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Abstrakt:

Nervova spojeni v lidském mozku se méni na zdkladé vjemu z okoli. Zpusob,
jakym k proménam dochézi, a jak presné tyto promény ovliviiuji vlastnosti
mozkové tkané, dosud neni zcela pochopen. Prace zkouma souvislost paméti a
uceni s prostorovym uspofaddnim neuronu, zejména pak s tvarem jejich den-
dritickych vybézku. Soucéasti je model, ktery zachycuje mozkovou tkan pomoci
dvourozmérné mrizky s ruznymi druhy spojeni mezi jednotlivymi bunkami mtizky.
Tento model je formalné definovan a dale podroben teoretickému zkoumaéni.
Zasadnim vysledkem je dukaz véty o vypocetni sile definovaného modelu na
urovni Turingova stroje. K nalezeni vhodné architektury vzhledem k problému
slouzi nékolik variant evoluc¢nich algoritmu. Model s danou architekturou je déle
adaptovan na zdkladé komunikace s prostifedim. Popsané myslenky jsou im-
plementovany a podrobeny nékolika experimentum, které poukazuji na dulezité
vlastnosti modelu.
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Abstract:

Neural connections in the human brain are known to be modified by experiences.
Yet, little is known about the mechanism of the modification and its implications
on the brain function. The aim of this thesis is to investigate what impact the
spatial properties of brain tissue can have on learning and memory. In partic-
ular, we focus on the dendritic plasticity. We present a model where the tissue
is represented by a two-dimensional grid and its structure is characterized by
various connections between the grid cells. We provide a formal definition of the
model and we prove it to be computational as strong as the Turing machine. An
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are driven to demonstrate the key properties of the model.
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Introduction

The idea of brain as a center of intellect is very old. It is known that Hippocrates
(460-379 B.C.) stated his belief that the brain was the seat of intelligence [2].
It took more than two thousand years till the nineteenth century, when Camillo
Golgi discovered a stain that colored some of the brain cells, called neurons, and
revealed their structure.

A neuron is composed of a cell body, named soma, and many thin tubes that
radiate from the soma, called neurites. There are two types of neurites, axons and
dendrites. The former can be even a meter long and are believed to carry output
from a neuron to its targets. The latter are usually shorter then two millimetres
and they act like antennae of the neuron to receive the signals.

That picture led histologist Santiago Ramoén y Cajal to the conclusion, that
neurons don’t form a continuous system like blood vessels as it was believed
by that time. Instead he stated that the neurons must communicate by contact.
Since then, the scientists are trying to figure out what signals can be measured on
various places of the neural body and what is their exact meaning. To illustrate
what was available by Cajal’s time, see the Figure

The paradigm of many communicating cells combined with further discoveries
motivated Warren McCulloch and Walter Pitts to create a mathematical model
of a neural network [I4]. Theoretical modelling of brains pursue two goals since
then. The first is to understand the mechanisms of the brain like thinking and
memory, while the second takes the biological knowledge as an inspiration for
statistical tools designed to solve complex problems of the real world.

The first target is pursued in this work and the second is used to evaluate
the results. The aim is to study some of the issues of understanding the organic
brain by means of computer science. For that reason, we propose a theoretic
model that enables us to transform the problems from biological environment to
the field of computer science. We then examine the theoretical capabilities of the
model using tools of the automata theory. Next we propose methods for searching
the right configuration of the model by means of evolutionary algorithms and we
design a mechanism for adaptation of the model when solving a given problem.
We provide several links between our theoretical study and the mechanisms that
are observed in nature. Based on the methods proposed in this work and their
comparison to biological knowledge, we offer a possible explanation of some of
the learning processes that happen in the real brain.

To demonstrate properties of our model in practice, we provide a software
implementation and we run several experiments. The model is put into a syn-
thetic environment where it solves elementary logical tasks. This way we use the
second branch of brain modelling, where the models are used perform specific
computations, to verify that the model does what we expect it to do.

We focus on the spatial properties of the brain tissue in our study. It seems
that one of the factors which form our memory is the shape of dendrites [2].
We recall that dendrites are branched projections of neurons and that they are
supposed to act like antennae for receiving signal travelling between neurons.
The shape of dendrites is very likely to be highly dynamic and to be formed with
respect to experience [13], [28].



Figure 1: From “Texture of the Nervous System of Man and the Vertebrates”
by Santiago Ramoén y Cajal. The figure illustrates the diversity of neuronal
morphologies in the auditory cortex.



Our model describes the dynamics with high level of abstraction and simplifi-
cation. We conceive a two-dimensional space and we discretize it to form a grid.
Cells of the grid are connected in various ways between each other and there are
also connections to and from the outside of the grid. Different level of electric
potential is considered to be present in distinct locations of the grid. Strength
of some of the connections is modelled by conductance, that is, by the speed of
equalization of the potential between neighboring locations. For that reason, we
call our model the conductive field brain.

All the connections and the grid itself describe the modelled brain tissue,
namely the dendrites, somata, and axons of neurons that form it. There are
many other types of cells which compose the brain tissue, like the neuroglia for
example [2], but we consider only the neurons for the sake of simplicity. The goal
is to figure out what shall be the rules for connecting the different locations on
the grid, and, preferably, to induce the laws followed by the process that shapes
these connections.

We explore the state of the art in the chapter [1] and we compare our ideas
to what is already available. The model is described in detail in the Chapter [2]
which enables us to study some principles that the brain could follow. To support
the choice of the model, we examine it from the theoretical point of view in the
Section The Chapter 3| explains the issue of searching the right configuration
of the model. Then we implement the model as a piece of software and we describe
it the Chapter @ And finally, several experimental results are delivered in the
Chapter [5]



1. Related work

In this section, we compare the conductive field brain to the most successful and
deeply studied computational models that incorporate the principles used in the
model. The most resembling are various types of neural networks and cellular
automata. We also take into account several works that combine the notion of
grid and connectionist models.

To begin with neural networks, we firstly need at least a vague definition of
what is a neural network. To meet this request, we cite Raul Rojas: “If we
conceive of each node in an artificial neural network as a primitive function capa-
ble of transforming its input in a precisely defined output, then artificial neural
networks are nothing but networks of primitive functions” [19]. He than adds
that various models differ in the primitive functions used and the interconnection
pattern.

Our model contains a grid of real numbers, which is interconnected on a
neighborhood principle and the values are equalized in time. That is a high-
dimensional dynamic system itself, not considering other connections present. If
we were to say whether the conductive field brain is a neural network, we would
incline to the answer no. The model satisfies the condition that the neurons are
primitive functions with deterministic output, but we find the interconnection
too complex to call it just a network of neurons. In contrast, it may take the
signal emitted by an axon several steps till it reaches its target and the signal
may combine with diverse concurrent signals by the way.

The conductive field brain doesn’t seem to be a neural network from inside.
We compare its properties to neural networks from outside. It takes a vector
of inputs and produces a vector of outputs every step. Feed-forward networks
don’t carry any information between two consecutive computations. Therefore it
is meaningful to compare the conductive field brain to recurrent networks. Both
models keep an intrinsic state. As we show in the Section the conductive
field brain is at least as strong as a finite state machine or the Turing machine,
depending on the context. The recurrent networks can also simulate a finite state
machine [19] and as stated by Siegelmann [22], they can have super-Turing prop-
erties in a specific environment. Therefore, the conductive field doesn’t bring any
additional theoretical computing power. It can bring, however, some additional
insight to a spatial dependant learning process.

Candidate model for a comparison is also the Hopfield network, where the
neurons are represented by a set of binary threshold computing units, and ev-
ery pair of the units is interconnected. One of the major learning methods for
Hopfield networks is inspired by the Hebbian principle [I9]. The principle is some-
times summarized by “what fire together, wire together”. This shortcut could, in
general, fit also to the adaptation methods presented in this work, although the
details are different and the modification is modulated by multiple factors. More
details on that topic are presented in the Chapter [3 However we can find some
similarities, the Hopfield networks and the conductive field brain are conceptually
different. They differ in the way the threshold units are interconnected and the
notion of self-organisation is not present in the conductive field brain, since it
needs feedback to adapt.



Because of the grid interconnected on the neighborhood principle, we can try
to find some similarities in comparison to cellular automata. They also work in
regular formation and they determine the next state of every cell on the basis of
the current state of the cell and on the sates of its neighborhood. The topic is
well-studied and is described by Alonso-Sanz [1].

Nevertheless, the cellular automata lack sparse irregular connections over
long distances that are present in the conductive field brain. This issue is par-
tially solved by considering cellular automata networks proposed by Yang and
Yang [27]. They modify the conventional cellular automata by adding shortcut
connections and then they study properties of the newly created structure. Yet,
the shortcuts obey the same rules as the neighborhood connections while the
conductive field brain uses the threshold units. The threshold units perform a lot
of computation and they communicate with input and output. Since there is no
such tool in the cellular automata networks, the models become incomparable in
their function.

An other combination of the ideas of cellular automata and neural networks
was presented by Chua and Yang [4], [5] and reviewed by Cimagalli and Balsi [0]
five years later. It is a neural network interconnected in the same structure as a
cellular automata. The model is called a cellular neural network. Yet, it is still
a neural network with simple connections between neurons though in a regular
structure.

To design our model to more detail, we also searched for solutions of related
problems. If we conceive the potential values in the conductive field as column
heights of some kind of liquid, we can find some analogy in liquid surface mod-
elling. That topic is examined by Di Gregorio and Serra [7], who apply their
theoretical models to debris or mud flow simulations. Parsons and Fonstad [16]
model a surface of water by cellular automata. We do not implement to our
model any of the methods exactly, but we take inspiration from the solutions
proposed in these two papers.

To sum up this section we conclude that there is a wide variety of combinations
of the two key ideas. The grid where local information is processed in every cell
and than communicated with its neighborhood is mostly called cellular automata
or sometimes dynamic systems in case of continuous states. It is mainly used
to simulate complex systems or to process an information on a locality basis.
And next, there are neural networks with an idea of primitive functions wired
together to form a network with an input and an output. We wish to contribute
to understanding of these structures and to come up with a notion of how the
primitive functions may be connected on the locality basis. Our model uses
the neural network idea and replaces the wired connections by an environment
simulated by cellular automata. The model is designed to bring some insight into
the biological knowledge of human brain eventually.



2. The model

For the purposes of the model, we accept the paradigm that electrical impulses
carry the substance of the information coded in the brain. We also think of
neurons as of simple computational units consisting of a soma, dendrites and
an axon. The soma decides whether the neuron produces electrical signal or not.
The dendrites carry the signal from the surrounding environment to the soma and
the axon transports the signal from the soma to a different, sometimes distant,
place.

Lets imagine a schema of a neural soma and the dendrites radiating from
it as depicted in the Figure a). We concentrate our attention to its spatial
properties. For the purposes of the model, we simplify the situation by taking into
account only two dimensions. Then we discretize the problem to obtain a grid.
This enables us to see the environment as regularly distributed cells, that have
defined different properties of conductance of signal between them. The cells that
represent places connected by a thick dendrite are supposed to share the signal
easily from one to an other. The cells that have a thin or none dendrite between
them are assumed to conduct the signal weakly. Moreover, the discretization has
its consequences in the representation of time. We think of the model as of a
synchronized system working in steps. The idea of discretization is depicted in
the Figure [2.1]

We now describe a model of a brain tissue containing somata and dendrites
represented by a grid. The axons are realized by a cell more or less distant from
the soma. The grid has a parameter for every cell, called a potential. If the
potential in a cell that stands for a soma raises above a certain threshold, the
soma decides to produce a signal. This results into a change of potential level
in both the somatic and the axonal cell. The potential in the somatic cell is
always diminished by a spike. Axon changes the potential either in a positive
or a negative way, but every neuron keeps the same polarity forever. We call
the neurons that produce positive signal excitatory and those producing negative
signal are inhibitory.

