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Adaptive Similarity of XML Data

Department of Software Engineering

Supervisor of the master thesis: RNDr. Irena Holubová, Ph.D.
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1. Preface

The XML (eXtensible Markup Language) [9] is a self-descriptive plain-text
markup language. It is easy-to-use, well-defined, and yet powerful enough. It has
become one of the leading formats for data representation and data exchange on
the Internet in the recent years. Due to its extensive usage, large amounts of XML
data from various sources is available. It is very useful to adapt independently
created XML schemas that represent the same reality for common processing.
However, such schemas may differ in structure or vary in terminology. This leads
us to the problem of XML schema matching that maps elements of XML schemas
that correspond to each other.

Schema matching is extensively researched and there is a large amount of ap-
plications, such as data integration, e-bussiness, schema integration, schema evo-
lution and migration, data warehousing, database design and consolidation, web
site creation and management, biochemistry and bioinformatics. In this work we
explore application of schema matching in the area of conceptual modeling.

Difficulties of Schema Matching Matching a schema manually is a tedious,
error-prone and expensive work. Automatic schema matching brings significant
savings of manual labor and resources. But automatic schema matching is a
difficult task because of the heterogenity and imprecision of input data, as well
as high subjectivity of matching decisions. Sometimes the correct match depends
on the information available or understandable only by a domain expert. In
semi-automatic schema matching the amount of user intervention is minimized.
The user can provide information before mapping – during the learning phase.
Then after the creation of a mapping he can accept or refuse suggested mapping
decision, which could be later reused for improvement of further matching.

Conceptual modeling In this work we apply the task of schema matching to
a specific application of conceptual modeling – MDA (Model-Driven Architec-
ture). MDA [51] models the application domain at several levels of abstraction.
Independently developed schemas – PSM (Platform-Specific Model) schemas are
integrated using a common conceptual schema – PIM (Platform-Independent
Model).

In the optimal case, the creation of a conceptual model is as follows. Firstly,
the PIM schema for a given domain is designed and then the various PSM schemas
are derived for specific applications. In reality, the PIM schema has to be designed
to describe a domain in a situation where various schemas for specific applications
already exist. Independent PSM schemas may come from different sources, they
may be of various types and they may use different naming conventions.

Schema matching is used as the key step during this integration process. In
particular, we match elements from independent PSM schemas against elements
in the common PIM schema to establish the respective PSM-to-PIM mapping.
Such mappings then open the possibility of propagation of a change in one schema
to all related schemas, ensuring consistency in the whole set of schemas.
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This work uses a semi-automatic approach to schema matching. In particular
we explore the applicability of decision trees for this specific use case. In our case
a decision tree is constructed from a large set of training samples for identifica-
tion of correct mapping among elements in PIM schema and elements in PSM
schemas. Various modifications of the training process are proposed in this work
and experimentally evaluated on the basic of several common hypotheses related
similarity matching and decision trees.

1.1 Motivation

The work in this thesis is motivated by the following example.
We want to create a common interface that enables to plan different types of

vacation - for example ski holidays, holidays at a beach, guided tour etc. at one
site. It should be able to integrate existing schemas of travel offers from various
travel agencies, allow to search and compare requests according to different crite-
ria and minimize travel costs. Users should be allowed to review their experience
and rate provided services. It should provide an interface to select:

• the best means of transport,

• accomodation according to several sets of criteria,

• boarding,

• available facilities,

• auxiliary activities.

The interface should be able to integrate different types of data representation, as
the information will be obtained from various types of sources, aggregate various
types of customers requests and be easily extendible. Travel agencies, activity
providers, facilities and hotels provide their offers in the form of an XML doc-
ument with an XSD schema. It should be possible to add new sources easily.
In context of this thesis, the common interface is the PIM schema and schemas
from various sources are the PSM schemas. This interface is shown in Figure
1.1. Elements of XSD schemas are first converted to their correspponding PSM
schema representatives. Then, we need to find the interpretation of the elements
against the PIM elements. In our work we focus on this particular task using the
idea of schema matching.

1.2 Structure of the Thesis

This thesis is structured as follows. In Chapter 2 we define technologies that
are used in this work – XML document, XML tree, XML technologies, PIM
and PSM schemas. Schema matching and similarity, along with applications of
schema matching is defined in Chapter 3. There is also described usage of schema
matching in conceptual modeling. In Chapter 4, related work and existing im-
plementations of schema matching are discussed. Schema matching via decision
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Figure 1.1: Diagram of interface

trees is described in Chapter 5. Chapter 6 describes implementation of our so-
lution. The solution we propose is experimentally evaluated in Chapter 7 and
finally results and possible future improvements are briefly resumed in conclusion
in Chapter 8.
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2. Technologies Used in this
Work

This chapter contains a brief description of technologies used in this work – the
definition of an XML document, an XML tree and a description of XML schema
languages in particular XML Schema, PIM and PSM schema.

2.1 XML Document and XML Tree

An XML document is a textual file whose characters are of two types – markups
that describe the structure of the document, and the actual content. It contains
the following constructs.

An Element can be empty or it contains some subelements.

Example 2.1. An empty element:

<book/>

Example 2.2. An element with subelements:

<book>

<author>

Rowling J. K.

</author>

</book>

Element author is a subelement of element book.

A Tag is a mark that encloses elements.

Example 2.3. Start and end tags:

<book>

</book>

An Attribute is a name/value pair that belongs to an element.

Example 2.4. An attribute:

<book title="Harry Potter"/>

An XML Declaration contains information about the XML document – version
of language and character encoding.

Example 2.5. An XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>
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An XML document is well-formed

• if it contains an XML declaration,

• if it has a root element,

• if each element is correctly enclosed in a start and end tag or is empty,

• if the start and end tag of each element are written in the same case,

• if the start and end tags of elements are correctly paired - there is no overlap
and

• if values of all the attributes are quoted.

An XML document has a hierarchical structure, elements and subelements
have a parent-child relationship and can be easily represented as a tree. An
example of this representation can be seen in Figure 2.1.

Definition 2.1. An XML Tree that represents an XML document D is a labeled
tree T (D), where the root of the tree is the root element, internal nodes are
element and attribute names and leaf nodes are empty elements, textual content
of elements and attribute values. Node a is parent of node b

• if a is a node representing element ea and b is a node representing subelement
eb of element ea or

• if a is a node representing element ea and b is a node representing content
of element ea or

• if a is a node representing element ea and b is a node representing attribute
ab of element ea or

• if a is a node representing attribute aa and b is a node representing value
of attribute aa.

2.2 XML Schema Languages

The structure of an XML document is described by XML schema languages such
as DTD [9], XML Schema1 [10], RELAX NG [11] or Schematron [12]. XML
document is valid if it conforms to the constraints specified in the XML schema.

XML Schema In this thesis, the XML Schema language is used. An example
of an XML schema and an XML document that conforms to it is shown in Figure
2.2. XML Schema file is a well-formed XML document file itself, so it has to have
the root element and the XML declaration. XML Schema allows to define mainly
own data types and the structure of the XML document.

1XML schema is the schema of a XML document, whereas XML Schema is one of the
languages to describe an XML schema.
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<library>

<book title="Harry Potter">

<author>

Rowling J. K.

</author>

</book>

<book title="Krakatit" lang="cz"/>

<newspaper title="The Times"/>

</library>

(a) XML Document

(b) XML Tree

Figure 2.1: An example of an XML document and its representation as an XML
tree

Data types Data type can be simple or complex. Simple data types are derived
from built-in types or from the previously defined ones. Built-in data types are
e.g. string, integer, boolean, dateTime, or decimal.

Example 2.6. A data type derived from built-in data type string using restric-
tion:

<simpleType name="TypeNotEmptyStr">

<restriction base="string">

<minLength value="1"/>

<maxLength value="20"/>

</restriction>

</simpleType>

Data types can be also derived using union and list.

Example 2.7. Complex data types are used for definition of element-subelement
and element-attribute relations and the amount and order of elements in their
parent element.

<complexType name="TypeAddress">

<all>

<element name="street" type="TypeNotEmptyStr" minOccurs="0"/>

<element name="city" type="TypeNotEmptyStr"/>
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<library>

<book title="Harry Potter">

<author>

Rowling J. K.

</author>

</book>

<book title="Krakatit" lang="cz"/>

<newspaper title="The Times"/>

</library>

(a) XML document

<schema>

<element name="library">

<complexType>

<choice minOccurs="0" maxOccurs="unbounded">

<element ref="t:newspaper"/>

<element ref="t:book"/>

</choice>

</complexType>

</book>

<element name="book">

<complexType>

<sequence minOccurs="0" maxOccurs="unbounded">

<element ref="t:author"/>

</sequence>

<attribute name="lang" type="string" use="optional"/>

<attribute name="title" type="string" use="optional"/>

</complexType>

</element>

<element name="author">

<complexType mixed="true">

</complexType>

</element>

<element name="newspaper">

<complexType>

<attribute name="title" type="string" use="optional">

</complexType>

</element>

</schema>

(b) XML schema

Figure 2.2: An example of an XML document that conforms to an XML schema

<element name="postcode"/>

</all>

<complexType>

TypeAddress contains a set of subelements street, city and postcode in no
particular order. Subelement street is not required.

Example 2.8. Elements in a sequence have to be in the particular order:
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<complexType name="TypePerson">

<sequence>

<element name="name" type="TypeNotEmptyStr"

minOccurs="1" maxOccurs="2"/>

<element name="surname" type="TypeNotEmptyStr"

minOcuurs="1" maxOccurs="1"/>

</sequence>

<complexType>

Person could have 1 or 2 names (e.g. Christian name) and only one surname.

Example 2.9. The choice element allows to select from the set of elements
defined by the choice element.

<element name="Price">

<complexType>

<choice>

<element name="FullPrice"/>

<element name="SalePrice"/>

</choice>

</complexType>

</book>

Price could be either full or sale.

Elements An element has a name and a type. The type can be either defined
before, or its definition can be included.

Example 2.10. An element address uses a type defined in the previous exam-
ple.

<element name="address" type="TypeAddress"></element>

Example 2.11. Element surname defines its own type that can not be reused
later.

<element name="surname">

<simpleType>

<restriction base="string">

<minLength value="2"/>

</restriction>

</simpleType>

</element>

Attributes An attribute has a name and a type. Their necessity can be also
specified – an attribute can be optional or required.

