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na F . V této práci prozkoumáme hamiltonovskost grafu Qn−F , pokud množina
vadných vrcholů F tvoří určitý izometrický podgraf v Qn. Pro lichou (resp. su-
dou) izometrickou cestu P v Qn je graf Qn − V (P ) Hamiltonovsky laceabilní pro
každé n ≥ 4 (resp. n ≥ 5). Přestože je znám silnější výsledek [15], metoda důkazu
nám umožnila získat následující výsledky. Nechť C je izometrický cyklus v Qn

délky dělitelné čtyřmi pro n ≥ 6. Pak je graf Qn−V (C) Hamiltonovsky laceabil-
ní. Buď T izometrický strom v Qn s lichým počtem hran a S izometrický strom
v Qm se sudým počtem hran. Pak pro každé n ≥ 4, m ≥ 5 jsou grafy Qn − T
a Qm − S Hamiltonovsky laceabilní. Část důkazu je ověřena počítačem.
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Abstract: In 2001 Stephen Locke [10] conjectured that for every balanced set F
of 2k faulty vertices in the n-dimensional hypercube Qn where n ≥ k+2 and k ≥ 1
the graph Qn−F is hamiltonian. So far the conjecture remains open although par-
tial results are known; some of them with additional conditions on the set F . We
explore hamiltonicity of Qn−F if the set of faulty vertices F forms certain isomet-
ric subgraph in Qn. For an odd (even) isometric path P in Qn the graph Qn−V (P )
is Hamiltonian laceable for every n ≥ 4 (resp. n ≥ 5). Although a stronger result
is known [15], the method we use in proving the theorem allows us to obtain
following results. Let C be an isometric cycle in Qn of length divisible by four
for n ≥ 6. Then the graph Qn − V (C) is Hamiltonian laceable. Let T be an iso-
metric tree in Qn with odd number of edges and let S be an isometric tree in Qm

with even number of edges. For every n ≥ 4, m ≥ 5 the graphs Qn−T and Qm−S
are Hamiltonian laceable. A part of the proof is verified by a computer.
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Introduction
Hypercubes have long been studied for their importance at parallel architec-
tures [1] [2]. The vertices of a hypercube represent processors and edges rep-
resent links between them. Hypercubes can even simulate other networks, like
trees or arrays. Their small diameter (compared to the number of vertices), edge
and vertex-symmetry, a recursive structure and other properties have made them
a popular model for interconnecting networks.

After several theoretical proposals, the first hypercube based computer called
the Cosmic Cube was built in 1983 in Caltech. It had 64 processors that were
connected to a 6-dimensional hypercube topology. Few years later, Intel started
offering hypercube computers commercially. Some other attempts (let us mention
the nCUBE architecture) were made to create successful hypercube computers.
But due to their bad scalability (the degree of a hypercube grows logarithmically)
hypercube computers were abandoned. More on this topic can be find in various
books regarding parallel architecture and development of parallel algorithms [2].
Nowadays hypercube networks are still widely used and researched. Let us men-
tion a P2P network HyperCuP [3] and a bluetooth network BlueCube [4]. In 2011
a hypercube topology for dynamic distributed databases called HyperD [5] was
introduced.

A (cyclic) binary Gray code of dimension n is a sequence of binary strings
of length n such that two consecutive strings differ in precisely one coordinate. It
is easy to see that Gray codes correspond to Hamiltonian cycles in hypercubes.
Gray codes were patented in 1953 by Frank Gray [6], a researcher at Bell Labs.
Binary Gray codes and their variations also appear in surprising places such as
solutions to puzzles like Tower of Hanoi or Chinese ring puzzle, signal encoding,
data compression, graphic and image processing, hashing and many more [7].

As processors need to communicate with each other, a routing problem arises.
That is, delivering a packet between two processors (one-to-one model) from one
processor to more than one destinations (one-to-many model) and from many
processors to a common destination (many-to-one model). Since a processor
may fail, it is a subject of study on how many faulty vertices can hypercube
tolerate and what conditions on the set of faulty vertices can increase the number
of tolerable faults.

In this thesis we explore an existence of a Hamiltonian path in Qn − F for
a set of faulty vertices F ⊆ V (Qn) that forms a certain isometric subgraph
in Qn. In the first chapter such isometric subgraph is a path. We show that
if P is an isometric path in Qn of odd (even) length and n ≥ 4 (n ≥ 5), then
the graph Qn − P is Hamiltonian laceable. Although stronger result by Sun
and Jou [15] is known, the proof of this theorem demonstrates method used
in following two chapters.

In the second chapter we prove that if C is an isometric cycle in Qn of length
divisible by four and n ≥ 6, then Qn − C is Hamiltonian laceable. This allows
us to remove up to 2n faulty vertices. In the third chapter we consider isometric
trees.

Let T be an isometric tree in Qn where n ≥ 4 that has the same number
of vertices in each bipartite class. Let S be an isometric tree in Qm where m ≥
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5 with one vertex more in one bipartite class than the other. We show that
the graphs Qn − T and Qm − S are Hamiltonian laceable. This was proved
by induction. The part of the base of the induction, namely Lemma 21 stating
that Q5 − T is Hamiltonian laceable where T is an isometric tree on Figure 5.2,
was verified by a computer. The program that verified the lemma, and its output
are discussed in Attachments.

Finally, we conjecture that if C is an isometric cycle in Qn of length not
divisible by four and n ≥ 6, then Qn − C is Hamiltonian laceable.
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1. Preliminaries
I assume that the reader has a basic knowledge of graph theory. For terminology,
I recommend reading the chapter on graphs in the excellent book by Matoušek
and Nešetřil [8]. Nevertheless, I would like to remind some standard notation
that I will use.

1.1 Basic graph theory notation
All graphs that appear in this thesis are undirected. For a graph G let V (G)
and E(G) stand for a vertex and an edge set of G, respectively. We require that
graphs have at least one vertex. For u, v ∈ V (G) let d(u, v) denote the length
of a shortest path between u and v in G.

Let U ⊆ V (G), F ⊆ E(G) and H be a subgraph of G. We say that H
is an induced subgraph of G by a set of vertices U if H = (U,E(G) ∩

(
U
2

)
).

Let G − U denote the subgraph of G induced by V (G) \ U , let G − F denote
the graph (V (G), E(G)\F ) and let G−H denote the graph (G−V (H))−E(H).
The Cartesian product R � S of graphs R and S is the graph with the vertex
set V (R� S) = V (R)× V (S) and the edge set

E(R� S) = {(u, v)(u′, v) | uu′ ∈ E(R)} ∪ {(u, v)(u, v′) | vv′ ∈ E(S)} .

Let [n] = {1, 2, . . . , n} and [n]0 = [n] ∪ {0} where n is a positive integer. We
now introduce some notation to describe paths and cycles in graphs.

A sequence (v0, v1, . . . , vk) is a path in a graph G (sometimes denoted by Pk+1)
if vi ∈ V (G) for all i ∈ [k]0 and vj−1vj ∈ E(G) for all j ∈ [k]. Let P =
(v0, v1, . . . , vk) be a path in a graph G. We call v0 and vk endvertices of P . For j ∈
[k]0 and i ∈ [j]0 the path (vi, vi+1, . . . , vj−1, vj) is a subpath of P . We can connect
two subpaths R and S of a path P if there exists an edge uv ∈ E(P ) such that u
is an endvertex of R and v is an endvertex of S. A sequence (v0, v1, . . . , vk−1) is
a cycle in a graph G (sometimes denoted by Ck) if vi ∈ V (G) for all i ∈ [k − 1]0
and vj−1vj ∈ E(G) for all j ∈ [k − 1] and vk−1v0 ∈ E(G).

Sometimes we consider paths and cycles to be graphs instead of sequences
of vertices. This slight abuse of notation should not cause any confusion. For
example, it allows us to easily define subpaths of any graph.

1.2 Hypercubes
Let Zn

2 denote the group of n-dimensional vectors of zeroes and ones. The neutral
element is the vector (0, 0, . . . , 0) of length n. Addition of two vectors of Zn

2 is
addition of their coordinates modulo 2 and we denote it by ⊕. For i ∈ [n] let ei
denote the vector in Zn

2 with one in the ith coordinate and zeroes in the rest
of the coordinates.