The neurons we have described so far have both the soma and the axon inside
the grid and are therefore named internal. There are also neurons that wire the
model to the outer world by inputs called sensors and outputs called motors.
Sensors are additional places, where neurons of a special kind, called sensory
neurons, have their somata. The input consists of boolean values, one for each
sensor. It says whether a group of sensory neurons connected to the sensor is
active or not. The output works in a similar manner. A motor neuron has its
soma inside a cell of the grid and the axon is connected to an output, called
motor. An illustrative example is depicted in the Figure TODO

Because the model is inspired by mechanisms observed in human brain and
the main difference from neural networks is the grid of cells that conducts the
potential, we call the model a conductive field brain. The description provided in
this chapter goes to the extent needed for classification of its general properties.
We give formal definition and more detailed description in the following chapters.
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Figure 2.1: Schematic illustration of a) a neuron; b) a neuron on a grid; c)

discretized neuron.



2.1 Formal Definition

Before we discuss the computational strength of the conductive field brain, we
need a more rigorous definition. The conductive field brain consists of a grid of
cells called the conductive field, an input, an output, and three types of neurons:
internal, sensory, and motor. The input consists of sensors and the output consists
of motors. Every cell of the conductive field has its own potential and each pair of
neighboring cells has defined a conductivity which determines how much potential
flows between them every step. There is also a fade-out effect. Every step, a part
of the potential is lost in every cell.

An internal neuron has two terminations, each connected to a cell, and a
threshold. The first termination is called the soma. If the potential in the somatic
cell exceeds the threshold, the neuron is active. It is passive otherwise. The second
termination is called the axon. A neuron has positive or negative polarity which
makes it excitatory or inhibitory respectively. When a neuron is active, it spikes.
The spike is a process, during which a neuron diminishes the potential in the
somatic cell and changes the potential in the axonal cell. The potential is raised
if the neuron is excitatory and it is diminished when the neuron is inhibitory.

The other two types of neurons are derived from the internal neuron. A
sensory neuron doesn’t have a soma. It is connected to a sensor instead and
is active when the sensor is active. A motor neuron is connected to a motor
and doesn’t have an axon. When a motor neuron is active, it activates the
corresponding motor.

Then the model works in steps. In the beginning, the potential is zero in
every cell. A step of a conductive field brain consists of the following actions:

1. input is updated,
2. sensory and motor neurons spike,
potential conducts and fades out,

motor neurons spike,

AN B

the output is generated.

We will now build the model formally. Let us consider h,w € N to be the
height and width of the conductive field respectively.

Definition. A conductive field with dimensions hxw is a tuple F = (P, C, f), where:

o P c R represents the potentials,
o C € (0,1)"** stands for the conductance,
o f€(0,1) is the fade out factor.

The value c; j1 determines the conductance of the potential between p; ; and py ;,
where k = (i + 1) mod h. Similarly for the second dimension.

We may have noticed that the conductive field forms a torus. Indeed, the
cells at the borders are connected to the cells at the opposite border of the grid.
The definitions of the three types of neurons follow. By coordinates we mean the
indexes to the conductive field.



Definition. An internal neuron is a tuple N' = (s,a,p,t,d), where
e s € N2 denotes the coordinates of the soma,

a € N2 denotes the coordinates of the azon,

p € {+,—1} is the polarity of the neuron,

t € R stands for the threshold,
e d € (0,1) is the spike diminishing factor for the somatic potential.
A sensory neuron is a tuple N° = (iy, a, p), where:
e a c N? denotes the coordinates of the azon,
e p € {+,—} is the polarity of the neuron,
e i, € N denotes the sensor index.
A motor neuron is a tuple NM = (i,,,s,t,d), where:
e s € N2 denotes the coordinates of a soma,
e ¢ € R stands for the threshold,
o d e (0,1) is the spike diminishing factor for the somatic potential,
e i, € N? denotes the motor index.

We sometimes use “a passive inhibitory axon” or similar inexact expression
when we talk about properties that belong to neurons as if they belonged to their
parts. We are aware of not producing a confusion and we provide the correct
expression when needed. The shortened expressions serve to make the text more
comprehensible.

Let us now introduce the definition of the conductive field brain.

Definition. Let h,w, s, m € N. A conductive field brain B is a tuple (F,1,S, M,s, m),
where

o ['=(P,C,f) is a conductive field with dimensions h X w,

I is a finite set of internal neurons,

S is a finite set of sensory neurons,

M 1is a finite set of internal neurons,

s € {0,1}" is a vector of sensors,

m € {0,1}" is a vector of motors.

10



As we mentioned earlier, the conductive field brain model works in steps. It
starts the computation in the time zero with a brain By, where the potential in
every cell is set to zero. To make a step from time ¢ to time (¢ + 1), we need to
possess a brain B; and an input vector i, € {0,1}°. Then we can define a set
of intermediate step functions 7, ..., 75 that, when composed, give us the step
function 7. We denote the brains that emerge by application of the intermediate
step functions by By ;.

e The function 71 updates the sensors in B; to the input values

Bt,l =T (Btait) = ((Pt, C, f) ,I, S, M, it, mt) .

e The function 7, takes B} and performs the spikes of the sensory and internal
neurons. There are five possible cases that can happen in a cell.

1.
2.
3.

There is no active axon and no active soma in the cell.
There are active somata but there is not any active axon.

The cell contains more active excitatory axons than active inhibitory
axons.

. The cell contains more active inhibitory axons than active excitatory

axons.

. The number of active excitatory and active inhibitory axons in the cell

is the same and grater than zero.

Bt,? =T (Btl) == ((Pt,Qaca f) Ia Sa Ma itamt)a where

(P [x,y] in case [T]
Pz,y] - Tgepd in case 2] where D are the spike

diminishing factors of the active somata,

Pz yl =
w2 (7, Y] 1 in case 3l
0 in case [
(0.5 in case

e The function 73 conducts the potential between the neighboring cells

Bt,3 = T3 (Bt,Z) = ((Pt,3> C, f) ,[, S, M, ita mt) 3 Where

Ci i
Pt,3[y7 x| = (Pt,g[(y + 1) mod h,z] — Pm[y,;p]) L Zhhl

5
Ci i
F (Paly, (o4 1) mod w] — Py, a]) - %32
C(i—1) mod h.j,
+ (Pi2|(y — 1) mod h,x] — Pialy, x]) - %
Ci (j—1) mod w,
+ (Pialy, (v — 1) mod w] — P,aly, x]) - %

11



e The function 74 applies the potential fade-out

Bt,4 =T (Bt,3) - ((Pt,37 C? f) 7]’ Sa M7 ita mt-‘rl) ) where

e The function 75 performs the spikes of the motor neurons

Bt,5 =Ts5 (Bt,3) = ((Pt,57 C, f) 1,8, M, iy, mt+1) , where

1 if there exists an active motor neuron connected to the motor %,
m ;=
(18 0 otherwise,

Px,y] - d, if there exists an active motor neuron
Pis[z,y] = with a soma (y, ),
P x,y] otherwise.

We may notice an interesting fact. There exists a single step function 7 that gets
a brain and an input vector as arguments and returns a corresponding brain in
the next step, for any correct combination of a brain and input.

Definition. Let B be a conductive field brain. The step function is a function
defined as
T(B) = (15014013 0M07)(B,i)).

Lemma 1. The potential p of every cell of the conductive field is always in the
interval A = (0,1).

Proof. The potential is zero in every cell in the beginning of every computation.
The spikes of the neurons lead to the values 0, 1, or 0.5 that all belong to A. The
fade-out factor f isin (0,1) by definition and if p € A, then p- f € A. The spike
diminishing factor for the somatic potential d also fits into the interval (0, 1) and
keeps the potential in A. Finally during the conduction, every cell gets a new
value p based on the potentials of its neighbors pq,...,ps and its own current
potential pg as follows

4

4
p=mty HR =Y <
k=1

k=0

=1.

U] ot

2.2 Computational Strength

To see what the conductive field brain is capable of, we compare it to a concept
called an automaton. The automata are whole group of models where the basic is
a finite automaton. We consider the definitions used by Sipser [23]. The automata
are deeply studied and many relations between various automata models are well
known. It is therefore meaningful to compare the conductive field brain to an

12



automaton with similar properties and benefit from the classification that has
been already examined.

Our model reads input and writes output every step and stores information
using the potentials. The finite state transducer, which is also sometimes called
a Mealy machine, can be the first candidate for a comparison. It consists of a
control unit and an interface. The control unit is a finite automaton, where every
transition from one state to an other yields an output character. The interface
includes a reading head on an input tape and a writing head on an output tape.
Both the heads are set to the beginnings of the tapes when a computation starts
and they move one position forward every step.

There is an other candidate for a comparison. It is called the Turing machine.
It has also a control unit and an interface for reading and writing. The interface
consists of a single head on a single tape for both reading and writing. The input
string is written in the beginning of the tape and is followed by empty characters
when the computation starts. The head is positioned on the first character. Every
step, the head reads a character, handles it to the control unit and waits for a
command consisting of a new character to write and a direction to move. It moves
at most by a single character forward or backward. The control unit is again a
variation on a finite automaton. It obtains an input character and based on the
current state it decides what is the next state, which symbol is written to the
tape, and which direction the head goes.

One can notice that we talk about a control unit and an interface in the two
descriptions. The nature of the control units does not differ. We can make a pair
of copies of the output alphabet for a control unit of a Mealy machine, one of
them coding the original character plus move forward while the other stating for
the same character and move backward. Then the control units are equivalent.
Fore that reason, we state that the difference between the two machines lies in
the interface.

In terms of a machine, the conductive field brain is a control unit and needs
to be bound to an interface. We connect it to the Turing’s interface and call the
result a “brain machine”. The choice has two reasons. The Turing’s interface is
a more complex version of the Mealy interface and we show that the conductive
field brain can cope with that. Moreover, our model has real numbers in the
representation of potential and it is not clear whether the Mealy machine is
as strong as the newly created machine. We show that the Turing’s model is
equivalent to the brain machine. Yet we declare that much of the strength lies in
the interface used.

Before we go deeper to the comparison, we discuss one more idea. As it was
reasonable for Allan Turing and George Mealy to set their control units into the
environment of tapes, it may be reasonable to set the conductive field brain to
a different environment. The model is inspired in many aspects by a biological
notion of brain. It may be applied to solve problems similar to what the organic
counterpart does.

When a brain gets an input, it is typically a representation of a very limited
part of projection of an unlimited world. Till it reacts, the world may change. The
action corresponding to the output of the brain is then applied to the modified
world and produces an other change. Concede the following example to clarify
what the situation may look like. A sensory neuron is activated when an animal

13



touches an object. Part of the unlimited real world is a stone and the animal’s
body approaching it. The representation is a signal in a sensory neuron. Output
may be an impulse to a muscle leading to collision avoidance.