Example 2.12. An optional attribute:

<attribute name="name" type="TypeNotEmptyStr"/>

Example 2.13. Attribute library is required:

<attribute name="library" type="integer"

use="required"/>
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2.3 PIM and PSM Schemas

In this section we define PIM (Platform-Independent Model) and PSM (Platform-
Specific Model) schema. They describe an application domain at different levels
of abstraction – a Platform-Independent and a Platform-Specific level, respec-
tively. PIM is a non-hierarchical conceptual schema of a domain that defines the
structure and describes the domain independently of the data representation. In
general, a conceptual model represents entities and relationships among them.
Another examples of conceptual models are the E-R model [28] or UML [21].
PSM schemas are manually or automatically derived from the PIM schema and
correspond to a specific platform and particular details.

Example 2.14. An example of a PIM and PSM schemas is shown in Figure
2.3. An XML schema is displayed in Figure 2.4. This PIM schema describes the
domain of education, where students attend lessons that are taught by teachers.
It has the following constructs:

• PIM classes: Person, Teacher, Mark, ContactInfo, Address, Lesson,
Student.

• PIM attributes: streetName, streetNumber, city, postalCode, ...

• PIM associations: teaches, attends.

PSM schema contains similar constructs:

• PSM classes: Pupil, Address, Class.

• PSM root: ElementarySchool.

• PSM attributes: firstname, surname, street, city, name.

According to [41] the definition of PIM is as follows:

Definition 2.2. A PIM is a triple S = (Sc, Sa, Sr) of disjoint sets of classes,
attributes, and associations, respectively.

• Class C ∈ Sc has a name assigned by function name.

• Attribute A ∈ Sa has a name, data type and cardinality assigned by func-
tions name, type, and card, respectively. Moreover, A is associated with a
class from Sc by function class.

• Association R ∈ Sr is a set R = {E1, E2}, where E1 and E2 are called
association ends of R. R has a name assigned by function name. Both E1

and E2 have a cardinality assigned by function card and are associated with
a class from Sc by function participant. We will call participant(E1) and
participant(E2) participants of R. name(R) may be undefined, denoted by
name(R) = λ.

PSM schema is defined as follows:

Definition 2.3. A PSM schema is a tuple S
′

= (S
′
c, S

′
a, S

′
r, S

′
m, C

′

S′
) of disjoint

sets of classes, attributes, associations, and content models, respectively, and one
specific class C

′

S′
∈ S ′c called schema class.
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(a) PIM

(b) PSM

Figure 2.3: An example of PIM and PSM schemas representing the domain of
education
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<xs:element name="elementarySchool">

<xs:complexType>

<xs:sequence>

<xs:element name="pupil">

<xs:complexType>

<xs:sequence>

<xs:element name="adress">

<xs:complexType>

<xs:attribute name="streetName" type="xs:string"/>

<xs:attribute name="city" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="class" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="firstName" type="xs:string"/>

<xs:attribute name="surname" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 2.4: An example of XML schema from domain of education

• Class C
′ ∈ S ′c has a name assigned by function name.

• Attribute A
′ ∈ S

′
a has a name, data type, cardinality and XML form

(whether it models an XML attribute or an XML element) assigned by
functions name, type, card and xform, respectively. xform(A

′
) ∈ {e, a}.

Moreover, it is associated with a class from S
′
c by function class and has a

position assigned by function position within the all attributes associated
with class(A

′
).

• Association R
′ ∈ S ′r is a pair R

′
= (E

′
1, E

′
2), where E

′
1 and E

′
2 are called as-

sociation ends of R
′
. Both E

′
1 and E

′
2 have a cardinality assigned by function

card and each is associated with a class from S
′
c or content model from S

′
m

assigned by function participant, respectively. We will call participant(E
′
1)

and participant(E
′
2) parent and child and will denote them by parent(R

′
)

and child(R
′
), respectively. Moreover, R

′
has a name assigned by function

name and has a position assigned by function position within the all asso-
ciations with the same parent(R

′
). name(R

′
) may be undefined, denoted

by name(R
′
) = λ.

• Content model M
′ ∈ S

′
m has a content model type assigned by function

cmtype. cmtype(M
′
) ∈ {sequence, choice, set}.
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The graph (S
′
c ∪ S

′
m, S

′
r) must be a forest of rooted trees with one of its trees

rooted in C
′

S′
.

There exists mapping from a PSM schema to a PIM schema and is called inter-
pretation of a PSM schema against the PIM schema[54]. The mapping specifies
the semantics of the PSM schema in terms of the PIM schema and is useful in
case of changes in the schema. Change in one schema is propagated to all schemas
that are related by the common interpretation, so the set of all schemas remains
in a consistent state. In general, an interpretation of a PSM class or attribute is
a PIM class or attribute, respectively. An intepretation of a PSM association is
not a PIM association directly. It is an ordered PIM association which we call
ordered image of the PIM association. It is defined as follows [54]:

Definition 2.4. Let R = {E1, E2} ∈ Sr be an association. An ordered image of

R is an ordered pair RE1 = (E1, E2) (or RE2 = (E1, E2)). We will use
−→
Sr to denote

the set of all ordered images of associations of S
′
, i.e.

−→
Sr =

⋃
R∈S′r

{
RE1 , RE2

}
.

An interpretation of a PSM schema S
′

against a PIM schema S is defined as
follows[54]:

Definition 2.5. An interpretation of a PSM schema S
′

against a PIM schema S

is a partial function I : (S
′
c∪S

′
a∪S

′
r)→ (Sc∪Sa∪

−→
Sr) which maps a class, attribute

or association from S
′

to a class, attribute or ordered image of an association
from S, respectively. For X

′ ∈ (S
′
c ∪ S

′
a ∪ S

′
r), we call I(X

′
) interpretation of X

′
.

I(X
′
) = λ denotes that I is not defined for X

′
. In that case, we will also say that

X
′

does not have an interpretation.
Let a function classcontext

′
I : S

′
c ∪ S

′
a ∪ S

′
r ∪ S

′
m → S

′
c return for a given com-

ponent X
′
of S

′
the closest ancestor class to X

′
so that I(classcontext

′
I(X

′
)) 6= λ.

The following conditions must be satisfied:

• I(C
′

S′
= λ)

• (∀C ′ ∈ S ′c s.t. repr
′
(C
′
) 6= λ)(I(C

′
) = I(repr

′
(C
′
)))

• (∀A′ ∈ S ′a s.t. I(A
′
) 6= λ)(class(I(A

′
)) = I(classcontext

′
I(A

′
)))

• (∀R′ ∈ S ′r s.t. I(child
′
(R
′
)) = λ)(I(R

′
) = λ)

• (∀R′ ∈ S ′r s.t. I(child
′
(R
′
)) 6= λ)

(I(R
′
) = (I(classcontext

′
I(R

′
)), I(child

′
(R
′
)))

The interpretation I(X
′
) of component X

′
in the PSM schema determines the

semantic of X
′

in terms of the PIM schema.
Figure 2.5 displays interpretation of PSM elements against PIM elements of

schemas in Figure 2.3.
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3. Schema Matching and
Similarity

We define basic terms for schema matching in the following paragraph. The
semi-automatic or automatic proces of finding correspondences between elements
of two schemas is called schema matching. In the text of this thesis the term
schema matching is used for simplicity, but there are other possibilities.

• Schema - schema matching has as an input of two XML schemas.

• Instance - instance matching has as an input of two XML documents.

• Schema - instance matching has as an input of an XML document and an
XML schema.

Similarity is a measure that expresses the level of correspondence. Its value
is from interval [0, 1], where 0 means no similarity and 1 means that the com-
pared items are equal in their meaning. Matcher is an algorithm that evaluates
similarity of schemas according to particular criteria.

3.1 Applications of Schema Matching

Schema matching is extensively researched and has a lot of applications [3].

Data Integration In this particular area there is a set of independently de-
signed schemas and the task is to create a single mediated schema that allows
a uniform access to it. The independently developed schemas have often differ-
ent structure and terminology, but they still describe the same real-world model.
Schema matching is the first step in data integration proces. It is used e.g. in
[39]. Conceptual Modeling enables a slight variation of schema integration. Inde-
pendently developed schemas are integrated using a given conceptual schema.

E-business In bussiness transactions messages with different format are of-
ten exchanged and they have to be transformed - we need a conversion between
different names, different data types, different ranges of values and different struc-
ture. Schema matching is used for integration of different representations of the
same concept developed by different parties involved in the bussiness transactions.
Examples of this application are [33], [34].

Biochemistry and Bioinformatics Data management in bioinformatics and
biochemistry is used for example in genome research, network analysis of mo-
lecular interactions, interaction maps of proteins. Information systems contain
usually very large data sets. The volume of data grows exponentially as new
types of data emerge. In addition, the semantics of biological data is very rich.
Schema matching enables to share and reuse data from the previous experiments
from heterogenous sources. It is studied, e.g., in [35], [36], [37].
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Ontology Matching An ontology is a representation of knowledge about a
certain domain. It uses concepts, attributes and relations to express this knowl-
edge. The concepts are entities and relations express relationships among them.
Ontologies are organized into a taxonomy tree and can be specified by languages
such as OIL1 [49], RDF2 [50], OWL3 [52] and SHOE4 [53]. The ontology match-
ing is problem of finding semantic mapping between the elements of ontologies.
Ontology matching is explored e.g. in GLUE [8], GOMMA [31] and LogMap [32].

Data Warehouse A data warehouse is a database with decision support. It
is mainly used for reporting and data analysis. Data is extracted from a set of
data sources and have to be transformed into the warehouse format. Schema
matching is used to find semantic correspondences between elements of source
and warehouse schemas. This application is explored e.g. in [38], [46].

3.2 Usage of Schema Matching in MDA

Assume that XML schema in Figure 2.4 was created before the PIM schema
in Example 2.14 and we would like to integrate it to the set of PSM schemas.
Elements of XSD schemas are converted to their correspponding PSM schema
representatives. This conversion is straightforward, as it is proved in [54]. For
full integeration we need to find the interpretation of its elements against the PIM
elements. This could be done either manually or using schema matching. Manual
integration is time-consuming and expensive and that is why we explore usage
of schema matching for this task in our work. The PSM element - PIM element
pair is identified as an interpretation of PSM element against PIM element if it
is suggested as a match by schema matching.

1Ontology Inference Layer
2Resource Description Framework
3Web Ontology Language
4Simple HTML Ontology Extensions
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4. Related Work

This chapter starts with classifying of schema matchers and continues with sur-
veying several approaches to schema matching. It also describes measures to
evaluate the quality of matching decisions suggested to us by matchers.

4.1 Classification of Schema Matchers

In [3], classification of matching algorithms according to several criteria was pro-
posed. It is briefly described in the following text.

Instance vs Schema Matching These two approaches differ in the source of
information that are considered as input for matching. Schema matchers use only
schema information - element names, descriptions and comments, relationships,
constraints and data types, while instance matchers use real instance data.

