of conformal mapping of
Einstein spaces, see [12]. Their geometric definition requests the existence of covariantly constant
null vector field k. The expressions (4.7) for optical scalars then implies that these solutions
have to necessary belong to the Kundt class. The explicit form of the covariant derivative in the
spacetime (5.22) with adapted coordinates (r,u,z?) is l;:a;b = %gab,r- If we require l;:a;b = 0, the
resulting line element must be independent of coordinate r. We thus get the line element

ds? = g;jda’da? + 2e;(u, v)dz’du — 2dudr + c(u, z)du? | (5.30)

where the functions e;(z, ) = gy; and ¢(x, u) = gy, have to satisfy the Einstein-Maxwell equations
(4.41). For construction of the W 4¢ scalars we use (5.7)—(5.14) together with property gap.» = 0,
and calculate the only nonvanishing components of Riemann tensor:

Ripig = SRk;qu ) (5.31)

Rupkq = Iplk,q),u — Gulk,qlp

1 .
+79"7 (29j(w.0) = Guas) (29ip.k) = Gp.i)

1.
797 (29 (uk) = Guk.j) (29i(p.0) — Ipasi) > (5.32)
1
Rupuq = gu(p,q),u - 5 (gpq,uu + guu,pq)

1
+797 (29500 = upi) (29i000) = Gua)

1,
=797 (29uiu = Guuj) (29i(p.q) = 9pasi) - (5.33)
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For the Ricci tensor we immediately get from (5.15)—(5.19)

1
Ryu = igpq (2gup,uq — 9pq,uu — gu%PQ)

2079 (205000 — 9up3) (20i00) — Guas)

—igpqgij (29uju — Guu.j) (29ip.g — pa,i) (5.34)
Rk = 9" (Gpik,q)u — Gulk.al.p)

%9”"9” (29)(u.0) — Gua.i) (29i(p.0) — Gph.i)

—%g”qgij (29;uk) = Guk,7) (29ip.q — Ipasi) - (5.35)
Ry = Ry (5.36)

and the Ricci scalar is given only by its spatial part, R = “R. The expressions (5.29) for the U 4.
scalars then take the simplified explicit form

SR 1 SRg
28 (D-1)(D-2)" 2TGd) = MM 5y [D—Z Pq (D—l)(D—Q)] ,
V2 : ,
Wsp = 5= szg (Ik stp +URup) ,
\Ij4ij = 2m;(01.m;1.) {j:kj;l (SRkplq _ Dg;i12 SRm)

iy g . g
20" (Rupkq - ﬁ&m) + 42 <Rupuq -5 f2Rw) ] . (5.37)

Notice that the Newton components of the gravitational field represented by Wog and Wypis
depend only on the curvature of transverse space, i.e., on the Ricci tensor & R,, and the scalar
SR calculated using the Riemannian metric gij on the transverse (D — 2)-dimensional space with
respect to coordinates z¥. In the case of the Ricci flat transverse space, these components vanish
and such pp-waves will be necessarily of algebraic type III or more special.

5.4.1 Vacuum pp-waves

Now, we restrict our attention to the vacuum pp-waves. Because of R,., = 0, the Einstein equation
Ry = —DQ—[}Q implies vanishing? cosmological constant A. Moreover, applying the remaining

vacuum field equations we find that the only nonvanishing component of Weyl tensor is
Wiy = 2m{ym) (&3 ° Rypig + 20" Ruprg + @ Rupuq) - (5.38)

Vacuum pp-waves are thus necessarily of algebraic type N, and represent exact transverse gravi-
tational waves propagating along the null direction k corresponding to the spatial direction +e(y).
The deformation of a set of free test particles is described only by

. . 1 .
Z(l) =0, Z(l) = —5\114«;]‘2(” . (539)

Obviously, there is no acceleration in the privileged spatial direction e(;). The set of scalars
Ui forms a symmetric and traceless matrix of dimension (D — 2) x (D — 2) which has in general

2In a case of an aligned Maxwell field, cosmological constant is necessarily positive, namely 2A = F24+2(D—3)Q2.
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N = %D(D — 3) independent components corresponding to polarization modes of a gravitational
wave. The freedom in a choice of the transverse part m; of the interpretation frame is given just
by spatial rotations (4.46), see Chapter 3,

m; = &/ m; , where O Oyl 05 = 0, (5.40)

which leave the null frame vectors unchanged, k = k and 1 = 1. These spatial rotations belong
to SO(D — 2) group containing N,or = 4 (D — 2)(D — 3) independent parameters representing its
generators. Therefore, the number of physical degrees of freedom is

N-—Net=D-3, (5.41)

which corresponds to the number of independent eigenvalues of the symmetric and traceless matrix
W,i5, and fully characterize the deformation of a test congruence. With respect to the signs of the
eigenvalues we can distinguish

(D; 2) = %(D —2)(D—3), (5.42)

physically different cases. Sum of all the eigenvalues must be vanishing (traceless property of
gravitational waves), i.e., there is at least one positive and one negative eigenvalue in case of a
nontrivial ¥4i;. The relation (5.42) gives the number of distinct possibilities how to divide the
remaining eigenvalues into three groups with positive, null and negative sign, respectively. Such
a discussion is primarily motivated by a particular example of pp-waves, but holds also for any
other exact gravitational waves represented by traceless symmetric matrix.

Finally, we would like to illustrate these results in a particular case which can be completely
integrated. We may choose the simplest possibility, discussed also in Chapter 3, which corresponds
to plane fronted waves propagating in Minkowski spacetime, i.e., the spatial metric will be flat,
gij = 0;5. We additionally assume that the nondiagonal metric functions g,; = e; are vanishing
or can be globally removed by a suitable coordinate transformation (gyratons are absent). The
general line element (5.30) then becomes

ds* = §;; dz’dz? — 2dudr + c(u, x)du? . (5.43)

Our interpretation frame (5.26) will be of the form

1 1 ; @t
k=—0,, 1= (V27 — —) Or 4+ V2udy, + V240 | m; = —0,+0; . 5.44
o < V21 u (5.44)
The only nontrivial components of Riemann tensor in spacetime (5.43) are Rypuq = —3c,i; which

imply that the scalars (5.38) simplify to
Wy = —icj . (5.45)

