We have studied two different systems; $RE_2\mathrm{CoIn_8}$ ($RE = \mathrm{Pr}$, Nd, Dy) and $\mathrm{Ce}_n \mathrm{TIn_{3n+2}}$ ($T = \mathrm{Pd}$, Pt; n = 2, 3). All compounds were prepared for the first time in the single crystalline form using the self-flux method. X-ray diffraction confirmed the tetragonal $\mathrm{Ho_2CoGa_8}$ structure type for the $RE_2\mathrm{CoIn_8}$ compounds and for the new phase $\mathrm{Ce_2TIn_8}$. The novel phase $\mathrm{Ce_3PtIn_{11}}$ adopts the structure of the $\mathrm{Ce_3PdIn_{11}}$ compound, which represents a new structure type. Magnetic measurements revealed low anisotropy and the c-axis as the easy axis for all $RE_2\mathrm{CoIn_8}$ compounds. $\mathrm{Pr_2CoIn_8}$ is a paramagnet, while $\mathrm{Nd_2CoIn_8}$ and $\mathrm{Dy_2CoIn_8}$ order antiferromagnetically. Magnetization and specific heat measurements of $\mathrm{Dy_2CoIn_8}$ revealed complex magnetic field-temperature phase diagram with various types of magnetic ordering. Specific heat measurements on multiphase $\mathrm{Ce-Pd-In}$ system revealed superconducting transition at $T_c = 0.69$ K arising from $\mathrm{Ce_2PdIn_8}$ and another magnetic transition from $\mathrm{Ce_3PdIn_{11}}$ at ~ 1.7 K. $\mathrm{Ce_3PdIn_{11}}$ and $\mathrm{Ce_3PtIn_{11}}$ compounds reveal two, probably magnetic transitions at $T_1 = 1.6$ K, $T_2 = 1.45$ K and $T_1 = 2.1$ K and $T_2 = 2.0$ K, respectively. Specific heat data qualifies both materials as heavy fermion compounds with $\gamma = 290$ mJ.mol $^{-1}\mathrm{Ce}$ K $^{-2}$ and $\gamma = 300$ mJ.mol $^{-1}\mathrm{Ce}$ K $^{-2}$ respectively.