Definition 1 For n ≥ 0 the n-dimensional hypercube Qn is an undirected graph
with V (Qn) = {0, 1}n and

E(Qn) = {uv |u⊕ v = ei for some i ∈ [n]} .
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Since hypercubes are the main topic of this thesis, we will explore them more.
Sometimes the n-dimensional hypercube Qn is called n-cube, a Boolean cube or
a discrete cube. Nevertheless, we will always refer to it as the (n-dimensional)
hypercube. From now on let n denote the dimension of the hypercube Qn. Unless
it is specified otherwise in the text, we assume n ≥ 1. We will not consider
the hypercube Q0 in this thesis, since it is a single vertex, which is not interesting.

1

0

01

00

11

10

010

000

110

100

001

101

111

011

Figure 1.1: Examples of hypercubes Qn for n = 1, 2, 3, 4.

To measure the distance between two vertices of the hypercube, we define
the Hamming distance of u = (u1, . . . , un) and v = (v1, . . . , vn) ∈ Zn

2 by

dH(u, v) = |{ i ∈ [n] | ui ̸= vi}| .

Notice that uv ∈ E(Qn) if and only if the Hamming distance of vertices u and v
is one. That is,

E(Qn) = {uv | dH(u, v) = 1} .

This means that two vertices of the hypercube that are connected with an edge
differ in exactly one coordinate which can be attributed to this edge. If u⊕v = ei,
the edge uv ∈ E(Qn) is said to have the direction i ∈ [n]. Each vertex u ∈ V (Qn)
has degree n and each edge in the set {ux ∈ E(Qn) |x ∈ V (Qn)} has a different
direction that ranges from 1 to n, see Figure 1.2.

Q3

0 01

0 10

0 11

1 10

1 11

1 011 00

0 00

Figure 1.2: Edges of Q3 with directions 1 (black), 2 (green) and 3 (red).

We define the size |u| of a vertex u ∈ V (Qn) by number of one’s in u. That
is, |u| = |{i ∈ [n] |ui = 1}|. With this property in mind, we can now distinguish
two disjoint sets of vertices of the hypercube. The first set is the set of vertices
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of Qn with even size. We call those vertices black, denote this set Bn and we will
draw them as black dots (i.e. •) in pictures. Analogously, we call the vertices
of Qn with odd size white, we denote their set by Wn and draw them as white
circles (i.e. ◦) in pictures. Notice that Bn∩Wn = ∅ and Bn∪Wn = V (Qn). Since
every edge of the hypercube connects a white vertex with a black one, it follows
that Qn is a bipartite graph with bipartition Bn, Wn. We say that U ⊆ V (Qn) is
balanced if U has the same number of black and white vertices.

From the definition of the vertex set of the hypercube it is easy to see
that |V (Qn)| = 2n. On the other hand, the number of edges of Qn is |E(Qn)| =
n2n−1. The edges of each direction form a perfect matching. Each direction
splits Qn into two copies of Qn−1. For a detailed explanation on partitioning
the hypercube into two smaller copies, see Section 1.2.1 below. Because Qn has
precisely n directions and Qn−1 has 2n−1 vertices, the number of edges of Qn

is n2n−1.

1.2.1 Subcubes of hypercubes
Let us now focus on subcubes of the hypercube Qn. A k-dimensional subcube is
a subgraph isomorphic to Qk. We show how to represent k-dimensional subcubes
of Qn by strings {0, 1, ∗}n. Let w ∈ {0, 1, ∗}n and let us denote the number
of ∗ in w by k. Then w uniquely represents a k-dimensional subcube (denoted
by Qn[w]) induced by the vertex set

{(v1, . . . , vn) ∈ Zn
2 | vi = wi if wi ̸= ∗} .

That is, n−k coordinates of the vertices of Qn are fixed and the rest k coordinates
are every combination of zeroes and ones of length k, see Figure 1.3 for some
examples of subcubes of Q3.

1 00

0 00 0 01

1 01

1 11

0 11

1 10

0 10

Figure 1.3: A 1-dimensional subcube Q3[01∗] (red) and a 2-dimensional sub-
cube Q3[∗0∗] (green).

Every hypercube is a Cartesian product of two hypercubes of smaller dimen-
sion. Precisely, Qn+m ≃ Qn�Qm for every n,m ≥ 1. One way to look at this for-
mula is to imagine that we replace each vertex u ∈ V (Qn) with an m-dimensional
hypercube denoted by Qu

m. We then replace each edge uv ∈ E(Qn) with 2m edges
to connect two cubes Qu

m and Qv
m, see Figure 1.4 for an example.
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Often we will use a special case of this property Qn ≃ Qn−1 � Q1 to par-
tition Qn into two copies Q0,i

n−1 and Q1,i
n−1 where i ∈ [n] is a direction of edges

removed in order to cut Qn into two parts. Formally, for i ∈ [n] we define

Q0,i
n−1 = Qn[w] where w = (w1, . . . , wn) ∈ {0, ∗}n with wi = 0 and wj = ∗ for j ̸= i,

Q1,i
n−1 = Qn[w] where w = (w1, . . . , wn) ∈ {1, ∗}n with wi = 1 and wj = ∗ for j ̸= i.

If i is fixed we usually omit it and refer to these two subcubes simply as Q0
n−1

and Q1
n−1.

(0, 00) (0, 10)

(1, 10)(1, 00)

(0, 01) (0, 11)

(1, 01) (1, 11)

(00, 0) (10, 0)

(01, 1) (11, 1)

(00, 1) (10, 1)

(01, 0) (11, 0)

Q3 ≃Q1 Q2�

Q3 ≃Q2 Q1�

Figure 1.4: A scheme of Cartesian products Q1�Q2 (left) and Q2�Q1 (right).
Red edges correspond to the edges of Q1 and green edges correspond to the edges
of Q2.

1.2.2 Isometric subgraphs of hypercubes
We have defined everything necessary to draw our attention to the key topic
of this thesis, isometric subgraphs of Qn.

Definition 2 A subgraph H of G is isometric if dH(u, v) = dG(u, v) for ev-
ery u, v ∈ V (H).

That is, the subgraph H preserves all distances from G. It is easy to see that
every isometric subgraph is an induced subgraph, but the converse implication
is not true. A counterexample to the converse is a path P4 in the cycle C5, see
Figure 1.5. Three isometric subgraphs of Qn will be important for us, an isometric
path, an isometric cycle and an isometric tree. We will introduce and explore each
of them in Chapter 3, Chapter 4 and Chapter 5, respectively.
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u

v

Figure 1.5: A path P4 as an induced subgraph of C5, that is not isometric.

1.3 Hamiltonicity
Let G be a graph and let u, v be its two distinct vertices. A Hamiltonian cycle in G
is a cycle in G that contains every vertex of G. A Hamiltonian path between u
and v in G is a path in G with its endvertices u and v that contains every vertex
of G exactly once. We say that G is hamiltonian if it has a Hamiltonian cycle.

Let H be a bipartite graph with bipartitions U and V . We say that H is
balanced if |U | = |V | and we say it is nearly balanced if sizes of U and V differ
by one.

Definition 3 A bipartite graph H with its bipartition U , V is Hamiltonian lace-
able if
(a) H is balanced and there exists a Hamiltonian path between every u ∈ U and
every v ∈ V , or
(b) H is nearly balanced with U its larger bipartite set and there exists a Hamil-
tonian path between every two distinct u, u′ ∈ U .

Note that Hamiltonian laceability of balanced bipartite graphs implies hamil-
tonicity.

7



2. Previous results
It is well known that Qn contains a Hamiltonian cycle for every n ≥ 2 [9]. If we
removed some vertices of Qn (such vertices are often called faulty vertices), would
it still contain a Hamiltonian cycle or a Hamiltonian path?

2.1 Locke’s conjecture
Let F ⊆ V (Qn) be a balanced set of 2k vertices for k ≥ 1. In 2001 Stephen Locke
[10] conjectured an existence of a Hamiltonian cycle in Qn −F if n ≥ k+2. Two
years later, Richard Stong [10] solved it for k = 1 and published it in the American
Monthly. The journal claims that Stong also sent the proof for n ≥ 2k+3 log2 k+4,
but they have not published it. Next step in proving the conjecture was done
by Harborth and Kemnitz [11], proving it for k = 2, 3 and by Dvořák and Gregor
[12], proving it for k ≤ n−5

6
. So far, Locke’s conjecture remains unproven. Yet

in 2009, Gotchev and Castañeda claimed to have proved this conjecture and
submitted the first part of the proof, which has not been published, but can be
found on Prof. Gotchev’s website [13]. There is also mentioned that they are
(together with F. Latour) working on the second part of the proof.