The remaining Einstein equation, namely R,, = 6“c;; = 0, guarantees that the amplitude matrix
W,i; is traceless. From the equation of geodesics (4.73) it follows that i vanishes identically and
the velocity 4 is necessarily constant along the geodesic. Moreover, using the conditions for parallel
transport (4.75) we find that the interpretation frame is parallelly transported and the relative
accelerations in (5.39) can be thus replaced by ordinary time derivatives. Deformation of the test
congruence of geodesics will be given by

d?zW a2z® 1

_ — 2 j
=0 g = pWen?” (5.46)
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where we only have to specify the function c(u, x) satisfying 6“c ;; = 0. We will consider a simple
quadratic form constructed only of spatial coordinates z°, i.e.,

D1 D—1
c= Z Az, where Z A, =0, (5.47)
i=2 1=2

A, are constants. The amplitudes of corresponding gravitational waves are thus constants W i; =
—24%A;0;; (no summation), and the waves of this type are thus homogeneous. Explicit solution
of equations of geodesic deviation (5.46) will take the form

ZW0(r) = Ar+ B, Z9(r) = ARe {e"VAT} 4 BiRe {e HIVATY | (5.48)

where A; and B; are constants of integration. The most illustrative case to investigate is the
deformation of a sphere formed by static test particles. Such initially static configuration, Z( (r=
0) = 0, corresponds to the choice A; =0 and A; = B; = 3Z'(r = 0) = 1 Z}. The equation (5.48)
can be rewritten as

Z9 (1) = Zi cosh (|u|/AiT) for A; >0,
ZW(r) =7}, and ZWD(7) = Zicos (lu|\/—Air)  for A <0,
z9(r) = Z§ for A; =0, (5.49)

We immediately observe that the particles in spatial direction e(;) with positive A; recede, in
directions with negative A; are focused, and particles in directions where A; vanish are not affected
by the wave.

As an example, we will analyze a deformation of a three-dimensional test sphere in the trans-
verse space induced by a five-dimensional plane fronted wave. There may occur three nontrivial
physically different situations, see (5.42),

e two eigenvalues are positive and one is negative: Wy22 > Wyss > 0 > Wyaa, see Figure 5.1,
e one eigenvalue is positive and two are negative: Wy22 > 0 > Wyss > Wyaa, see Figure 5.2,

e one eigenvalue is positive, one is vanishing and one is negative: Wy22 > Wyss = 0 > W44, see
Figure 5.3.

Notice that there exists only one possibility in the classical four-dimensional general relativity,
where necessarily Wy2: = —Wyss. Its visualization is similar to the Figure 5.3, where e(3) will
become the direction of propagation of the wave.

If we restrict our measurements of gravitational waves in generally D-dimensional universe
only into four-dimensional “real” subspace spanned by the vectors (e, e(1), €(2),€(s)), in this
subspace we should observe the violation of traceless property of such waves?, namely ¥ 22 =
—Wyas — Zf:ll W,ii. In the extreme cases when Wy22 > 0 and Wyss > 0 we will observe a
behaviour which is not typical for gravitational waves in standard general relativity.

3Except very special cases when ¥, 20 = —W¥,33 and Zi’;il Wi = 0.
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€4

€@

Figure 5.1: Deformation of a sphere of test particles in the case when W22 > Wyss > 0 > W aa.
These pictures display planes (ez,e3), (e2,e4), (e3,€4), and a global view.
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€@

Figure 5.2: Deformation of a sphere of test particles in the case when Wy22 > 0 > Wyas > W aa.
These pictures display planes (es, eq), (es4,€2), (€4, €3), and a global view.
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€@

€@ €@

Figure 5.3: Deformation of a sphere of test particles in the case when Wy22 > Wyss = 0 > Wyaa.
These pictures display planes (ez,e3), (e2,e4), (es,e3), and a global view.

5.5 VSI spacetimes

In the works [32, 33], spacetimes with vanishing scalar invariants of all orders were presented.
These solutions of Einstein’s equations belong to general Kundt class (5.22), in the case when the
transverse metric g;; is flat, i.e., g;j = d;;. The resulting line element is given by

ds? = §;;da'da? + 2(e; + fyr)da'du — 2dudr + (ar? + br + ¢)du? . (5.50)

Its obvious that pp-waves on a flat Minkowski background, discussed in the previous section, form
a subclass of VSI spacetimes. The components of the Weyl tensor are almost of the same form as
in the general case (5.29), only with Ry, vanishing in the scalars ¥,i;, namely,

1 Ry
Wopis = mym] [Rrpuq ) (IpgBru — Rypq) — W(I)Dq—ﬂ} ’

‘1125' = R'r‘u'r‘u + R'r‘u +

D 2 D-1)D-2)°

k
\IISTj = {x |:RTuTu Gkp — 'r'kup R'r‘ukp

1
D — 9 (gkpR'r'u + Rkp):|

1
+1 |:Rru'r'u Gup — Tuup D 2 (gupRru + Rup):| } )

\114@'1 = Qm(l ){xkxl |:Rrpuq 9kl — 9pk (2eruq - glquuru + 2Rrulq) - (gkeru + Rkl):|

Ypq
D -2

+2uxk |:Rrpuq Guk — Rruup 9qk — gup(Rrkuq - quRruru + Rrukq) + Rupkq - m(gueru + Ruk):|

. 9
+U/2 |:R’r‘puq guu - guq (2RTuup - gupRTuTu) + Rupuq - D Iil 2 (guuRru + Ruu):| } ) (551)
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where, using the flatness condition g;; = d;; and (5.8)—(5.14), the Riemann tensor becomes

1 .
Rruru:_ ”n Ziu
a+4ff

1 1
RT:Duq = gfp,q + prfq s
Rrupg = fip,q) »
1 1 ., 1.,
Rruup = 5(2ra,p + b,p - fp,u) + Zg fifp - §f (e[i,p] + Tf[i,p]) ’

1
Rupka = (elg.0) T fian)w + 5 [falewm +rfom) = filewa +rfwa)]

1
Rupug = (e(p,q) + T f(ps))u — 5(0”2 +br +¢) pq
1. 1
+19 Iofa— 5(2(” +b)(ep,q) T 7 (pa))
1 i
+ 8 [(ar® +br+ ). = 207 (efiq) + 7 fii.q)]

1 .
+fa [(ar® + b7+ ) p = 20" (eli) + 7 fiinl)]
+0% (epjp) + 7 f15.01) (€lig) + 7)) -

Nontrivial components of the Ricci tensor given by (5.15)—-(5.19) are

1 1
Ry = —a+ §5qup7q + gfpfp y

. 1
Ryw=—-9"a—g"2ra;+b;— fiu)+ 55’)‘1 [2(ep +7fp)ug — (ar2 + br + c)ypq}

1 T T 1 rr
_59 Pg qufq+ 59 fpfp

+g" (e, + 1 fpa) — %5’7‘1(%? +b)(epq +7fpq)
+%fp [(ar® +br +¢) p — 29" (efi ) + 7 f1i )]
+0798% (ej.p) + i) (e + 7 fia))
Ryx = —%(27“% + bk = fru) + %gm(fi,k = 2fki) — 0" (e + 7 g
30" i+ 5 Glean +1hak) = Filena +7hpa)
Rpq = —f(p,q) - %fpfq )

and from (5.20) for the Ricci scalar it follows that

R:2a—25mfp,q—gfpfp.