Instance-based matchers are used on their own (e.g. if no schema is available)
or they can improve schema-level matching decisions (e.g. choosing between
equally similar elements). Some matching techniques are especially appropri-
ate for instance-based matching, for example linguistic characterization of text
content of elements (frequencies of words, keywords) and constraint-based char-
acterization of numerical attribute values (value ranges and averages) or of tex-
tual content of elemenents and textual values of attributes (character patterns).
Sample approaches are Tree Edit Distance algorithms [25], [26] and Time Series
Comparing [24].

Element vs Structure Matching Another category of matchers is distin-
guished by the level of granularity. Element-level matching produces mapping
between elements of input schemas. It is used e.g. in [27]. Structure matchers
consider complex schema structures – combinations of elements. Each item in
the structure is required to match for full structural match or only some of them
for partial structural match (comparison of subschemas of different domains).
Structure matching is used, e.g., in [48], [4].

Language vs Constraint Matching Language matchers use either names,
texts or descriptions for finding semantically equal or similar ones. During lin-
guistic processing, an auxiliary source of information is needed – thesaurus or dic-
tionary of synonyms and hypernyms, multi-language dictionary, domain-specific
dictionary, list of abbreviations. Examples of language matchers are described in
Subsection 4.2.1. Comments associated with schema elements can be used as an
additional source of information.

If constraints (data types, value ranges, keys, optionality of attributes, cardi-
nality or relationships) of schema elements or attributes are compatible, it sug-
gests a possibility of a match between them. This approach is used, e.g., in
SemInt [27].
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Combination of Individual Matchers It is neccessary to combine multiple
different approaches for an effective matching. A single matcher focuses on a
particular feature and could miss some good match candidates. Combinations
allow us to use the criteria from different categories – e.g. structure-level matching
with name matching. There are two possible ways of combining the individual
matchers.

• Use different match criteria or properties within a single hybrid matcher.

• Aggregate the results of several independently executed match algorithms
in a composite matcher.

A hybrid matcher should also achieve better performance than the separate
execution of multiple matchers – e.g. poor match candidates are filtered out early,
the number of passes over the schema is reduced by computing more criteria at
once for an element before continuing to another one. Individual matchers can be
evaluated simultaneously or in a specific order. Hybrid combination of individual
matchers is used in Similarity Flooding algorithm [5] and CUPID [4] matcher.

A composite matcher integrates results of one-approach matchers or hybrid
matchers. It is a more flexible way of combining than the hybrid matcher, as it
provides the possibility of reordering the sequence of matcher execution and the
possibility of selecting appropriate matchers from a fixed set based on application
domain or language of input schemas. Selection of matchers can be done auto-
matically or manually. Composite approach is used in e.g. COMA [1], COMA++
[15], LSD [7], Bayesian Networks [42] matchers.

The proposed criteria are hierarchically ordered and form a classification tree
that is displayed in Figure 4.1.

Table 4.1 classifies several approaches according to proposed criteria.

COMA SF DT Bayesian Networks
Combination type Composite Hybrid Hybrid Composite
Composition Manual - - Automatic

Table 4.1: Classification of combining matchers

4.2 Matching Algorithms

This section describes examples of individual matchers divided by the proposed
criteria.

4.2.1 Element Name Matchers

Affix matcher compares common stems (suffixes and prefixes) of element
names. It takes two element names as input and checks whether the first ele-
ment name starts or ends with the second one.

Example 4.1. The word name is a suffix of the word surname.
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N-gram matcher syntactically compares schema element names. It converts
an element name into a sequence of n-grams (n ≥ 0). An n-gram is a sequence
of n characters. The number of common n-grams represents the degree of sim-
ilarity between input element names. Most commonly used n-grams are with
n = 1, 2, 3, 4.

Example 4.2. Bigrams (n = 2) for words table and tabular are:
table: ta, ab, bl, le
tabular: ta, ab, bu, ul, la, ar
the common bigrams are: ta, ab

The similarity score is calculated using the following formula:

sim(s1, s2) =
commonNgramCount(s1, s2, n)

length(s1) + length(s2)
(4.1)

Distance matcher evaluates the number of edit operations necessary to trans-
form one element name to another one. Levenshtein algorithm, also known as
the edit distance algorithm, is a measure of the amount of difference between two
strings. It is the least number of edit operations required to transform one string
into another normalized by the length of the longest string. Edit operations are
character substitution, insertion and deletion. It is possible to set the weight for
each edit operation.

Example 4.3. The edit operation between word kitten and kettle are:

• kitten → ketten (substitution of i by e),

• ketten → kette (deletion of n),

• kette → kettle (insertion of l).

Two equal strings do not require any transformation and have similarity score
of 1. If we denote o edit operation, wo weight of this edit operation, then the
similarity score is calculated as follows:

editDist(s1, s2) =
∑
o

wo
∑

editOperationCounto(s1, s2) (4.2)

sim(s1, s2) =
editDist(s1, s2)

max(length(s1), length(s2))
(4.3)

Soundex matcher computes the phonetic similarity between names from their
corresponding soundex codes. Soundex [44] indexes names by sound, as pro-
nounced in English. An example of soundex codes is shown in Table 4.2.

Synonym matcher is a semantic matcher that consults an auxiliary source of
information (dictionary) for terminological relationships between input element
names. The similarity value is computed according to semantic relationship be-
tween them - whether they are synonyms, hypernyms.
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Number Represents the Letters
1 B F P V
2 C G J K Q S X Z
3 D T
4 L
5 M N
6 R

Table 4.2: Example of a Soundex codes

Figure 4.2: Matching algorithm decision sets

4.2.2 Structure Matchers

Tree Edit Distance algorithm is an extension of the Levenshtein algorithm for
finding similarity between two trees. The basic edit operations insertion, deletion,
and substitution are expanded with operations insert tree and delete tree. These
operations are applied to a node of a tree. This is studied e.g. in [40].

4.3 Match Quality Measures

Several measures, such as Recall, Precision, F-Measure and Overall are used
for automatic evaluation of match quality [6]. Recall and precision are metrics
well known from the field of information retrieval.

During matching the algorithm has to make some decision about each pair of
elements – whether elements match or do not match.

Notation 4.1. Matching decision sets:
FN - false negatives - the algorithm decided to not match elements ei, fj, but
they do match.
TP - true positives - the decision to match elements ei, fj is correct.
FP - false positives - the decision of the algorithm is to match elements ei, fj,
but they do not match.
TN - true negatives - the decision to not match element ei to element fj is correct.

Each of the element matching decisions falls into one of these four sets, FN,
TP, FP, and TN. This is shown in Figure 4.2. Both false negatives and false
positives reduce the match quality.
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Recall (also called Completeness) indicates the proportion of matches auto-
matically proposed by the algorithm among the complete set of elements that
match. High value of recall means that the algorithm returned most of the rele-
vant results.

Recall =
|TP |

|FN |+ |TP |
(4.4)

Precision (also called Soundness) reflects the share of correctly automatically
determined matches among the set of all automatically determined matches. High
value of precision means that an algorithm has high accuracy - it returned more
relevant results than irrelevant.

Precision =
|TP |

|TP |+ |FP |
(4.5)

Both measures can be maximized at the expense of a low value of the other,
but it brings no real improvement, as shown in [23]. One solution for this problem
is to combine these metrics into one.

F-measure allows attaching different relative importance to Precision and Re-
call. Special case is for α = 1/2 where Precision and Recall are in balance.

F -Measure(α) =
|TP |

(1− α)|FN |+ |TP |+ α|FP |

=
Precision Recall

(1− α) Precision+ α Recall
0 ≤ α ≤ 1 (4.6)

Overall quantifies the post-match effort needed for adding false negatives and
removing false positives. This metric was proposed in [5].

Overall = 1− |FN |+ |FP |
|FN |+ |TP |

=
|TP | − |FP |
|FN |+ |TP |

= Recall(2− 1

Precision
) (4.7)

4.4 Sample Approaches

In this section the best known representatives of schema matching are described.

4.4.1 COMA

COMA matcher [1] is an example of a composite approach. Individual matchers
are selected from an extensible library of match algorithms. Matchers are simple,
hybrid and reuse-oriented. The process of matching is interactive and iterative.
A match iteration has the following three phases:
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1. User feedback and selection of the match strategy,

2. Execution of individual matchers,

3. Combination of the individual match results.

Interactive mode The first step in the iteration is optional. The user is able
to provide feedback - to confirm or reject previously proposed match candidates
or to add new matches, and to define a match strategy - selection of matchers,
strategies to combine individual match results. In automatic mode there is only
one iteration and the match strategy is specified by input parameters.

Reuse of match results Since many schemas to be matched are very similar
to the previously matched schemas, match results (intermediate similarity results
of individual matchers and user-confirmed results) are stored for later reuse.

Data structure Input schemas are transformed to an internal graph represen-
tation - rooted directed acyclic graph. All schema elements are represented by
their full paths from the root to a corresponding node.

Aggregation of individual matcher results Similarity values from individ-
ual matchers are aggregated to a combined similarity value. Several aggregate
functions are available, for example Min, Max or Average.

Selection of match candidates For each schema element its best match can-
didate from another schema is selected (the ones with the highest similarity value
according to MaxN, MaxDelta, Threshold criteria).

The COMA++ [15], extention of COMA, supports a number of other features
like merging, saving and aggregating match results of two schemas.

4.4.2 Similarity Flooding

Similarity Flooding [5] can be used to match various data structures - data
schemas, data instances, or a combination of both. The algorithm is based on
the idea that the similarity of an element is propagated to its neighbours. The
input data is converted into directed labeled graphs. Every edge in the graphs is
represented as a triple (s, l, t), where s is a source node, t is a target node and l is
a label of the edge. No external directory of terminological relationships is used.
Output mapping of elements is checked and if necessary, corrected by the user.
The accuracy of the algorithm is calculated as the number of needed adjustments.
The algorithm has the following steps:

1. Conversion of input schemas to internal graph representation.

2. Creation of auxiliary data structures - pairwise connectivity graph and prop-
agation graph. An example can be seen in Figure 4.3.

3. Computation of initial mapping.

4. Iterative fixpoint computation.

23



5. Selection of relevant match candidates.

(a) Input graphs

(b) Pairwise connectivity graph

(c) Propagation graph

Figure 4.3: Example of Similarity Flooding data structures

Definition 4.1. A pairwise connectivity graph PCG(A,B) = (V,E) is a directed
labeled graph, where
A = (VA, EA), B = (VB, EB) are graphs representing input schemas,
V ⊆ (VA × VB) is set of nodes of graph PCG(A,B),
((sA, tA), l, (sB, tB)) ∈ E ⇐⇒ (sA, l, tA) ∈ EA ∧ (sB, l, tB) ∈ EB.
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Definition 4.2. A propagation graph PG(A,B) = (V
′
, E
′
) is a directed weight-

ed graph induced from a pairwise connectivity graph PCG(A,B) = (V,E), where
V
′
= V is set of nodes of graph PG(A,B)

((sA, tA), (sB, tB)) ∈ E ′ ∧ ((sB, tB), (sA, tA)) ∈ E ′ ⇐⇒ ((sA, tA), l, (sB, tB)) ∈ E
w((sA, tA), (sB, tB)) = 0.5
w((sB, tB), (sA, tA)) = 1.0
w is called propagation coefficient - the weight of the edges of propagation graph
that indigates how well the similarity of map pair propagates to its neighbors.