An environment meaningful to our model may be a simple robot with a few
touch sensors that generate binary input and two motors that steer movement of
the robot on a plane. Compared to that, a tape with a reader, writer and a set
of characters seem to be sort of a limited world. That kind of world is useful to
study some of the properties that a model exhibits. It doesn’t answer questions
like what happens if the world is dynamic or whether the inputs are sufficient to
represent all the relevant information about the reality.

The world we just described fits to the notion of agent systems and is more
rigorously defined by Wooldridge [26]. He reuses the environment classification
proposed by Russel and Norvig [21]. By that classification, the environment we
proposed is inaccessible, non-deterministic, non-episodic, dynamic, and continu-
ous. It means that the agent can’t observe whole the environment at a time, the
next action does not guarantee what will be its effect, there are not independent
episodes where the agent would be evaluated separately, the environment changes
itself, not only by the agent’s actions, and there is no fixed finite number of vari-
ables that would capture the state of the environment. That properties give rise
to a complex decision-making problem. On the other hand, the environment,
which the Turing machine lives in, is quite an opposite except it is inaccessible.

Since the author believes that the properties of the model should be demon-
strated in the simpler world first, we show that what is possible to compute by a
Turing machine, that is possible to compute by a conductive field brain machine
too. To have a strong basis for the proof, we start with a formal definition of a
Turing machine [23].

Definition. A Turing machine is a tuple (Q, 3,1, 0, qo, Gaccepts Qreject), where Q, 3, T
are all finite sets and

~

. Q) is the set of states,

2. Y 1s the input alphabet not containing the blank symbol _ |
3. T us the tape alphabet, where - € I' and X C T,

4. 0:QxI = QxT x{L,R} is the transition function,

5. qo 1is the start state,

6. Qaccept € @ is the accept state, and

7. Greject € Q s the reject state, where Greject 7 Gaccept-

The Turing machine T accepts a word W &€ ¥* if the computation on that
word stops in the accept state.

Let T accept W iff W € M, then M is recognized by T' and we denote this
fact by M = L(T).
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With the Turing machine definition at hand, we can define a machine con-
trolled by the conductive field brain. We rewire the input and output of the
control unit to the sensors and motors of the brain. The accept and reject states
are represented by accept and reject motors. The start state gy is represented
by a sensor sy that is active only in the first step of the computation. A formal
definition follows.

Definition. A brain machine is a tuple (3,1, B, Mpn, Mot ), where
e > is the input alphabet not containing the blank symbol . |
e [ is the tape alphabet, where o € I' and ¥ C T,
e B is the conductive field brain
® Mmi,: X — Siy, where Sy, C P (S), is the input map,
® Mout: Moy — Q X T x {L, R}, where My, C P (M), is the output map.

In the rest of this section, we show that for every Turing machine, there is an
equal brain machine. The requirement is formulated into the next definition.

Definition. A brain machine B and a Turing machine T are equivalent if the
equation L(B) = L(T) holds.

Let T be a Turing machine. We then construct a brain machine R that
imitates every step of T'. For the components of T"and R we use the same notation
as in the definitions. Let us think of the conductive field of B as of a table. This
table represents the transition function ¢ of the simulated Turing machine. The
rows correspond to the states ¢ € @), except the accept and reject states which
are represented by motor outputs. The columns of the table correspond to the
input characters x € X of the Turing machine. To illustrate this imagination, see
Figure [2.2]a.

Every cell of that table is formed by a rectangular part of the conductive
field. In particular, it is a grid of 5 columns and 5 rows. We will call this grid
gi.j, where g; and x; correspond to the row-state and column-character notation.
We want the grid g;; to work as the logical and. If the row-state ¢; and the
column-character z; are both active, it activates the internal and motor neurons
according to the transition function § (¢;, z;) of the Turing machine. Let us define
a vector of cells

a;; = (9:12,2],9i;(4.2], 612, 3], 9:.; 4, 3], 6i.;(2, 4], 9:,; 4, 4]) -

The notation is depicted in the Figure[2.2lb. We refer to these cells as to the a-cells
and to the rest of the cells of g, ; as to the b-cells. We then set the conductance
between the a-cells to 0.9999 (strong dotted lines in the Figure 2.2b). The rest
of the conductance values is set to 0.0001. [

IThe reason for the choice of these “nearly one” and “nearly zero” values is strictly practical.
We want the core cells ¢q, ¢, and ¢; to communicate as much as possible and the a-cells serve
as an insulator. The values 0 and 1 are banned, because the adaptation algorithm described
later can never reach them.
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Figure 2.2: Scheme of a brain machine that imitates a turing machine.

As we mentioned earlier, the reading part of the head is mapped the sensors.
The brain B has a sensor s; for each input character x; € ¥. There is a set of
sensory neurons for each sensor s; that connect it to the set of cells in the column
j of the table

S; =A{9i, 7. kli €1Q| .k € {5,6}}.

For the start state qgq.t, we have a special sensor and a set of sensory neurons
that are active only in the first step. To represent the transition between the
states, we make use of the internal neurons. There exists an internal neuron that
has its soma in the cell g; ;3 and its axon in the g, ., u € |Q|, z; € &, r € {1,2}
if and only if

0 (qiij) < {(qua Y, d) ‘y el,de {L7 R}} :

We complete the description by defining three types of motor neurons. First
of them connects the cells g; ;4 to the motor of the corresponding symbol y. The
second type connects the same cell to the motor representing the appropriate
direction of head movement d. The last type of the motor neurons connects the
cells ¢; ;4 to the accept or reject motors when 0 (¢;, x;) leads to accept or reject
state respectively. We set the rest of the parameters as follows

e the spike diminishing factors for the somatic potential equal 0.7,
e the thresholds of the motor and internal neurons are set to 0.039,
e the fadeout factor f = 0.1.

We now formulate and prove two lemmata which ensure that the grids g; ;
work as and operands. The first lemma discusses the insulation of the a-cells by
the b-cells. The second lemma states that the potential has the right value.
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Lemma 2. The potential in the b-cells is less than 0.001 in every step.

Proof. The potential is zero in the beginning in every cell of the conductive field
brain by definition. The b-cells don’t contain any axons or somata, therefore
the only way how to raise the potential is by the conductance function 75. The
maximal magnitude of the incoming potential p;, is

Pin < 4-0.5-0.0001 = 0.0002. (2.1)

The extreme situation happens if the cell has four spiking neighbors, the fade-
out factor is 0.5 and the conductance of the b-cells to all neighbors is 0.0001.
Now consider the lowest ¢, when the cell potential exceeds the bound 0.001 right
before the fade-out. Because of the equation [2.1] the potential in the end of the
preceding step had to be

Pt — Pin 2> 0.001 — 0.0002 > 0.0008,

That was after the fade-out, so right before the fade-out in the preceding step,

the potential was

0.0008
Di—1 = 05 = 0.0016 > 0.001.

Which is in contradiction to the assumption that ¢ was the lowest. O
Lemma 3. Let us have indezes i € |Q| and j € |X|.

1. If there are more active excitatory than inhibitory azons (case @ of the 1
function) in the cells a; ;1 and a; 5, then the potential p on the cell a; ;3
obeys the inequalities

p > 0.039, (2.2)
p < 0.05

after every step t.
2. Otherwise the potential p is after every step t bounded by
p < 0.038. (2.4)

Proof. We begin with the first inequality 0.39 < p. Let the potentials in the
cells a; 1, ai;3, and a; ;5 after the spike of the sensory and internal neurons be
denoted by pi 4, P34, and ps , respectively. Recalling that f is the fade-out factor,
we get

Pi,a — P3,a Ps5.a — P3,a 2'p3a
;.ca_i_;.ca_—’.c . i
5 5 5 b) /

D= (pg,a +

The assumption for the first case of the lemma says that the potentials p; , and
Ds.o are right before the conduction equal to one, therefore we can write

Cq (1 _p3a) Cq (1 _p3a) 2cbp3a
> i 9 _ 9 .
b= (pS,a + 5 + 5 5 f
> D3a (b — 26a5— 2¢p) + 2¢, o
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The conductivity between the pairs of a-cells is set to ¢, = 0.9999 and between
the other pairs of cells to ¢, = 0.0001. Moreover, from the Lemma [1| we know
that the potential is always in the interval (0, 1). For that reason, we obtain

The potential flow from the cell a; ; 3 was bounded from the top for the purpose
of the preceding inequality. Let the maximal potential in the b-cells be denoted
by pp. Thanks to the Lemma [2] we know that py is less than 0.001 and therefore
there is the following bound for the maximal value of p

a a a a 2-
pé(ps,a+p—1’ 5p3’ R A 5p3’ ot 5pb-cb>-f (2.5)
< 5p3,a + QCa (1 — p37a) + 20(, (0001 — pg,a) ) f
- 5
< P3.a (5 —2¢, — 20;) + 2¢, +0.002¢, 1 (2.6)

After substitution of the constants, the bound becomes
p < 0.06p3,, + 0.01999802.

We can now employ the same trick as in the proof of the Lemmal[2] The potentials
are all zero in the beginning. Consider the lowest time ¢ when p is grater then
0.05. We know that p and p3, obey the inequality , therefore the value p3, is
grater than 0.05. Since there is no axon in the cell a; ; 3, the potential had to be
grater than 0.05 in the end of the preceding step, which is in contradiction to the
choice of t.

The last inequality p < 0.038 is proved in similar manner to the other two.
We know, that at last one of the potentials p;, or ps, is not raised by spiking
excitatory axons. Lemma [I| says that the potential was at most 1 before the last
fade-out, so it is lower than 0.1 after the fade-out. Re-using the inequality [2.5]
we obtain

< 5p3,a + Cq (1 - p3,a) + Cq (Ol - p3,a) + 2Cb (0001 - pB,a)

p< : - f
< P3a (b —1.1c, — 20;)) +1.1¢, + 0.002¢ iy
< 0.0779982p; , + 0.021997804. (2.7)

This recurrent bound is sufficient to prove p < 0.038 assuming that the potential
after the preceding step was lower than 0.05. Since there is not any soma of a
motor neuron in the cell a; ;3, the inequalities hold till the end of the step. [

Observation 4. The same inequalities as we proved for the potential of the
cell a; j3 in the Lemma@ hold for the cell a; ;4 before the motor neurons spike.

We formulate the theorem about the comparison of computational strength
of the brain machine and the Turing machine.

Theorem 5. For every Turing machine T' there exists a brain machine B such
that B and T are equivalent.
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Proof. Let T be an arbitrary Turing machine. We construct a brain machine R
that imitates every step of T as described earlier in this section. Because the
thresholds of the motor and internal neurons are set to 0.039 and because of the
Lemma [3] the grids g; ; behave like and operators. The potential in the cells a; ;3
represent the state of the machine 7" and the neurons represent the transition
function . The brain machine R writes the same symbol to the tape and does
the same movement with the head as T" does. Because every step of the machines
is the same, every computation on the same word x € X is the same and B and
T are equivalent. O]

The other direction of equivalence between the Turing machines and the brain
machines is discussed by the following theorem.

Theorem 6. For every brain machine B there exists a Turing machine T such
that T' and B are equivalent.