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

Notice that from (5.51) and the explicit relations for the components Ry yru, Rrpug, Bru, Rpg and
the scalar R it immediately follows that Wori; (and necessary also Wag) depend only on the metric
functions a and f; which are thus fully responsible for Newton-like deformations of a set of test

particles in the VSI spacetimes.
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In particular, in a vacuum case with A = 0, these Newton-like components are explicitly

1

1 1 .
Wopij = mfm;] 5 <fp7q + Efpfq> s Yos =a — Zfzfl , (563)

where, using (5.23), it immediately follows that Wog = Worrk.

5.6 The simplest gyratons

Considering a = b = f; = 0 in the line element (5.50) of the VSI spacetimes we obtain the simplest
example of solution belonging to another important subclass of Kundt family which are physically
interpreted as gyratons. These solutions represent a field of localized spinning null fluid and the
simplest metric of this type is a particular pp-wave (5.30) with a flat transverse part,

ds? = §;;da'da? + 2e;dx’du — 2dudr + cdu? . (5.64)

However, this solution is not in general vacuum, and presence of the gyratonic matter implies that
the functions e; can not be removed globally, see [31] for details. Using (5.37) with g;; = d;;, the
only nonvanishing Weyl scalars become

\IJSTj = _\/im:;acruup »
Wyis = 2mf;m (20" (Cupkq — Cruup gak) + @ (Cupug = 2Cruup 9uq)] (5.65)

or equivalently by substituting for the Weyl tensor (4.37):

\IlgTj = —mmfuRup 5
Wi = 2mPm? | 20" ( Ruprg — 29 Rup ) + @2 ( Rupug — 222 Ry (5.66)
("""9) Prq D—2 puq D—29 )

where the explicit expressions for all nontrivial components of the Riemann and Ricci tensors are

1

Rupkg = 5( g0k ~ €k,pg)

Rupug = % (€pug + €q.up — Cpg) + 5ije[i,p]e[j7q] J (5.67)
and

Ry = —%&ch_’pq - 5pq5klep_,le[k7q] + 0Py uq

Rup = ek - (5.68)

We immediately observe that the longitudinal term W37, depends only on the functions e; corre-
sponding to the gyratonic source, which thus necessary induce the longitudinal deformations of
the test congruence. Due to the flatness of the transverse space, and a = f; = 0, there are no
components of boost weight zero, and this solution is thus in general of algebraic type III.

In a vacuum case, i.e., outside the gyratonic source, only the transverse components W,i; are
nonvanishing, namely,

.. . 1
Wyiy = 2mfimg) 2ui*efy pyp + U <e(p7q)u ~ 5¢ma + 6kle[k_,p]e[l_,q]>] . (5.69)
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The pure effects of the gravitational field can be explicitly seen using a suitable Lorentz trans-
formations. At the end of Section 5.3 we mentioned that those terms proportional to the spatial
velocities #' in the projections of the Weyl tensor represents only kinematic effects, and can be
removed by a transition to another observer (as described in Chapter 3). We demonstrate such
a transition in the simple case of the spacetime (5.64). In particular, the D-velocity of a new
observer is

(5.70)

where v; are components of the spatial velocity of a new observer with respect to the old one.
The appropriate changes of (k,1, m;) frame correspond to the combination of a boost in the k —1
plane (4.45), and a null rotation with k fixed (4.44), where the parameters are

1-— ZiD__l vZ ,
B:l—*l, Li=——t (5.71)
- 1= e

Using the frame (12,1, m;) obtained by these Lorentz transformations, the relevant Weyl scalars
(of boost weights —1 and —2) take the form

BUsri = Uypi
B*Wyi; = Uyis +2V2 (Ugp6 Xy — Ugunn XF) (5.72)
where X; = BL;. Due to g;; = 6;5, we choose the spatial part of the vectors m; in the interpre-

tation frame (5.26) simply as m? = 67. Using (5.65) and (4.64) for Wi« the coefficients in (5.72)
thus become

Usps = —V2u Cro aiin = V2u Cuiji
Uiy = 260,67 208" (Cuprg — Cruupdar) + @ (Cupug — 2Cruup Guq)] - (5.73)
If we require the terms proportional to spatial velocities &% in W i, given by (5.72) to be vanishing,
we have to take X’ = —i. The Weyl components measured by such a new observer than become
B V20 . 26769 u?
\Ingj = —TOruuj 5 \1141']' = (_87-]2) (O’u.puq — 2Oruupguq) 5 (574)

where B is given by (5.71). If the new observer does not change its motion in the direction of

propagation of the wave e(), i.e., v1 = 0, the parameter B becomes B = /1 — Zii;l v?, and
from (5.74) we immediately see that the measured amplitude of the wave grows with observer’s

motion in the transverse space.






CHAPTER

6

ROBINSON-TRAUTMAN SPACETIMES

In this chapter we will analyze the properties of nontwisting, shearfree, and expanding space-
times which form the so-called Robinson—Trautman class. These solutions are well known in
four dimensions where they represent an important family of exact radiative spacetimes (see e.g.
the textbooks [4, 5] for their mathematical description, physical interpretations and list of ref-
erences). Their higher-dimensional generalizations were investigated by Podolsky, Ortaggio and
Zofka in the works [34, 35], where it was surprisingly shown that the requirements imposed by
Einstein’s field equations are much more restrictive than in four dimensions. In particular, the
higher-dimensional Robinson—Trautman family (vacuum or with an aligned electromagnetic field)
is necessary of algebraic type D, i.e., it is not so rich as in four dimensions where it can be of
type II or more special, see [4].