2.2 Hypercubes with faulty vertices
Although above conjecture remains unproven, various results can be achieved
with additional conditions on the set of faulty vertices F ⊆ V (Qn). One ex-
ample of such condition is the minimum Hamming distance between every two
vertices of F , which we denote by d(F ). Similarly, if M ⊆ E(Qn) is a set of edges,
then d(M) denotes the minimum distance between every two edges of M . The fol-
lowing theorem and two conjectures are work of Gregor and Škrekovski.

Theorem 4 (Gregor and Škrekovski [14]) Let M be a set of edges of Qn+2

(n ≥ 1) with d(M) ≥ 3. Then Qn+2 − V (M) contains a Hamiltonian cycle.

Conjecture 5 (Gregor and Škrekovski [14]) Let F be a balanced set of ver-
tices of Qn with d(F ) ≥ 3. Then Qn − F contains a Hamiltonian cycle.

Conjecture 6 (Gregor and Škrekovski [14]) Let A and B be equal-sized sets
of black and white (respectively) vertices of Qn with d(A) ≥ 4 and d(B) ≥ 4.
Then Qn − (A ∪B) contains a Hamiltonian cycle.

Another example of a condition on the set of faulty vertices F is that they
form some special graph in Qn. Sun and Jou [15] proved that if faulty vertices F
form a path or a cycle in Qn for n ≥ 4 and |F | ≤ 2n− 4, then Qn − F is Hamil-
tonian laceable. Furthermore, they showed that the bound |F | ≤ 2n− 4 is tight.

Here we present three propositions that we will often use.

Proposition 7 (Havel [9]) For every n ≥ 2 there exists a Hamiltonian path
between every b ∈ Bn and every w ∈ Wn in Qn.

8



Proposition 8 (Lewinter-Widulski [16]) For every n ≥ 2 and for every b ∈
Bn there exist a Hamiltonian path between every two distinct vertices w,w′ ∈ Wn

in Qn − {b}.

Proposition 9 (Dvořák-Gregor [17]) Let P be a set of at most 2n − 4 pre-
scribed edges in Qn and n ≥ 5. There exists a Hamiltonian path between ev-
ery b ∈ Bn and every w ∈ Wn in Qn which passes through all edges of P if and
only if the subgraph induced by P consists of pairwise vertex-disjoint paths, none
of them having b or w as internal vertices, or both of them as endvertices.

9



3. Isometric paths in hypercubes
In this chapter we explore properties of isometric paths in hypercubes regarding
directions of edges. Then we prove for large enough n and an isometric path P
in Qn that every Qn − P is Hamiltonian laceable. Finally, we present examples
to show that this result does not hold for certain small dimensions of Qn.

Observation 10 Edges of an isometric path in Qn have all directions distinct.

Proof Case n = 1 is trivial. Let n ≥ 2, we prove the observation by contra-
diction. Let R be an isometric path in Qn such that two distinct edges of R have
an identical direction. Let the path S = (v0, v1, . . . , vk, vk+1) of length k + 1
denote the shortest subpath of R such that two distinct edges of S have identical
direction. It is easy to see that those edges are v0v1 and vkvk+1.

Let C = (v0, v1, . . . , vk, vk+1, vk+2, . . . , v2k−1) be a cycle in Qn such that
opposite edges have identical directions. That is, edges vjvj+1 and vj+kvj+k+1

where j ∈ [k − 1]0 have identical direction (we assume that v2k = v0). Note
that S is a subpath of C. Then the subpath (vk+1, vk+1, . . . .v2k−1, v0) of C
between vk+1v0 of length k − 1 is shorter than the path S between v0 and vk+1

of length k + 1 which is a contradiction.

Since Qn has n directions, it follows that every isometric path in Qn has
at most n edges. Let P be an isometric path of length k in Qn and let i be
a direction of an edge uv ∈ E(P ). We partition Qn into Q0,i

n−1 and Q1,i
n−1. Notice

that P splits into two subpaths P 0 and P 1 connected by the edge uv. The sub-
path P 0 is in Q0,i

n−1 and subpath P 1 is in Q1,i
n−1.

3.1 Avoiding an isometric path by a Hamiltoni-
an path

We start by proving a simple lemma stating that for every n ≥ 2 the graph Qn

without two adjacent vertices is Hamiltonian laceable. Note that Richard Stong [10]
already proved that for every n ≥ 3 the graph Qn without two vertices of opposite
parity is hamiltonian.

Lemma 11 Let b0w1 ∈ E(Qn) where n ≥ 2, b0 ∈ Bn and w1 ∈ Wn. For
every b ∈ Bn\{b0}, w ∈ Wn\{w1} there exists a Hamiltonian path in Qn−{b0, w1}.

Proof We prove the statement by induction on n. For n = 2 the edge bw forms
a Hamiltonian path in Qn − {b0w1} so it trivially holds. Assuming the lemma is
true for n−1 we prove it for n. We choose d ∈ Bn, such that it is a neighbor of w1

different from b0. We denote the direction of the edge w1d by i. Then {b0w1} ∈
E(Qi,0

n−1) and we fix the direction i. There are two cases depending on whether the
vertices b and w are in the same (n− 1)-dimensional subcube of Qn.

Case 1: The vertices b, w are either both in Q0
n−1 or both in Q1

n−1; say b, w ∈
V (Q0

n−1). By the induction hypothesis, there exists a Hamiltonian path H be-
tween b and w in Q0

n−1 − {b0, w1}. Let uv be an arbitrary edge of H, u ∈ Bn

10



and v ∈ Wn. We denote the neighbors of u, v in Q1
n−1 by x, y, respectively. By

Proposition 7, there exists a Hamiltonian path between x and y in Q1
n−1. We

join this path with the path H by removing the edge uv and adding the edges ux
and vy. That is, we obtain a Hamiltonian path (b, . . . , u, x, . . . , y, v, . . . , w) in Qn−
{b0, w1}.

Case 2: The vertices b, w are in different subcubes; say b ∈ V (Q0
n−1) and w ∈

V (Q1
n−1). We choose an edge uv ∈ E(Qn) such that u ∈ V (Q0

n−1 is white and v ∈
V (Q1

n−1 is black. By the induction hypothesis, there exists a Hamiltonian path
between b and u in Q0

n−1 and by Proposition 7, there exists a Hamiltonian path
between v and w in Q1

n−1. By joining these paths, we obtain a Hamiltonian path
(b, . . . , u, v, . . . , w) in Qn − {b0, w1}.

Now we prove the main theorem of this chapter stating that if P is an isometric
path in Qn of odd (even) length, then for every n ≥ 4 (n ≥ 5) the graph Qn − P
is Hamiltonian laceable. This result is divided into two theorems. Theorem 12
deals with isometric paths of odd lengths and Theorem 13 deals with isometric
paths of even lengths. It is clear that Lemma 11, which we will use in the proof
of the following theorem, is just a special case when |P | = 1.

Note that far stronger result is known. Sun and Jou [15] showed that for
every n ≥ 4 and an arbitrary path R in Qn of length at most 2n−4 the graph Qn−
R is Hamiltonian laceable. They also showed that the bound 2n−4 on the length
of faulty path is tight. Still, our theorem has its place here. The method we use
for proving it will be reused later on, achieving new results. I believe it is better
to illustrate the use of this method on simpler graphs such as paths before we use
it for more complicated graphs.

Theorem 12 Let P = (b0, w1, b2, w3, . . . , bk−1, wk) be an isometric path of odd
length k in Qn where 1 ≤ k ≤ n, n ≥ 4, every bi is in Bn and every wi is
in Wn. There exists a Hamiltonian path between every b ∈ Bn \ V (P ) and
every w ∈ Wn \ V (P ) in Qn − P .

Proof If k = 1 we use Lemma 11. Assuming that k ̸= 1, we prove the theo-
rem by induction on n. The proof of the base case is very similar to the proof
of the induction step. To avoid repeating some parts, we first prove the induction
step and then we prove the base case for n = 4.

Assuming the theorem holds for n− 1 we prove it for n. Let

l =

{
k−1
2

if k ≡ 3 mod 4
k−1
2

− 1 if k ≡ 1 mod 4
.

We denote the direction of the edge wlbl+1 by i. Then the subpaths P 0 = (b0,
w1, . . . , wl) and P 1 = (bl+1, wl+2, . . . , wk) are in Qi,0

n−1 and Qi,1
n−1, respectively.

Since l and k− (l+1) are odd, both subpaths P 0 and P 1 have odd length. After
fixing the direction i, there are two cases to consider.