We don’t provide a detailed constructional proof here, because it would be
a technical challenge itself. Since the calculation of a brain machine is strictly
algorithmic with a finite input and output, there is no expectation that it could
outperform the Turing machine in computability. The key idea is that T" simulates
a computation of B to a limited precision and, if it recognizes that the precision
is insufficient at some point of the calculation, it starts again and recomputes
the numbers to a higher precision. It can do so since the tape is infinite and the
input is stored on the tape. After any finite number of steps, there is a finite
set of possible settings that the machine B can reach and therefore only a finite
precision is needed to determine the further step (thresholds and potentials can
be compared in a finite time).

We also discuss the statement of Siegelmann [22], that there exist a neural
network which is computationally stronger than the Turing machine. The key
feature that the Siegelmann’s model exhibits is the precision of real numbers
which enables it to perform infinitely precise computations.

We could think of a modification of the conductive field brain in the way
that the thresholds were smooth. That is, the neurons would be equipped with
a continuous activation function. However, it raises some non-trivial questions.
The current neurons set the potential in the axonal cell to a fixed value if they
spike, and they leave the current value if they are inactive. That is completely
changed when the activation function is continuous. If we set the potential in the
axonal cell to the value of the activation function, the potential might drop even in
the case of a spike of an excitatory neuron. If we realized the spike by summation,
that is, we added the value of the activation function to the current potential, we
wouldn’t be able to guarantee the potential values in the interval (0, 1). Moreover,
the signal propagates through a grid where it looses its strength with distance.
An infinitely small change in the axonal cell would be much harder to detect than
an aggressive setting of the potential to the maximal value.

We conclude that the brain machine, which is base on the conductive field
brain, is as strong as the Turing machine. There may exist a stronger variation,
but a modification, that would bring this strength to the conductive field brain,
is necessarily non-trivial.
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3. Searching the space of
conductive field brains

In the previous chapters, we introduced and defined the conductive field brain
and the brain machine that incorporates it. We showed that for every Turing
machine, there is a configuration of the model that behaves exactly the same.
Existence of such a structure motivates us to search for the right setting for a
given problem.

We divide the search for the right conductive field brain into two parts. Gen-
eral properties have to be determined first. This includes the size of the grid,
count of sensors, motors, and number of neurons and relative positions of their
somata and axons. Secondly we need to set the conductance between neighboring
cells of the conductive field and thresholds for neural activation. We consider the
first group of the properties to be stable and not changeable during the life of the
brain. There is evidence that these properties change in a human brain. We have
decided to neglect these properties in the sake of simplicity. The second group of
the properties is conceived to be much more dynamic and is adapted while the
conductive field reacts to the environment.

3.1 Signal interpretation

The search for the right setting of the model is a problem-dependant task. We
need to feed the right input and interpret what happens to obtain an output. Lets
examine the execution of the the model from a larger scale of view for that reason.
The conductive field brain takes a vector of boolean values as an input and gives
an other boolean vector as an output each step. The model does not exhibit any
implicit meaning of the vectors and it does not say what is the relation between
a set of consecutive inputs or outputs.

Encoding of information in an organic brain is a subject of intensive research.
Spiking frequencies of neurons seem to carry a lot of information, though there
is evidence suggesting that the temporal properties of neural activity are rather
more complex [20]. The true firing rate of a set of neurons is unknown and its
estimation isn’t a simple task [25]. However, ae find inspiration in the spiking
frequency encoding when interpreting the input and output signals of the model.
Our approach is simplified to the extent that we encode intensity of a sensory
stimulus into spiking frequency of sensory neurons. To obtain an output, we
measure the firing rate of motor neurons. While the other temporal properties of
the signal are neglected in the view from outside, they may carry some additional
information inside the model.

3.2 Conductance
We now set our focus to the conductance adaptation that models the dendrite

modification. The source of motivation and inspiration comes again from biolog-
ical discoveries. A lot of evidence indicating that the dendritic growth is highly
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dynamic has been described during the last two decades [13], [28]. Among the
other factors, the dendrites seem to be reshaped by neuronal activity. Little is
known about what role the modifications play in memory formation and what
are the key principles which determine the future shape of a dendrite [12].

Biological observations suggest that the dendrite shaping process is modulated
by selective attention [I8]. The changes are made to the parts of the brain, that
is responsible for the decision being made. We cope with that by saying that
our model shall be trained on a single problem and therefore there is no need
to modulate the learning process selectively by attention. In other words we
model a part of a brain tissue that pays attention as a whole. On the other
hand, Friston [I0] proposed that the reward signal in the brain is not targeted to
particular units, but is rather distributed in a generalised way. This suggestion
was supported by a strong evidence observed by FitzGerald [9] using the fMRI. If
we accept that the credit assignment problem is not solved entirely by the reward
distribution mechanism, then we need to figure out in what way is processed the
local information.

We address this issue by the following idea. Suppose, that a neuronal soma
receives a reward signal. The neuronal body can store information about intensity
of its last activity and it could conclude from which part of the soma or a dendrite
the input signal came. Combination of these factors could drive the dendrite
modification process. A dendrite could then strengthen in the direction of the
input signal that precedes the reward. The information needed could be stored
somewhere in the chemical properties of the neuronal membrane for example. The
author modestly admits that this idea is solely a product of his imagination and
that he has not any supporting biological facts except the sources cited. Instead,
we hereby present a model and its computer implementation in the following
chapter and deliver some supportive experimental results.

As a consequence, we obtain a mechanism that is close to the principle known
as Hebbian learning. Hebb’s idea was that two neurons which are simultaneously
active should develop a degree of interaction higher than those neurons whose
activities are uncorrelated [19]. Our approach is more detailed and it incorpo-
rates the feedback information. If we supplied our model with a steady reward,
we would expect the Hebbian behavior to emerge. The model called Hopfield
networks is known to implement a variant of the Hebbian learning [19]. However,
the Hopfield networks apply the idea as is, while we state that such a behavior
may emerge in our model from a set of lower-order rules.

In principle, a reinforcement learning method is used. The adapted model
reacts to an environment. It produces output and gets back some feedback from
the environment. The model may change its properties based on the feedback
and then it produces next output to get an other feedback.

3.3 Thresholds

The internal and motor neurons need their thresholds to be set. The task is
mainly to tune the thresholds so they split the strength of potential that can
occur at the place of the neural soma. The author doesn’t have any essential
clue of what the right mechanism is. We therefore use the simplest working
mechanism at hand. It is a result of trial and error method and an additional
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Figure 3.1: Threshold tuning for multiple levels of signal strength. The threshold
is painted in orange solid line when a) bounds are applied to the threshold value
b) bounds are applied to the activity value. Potential on the somatic cell is
represented by the vertical axis and the horizontal axis states for time. The red
dashed lines (s1) describe the potential level in the situation when high activity
is expected and the green dashed lines (s3) depict the situation when low activity
is expected.

a) b)
p p

condition. We require that the mechanism is empathic, which means that it uses
only information accessible at place and it doesn’t demand any complex strategy
or global knowledge.

A neuron monitors change of two quantities, the reward and its own activity.
If the activity changes in a certain way and the reward raises at the same time,
the threshold moves to support the activity change. The threshold drops in case
of raising activity and vice versa. When the reward drops, the threshold value
moves in the opposite way and it continues in the movement by the last decision in
case of stable reward or activity. The mechanism is illustrated in the Figure (3.1}
This approach brings two problems to solve.

The first is an additional parameter, because we have to know how much the
threshold should rise or drop. If the step is too small, the algorithm is too slow. If
we make the step too big, the precision is lost and it tends reach unreasonably big
numbers. We therefore set a relatively large step in the beginning and we make
it smaller every time the desired direction of the threshold modification changes.
The size of the step in the beginning brings an other problem. It can rise too
quickly so that the change of activity of the neuron cannot be detected. In that
case the rule of continuing in the last direction is applied and the threshold value
diverges. For that reason, the bounds for lowest and highest activity are set. If
the activity approaches zero or it is hundred percent for some time (active in
every step) the threshold movement stops.

We may ask a question why the bounds are set to the activity instead of the
threshold. The reason is that there may be multiple levels of signal strength in
different situations. A schematic example is depicted in the Figure When a
threshold is low and the somatic potential gets a little higher, activity rises. If
a negative feedback comes, the threshold starts to rise. It may be perfectly fine
that the activity becomes zero in that situation. If the threshold was bounded,
it would rise till the bound. But there comes the second case, when the potential
is higher than before and the desired activity is high. For that reason, we stop
the potential change when the activity reaches an extreme value. Than there is
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a chance that the threshold stops in between and separates the two cases.

3.4 Evolution

We have described adaptation of conductance and thresholds in the previous
sections. These methods adapt a model with a given architecture, that is, when
size of the conductive field, somata positions, and routing of axons are fixed.
The biological counterparts of these properties are generally considered to be
genetically predetermined to a high extent [2]. For that reason, we employ an
evolutionary algorithm (EA) to search the space of available architectures. The
implemented algorithms are presented and their resemblance to some well-known
variants of EA is pointed out.

There are many variants of evolutionary algorithms, though most of them
share the same underlying idea. They work with a population of individual
solutions of a given problem. The environmental pressure chooses the fittest
candidates to survive and to seed the next generation. According to Eiben and
Smith [§], the following components of an evolutionary algorithm need to be
defined in order to specify particular evolutionary algorithm

e representation (definition of individuals),

e evaluation function (or fitness function),

e population,

e parent selection mechanism,

e variation operators, recombination and mutation,
e survivor selection mechanism (replacement).

First, we discuss what an individual is. A concept, that needs to be under-
stood, is that an individual is a solution candidate in the context of the problem.
It is the actual architecture of a conductive field brain. This individual is repre-
sented by a gemome in the context of the EA. There may be multiple genomes
that represent the same architecture, but only a single architecture exists for
every genome.

The encoding of individual architectures into genomes influences efficiency of
the algorithm. The tasks we want it to solve are

e choose the right size of the grid,

e determine the counts of internal, sensory and motor neurons,

position the neurons each to other,

e determine polarity of the neurons,

select the right sources and targets for the sensory and motor neurons resp.
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The number of motors and sensors is given by the definition of the problem. The
information is stored along with the genome but it is not expected to evolve. We
choose the following encoding for the rest of the parameters. The size of the grid
is represented by two integers. The neurons are represented by a chain of genes,
each stands for a single neuron. A gene contains a pair of integers representing
coordinates of a soma and an axon (or an index of a motor/sensor in case of motor
or sensory neuron) and a boolean flag which determines whether the neuron is
excitatory or inhibitory. More discussion on the topic is provided later in this
section and an illustrative example can be found in the Subsection [4.1.1]

The evaluation of individuals is given by a particular application of the model
and is discussed separately. Examples of the fitness function may be found in the
Chapter 5| in the experiments description. For the purposes of this section, we
conceive it to be a function which takes an individual and gives a real number
between —1 and 0, the higher the number, the fitter the individual.

Let us now discuss the mutation operator. The problem, whether mutations
are purely random or they are directed, has been an open question since Charles
Darwin came with his famous theory of evolution [I7]. Consider an example of
bacteria resistant to certain antibiotics for illustration. Those, who argue for the
randomness, state that the mutation of bacteria which caused the resistance would
occur, even if people were not using the antibiotics. The resistance wouldn’t be of
any advantage and it might disappear, but the mutation would occur. It means,
that the mutation would have happened before the antibiotics tried to kill the
bacteria concerned.

