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our study councellor and the person who persuaded me to finish this thesis. Mark

Twain once wrote that the best helping hand that you will ever receive is the one

at the end of your own arm. That is true but sometimes you need somebody to

remind you that you have an arm.

I would like to express my deepest gratitude to my supervisor, doc. RNDr.
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Introduction

In the presented thesis we occupy ourselves with electricity price developement

in Germany and valuation of derivative contracts on electricity. The research of

power market and its characteristics started in the 1990’s with the deregulation

of this sector which introduced huge wholesale and retail trading activity. The

scale and volume of traded electricity products are overwhelming nowadays and

the market is still becoming more transparent and liquid.

Electricity differs substantially from other commodities due to its very limi-

ted storability and transportation possibilities. The electricity price is strongly

influenced by current power supply and demand. It is therefore impossible to use

standard arbitrage arguments which are the core of valuation for easily storable

products. Although we cannot use the classical cost-and-carry formula, we are

able to evaluate derivative securities by imposing stochastic processes of mean-

reversion type on the spot price and calculating risk-adjusted expected values of

future payoffs.

There is number of papers which use mean-reverting processes to model spot

price dynamics and which apply risk-neutral valuation framework for derivative

pricing. Schwartz [33] uses Ornstein-Uhlenbeck process, among others, to model

copper, oil and gold prices. Closed form solutions for forward prices derived here

served as the basis of other theoretical works. Clewlow and Strickland [10] make

use of the same spot price model as Schwartz did to derive values of European

options on electricity. Pilipovic [27] propose a two-factor mean-reverting model

where electricity price reverts to a long-term equilibrium level which itself is

treated as a random variable. Lucia and Schwartz [25] include a predictable

seasonal component, which represents systematic behavior of electricity prices, in

their model. Finally, Geman and Roncoroni [19] introduce discontinuous process

atop of the standard mean-reversion to account for price jumps which can be

sometimes observed in electricity market.

Majority of studies concerning electricity prices concentrate on most develo-

ped markets like the U.S., Australia or Northern Europe. Papers which analyse

German electricity market are quite rare which is suprising given the size of Ger-

man market and its role in price formation in other Central European countries.

To those studying German market belong for example Huisman and Mahieu [21]

who estimate mean-reversion coefficients from German spot prices. Weron [39]

asseses the distribution of German electricity prices and focus on price spikes and

extreme volatility. Seifert and Uhrig-Homburg [32] calibrate their jump-diffusion

model to EEX (European Energy Exchange) market data. Although they iden-
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tify jump patterns and use a mean-reverting model equipped with a seasonal

deterministic component similar to our approach, only the pricing of European

options is discussed here and no comparison with market prices of derivatives is

presented. In this thesis we are going to confront theoretical forward prices, which

our spot model implies, with real electricity products traded on the exchange.

Stochastic processes describing price developement are usually treated in the

standard ϵ− δ theory. We are going to study them via the nonstandard analysis

which was introduced by Abraham Robinson [29] in 1961. In contrast to the

standard theory which uses notion of the limit, nonstandard analysis utilizes the

concept of infinitesimals - infinitely small numbers. We believe that working with

infinitesimals gives more insight into the dymamics of our stochastic processes as

infinitely small ”jumps” are more imaginable than the standard framework. The

notion of small jumps should be especially attractive to practitioners who work

with discrete versions of stochastic processes on a daily basis and who are familiar

with Monte Carlo methods.

The nonstandard theory already proved to be useful in the field of derivative

valuation. As an example, Anderson [2] constructed the nonstandard equivalent

of Brownian motion which was used by Cutland, Kopp and Willinger [12] to proof

the famous Black-Scholes option pricing formula via the technique of nonstandard

analysis. In this paper we pick up threads of these works and develop nonstandard

versions of mean-reverting processes which lead to the valuation of electricity

derivatives.

The outline of this thesis is as follows. In Section 1 we give a brief intro-

duction to the nonstandard analysis and its usage in derivatives pricing. Section

2 introduces two mean-reverting processes for the electricity spot price which

are described in the nonstandard framework. A seasonal deterministic compo-

nent is incorporated in the model and pricing formulas for forward contracts are

derived in Section 3. Section 4 contains basic statistics of German electricity

market and model parameters are estimated. Because of the existence of inher-

ent price jumps which are not in line with assumptions of mean-reverting models

and which could jeopardize parameter estimations, regime-switching approach is

employed and data are separated into two independent groups - prices following

a continuous mean-reveting process and prices with jump behaviour. A method

which includes jumps into the valuation formula is then deviced. In Section 5 we

compare actual forward prices with prices forecasted by our models. Last section

summarizes results and concludes the paper with a few comments and suggestions

for future research.
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1. Nonstandard analysis

The idea of infinitesimals stood at the beginning of modern calculus. When

Newton was deriving his concept of integrals, he was working with infinitesimals,

i.e. very small numbers near zero, on an intuitive basis. The original approach

of infinitesimals was later abandoned in favour of more rigorous mathematical

concepts based on limiting arguments and ϵ−δ reasoning. Though it was possible

to find many contradictions when infinitesimals were used intuitively without

proper rigorous mathematical background, the infinitesimal calculus has survived

in almost all fields of physics, mainly thanks to its directness and easy usage. Even

though the physicits can use other mathematical methods, the infinitesimals are

so intuitive and natural that other possible means of calculation seem as an

unnecessary complication.

Considering the long history of infinitesimals, it can be suprising that rigorous

justification of the laws of infinitesimals was first achieved in 1961 by Abraham

Robinson [29]. Using formal logic Robinson built his theory of infinitesimals

which was self-consistent and complied with all intuitive features of infinitesimals.

Once the infinitesimals were correctly described, the flaws and padodoxes of some

calculations were clarified and further developement of the theory could go on.

From many authors who worked on this topic we should at least mention Robert

M. Anderson and his nonstandard representation of Brownian motion [2], Peter.

A Loeb and his Loeb measure [24] or Nigel Cutland, Ekkehard Kopp and Walter

Willinger for their applications to financial topics [12].

1.1 Nonstandard real numbers

In this paragraph we would like to present one of many possibilities how to con-

struct a system which can represent the real line equiped with additional special

numbers satisfying properties an infinitesimal should have. After we construct

this system and show the most important properties of it, we will abandon this

concrete representation and we will define general nonstandard numbers axiomat-

ically.

Consider the space of real sequences RN. We can see that RN incorporates

real numbers by mapping R → RN which assigns the sequence of constants r̄ =

(r, r, r, ...) to every r ∈ R. When we look for an infinitesimal, we need to find an

object which is nonzero positive but less than any positive real number. If we

take for example sequence (1, 1/2, 1/3, ...), it seems that this object satisfies our

notion of an infinitesimal. Every coordinate is positive and an infinite number of
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its coordinates is less than any given posite real number. This is surely a step in

the right direction but we need to specify how to compare two numbers in order

to have a totally ordered set.

Definition A free ultrafilter U on N is a collection of subsets of N satisfying

1. if A,B ∈ U , then A ∩B ∈ U

2. if A ∈ U and A ⊂ B ⊂ N, then B ∈ U

3. if A is finite, then A /∈ U

4. if A ∈ N, either A ∈ U or N \ A ∈ U

Free ultrafilter U is therefore a collection of subsets which is closed under inter-

section and supersets, contains no finite set and exactly one of sets A and N \ A
is the member of U . When we now define equivalence relation =U on RN, we can

build equivalence classes which can be totally sorted.

Definition The equivalence relation =U on RN is defined by

x =U y ⇐⇒ {n : xn = yn} ∈ U . (1.1)

We denote the equivalence class of x ∈ RN with respect to the equivalence relation

=U by [x].

Definition The relation <U is defined by

[x] <U [y] ⇐⇒ {n : xn < yn} ∈ U . (1.2)

The relation >U can be defined similarly and the system of equivalence classes

is now fully ordered because either [x] <U [y], [x] =U [y] or [x] >U [y] holds for

every [x], [y] ∈ RN/U . Our initial suggestion for an infinitesimal was therefore

correct, [(1, 1/2, 1/3, ...)] is indeed less in the sense of <U than any image of a

positive real [(a, a, a, ...)], a ∈ R+. There are many numbers which possess the

infinitesimal feature and we denote them by [x] ≈ 0. We say that two numbers

are infinitely close, denoted by [x] ≈ [y], if their difference is an infinitesimal. It

can be proved that any finite x ∈ RN/U is infinitely close to some unique r ∈ R,
we call r the standard part of x and write r = st(x) = ◦x.

We usually write ∗R instead of RN/U to stress that RN/U is the extension of

real numbers and we call this set nonstandard real numbers. Any mathematical

object defined on R can be extended to ∗R. Given a real function f : R → R, we
can define function ∗f :∗ R →∗ R by

∗f([x]) = [(f(x1), f(x2), ...)]. (1.3)
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The function f is then extended to function ∗f pointwise and it is easy to see

that many properties of f are inherited by ∗f . This feature is described by the

so called Transfer Principle which connects real number statements with their

hyperreal extensions.

Theorem 1.1.1. (Tranfer Principle) Let ϕ be any first order statement. Then

ϕ holds in R ⇔ ∗ϕ holds in ∗R (1.4)

The first order statement is a statement which uses usual logic connectiveness

and (∧), or (∨), implies (→), not (¬) and quantifies over elements of R (∗R)
but not over relations and functions, which must remain fixed. The transfer

principle allows us to switch between real and hyperreal worlds very swiftly and

without much effort and it is therefore invaluable help in hyperreal analysis. Its

another asset is that it can play the role of an axiom in the axiomatic definition

of nonstandard numbers.