Case 1: The vertices b, w are in different subcubes Q0
n−1, Q1

n−1; say b ∈
V (Q0

n−1) and w ∈ V (Q1
n−1), see Figure 3.1. We choose an edge uv of direction i

such that u ∈ Wn \ V (P 0) is in Q0
n−1 and v ∈ Bn \ V (P 1) is in Q1

n−1. Since
the number of edges of direction i in Qn − P is for n ≥ 4 at least 2n−1 − k ≥
2n−1 − n ≥ 1, such edge exists.

11



b w

u v

P

P 1

P 0

b0

wk

bl+1

wl

Q0
n−1 Q1

n−1 Q
0
n−1 Q1

n−1

b

u x

w
v y

P

P 1

P 0

b0

wk

bl+1

wl

H

Figure 3.1: Cases 1 and 2 in the proof of Theorem 12.

By the induction hypothesis, there exists a Hamiltonian path between b and u
in Q0

n−1−P 0 and a Hamiltonian path between v and w in Q1
n−1−P 1. By joining

these paths we obtain a Hamiltonian path (b, . . . , u, v, . . . , w) in Qn − P .
Case 2: The vertices b, w are in the same subcube; say in Q0

n−1, see Figure 3.1.
By the induction hypothesis, there exists a Hamiltonian path H between b and w
in Q0

n−1−P 0. Let uv be an edge of H, u ∈ Bn and v ∈ Wn such that the neighbors
of u, v in Q1

n−1 do not belong to P 1. We claim that such edge uv ∈ E(H) exists.
We say that a vertex p ∈ V (P 1) blocks an edge rs ∈ E(H) if p is a neighbor

of r or s in Q1
n−1. Each vertex in the path P 1 blocks at most two edges of the

path H. Remember that |P 1| ≤ n+1
2

. Since |H| ≥ 2n−1 − n−1
2

− 1, the number
of edges which are not blocked by the path P 1 is for n ≥ 5 at least

2n−1 − n− 1

2
− 1− 2

(
n+ 1

2
+ 1

)
≥ 2n − 3n− 7

2
≥ 1. (3.1)

Therefore, uv exists and we denote neighbors of u and v in Q1
n−1 by x and y,

respectively.
By the induction hypothesis, there exists a Hamiltonian path between x and y

in Q1
n−1 − P 1. We join this path with the path H by removing the edge uv and

adding the edges ux and vy. That is, we obtain a Hamiltonian path (b, . . . , v,
y, . . . , x, u, . . . , w) in Qn − P .

It remains to prove the base case for n = 4. Since k ̸= 1 the only possible
length of the path P is k = 3. The proof is analogous to the proof of the
induction step for n > 4 above. Instead of using an induction hypothesis to find
a Hamiltonian path in Q3, we use Lemma 11 since l = 1. The only problem is
that Equation (3.1) does not hold for n = 4. This is easily fixable if we precisely
compute the number of edges that are not blocked by the path P 1 = (b2, w3)
instead of using a rough estimate. Since |H| = 23 − 3 and b2 does not block any
edge of H, we have that the number of edges in Q4 that are not blocked by w3

is 23 − 3− 2 · 1 = 3. Thus the base of induction holds as well.

Theorem 13 Let P = (b0, w1, b2, w3, . . . , wk−1, bk) be an isometric path of even
length k in Qn, where 2 ≤ k ≤ n, n ≥ 5, every bi is in Bn and every wi is in Wn.

12



For every distinct w,w′ ∈ Wn \ V (P ) there exists a Hamiltonian path between w
and w′ in Qn − P .

Proof We denote the direction of the edge b0w1 by i. Then the vertex b0 is
in Qi,0

n−1 and the subpath P 1 = (w1, b2, . . . , bk) of the path P is in Qi,1
n−1. After

fixing the direction i, there are three cases to consider.

w w′

u v

Q0

n−1
Q1

n−1

P 1

P

bk

w1b0

w

u x

w′

v y

P 1

P

bk

w1b0

Q0

n−1
Q1

n−1

H

Figure 3.2: Cases 1 and 2 in the proof of Theorem 13.

Case 1: The vertices w,w′ are in different subcubes Q0
n−1, Q1

n−1; say w ∈
V (Q0

n−1) and w′ ∈ V (Q1
n−1), see Figure 3.2. We choose an edge uv of direction i

distinct from b0w1 such that u ∈ Wn is in Q0
n−1 (and v ∈ Bn in Q1

n−1) and v does
not belong to P 1. Since the number of edges of direction i in Qn−P is for n ≥ 5
at least 2n−1 − k ≥ 2n−1 −n ≥ 1, such edge exists. By Proposition 8, there exists
a Hamiltonian path between w and u in Q0

n−1 − {b0} and by Theorem 12, there
exists a Hamiltonian path between v and w′ in Q1

n−1−P 1. By joining these paths
we obtain a Hamiltonian path (w, . . . , u, v, . . . , w′) in Qn − P .

Case 2: The vertices w,w′ are in the subcube Q0
n−1, see Figure 3.2. By Propo-

sition 8, there exists a Hamiltonian path H between w and w′ in Q0
n−1 − {b0}.

Let uv be an edge of H, u ∈ Bn and v ∈ Wn such that the neighbors of u, v
in Q1

n−1 do not belong to P 1. We claim that such edge uv ∈ E(H) exists.
We say that a vertex p ∈ V (P 1) blocks an edge rs ∈ E(H) if p is a neighbor

of r or s in Q1
n−1. Each vertex in the path P 1 blocks at most two edges of the

path H. Since |H| = 2n−1 − 1, the number of edges which are not blocked by the
path P 1 is for n ≥ 5 at least 2n−1 − 1− 2(n− 1) ≥ 2n−1 − 2n+1 ≥ 1. Therefore,
uv exists and we denote neighbors of u and v in Q1

n−1 by x and y, respectively.
By Theorem 12, there exists a Hamiltonian path between x and y in Q1

n−1 −
P 1. We join this path with the path H by removing the edge uv and adding
the edges ux and vy. That is, we obtain a Hamiltonian path (w, . . . , v, y, . . . , x,
u, . . . , w′) in Qn − P .

Case 3: The vertices w,w′ are in the subcube Q1
n−1, see Figure 3.3. We choose

a vertex u ∈ Bn in Q1
n−1 such that u /∈ V (P 1). By Theorem 12, there exists

a Hamiltonian path H between w and u in Q1
n−1 − P 1. Let yw′ denote the edge

of H such that y ∈ Bn is closer to w than to u on the path H. Let x, v ∈ Wn

be the neighbors of y, u in Q0
n−1, respectively. By Proposition 8, there exists

a Hamiltonian path between v and x in Q0
n−1 − {b0}. We join this path with

13



w

v

Q0

n−1
Q1

n−1

P 1

P

bk

w1b0

u

w′

x y

H

Figure 3.3: Case 3 in the proof of Theorem 13.

the path H by removing the edge yw′ and adding the edges uv and xy. That is,
we obtain a Hamiltonian path (w, . . . , y, x, . . . , v, u, . . . , w′) in Qn − P .

3.2 Counterexamples in small hypercubes
The above theorems do not hold for certain small dimensions of hypercubes. We
show several examples to support this.

It is obvious that both Theorem 12 and 13 do not hold for n = 1. Theorem 13
does not hold for n = 2. If P is an isometric path in Q2 of length 2, then Q2 −P
is a single vertex, which is not hamiltonian.
Remark Theorem 12 does not hold for n = 3, see Figure 3.4. Let P = (b0, w1,
b2, w3) where b0, b2 ∈ Bn and w1, w3 ∈ Wn. Let us denote the common neighbor
of w1 and w3 other than b2 by b. Let w be the white neighbor of b that differs
from w1 and w3. Thus the only path connecting b and w must be the edge bw,
which is clearly not hamiltonian.

P

b0

Q3w

w1

b2

w3

b

Figure 3.4: A nonexistence of a Hamiltonian path between b and w in Q3 − P .
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Remark Theorem 13 does not hold for n = 3, see Figure 3.5. Let P = (b0, w1,
b2) where b0, b2 ∈ Bn and w1 ∈ Wn. Let x be the neighbor of w1 that does not
belong to the path P . Let us denote the white neighbors of x that do not belong
to the path P by w and w′. Since the only neighbors of x that do not belong
to the path P are w and w′, the only path H between w and w′ that visits x and
avoids the vertices of P must be H = (w, x, w′), which is clearly not hamiltonian.

P

b0

Q3

w

w′

w1b2

x

Figure 3.5: A nonexistence of a Hamiltonian path between w and w′ in Q3−P .