Matcher The main matcher is structural and is used in a hybrid combination
with a simple name matcher that compares common affixes for initial mapping.
The matcher is iterative and based on fixpoint computation with initial mapping
as a starting point.

Fixpoint computation The algorithm is iterated until a fixpoint has been
reached (e.g. similarities stabilize).
σi - similarity value in i-th iteration of nodes x ∈ VA and y ∈ VB
σ0 - value computed in initial mapping

σi+1(x, y) = σi(x, y) +

+
∑

(a,l,x)∈EA
(b,l,y)∈EB

σi(a, b)w((a, b), (x, y))

+
∑

(x,l,c)∈EA
(y,l,d)∈EB

σi(c, d)w((x, y), (c, d))

(4.8)

Similarity Flooding could be improved for example by usage of another match-
er for initial mapping or auxiliary source of information - e.g. dictionary.

4.4.3 Decision Tree

In [2] a new method of combining independent matchers was introduced. An
example of a decision tree can be seen in Figure 4.4 and it is defined as follows.

Definition 4.3. A Decision tree is a tree G = (V,E), where
Vi - set of internal nodes - independent match algorithms.
Vl - set of leaf nodes - output decision whether elements do or do not match.
V = Vi ∪ Vl - set of all nodes.
E - set of edges - conditions that decide to which child node the computation will
continue.

Example 4.4. A decision tree that is displayed in Figure 4.4b has the following
sets of nodes:
Vi = {Leaf Comparator, 3-grams, Jaccard}
Vl = {mismatch, match, match, mismatch}
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(a) Quality-based

(b) Performance-based

Figure 4.4: An example of a decision tree from [2]
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During the traversal of this tree we are for example at the root node where Leaf
Comparator matcher can return the following similarity values:

• 0: the computation will continue to its left child that is leaf and mapping
pair is identified as mismatch,

• 1: the computation will continue to its right child that is internal node and
the traversal of tree will continue.

A node in a decision tree can have as many children as the similarity measure
requires. For example a matcher has values from range [a, b] >, a < b < c < d
and reached value v:

• v ∈ [a, b]: mismatch,

• v ∈ (b, c]: continue with computation with another similarity measure,

• v ∈ (c, d]: match.

Comparison with Aggregation The decision tree approach does not have
the following disadvantages of aggregation of result of independent matchers:

• Performance In the composite approach with an aggregate function, all
of the match algorithms have to run. The time required is worse than with
a decision tree.

• Quality Aggregation can lower the match quality, e.g. if we give higher
weights to several matchers of the same type that falsely return a high
similarity value.

• Extendability is worse, because adding a new matcher means updating
the aggregation function.

• Flexibility is limited, because an aggregation function needs manual tun-
ing (weights and thresholds).

• Common threshold Each match algorithm has its own value distribution,
they should have their own threshold.

4.5 Advantages and Disadvantages

The comparison of the previously disscused methods is introduced in Table 4.3.
The decision tree approach seems to be the most promising for our application
– it is dynamic and versatile. Furthermore it has desirable values of compared
properties – it is highly extensible, quick and has a low level of user intervention
and a low level of required auxiliary information. The decision tree approach was
choosen for further study and implementation in this thesis.
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Extensibility Speed User intervention Auxiliary info
COMA Low Low High Low
SF None High None None
DT High High Low Low

Table 4.3: A comparison of the selected existing solutions
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5. Decision Tree

This chapter contains a brief description of the algorithm for construction of deci-
sion tree proposed in the work of Jakub Stárka [22] and then follows a description
of C5.0 algorithm that is used in this work for training of decision tree.

5.1 Decision Tree Induction

The decision tree in the thesis of Jakub Stárka is constructed as follows: The
matchers are split into three groups according to the main feature that they
compare: class name, data type and structural similarity.

In each group the matchers are assigned with a priority according to their
efficiency. Then the matchers are sorted in ascending order according to impor-
tance (where the class name group is the most important) of group and their
priority inside the group. Finally the decision tree is built. The first match-
er is selected as the root of the tree and other matchers are taken in sequence
and added to the tree. If we want to add matcher M to the actual node n –
addMatcherToTree(M,n), there are the following possible situations:

• If node n has no child, method M is added as a child of n.

• If node n has children c1, ...cn from the same feature group that M belongs
to and has the same priority, then matcher M is added as the next child of
node n.

• If node n has children c1, ...cn from the different feature group that M be-
longs to or has different priority, then for each node ci we call
addMatcherToTree(M, ci).

These three situations are displayed in Figure 5.1.

(a) Without children (b) Same feature and priority

(c) Different feature and priority

Figure 5.1: The decision tree creation by algorithm proposed by Jakub Stárka
[22]

The decision tree that is created by algorithm proposed by Jakub Stárka is
displayed in Figure 5.2
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Figure 5.2: A decision tree used in work of Jakub Stárka

5.2 Decision Tree Induction via C5.0

Currently, there are several algorithms for the induction of a decision tree from
training data – ID3 [16], CLS [19], CART [18], C4.5[17] and SLIQ [20]. The C5.0
[29] algorithm is exploited and utilized in this thesis. The following paragraph
describes it.

In the following paragraph, we introduce a notation that is used in the rest of
the chapter.

Notation 5.1. Decision tree construction:
S – a set of training samples.

An example of training samples is displayed in Figure 5.3.
S(v,M) – a set of examples from S that have value v for matcher M .
S((i1, i2),M) a set of examples from S that have value from interval (i1, i2)

for matcher M .
C = {C1, C2} – the decision tree algorithm classifies S into two subsets with

possible outcomes – C1 = match and C2 = mismatch.
Info(S) – entropy of the set S.
freq(Ci, S) – the number of examples in S that belong to class Ci.
|S| – the number of samples in the set S.
Gain(M,S) – the value of information gain for matcher M and set of samp-

les S.
InfoM(S) – entropy for matcher M .

The entropy of the set of training samples S is computed as follows (using the
above defined notation):

Info(S) = −
2∑
i=1

(
freq(Ci, S)

|S|
log2

(
freq(Ci, S)

|S|

))
(5.1)

The set S has to be partitioned in accordance with the outcome of matcher
M . There are two possibilites:

1. Matcher M has 1..n discrete values, in that case the entropy for matcher
M and set S is computed as follows (using the above defined notation):

InfoM(S) =
n∑
i=1

(
|S(i,M)|
|S|

Info(S(i,M))

)
(5.2)
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2. Matcher M has values from continuous interval [a, b], that is why threshold
t ∈ [a; b] that brings the most information gain has to be selected by Algo-
rithm 5.2. Entropy for matcher M and set S is then computed according
to the following formula (using the above defined notation):

InfoM(S) =

(
|S([a; t],M)|

|S|
Info([a; t],M)

)
+(

|S((t; b],M)|
|S|

Info((t; b],M)

) (5.3)

The gain value for a set of samples S and matcher M is computed as follows:

Gain(M,S) = Info(S)− InfoM(S) (5.4)

Then decision tree is constructed by Algorithm 5.1. There are the following
possibilities for the content of the set of training samples S in the given node
parent of the decision tree:

1. S is empty, then the decision tree is a leaf identifying class Ci – the most
frequent class at the parent of the given node parent. This leaf is added as
a child to node parent.

2. S contains only examples from one class Ci, then the decision tree is a leaf
identifying class Ci. This leaf is added as a child to node parent.

3. S constains examples from different classes, then S has to be divided into
subsets. The matcher M with the highest value of information gain is
selected. There are two possibilities:

(a) The matcher M has n dicrete mutually exclusive values v1..vn, then
set S is partioned into subsets Si where Si contains samples with value
vi for matcher M .

(b) The matcher M has values (v1, ...vn) from continuous interval [a, b],
then threshold t ∈ [a, b] has to be determined. Subsets S1, S2 constains
samples with values from interval [a, t], (t, b], respectivelly, for matcher
M .

The matcher M is added as a child to node parent. For all the subsets Si
subtrees are constructed and are added to node M as children.

The threshold for matcher M with values (v1, ...vn) from continuous interval
[a, b] is selected as follows:

• Values are sorted in the ascending order, duplicate values are removed. Lets
denote them u1, ...um.

• All possible thresholds Ai ∈ [ui, ui+1] have to be explored.

• For each interval [ui, ui+1] the midpoint Ai is choosen as a split to two
subsets [u1, Ai] and (Ai, um].
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• For each midpoint the information gain is computed and the midpoint Amax
with the highest value of information gain is selected .

• The threshold is then returned as a lower bound of interval [umax, umax+1].

Algorithm 5.1 Construction of a decision tree T from a set S of user-evaluated
training samples

1: function BuildTree(S, parent, condition)
2: T empty tree
3: if S is empty then
4: c← the most frequent class at the parent of the given node parent
5: /∗ adds node c as a child to node parent with condition condition
6: on edge ∗/
7: AddLeaf(parent, c, condition)
8: else if S constains only results from one class Ci then
9: c← Ci

10: /∗ adds node c as a child to node parent with condition condition
11: on edge ∗/
12: AddLeaf(parent, c, condition)
13: else
14: M ← matcher with the highest value of information gain Gain(M,S)
15: /∗ adds node M as a child to node parent with condition condition
16: on edge ∗/
17: AddNode(parent, M , condition)
18: if M has n dicrete mutually exclusive values v1..vn then
19: S ′ ← {S1, ...Sn}|Si = S(vi,M)
20: ci ← vi
21: else if M has values (v1, ...vn) from continuous interval [a, b] then
22: t← ComputeTreshold((v1, ...vn),M, S)
23: /∗ samples with values from interval [a, t] for matcher M ∗/
24: S1 ← S([a, t],M)
25: c1 ← [a, t]
26: /∗ samples with values from interval (t, b] for matcher M ∗/
27: S2 ← S((t, b],M)
28: c2 ← (t, b]
29: S ′ ← {S1, S2}
30: end if
31: for all Si ∈ S ′ do
32: /∗ constructs subtree Ti from subset Si and adds it as a child to
33: node M with condition ci on edge ∗/
34: Ti ← BuildTree(Si, M , ci)
35: end for
36: end if
37: return T
38: end function
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Algorithm 5.2 Selection of threshold for continuous values v1, ...vn for matcher
M and set of samples S

1: function ComputeTreshold((v1, ...vn), S,M)
2: /∗ sorts values in the ascending order, duplicate values are removed ∗/
3: (u1, ...um)← SortAscDistinct((v1, ..vn))
4: for i← 1,m− 1 do
5: /∗ average of values U[i] and U[i+1] ∗/
6: A[i]← Avg(U [i], U [i+ 1])
7: L[i]← U [i]
8: H[i]← U [i+ 1]
9: end for

10: /∗ um the highest value from the continuous inteval ∗/
11: /∗ u1 the lowest value from the continuous interval ∗/
12: for i← 1,m− 1 do
13: gaini ← Gain(M,S([u1, A[I]], (A[I], um],M))
14: end for
15: maxGain← maxm−1i=1 gaini
16: max← i|gaini = maxGain
17: t← L[max]
18: threshCost← cost of splitting interval into two subintervals
19: [u1, t] and (t, um]
20: result.gain← maxGain− threshCost
21: result.threshold← t
22: return result
23: end function

Example 5.1. An example of training of the decision tree using the C5.0 algo-
rithm: For briefness only three matchers are used: Matched Thesauri1, Leven-
shtein Distance and N-gram. In Figure 5.1 a small training set is shown. C5.0
algorithm works in the following steps:

• In the begining, the training set S contains all 14 samples. Matched The-

sauri has discrete values 0 and 1. Levenshtein Distance and N-gram

have values from continuous interval [0; 1]. Gain values are computed for
all matchers.