Following the discussion of relative motion of free test particles presented in the previous
chapters, here we would like to emphasize the fundamental difference between the nontwisting,
shearfree, and expanding Robinson-Trautman solutions in four and in any higher number of
dimensions.

6.1 Geometry of the Robinson—Trautman spacetimes

In this subsection we briefly recall the main results of [34, 35]. We employ geometrical restrictions
and field equations, and introduce the Robinson—Trautman line element in D > 4.

The general construction presented in Chapter 4 guarantees that the spacetimes described by
metric (4.1) are nontwisting (A = 0), and the remaining optical scalars © (expansion) and o
(shear) can be written as (4.12), namely,

1 ..
0= —(lnp),, o= Z’Ylk’yjl’%j,r'ym,r . (6.1)

The existence of a shearfree null congruence of geodesics leads to the condition v;;, = 0, and the
spatial part of the metric thus necessary becomes

gij(r,u,:c) :p72(7’,u,:c) ’Y’Lj(uv'r) ) (62)

where 7;; is unimodular. However, this decomposition does not significantly simplify the relations
for the Riemann tensor, Ricci tensor and Ricci scalar (4.19)—(4.35). Therefore, we first employ
the Einstein field equations (4.41) with specific energy—momentum tensor, in particular, with an



80 6 ROBINSON-TRAUTMAN SPACETIMES

aligned Maxwell field Fabl;:b =N l;:a, where N is an arbitrary function! and k= O,. The energy—
momentum tensor Tj;, will thus be of the form (5.21), and in the adapted coordinates (r,u, x?)
its components T}, and T, vanish. Using F,., = N and F,, = 0, then the trace of T}, becomes
T = —% (FijFij — 2N 2). The Einstein—Maxwell field equations (4.41) then simply determine
the r-dependence of the metric (4.1) in the Robinson-Trautman case:

e Due to the vanishing component T, and the factorization (6.2), the equation containing
R, given by (4.29), will be R, = 0, namely,

p p ?
p p

and the function p becomes p = r~1 P(u,z). The spatial metric g;; can thus be written as

R, = (D -2) =—-(D-2)(0,+0%) =0, (6.3)

gij = r’hi;(u, 2) | where hij = P2 . (6.4)

e The equation R, = 0, with R, given by (4.31), written in the form R, = —%hklr2_D (ngT,f) e

implies that the components ¢"' have to be powers of 7, namely,
gt =e(u,x) + r' 7P f(u, z) . (6.5)

e The source-free Maxwell equations Fap,—o and F ai’b = 0 specify restrictions on the electro-
magnetic field, see [35] for details, and give the r-dependence of the Maxwell tensor Fp,

Qi
D -3

F;j = Fij(u,x) , Fry =N =7"PQ(u,z) , F,=r>"P —&i(u,x), (6.6)
where &;(u,r) are arbitrary functions and the invariant F,, F% thus becomes F,,F% =
r=4F? — p22=D)2Q? with F? defined as F2 = Fy, Fjh' h*.

e The Einstein equations containing R;; determine the remaining r-dependence of the Robinson—
Trautman metric. The detailed discussion can also be found in the works [34, 35]. Here, we
only recall that the metric function ¢™" is power of the coordinate r, functions f? have to
vanish identically, e* can be (at least locally) set to zero, e! = 0, and the spatial part of the
metric h;; may depend on the coordinate u only via conformal factor P~2,

Yij ()

(6.7)

Applying these results on the metric (4.1), the line element of the Robinson—Trautman spacetimes
with aligned Maxwell field will be of the simple form

ds? = r?h;j(u, x)dz’dz? — 2dudr — ¢"" (r, u, x)du? | (6.8)
where g, = —g*“* and gy = ¢"% = 0. The component ¢g'" is, in general, a function of all
coordinates, where its r-dependence is the combination of powers, and can be written as

o R 2(Invh) 4, 2A 9 u
g = + r— re —
(D—2)(D-3) D -2 (D-2)(D-1) rpD-=3
20Q0? F?
+ “ (6.9)

(D —2)(D —3)r2(P=3) (D —2)(D—5)r2 "’

n the context of Robinson-Trautman spacetimes, we follow the notation of [35] and we use A instead of Q
which is have reserved for the r-independent part of N.
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where R represents a scalar curvature calculated with respect to spatial metric h;;, parameter
h = det h;; so that Vh = P?~P A is a cosmological constant, x is an arbitrary function of u
and z, and @ and F characterize the electromagnetic field. Other restrictions on these functions
following from the Einstein—-Maxwell equations depend on the number of dimensions D, namely,

e In any higher dimension D > 4 we get R = R(u), p = p(u), and Q = Q(u).

e In even dimensions (except D # 4 and D # 6) the function F becomes F' = F(u) and the
factor P can be written as P(u,z) = P(x)U(u). Using the freedom in a choice of coordinates
it can be (without loss of generality) set

P =P(z), hij = hij(z) , R = const. ,
= const. , ) = const. , F? = const. . (6.10)

e In odd dimensions the previous conditions (6.10) hold, and additionally F? = 0.

e In D = 6 it is necessary to distinguish the case @ # 0, in which P(u,z) can be factorized
and it is possible to set h;; = h;j(z), Q = const., and F? = F?(x), and the alternative case
@ = 0, where P does not take a factorized form and, in general, P = P(u, ), hi; = h;j(u, ),
and F? = F?(u,x).

e In D = 4 the spatial part of metric can always be written in a conformally flat form h;; =
P~%(u,)d;; and the remaining functions contained in ¢"" depend on u and z* coordinates.

6.2 Geodesic deviation in the Robinson—Trautman space-
times of general dimension D

Following the general description of relative motion of free test particles discussed in Chapter 3,
we now construct the frame components of the Weyl tensor (4.66)—(4.71) and then substitute them
into the equation of geodesic deviation (4.62). We will consider a fully general form (6.8) of the
(electro)vacuum Robinson-Trautamn metric. Specific conditions given by the particular number
of dimensions will be employed later, see Section 6.3 and 6.4.