Remark Theorem 13 does not hold for n = 4, see Figure 3.6. Let P = (b0, w1,
b2, w3, b4) where b0, b2, b4 ∈ Bn and w1, w3 ∈ Wn. Let x ∈ Bn be the neighbor
of w1 and w3 that does not belong to the path P . Let us denote the (white)
neighbors of x that do not belong to the path P by w,w′. Then there does
not exist a Hamiltonian path between w and w′ in Q4 − P . We show this by a
contradiction. Assume there is a Hamiltonian path H between w and w′. The
path H contains the vertex x. Since only neighbors of x are the vertices w and w′,
it must be H = (w, x, w′) which is clearly not hamiltonian.

b0

P

w1 b2

Q4

w′

w

b4x w3

Figure 3.6: A nonexistence of a Hamiltonian path between w and w′ in Q4−P .
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4. Isometric cycles in hypercubes
In this chapter we explore properties of isometric cycles in hypercubes regarding
directions of edges. Then we prove for an isometric cycle C in Qn of length
divisible by four and for every n ≥ 6 that Qn − C is Hamiltonian laceable.

Observation 14 Every isometric cycle in Qn where n ≥ 2 has exactly two dis-
tinct edges of identical direction.

Proof For n = 2 it is obvious. We prove the statement for n ≥ 3 by contra-
diction. The proof is similar to Observation 10. Notice that every cycle in Qn

has even number of edges of identical direction. For a contradiction assume that
an isometric cycle D in Qn has four distinct edges with identical directions. Let
the path S = (v0, v1, . . . , vk, vk+1) of length k + 1 denote the shortest subpath
of D such that exactly two distinct edges of S have identical direction. It is easy
to see that those edges are v0v1 and vkvk+1.

Let C = (v0, v1, . . . , vk, vk+1, vk+2, . . . , v2k−1) be a cycle in Qn such that
opposite edges have identical directions. That is, edges vjvj+1 and vj+kvj+k+1

where j ∈ [k − 1]0 have identical direction (we assume that v2k = v0). Note
that S is a subpath of C. Then the subpath P = (vk+1, vk+1, . . . .v2k−1, v0) of C
between vk+1v0 of length k − 1 is shorter than the path S between v0 and vk+1

of length k + 1, i.e. |P | < |S|.
Let S0 = (v1, v2, . . . , vk) denote the path S without its endvertices. To com-

plete the contradiction, we have to show that the path D−S0 between v0 and vk+1

is longer than the path P . Recall that we have chosen S to be the shortest path
in D that has precisely two edges of identical direction. Thus |S| ≤ |C − S0| and
using the inequality from the paragraph above we have |P | < |C − S0|.

Observation 15 Antipodal (opposite) edges of isometric cycles in Qn where n ≥ 2
have identical directions.

Proof We show this by contradiction. Let C be an isometric cycle in Qn and
let uv and xy be its edges that have identical direction but are not opposite
in C. We remove edges uv and xy from the cycle C splitting it into two paths,
say P 0 = (u, . . . , x) and P 1 = (v, . . . , y). Since uv and xy are not opposite, one
of the paths say P 0 is shorter. Then the path (v, u . . . , x) between v and x is
shorter than the path (v, . . . , y, x) between v and x which is a contradiction.

Let C be an isometric cycle in Qn of length 2k. Since every Qn has n directions,
it follows that k ≤ n and the isometric cycle C has at most 2n edges. Let i be
a direction of an edge uv ∈ E(C). Let us partition Qn into Q0,i

n−1 and Q1,i
n−1.

Then C splits into two isometric paths P 0 and P 1. The path P 0 is in Q0,i
n−1 and

the path P 1 is in Q1,i
n−1. Both of these paths have length k and they are connected

together with edges uv and the other edge of C of direction i.
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u

v

Figure 4.1: An isometric 6-cycle C in Q3 (left) and a non-isometric 6-cycle D
in Q3 (right).

4.1 Avoiding an isometric cycle by a Hamiltoni-
an path

Now we prove the main theorem of this chapter stating that if C is an isometric
cycle in Qn of length divisible by four, then for every n ≥ 6 the graph Qn − C is
Hamiltonian laceable. The proof is similar to the proof of Theorem 12.

Theorem 16 Let C = (b0, w1, b2, w3, . . . , wk−1, bk, wk+1, bk+2, . . . , w2k−1) be
an isometric cycle of length 2k in Qn where k is even, 2 ≤ k ≤ n, n ≥ 6, every bi
is in Bn, every wi is in Wn. For every b ∈ Bn \ V (C) and every w ∈ Wn \ V (C)
there exists a Hamiltonian path between b and w in Qn − C.

Proof We denote the direction of the edge b0w1 by i. Let P 0 = (wk+1,
bk+2, . . . , w2k−1, b0) and P 1 = (w1, b2, w3, . . . , bk). Then P 0 is in Qi,0

n−1 and P 1 is
in Qi,1

n−1. After fixing the direction i, there are two cases to consider.

b w

Q0
n−1 Q1

n−1

u v

b0
w1 b2w2k−1

w3
b2k−2

bk wk−1

bk−2

bk+2

wk+3

wk+1

P 0 P 1

C

Q0
n−1 Q1

n−1

u
x

v y

b

w

b0
w1 b2w2k−1

w3b2k−2

bk wk−1

bk−2

bk+2

wk+3

wk+1

H

P 0 P 1

C

Figure 4.2: Cases 1 and 2 in the proof of Theorem 16.

Case 1: The vertices b, w are in different subcubes Q0
n−1, Q1

n−1; say b ∈
V (Q0

n−1) and w ∈ V (Q1
n−1), see Figure 4.2. We choose an edge uv of direction i

such that u ∈ Wn \ V (P 0) is in Q0
n−1 and v ∈ Bn \ V (P 1) is in Q1

n−1. Since
the number of edges xy ∈ En of direction i in Qn−C such that x ∈ Wn is in Q0

n−1
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(and y ∈ Bn is in Q1
n−1) is for n ≥ 6 at least 2n−2 − (k − 1) ≥ 2n−2 − n+ 1 ≥ 1,

such edge uv exists.
By Theorem 12, there exists a Hamiltonian path between b and u in Q0

n−1−P 0

and a Hamiltonian path between v and w in Q1
n−1 − P 1. By joining these paths

we obtain a Hamiltonian path (b, . . . , u, v, . . . , w) in Qn − C.
Case 2: The vertices b, w are in the same subcube; say in Q0

n−1, see Figure 4.2.
By Theorem 12, there exists a Hamiltonian path H between b and w in Q0

n−1−P 0.
Let uv be an edge of H, u ∈ Bn and v ∈ Wn such that the neighbors of u, v in Q1

n−1

do not belong to P 1. We claim that such edge uv exists.
We say that a vertex p ∈ V (P 1) blocks an edge rs ∈ E(H) if p is a neighbor

of r or s in Q1
n−1. Each vertex in the path P 1 different from w1 and bk blocks

at most two edges of the path H. Since |H| ≥ 2n−1 − n− 1, the number of edges
which are not blocked by the path P 1 is for n ≥ 6 at least 2n−1−n−1−2(n−2) ≥
2n−1 − 3n− 5 ≥ 1. Therefore, uv exists and we denote the neighbors of u and v
in Q1

n−1 by x and y, respectively.
By Theorem 12, there exists a Hamiltonian path between x and y in Q1

n−1 −
P 1. We join this path with the path H by removing the edge uv and adding
the edges ux and vy. That is, we obtain a Hamiltonian path (b, . . . , v, y, . . . , x,
u, . . . , w) in Qn − C.
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5. Isometric trees in hypercubes
In this chapter we explore properties of isometric trees in hypercubes regarding
directions of edges and balance of bipartite set. Then we prove for an isometric
tree T in Qn such that it has odd (even) number of edges and for n ≥ 4 (n ≥ 5)
that Qn − T is Hamiltonian laceable.

Observation 17 All edges of an isometric tree in Qn where n ≥ 1 are distinct.

Proof Let T be an isometric tree in Qn and for contradiction assume that
two distinct edges uv, xy ∈ E(T ) have the same direction. We choose a path P
in T such that it contains both uv and xy. Since a tree does not contain a cycle,
path P is an isometric path, which contradicts Observation 10.

Since every Qn has n directions, it follows that every isometric tree in Qn

has at most n edges. Let T be an isometric tree with k edges in Qn. Let i be
the direction of an edge uv ∈ E(T ). We partition Qn into Q0,i

n−1 and Q1,i
n−1. Then

the tree T splits into trees T0 and T1. The tree T0 is in Q0,i
n−1 and T1 is in Q1,i

n−1

and these trees are connected by the edge uv. We will use a special case of this
property when the vertex u is a leaf of T .