Matched Thesauri has the highest gain value – 0.371, that is why Matched

Thesauri is selected as a root of the constructed decision tree. Set S is di-
vided into two parts S(0, Matched Thesauri) and S(1, Matched Thesauri).

• Set S(1, Matched Thesauri) contains samples that have value 1 for matcher
Matched Thesauri and it contains only samples from the same match class.
New leaf match is added as a child to node Matched Thesauri.

• Set SMT0 = S(0, Matched Thesauri) consists of samples with value 0 for
matcher Matched Thesauri and results from various classes, so this set
has to be further divided. Gain values are computed and matcher with the
highest gain value – N-gram is added as a child of node Matched Thesauri.

1Matched Thesauri matcher is described in Section 6.2
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Threshold value for N-gram matcher with continous range is 0.071 and set
SMT0 is devided into two subsets SN1 = S([0; 0.071], N-gram) and SN2 =
S((0.071; 1], N-gram). This split is displayed in Figure 5.4.

• There are only mismatch results in set SN1, so leaf mismatch is added as
a child to node N-gram.

• Set SN2 also contains results from one class – match. Another leaf match
is added to node N-gram.

The final trained decision tree is displayed in Figure 5.5.

The algorithm proposed by Jakub Stárka has several possible drawbacks. It
does not propose a method for automatic determination of conditions on edges
and thresholds for continuous matchers. They have to be either set by the user
or the default values are used. Furthermore, the decision tree does not suggest
mapping results automatically. It computes an aggregated similarity score. Dur-
ing the traversal of the decision tree for each of the feature groups the maximal
similarity value returned by matcher from this group is stored. Then the aggre-
gated similarity score is computed as an average of the maximal similarity value
for each of the feature groups. For each PSM element it returns possible match
candidates – PIM elements evaluated by the aggregate similarity score sorted in
the descending order. This helps to find matches, but it is not done automatical-
ly – the user has to evaluate each mapping. Because of this, we are not able to
compare the results of our approach with the previous one.

In this work we decided to generate the decision tree using machine learning
techniques. This approach solves the above mentioned problems, as we would like
to use the advantages of the decision tree approach and minimize the previous
disadvantages.
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Figure 5.3: Data used for training of decision tree in Example 5.1
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Figure 5.4: Data used for training of decision tree in Example 5.1

Figure 5.5: Decision tree trained from the training set in Example 5.1
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6. Implementation

This chapter contains the implementation details. There is description of the tool
in which this thesis was implemented. It also contains a survey of used match
algorithms and describes the user interface.

6.1 Platform

This thesis is implemented in the eXolutio [41] tool. eXolutio is based on the
MDA approach and models XML schemas at two levels – PIM and PSM. eXolutio
allows the user to manually design a common PIM schema and multiple PSM
schemas with interpretations against the PIM schema. Mapping between the two
levels allows to propagate a change to all the related schemas. Thesis of Jakub
Stárka has been implemented within eXolutio predecessor – XCase1. Complete
information, documentation and download possibilities for eXolutio can be found
at the project web page2.

6.2 Set of Used Matchers

This thesis uses the same set of matchers as the one of Jakub Stárka: Matched

Thesauri, Length Ratio, Levenshtein Distance, Prefix, Data Type and
Children. The set of matchers could be easily extended, as described in Section
6.4.

Matched Thesauri Thesaurus for this matcher contains user-confirmed match-
es from the previous matchings. Names of matched classes or attributes (s1, s2)
are compared with the previous user-confirmed match pairs and evaluated by the
following score:

matchedThesauri(s1, s2) =

{
0 if (s1, s2) is not in thesaurus
synonymCoef if (s1, s2) is in thesaurus

(6.1)
The user is enabled to set the value of synonymCoef ∈ (0; 1]. The default

value is set to 1. Thesaurus with user-confirmed matches can be saved for each
mapping, so the post-match effort for adding false negatives and removing false
positives is not wasted.

Length Ratio computes the ratio between lengths of two input strings s1, s2
(class or attribute name) and is defined as follows:

lengthRatio(s1, s2) =
min(length(s1), length(s2))

max(length(s1), length(s2))
(6.2)

1www.ksi.mff.cuni.cz/xcase
2http://exolutio.com/
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Levenshtein Distance has been described in Section 4.2. The user is enabled
to set the following coefficients:

• ws – weight of the operation substitution,

• wd – weight of the operation deletion,

• wi – weight of the operation insertion.

Prefix compares whether the string s1 is a prefix for the string s2 or the
other way around. Names of classes and attributes (s1, s2) are tokenized into a
sequence of tokens s1 = (a1, ...an) and s2 = (b1, ...bm). Then the similarity value
is computed as follows:

prefixCount(s1, s2) = |{(ai, bj)|ai = startsWith(bj) ∨ bj = startsWith(ai)}|
(6.3)

prefix(s1, s2) =
prefixCount(s1, s2)

max(n,m)
(6.4)

N-gram has been described in Section 4.2. The user is enabled to set the
coefficient N – the length of N -grams.

Dictionary The domain thesaurus for this matcher contains a set of synonyms
or abbreviations common for the given domain. It helps to identify matches
that would be otherwise difficult to obtain. The similarity value for Dictionary
matcher is computed as follows:

dictionary(s1, s2) =

{
0 if (s1, s2) is not in thesaurus
synonymCoef if (s1, s2) is in thesaurus

(6.5)

Data Type compares similarity of data types of the given elements. It consists
of the data type name and the data type relation and it is computed from data
type hierarchy tree which is displayed in Figure 6.1.

Notation 6.1. Notation in data type formula:

• d – a depth of the node that is the common parent of both nodes dt1 and
dt2 in the data type tree.

• l - a length of the shortest path between nodes dt1 and dt2 in data type
tree.

• α, β – correction coefficients, by default they are set to values α = β =
0.3057, as suggested in [47].

The similarity value for Data Type matcher is computed as follows:

dataType(dt1, dt2) =

{
1 dt1 = dt2
e−βl × eαd−e−αd

eαd+e−αd
dt1 6= dt2

(6.6)
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Figure 6.1: Hierarchy of XML Schema types [45]

Children compares the structural similarity of child nodes or neighbouring
nodes of classes. The distance between classes class1 and class2, dist(class1, class2),
is defined as the shortest path between them. Then d(class) is the total distance
between class and all its children (or neighbours):

d(classpsm) =
∑

dist(classpsm, childpsm) (6.7)

d(classpim) =
∑

dist(classpim, representative(childpsm)) (6.8)

The Children matcher similarity value between classpsm and classpim is com-
puted as the ratio of distances to their children:

children(classpsm, classpim) =
min(d(classpsm), d(classpim))

max(d(classpsm), d(classpim))
(6.9)

In Table 6.1 ranges for continuous and possible values for used matchers are
shown.
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Matcher Range Values
Matched Thesauri Discrete 0;1
Length Ratio Continuous [0;1]
Data Type Continuous [0;1]
Dictionary Discrete 0;1
Children Continuous [0;1]
Levenshtein Continuous [0;1]
N-gram Continuous [0;1]
Prefix Continuous [0;1]

Table 6.1: Ranges of used matchers

Figure 6.2: eXolutio menu for the Adaptive Similarity of XML Data module

6.3 User Interface

A detailed description of the user interface can be found in document User Do-
cumentation on DVD enclosed to this thesis. This section provides just a short
description.

The module for Adaptive Similarity of XML Data is launched from eXolutio.
The user has to open an eXolutio project and select a PSM schema. In the
menu (see Figure 6.2) there is ribbon Interpretation→Mapping that displays
module for matching. It has the following tabs:

Setting The user is enabled to load domain thesauri for matcher Dictionary

and results of previous matches for matcher Matched Thesauri. Afterwards it is
possible to set the measures used for evaluation of matching (Precision, Recall,
F-Measure, Overall), select matchers that will be used for matching, view and
edit their properties and coefficients.

Prepare for Training In this tab, XML schemas are prepared for training
– they are converted to PSM schemas and for each pair of elements similarity
values of selected matchers are computed. The user has to annotate match pairs
– whether they match or mismatch. This could be tedious work and the interface
is designed for maximal possible reuse of already annotated values in different
scenarios, because it is possible, for example, to train a separate tree for classes
and attributes or change a set of selected matchers.

Train DT The previously prepared training set is transformed to the format
required by C5.0 algorithm and then tree is trained. The decision tree is displayed
using the GraphViz [14] tool.
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Figure 6.3: Mapping result

Mapping Mapping is the main tab that maps selected XML schemas to PIM
schema. The results of matching are displayed in a tree view as shown in Figure
6.3. After matching they have the following colors:

• Blue – matches suggested by matcher, but not yet confirmed by the user,

• Black – mismatches suggested by the algorithm.

Afterwards the results can be evaluated by the user – by clicking on a match pair
he confirms or declines suggested mapping result. The results are accordingly
recolored:

• Green – true positives,

• Red – false positives,

• Grey – false negatives,

• Black – true negatives.

Mapping Results Tab Mapping Results displays the results of the previous
matching in tree view and enables the user to confirm or deny matches suggested
by the algorithm, check, correct or re-evaluate them. It also displays match
quality measures values.