Real numbers are usually described by their two basic properties and not by

their construction from rational numbers. It is sufficient enough to describe reals

as an ordered field with the least upper bound property because other properties

of real numbers can be deduced from these two axioms. The same approach

can be applied to hyperreal numbers. It was already shown that we are able

to extend real numbers by RN/U . There are many other ways how to extend

real numbers and all of them fulfil the Transfer theorem. In fact, the hyperreal

numbers can be axiomatically defined as an extension of real numbers which

contains infinitesimals and obeys the Transfer Principle. Therefore we will usually

talk about hyperreals without any reference to their concrete representation.

1.2 The nonstandard universe

Real numbers are the core of most mathematical objects and when we switch to

hyperreals, one possibility how to construct structures known from real analysis

would be to proceed step by step and develop the objects from scratch. Fortu-

nately, we can avoid such tedious work and the whole standard universe can be

mapped on nonstandard universe by another version of the Transfer principle.

Most of the classical mathematical universe can be sum up into the super-

structure over R. To build the superstructure we take atomic elements of some

set, in this case real numbers, and produce repetitively power sets. Elements of

this superstructure can be interpreted as well-known objects from real analysis.
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Definition The superstructure, denoted by V, is V (R) = ∪n∈NVn(R) where

V0(R) = R (1.5)

Vn+1(R) = Vn(R) ∪ P(Vn(R)), n ∈ N. (1.6)

The mechanism of how the superstructure can represent mathematical objects can

be illustrated on functions. An ordered pair (x, y) ∈ R2 is defined in the set theory

as {{x}, {x, y}} and can be thought of as an element of V2(R). Every function

f : A → B where A,B ⊂ R can be represented by its graph {(x, f(x)), x ∈ A}
which is a set of ordered pairs and therefore f ∈ V3(R). It is not suprising that

sets of functions can be represented as V4(R).
The superstructure V = V (R) is constructed from real numbers and the su-

perstructure V (∗R) is constructed from hyperreal numbers. Now we would like to

connect same objects from these two superstructures together. This can be done

through superstructure embedding ∗ : V (R) → V (∗R) that is injective, satisfies
∗x = x for every x ∈ V0(R) and for which the Transfer principle II (presented

below) holds from definition. Before we state the second version of the Transfer

principle we must differentiate between two kinds of sets in V (∗R). The super-

structure embedding doesn’t map onto V (∗R) and we can define so-called internal

and external objects.

Definition Any object A ∈ V (∗R) is said to be internal if A ∈ ∗B for some B ∈
V (R). The set of all internal objects is called nonstandard universe ∗V = ∗V (R).
Sets other than internal are called external.

It is important to realize that ∗V (R) is not the same as V (∗R) and the inclusion
∗V ⊂ V (∗R) holds. The notion of internal sets is utilized in the Transfer priciple

II that states which properties are inherited by ∗V.

Theorem 1.2.1. (Transfer Principle II) Suppose that ϕ is a bounded quatifier

statement. Then φ holds in V if and only if ∗φ holds in ∗V.

The bounded quantifier statement is a statement that enables the quantifiers to

range over prescribed sets only. Very important feature of the Transfer principle

is its avoidance of external sets. Just internal sets inherit the properties of objects

in V (R) and therefore play a crucial role in the theory of nonstandard analysis.

1.3 Loeb measure

We would like to develop measure theory for the nonstandard space. Assume

that we have an internal set Ω, an internal algebra A of subsets of Ω and a finite
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internal finitely additive measure µ : A → ∗[0,∞). We know from the property

µ(Ω) < ∞ that the value of µ is always infinitely close to some real number and

therefore we can define ◦µ : A → [0,∞) by ◦µ(A) = ◦(µ(A)), A ∈ A. The triple

(Ω,A, ◦µ) is generally not a measure space but we are able to extend it to comply

the requirements of σ-additivity for both A and µ.

It can be shown that when we have an increasing family of sets (An)n∈N,

An ∈ A, then a countable union of these sets B = ∪n∈BAn is again very close to

some set A lying in A. By ”close” we mean that A \ B is a so-called Loeb null

set, a set for which, given ϵ > 0, we can find a superset C ∈ A with property

µ(C) < ϵ. With this on mind we make the following definition.

Definition We call B ⊆ Ω Loeb measurable if there is a set A ∈ A such that

A∆B is Loeb null. The set of all Loeb measurable sets we denote by L(A).

We use in the definition the symmetric difference A∆B = (A \ B) ∪ (B \ A)

because we want L(A) to be closed under complementation. It can be proved

that L(A) is a σ-algebra and we call it Loeb algebra.

Another property of the sequence (An)n∈N is that ◦µ(A) = limn→∞
◦µ(An)

which motivates us to other definition.

Definition For B ∈ L(A) we define its Loeb measure µL(B) by

µL(B) = ◦µ(A) (1.7)

where A is any member of A satisfying A∆B null.

The existence of such A ∈ A with A∆B null is ensured from the construction of

L(A). Since µL inherits finite additivity from µ and it is continuous from bellow,

we can claim that µL is a σ-additive measure on L(A). The following theorem

summarizes our results.

Theorem 1.3.1. The triplet Ω = (Ω, L(A), µL) is a measure space which is called

the Loeb space given by (Ω,A, µ).

One of the most important examples of the Loeb measure is the Loeb counting

measure which is the nonstandard equivalent to the counting measure in real

analysis. Let us have an infinite hyperfinite set Ω = {1, 2, ..., N} where N ∈ ∗N\N
and define the counting probability measure ν on Ω by

ν(A) =
|A|
|Ω|

=
|A|
N

(1.8)

for all A ∈ ∗P(Ω) = A. Both Ω and ∗P(Ω) are internal and the measure ◦ν is

finitely additive. Therefore from prior discussion we know that there exists the

Loeb counting measure νL as the completion of ◦ν.
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The Loeb counting measure can be used to alternatively construct the Lebesgue

measure. We take an interval [0, 1] for example and mark equidistantly an infi-

nite number of points in it. The measure of the interval will then be given by the

number of points contained in the interval. The first step of this approach is the

definition of the hyperfinite time line T corresponding to interval [0, 1].

Definition Choose some N ∈ ∗N \ N and define the time step ∆t = N−1. The

hyperfinite time line T is the set of points

T = {0,∆t, 2∆t, ..., N∆t = 1}. (1.9)

The set T is composed of countable number of points and therefore we can talk

about the Loeb counting measure νL on this hyperfinite time line. Let us define

the set of all subintervals of [0, 1] whose inverse image of the standard part

mapping is Loeb measurable, i.e

M = {B ⊆ [0, 1] : st−1
T (B) is Loeb measurable} (1.10)

where st−1
T (B) = {t ∈ T : ◦t ∈ B}.

Theorem 1.3.2. Define λ(B) = νL(st
−1(B)) for B ∈ M. Then ([0, 1],M, λ) is

the Lebesgue measure space on [0, 1].

1.4 Brownian motion

The well-known Wiener process (Brownian motion), a continuous stochastic pro-

cess with independent and normally distributed increments, can be constructed

as a limit of the standard random walk with appropriate scaling. It was shown

by Anderson [2] that in the nonstandard setting the hyperfinite random walk is

directly equivalent to the Brownian motion. This enables us to intuitively manip-

ulate the Wiener process in terms of a more conceivable random walk but unlike

standard analysis within rigorous mathematical background. In the following we

will describe the nonstandard Wiener process along the lines of Keisler [23].

Assume a hyperfinite time line T = {0, δt, 2δt, ..., Nδt = 1} as we already had

above and a hyperfinite coin tossing Ω = {−1, 1}N . We define the hyperfinite

random walk as an internal map B : T× Ω → ∗R which counts random steps of

length
√
δt

B(t, ω) =
Nt∑
s=1

ω(s)
√
δt, ω ∈ Ω. (1.11)

We can again construct the Loeb counting measure νL on Ω and implicitely

assume that Ω has the measure structure given by (Ω, L(A), νL). The follow-
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ing theorem describes the relationship between the hyperfinite random walk and

Brownian motion.

Theorem 1.4.1. The process b : [0, 1]× Ω → R defined by

b(◦t, ω) = ◦B(t, ω) (1.12)

where (t, ω) ∈ T× Ω is Brownian motion on the probability space (Ω, L(A), νL).

The theorem states that when we observe the hyperfinite random walk B from

the perspective of the standard world, that is when we transform the hyperfinite

time line into a real line and take standard parts of the process values, we obtain

Brownian motion b with its defining properties:

1. b is a stochastic process, i.e. b(t, ·) is a νL-measurable function of ω for all

t ∈ [0, 1], and b(ω, 0) = 0 νL-a.s.

2. For s < t ∈ [0, 1] the increment b(t, ·)− b(s, ·) is normally distributed with

mean 0 and variance t− s.

3. The increments are independent: for any s1 < t1 ≤ s2 < ... < tn ∈ [0, 1] the

random variables {b(ti, ·)− b(si, ·), i ≤ n} are independent.

It can be proved that b has almost all paths continuous as we would suspect. The

hyperfinite construction also captures precisely the famous Einstein’s formula

that the root mean square displacement of a particle in any direction after time

t is given by
√
2Dt where D is the diffusion coefficient.

The scope of applicability of the Wiener process is vast. One area which

utilizes the Wiener process and can therefore be researched by means of nonstan-

dard analysis is finance. Models of stock or other asset prices usually contain the

Wiener process to account for the underlying randomness.