6.2.1 Riemann and Weyl tensors

For further discussion of possible observer’s motion it is useful to explicitly express the Christoffel
symbols. Using (4.15)—(4.17),

=0, I

Tuw

. =0, I”.=0, It

Tj rr 207

r“ =0, r“, =0, r“ =0, re. =0, (6.11)

Tuw T ur
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and
1 1

I‘T = — 3 9uu,r I ].—‘T = — — rr T . ,
ru 5 Juu, w 5 (9" Guur + Guu,u)
" 1 T 1 rr

T = T Juwi ik = 5“‘29 hik +hikw)
uw _ 1 N

Fuu = gguuﬂ“ 5 Fij = ’I”hl'j R
i —1gi i L 54
vk =T 6k ! Fuu = _ir h Guu,j >
i Ly i1
uk — ih hjk,u ) kl = §h (2hj(k,l) — hkl,j) . (612)

The general relations (4.19)—-(4.28) for the Riemann tensor of nontwisting spacetimes in the case
of (electro)vacuum Robinson-Trautman metric (6.8) give

Rrprq =0 ; Rrpru =0 s Rrpkq =0 ’ Rrupq =0 ’ (613)

and
1

Rruru - guu,rr I
2

1
Rrpuq = _§T (hpqguu,r + hp%u) ’
1

Rruup =3 (guu,rp - rilguu,p) 5
2

Rppiq = Tszqu + gwr2 (highpr — hiihypg)

1
+§’f'3 (hklhpq,u + hpqhkl,u - hkthl,u - hplhkq,u) )

1
Rupkq = T2hp[k,q],u + 57‘ (guu,thk - guu,khpq)

1 -
+Z'f‘2hz] [hquu (2h"(pvk) - hpk,i) - h]k,u (2hi(p,q) - hpq,i):l ’

1 1 r
Rupuq — _5 (r2hpq,uu + guu,pq) - §rhpq (g guu,r + guu,u)

1 1.
+ZT2guuyrhm7u +hv (72 jpuhigu + Guug (2hip.q) — Ppa,i)] (6.14)

where Rypiq is the Riemann tensor calculated with respect to the metric h;; and its coordinates x.
From (4.29)—(4.34) for the Ricci tensor we immediately obtain R, = 0, R,, = 0, and

1 1
Ry = _iguu,rr - 57'—1 [hpthQ,u + (D - 2)guu,r] ’
1 T 1 pq —2 ! (g
Ryy = _59 Guu,rr — §h (hpq,uu +r guu,PQ) - §(D - 2)7‘ (g Guu,r + guu,u)

1 1 ii _
+thqguu7rhpq,u + thqh ! [hjp,uhiq,u +r 29uu7j (2hip,q — hpq,i)] )

1 1 _
Ruk = _§guu,rk + hpth[k,q],u - 57‘ 1(D - 4)guu,k

1 -
+thqh” [hjq,u (2hi(p,k) - hpk,i) - hjk,u (2hip,q - hpq,i)] 5

1
Rpq = Rpq = (D = 3)g" hpg + rhpgGur + 57 [(D = 2)hpgu + B hpghiau] (6.15)
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and the Ricci scalar given by (4.35) becomes

R = T‘_2R + Guu,rr + 2(D - 2)r_1guu,r
—r72g"(D = 2)(D —3) +r (D — 1) hPhpg - (6.16)
Notice that using the factorization (6.7) of spatial metric h;; and the definition gy, (r, u,z) =
—2H (r,u,x), together with g,, = —g"", we can rewrite these quantities into the standard form

usually used in four dimensions, see e.g. [5], and also in the works [34, 35]. In particular, the
Riemann tensor becomes

Rruru = H,T"I‘ )
Ripug = 7 hpg [Hr + (I P) 4]
Rruup - _H,rp + TﬁlH,;D )
Riplg = Tszplq — 4T2hk[lhq]p [H + T'(ln P),u] s
Ruprq = 2r [H[vkhtﬂp + 7 hylg(In P)JC]U] 3
1
Rupuqg = H pq — gHykhkl@hl(p,q) - hpqyl)
7 hyg { Ho RH 470 P) o] + Ho = [0 P)u]* +r(n P}, (6.17)
the nonvanishing components of the Ricci tensor are given by
Row=H,;+r ' (D-2)[H,+(nP),],
Ruw = 2HH 1 + 17207 Ry
Ry = H,rk — TﬁlHﬁk + TﬁthqRupkq ,
Rpg = Rpq — 2rhpg [Hy + (InP) ] — 2(D — 3)hpg [H +r(In P) 4] , (6.18)
and the scalar curvature R is simply
R=r"2{R—-2(D-2)(D—-3)[H+r(InP),]}—2H . —4r (D —2)[H, + (InP),] . (6.19)

Now we employ the general expressions (4.37) for the components of the Weyl tensor and we im-
mediately find that Crprq, Crprg, Crprus Crupg vanish identically while the remaining components
are given by

2R,y R
Cruru = Rruru - - )
D-2 (D-1)D-2)
R,
Cruup - Rruup + D _P2 5
1 Rg
Oru:Rru_— Rru_R _—pq,
puq puq D_2(9pq pa) (D-1)(D-2)
1 R
Cpig = Ripiq — D_2 (g1 Rpq — grqRpt — gpiBiq + gpgRit) + [ENED)] (9k1Gpq — GraGpt)
1
Cupjk = Rupkq — D_29 (gquuk - gkauq) )
1 R guugpq
puq pugq D—2(g pa T 9pq )+(D—1)(D—2) ( )

Finally, combining these relations (6.20) for the Weyl tensor with explicit formulae for Raped, Rap
and R, see (6.14)—(6.16) or equivalently (6.17)—(6.19), we obtain the following useful identities
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which express the Weyl tensor components Cypug, Crpig and Cypug as specific combinations of
the component Cp., quantities characterizing the transverse-space metric h;;, and the metric
function H,

2h
Crpuq = _; _;0112 Cruru )
2T2hk[lhq]p (
(D—2)(D-3)

Ckplq = T2Rkplq - 2T2Cru7‘u + R) )

1 kl
Oupuq = ZHCTpuq + Hpq — §H7kh (th(znq) - hpq-,l)

h ij 1 ki
ST [H,ij_§H,kh (zhl(i,j)_hij,l)} | (6.21)

The component C,.,;, can be written as
r2R

D -3 1

Cruru i =— — S Yuu,rr -1 uwu,r -2 uu TN AN~ 622
D—l( gJuurr £ Guur =T 74 ) (D—1)(D—2) (6:22)
and using the explicit relation (6.9) for the metric function gy, it becomes
2(2D — 5)Q? 6(D — 3)F?
Crura = (D — 2)(D — 3yt 22D —5)Q (D=3) (6.23)

2rD=1 " (D —1)r2(0-2) (D —1)(D —2)(D —5)rt °

It is also useful to define the difference wypy = Cupug — 2H Crpug, which employing the identities
(6.21), takes the form

1
Wpg = H,pq — §H7khkl (2hl(p,q) - hp‘]xl)

h 1] 1 kl
— i ht | Hoyy = 5 H b (2 = hijp) | (6.24)

where we can substitute for the function H from (6.9) and use a shorthand T'%, = 0% (2hy, ) — hpg,t)-
For the first part we immediately get

R pq — RJCFISq n (In \/E),um —(In \/E),ukl—‘];q . Hopg — Mkl—‘gq
2(D - 2)(D -3) D -2 2rD-3
(Q2),pq - 2QQ,]€F§(] _ (F2),pq - 2FFJ€PI;§q
(D —2)(D — 3)r2(D=3) 2(D —2)(D —5)r2 ’

Hpg— H Ty, =

+

(6.25)
while the second part subtracts its trace and thus guarantees that w,, is traceless.