6.4 Extending the Set of Matchers and Set of

Mapping Quality Measures

The module for Adaptive Similarity of XML Data was designed with a possible
extention in mind. Sets of matchers and measures are easily extendable.
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New Matcher A new matcher has to be inherited from the parent class Matcher:

public abstract class Matcher

{

public Matcher(int id, String name, MatcherRange type)

{

// initialize all values

}

// id of matcher

public int Id { get; set; }

// name of matcher

public String Name { get; set; }

// flag whether matcher is selected for mapping

public Boolean IsSelected { get; set; }

// continuous or discrete range of matcher

public MatcherRange Range { get; set; }

// coefficients of this matcher

public Coefficients Coefficients { get; set; }

// all possible values for discrete matcher

public DiscreteValues DiscreteValues { get; set; }

// computation of similarity values

// for all possible element types

public abstract double ComputeSimilarity(String input1,

String input2);

public abstract double ComputeSimilarity(PSMClass input1,

PIMClass input2);

public abstract double ComputeSimilarity(PSMClass input1,

PSMClass input2);

public abstract double ComputeSimilarity(PSMAttribute input1,

PIMAttribute input2);

public abstract double ComputeSimilarity(PSMAttribute input1,

PSMAttribute input2);

}

We need to implement all the abstract methods for a new matcher class
NewMatcher.

public class NewMatcher : Matcher

{

public NewMatcher(): base(newMatcherID,

"Name of new matcher",

newMatcherRange)

{

// addition of possible coefficients

Coefficients.AddCoefficient(initValue, minValue, maxValue);

}
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// implementation of all abstract methods

}

We add a new matcher to set of all the matchers:

commonSetting.AddNewMatcher(new NewMatcher())

New Mapping Quality Measure Computation of quality measure is repre-
sented by the following interface:

interface IComputableMeasure {

// Computes value of match quality measure

double ComputeMeasure(

// result of mapping to be evaluated

// by measure

MappingResult result,

// coefficient for measure

double coefficient,

// Type of used decision tree

// (common, separate for classes,

// separate for attributes)

DTType type);

}

A common parent for all quality measures is:

public class MatchQualityMeasure

{

public MatchQualityMeasure()

{

Name = "";

}

// Name of the measure

public String Name { get; set; }

// Computation of measure

public IComputableMeasure Computable { get; set; }

// Computes measure

public double Compute(

// Result of mapping to be evaluated

// by measure

MappingResult result,

// Coefficient for measure

double coefficient,

// Type of used decision tree

// (common, separate for classes,

// separate for attributes)

DTType type)

{
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return Computable.ComputeMeasure(result, coefficient, type);

}

}

For a definition of a new match quality measure we need to implement class
for its computation:

class ComputeNewMeasure : IComputableMeasure {

double ComputeMeasure(MappingResult result,

double coefficient,

DTType type)

{

double result = 0.0;

// implementation of computation of new measure

return result;

}

}

Then we define NewMeasure class as follows:

class NewMeasure : MatchQualityMeasure

{

public NewMeasure()

{

Name = "New Measure Name";

Computable = new ComputeNewMeasure();

}

}

We have to add a new measure to set of all the measures:

commonSetting.AddNewMeasure(new NewMeasure())
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7. Experiments

This chapter contains description of all experiments and their results. The work
of Jakub Stárka does not contain a wide range of experiments and one of our
goals and contribution is experimental evaluation of the proposed approach.

7.1 Experimental Setup

All experiments were run on a standard personal computer with the following
configuration:

Intel(R) Core(TM) i5-3470 3.20 GHz processor

8 GB RAM

OS 64-bit Windows 7 Home Premium SP1

Data for Training The following sets of XML schemas have been used for
training of the decision tree:

• BMEcat is a standard for exchange of electronic product catalogues1.

• OpenTransAll is a standard for bussiness documents2.

• OTA focuses on the creation of electronic message structures for communi-
cation between the various systems in the global travel industry3.

PIM schemas A PIM schema was designed for this thesis according to the
motivation in Section 1.1 and describes a common interface for planning various
types of holidays. It can be seen in Figure B.4.

XML Schemas for experiments For evaluation the following XML schemas
were used:

• Artificial XML schemas: 01_Hotel4

• Realistic XML schemas 02_HotelReservation5, 03_HotelAvailabilityRQ6

These schemas are displayed in Figures B.1, B.2 and B.3.

Domain Thesaurus The domain thesaurus contains sets of words that are
related semantically – for example they are synonyms or abbreviations common
for the given domain. The user is enabled to expand the following one or create a
completly new thesaurus. The thesauri are used during matching by Dictionary

matcher. In Table 7.1 domain thesaurus for the domain of hotels is shown. Each
row in the table contains words that are related semantically.

1www.bmecat.org
2www.opentrans.de
3www.opentravel.org
4This schema was designed for purpose of this work.
5http://kusakd5am.mff.cuni.cz/hb/schema/reservation
6http://itins4.madisoncollege.edu/IT/152121advweb/XMLExamples/unit3/

schemaSimple/HotelAvailabilityRQ.xsd
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address location
accomodation hotel
boarding meal
count amount
lengthOfStay numberOfNights

Table 7.1: Domain thesaurus for Holiday Planning: Hotel

7.2 Description of Experiments and Results

This section contains the description of experiments and presents their results.
The results of the mapping are evaluated by match quality measures (see in
Section 4.3) and comparison of their values is displayed in graphs generated by
GnuPlot [13]. For each experiment, a short example of mapping results for all
the element pairs is attached.

7.2.1 Separate Decision Trees and Common Decision Tree
for Classes and Attributes

The first experiment is designed from the following observation: Efficiency of
methods used to measure similarity between elements depends on the type of
elements - if they are classes or if they are attributes. In this experiment two
sets of decision tree are used:

1. Two separate trees for classes and for attributes.

2. One common tree for classes and attributes.

Experiment Setup:

Separate Decision Trees and Common Decision Tree for Classes

and Attributes (SeparateTrees)

eXolutio Project:

Travelling

XSD schemas:

01_Hotel

02_HotelReservation

03_HotelAvailabilityRQ

Decision tree:

1. Separate decicion tree

for attributes (in Figure 7.1)

for classes (in 7.2)

2. Common decision tree (in Figure 7.3)

Decision tree training set:

Set of XSD Schemas: OTA

Sample count:

Separate decision tree for attributes: 27 942 match pairs
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Separate decison tree for classes: 27 793 match pairs

Common decision tree: 55 815 match pairs

Thesaurus for Dictionary:

None

Thesuarus for Matched Thesauri:

None

Matchers:

Children

DataType

Dictionary

Length Ratio

Levenshtein Distance

Matched Thesauri

Prefix

In the first experiment no additional source of information was used. Both sets
of decision trees were trained without domain thesauri and without previous user
matches. Both sets of decision trees are induced from the same set of training sam-
ples OTA, particularly match pairs of XML schema OTA_HotelAvailGetRQ.xsd

and XML schema OTA_HotelAvailGetRS.xsd. A separare decision tree for class-
es and attributes is trained only from match pairs of classes and attributes respec-
tively. The common tree is trained from both sets together. The final decision
trees are shown in Figures 7.1, 7.2 and 7.3.
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Figure 7.1: A separate decision tree for attributes for experiment SeperateTrees

The root of the separate decision tree for attributes is Matched Thesauri, all
the other trees in this experiment have Levenshtein Distance. The matcher at
the second level is the same for both branches and they have the same thresh-
old. Interesting is the subtree for mapping pairs that are contained in Matched

Thesauri. We would assume that this subtree should be smaller or even a leaf
with the value ‘match‘. This could be explained by errors in user annotation
of mapping results – that same match pair is annotated with different matching
decision then the previous one or some mapping pairs have different meaning in
different context.
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Figure 7.2: Separate decision tree for classes for experiment SeparateTrees

The separate decision tree for classes is relatively simple. It contains only
matchers Levenshtein Distance, Matched Thesauri and Lenght Ratio, other
matchers are not used. It corresponds with the original observation that some
methods are more effective for certain types of elements. Matchers whose sim-
ilarity values do not distinguish mapping pairs enough are not included. Pairs
that are contained in the thesaurus are directly suggested as matches.

49



Figure 7.3: Common decision tree for experiment SeparateTrees

The threshold value for Matched Thesauri matcher in the root of the common
tree and the separate tree for classes is nearly similar. The common decision tree
is the most complex from the above mentioned. The common tree also contains
two subtrees for Matched Thesauri. The first one is at the second level and it
contains two full subtrees for both the values. The right subtree for pairs that
are contained in thesauri is more complex than the tree in the separate tree for
attributes. This could be caused by a larger number of training samples that
allows for higher resolution. The second Matched Thesauri is directly a parent
of the leaves.

In Figures 7.4, 7.5, 7.6 and 7.7 there are displayed the histograms of the
match quality measures – Precision, Recall, F-Measure and Overall respectively.
All the measures are at first computed for both types of elements together and
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then separately for attribute and class elements.

Figure 7.4: Precision for experiment SepearateTrees

In Figure 7.4 Precision is high for classes in all schemas and for both types
of trees. The quality of mapping decision differs significantly with the type
of element, but the training set contains a similar number of match pairs for
classes (27 793 match pairs) and attributes (27 942 match pairs). The sepa-
rate tree for classes did not suggest any mapping pair as a match for schema
03_HotelAvailabilityRQ, just as the separate tree for attributes for schema
02_HotelReservation. Attributes in schema 03_HotelAvailabilityRQ are dif-
ficult to identify for all the decision trees. All Precision values are from the in-
terval [0.545; 0.769] – they identified almost the same number of relevant results
as irrelevant.
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Figure 7.5: Recall for experiment SeparateTrees

Recall is lower then Precision in all the cases except for schema 01_Hotel

and the separate tree for attributes in Figure 7.5. There were no true positives
attributes for schema 02_HotelReservation for both trees and no true positives
classes for schema 03_Hotel- AvailabilityRQ for separate tree. Values of Recall
are lower for attributes than Recall for classes.

Figure 7.6: F-Measure for experiment SeperateTrees
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In Figure 7.6 the values for F-Measure are equal for schema 02_HotelReserva-
tion for classes for both trees.

Figure 7.7: Overall for experiment SeparateTrees

Post-match effort for adding false negatives and removing false positives is
quite high in all cases in Figure 7.7. The highest value of Overall is 0.6.

The hypothesis was not confirmed, all similarity measures are higher for the
common decision tree that is trained from a bigger set of training examples, the
quality of the decision tree seems to depend more on the size of the set of training
samples. This hypothesis is further explored in experiment in Section 7.2.4. The
best score was achieved for Precision. Both trees in this experiment did have
a larger number of FN than FP. They miss a match suggestion more than they
incorrectly suggest it as a match pair. It could be improved by adding an auxiliary
source of information or a new matcher.