1.5 Ito diffusion

It is possible to multiply the standard Wiener process by a volatility coefficient

which allows for various standard deviation of the process or to add a drift func-

tion. Such a new process called an Ito diffusion is the cornerstone of modern

financial mathematics and especially the properties of functions applied on an

Ito diffusion are of high interest. Before we formulate the nonstandard version of

the Ito-Doeblin formula which describes behaviour of a proces derived from an

Ito diffusion, we need to do some preliminary work and define a few nonstadard

terms. Definitions and theorems of this and next chapter are along the lines of

the radically elementary approach of Herzberg [20].
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Let us first specifically express the term Ito diffusion:

Definition (Ito diffusion) Let T be a hyperfinite time line and a, b: R× [0, 1] →
R. Stochastic process ξ(t) is called an Ito diffusion wih drift coefficient function

a and diffusion coefficient function b if and only if

δξ(t) = a(ξ(t), t)δt+ b(ξ(t), t)δZ(t) (1.13)

for all t ∈ T. If a, b don’t depend explicitely on time t, then ξ(t) is called a

time-homogeneous Ito diffusion.

The nonstandard Ito intergral is defined with the help of an infinite sum:

Definition (Stochastic integral) For any two processes ξ, µ, the stochastic inte-

gral of µ with respect to ξ is the process
∫
µ dξ defined by∫ s

0

µ dξ =

∫ s

0

µ(t) dξ(t) =
∑
t<s

µ(t) dξ(t) (1.14)

for all s ∈ T.

The nonstandard derivative is analogously the ratio of a function differential δy,

δy = f(a + δx) − f(a), to a nonzero infinitesimal variable change δx. If the

standard part of δy/δx exists and is the same for all δx, then f has a derivative

at a and we write

f ′(a) = st(δy/δx) (1.15)

We say that a process ξ on T has limited trajectories if and only if there is some

limited real C such that ∥ξ(t)∥ ≤ C for all t ∈ T. We can now approach the

Ito-Doeblin formula.

Lemma 1.5.1. (Ito-Doeblin formula) Let ξ be an Ito diffusion with drift coef-

ficient function a and diffusion coefficient function b built on T, let f : R ×
[0, 1] → R be thrice differentiable and let stochastic processes a(ξ, .), b(ξ, .),

f ′′(ξ, .), f ′′′(ξ, .) have limited trajectories. Then for all s ∈ T

f(ξ(s), s)− f(ξ(0), 0) ≈
∫ s

0

∂1f(ξ(t), t) dξ(t) +

∫ s

0

∂2f(ξ(t), t) dt+

+
1

2

∫ s

0

∂1,1f(ξ(t), t)b
2(ξ(t), t) dt (1.16)

When we perform partial derivatives in the Ito-Doeblin formula and calculate

the change of f in one time step, we obtain a more compact, differential, form of

the theorem:
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δf ≈

(
δf

δt
+ a

δf

δξ
+

1

2
b2
δ2f

δξ2

)
δt+ b

δf

δξ
δZ (1.17)

1.6 Change of measure

The evolution of each process is governed by some probability measure P . We

can define a new process by switching to a different measure which in the con-

text of the hyperfinitte tree means that we change probabilities of the up and

down movements at each tree node. Since we will want to perform such measure

transformation later in the text, we need to know effects of this operation. The

nonstandard version of Girsanov’s theorem provides us such information.

Theorem 1.6.1. (Girsanov’s theorem) Let µ be a limited stochastic process, let ξ

be the process defined by ξ(0) = 1 and δξ(t) = ξ(t)µ(t)δZ(t) for all t ∈ T. When

we introduce a new measure Q which has density ξ with respect to the uniform

measure P

Q(A) =

∫
A

ξ(t) dP (1.18)

then a process ZQ defined for all t ∈ T by

δZQ = δZ(t)− µ(t)δt (1.19)

is a Wiener martingale under Q.

Process ξ(t) starts at one and evolves in time in accordance with its definition

in Girsanov’s theorem. As for the value of ξ at time t+ δt holds

ξ(t+ δt) = ξ(t)
(
1 + µ(t)δZ(t)

)
(1.20)

we can express ξ(t) in this compact form:

ξ(t) =
∏

s∈T,s≤t

(
1 + µ(s)ω(s)

√
δt
)

(1.21)

The probability of each node on our hyperfinite binomial tree is given by elemen-

tary branching probabilities which determine the probability of an upward and

a downward jump from each node on the tree. From the definition of measure

Q in (1.18) and the explicit form of ξ in (1.21) follows that changing the prob-

ability measure to Q is equivalent to adjusting branching probabilities by factor

12



1
2
µ(t)

√
δt

pup(t) =
1

2

(
1 + µ(t)

√
δt
)

(1.22)

pdown(t) =
1

2

(
1− µ(t)

√
δt
)

(1.23)

The relationship between branching probabilities and the drift of a process de-

scribed by Girsanov’s theorem will be used later when we switch from the physical

to the risk-neutral world.

It can be shown that ξ(t) is infinitely close to the exponential of a generalized

Wiener process because

∏
s∈T,s≤t

(
1 + µ(s)ω(s)

√
δt
)
≈ exp

(∫ t

0

µ(s) dZ(s)− 1

2

∫ t

0

µ2(s) ds

)
(1.24)

and therefore our nonstandard Girsanov theorem can be directly related to the

standard version of this famous proposition in the form it is usually stated in

literature.
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2. Basic mean-reverting models

Electricity is a commodity with very limited possibility of storage. There exist

couple of schemes how to store electricity but these techniques are expensive and

therefore it is save to claim that most of the electricity produced is immediately

consumed. For this reason the electricity spot price depends heavily on current

electricity production and consumption and it abides the law of supply and de-

mand. Even though the volatility of spot prices is high, total yearly consumption

is stable and quite easy to predict. It is thus reasonable to assume that the price

tends to its long-term equilibrium level even if it is currently above/under this

level because of instantaneous lack/excess of supply. In this chapter we will in-

vestigate two models which force the spot price to return back to some constant

long-term price level. Though constant long-term price level is an oversimplifi-

cation of market reality, these models allow us to develop some intuition about

market dynamics and presented findings will serve as a basis for further theory

development.

2.1 Spot price processes

The mean-reverting tendency of spot prices can most easily be expressed either

as the Ornstein-Uhlenbeck (OU) process or as the Schwartz one factor model

(Schwartz). In the standard analysis the Ohrnstein-Uhlenbeck process can be

written as

dS = α(µ− S) dt+ σ dz (2.1)

where z represents the Wiener process, µ is a long-term level to which the price

S tends and α is a strictly positive coefficient which influences speed of the mean

reversion. We can see from (2.1) that when the price S is high, the drift term

α(µ− S) becomes negative and the price is pulled down. On the contrary when

the price S is low, the drift becomes positive and the opposite holds - the price

tends to rise. It should be noted that the tendency to revert back towards the

long term level doesn’t have to materialize as the random term σ dz may have

the opposite sign and be greater in magnitude than the drift term.

The Schwartz one factor model introduced by Schwartz [33] assumes that not

the price itself but its natural logarithm follows the Ornstein-Uhlenbeck process

d(lnS) = α(µ− lnS) dt+ σ dz (2.2)

14



Applying Ito’s lemma we obtain the master equation

dS = α

(
µ+

σ2

2α
− lnS

)
S dt+ σS dz (2.3)

where α has the same interpretation as earlier but the spot price now reverts to

a new long-term level eµ+σ2/2α.

2.2 Hyperfinite binomial tree

We will build our two models on a hyperfinite binomial tree similar to that used

in [2]. Let us start at time t = 0 and let T be a given maturity of a derivative

and the terminal time of our tree as well. Let us define H ∈ ∗N as an infinite

number of steps so that the elementary time step δt = T/H is an infinitesimal.

The time line T = {0, δt, 2.δt, ..., H.δt = T} therefore consists of H time steps

of length δt. By the hyperfinite binomial tree τ we will understand the union of

power sets of time step sets, τ = ∪t∈T{−1,+1}T∩(0,t] = {−1,+1}≤T. A member

of the hyperfinite binomial tree ω ∈ τ can therefore represent any individual

node in the tree in contrast to the classical setting where only the nodes with

path length T are considered. The path length of node ω will be denoted as

t(ω) = max(dom(ω)) ∈ T. We could also truncate the path of node ω up to some

earlier time s < t(ω). The node which arises from truncated ω will be denoted

as ω|s.
We build stochastic processes as internal functions on the tree S : τ → ∗R and

proceed step by step from the initial value S(0) = S0. For the Ornstein-Uhlenbeck

process the change of S in one step δS(ω) = S(ω⌢{j})− S(ω), j ∈ {−1,+1}, is
conditional on the value of S at node ω by the equation

δS(ω) = α(µ− S(ω))δt+ σj
√
δt, j ∈ {−1,+1}. (2.4)

It is useful to denote the term j
√
δt where j is either 1 or -1 as δZ.

The dynamics of the process is given by Loeb counting measure P on nodes

with path length equal to T . This is equivalent to setting uniform branching

probabilities for all nodes in the tree, i.e. to setting probability of an up movement

p+1 to be 1/2 and the probability of a down movement p−1 to be complementary

1/2 for all nodes. As the elementary probabilities on each tree node uniquely

define the process measure, we can move to another measure by simply adjusting

branching probabilities which we will do soon.

Let us consider a general derivative V dependent on S. We will try to study its

development via Ito-Doeblin lemma. Although it is not possible to literally apply
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the version of Ito-Doeblin lemma we stated earlier due to unknown upper bounds

on V ′′(S) and V ′′′(S), the proof method using third-order Taylor expansion in

[20] is applicable even for this case. The lemma states that the derivative V has

the same source of uncertainty as its underlying S and V can be written in the

form

δV (ω) = µ̂(ω)V (ω)δt+ σ̂(ω)V (ω)δZ (2.5)

where

µ̂(ω) =

(
δV (ω)

δt
+ α(µ− S(ω))

δV (ω)

δS(ω)
+

1

2
σ2 δ

2V (ω)

δS(ω)2

)
/V (ω) (2.6)

σ̂(ω) = σ
δV (ω)

δS(ω)
/V (ω) (2.7)

and the equation holds up to an infinitesimal error almost surely (as will all

following equations).