Because our aim is to create a genome with certain properties, we may benefit
from a directed mutation that uses additional information gathered during the
genome evaluation. As mentioned earlier in this chapter, higher conductance
between a somatic cell and its neighboring cells should develop when the signal
coming from the particular direction is more important. Following this construct,
the additional information which directs the mutation is a grater probability of
neuron movement in the direction of higher conductance. We will use this directed
mutation (i.e. movement of the soma in the direction of highest conductance) as
an alternative to a purely random mutation.

The population doesn’t have any specific structure in our EA. It is represented
by a list of genomes with a fixed size. However, we need to describe how it
develops in time. We provide several versions of the algorithm based on the
complexity of the problem.

First, we describe the simplest approach which we call guesser. It is inspired
by the variant of the EAs called the evolutionary strategies [8]. However, we do
not try to imitate that algorithm. As the name suggests, our algorithm mostly
tries to “guess” the right genome and then refine it by mutation. Guesser is
a special case of EA where populations contain only a single genome. It loops
through consecutive generations and it either generates a new genome or mutates
the preceding one. Guesser takes a parameter Blind M uts which limits the longest
sequence of the consecutive mutations. When this limit is broken, a new genome
is generated. Guesser returns the fittest genome over all generations. A scheme
of the guesser algorithm is depicted in the Algorithm [l It is designed to solve
those elementary problems which are hard to decompose and where the solution is
typically small. The selective pressure is not of much use and a lot of exploration
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Algorithm 1 Scheme of the guesser algorithm.
procedure GUESSER(M axTrials, BlindMuts)
t<+1
Initialize a new genome G
Evaluate genome G|
Best + Gy
while ¢t <= MaxTrials AND Best is not satisfactory do
if Best has not been changed in the last BlindMuts loops then
Initialize a new genome Gyiq
else
Gy < Directed mutation of genome G
end if
FEvaluate genome G}
if GG, is fitter than Best then
Best + G,
end if
t+—t+1
end while
Return Best
end procedure

is needed.

Next we present an algorithm which we call the evolution for the purposes
of this work. It takes three parameters MaxGenerations, CrossoverFlag, and
FEliteSize. The first limits the count of generations to guarantee that the algo-
rithm stops. The second parameter determines whether a crossover is used to
produce a successive generation or only mutant survivor genomes selected from
the current generation are used. The parameter EliteSize settles the count of
the fittest genomes which pass to the next generation mutated with the directed
mutation.

The algorithm loops through the generations. Every time it passes the elite
to the new generation. Then the algorithm completes the new generation, either
by offspring of selected parents or by selected survivor genomes after random
mutation. A scheme of the evolution algorithm is depicted in the Algorithm [2]
Both types of mutation are used in the evolution algorithm. The survivor genomes
are mutated randomly to keep the diversity of the new generation. In fact, there
wouldn’t be any difference between elite genomes and survivors if the directed
mutation was used. When a new offspring genomes are produced, the random
mutation is used too. There is a pragmatic reason in that case. The directed
mutation needs fitness to be computed.

The roulette selection is used when parents are chosen to breed or genomes are
selected to survive. The genomes are evaluated by fitness function with values in
the interval (—1,0). A number 2 is added to the fitness of each genome to obtain
positive values. These values then represent lengths of intervals. The first interval
starts at zero and every successive interval continues were the predecessor ended.
We then choose a genome by generating a random number in the union of the
intervals. That genome is selected which interval contains the random number.
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Algorithm 2 Scheme of the evolution algorithm.

procedure EVOLUTION(M axGenerations, CrossoverFlag, EliteSize)
Initialize a population Fy
FEvaluate every individual in P
Best < the fittest individual in F,
t<+<0
while t < MaxGenerations AND Best is not satisfactory do
Initialize an empty population P, 4
Clone FEliteSize fittest individuals from P; to P4
Apply Directed mutation to all individuals in P,
if CrossoverFlag then
Select parents using Roulette selection
Breed the parent pairs using Crossover
Mutate the offspring using Random mutation
Append the mutated offspring to P, 4
else
Select survivors using Roulette selection
Apply Random mutation to survivors
Append the mutated survivors to Py
end if
FEvaluate every individual in P4
Best < the fittest individual in P,
t+—t+1
end while
end procedure
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The last component from the Eiben and Smith’s list is the recombination
realised by the crossover in our evolution algorithm. Let us begin the discussion
with motivation. One of the variants of evolutionary algorithms are the genetic
algorithms presented by Holland [I5]. Part of the theory is the building blocks
hypothesis. 1t says that if there exist low-order patterns with above average fitness
in the genome, than they are favoured in the selection. This way the better
building blocks are preserved and recombined in the subsequent generations to
compose a genome with high fitness. One can imagine that the building blocks
can concretize into patterns of relative placement of the neurons. Modules with
specific function may then emerge in the population.

The neuron gene chain is coded with respect to that idea. The first neuron
in the genome is placed arbitrarily. Every consecutive neuron codes its position
relatively to its predecessor. Different positions of the first neuron therefore
produce symmetrical solutions and therefore the first neuron can be always placed
to the position [0,0]. We expect it to have the following effect. A substring of the
neuron genes, that is transferred from one genome to an other, keeps its relative
positioning. Moreover, it is placed relatively to its preceding neuron. We therefore
inspire in the single-point crossover proposed along with the genetic algorithms.
In short, we cut the chains of parental neuron genes at a random position and
take one part from each to produce the child neuron gene chain. To recombine the
numeric parameters, we again inspire in the evolutionary strategies. For every
parameter, the descendant obtains a random value from uniform distribution
between the parental values of the parameter.

We don’t examine the mechanism based on the building blocks hypothesis
experimentally. We rather focus on the basic properties of the conductive field
brain where the simpler algorithms (guesser and evolution without crossover) are
satisfactory and modules don’t bring any advantage. We provide the evolution
algorithm with crossover to show what effects the spatial nature of the model can
bring. In addition, we suggest one more concept for future work. The guesser and
evolution algorithms may work together in a combination. The genomes produced
when solving elementary problems using guesser may be used as starting building
blocks for creation of new genomes in the evolution.
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4. Implementation

We have proposed a new computational model in the previous chapters. It was
examined theoretically and heuristic methods of searching for a relevant genome
and adaptation of a conductive field brain were described. However, the de-
scription is sometimes provided in a high level of abstraction. In this section, we
concretize those issues that were not discussed in detail and we present a software
implementation.

We begin with a depiction of general structure of the solution. Then we
describe each of its parts in more detail. We concretize the method of adap-
tation as well as interpretation of the input and output signal with respect to
time. Since it is necessary to implement an environment for every new experi-
ment, the application was created with an intention of further development. We
therefore demonstrate how a simple experiment is added to the program [[]in the
Appendix [A] An instruction manual of how to run the program can be found int
the Appendix [B]

The model is implemented in the C# language in Microsoft .NET Frame-
work 4. It was developed and tested on the Microsoft Windows 7 operating
system. The application was coded using Microsoft Visual Studio and a solution
with the application code forms a part of this work. The solution is divided
into a library called CoFiBa and an application CoFiBa_ App. The library imple-
ments logic of the model, while the application reads and writes to files and it
contains the classes derived from the class World which specify particular exper-
iments. The key classes with their essential fields and methods are depicted in

the Figures [4.1] and [4.2]

4.1 CoFiBa library

The CoFiBa library is organised into four thematic namespaces. Three of them,
Genome, Brain, and Environment, are labeled in grey in the Figure [4.1] and we
will describe them in the same order they are listed. The fourth namespace,
called Utils, contains universal classes and methods that are used across all the
other namespaces or that do not fit to any of them. We will refer to Utils in
various places of the text.

One of the Utils classes is the static class Settings, which contains default
values and constants used in the solution. It is divided into four regions, each of
them contains settings related to a particular topic. The settings are listed in the
Table[d.I] An other static class serving as a container is the class Functions. As
the name suggests, it encapsulates various methods that don’t fit elsewhere. We
give the Mod function which defines modulus for both positive and negative inte-
gers or the RandInt function that populates the static common pseudo-random
generator Next method as examples.

1Good knowledge of the programming environment of C# .NET is a prerequisite.
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> Spike [abstract] > Spike [override]
> Adapt [abstract] > Adapt [override]

| e e e e e e e e e e e e e e e e e e e e e e e 1
R ——

l___._“l r=—=-== hl
ABrain L _ e AGenome_ _ _ _ _ _ _ ________ .
R [ P
Brain SensoryNeuron:Neuron Genome
+ double[,] potential > Spike [override] + double[,] potential

+ double[,,] conductance > Adapt [override]

+ double[,,] conductance

+ Genome genome

Neuron [abstract] > Spike [override]
+ double Threshold > Adapt [override]

InternalNeuron:Neuron

+ Genome genome

NeuronGene [abstract]
+ NeuronType Type [abstract]

+ bool Active

+ NeuronGene Gene MotorNeuron:Neuron

+ bool Polarity

SensoryNeuronGene :NeuronGene
+ Coords Axon

Evolution
> Evolve

Guesser
> Guess

Analyzer
> Analyze

World [abstract]

> ObjectiveFunction [abstract]
> NewGenome [abstract]

+ int SensorIndex

InternalNeuronGene :NeuronGene
+ Coords Soma
+ Coords Axon

MotorNeuronGene :NeuronGene
+ Coords Soma
+ int MotorIndex

Figure 4.1: classes CoFiBa library
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BoolWorld : World
> ObjectiveFunction [override]
> NewGenome [override]

SwitchWorld : World
> ObjectiveFunction [override]
> NewGenome [override]

other worlds to be implemented ...

Figure 4.2: classes application CoFiBa_App
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Conductive field

Name ‘ Description
CF_pfo Potential fade-out.
CF_rfo Conductance fade-out.

CF_maxConductance

Maximal conductance.

CF_defConductance

Default conductance.

CF_defPotential

Default potential value.

CF_CmodDimFac

Conductance modulator diminishing factor.

Neurons
Name \ Description
Neur_Inhib Probability that a newly created neuron is inhibitory

(else it’s excitatory).

Neur_Threshold

The default activation potential of a neuron.

Neur_Momentum

The activity momentum.

Neur_WeakSignal

What level of signal is considered to be weak.

Neur_SpikeSrcFac

How much is the potential on the soma diminished when
a neuron spikes.

Neur_ChIntImplMom

Imploding momentum of a change interval (used for ac-
tivity and feedback change metric).

Neur_ChIntExplMom

Exploding momentum of a change interval (used for ac-
tivity and feedback change metric).

Neur_ThrChMag

The initial magnitude of threshold change.

Neur_ThrChMag?2

Change of change of threshold magnitude.

Mutation

Name

Description

Mut_AppSenFree

Chance of appearing a new sensory neuron when a sen-
sor input is not occupied.

Mut_DisappMultiSens

Chance of a sensory neuron removal when more than
one sensory neurons are connected to a sensor.

Mut_AppMotFree

Chance of appearing a new motor neuron when a motor
output is not occupied.

Mut_MovNeuron

Chance of moving a neuron.

Mut_RemoveNeuron

Chance of removing a neuron.

Mut_AddNeuron

Chance of adding a neuron.

Mut_PolarChange

Chance of a change of a neuron polarity.