5.1 Black-white trees
Let us look at some special trees that we will use. Let T be a tree with U, V its
bipartition. We say that the tree T is a black-white tree, if we call vertices of U
black and vertices of V white. This naming will be useful when we consider trees
in hypercubes, which have black and white vertices. A balanced tree is a black-
white tree that has the same number of black and white vertices. A black-balanced
tree is a black-white tree such that it has one more black vertex than it has white
vertices. Analogously, a white-balanced tree is a black-white tree such that it has
one more white vertex than it has black vertices.

We prove very useful property of balanced and black-balanced trees that both
of them have a black leaf.

Lemma 18 Every balanced tree has a black leaf.

v L0

L1

L2

L3

T

Figure 5.1: An example of the tree T with all leaves white for a contradiction.

Proof We denote the balanced tree by T . Assume for a contradiction that
all leaves of T are white. We choose an arbitrary black vertex v of T and for
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illustration we imagine that v is the root of T , see Figure 5.1. Let k be the max-
imum of the set {d(v, u) |u ∈ V (T )}. We say that Li = {u ∈ V (T ) | d(v, u) = i}
is a layer for i ∈ [k]. Note that if i ∈ [k] is even (odd) all vertices of Li are black
(white). Obviously, k is odd. Since there are no black leaves, for every nonzero
even integer i ∈ [k] : |Li| ≤ |Li+1| and since v is also not a leaf |L0| < |L1|.
Hence T has more white than black vertices, which is a contradiction since T is
balanced.

Corollary 19 Every black-balanced tree has a black leaf.

Proof We denote the black-balanced tree by S. Assume for a contradiction
that all leaves of S are white. Remember that a black-balanced isometric tree
has more black than white vertices. We add a white leaf to the tree S and denote
this new tree by T . Note that T is balanced. Thus by Lemma 18, tree T has
a black leaf and so does tree S since adding a white leaf to S does not change
the number of black leaves.

Analogously, both balanced and white-balanced trees have a white leaf.

5.2 Avoiding small isometric trees in hypercubes
Before we prove the main theorem of this chapter, we need two lemmas which
we use later on in the base of induction. Unfortunately, I have not been able
to prove the second lemma, but I successfully verified it by a computer.

T1

b0
w1

b2
b4

w5

w3

T2

b0

b4

b2w1
w3

w5

Figure 5.2: Trees T1 and T2 used in Lemma 20 and 21, respectively.

Lemma 20 Let T1 = ({b0, w1, b2, w3, b4, w5}, {b0w1, w1b2, b2w3, w3b4, b2w5}) be
a balanced isometric tree in Q5 where b0, b2, b4 ∈ B5 and w1, w3, w5 ∈ W5, see
Figure 5.2. For every b ∈ B5 \ {b0, b2, b4} and every w ∈ W5 \ {w1, w3, w5} there
exists a Hamiltonian path between b and w in Q5 − T1.

Proof We denote the direction of b2w3 by i and we fix it. Then the path
P3 = (b0, w1, b2, w5) is in Q0,i

4 and the path P1 = (w3, b4) is in Q1,i
4 . We fix

the direction i. Then there are three cases to consider.
Case 1: The vertices b, w are in different subcubes Q0

4, Q1
4; say b ∈ V (Q0

4)
and w ∈ V (Q1

4), see Figure 5.3. We choose an edge uv of direction i such
that u ∈ W5 is in Q0

4 (and v ∈ B5 is in Q1
4) and u is distinct from w1 and w3

and v ̸= b4. Since the number of edges of direction i in Q5−T1 is 25−2−2−1 = 5,
such edge exists.
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Figure 5.3: Cases 1 and 2 in the proof of Lemma 20.

By Theorem 12, there exists a Hamiltonian path between b and u in Q0
4 − P3

and a Hamiltonian path between v and w in Q1
4 − P1. By joining these paths we

obtain a Hamiltonian path (b, . . . , u, v, . . . , w) in Q5 − T1.
Case 2: The vertices b, w are in Q0

4, see Figure 5.3. By Theorem 12, there
exists a Hamiltonian path H between b and w in Q0

4 − P3. Let uv be an edge
of H, u ∈ B5 and v ∈ W5 such that the neighbor of v in Q1

4 differs from b4.
Since |V (H)| = 24−4 = 11 and b4 can be neighbor of just one white vertex of H,
such edge exists. Let x and y denote the neighbors of u and v in Q1

4, respectively.
By Theorem 12, there exists a Hamiltonian path between x and y in Q1

4 −
P1. We join this path with the path H by removing the edge uv and adding
the edges ux and vy. That is, we obtain a Hamiltonian path (b, . . . , v, y, . . . , x,
u, . . . , w) in Q5 − T1.

Case 3: The vertices b, w are in Q1
4. We prove this case in a same way as

the Case 2 above. By Theorem 12, there exists a Hamiltonian path H between b
and w in Q1

4 − P1. Let uv be an edge of H, u ∈ B5 and v ∈ W5 such that
the neighbor of v in Q0

4 differs from b0 and the neighbor of u in Q0
4 differs from w1

and w3. We show that such edge exists.
If b0 is the neighbor of a white vertex r ∈ V (H) it blocks at most two edges

of H: rs, qr ∈ E(H). Analogically with vertices w1 and w3. Thus b0, w1, w3 can
block at most six edges of H. Since |E(H)| = 24 − 2− 1 > 6, such edge uv exists
and we denote x and y the neighbors of u and v in Q0

4, respectively.
By Theorem 12, there exists a Hamiltonian path between x and y in Q0

4 −
P3. We join this path with the path H by removing the edge uv and adding
the edges ux and vy. That is, we obtain a Hamiltonian path (b, . . . , v, y, . . . , x,
u, . . . , w) in Q5 − T1.

Lemma 21 Let T2 = ({b0, w1, b2, w3, b4, w5}, {b0w1, w1b2, b2w3, w1b4, b2w5}) be
a balanced isometric tree in Q5 where b0, b2, b4 ∈ B5 and w1, w3, w5 ∈ W5, see
Figure 5.2. For every b ∈ B5 \ {b0, b2, b4} and every w ∈ W5 \ {w1, w3, w5} there
exists a Hamiltonian path between b and w in Q5 − T2.

I verified Lemma 21 by a supercomputer at the MetaCentrum VO [19] (virtual
organization) by brute-force obtaining a list of all Hamiltonian paths between b
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and w in Q5 − T2, see Attachment B. This is possible since there is only a finite
number of configurations of T2, b and w in Q5. See Attachment A for further
information about the program and where it can be found.

5.3 Avoiding an isometric tree by a Hamiltonian
path

Now we prove the main theorem of this chapter stating that if T is an isometric
tree in Qn such that T has odd (even) number of edges for n ≥ 4 (n ≥ 5),
then Qn − T is Hamiltonian laceable. This result is divided into two theorems
considering balanced and black-balanced (also white-balanced) trees. We prove
both theorems at once by a zig-zag induction.

Theorem 22 Let T be a balanced isometric tree in Qn with odd number k of edges
where 1 ≤ k ≤ n and n ≥ 4. For every b ∈ Bn \ V (T ) and every w ∈ Wn \ V (T )
there exists a Hamiltonian path between b and w in Qn − T .

Theorem 23 Let S be a black-balanced isometric tree in Qn with even number l
of edges where 2 ≤ l ≤ n and n ≥ 5. For every distinct v, v′ ∈ Wn \ V (S) there
exists a Hamiltonian path between v and v′ in Qn − S.

Obviously, Theorem 23 can be easily modified to hold for white-balanced trees
as well. For simplicity, we will only use the version of Theorem 23 that uses
black-balanced trees, unless we want to avoid confusion.

Proof We prove both Theorem 22 and Theorem 23 by two zig-zag inductions as
indicated in Figure 5.4. Black and blue points represent bases of inductions and
arrows represent induction steps. This proof is divided into four parts. In the first
two parts we prove the bases of inductions and then in the latter two parts we
prove both induction steps.

4 5 6 7

Qn − T

Qn − S

n :

Figure 5.4: A scheme of the proof of Theorems 22 and 23 using two inductions.

Part I: The statement of Theorem 22 for n = 4.

Let T ′ be a balanced isometric tree in Q4 with at most 3 edges. We prove
an existence of a Hamiltonian path between every b ∈ Bn \ V (T ′) and every w ∈
Wn \ V (T ′) in Q5 − T ′. This is the base of induction which is represented by a
black dot (i.e. •) in Figure 5.4.