We assume that the market price of risk λ = (µ̂ − r)/σ̂ is constant for the

electricity market. It was shown in [40] that when we change the splitting prob-

abilitity p+1 from
1
2
to 1

2
−λ

√
δt
2
, we obtain a risk-neutral measure Q under which

the process has zero price of risk. Furthermore, we have seen that the Girsanov

theorem implies that changing the up probability this way is equivalent to adding

a drift −λσδt to the original equation with measure P . Therefore the risk-neutral

process for S with uniform branching probabilities can be written in the form

δS(ω) = α(µN − S(ω))δt+ σδZ (2.8)

µN = µ− σλ

α
. (2.9)

Let us shift the long-term level to zero by making a linear substitution y = S−µN .

Then for the new variable y holds

δy(ω) = −αy(ω)δt+ σδZ (2.10)

We will try to solve this equation now. We assume the solution in the form

y(ω) = a(t(ω))

y0 +
∑

s∈T∩[0,t(ω)]

b(s)ω(s)
√
δt

 (2.11)

where t(ω) indicates the length of node ω, a(.), b(.) are differentiable functions

and y0 is the starting value of our process. The change of y in one step δt should
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be therefore

δy(ω) = δa(t(ω))

y0 +
∑

s∈T∩[0,t(ω)]

b(s)ω(s)
√
δt

+ a(t(ω))b(t(ω))δZ (2.12)

From initial condition y(0) = y0 we have a(0) = 1 and assuming a(.) > 0 we can

rewrite the equation as

δy(ω) =
δa(t(ω))

a(t(ω))δt
y(ω)δt+ a(t(ω))b(t(ω))δZ (2.13)

Comparing (2.13) with the original equation (2.10) we can see that we need

δa(t(ω))

δt.a(t(ω))
= −α (2.14)

a(t(ω))b(t(ω)) = σ (2.15)

and solving these two conditions we get the solution of the process in the form

y(ω) = e−αt(ω)

y0 + σ
∑

s∈T∩[0,t(ω)]

eαsω(s)
√
δt

 (2.16)

Function y(ω) is the sum of infinitesimal jumps of length
√
δt which are multi-

plied by the factor e−α[t(ω)−s)] always less than 1. It is therefore possible to apply

the nonstandard version of central limit theorem like in the case of pure Brownian

motion and conclude that the process is Gaussian and as such fully determined

by its expected value E[y](t) and standard deviation Var[y](t).

It is relatively easy to calculate the expected value. As we use the uniform

measure, the up and down jumps cancel each other and the expected value of x

at time t is E[y](t) = y0e
−αt. When we calculate variance of the process, we can

use the independence of jumps on the tree so we have

E

 ∑
s∈T∩[0,t(ω)]

eαs(ω)j
√
δt

2

= E

 ∑
s∈T∩[0,t(ω)]

e2αsδt

 =
e2αt − 1

2α
(2.17)

and therefore

Var [y] (t) =
σ2

2α
(1− e−2αt) (2.18)

Going back to original price S we can see that the expected value of S at t is

a weighted average of S0 and µN and that variance is bounded by its limit value
σ2

2α
:
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E[S](t) = S0e
−αt + µN(1− e−αt) (2.19)

Var[S](t) =
σ2

2α
(1− e−2αt) (2.20)

As we work in the risk-neutral world, the forward price of a contract with

maturity T can be calculated as the expected value of the spot price at T (i.e.

as the expected value under the equivalent martingale measure). Since S is

normally distributed with expected value given by (2.19), the forward price for

the Ornstein-Uhlenbeck process is

F (T ) = µ+ (S0 − µ)e−αT − λσ

α
(1− e−αT ). (2.21)

In this final formula we have rearraged terms of the expected value in order to

allow for another interpretation of the forward price. We can see that if we

neglect the market price of risk, the forward price is long-term price level µ plus

time attenuated deviation of current spot price from µ. Therefore the impact of

current price deviation on the forward price gets weaker with increasing maturity.

The Schwartz one factor model can be built on the same hyperfinite tree as

the Ornstein-Uhlenbeck process. The change of S in one step conditional on the

value of S at node ω is given by the master equation

δS(ω) = α
(
µ+ σ2/2α− lnS(ω)

)
S(ω)δt+ σS(ω)δZ (2.22)

The dynamics of the process is again given by the uniform measure P . When we

define x = lnS and apply the nonstandard version of Ito’s lemma, we obtain the

Ornstein-Uhlenbeck process on the binomial tree

δx(ω) = α(µ− x(ω))δt+ σδZ (2.23)

From prior calculations we know that x has these moments under the risk-neutral

measure:

E[x](t) = x0e
−αt + µN(1− e−αt) (2.24)

Var[x](t) =
σ2

2α
(1− e−2αt). (2.25)

where µN = −σλ/α as before.

Since x = lnS is normally distributed, S has a lognormal distribution with

mean exp(E[x] + 0.5Var[x]) and therefore the forward price F(T) at time 0 for
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the Schwartz one factor model is given by

F (T ) = exp

[
µ+ (lnS0 − µ)e−αT − σλ

α
(1− e−αT ) +

σ2

4α
(1− e−2αT )

]
(2.26)

It could be checked that the solution is in line with the result of Schwartz [33].
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3. Models incorporating seasonal

patterns

We have assumed so far that the spot price follows a process which reverts to

some fixed long-term level. Though producing tractable and compact results,

models assuming constant long-term level are oversimplification of economic re-

ality. Electricity, like other commodities, shows strong seasonal patterns and we

need to take this behaviour into account. The following path characteristics are

most prominent:

• Daily shape - the spot price is heavily influenced by electricity consumption

of the manufactoring industry. Spot prices are highest during hours when

most of the companies produce their products which is in standard work-

ing hours. For this reason the market distinguishes between two types of

forward contracts - base load and peak load. While the base load forward

product is being delivered every hour in the week, the peak load forward

product is being delivered in hours of industrial activity only.

• Weekly shape - weekend prices are significantly lower than working day

prices for the same reason as for the daily shape difference. Production

facilities are usually inactive at the weekend and consumption is lower than

during working days.

• Yearly shape - the price level is also different between months. Energy

consumption is higher during winter months when households use heating

systems while lower during summer months when the heatings are off. As

people start using air-conditioning in the summmer, this effect becomes less

prominent.

In the following we will add deterministic seasonal components to our stochasic

processes for the spot prices and derive formulas for forward prices similar to those

we already discussed earlier. We will further define indicative functions for certain

time periods which will be used for the seasonal component description.

3.1 Inclusion of deterministic component

We start with a simple Ohrstein-Uhlenbeck process equipped with a deterministic

function reflecting seasonality in price movements. Following Lucia and Schwartz
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[25] we represent the spot price P (ω) as a sum of its predictible seasonal compo-

nent f(t(ω)) and random OU deviation S(ω)

P (ω) = f(t(ω)) + S(ω) (3.1)

Since the spot price Pt should be drawn to its typical level represented by f(t),

we model the mean-reverting process St with zero long-run mean

δS(ω) = −αS(ω)δt+ σδZ (3.2)

We can plug (3.1) into (3.2) and we receive

δ
(
P (ω)− f(ω)

)
= α

(
f(ω)− P (ω)

)
δt+ σj

√
δt, j ∈ {−1, 1} (3.3)

After rearranging the terms the equation seems similar to the equation (2.4) we

had for constant long-term price level:

δP (ω) = α
(
L(ω)− P (ω)

)
δt+ σj

√
δt, j ∈ {−1, 1} (3.4)

where

L(ω) =
1

α

δf

δt
(ω) + f(ω) (3.5)

The long-term price level µ was replaced by a deterministic function L(ω) which

depends on the seasonal component f(ω). Similar reasoning as in the case of µ

yields a formula for the forward price in the form

F (T ) = f(T ) +
(
P0 − f(0)

)
e−αT − λσ

α
(1− eαT ) (3.6)

We can see that the structure of the forward formula remains the same even

with the inclusion of a deterministic trend. It has natural interpretation that the

forward price is the usual seasonal price plus correction for the current spot price

level and for the market price of risk.

The Schwartz one factor model can be equipped with a seasonal component

as well. Assuming that the logarithmic price is the sum of a seasonal component

f(t(ω)) and the Ornstein-Uhlenbeck process S with zero µ

lnP (ω) = f(t(ω)) + S(ω) (3.7)

we obtain

δP (ω) = α
(
L(ω)− lnP (ω)

)
P (ω)δt+ ωP (ω)j

√
δt (3.8)
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where

L(ω) =
1

α

(
σ2

2
+

δf

δt
(ω)

)
+ f(ω) (3.9)

Applying the same arguments as before the forward price for the Schwartz one

factor model with a seasonal component is

F (T ) = exp

[
f(T ) +

(
lnP0 − f(0)

)
e−αT − λσ

α

(
1− e−2αT

)
+

σ2

4α

(
1− e−2αT

)]
(3.10)

3.2 Modeling deterministic component

There are several ways how to model the deterministic component of spot prices.

While some authors impose a prescribed function on the shape of the deterministic

component, we are going to use indicator functions for certain time periods.

Although fitting data to an analytical function generally yields more robust and

stable solution with fewer parameters, we do not want to a priori assume any

shape or characteristics of seasonality. We would like to let the data speak for

themselves and possibly explain our results with regards to what was said earlier

about reasons for seasonality.

Because we are going to investigate real market data, the time step δt will not

be an infinitesimal but some real time period. Therefore we need to move from

the hyperfinite binomial tree to a discretization scheme which uses a calendar

time line (.., t−1, t, t+1, ..). In this sense we model the deterministic component

f(t) as a sum of indicator functions

f(t) = A+
∑
j

BjMj(t) (3.11)

where

Mj(t) =

1 if date t belongs to time period j

0 otherwise

Bj represents a coefficent for the time period j and A is the initial price level.