Table 4.1: Constants and default values
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4.1.1 Genome

The purpose of the classes included in the namespace Genome is to store and
perform operations on the conductive field brain genome. It is depicted in the
right of the classes scheme in the Figure [4.1] The class Genome contains

e size of the conductive field,
e number of sensors and numbers of motors,
e list of neuron genes.

Several operations can be performed with a genome. Two constructors are defined
that create a new genome either as an empty shell without any neuron genes
or with a specified number of randomly generated genes. There are two other
methods that return a genome. The method Clone creates an exact shallow copy.
The method Bride takes two genomes as arguments and returns a new one that
results from crossover of the two and applies a subsequent mutation.

The crossover is a mixture of ideas from multiple resources. It recombines the
numeral parameters in a similar fashion to what Storn and Price suggested in the
algorithm called the differential evolution [24]. In addition to that, the strings
of neurons are cut at a random place and the resulting string takes a substring
preceding the cut from one parent and the substring following the cut from the
other. It is an analogous method to what was introduced by Holland [15].

The method Mutate of the Genome class changes the genome. It takes two
boolean arguments. The argument directed determines whether the mutation
is purely random or it is directed by the knowledge gathered when running the
objective function as discussed in the Section The second argument is called
stableNeurCounts and it indicates whether the neuron string should be mutated
(i.e. neurons added or removed). All variants of the mutation propagate the
activity to the neurons included in the genome.

The neurons are represented by three classes SensoryNeuronGene,
InternalNeuronGene, and MotorNeuronGene. Each of the three types contains
coordinates of a soma and of an axon where applicable. The motor and sensory
neuron genes also contain index of the sensor or motor they are connected to. All
of them inherit from a common class NeuronGene. This class populates abstract
methods Mutate and Clone that are shared by all three types. They are called
when the class Genome propagates the call of methods with the same name. The
neuron genes also encapsulate the polarity parameter of the neuron.

The mutation uses a pseudo-random generator to modify the polarity pa-
rameter and to move the axon or soma. This is where the directed mutation
differs. Probabilities of move of a soma or of an axon to the four neighboring
cells are weighted by the corresponding conductance values. The classes repre-
senting the particular types of neurons override the ToString method and add
a static FromString method. This couple of functions is used for serialization of
the genome that enables the user to save and load the genome from a file.

We now describe the format of a serialized genome. Whole genome can be
formatted into a single row (i.e. not containing the C R and LF characters). One
of the advantages is that we don’t need any special treatment for genomes as
parameters of a configuration file that is processed row by row. An example of a
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genome follows. It is structured to multiple lines for a human reader, but we can
imagine that all the newline characters are replaced by a space character in the
configuration file.

Genome(S:2 M: 1 [13, 8]):
+Sensory(Axon[7, 7] SensorIndex:1 Polar: Excit)
+Sensory(Axon[12, 1] SensorIndex:0 Polar: Inhib)
+Internal (Soma[9, 1] Axon[3, 5] Polar: Excit)
+Internal (Soma[4, 0] Axon[8, 7] Polar: Excit)
+Motor (Soma[0, 2] MotorIndex: O Polar: Excit)

All the numbers are variable and the code is not case sensitive. The string starts
with the keyword “Genome” followed by properties in round brackets in a fixed
order

1. number of sensors, preceded by “S” and a colon,
2. number of motors, announced by “M” and a colon,
3. width and height in a pair of square brackets.

Then a colon introduces the list of neurons. Every neuron definition starts with
a “47 sign and a type of the neuron. Parameters of the neuron are enclosed in
a pair of round brackets. Sensory neuron contains the following parameters in a
fixed order

1. the coordinates of the axon enclosed in squared brackets and preceded by
the keyword “Axon”,

2. “SensorIndex:” followed by the index of the sensory input that determines
activity of the neuron, and

3. polarity “Polar:”, that can be “Excit” for excitatory neuton or “Inhib” for
inhibitory.

The genes for Motor and Internal neurons are analogous as apparent from the
example.

4.1.2 Brain

The conductive field brain model is represented by the class Brain. The contain-
ing namespace is depicted in the Figure f.1l To create a new brain, one needs a
genome. Then a constructor can be called which initializes a new brain with the
default potential, conductance and thresholds. The default values are specified
in the Utils.Settings class which is described by the Table Besides some
technical data structures, the brain contains its genome, a list of neurons, sensors,
motors, and the following arrays

e potential keeps the values of potential in the cells of the conductive field,

e conductance stands for the conductance between the neighboring cells,
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e pmov represents the magnitude of the potential low between the neighboring
cells,

e cstren and cstreni represent the conductance strengthening signal?| for
excitation and inhibition respectively.

The sensors and motors are represented by objects of the class Signal defined in
the Utils namespace. Signal is initialized to work in one of two modes. It can
play a role of an emitter or a receiver. The former gets strength of the signal as a
parameter and it produces a series of boolean values indicating whether to spike
or not. It is used in the case of sensors. The latter counts the number of steps
between consecutive spikes and updates the detected signal strength accordingly.
Motors are represented by receivers.

The brain performs two basic actions. It makes a step by the Step method and
it adapts by the Adapt method. The Step method implements the step function
defined in the Section Since the implementation follows the definition, we
don’t describe it further. The Adapt method needs to me examined deeper.
Although the general idea is described in the preceding chapter, there are some
more non-trivial concepts in the implementation.

Before we present the adaptation algorithm in detail, we describe the classes
representing neurons. As in the case of the genome, there is an abstract class
Neuron which contains the parts of code that are common for all three types of
neurons. Each neuron stores the corresponding gene and populates its properties.
It also encapsulates the threshold and a Signal object. The Signal is initialized
to be in a receiver mode and it analyzes strength of the signal emitted by the
neuron. The brain calls the function CheckSpike of every neuron in every step.
The neuron compares the somatic potential to the threshold and decides whether
to spike or not.

After the brain performs a step, it may adapt. The principal value which
determines the adaptation is the feedback. The feedback is set to zero in case of
ideal behavior of the brain and scales to one when the output is totally wrong. The
adaptation changes two kinds of quantities. The neurons adapt their thresholds
as described in the Section [3.3 and the conductance is modified.

The conductance adaptation also starts in the neurons. They keep a simple
statistic of the preceding activity and the feedback in the form of an interval.
Bounds of the interval move with a momentum towards the current value. The
upper bound raises faster and drops slower. The lower bound obeys symmetric
rules. When a value exceeds the upper bound, it is considered to be growing and
if it descends bellow the lower bound it is considered to be dropping. This logic
is implemented in the class ChangeInterval and the key situations are depicted
in the Figure 4.3

If the feedback grows, then every neuron emits one of two conductance modifi-
cation signals based on its activity change. When the activity raises, it strength-
ens the excitatory pathways. The inhibitory pathways are strengthened when
the activity drops. Nothing happens when the feedback doesn’t grow. The con-
ductance strengthening signal is represented by the arrays cstren for excitatory

2The signal is emitted by neurons when certain conditions are met. The algorithm is de-
scribed later in this section.
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Figure 4.3: Three cases of the Changelnterval update. The interval is updated
with a value a) grater than the upper bound, b) between the bounds, c) lower
than the lower bound. The upper and lower bounds are represented by a green
or red dashed line respectively. The horizontal axis stands for time while the
vertical for the underlying quantity.

and cstreni for inhibitory pathways. The conductance excitatory and inhibito-
ry strengthening signal is diffused each step against or in the direction of the
strongest flow of the potential respectively. The signal strengthens the conduc-
tance while moving to the neighboring cells and part of it disappears by every
step.

We have ignored the object Analysis of the class AnalysisSeries till now.
It is a technical feature, that records selected values during the computation of
the brain. These time series can be later used in the Analysis mode. The feature
is turned on or off by the constructor parameter analyze.

4.1.3 Environment

The third namespace is called Environment. It consists of classes that build a
context in which the brain exists. The logic of the function calls is illustrated in
the Figure[d.4] There are three classes that represent different modes in which the
brain can be cultivated. By cultivation, we mean the algorithms which determine
when a new genome is created, mutation or crossover occurs and which call the
world’s objective function to evaluate genomes. The class Evolution realizes
the algorithm that is described as Evolution in the Section [3.4L The Guesser
algorithm from the Section is implemented in the class Guesser.

While the purpose of the first two classes is to find the right genome for a given
problem, the class Analyzer takes a genome as an argument. It provides a graphic
user interface and brings some insight into the work of the conductive field brain.
As depicted in the Figure [£.4] the objective function is called asynchronously to
enable user input during the computation. There is also the class Controller
which serves as a communicator between the user interface and an asynchronous
thread that executes the objective function.

We have already mentioned the abstract class World which encapsulates the
objective function. The objective function is left to be implemented in the ap-
plication. The idea behind is that the CoFiBa library serves as a reusable set
of tools where the model is implemented. A researcher who wants to work with
the model does not need to re-implement it, because it is sufficient to add a new
class which implements the abstract class World and benefit from the rest of the
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Figure 4.4: Classes are depicted by blue boxes and methods by green ellipses. An
arrow symbolizes a function call (they are directed from the caller to the called). A
dashed line of arrow stands for an asynchronous call. The environment namespace
18 painted in red.
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application.

4.2 'The Application

The CoFiBa_ App project is composed of a class Program containing the entry
point to the application and a namespace Worlds where particular experiments
are implemented. In general, the program does four steps. In every run it

1. parses the command line arguments (configuration and log file paths),
2. initializes a world where the brains live,

3. runs a cultivator (Guesser/Evolution/Analyzer),

4. closes the log file.

The first and the last step are technicalities, yet we it find important to point
them out. The log and configuration files are loaded in the very beginning, when
the program processes command line arguments, and the log is closed in the end
of the program execution. This enables the two steps in the middle to read the
configuration and to log during all the time of their execution.

The second step initializes a class that inherits from the World abstract class.
The configuration of the particular experiment is processed during that step. The
third step is where the work is done. One of the three cultivators is called. When
it is finished, the program closes the output streams and quits.
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5. Experiments

In this chapter, we present several experiments to demonstrate some of the proper-
ties of the conductive field brain model. The key characteristics of the adaptation
method are studied in the Simple World experiment in the Section [5.1} Next, we
show that the conductive field brain is able to play a role of an activity pattern
generator. This pattern generator can be turned on or off by a short impulse to
one of the sensors. Such a generator is developed in the experiment SwitchWorld
which described in the Section [5.2] The experiment BinBoolWorld summarized
in the Section shows the the ability of the model to solve elementary logical
tasks. And finally the experiment UniBoolWorld presents an example of a genome
gained by evolution that adapts to two different problems in the Section [5.4}

We run the experiments on a computer equipped with Intel Core 2 Duo CPU
running at frequency 2.66 GHz and 4 GB of RAM. Most of the experiments are
executed within a minute. The execution times are discussed in the Section [5.3]
in more detail.

5.1 SimpleWorld

In the first experiment, we demonstrate two key properties of the adaptation
mechanism of the conductive field brain. The first is the ability to adapt the
conductance based on the feedback and the input signal. The second is the way
how the thresholds are tuned using more and more precise steps.