Examples of matching results from this experiment are shown in Table 7.2.
Match pair numberOfNights - LengthOfStay is difficult to identify without an
auxiliary source of information for both sets of decision tree. Match paires
CheckOutDate - CheckOut, ContactInfo - Contact and BedType - Reserva-

tionType were identified correctly by common tree and incorrectly by separate
decision trees.

7.2.2 Decision Trees Trained with Different Sets of Match-
ers

The second experiment tries to increase accuracy of matching by expanding the
set of available matchers by a new matcher, for example N-gram.
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XSD PIM DT type DT User Result
C ContactInfo Contact Separate Mism Match FN
C ContactInfo Contact Common Match Match TP
A Fax FaxNumber Separate Match Match TP
A Fax FaxNumber Common Match Match TP
A numberOfNights LengthOfStay Separate Mism Match FN
A numberOfNights LengthOfStay Common Mism Match FN
A CheckOutDate CheckOut Separate Mism Match FN
A CheckOutDate CheckOut Common Match Match TP
A BedType ReservationType Separate Match Mism FP
A BedType ReservationType Common Mism Mism TN

Table 7.2: Examples of mapping results for experiment SeparateTrees

Experiment Setup:

Decision Trees Trained with Different Set of Matchers

(AdditionalMatcher)

eXolutio Project:

Travelling

XSD schemas:

01_Hotel

02_HotelReservation

03_HotelAvailabilityRQ

Decision tree:

1. Decision tree trained from the first set of matchers

(in Figure 7.3)

2. Decision tree trained from the second set of matchers

(in Figure 7.8)

Decision tree training set:

Set of XSD Schemas: OTA

Sample count: 55 815 match pairs

Thesaurus for Dictionary:

None

Thesaurus for Matched Thesauri:

None

The first Set of Matchers:

Children

DataType

Dictionary

Length Ratio

Levenshtein Distance

Matched Thesauri

Prefix

The second Set of Matchers:
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Children

DataType

Dictionary

Length Ratio

Levenshtein Distance

Matched Thesauri

N-gram

Prefix

In the second experiment the same set of training samples was used. The
common tree for classes and attributes from the first experiment was reused and
a new tree was trained with the expanded set of available matchers.

Figure 7.8: Decision tree with N-gram matcher

In Figure 7.8 the new decision tree is shown. It contains matcher Matched

Thesauri as a root with a subtree for value 1. New matcher N-gram is contained
in most of the branches and is a parent of most of the leaves. As we can see, this
tree is more balanced than the one in Figure 7.3.

Figure 7.9 shows comparison of match quality measures for both decision
trees. All values are higher for the new decision tree. Adding a new matcher
seems to increase the quality considerably. It lowered both numbers of FP and
FN samples. There is a significant improvement of Overall value for schema
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03_HotelAvailability. It is almost two times higher. Also Precision is slightly
increased and no match quality value is lower.

Figure 7.9: Comparison of match quality measures for experiment Additional-
Matcher

Examples of match pairs which decision trees decided differently are displayed
in Table 7.3. Both trees suggest some match pairs incorrectly. N-gram tree seems
to fail to identify matches that have shorter element names - it suggested as mis-
match pairs CityCode - City and Fax - FaxNumber, that have been correctly
identified by the first tree. Both pairs have quite a low value for N-gram matcher.
On the other hand, the tree without N-gram matcher did not suggest as matches
pairs CheckInDate - CheckIn and AlternateCurrencyCode - Currency.

XSD PIM DT type DT User Result
CityCode City Common Match Match TP
CityCode City N-gram Mism Match FN
CheckInDate CheckIn Common Mism Match FN
CheckInDate CheckIn N-gram Match Match TP
Fax FaxNumber Common Match Match TP
Fax FaxNumber N-gram Mism Match FN
NumberOfRooms RoomNumber Common Mism Match FP
NumberOfRooms RoomNumber N-gram Match Match TP
AlternateCurrencyCode Currency Common Mism Match FN
AlternateCurrencyCode Currency N-gram Match Match TP
Name StreetName Common Match Mism FP
Name StreetName N-gram Match Mism FP

Table 7.3: Examples of mapping results for experiment AdditionalMatcher
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Addition of a new matcher seems to have a positive effect in all the aspects of
matching. In the following experiment we will explore the possibility of further
improvement by adding more auxiliary information.

7.2.3 Usage of Auxiliary Information

In this experiment we compare the quality of match decision as a function of the
size and quality of domain thesaurus and the previous user-confirmed matches.

Experiment Setup:

Usage of Auxiliary Information (AuxiliaryInformation)

eXolutio Project:

Travelling

XSD schemas:

01_Hotel

02_HotelReservation

03_HotelAvailabilityRQ

Decision tree:

1. ngram (in Figure 7.8)

2. dictionary (in Figure 7.10)

Decision tree training set:

Set of XSD Schemas: OTA

Sample count: 55 815 match pairs

Thesaurus for Dictionary:

Hotel (in Table 7.1)

Thesaurus for Matched Thesauri:

Match pairs from previous experiments (in Table B.1)

Set of Matchers:

Children

DataType

Dictionary

Length Ratio

Levenshtein Distance

Matched Thesauri

N-gram

Prefix

The tree with Dictionary is displayed in Figure 7.10. It is quite similiar to
the tree with N-gram in Figure 7.8. It contains two subtrees that are exactly the
same (green-colored) and two subtrees that have the same matchers but different
threshold values (yellow-colored) and one subtree that differs (blue-colored).

In the following Figures 7.11, 7.12, 7.13, 7.14 values of Precision, Recall, F-
Measure and Overall are shown. Using the auxiliary information slightly increases
Precision for all the schemas.
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Figure 7.10: Decision tree with Dictionary matcher

Figure 7.11: Precision for experiment AuxiliaryInformation
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Figure 7.12: Recall for experiment AuxiliaryInformation

As we can observe, using the previous matches improves Recall significantly
for all the schemas. Domain thesaurus improves value of Recall for the first
schema, but it is the same for the third one and lower for the second one. The
amount of improvement is less than the setback. The same applies to F-Measure
and Overall.

Figure 7.13: F-Measure for experiment AuxiliaryInformation

59



Figure 7.14: Overall for experiment AuxiliaryInformation

Table 7.4 shows interesting differences in decision trees output. Experiments
that used auxiliary source of information were able to correctly identify match
pairs Location - Destination and Location - Address. Decision tree with
Dictionary matcher failed to identify the similarity between ContactInfo -

Contact and HostelReservation - Reservation.

XSD PIM DT type DT User
C ContactInfo Contact N-gram Match Match TP
C ContactInfo Contact Dictionary Mism Match FN
C ContactInfo Contact N-gram (prev) Match Match TP
C Location Destination N-gram Mism Match FN
C Location Destination Dictionary Match Match TP
C Location Destination N-gram (prev) Mism Match FN
C Location Address N-gram Mism Match FN
C Location Address Dictionary Match Match TP
C Location Address N-gram (prev) Match Match TP
C HostelReservation Reservation N-gram Match Match TP
C HostelReservation Reservation Dictionary Mism Match FN
C HostelReservation Reservation N-gram (prev) Match Match TP
A Street StreetName N-gram Mism Match FN
A Street StreetName Dictionary Mism Match FN
A Street StreetName N-gram (prev) Match Match TP

Table 7.4: Examples of mapping results for experiment AuxiliaryInformation

The Dictionary matcher does not improve matching as we assumed, it could
be due to the small number of synonyms in the domain thesaurus or a small
amount of synonym pairs in compared schemas.
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7.2.4 Decision Trees Trained from Training Sample Sets
of Different Sizes

The last experiment compares the quality of matching for decision trees trained
from sets with various number of training samples.

1. Large set of training data (55 815 match pairs).

2. Smaller set of training data (13 456 match pairs).

3. Small set of training data (4 775 match pairs).

Experiment Setup:

Decision Tree Trained from Training Sample Sets of Different

Sizes (TrainingSets)

eXolutio Project:

Travelling

XSD schemas:

01_Hotel

02_HotelReservation

03_HotelAvailabilityRQ

Decision tree:

1. ngram (in Figure 7.8)

2. openTrans (in Figure 7.16)

3. bmeCat (in Figure 7.15)

Decision tree training set:

1. Set of XSD Schemas: OTA

Sample count: 55 815 match pairs

2. Set of XSD Schemas: OpenTrans

Sample count: 13 456 match pairs

3. Set of XSD Schemas: BmeCat

Sample count: 4 775 match pairs

Thesaurus for Dictionary:

None

Thesaurus for Matched Thesauri:

None

Set of Matchers:

Children

DataType

Dictionary

Length Ratio

Levenshtein Distance

Matched Thesauri

N-gram

Prefix
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Figure 7.15: Decision tree BmeCat

In Figure 7.15 a decision tree trained from a small set of training samples (4
775 match pairs) is displayed. The training set is prepared from set of schemas
bmecat – in particular schema pair bmecat_price - bmecat_product. It does
not contain matchers DataType and Children and is relatively simple. Root
Matched Thesauri directly suggests matches for mapping pairs that are con-
tained in the thesaurus of the previous matches. It could be useful if the right
thesaurus was used.
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Figure 7.16: Decision tree OpenTrans

Figure 7.16 shows the decision tree that is trained from the set of schemas
openTrans – in particular schema pair openbase_1_0 - openTRANS_DISPATCH-

NOTIFICATION_1_0. The training set has 13 456 match pairs. This decision
tree contains Dictionary matcher even if no domain thesauri was used during
training. It is the only decision tree that uses Children matcher.

Match quality measures for this experiment are displayed in the following
Figures 7.17, 7.18, 7.19 and 7.20.
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Figure 7.17: Precision for experiment TrainingSets

Match quality does not seem to be linear in the size of the training samples.
Precision is higher for the decision tree trained from the smallest set of samples
than for the second one.

Figure 7.18: Recall for experiment TrainingSets

Recall for the second tree is even higher than for the first one. It could be
caused by the high number of FP that the second tree identified – total amount
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of false positives for all schemas for decision trees is 2, 101 and 21. It is also the
reason why the values of Overall are so low – the post effort for removing false
positives will be significant.

Figure 7.19: F-Measure for experiment TrainingSets

Figure 7.20: Overall for experiment TrainingSets

Table 7.5 displays examples of matching results from this expreriment. The
new decision trees were able to correctly identify match pair numberOfGuests
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- numberOfPerson, on the other hand they also falsely identified as a match
numberOfGuests - numberOfCourses.