The time step and the type of the time period for which the indicator function

Mj is 1 will be determined by the granularity of prices we would like to use. We

will use either monthly granularity with monthly indicators or daily granularity

with monthly and week-daily indicators.

In order to be able to estimate parameters of our model we rewritte equations

which hold for the hyperfinite binomial tree into their discrete equivalents on the

time line (.., t − 1, t, t + 1, ..). The seasonal Ornstein-Uhlenbeck process in its
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discrete form could be written as

P (t) = A+
∑
j

BjMj(t) + S(t) (3.12)

S(t) = ϕS(t− 1) + u(t) (3.13)

and for the seasonal Schwartz one factor model must hold

lnP (t) = A+
∑
j

BjMj(t) + S(t) (3.14)

S(t) = ϕS(t− 1) + u(t) (3.15)

where parameter ϕ ≡ 1−α enabled us to express mean-reverting processes as au-

toregressive models and u(t) is the white noise with deviation σ, u(t) ∼ N (0, σ2).

Therefore our task is to estimate parameters of multi-linear model with AR(1)

error term which we will do in the next section.
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4. Estimation of parameters

4.1 Basic statistics

We will use German settlement prices published on the EEX (European Energy

Exchange) between years 2000 and 2010 as our base dataset for the estimation

of model parameters. EEX prices are quoted in EUR/MWh format and have

hourly granularity. As the electricity unit will always be 1 MWh, we will use

only monetary quotes (EUR) for the electricity price. Since the smallest forward

product we will encounter is a daily product, we first aggregate original spot data

in daily average prices Pt. Table 4.1 displays basic descriptive statistics of our

daily data sample.

Pt Pt − Pt−1 lnPt lnPt − lnPt−1

Observations 4018 4017 4016 4013
Mean 56.75 0.01 3.91 -0.00
Median 50.35 -1.01 3.92 -0.02
Min -53.46 -299.84 1.55 -1.95
Max 472.82 314.86 6.16 2.37
SD 31.15 19.63 0.50 0.30

Skewness 2.22 0.82 -0.01 0.75
Kurtosis 16.06 48.97 3.31 6.73

Table 4.1: Descriptive statistics of German spot market

It is typical for the electricity market that prices are not bounded from zero

and negative prices are not only theoretically possible but they can be even often

encountered. For example we can observe from Table 4.1 that it was possible to

observe price -53.46 EUR in the time period of our interest.

Price distribution is skewed to the right which is not suprising as even though

negative prices are possible, they are not so common as price spikes due to elec-

tricity generation shortfalls or extreme weather conditions. High kurtosis suggests

that there were huge price jumps present which produce fat tails in price distri-

bution. Figure 4.1 plots the daily settlement price development in 2000-2010 and

exposes typical jump behaviour of electricity prices. It is common that from time

to time the price spikes (usually) upwards and consequently drops down to its

prior level. Until now we have dealt with continuous processes only but evidence

suggests that the inclusion of a discontinuous process might be necessary.

Let us further investigate jump behavior of spot prices. Figure 4.2 compares

empirical distribution of daily spot price changes with the normal distribution of

the same mean and variance. We can see that there are price changes far away

from the center where we wouldn’t expect them under the normal distribution
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Figure 4.1: German daily settlement prices 2000-2010. Price spikes are char-
actrized by sudden upward movement of extreme magnitude followed by fast
attenuation and fall to prior price level.

assumption. As large outliers are not in line with our assumption of normal error

terms and can even jeopardize correct estimation of model parameters, we will

develop framework which incorporates jump behaviour into our mean-reverting

model. Fortunately, models with spike behaviour have been studied intensively

in the energy literature so that we have a base to build on.

4.2 Overview of jump models

The presence of sudden price spikes is inherent in the electricity market and

can be considered as a stylized fact. A typical jump is a sudden upward price

movement of large magnitude which is followed by fast correction that brings the

spot price to its prior level. Though price spikes can be found in other markets,

rapid up and down discontinuities are fundamental feature of power prices due

to the non-storable nature of electricity. The cause for a jump can be on both

demand and supply side of market equilibrium. Severe weather conditions as well
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Figure 4.2: Histogram of empirical daily price changes compared to the normal
distribution. Fat tails contained in the data sample can be filtered by application
of the recursive jump filter.

as dropout of important power plants can result in price skyrocketing as the most

expensive power sources need to be engaged. With the introduction of solar and

wind power plants, which are guaranteed access to the distribution system at any

time by the government, we can expect the opposite effect of sudden price drops

to take place in the future. When it happens that weather conditions are most

favourable for renewable energy production, uncontrollable excess of power in the

system will drive prices deep below zero and downward drops will become more

common than until now.

There are several ways how to model spikes. Prominent approaches which

received most attention in the literature are Markov models, regime-switching

models and multifactor models.

Markov models The representative of models with Markov property is the

work of Geman and Roncoroni [19] who model the spot price behaviour by the
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stochastic differential equation

dE(t) = Dµ(t) dt+ θ
[
µ(t)− E(t−)

]
dt+ σ dZ(t) + h(t−) dJ(t) (4.1)

which includes logarithmic price E, seasonal trend µ, parameter of mean-reversion

θ and Brownian motion Z. Standard first order derivative is denoted as D and

f(t-) is an abbreviation for the left limit of f at time t. The last term h(t−) dJ(t)

produces jump behavior when Poisson process triggers a series of random jumps

whose number is determinded by a counting process and whose direction is de-

temined by a defined treshold τ - if the spot price is below τ , then there is an

upwards movement and vice versa if the price is above the treshold. Similar

models along these lines were devised by Roncori [30] and Deng [15].

Regime-switching models The drawback of Markov models (jump-diffusion

processes) is that the jump declines to the normal price level immediately or very

rapidly while it can be observed on the market that stressed prices can remain

high for a nonnegligible time period which can account for several days. Regime-

switching models offer possibility to keep unusually high prices for some time by

introducing a Markov chain which determines if prices are in the standard base

regime displaying mean reversion or in the spike regime with jump behaviour.

Processes that are linked to each regime state are assumed to be independent of

each other. Bierbrauer et al. [6] use a two state Markov chain with transition

matrix P containing probabilities pij of switching from state i to state j between

times t and t+ 1:

P =

(
p11 p12

p21 p22

)
=

(
p11 1− p11

1− p22 p22

)
(4.2)

While the first base regime is governed by a mean-reverting model, the second

spike regime is based either on Gaussian, lognormal or Pareto distribution in

order to cope with the heavy-tailed nature of severe jumps. Weron [37] also

applies a two state regime-switching model but in his setting the spike regime

follows a mean-reverting process with greater volatility and faster reversion than

in the case of the base regime

dP (t) = θ1
(
µ(t)− P (t)

)
+ σ1 dZ(t) (base regime) (4.3)

dP (t) = θ2
(
µ(t)− P (t)

)
+ σ2 dZ(t) (spike regime) (4.4)

θ2 > θ1, σ2 > σ1

Huisman and Mahieu [21] identify tree possible regimes: a normal mean-

reverting regime, an initial jump regime whose values are drawn from lognormal
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distribution and a third regime which ensures that prices are pulled back to their

prior level. The Markov transition matrix for the jump, reversal and normal

mean-reverting regime is now specified as

P =

0 1 0

0 p00 1− p00

1 0 0

 (4.5)

where p00 is the probability of staying in the base regime. As the initial jump

is immediately followed by the reversal regime which brings the price back to its

standard level, this model doesn’t allow for consequtive extreme prices.

Multifactor models Multifactor models assume the price to be a sum of

several factors which usually bear a jump-diffusion specification like in [4], [16]

and [36]. In Benth [4], the spot price stripped off its seasonal component is a sum

of independent Levy-driven Ornstein-Uhlenbeck processes

P (t) =
n∑

i=1

Xi(t) (4.6)

dXi(t) = −θXi(t) dt+ dLi(t) (4.7)

where Li(t) are independent Levy processes with finite second moments.

In our work we will use the regime-switching approach as a way how to deal

with jumps. We assume that the spot price follows two independent processes

governed by a 2×2 Markov transition matrix. If the system is in its base regime,

then the spot price or the logarithm of the spot price follows the mean reverting

process from equations (3.12)-(3.15). In the spike regime it would be possible to

use any of heavy-tailed distributions for the dicontinuous process. The jump price

would then be a series of i.i.d. random variables drawn, for example, from the

Pareto distribution. As it will become clear from later discussion, we won’t need

any particular distributional representation of the spike regime for our purpose of

forward pricing. The merit of the regime-switching model is that after we identify

jumps and extract them, base regime data can be treated as a continuous time

series without gaps due to the independence assumption.

4.3 Spike regime

Our ultimate task is to assess prices of forward contracts which are traded on the

market. The approach we have chosen is that we calculate the expected value of

future spot prices under the equivalent martingale measure. At this point we will

make an extra assumption that the market price of jumps is zero and therefore
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for the spike regime holds λ = 0. The assumption of zero market price of risk

for some short-term risk factors, which the spike regime belongs to, is common in

the energy literature ([15], [8], [13]) and relates to the difficulties of risk premia

estimation from historical commodity price data [34] as well as non-systematic

nature of jumps which makes them diversifiable [9].

If we wanted to fully model spot price dynamics, it would be necessary to

estimate coeficients of the Markov matrix by investigating the probablities of

transition from one state to another and we would also need to estimate param-

eters of some heavy-tailed distribution which we decided to model jumps with.

As our primary aim is not to mimic the spot price evolution but price forward

contracts, it is sufficient to estimate spike intensity and average spike amplitude.