For that reason, there is implemented a simple world with two inputs (sensors)
and two outputs (motors). The only task of the model is to assign the right output
to the right input and to activate the output when the input is active. We don’t
employ the evolutionary search in this example. Instead, we provide a static
genomd'

Genome(S:2 M:2 [11, 12]):

+Sensory(Axon[2, 6] SensorIndex:0 Polar: Excit)
+Motor (Soma[3, -4] MotorIndex: O Polar: Excit)
+Sensory(Axon[3, 4] SensorIndex:1 Polar: Excit)
+Motor (Soma[-3, 3] MotorIndex: 1 Polar: Excit)

The conductive field brain contains two sensory and two motor neurons connected
to the two sensors and two motors respectively. The configuration of the model
is illustrated in the Figure [5.1] The neurons are organised clockwise in the same
order as they appear in the definition, beginning on the left. Notice that there
is a left-right symmetry in the genome. The distance from any of the two motor
neurons to both sensory neurons is the same. This enables us to demonstrate
how the conductive field brain copes with various feedback.
There are two input vectors i%, il, and two output vectors €°, e!, where

i°=(0,1),i' = (1,0), € = (0.1,0.9), e* = (0.9,0.1).

"Recall the genome description format we described in the Section [4.1.1] The coordinates of
the somata and axons are relative to the preceding soma coordinates, preceding axon coordinates
when the preceding neuron is sensory, or to the point [0, 0] in the case of the first neuron.
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Figure 5.1: Simple World in different stages of execution. The first three images
depict the conductive field of positive case of the simple experiment after a) the
first step, b) seven hundred steps c) ten thousand steps. The image d) represents
the negative case after ten thousand steps. The cells are represented by squares
painted in grey scale, the lighter the cell is, the more potential is present. The
conductance is depicted by small rectangles located on the edges of the grid.
Conductance between two cells is represented by the color of the rectangle that
lies in between them. The more the rectangle is light and yellow, the stronger the
connection between the cells is. Somata and axons are painted in green and red
respective. Active neurons are depicted in light colors while the inactive neurons
are dark.

a) b)
c) d)
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Figure 5.2: Comparison of the sensory and motor activity in the Simple World
example. The images a) and b) stand for positive case, ¢) and d) stand for the
The y-axis describes the strength of the signal and the x-axis
represents the steps in time. The blue and yellow lines show the strength of the
sensory signal S0 and S1 respectively. The red line stands for the output of the
motor 0 in the images a), ¢) and for the output of the motor 1 in the images b)

negative case.

and d).
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Figure 5.3: The somatic potentials in the SimpleWorld. The vertical axis stands
for the level of potential and the horizontal axis represents steps of the compu-
tation. The blue line represents the somatic potential of the motor neuron 0 and
the yellow line represents the somatic potential of the motor 1. The data come
from the first ten thousand steps of the positive case.
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Figure 5.4: The thresholds in the SimpleWorld. The vertical axis stands for
variance of the underlying quantity over last 100 steps. The horizontal axis
represents steps of the computation. The blue and red lines represent variance of
thresholds of the motor neurons 0 and 1 respectively.
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We consider two cases of the experiment. A positive case, where we expect the
model to assign the outputs to the inputs in such a way that they form two pairs
(% e%) and (i',e'); and a negative case, where we expect to obtain the pairs
(i%e!) and (i', €®). The feedback f; ; is computed using the last outputs of the
model u and the expected outputs e as follows

“~ lej — u;
ft+1:_z—‘ 2 S j|, (5.1)
j=1

where s is the size of the output. In fact, the size of the output is always two in
this example and the formula can be written in a simpler way. We introduce it in
this general form because we reuse it in multiple examples and we want to point
out that the feedback is computed in the same fashion in most of them.

The two pairs of input and expected output are exposed in alternating phases.
A single phase is 400 steps long and we switch to the other phase immediately
after the preceding phase ends. We run the adaptation for 50 such phases. Then
we keep the thresholds and the conductance fixed and we continue with the
computation feeding the same input. The states of the model in various phases
of the computation are depicted in the Figure [5.1]

We can observe paths from the motor somata that receive the signal to the
sensory axons which produce it. The path being built finds its expression in en-
larging amplitude of the somatic potential of the motor neurons. The arithmetic
mean of somatic potential of the motor neuron M0 during two consecutive phases
in the beginning (phase 5 and 6) differs by 2-10~* and the difference between the
phases 39 and 40 is more than 1073, The situation is illustrated in the Figure .

We use the Pearson’s correlation coefficient to express dependence of the out-
puts on the inputs. The coefficient measures linear dependence between two
quantities. The coefficient is 1 if the relationship is a perfect positive linear de-
pendence and it is —1 if the linear dependence is negative. If the variables are
independent, the coefficient is zero. The correlation coefficient between the signal
strength of the sensory neuron S0 and the somatic potential of the motor neuron
MO is 0.785 in the evaluation part of the experiment (when the thresholds and
the conductance are fixed). It is 0.804 between the other sensory-motor pair.

The values of the thresholds are determined at the same time as the conduc-
tance is adapted. They change a lot in the beginning and every time the change
of a threshold is detected to be in different direction than it was the last step,
the magnitude of the change is decreased. For that reason, the threshold level
is stabilized during the computation. The resulting behavior is illustrated in the
Figure [5.4, The lines in the graph depict variances of the thresholds in a sliding
window that is a hundred steps wide. The variance drops from 1072 to 10~
during the first 5500 steps.

The activity of the two neurons adapts to follow the right neuron. The timings
of the two motors in positive and negative case of this example are depicted in
the Figure 5.2l The correlation coefficient between the signal strength of sensor
S0 and motor MO0 is 0.81 during the evaluation part and it is 0.722 between the
other sensory-motor pair.

Because we get similar results for both positive and negative cases of the
experiment and because the architecture of the genome is left-right symmetric,
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we can conclude that the adaptation method succeeded to adapt the model for
the given problem. The correlation coefficients are summarized in the Table [5.1]

Positive case

X Y corr(X,Y)
. Motor 0 somatic potential 0.785
Sensor 0 signal strength Motor 0 signal strength 0.811
. Motor 1 somatic potential 0.804
Sensor 1 signal strength Motor 1 signal strength 0.722

Negative case

X Y corr(X,Y)
. Motor 1 somatic potential 0.800
Sensor 0 signal strength Motor 1 signal strength 0.820
. Motor 0 somatic potential 0.827
Sensor 1 signal strength Motor 0 signal strength 0.731

Table 5.1: Correlation coefficients in the Simple experiment.

5.2 SwitchWorld

The SwitchWorld experiment demonstrates the ability of the conductive field
brain to preserve an information over time. In particular, we look for a circuit
which exhibits an ability to receive switch-on and switch-off signals. It generates
a signal by the time it is turned on and it stays calm when it is turned off.

There are two sensory inputs to the model. One of them receives the switch-on
signal while the other accepts the switch-off signal. We define three input vectors
reflecting that situation, the switch-on input iy = (0,1), the switch-off input
i = (1,0), and the continue input ig = (0,0). There is a single output motor
which is either expected to stay calm eg = (0) or to produce signal e; = (1). For
illustration, see the resulting grid in the Figure [5.5] Length of the signal phase
is 150 steps and the length of the continue phase is 350 steps. The phases do
not alternate regularly to ensure that the brain does not learn the period and it
really reacts to the input signals. Instead, the polarity of each phase is generated
randomly and the switch-on or switch-off signals are produced only between two
phases of different polarity.

We employ the Equation from the SimpleWorld experiment to define the
objective function. Since there is only a single motor output in this experiment,
it reduces to —|e; — u;|. The evolution algorithm without crossover is used to
find an appropriate genome. After four generations with 15 individuals, three
elite genomes and fixed conductive field size to [15, 7], we arrive at the following
genome.

Genome(S:2 M:1 [15, 7]1):
+Sensory(Axon[8, 6] SensorIndex:1 Polar: Excit)
+Sensory(Axon[15, 1] SensorIndex:0 Polar: Inhib)
+Internal (Soma[10, 0] Axon[4, 6] Polar: Excit)
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Figure 5.5: SwitchWorld in different stages of execution. The conductive field is
depicted when a) switch-on signal is received, b) continues in the active phase,
¢) switch-off signal is received, d) continues in the passive phase.

The cells are represented by squares painted in grey scale, the lighter the cell is,
the more potential is present. The conductance is depicted by small rectangles
located on the edges of the grid. Conductance between two cells is represented
by the color of the rectangle that lies in between them. The more the rectangle
is light and yellow, the stronger the connection between the cells is. Somata and
axons are painted in green and red respective. Active neurons are depicted in
light colors while the inactive neurons are dark. The labels containing S, I, and
M stand for sensory, internal, and motor neurons respectively. The signs + and —
represent excitatory or inhibitory neuron.
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Figure 5.6: Comparison of the sensory and motor activity in the SwitchWorld
example. The y-axis describes the strength of the signal and the x-axis represents
the steps in time. The red and green lines show the strength of the sensory
signal S0 and S1 respectively. The blue line stands for the output of the motor
signal MO.

+Internal (Soma[4, 0] Axon[10, 7] Polar: Excit)
+Motor(Soma[1l, 2] MotorIndex: O Polar: Excit)

The resulting brain is depicted in the Figure [5.5] in four stages of computation,
that is, when receiving each of the two switch signals, continuing in the activity,
or staying calm. Notice that the sensory neuron connected to the switch-off input
is inhibitive. The internal neurons seem to form a loop that is fired by the switch-
on signal and interrupted by the switch-off signal. The correlation between the
expected output and the actual output during the evaluation is 0.958.

We illustrate the output signal in the Figure [5.6, The green line represents
the switch-on signal, the red line stands for the switch-off signal, and the blue line
depicts the motor output. The motor output quickly raises during the switch-on
signal and it rapidly drops during the switch-off signal. In the periods when no
input signal is received, the motor output continues in the same level of activity.
This behavior is exactly what we described in the beginning of the section.

5.3 BinBoolWorld

In the BinBoolWorld experiment, we demonstrate the ability of the conduc-
tive field brain to solve elementary logical tasks in practice. Let us have j €
{1,...,16} and let by = (b;0,b;1,bj2,b,3) be a vector corresponding to a bina-
ry representation of j, where the most significant bit is bj3. Then we describe
a binary boolean function with index j using the Table We assign a motor
output M0 to each pair of sensory inputs S0 and S1.

Assume we have an input vector i = (i1,12), then we define an augmented
input vector a = (ay, az, 1). The reason why we feed the conductive field brain
with augmented vector is that it supplies a steady signal for the situation when
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S0 [ S1 ] Mo
00| b
0 | 1 | by
1 0 bg
T 1] b

Table 5.2: Binary boolean function with index j.

by = 1. There is expected an output signal but no input would be fed. As we
have seen in the previous case, it is possible to generate a signal without a steady
input. We therefore don’t add any external functionality but we simplify the
situation.

A phase when a pair of input and corresponding expected output are exposed
is 350 steps long. First, an adaptation period is executed. It consists of 24 phases,
6 for each input and expected output pair. The order of the adaptation phases is
random. Then we run an evaluation period. It is composed of twelve phases, three
for each input and expected output pair. If the evaluation passes a satisfactory
condition, then the examined genome is returned. Otherwise, an other cycle of
adaptation and evaluation is repeated. We run at most four such cycles. The
evaluation computes the average output of phases when 1 is expected and and
when 0 is expected. Then it takes minimum from the 1-phases and maximum
form the 0-phases and return a difference between them. If there is no phase with
expected output 0, then the minimum of 1-phases is returned and vice versa. To
fulfill the condition on the fitness values, the result is divided by two and 0.5 is
subtracted, as illustrated by the following formula

min {avg outputs of 1-phases} — max {avg outputs of O-phases} )
2

The Table summarizes the results of the experiment. It shows the cor-
relation coefficients between the outputs of the adapted conductive field brains
acquired during evaluation. The indexes 0 and 15 are left out, because their
output is the same every step. For that reason, the variance becomes zero and
the correlation coefficient is not defined. The fact, that the highest number of
every row lies on the diagonal (the same index of row and column), means that
the model is adapted to the corresponding function the most, in terms of linear
dependency.