Let k′ denote the number of edges of T ′. Since k′ is odd, there are two cases
to consider. If k′ = 1, then the tree T ′ is an edge and we use Theorem 12.

If k′ = 3, then there exist only two trees with three edges; a path on four ver-
tices P3 and a star K1,3 which is not balanced, see Figure 5.5. Thus we need to find
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a Hamiltonian path between every b ∈ Bn \ V (P3) and every w ∈ Wn \ V (P3)
in Qn − P3, which holds by Theorem 12.

P3 K1,3

Figure 5.5: All trees with three edges [18]. Note that K1,3 is not balanced.

Part II: The statement of Theorem 22 for n = 5.

Let T ′ be a balanced isometric tree in Q5 with at most 5 edges. We prove
an existence of a Hamiltonian path between every b ∈ Bn \ V (T ′) and every w ∈
Wn \ V (T ′) in Q5 − T ′. This is the base of induction which is represented by a
green circle (i.e. ◦) in Figure 5.4.

Let k′ denote the number of edges of T ′. Since k′ is odd, there are three cases
to consider. If k′ = 1, then the tree T ′ is an edge and we use Theorem 12.

If k′ = 3, then there exist two trees with three edges; a path on four vertices P3

and a star K1,5 which is not balanced, see Figure 5.5. Thus we need to find
a Hamiltonian path between every b ∈ Bn \ V (P3) and every w ∈ Wn \ V (P3)
in Qn − P3, which holds by Theorem 12.

If k′ = 5, then there exist six trees with five edges, see Figure 5.6. Only three
of those trees are balanced: P5, T1 and T2. Since P5 is an odd isometric path we
use Theorem 12. To find a Hamiltonian path in Q5 − T1 and Q5 − T2, we use
Lemma 20 and Lemma 21, respectively.

P5 T1 T2

S1R K1,5

Figure 5.6: All trees with 5 edges [18]. Only P5, T1 and T2 are balanced.

Part III: The statement of Theorem 22 for n− 1 implies the statement of The-
orem 23 for n.

Recall that T is a balanced isometric tree in Qn−1 and that S is a black-
balanced isometric tree in Qn with even l denoting the number of its edges. We
assume that Qn−1 − T is Hamiltonian laceable and we prove that Qn − S is
Hamiltonian laceable as well. This induction step is represented by an arrow
pointing south-east (i.e. ↘) in Figure 5.4.

By Corollary 19, there exists a black leaf b0 of S and we denote its only
neighbor by w1. Let us denote the balanced isometric tree S − {b0} by T ′. We
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denote the direction of b0w1 by i. Then b0 is in Qi,0
n−1 and T ′ is in Qi,1

n−1. We fix
the direction i. There are three cases to consider.

v v′

x y

Q0

n−1
Q1

n−1

S

T ′

b0 w1

v

c x

v′
d y

Q0

n−1
Q1

n−1

H

S

T ′

b0 w1

Figure 5.7: Cases 1 and 2 in the proof of Theorem 23 with S as an example of a
black-balanced tree on 7 vertices.

Case 1: The vertices v, v′ are in different subcubes Q0
n−1, Q1

n−1; say v ∈
V (Q0

n−1) and v′ ∈ V (Q1
n−1), see Figure 5.7. We choose an edge xy of direction i

such that x ∈ Wn \ {v} is in Q0
n−1 (and y ∈ Bn is in Q1

n−1) and y does not
belong to T ′. The number of edges of direction i in Qn that have its black
vertex in Q0

n−1 is 2n−2. These edges can be blocked by one of l
2

black vertices
of T ′ or by a vertex v. Thus the number of choices for an edge xy is for n ≥ 5
at least 2n−2 − l

2
− 1 ≥ 2n−2 − ⌊n

2
⌋ − 1 ≥ 1.

By Proposition 8, there exists a Hamiltonian path between v and x in Q0
n−1−

{b0} and by the induction hypothesis, there exists a Hamiltonian path between y
and v′ in Q1

n−1−T ′. By joining these paths we obtain a Hamiltonian path (v, . . . , x,
y, . . . , v′) in Qn − S.

Case 2: The vertices v, v′ are in the subcube Q0
n−1, see Figure 5.7. By Propo-

sition 8, there exists a Hamiltonian path H between v and v′ in Q0
n−1 − {b0}.

Let cd be an edge of H, c ∈ Bn and d ∈ Wn such that the neighbors of c, d
in Q1

n−1 do not belong to T ′. We claim that such edge cd ∈ E(H) exists.
We say that a vertex p ∈ V (T ′) blocks an edge rs ∈ E(H) if p is a neighbor

of r or s in Q1
n−1. Each of l vertices in the tree T ′ blocks at most two edges

of the path H. Since |H| = 2n−1 − 2, the number of edges which are not blocked
by the tree T ′ is for n ≥ 5 at least 2n−1 − 2− 2l ≥ 2n−1 − 2n− 2 ≥ 1. Therefore,
such edge cd exists and we denote the neighbors of c and d in Q1

n−1 by x and y,
respectively.

By the induction hypothesis, there exists a Hamiltonian path between x and y
in Q1

n−1 − T ′. We join this path with the path H by removing the edge cd and
adding the edges cx and dy. That is, we obtain a Hamiltonian path (v, . . . , d,
y, . . . , x, c, . . . , v′) in Qn − S.

Case 3: The vertices v, v′ are in the subcube Q1
n−1, see Figure 5.8. We

choose a vertex c ∈ Bn in Q1
n−1 such that c does not belong to the tree T ′.

By the induction hypothesis, there exists a Hamiltonian path H between v and c
in Q1

n−1 − T ′. Let yv′ denote the edge of H such that y ∈ Bn is closer to v than
to c on the path H. Let x, d ∈ Wn be the neighbors of y, c in Q0

n−1, respectively.

24



v

d

Q0

n−1
Q1

n−1

c

v′

x y
H

S

T ′

b0 w1

Figure 5.8: Case 3 in the proof of Theorem 23 with S as an example of a
black-balanced tree on 7 vertices.

By Proposition 8, there exists a Hamiltonian path between x and d in Q0
n−1−

{b0}. We join this path with the path H removing the edge yv′ and adding
the edges dc, xy. That is, we obtain a Hamiltonian path (v, . . . , y, x, . . . , d,
c, . . . , v′) in Qn − S.

We have proved that for a black-balanced isometric tree S in Qn is Qn − S
Hamiltonian laceable. Please note, that by switching color black with white it is
easy to see that all arguments above hold as well. That is, we have also proved
Hamiltonian laceability of Qn − S1 where S1 is a white-balanced isometric tree
in Qn.

Part IV: The statement of Theorem 23 for n− 1 implies the statement of The-
orem 22 for n.

Recall that S is a white-balanced isometric tree in Qn−1 and that T is a bal-
anced isometric tree in Qn with odd k denoting the number of its edges. We
assume that Qn−1−S is Hamiltonian laceable. We prove a Hamiltonian laceabil-
ity of Qn−T . This induction step is represented by an arrow pointing north-east
(i.e. ↗) in Figure 5.4.

By Lemma 18 there exists a black leaf b0 of T and we denote its only neighbor
in T by w1. Let us denote the white-balanced isometric tree T − {b0} by S ′. We
denote the direction of b0w1 by i. Then b0 is in Qi,0

n−1 and S ′ is in Qi,1
n−1. We fix

the direction i. There are four cases to consider.
Case 1: The vertex b is in Q0

n−1 and the vertex w is in Q1
n−1, see Figure 5.9.

We need to find an isometric path R = (b0, x, z, y) in Q0
n−1 such that z ̸= b and

the neighbors of x and y in Q1
n−1 do not belong to the tree S ′. There are n − 1

neighbors of b0 that are in Q0
n−1. We need to choose one of them such that its

neighbor in Q1
n−1 is not among the k−1

2
black vertices of S ′. The number of such

neighbors of b0 is for n ≥ 6 at least n− 1− k−1
2

≥ n− 1− ⌊n−1
2
⌋ ≥ 1. We choose

one of them, denote it by x and we fix it. There are n− 3 neighbors of x in Q0
n−1

different from b and b0. We choose one of them, denote it by z and we fix it.
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Figure 5.9: Cases 1 and 2 in the proof of Theorem 22 with T as an example of a
balanced tree on 8 vertices.