6.2.2 Equation of geodesic deviation

The interpretation frame (4.50) connected with a particular timelike observer moving in the non-
twisting, shearfree and expanding Robinson—Trautman spacetime (6.8) becomes

1 1
k= Lo, a=(vi- L
V2 < " VR

where gy, = r?hy,. Employing the general form of the projections of the Weyl tensor (4.66)—(4.71)
and the fact that the components Cyprq, Crprgs Crprus Crupg are in this case vanishing, the terms

) kP )
>ar+\/§uau+\/§j;zai, m; = %aﬁmgaj , (6.26)
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important for the equation of geodesic deviation (4.62) will be given by

\1125' = _Cruru )

P
Uoris = m;m;Crpug

\I]3TJ' = \/§m§ [xk (gkpcruru - Crkup) — U Cruup] )

\114”' = 2m1(71m;1) {wkxl [glerpuq — 9pk (2Crluq - gqururu) + Ckplq]

+2i"%4 (Cupkg — rqCruup) + s (9uuCrpug + Cupug) } . (6.27)
We can rewrite these scalars by substituting the explicit decomposition (6.20), namely,
2 R
v = —Rruru <R RN R N
28 D 2t DD —2)

1
oy = mym] [Rrpuq “D_2 (IpgBru — Rpq) — (D—-1)(D-2)

. 1 . Ry
\IJ3TJ' = \/img) {Ik |:gkpRruru - Rrkup - m (gkpRru + Rkp):| —u (Rruup + D _p2) } )

\Ij4ij = 2m;€zmg) {‘rbk(bl |:gkerpuq — 9kp (2eruq - glquuru) + Rkplq - % (gkeru + Rkl):|

+2xku (Rupkq - gquruup - Dglil 2Ruk>

+’[1’2 |:guuRrpuq + Rupuq - Dgpq 2 (guuRru + Ruu):| } . (628)
Using the relations (4.64) for the remaining Weyl components we find that W, is vanishing and
thus the Robinson—Trautman class of spacetimes described by the metric (6.8) is (at least) of
algebraic type II in any dimension D.

The equation of geodesic deviation (4.62) will thus contain the same Weyl scalars ¥ 4o as in
the Kundt spacetime (5.24), i.e.,

. 24 1 |
A R | D NUE 94 C DR (S 4¢))
(D-2)(D-1) e
8t [ 1 - 2T 1
53 |[TowZ + Ty 2? - (T<o><o> + 5 1) 2 )} :
Ry 2A ) . 1 1 ;
JAQ. mz(l) = Uyriin Z9) — ﬁqjng(l) _ E\Ij4ijZ(J)
8t [ . 2T i
+ 35— |Tom 2 + Tuy 29 - (T<o><o> +57 1) Z! ’] ., (6:29)

where the Weyl scalars are now given by (6.28). The components of the energy—momentum tensor
describing aligned electromagnetic field are also given by (5.25), together with specific restrictions
following from the geometry of Robinson—Trautman spacetime, see [35]. Relative motion in the
geodesic congruence caused by a free gravitational field contained in the Weyl tensor thus again
consists of the Newton-like tidal deformation encoded in the terms Wog and Worii, longitudinal
effects given by the set of scalars ¥3p; and transverse gravitation waves described by the symmetric
and traceless matrix W ;. However, these specific behaviour now significantly depends on the
number of dimensions D, see sections 6.3 and 6.4.
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Finally, notice that the terms containing the spatial velocities 4 in (6.27) and (6.28) can
be removed by a suitable transition to another observer with its D-velocity (5.70) represented
by specific Lorentz transformation, see Chapter 3 or an explicit example in Subsection 5.6. In
particular, we substitute the general form of the Weyl scalars (6.27) and the remaining scalars
U 4. given by (4.64), namely,

\Ifgij =0 y \Ifgijkz = CmpnqmznmfmZm? y
Ui = /24P [Crmun Gpgm (m?m}cn - m}”mZ) + Cpmqnmgnm?-mg]
y N .
V2 Cyprgmt mimi (6.30)

into the relations describing the combination of the Lorentz boost in k — 1 plane and null rotation
with k fixed in the case of (electro)vacuum Robinson-Trautman spacetimes,
Uy = Tasg Uori = Uoris
BUsri = Uari — V2 (Uorn X¥ + Uog X;)
B2V, = Uyis +2V2 (Wypa Xj) — Uaepe XF)
+2W it XX — AWy Xy X P+ 2Wg 60 [ X2 — 2W0s X, X (6.31)
with
Xi = .BLZ = —gpq:bpmg N (632)
where the parameters B and L, are given by (5.71). The Weyl scalars measured by the new
observer with D-velocity given by (5.70) in the equation of geodesic deviation (6.29) then simply
become
@25' = _Cruru ;
Woris = mfmgcrpuq )
B\ilb’Tj = _\/imfu Cruup )

B*Wyii = 2m{;m%i® (uuCrpug + Cupuq) - (6.33)

For investigation of pure gravitational effects, which are not affected by the transverse motion
of the observer, we can also try to choose a particular class of ‘radial’ geodesic observers which
are “static” in the spatial directions, i.e., their velocities 2" are vanishing.