The indexes 6 and 9 turned up to be the most problematic. Their correlation
coefficients are 0.834 and 0.884 resp. and it took much longer to obtain their
genomes. While the arithmetic mean of the execution time of the algorithm of
the rest indexes was less than 33 seconds, it took approximately 45 minutes to
find each of the genomes for the indexes 6 and 9. The table summarizes the
execution times of the evolutionary algorithm. The indexes 6 and 9 stand for
the functions representing the logical XOR and identity. It is known, that these
functions are not linealy separable [19]. Moreover, it is proved that they are
not computable by a single perceptron, which suggests that there is a need for
multiple neurons in the conductive field brain. The resulting genomes correspond
to that statement. The indexes 6 and 9 were the only two that led to genomes
with internal neurons. The genomes we obtained in this experiment can be found
on the CD attached to this text.
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Index | Time in sec || Index | Time in sec
0 1.018 8 2.715
1 19.250 9 2,656.799
2 10.429 10 54.216
3 56.982 11 7.953
4 23.328 12 67.696
5 102.000 13 4.680
6 2,705.699 14 22.859
7 84.857 15 1.314

Table 5.4: Execution time of the evolutionary algorithm. The first column rep-
resents the index of a binary boolean function, the second column contains the
time interval in seconds.

5.4 UniBoolWorld

The experiment UniBoolWorld extends the BinBoolWorld. We search for an uni-
versal genome which can adapt to multiple indexes of the binary boolean function.
We supply two indexes, 8 and 14, which stand for AN D and OR logical operators
respectively. The objective function is the same as in the BoolWorld experiment
except it runs separately for every index an then it returns the minimum.

We obtain a genome

Genome(S:3 M:1 [3, 5]):

+Sensory(Axon[1, 1] SensorIndex:0 Polar: Excit)
+Motor (Soma[1l, O] MotorIndex: O Polar: Excit)
+Sensory(Axon[0, 1] SensorIndex:1 Polar: Excit)
+Sensory(Axon[1, 3] SensorIndex:2 Polar: Excit)

The correlation coefficients between the outputs obtained during evaluation
and the desired outputs are 0.924 and 0.897 in the case of OR and AN D respec-
tively.
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Conclusion

In this thesis, we have developed and examined properties of a model of brain
tissue containing a spatial information. The motivation for creation of such a
model is the hypothesis that the spatial properties of the brain tissue may play
an important role in the learning and memorizing processes. We focus on the
dendrite shape as well as its modification and we seek for a strategy that may
eventually help to explain how the human brain learns and memorizes.

We have searched for what is known in the area of brain modelling and is
related to our idea. We have found two famous and deeply studied groups of
models, the neural networks and the cellular automata. The conductive field
brain model, which we developed, combines ideas from both. Each other enriches
so much that we are not able to assign the conductive field brain to any of the
groups.

To be able to study and evaluate our idea by means of computer science, we
define the model formally. We observe, that there exists a single time step func-
tion which gives the next configuration and an output for any correct combination
of current configuration and input. Later we prove a theorem which states that
the conductive field brain placed to an appropriate environment is as strong as
the Turing machine.

Having explored the theoretical capabilities of the model, we propose algo-
rithms for searching the right configuration for a given problem. We determine
size of the model and locations of neurons using evolutionary algorithms and
we adapt the shape of dendrites and their sensitivity separately. We implement
the model including the evolution and adaptation algorithms to demonstrate its
properties in a simulated environment. The experiments show that the conductive
field brain is capable of adaptation of a single architecture to multiple problems
based on the inputs and the feedback from the environment. The simulations al-
so demonstrate that the evolutionary algorithms can deliver architectures, which
are then adaptable to solve various tasks.

Some limitations of this work can be found in the evolutionary search for
the right architecture. Firstly, we experiment with elementary problems and the
structural development of a brain is left back. However, we propose several future
steps in this area along with the description of implemented algorithms. A notion
of modules as analogy to Holland’s schemes in the genetic algorithms is presented.
Patterns representing populations of neurons which together form a structure for
solving a complex task may emerge in the genome. That idea brings a lot of
questions to be answered.

Secondly, we have shown some theoretical capabilities of the model and we
proposed an algorithm for its adaptation. We recommend a future theoretical
study of the adaptation algorithm. What are the limits of the adaptation? How
much information has to be coded in the genome and what can be acquired from
the environment? We could try to find a capacity measure of a conductive field
brain. Such a measure would express the amount of information that the model
could store.

Next, we work with the model in a fully synchronised manner. Every step the
whole conductive field is recomputed and all the neurons test the somatic poten-
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tial level. A question may be posed whether it can’t be done in an asynchronous
way. The Hopfield networks may serve as inspiration. Every step, a single neuron
updates its state based on the neighborhood. Moreover, the computation could
be executed in parallel. We have worked with configurations in scope of only a
few neurons. The parallel and asynchronous approaches may enable us to study
behavior of the model in larger scale.

Various models inspired by the biological concept of many interconnected
computing units exist. Some of them are well studied from the computer science
point of view and they often serve as mathematical tools for solving complex
problems. The source of ideas is biology and the target is computing. We aim to
make a step in closing a loop back to biology. We inspire in the organic brain,
then we create a simplified model where we study the principles of how it works.
We develop an algorithm that solves an issue and we close the loop by proposing
the principle of the algorithm back to biology to be examined.

One of the key principles we propose is the algorithm for determining the shape
of dendrites. It is the core of adaptation of our brain model to environmental
conditions. This opens a question whether an analogous process couldn’t be
found in nature. The idea behind is that an increase in concentration of a chemical
signalling a positive feedback from the environment in combination with change of
activity of a neuron may lead to production of a new substance in the neural cell.
This substance would be than consumed by those parts of the neural membrane,
which received the signal to change the activity. This way, the open problem
of precise feedback delivery in the brain, could be addressed. Such a hypothesis
needs an extensive interdisciplinary discussion to be accepted or proved wrong.
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Symbols and notation

The symbols and notation are used in the following meaning throughout the
thesis.

Term Meaning

N natural numbers N := {1,2,3,...}
R real numbers

v, s, M vector, scalar, matrix resp.

(a,b) closed interval

(a,b) open interval

P (S) power set of S

(fog)(x)= f(g(x)) composition of functions
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Appendices
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A. Custom world

As advertised in the previous parts, the application was created with an intention
of further development. Hereby we provide a brief introduction in coding of a
custom experiment. We start with an empty shell of a class that inherits World

using System;

using System.IO;

using CoFiBa.Environment;
using CoFiBa.Genome;
using CoFiBa.Brain;
using CoFiBa.Utils;

namespace CoFiBa_App.Worlds

{
class MyWorld:World
{
public override double SatisfactionCondition
{ get { return 0; } }
public SimpleWorld(TextWriter log, ConfigurationAdapter config)
: base(log)
{13
public override Genome NewGenome ()
{ 2
public override double ObjectiveFunction(Genome genome,
Controller controller = null)
{13
b
+

The first member of the class, the property SatisfactionCondition, contains
only the get clause. The value is used to stop the evolution when a genome with
grater or equal fitness is found. We skip the constructor for a while and consider
the NewGenome method. It serves to generate a new genome. The method is
typically called when the first population is being initialized. Since it is called
repeatedly, it is recommended to randomize the new genome. The genome con-
structor can do the job when with appropriate parameters.

The constructor serves to initialize the common variables like some sample
data. It is also place where the world configuration is read from the config
parameter. The Log parameter is recommended to be stored for later use. It
prints to the console and a log file if it is opened.

The main purpose of the World classes is to provide the ObjectiveFunction.
The function takes a genome and a controller and returns fitness of the genome.
We recommend two best practices. The first is to initialize a local randomizer by
genome . AdaptSeed to generate the learning data set. The seed will be eventually
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printed into log so the experiment can be repeated. Randomizer initialization
follows.

// init local randomizer
localRandom = new Random(genome.AdaptSeed) ;

The next best practice is to cultivate the brain in the InSilicoLab initialized
with the controller received in parameter. This enables the GUI analyzer to
communicate with the lab and control the execution remotely.

if (controller == null)
controller = new Controller((AnalysisSeries)null);
InSilicoLab lab = new InSilicoLab(genome, controller);

When the new MyWorld class is finished, it needs to be registered in the
program. To do that, add a case

case "myworld":
world = new MyWorld(logger, config);
break;

to the loadWorld method of the class Program.
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B. Manual

The program is run from a windows command-line with two arguments
e a log file with the flag -1 and a file path of the desired file,

e a configuration file with the flag -c and a file path of the desired configu-
ration file.

Both the files are text files. A sample command would be
cofiba_app -1 "C:\MyLogFile.log" -c "C:\MyConfigFile.config"

The configuration file determines what environment is launched and what world
is simulated. Then there are custom configurations for the environment and the
world specified earlier. Each configuration is on a single line. A line can contain
a configuration, white space, or a comment. Comment line begins with two
slashes (//). A configuration line consists of a configuration name, equal sign,
and a value. The names are not case sensitive, but the values are. A sample
configuration file with comments is present on the attached CD in the folder
Configurations.

B.1 Analysis GUI

The environment for analysis contains a graphic user interface. The interface
is launched right after the application loads the environment. It consists of a
panel where the model simulation is animated. A snapshot of that animation
is described in the Figure [5.1] Such a snapshot is created when clicked to the
first menu button Snapshot. The animation starts when the GoSteps button
is clicked. It does a given number of steps and waits for a specified number of
milliseconds before each step to slow down the animation. The waiting interval
can be set to zero.

The second menu button Analyze series opens a series analysis dialog.
There is a list of available series. The names obey the following rules

e Sen and Mot stand for sensors and motors signal strength,
e S, I, Mrepresent sensory, internal, and motor neurons, where

— spot is somatic potential,
— axpot is axonal potential,
— sig is signal strength,

thr is threshold value.

The Repaint button needs to be clicked after every change of selection. Then a
chart is painted. The chart area can be zoomed to a specified rectangle and the
resulting image can be exported to a PNG file when the menu button Export is
clicked and the option Graph is chosen. When we select the Data option in the
export menu, we can export the selected series data to a CSV file.
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C. Contents of the attached CD

The contents of the attached CD are:

e Text of the thesis in the file PavelJohn_MasterThesis.pdf.

e CoFiBa application installation (recommended) is in the folder
Application_Install.

e CoFiBa application executables are located in the folder
Application_ExecutableOnly. Execution does not need any installation,
but the compatibility with various .NET Framework versions may be prob-
lematic.

e Source code of the application is contained in the folder CoFiBa.

e The configuration files for each of the four experiments are stored in the
Configs folder.

e Genomes obtained in the BinBoolExperiment are located in the file
BinBoolWorld_Genomes.txt. The file includes randomized seed for the
possibility of exact repeat of the experiments.
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