Abstract Motivation of this thesis is a study of magnetic phase diagram of the pseudoternary system UCo_xRu_{1-x}Al. Three single crystals UCo_{0.19}Ru_{0.81}Al, UCo_{0.27}Ru_{0.73}Al and UCo_{0.40}Ru_{0.60}Al have been successfully prepared by Czochralski method. Composition was confirmed by EDX analysis and quality of single crystals was checked by Laue method. Crystallographic parameters and occupancies were determined by X-ray powder diffraction. Data analysis confirmed strong uniaxial magnetocrystalline anisotropy (c is the easy magnetization axis) and existence of hard and soft ferromagnetic phase. Curie temperature $T_{\rm C}=41~{\rm K}$ was determined for UCo_{0.40}Ru_{0.60}Al and phase transition from the soft ferromagnetic phase to the hard one takes place at 35 K. UCo_{0.27}Ru_{0.73}Al becomes ferromagnetic at $T_{\rm C}=18~{\rm K}$ and the transition from the soft to the hard ferromagnetic phase takes place somewhere around 7 K. UCo_{0.19}Ru_{0.81}Al is paramagnetic down to 2 K. Analysis of the temperature dependence of resistivity and heat capacity reveals signatures of non-Fermi liquid behaviour due to proximity of quantum critical point.