XSD PIM DT type DT User
C Hotel HotelStay N-gram Match Match TP
C Hotel HotelStay bmecat Mism Match FN
C Hotel HotelStay openTrans Match Match TP
A Fax FaxNumber N-gram Mism Match FN
A Fax FaxNumber bmecat Mism Match FN
A Fax FaxNumber openTrans Match Match TP
A Street StreetNumber N-gram Match Match TP
A Street StreetNumber bmecat Mism Match FN
A Street StreetNumber openTrans Match Match TP
A CityCode City N-gram Mism Match FN
A CityCode City bmecat Mism Match FN
A CityCode City openTrans Match Match TP
A numberOfGuests NumberOfPerson N-gram Mism Match FN
A numberOfGuests NumberOfPerson bmecat Match Match TP
A numberOfGuests NumberOfPerson openTrans Match Match TP
A numberOfGuests NumberOfCourses N-gram Mism Mism TN
A numberOfGuests NumberOfCourses bmecat Match Mism FP
A numberOfGuests NumberOfCourses openTrans Match Mism FP
A Fax Tax N-gram Mism Mism TN
A Fax Tax bmecat Match Mism FP
A Fax Tax openTrans Match Mism FP

Table 7.5: Examples of mapping results for experiment TrainingSets

The best results have been achieved with N-gram tree with usage of the previ-
ous matches, but it still leaves some space for improvement that are suggested in
Section 7.2.4. Suprisingly, the Dictionary matcher does not improve matching
as we assumed. The most promising variation seems to be usage of the previous
matches that is well supported in the module – there is possibility for automatic
saving of all the user-confirmed matches. The worst results have been delivered
by the decision tree OpenTrans – it identified a lot of matches falsely. This tree
has been trained from the training set of a medium size.
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Conclusion

Schema matching, the problem of finding correspondences, relations or mappings
between elements of two schemas, has been extensively researched and has a lot of
different applications. In this thesis a particular application of schema matching
in MDA (Model-Driven Architecture) is explored. We have implemented our
approach within an existing tool called eXolutio that is used for conceptual mo-
deling at two levels of MDA – platform independent and platform specific. In this
architecture there exist mappings between elements of schemas at these two le-
vels, called interpretation of a PSM schema against a PIM schema. This mapping
is very useful in case of a change, because changes in one place are propagated to
all the related schemas. Our schema matching approach is used to identify these
mappings – the PSM element - PIM element pair is identified as an interpretation
of PSM element against PIM element if it is suggested as a match by schema
matching algorithm.

We explored various approaches to schema matching and selected the most
promising possible approach for our application – schema matching using a de-
cision tree. This solution is dynamic, versatile, highly extensible, quick and has
a low level of user intervention and a low level of required auxiliary information.
We extended the previous work of Jakub Stárka [22]. In particular, we utilized
C.50 algorithm for training of decison tree from a large set of user-annotated
schema pairs. Our approach is more versatile, extensible and reusable. Further
we evaluated our approach on a wide range of experiments and implemented a
module that is easily extensible.

In particular, we make the following contributions:

• We created an implementation with an easily extensible set of individual
matchers and match quality measures.

• We implemented a user-friendly interface for evaluation of mappings sug-
gested by the decision tree.

• We provided a set of user-annotated training samples that could be reused
in further experiments.

• We proposed several variations that could improve the accuracy of match-
ing. The following experiments were performed. We trained separate trees
for classes and attributes and compared the quality of the mapping results
with the results of the common tree. Then we extended the set of match-
ers and used auxiliary source of information. Furthermore, we compared
quality of matching in dependence on the size of training set.

• We evaluated the proposed variations using automatic match quality mea-
sures – Precision, Recall, F-Measure and Overall.

• We explored results of experiments that evaluated the proposed variations
of decision tree training and identified the best variation – decision tree
with matcher N-gram with usage of the previous matches.
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• We provided a solid background for further experiments.

Future Work

A straightforward extension of this work is to expand the set of available matchers
with more powerfull matchers, e.g. with a matcher that uses the WordNet7

thesaurus for synonyms. Further possibilities are for example string matchers 8

and Soundex matcher.
Also the user interface leaves a space for improvement. We could add an in-

terface for evaluation of matches during the preparation phase of decision tree
training or dynamic editation of trained decision tree – remove, move, add match-
er node, change results in leaves or threshold on edges.

7http://wordnet.princeton.edu/
8http://secondstring.sourceforge.net/
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A. Appendix: Content of DVD

The DVD is enclosed to this thesis. It contains the text of the work, the source
code of the Adaptive Similarity of XML Data module and the source code of the
eXolutio tool. Furthermore, it contains all the used data – the sets of training
samples, input schemas, trained decision trees and outputs of experiments.

The DVD has the following directory structure:

• bin This directory contains installation of the eXolutio tool with the Adap-
tive Similarity of XML Data module.

• data This directory contains all the data used for preparation for train-
ing, training samples, trained decision trees, input schemas and domain
thesaurus.

• doc This directory contains user documentation to the Adaptive Similarity
of XML Data module.

• experiments This directory contains setting and results of all the experi-
ments that were performed in this work.

• src This directory contains the source code of the eXolutio tool and the
source code of the Adaptive Similarity of XML Data module.

• text This directory contains the text of this thesis in PDF format.
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B. Appendix: Data Used in
Experiments

In this chapter schemas that are used in experiments are displayed. There is
also table with thesaurus for matcher Matched Thesauri used in the experiment
AuxiliaryInformation.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="http://www.example.com/schema/hotel"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.com/schema/hotel"

elementFormDefault="qualified"

attributeFormDefault="unqualified">

<xs:element name="Hotel">

<xs:complexType>

<xs:attribute name="Name" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element name="ContactInfo">

<xs:complexType>

<xs:attribute name="Fax" type="xs:string" />

<xs:attribute name="PhoneNumber" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element name="Location">

<xs:complexType>

<xs:attribute name="City" type="xs:string" />

<xs:attribute name="Street" type="xs:string" />

<xs:attribute name="PostalCode" type="xs:string" />

</xs:complexType>

</xs:element>

<xs:element name="RoomDetail">

<xs:complexType>

<xs:attribute name="NumberOfAdults"

type="xs:int"

use="optional" />

<xs:attribute name="NumberOfRooms"

type="xs:int"

use="optional"

default="1" />

<xs:attribute name="BedType"

type="xs:string"

use="optional" />

</xs:complexType>

</xs:element>

</xs:schema>

Figure B.1: XML schema 01_Hotel.xsd
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<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="http://kusad5am.mff.cz/hb/schema/reservation"

elementFormDefault="qualified"

targetNamespace="http://kusad5am.mff.cz/hb/

schema/reservation"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="ReservationRequest"

type="HostelReservation" />

<xs:element name="ReservationResponse"

type="HostelReservation" />

<xs:complexType name="HostelReservation">

<xs:sequence>

<xs:element name="ChosenHostel" type="Hostel"

minOccurs="0" />

<xs:element name="Customer" type="Customer" />

<xs:element name="PaymentCredentials"

type="PaymentCredentials" minOccurs="0" />

</xs:sequence>

<xs:attribute name="arrivalDate" type="xs:date"

use="required" />

<xs:attribute name="numberOfGuests" type="xs:int"

use="required" />

<xs:attribute name="numberOfNights" type="xs:int"

use="required" />

<xs:attribute name="ReservationStatus" type="xs:string"

use="required" />

<xs:attribute name="id" type="xs:int" use="required" />

</xs:complexType>

<xs:complexType name="Hostel">

<xs:sequence>

<xs:element name="ChosenRoom" type="RoomType"

minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="id" type="xs:int" use="required" />

</xs:complexType>

<xs:complexType name="RoomType">

<xs:attribute name="id" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="Customer">

<xs:attribute name="id" type="xs:int" use="required" />

<xs:attribute name="surname" type="xs:string"

use="required" />

<xs:attribute name="name" type="xs:string"

use="required" />

</xs:complexType>

<xs:complexType name="PaymentCredentials">

<xs:attribute name="paymentToken" type="xs:string"

use="required" />

</xs:complexType>

</xs:schema>

Figure B.2: XML schema 02_HotelReservation.xsd
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<?xml version="1.0" encoding="utf-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xsd:element name="HotelAvailabilityRQ">

<xsd:complexType>

<xsd:attribute name="ChainCode" type="xsd:string" />

<xsd:attribute name="PropertyCode" type="xsd:string" />

<xsd:attribute name="CheckInDate" type="xsd:date" />

<xsd:attribute name="CheckOutDate" type="xsd:date" />

<xsd:attribute name="NumberOfNights" type="xsd:integer" />

<xsd:attribute name="NumberOfPersons"

type="xsd:integer" />

<xsd:attribute name="CityCode" type="xsd:string" />

<xsd:attribute name="AlternateCurrencyCode"

type="xsd:string" />

<xsd:attribute name="MoreRoomsToken" type="xsd:integer" />

</xsd:complexType>

</xsd:element>

<xsd:element name="HotelOptions">

<xsd:complexType>

<xsd:attribute name="NumberOfRooms" type="xsd:integer" />

<xsd:attribute name="RoomType" type="xsd:string" />

<xsd:attribute name="RateCode" type="xsd:string" />

<xsd:attribute name="BedType" type="xsd:string" />

<xsd:attribute name="RateAccess" type="xsd:string" />

<xsd:attribute name="RateCategory" type="xsd:string" />

<xsd:attribute name="RateRange" type="xsd:integer" />

</xsd:complexType>

</xsd:element>

</xsd:schema>

Figure B.3: XML schema 03_HotelAvailabilityRQ.xsd
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PSM element PIM element
Hotel Hotel
Hotel HotelStay
ContactInfo Contact
Location Destination
Location Address
RoomDetail Bedding
Name Name
Name Surname
Fax FaxNumber
PhoneNumber PhoneNumber
City City
Street StreetName
Street StreetNumber
PostalCode PostalCode
NumberOfAdults AdultsCount
NumberOfAdults NumberOfAdults
NumberOfRooms RoomNumber
BedType Type
BedType BedType
HostelReservation Reservation
Hostel Hotel
RoomType Bedding
PaymentCredentials Payment
ReservationResponse Reservation
arrivalDate StartDate
numberOfGuests NumberOfPerson
numberOfNights LengthOfStay
surname Name
surname Surname
name Name
name Surname
HotelAvailabilityRQ Hotel
HotelOptions Hotel
CheckInDate CheckIn
CheckOutDate CheckOut
NumberOfNights LengthOfStay
NumberOfPersons NumberOfPerson
CityCode City
CityCode PostalCode
AlternateCurrencyCode Currency
NumberOfRooms RoomNumber
RoomType Type
BedType Type
BedType BedType

Table B.1: Previously confirmed matches used in experiment AuxiliaryInforma-
tion
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