Following Cartea, Figueora [9] and Meyer-Brandis, Tankov [26], we define

spike intensity ω as

ω =
number of spikes detected

number of data points
(4.8)

Since we don’t observe any seasonality in the spike occurrence in our data, we can

assume that the spike intensity is constant over time. Using ω we can define a

spike correction to the forward price derived from the base mean-reverting process

as

spike correction = ω × E(jump magnitude) (4.9)

The interpretation of the spike correction (4.9) is that when we filter jumps out

of the sample and work with the base regime data only (which we will soon do),

we underestimate the future average spot price and thus we need to correct this

bias. Since we assume zero market price of risk for jumps, the application of spike

correction is straightforward.

In order to identify jumps in our data we will apply the so-called recursive filter

[11]. If the daily price changes were normally distributed, then the probability of

finding values further from the mean than 3 standard deviations is 0.3. Because

our sample consists of more observations behind this threshold than we would

expect, we consider all these outstreched observations as discontinuous jump be-

havior and exclude them. When we recalculate the sample standard deviation

of filtered data, we can look for further price changes behind the chosen limit.

This process can be repeated until we obtain data which follow the 3 standard

deviation rule and which we consider to be the manifestation of our continuous

base process with normal increments.

By applying the recursive filter we have identified 168 days out of total 4018

which contained a price jump according to our definition. This suggests that the

spike intensity ω is equal to 4.6%. The average value of the spike magnitude was

calculated as 110.34 EUR which means that the average price excess of a jump
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above the long-term price level (54.95 EUR) is 55.39 EUR. When we multiply

the jump price excess by the spike intensity, we obtain correction 2.55 EUR to

the base regime which accounts for the existence of jumps.

4.4 Estimation method for base regime

When we filter jumps which were identified by the recursive filter out of our data

sample, we obtain a time series which should follow the mean-reverting process.

We will now try to estimate parameters in (3.12)-(3.13) and (3.14)-(3.14) by the

maximum likelihood method. The spot time series can be expressed in its vector

form as

P⃗ = MB⃗ + S⃗,

S⃗ ∼ N (⃗0, σ2Λ)
(4.10)

where P⃗ is n × 1 vector of observed spot prices, M is the matrix of indicator

functions, B⃗ is the vector of seasonality coefficients we would like to find and S⃗

represents error terms which follow the first-order autoregressive AR(1) process.

We have factored variance of white noise σ2 ouf of positive-definite Λ which

represents nonspherical disturbance of the AR(1) process

Λ =
1

1− ϕ2


1 ϕ · · · ϕn−1

ϕ 1 · · · ϕn−2

...
...

. . .
...

ϕn−1 ϕn−2 · · · 1

 . (4.11)

where ϕ is the autoregressive parameter we have defined in chapter 3.2. We can

notice that costant variance of S⃗t is

Var(S⃗t) =
σ2

1− ϕ2
(4.12)

and the autocorrelation coefficients are

ρk = ϕk k = 0, 1, 2, ... (4.13)

Since Λ is positive definite, it is possible to find an invertible square root Λ1/2

such that

Λ =
(
Λ1/2

)T
Λ1/2 and Λ−1 = Λ−1/2

(
Λ−1/2

)T
(4.14)

It could be verified by multiplication that the inverse matrix Λ−1 is
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Λ−1 =



1 −ϕ 0 · · · 0 0 0

−ϕ 1 + ϕ2 −ϕ · · · 0 0 0

0 −ϕ 1 + ϕ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −ϕ 1 + ϕ2 −ϕ

0 0 0 · · · 0 −ϕ 1


(4.15)

and matrix
(
Λ−1/2

)T
can be represented as

(
Λ−1/2

)T
=



√
1− ϕ2 0 0 · · · 0 0 0

−ϕ 1 0 · · · 0 0 0

0 −ϕ 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −ϕ 1 0

0 0 0 · · · 0 −ϕ
√
1− ϕ2


(4.16)

If we knew parameter ϕ, we could multiply equation (4.10) by
(
Λ−1/2

)T
from

the left and obtain

P⃗ ∗ = M∗B⃗ + S⃗∗ (4.17)

where

P⃗ ∗ =
(
Λ−1/2

)T
P⃗

M∗ =
(
Λ−1/2

)T
M

S⃗∗ =
(
Λ−1/2

)T
S⃗

(4.18)

Then

Var(S⃗∗) = σ2
(
Λ−1/2

)T
ΛΛ−1/2

= σ2
(
Λ−1/2

)T (
Λ1/2

)T
Λ1/2Λ−1/2 (4.19)

= σ2I

which means that P⃗ ∗ is described by a standard linear model with i.i.d. error

terms

S⃗∗ ∼ N (⃗0, σ2I) (4.20)
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and ergo the maximum likelihood estimators of B⃗ and σ2 can be obtained by

solving the least squares problem which yields

ˆ⃗
B(ϕ) =

(
(M∗)T M∗

)−1

(M∗)T P⃗ ∗ (4.21)

σ̂2(ϕ) =

∥∥∥∥P⃗ ∗ −M∗ ˆ⃗B(ϕ)

∥∥∥∥
n

(4.22)

where ∥.∥ is the vector norm. It is important to note that estimators
ˆ⃗
B and σ̂2

are functions of parameter ϕ because substitution (4.18) depends on it. Although

we have obtained intereting results, the value of ϕ still remains unknown and

therefore it is necessary to express the full likelihood function of our problem.

We know that the error term of the original equation (4.10) has multivariate

normal density

f
(
S⃗
)
= (2π)−n/2

∣∣σ2Λ
∣∣−1/2

exp

[
−1

2
S⃗T (σ2Λ)−1S⃗

]
(4.23)

Because
∣∣σ2Λ

∣∣ = σ2n |Λ|, we may rewrite the density as

f
(
S⃗
)
= (2π)−n/2

(
σ2
)−n/2 |Λ|−1/2 exp

[
−1

2
S⃗T (σ2Λ)−1S⃗

]
(4.24)

and the full log-likelihood function l(ϕ, B⃗, σ2|P⃗ ) corresponding to the original

model (4.10) can be expressed as

l(ϕ, B⃗, σ2|P⃗ ) = −n

2
ln(2π)− n

2
lnσ2 − 1

2
ln |Λ| −

− 1

2σ2

(
P⃗ −MB⃗

)T
Λ−1

(
P⃗ −MB⃗

)
(4.25)

We know from prior calculation how maximum likelihood estimators of B⃗ and σ2,

conditional on ϕ, look like. It is therefore possible to replace B⃗, σ2 in l(ϕ, B⃗, σ2|P⃗ )

by their estimates
ˆ⃗
B(ϕ), σ̂2(ϕ) and we obtain log-likelihood as a function of ϕ

only

l(ϕ|P⃗ ) = const.− n ln

∥∥∥∥P⃗ ∗ −M∗ ˆ⃗B(ϕ)

∥∥∥∥− 1

2
ln |Λ| (4.26)

Optimizing l(ϕ|P⃗ ) yields the maximum likelihood estimate of ϕ which in turn can

be used to evaluate estimates of B⃗ and σ2 in (4.21). Since the described method

makes use of least squares estimators, it is sometimes refered to as the generalized

least squares (GLS) method [22]. Equipped with the estimation procedure we can
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now start investigating the data.

4.5 Monthly granularity model

We will first start with a model based on data with monthly granularity. We

consider that a month is our basic time step and we use only monthly indicator

functions applied on monthly price averages in equation (3.11). For the estima-

tion of parameters in (3.12)-(3.13) and (3.14)-(3.15) we use the generalised least

squares method which was described in former section. Numerical details of the

application of GLS can be found in Pinheiro [28].

Table 4.2 shows estimated paremeters of the deterministic seasonal component

with their statistics for both models. Standard errors (SE) are substantial relative

to the parameter magnitudes due to high volatility of sample prices. We can also

notice that the level of significance for different indicator coefficients differ and

some of them are not statistically significant.

The coefficient ϕ in AR(1) error process for the Ornstein-Uhlenbeck model

was calculated as 0.93 with 95% confidence interval (0.81, 0.98). The correspod-

ing mean reversion coefficient α (= 1 − ϕ) is therefore 0.07 and is statistically

significant. The coefficient ϕ for the Schwartz one factor model is 0.95 with 95%

confidence interval (0.82, 0.99). The mean reversion coefficient for this model is

therefore 0.05 and again statistically significant. Standard deviations of white

Ornstein-Uhlenbeck Schwartz
Parameter Value SE t-value p-value Value SE t-value p-value

A 57.02 11.18 5.10 0.00 3.96 0.23 17.07 0.00
Feb 0.53 2.71 0.20 0.85 0.00 0.04 0.00 1.00
Mar -4.78 3.64 -1.31 0.19 -0.09 0.05 -1.70 0.09
Apr -6.38 4.22 -1.51 0.13 -0.12 0.06 -1.97 0.05
May -10.95 4.60 -2.38 0.02 -0.22 0.07 -3.20 0.00
Jun -5.37 4.81 -1.12 0.27 -0.12 0.07 -1.65 0.10
Jul -3.30 4.88 -0.68 0.50 -0.09 0.07 -1.24 0.22
Aug -7.21 4.82 -1.49 0.14 -0.14 0.07 -1.89 0.06
Sep 1.72 4.63 0.37 0.71 0.01 0.07 0.16 0.87
Oct 3.79 4.27 0.89 0.38 0.03 0.06 0.54 0.59
Nov 1.92 3.71 0.52 0.61 0.02 0.06 0.39 0.70
Dec -0.78 2.82 -0.28 0.78 -0.01 0.04 -0.14 0.89
ϕ 0.93 - - - 0.95 - - -
σ 9.08 - - - 0.14 - - -

Table 4.2: Estimates of the seasonal profile for models using monthly granularity.
The seasonal profile starts in January at price A and its shape is determined by
corresponding monthly coefficients.
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noise σ are 9.08 (OU) and 0.14 (Schwartz).