6.3 Geodesic deviation in higher dimensions

In this section we will investigate the relative motion of test particles in the higher-dimensional
(electro)vacuum Robinson—Trautman class. In particular, we restrict our attention only on the
typical cases D > 4 and D # 6.2 These solutions are characterized by the metric function g"”
independent on the spatial coordinates x* and, on the other hand, the factor P becomes only the
function of 2. These restrictions immediately simplify the relations (6.17)~(6.19) for the Riemann
and Ricci tensor and the Ricci scalar. For the nonvanishing components we get

Rywru = Hyyp

Rypug = 7 hpgH

Riptg = 1*Riplq = 4T2hk[lhq]pH )

Rupug = mhpg (2HH  + H) (6.34)

2Except some very special situations, the case D = 6 is also included in this discussion, see [35] for details.
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Rru - H,Tr +T71(D - 2)Hﬂ” ’
Ruu - 2HH,TT + Tﬁzhquu;Duq )
Rpg = Rpg — 2rhpgH . — 2(D — 3)hy H | (6.35)
and
R=7r"2[R—-2(D—2)(D~3)H] —2H . —4r (D —2)H,. . (6.36)

Employing these results, the identities (6.21) and the relations (6.20), for the Weyl tensor we find
that the only only nonvanishing components are

r’h
Crpuq - _D _pt; Oruru )
B 2(2D — 5)Q? 6(D — 3)F?
Crurw = ~(D=2)(D ~ 3)2 D=1 " (D —1)r2D-2) (D —1)(D —2)(D —5)r* "’
2r2hyh
Ckplq = T2Rkplq - % (2’/‘2Cruru + R) s
Cupug = 2HC)puq - (6.37)

The equations of geodesic deviation still retains of the form (6.29) where the Weyl scalars now
become

Vos = =Cruru Worij = —D(Sg 2Cruru ;
Wyrs = ﬁmf;blhmﬁg — ;cmu :
Wy = 2r? {Rkplq - —(D2?Z§Elg(ﬂ—p 3)} i* it mPm?
+ 27“23 : ;)C’mm |:T hpkhigd xlmfmg- - %5”— . (6.38)

We immediately see that the general observer with D-velocity u = 79, 4+ 00, + ©'0; will measure
the Newton-like tidal deformations induced by Wog and Woris, the longitudinal deformations given
by Wsr;, and also the transverse behaviour described by the matrix Wyi;.

However, the effects represented by the terms Wsr; and Wy are only kinematic, i.e., caused
by the motion of the observer itself. This follows directly from the transformed quantmes (6.33),
where the scalars \I/3T] and \114” vanish. We can also employ the explicit choice of observer’s
geodesic described by the equations (4.72), namely,

d?r dr du du du du da? da’ da®
2y, ——+ 1, —— + 20 r,——=0

e g T wgrar T War dr TR ar dr ’

dr? “dr dr *dr dr

d2a? ~dr dad  da? da®

R ) CH e, S — T 6.39

dr2 + "Tdr dr Lk dr dr (6.39)
where the Christoffel symbols are given by (6.11)—(6.12) with gy, ; = 0 and hjr, = 0. These
equations admit the ‘radially’ falling observers characterized by fixed transverse positions z*(7) =
x} = const., i.e., ' = 0. It follows from (6.38) that these will measure only the tidal deformations
induced by the terms Wag and Wopi;. This is in correspondence with the result of the works [34, 35],
according to which the (electro)vacuum higher-dimensional Robinson-Trautman spacetimes are

of algebraic type D.



88 6 ROBINSON-TRAUTMAN SPACETIMES

6.4 Geodesic deviation in four dimensions

The most important difference between the four-dimensional and higher-dimensional cases is that
the functions contained in ¢"" component of the Robinson—Trautmann metric (6.8) depend, in
general, on u and z° coordinates. Also, it is always possible to express the transverse metric h;;
in a conformally flat form, see [34]. The complete Robinson—Trautman line element in D = 4 thus
reads

ds® = r*P?(u, z) [(dz®)® + (dz®)?] — 2dudr — 2H (r,u, z)du? . (6.40)
with the function H(r,u,x) given by (6.9),

Q2 1 F2

T (6.41)

2H = % —2r(InP),, — %TQ
where R(u,z) is the scalar curvature of the transverse two-space with the metric h;; related to
the conformal factor P(u,z) by R = 2AIn P = 2P?[(In P) 92 + (In P) 33], parameter A repre-
sents the cosmological constant, the functions F? = F?(u,x) and Q? = Q*(u, ) characterize the
electromagnetic field, and p = ,u(u, x) is an arbitrary function.

For simplicity, we restrict ourselves only to the vacuum solutions, i.e., F' = 0 and @ = 0, with
cosmological constant A and the constant function u redefined as p = 2m. The components of the
interpretation frame (6.26), using the four-dimensional metric (6.40) which implies the natural
choice of the spatial parts of the vectors m;, namely m? = g&f , simply become

1 1
k= —,0,0,0) , = \/5'——,\/5',\/5'2,\/5'3>,
(ﬁu ) <T Vau TN

-2 -3
— ix_ogo — LI_O()E 6.42
m2 ( uvarv 9 m3 Paava/r . ( )

Combining the relations for the frame components of the Weyl tensor (6.28) with the expressions
(6.17)—(6.19) for Raped, Rap and R we obtain an explicit form of the Weyl scalars,

m m
Wog = 27“_3 , Wogijs = 5ijr_3 ;

. P
\I]3Tj = —3\/§$k6]]€ 2P URJW y

k- 3m
Wiy = 2k 4! P2Rkilj — ﬁ R(Sk[lisj]i — W (25ki5lj — 5ij5kl)

..k P2
+%(R,k5u 204(:R. ) + 2i* i | (6.43)

where the matrix w;;, which is absent in the higher-dimensional case D > 4, describes gravitational
radiation. It is explicitly given by (6.24), i.e

Rij Rk
wij = —r(InP) uij + 25(1(111 pP) ) ( 1 —r(lnP), uk>
5671 [R, R
— J2 4104 —r(In P) upq + 25@,(111 P).o (T —7r(InP), uk)] . (6.44)

The explicit, invariant form of equations of geodesic deviation (6.29) in the four-dimensional
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vacuum Robinson—Trautman class of spacetimes will thus simply read

.. 2A 1 ;

A GG 1)Z(l) + WogzM) — E\IJSTjZ(J) ,

Z0) — Lz(i) oy 20 L\p N AONS 1\1/ L 7() (6.45)
(D—2)(D—1) 2 NoR 2 T '

where 7, j = 2, 3. The overall relative motion thus consists of the isotropic influence of the
cosmological constant A, Newton-like deformation induced by the terms Wog and Wypj), the
longitudinal effect given by Wsr: and the transverse deformation corresponding to Wyi;.