Figure 4.3 plots normalized (average price is set to 1) annual seasonality gained

from the Ornstein-Uhlenbeck process. The particular shape we can observe here

is remarkable and reveals specific structure of the German market which can be

interpreted in terms of influnce that weather has on electricity prices. First, we

can notice that prices in the summer season are generally lower than in winter

when people use heating systems. Next, it is obvious that the standard shape is

not sinusoidal as some studies assume but there is a pronounced irregularity in

June and July probably due to the usage of air conditioners and nuclear pow-

er plants maintenance. It is also interesting that the December price is lower

compared to other winter months due to holidays in this month.
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Figure 4.3: Normalized annual profile for the Ornstein-Uhlenbeck process us-
ing monthly granularity. The shape is fully implied by market data (virtue of
indicator functions).
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4.6 Daily granularity model

In order to include even the standard weekly shape into the model and to be

able to price short-term forward products, we move from monthly granularity to

daily granularity. The seasonal function will now be composed of 11 monthly

indicators and 6 week-daily indicators. All parameters are again assessed by the

least squares method.

Table 4.3 summarizes seasonality estimation results for both models. It is

worth mentioning that standard errors of daily coefficients are substantially lower

than standard errors of monthly coefficients. This suggests that weekly pattern

of daily prices is more pronounced and regular than annual patern of monthly

prices.

Both coefficients of mean reversion α are statistically significant and their

values are 0.10 and 0.09 for the Ornstein-Uhlenbeck and the Schwartz one factor

model, respectively. Standard errors of white noise σ are 11.06 (OU) and 0.19

(Schwartz).

Figure 4.4 shows normalized weekly and annual price profiles for the Ornstein-

Ornstein-Uhlenbeck Schwartz
Parameter Value SE t-value p-value Value SE t-value p-value

A 52.18 3.35 15.59 0.00 3.83 0.06 65.20 0.00
Feb 1.87 3.02 0.62 0.54 0.06 0.05 1.25 0.21
Mar 3.05 3.78 0.81 0.42 0.15 0.06 2.26 0.02
Apr 8.74 4.17 2.10 0.04 0.25 0.07 3.48 0.00
May -2.15 4.37 -0.49 0.62 -0.10 0.08 -1.35 0.18
Jun 0.83 4.48 0.19 0.85 -0.01 0.08 -0.11 0.92
Jul 6.83 4.51 1.52 0.13 0.12 0.08 1.57 0.12
Aug 8.37 4.47 1.87 0.06 0.16 0.08 2.09 0.04
Sep 15.02 4.39 3.43 0.00 0.28 0.08 3.64 0.00
Oct 16.91 4.20 4.03 0.00 0.35 0.07 4.87 0.00
Nov 5.50 3.85 1.43 0.15 0.18 0.07 2.81 0.00
Dec 4.24 3.12 1.36 0.17 0.18 0.05 3.44 0.00
Mon -2.46 0.64 -3.82 0.00 -0.03 0.01 -2.72 0.01
Sat -12.82 0.45 -28.47 0.00 -0.23 0.01 -31.17 0.00
Sun -23.81 0.57 -41.92 0.00 -0.48 0.01 -50.65 0.00
Thu 4.20 0.45 9.36 0.00 0.05 0.01 6.74 0.00
Tue 4.84 0.62 7.78 0.00 0.06 0.01 5.74 0.00
Wed 5.37 0.57 9.35 0.00 0.07 0.01 7.35 0.00
ϕ 0.90 - - - 0.91 - - -
σ 11.06 - - - 0.91 - - -

Table 4.3: Estimates of seasonal profile for models using daily granularity. The
seasonal profile starts on January 1 at price A and its shape is determined by
corresponding monthly and week-daily coefficients.

35



Uhlenbeck model. The weekly profile has a smooth concave shape and can be

fully interpreted in terms of the amount of electricity consumed by factories. It

is common that factories produce mostly during regular working days and less

during weekends. Therefore the coefficients are above average, which is 1, from

Monday to Friday and below average at the weekend. It can be also noticed that

when the production starts and ends, i.e. on Monday and Friday, the coefficients

are slightly lower than in the middle of the week. Finally, Sunday has the lowest

coefficient of all week-days as one could expect from the day of the Lord.

The annual profile is interestingly different from the annual profile we calcu-

lated from monthly averages, especially first 3 monthly coefficients show opposite

price development tendency. There might be a few issues when we mix week-

daily and monthly indicator functions. For example, daily indicator functions
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Figure 4.4: Normalized week-daily and annual profile for the Ornstein-Uhlenbeck
process using daily granularity. The week-daily profile is fully in line with elec-
tricity consumption pattern of the manufactoring sector. A different frequency
period between daily and monthly indicator functions could have resulted in an
otherwise shaped annual profile compared to the profile that was calculated from
monthly granularity.
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have high frequency and change with every time step while monthly indicators

change less often which could lead to weaker statistics. Another issue could be

that daily shape is more pronounced than monthly shape and therefore monthly

shape can be burdened with proportionately more noise than it is in the case of

daily shape.
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5. Forward valuation

Valuation formulas (3.6) and (3.10) which were derived in the theoretical part

of the thesis calculate the forward price of a product which is assumed to be

settled at a single future time point T . We can associate maturity T with some

time step in our discretization scheme (3.12)-(3.15) but electricity unlike most

commodities cannot be delivered instantaneously and it is being delivered during

a certain time period. The delivery of many electricity forward products usually

spans a longer time window than just a day or a month which are our basic time

steps. Typically day, week, month, quarter and year products are traded on main

exchanges. For these reasons we need to split forward products into appropriate

granularity and calculate the theoretical price of each product as the average over

its parts which we are able to value.

In the following we will compare prices of both short-term and long-term

real forward contracts with their theoretical counterparts derived from our two

stochastic processes.

5.1 Long-term forward contracts

In this section we will value long-term electricity forward products, specifically

monthly, quarterly and yearly German base products. Base products are con-

tracts which oblige the seller to deliver electricity uniformly and continuously

over a defined time period. As it was already suggested, we cut quaterly and

yearly products into collections of monthly products so that we have all data in

monthly resolution. We use the annual seasonal shape and mean-reverting coeffi-

cients estimated in section 4.5 and plug them into formulas (3.6) and (3.10). We

also make correction with respect to the existence of jumps from (4.9). The final

theoretical product price is the average of its monthly pieces.

The sample of derivatives which will be used to compare our model with

consists of complete term structure from 22 closing days between January 2011

and October 2012. The days were chosen as the last closing days in each month

and quotes published by 3 major brokers active on the German market - Tradition

Financial Services (TFS), Platts and GFI - were used as the term structure source.

In case of multiple entries for the same product the average price is taken as the

reference price.

We consider the current monthly spot price to be implied by the quote of the

forward product for the next month and our valuation formula. In this way we

align the theoretical and market term structure at their beginnings and avoid
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Ornstein-Uhlenbeck Schwartz
Date RMSE MAE RMSE MAE

2011-01-31 2.89 1.91 2.46 1.73
2011-02-28 2.64 2.07 3.14 2.62
2011-03-31 4.20 3.26 3.18 2.42
2011-04-29 4.53 3.83 5.02 4.37
2011-05-31 4.86 4.07 3.33 2.69
2011-06-30 5.16 4.44 4.09 3.52
2011-07-29 5.44 4.81 4.03 3.64
2011-08-31 7.68 6.87 7.41 6.55
2011-09-30 5.54 4.89 4.49 3.82
2011-10-31 3.13 2.47 2.14 1.92
2011-11-30 2.85 2.23 2.14 1.77
2011-12-30 3.75 3.11 3.68 3.15
2012-01-31 1.99 1.50 1.99 1.69
2012-02-29 1.98 1.40 1.80 1.48
2012-03-30 2.33 1.85 2.21 1.67
2012-04-30 4.02 3.51 3.70 3.35
2012-05-31 2.48 1.95 2.90 2.44
2012-06-29 2.77 2.36 2.80 2.31
2012-07-31 3.44 2.70 3.49 2.95
2012-08-31 3.65 3.14 5.18 4.51
2012-09-28 4.15 3.72 3.77 3.43
2012-10-31 2.66 2.09 2.93 2.38

Table 5.1: Valuation errors of long-term forwards for each closing date assuming
zero market price of risk. The root mean square error (RMSE) and the mean
absolute error (MAE) of the difference between predicted and real market forward
prices are calculated for both models. Although both models produce forward
prices which fit the market term structutre well, the Schwartz one factor model
could be considered as slightly superior.

necessity of the estimation of the current monthly spot price which could prove

to be tricky and could introduce another sources of error into our model.

We first start with the assumption that the market price of risk is zero which

would reflect rational expectations of the power market. In order to assess good-

ness of our model predictions we calculate root mean squared error (RMSE) and

mean absolute error (MAE) between the model prediction and observed mar-

ket prices. The results of this comparison are shown in Table 5.1. We can see

that the accurateness of predictions differs only slightly between the two models.

While the root mean square error for the whole sample is 4.15 EUR in case of

the Ornstein-Uhlenbeck model, it is 3.78 EUR in case of the Schwartz one factor

model. The reason for this slight difference might lie in the difference between

valuation formulas of our models. The forward price for the Schwartz one factor
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Figure 5.1: Comparison of real market prices with theoretical values provided
by the Orstein-Uhlenbeck model for closing date 2/29/2012. It can be seen that
theoretical values genuilly track the real term structure which is confirmed by the
lowest RMSE value (1.98 EUR) of all observation days.

model depends on the variance of the error term among others while the forward

price for the Ornstein-Uhlenbeck process is fully dependent on the standardized

shape only. Although the Schwartz model is slightly superior, predictions ob-

tained from the Ornstein-Uhlenbeck process seem reasonable as well. We can

read that RMSE ranges from 1.98 (1.80) EUR on 2/29/2012 to 7.68 (7.41) EUR

on 8/31/2011 for OU (Schwartz) process.