Pure influence of the gravitational field can be obtain again by the transition to a suitable
observer, described by (6.33), which will measure the amplitudes

~ m ~ m
Voo = 2T—3 ; Worii = 5117'7”—3 ;

BV, = ——uP(AlnP) : B*W,; = 2u2p—2w~ (6.46)
377 — \/57‘2 R 413 — T2 7 - .

This is in accordance with the fact that four-dimensional vacuum Robinson—Trautman spacetime
are of algebraic type II, or more special.

Finally, employing the relation R = 2A1n P and using notation z? = x and x> = y, the inde-
pendent components of the symmetric traceless matrix W,:; describing the transverse gravitational
waves can be rewritten in a more convenient form,

6m ., o 20 .
Wioe = =5 (8% = §) = T[x(A InP),—y(AnP),]
P22
0 (00 P) e — (10 P) gy + 2010 P) (10 P — 210 P) 0y (10 P),]
r
P22
+ 572 [(A InP) e — (AlnP)y, +2(AlnP),(InP), —2(A lnP)My(lnP)MU] ,
12m . 2u., .
Uy = — Pty [#(AInP), + (A P) ;]
2P?

_ Tu [(111 P) yzy + (I P) 4z (In P) , + (In P) 4y (In P)z}

P? .
+ T—2u2 [(A InP),y+ (AlnP),(InP),+ (AlnP) ,(In P)z] ,

directly representing “+” (zx) and “x” (zy) amplitudes of the expanding Robinson-Trautman
waves.






CHAPTER

7

CONCLUSIONS

In the first part of the thesis (Chapter 2) we analyzed the geodesic motion in four-dimensional
Minkowski, de Sitter and anti-de Sitter universe in which expanding impulsive spherical gravita-
tional waves propagate. Since the geodesics in the background spacetimes of constant curvature
are well known we concentrated our attention on their correct connection across the null impulsive
hypersurface. Employing the continuous form of the line element describing such waves, and using
explicit transformations to the background coordinates, we derived and investigated the general
refraction formulae fully characterizing the transition of general C! observers (in the continuous
coordinates) across any spherical impulse. The influence of the nonvanishing cosmological con-
stant has been naturally included and emphasized by expressing the results in the suitable global
five-dimensional parameterizations of the (anti-)de Sitter universe.

All the effects were explicitly illustrated in the case of impulsive waves generated by a snapped
cosmic string. In full detail we elucidated the specific focusing properties of such waves and we
described the dependence of the behaviour of free test particles on the deficit angle parameter
characterizing the mass of the cosmic string. In the case of de Sitter spacetime, we analyzed the
superposition of the impulsive spherical wave effects with the isotropic expansion of the background
universe given by the presence of the positive cosmological constant.

These results were published in the journal Physical Review D (2010), see the full reference [13].

The second part of the thesis contains the analysis and discussion of properties of higher-
dimensional equation of geodesic deviation and its applications in specific interesting situations.

In Chapter 3 we presented the general analysis of the relative motion in the congruence of free
test particles in arbitrary spacetimes of any dimension. Employing the natural orthonormal frame
connected with a particular timelike observer we obtained the invariant form of the equation of
geodesic deviation. Its right-hand side, namely the Riemann curvature tensor, was expressed in
terms of the Weyl tensor and specific combinations of an energy momentum tensor and its trace.
The Weyl tensor was further decomposed into the null-frame scalar components naturally related
to the algebraical structure of the spacetime. The overall behaviour of free particles in an arbitrary
D-dimensional spacetime thus consists of the effects given by the presence of the specific matter
content of the spacetime, the isotropic influence of the cosmological constant, and contributions
from the free gravitational field represented by the null-frame components of the Weyl tensor,
namely, the Newton-like tidal deformations, the longitudinal accelerations, and the effects due to
the transverse gravitational waves.

These results were published in the journal Physical Review D (2012), see the full reference [22].
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We applied this procedure and demonstrated its usefulness in the case of the general nontwist-
ing spacetimes (Chapter 4), and their specific subclasses, namely the nonexpanding Kundt family
(Chapter 5), and the expanding Robinson-Trautman family (Chapter 6). The work in progress
is the application of these results also to the family of spacetimes constructed by the so-called
warp product method, in which case it seems that the transverse effects caused by the additional
warped dimension are trivial due to the fact that the relevant Weyl components vanish.

Specifically, in Chapter 4 we applied the method introduced in Chapter 3 to the wide class
of higher-dimensional spacetimes admitting a nontwisting congruence of null geodesics. We have
recalled the geometry of such spacetimes, and calculated the fully general explicit expressions
for the corresponding Riemann and Ricci tensors and the Ricci scalar. We have then introduced
the specific frame connected with a particular observer and expressed the equation of geodesic
deviation in the invariant form. All the effects mentioned above are in this nontwisting case
present, and such spacetimes are thus (without further restrictions) algebraically general.

The explicit geometric quantities derived in our work, characterizing the curvature of arbi-
trary nontwisting spacetimes, can also be used in the search for new solutions of this type in
standard Einstein’s relativity (or in the generalized theories), and for investigation of their physi-
cal properties.

In Chapter 5 we discussed the properties of nontwisting, nonexpanding and shearfree Kundt
family of solutions. We employed the general discussion of relative motion of free test particles,
and the results derived in the case of general nontwisting spacetimes (Chapter 4). The physical
meaning of specific metric functions and their role in the equation of geodesic deviation was
described, and the utility of this approach demonstrated in the various Kundt subclasses such
as pp-waves, VSI spacetimes and simple gyratons. The richer structure of effects induced by the
additional dimensions were observed in the behaviour of free test particles caused by the higher-
dimensional gravitational waves. These results can be simply applied to explicit analyzes of the
relative motion in any other spacetime of the nonexpanding Kundt type.

In Chapter 6 we investigated the family of nontwisting, shearfree and expanding Robinson—
Trautman solutions. Employing the geodesic deviation equation we demonstrated the signifi-
cant difference between the higher-dimensional solutions of this type and those well known from
the standard four-dimensional theory. Suitable observer in the higher-dimensional Robinson—
Trautman spacetime will measure only the Newton-like tidal components of the gravitational
field (algebraic type D effects), but in the four-dimensional solutions the longitudinal effects and
the transverse gravitational waves are also present (algebraic type II, or more special, effects).
Applications of these results and their illustrations in the particular cases, e.g., the C-metric in
four-dimensions, and the black hole spacetimes in higher-dimensions, are still the work in progress.
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