To visualize how for example the Ornstein-Uhlenbeck predictions fit market

data we plot the best and the worst predictions (in the sense of RMSE). Figure

5.1 shows the best fit from February 2012. A first casual look reveals that the

prediction genuilly tracks the real market term structure. The worst prediction

from August 2011 is displayed in Figure 5.2. In this case we can observe that

the relative price changes are similar for both curves but the market price level

is steadily higher than predicted.

We can compute the implicit market price of risk λ, which we assume to be
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Figure 5.2: Comparison of real market prices with theoretical values provided by
the Orstein-Uhlenbeck model for closing date 8/31/2011. Although both curves
have similar shape, market prices are systematically above the prediction. The
difference between real and theoretical price levels is captured in the highest
RMSE (7.68 EUR) of all observation days.

constant, by manipulating with its value and trying to fit the predicted forward

curve to the market forward curve while keeping all other parameters constant.

We have chosen the root mean square error to be the measure of such closeness.

The implied market price of risk λ for the Ornstein-Uhlenbeck process ob-

tained by minimizing sample RMSE is −0.024. The inclusion of this market

price of risk in valuation formula (3.6) further decreases the sample root mean

square error to 3.82. By assuming that the market price of risk for the Schwartz

one factor model is -0.012 we can decrease its sample RMSE to its mimimal value

3.69. As we worked wih monthly spot prices whose value is implied by the next

month forward price, the true market price of risk is partially included in the

spot price.

The negative value of λ is in line with majority of power market literature and

could be reasonably explained by higher incentive for hedging on the demand side
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relative to the supply side caused by the nonstorable nature of electricity. Similar

to our findings Botterud [7] found negative market price of risk in the Nordpool

market, Geman and Vasicek [18] demonstrated existence of negative risk premia

in the U.S. market and Weron [38] concluded that even the market price of risk

implied by Asian-style electricity options seems to be negative.

5.2 Short-term forward contracts

The same analysis as for the long-term forward contracts can be done for short-

term forward contracts, i.e. for daily and weekly products. Forward quotes were

taken from two data sources - Platts and Alpiq - and forward valuation is again

performed by cutting products into daily granularity and subsequent averaging.

As there are usually market data for only a few short-term products and it is easier

to assess a daily spot price than a monthly spot price, we use directly the daily

settlement price from closing dates as the reference price S in valuation formulas.

One can argue that this value is not fully known at the time when exchanges close

(round 5 p.m.) but we believe that due to regular daily consumption patterns

the overall error is small.

Table 5.2 compares predicted values with market data under the zero mar-

ket price of risk assumption. RMSE of the Ornstein-Uhlenbeck process for the

whole sample is 7.93 EUR and the whole sample RMSE for the Schwartz one

factor model is 6.89 EUR. This analysis suggests that the predictive power of our

valuation formulas are poorer for short-term forward contracts. Explanation of

higher deviation between predicted prices and the market can be twofold. First,

the short-term end of the forward curve is very volatile with limited liquidity and

only a few products are traded which worsenes the ability to perform comparison

with our predictions. Second, the effects of current supply and demand might

outweight mean-reverting nature of electricity in the short run. It might be also

possible that market conditions temporarily shift the long-term price level and

prices revert to this newly established equilibrium for some time.

The implied market price of risk for Ornstein-Uhlenbeck process is 0.10 and

produces RMSE of 5.99 EUR, the market price of risk for Schwartz one factor

model is 0.08 and produces RMSE of 5.95 EUR.

42



Ornstein-Uhlenbeck Schwartz
Date RMSE MAE RMSE MAE

2011-01-31 9.05 8.11 8.96 7.76
2011-02-28 7.90 6.22 9.29 6.63
2011-03-31 3.18 3.15 3.66 3.38
2011-05-31 6.87 6.78 7.82 7.81
2011-06-30 3.22 2.69 5.34 4.92
2011-07-29 4.42 3.92 2.85 2.41
2011-08-31 4.24 4.16 3.14 2.75
2011-09-30 8.10 7.14 8.39 6.70
2011-10-31 7.61 7.61 6.97 6.97
2011-11-30 3.11 3.08 2.73 2.50
2011-12-30 4.99 4.78 4.69 4.38
2012-01-31 8.18 6.08 7.54 5.99
2012-02-29 3.29 3.19 4.74 3.66
2012-03-30 3.66 3.05 4.57 4.51
2012-04-30 13.11 12.08 10.33 10.31
2012-05-31 7.64 7.50 9.42 9.10
2012-06-29 5.23 4.51 6.16 5.92
2012-07-31 5.89 5.85 5.28 5.21
2012-08-31 5.73 4.58 4.52 3.97
2012-09-28 5.66 4.73 4.29 2.63

Table 5.2: Valuation errors of short-term forwards for each closing date assuming
zero market price of risk. The root mean square error (RMSE) and the mean
absolute error (MAE) of the difference between predicted and real market forward
prices are calculated for both models. Valuation errors are higher than in the case
of long-term forwards.
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Results summary

In this paper we have studied the application of nonstandard methods on the val-

uation of electricity derivatives. Specifically, we have developed the nonstandard

version of the Ornstein-Uhlenbeck and the Schwartz one factor models with deter-

ministic seasonal component which should describe behaviour of electricity spot

prices and which enabled us to value forwards on electricity in the risk-neutral

world. We have included jump behaviour of electricity prices into the model via

regime-switching framework and the assumption of zero risk premium for spikes.

Both mean-reverting processes were calibrated to the German electricity market

and predicted forward prices were compared with real market quotes.

During the course of forward price calculation we have assumed that the

market price of risk is constant. There are some authors [38] who argue that this

assumption is too restrictive and the market price of risk is rather an increasing

function of time. It could be of course possible to model the market price of

risk as a deterministic function of time λ(t) with similar pricing formula results

but we believe that the simplicity of model with constant λ outweighs possible

improvement in pricing. We also need to keep in mind that such function λ(t)

would need to be specified and its coefficients would have to be estimated which

could turn out to be a difficult task in the German electricity market.

Deterministic seasonal function f(t) which mean-reverting processes are built

around is modeled via time period indicators. The indicator approach allowed us

to discover interesting patterns of electricity prices in Germany but the question

is if the periodic seasonal function with no trend is appropriate representation

of average future spot prices, especially in the long run. For example it could

be possible to add a linear trend to the model and fit a new seasonal function

with a trend to the data. We would then obtain either upward or downward

sloping future spot price projection based on the historical price trend but we

believe that it is problematic to forecast future price trends from historical data

of the electricity market. Although electricity consumption is fairly constant,

electricity generation is heavily influenced by two opposing factors. On the one

side there is technology improvement either in generation efficiency or energy

sources extraction which pushes price down, on the other side there are renewable

energy penalties and certificate trading schemes imposed by governments which

increase production costs and forces electricity prices to rise. We argue that it

would be up to some fundamental analysis to assess these two factors in the past

and in the future to project a long-term price level. As we perform only statistical

analysis here, we believe that the assumption of no drift is appropriate.
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Comparison of predicted forward prices with market data yielded interesting

results. We have seen that both the Ornstein-Uhlenbeck and the Schwartz one

factor model produced long maturity term structure forecast which fits market

prices very well with the Schwartz model slightly outperforming OU. We have

first investigated forward predictions under the assumption of zero market price

of risk. After that we have included the market price of risk into the model

by minimizing the root mean square error between the prediction and market

prices. As an example, when we included the market price of risk in OU model,

we obtained root mean square error of 3.81 EUR which we consider to be a very

promising result considering that the average forward price in our sample is 53.32

EUR and prices range from 38.73 EUR to 68.05 EUR.

Both models perform poorer at forecasting short-term forward contracts rela-

tive to long-term forward contracts. This could be explained by the fact that the

short-term forward market is not very liquid, it usually covers only a few products

and therefore the comparison results should be treated with care. Alternative ap-

proaches to mean reversion get a lot of traction in recent years. Especially models

based on ARIMA processes seem to be promising ([3], [1], [31]).

There are possibilities how to improve our stochastic models and consequently

forward valuation formulas. We have treated those spot prices which we consid-

ered to be manifestation of jump behaviour relatively coarsely when we extracted

only information about intensity and mean jump amplitude from the data. Many

authors have focused on the modelling of electricity spikes recently ([35], [5] and

[17] for example) so it would be feasible to follow one of proposed approaches and

develop finer treatment of jumps. The valuation formula would then probably

become more complex if even a closed form solution possible.

Another option would be to experiment with the structure of the seasonal

function. Although we believe that the shape function presented in this work

depicts the regular pattern of electricity spot prices best, there are certainly

alternative ways how to model seasonality. We could for example use weekly

indicators instead of monthly indicators to allow for finer annual shape or we

could have included additional day types like certain holidays or special days

with unusual characteristics into the weekly shape. Another possible strategy

would be to fit the data to a prescribed functional dependence if we deviced

some.

The reader should be informed about potential pitfalls connected with pro-

posed model improvements and with the result of our model as well. Although all

models which make forecast based on historical data need to consider the length

of history which is relevant for the future, the issue of data relevance is especially

troubling for the electricity market. Some electricity markets are relatively young
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(which the German electricity market is) and therefore still undergo a develop-

ment phase. Also the impact of political decisions on the market functioning

proved to be huge and politicians can and do influence electricity prices enour-

mously. For these reasons one should be very carefull about the model complexity

and its data requirements because prices from not so distant past can be com-

pletely obsolete with respect to the current state of the market. Maybe here lies

the curious thing why most authors study the Nord Pool market which is among

the oldest and most developed electricity markets. In this thesis we have ven-

tured to study the German electricity market which is not so developed as other

markets but it is dominant in the Central Europe and particularly important for

the Czech Republic.
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