There are at least n − 3 neighbors of z in Q0
n−1 different from x and not

having b0 as a neighbor. The last condition says that the direction of the edge
between z and any of these neighbors is different from the direction of b0x and is
needed for R to be isometric. Of those n−3 neighbors of z we need to choose a ver-
tex such that its neighbor in Q1

n−1 is none of k−1
2

black vertices of S ′. The number
of such vertices is for n ≥ 6 at least n−3− k−1

2
≥ n−3−⌊n−1

2
⌋ ≥ 1. We choose one

of them and denote it by y. Thus we now have an isometric path R = (b0, x, z, y).
Let us denote the neighbors of x and y in Q1

n−1 by c and d, respectively.
By the induction hypothesis, there exists a Hamiltonian path H in Q1

n−1 − S ′.
We denote a neighbor of w on the path H different from c and d by r. Without
loss of generality r is closer to d than to c on the path H. We denote the neighbor
of r in Q0

n−1 by s. By Theorem 12, there exists a Hamiltonian path between s
and b in Q0

n−1−R. By removing the edges b0x, rw and adding the edges xc, yd, rs
we obtain a Hamiltonian path (b, . . . , s, r, . . . , d, y, z, x, c, . . . , w) in Qn − T .

Case 2: The vertices b, w are in the subcube Q0
n−1, see Figure 5.9. We choose

neighbors x and y of b0 in Q0
n−1 such that their neighbors in Q1

n−1 do not belong
to the tree S ′. We show that such vertices x, y exist.

There are n − 1 neighbors of b0 in Q0
n−1. The number of black vertices of S ′

is k−1
2

. Thus the number of candidates for x and y is for n ≥ 6 at least n−1− k−1
2

≥
n− 1− ⌊n−1

2
⌋ ≥ 2. By Proposition 9, there exists a Hamiltonian path between b

and w in Q0
n−1 using the edges xb0 and b0y. We denote the neighbors of x

and y in Q1
n−1 by c and d, respectively. By the induction hypothesis, there exists

a Hamiltonian path between c and d in Q1
n−1−S ′. By removing the edges xb0, b0y

and adding the edges xc and yd we obtain a Hamiltonian path (b, . . . , x, c, . . . , d,
y, . . . , w) in Qn − T .

Case 3: The vertices b, w are in the subcube Q1
n−1, see Figure 5.10. We

choose a vertex c ∈ Bn \ {b} in Q1
n−1 such that c does not belong to the tree S ′.

By the induction hypothesis, there exists a Hamiltonian path H between c and b
in Q1

n−1 − S ′. Let yw denote the edge of H such that y ∈ Bn is closer to b
than to c on the path H. Let x, d ∈ Wn be the neighbors of y and c in Q0

n−1,
respectively. By Proposition 8, there exists a Hamiltonian path between d and x
in Q0

n−1 − {b0}. We join this path with the path H by removing the edge yw
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Figure 5.10: Cases 3 and 4 in the proof of Theorem 22 with T as an example
of a balanced tree on 8 vertices.

and adding the edges dc, xy. That is, we obtain a Hamiltonian path (w, . . . , c,
d, . . . , x, y, . . . , b) in Qn − T .

Case 4: The vertex w is in Q0
n−1 and the vertex b is in Q1

n−1, see Figure 5.10.
We choose an edge xy of direction i distinct from b0w1 such that x ∈ Wn \ {w} is
in Q0

n−1, y ∈ Bn \ {b} in Q1
n−1 and y does not belong to S ′. The number of edges

of direction i in Qn that have its black vertex in Q0
n−1 is 2n−2. These edges

can be blocked by one of k−1
2

black vertices of S ′ or by b or w. Thus the number
of choices for an edge xy is for n ≥ 6 at least 2n−2− k−1

2
−2 ≥ 2n−2−⌊n−1

2
⌋−2 ≥ 1.

By Proposition 8, there exists a Hamiltonian path between w and x in Q0
n−1−{b0}

and by the induction hypothesis, there exists a Hamiltonian path between y and b
in Q1

n−1 − S ′. By joining these paths we obtain a Hamiltonian path (w, . . . , x,
y, . . . , b) in Qn − T .

Theorems 22 and 23 do not hold for smaller dimensions than stated. In Chap-
ter 3, we showed that hypercubes of small dimensions without isometric paths are
not Hamiltonian laceable. Since a special case of a tree is a path, the examples
in Section 3.2 can be used as counterexamples for small dimensions as well.
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Conclusion
Let F ⊆ Qn be a set of faulty vertices. We have proved that for large enough n,
the graph Qn − F is Hamiltonian laceable if F forms any of these isometric
subgraphs of Qn: a path, a cycle of length divisible by four and a tree.

We have presented two new results. Let C be an isometric cycle in Qn such
that its length is divisible by four and n ≥ 6. We have proved that Qn − C
is Hamiltonian laceable for n ≥ 6. Since C can have up to 2n vertices, this
extends the previous result by Sun and Jou[15]. They showed that Qn without
an arbitrary cycle on at most 2n−4 vertices is Hamiltonian laceable for every n ≥
4. Next we have proved that if T is an isometric tree in Qn with odd (even)
number of edges and n ≥ 5 (resp. n ≥ 6), then the graph Qn − T is Hamiltonian
laceable. This theorem was proved by an induction and a part of the base of the
induction was verified by a computer. The program that verified the base and
the program’s output can be found on the attached CD, see Attachments for
more information.

An observant reader may notice that among these proofs of the existence
of a Hamiltonian path in Qn without various isometric subgraphs of Qn, an iso-
metric cycle whose length is not divisible by four is missing. I have been unable
to fully prove that if C is an isometric cycle of even length not divisible by four
in Qn, then Qn − C is Hamiltonian laceable for every large enough n. I state it
here as a conjecture and I present its incomplete proof. I will be looking forward
for anybody to prove the missing case or prove the whole conjecture by a different
approach.

Conjecture 24 Let C = (b0, w1, b2, w3, . . . , bk−1, wk, bk+1, wk+2, . . . , w2k−1) be
an isometric cycle of length 2k in Qn where k is odd, 2 ≤ k ≤ n, n ≥ 6, every bi
is in Bn, every wi is in Wn. For every b ∈ Bn \ V (C) and every w ∈ Wn \ V (C)
there exists a Hamiltonian path between b and w in Qn − C.

Proof Attempt We denote the direction of the edge b0w1 by i. Then the sub-
path P 0 = (w1, b2, w3, . . . , wk) is in Qi,0

n−1 and the subpath P 1 = (bk+1, wk+2, . . . ,

w2k−1) is in Qi,1
n−1. After fixing the direction i, there are three cases to consider.

Case 1: The vertices b, w are in different subcubes Q0
n−1, Q1

n−1; say b ∈
V (Q0

n−1) and w ∈ V (Q1
n−1), see Figure 5.11. We choose an edge uv of direction i

such that u ∈ Wn is in Q0
n−1 and does not belong to P 0 and v ∈ Bn is in Q1

n−1 and
does not belong to P 1. Such edge exists since the number of edges of direction i
in Qn −C is for n ≥ 6 at least 2n−1 − 2k ≥ 2n−1 − 2n ≥ 1. By Theorem 13, there
exists a Hamiltonian path between b and u in Q0

n−1−P 0 and a Hamiltonian path
between v and w in Q1

n−1 − P 1. By joining these paths we obtain a Hamiltonian
path (b, . . . , u, v, . . . , w) in Qn − C.

Case 2: The vertices b, w are in the subcube Q0
n−1, see Figure 5.11. Let u ∈

V (Q0
n−1) be a neighbor of bk+1 different from w and wk+2. Let x ∈ V (Q0

n−1)
be a neighbor of b0 different from w and w2k−1. By Proposition 9, there exists
a Hamiltonian path in Q0

n−1 between b and w passing through the edges ubk+1, b0x
and all the edges in E(P 0). Let v and y be the neighbors of u and x in Q1

n−1,
respectively. By Theorem 13, there exists a Hamiltonian path between v and y
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Figure 5.11: Cases 1 and 2 for Theorem 24.

in Q1
n−1 − P 1. We join these paths by adding the edges xy, uv and remov-

ing the edges ubk+1, b0x and removing the path P 0 as well. That is, we obtain
a Hamiltonian path (b, . . . , x, y, . . . , v, u, . . . , w) in Qn − C.

Case 3: The vertices b, w are in the subcube Q1
n−1. I did not succeed in proving

this case.
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Attachments
This is a list of attachments that can be found on the CD that comes with this
thesis. Let T = ({b0, w1, b2, w3, b4, w5}, {b0w1, w1b2, b2w3, w1b4, b2w5}) be a black-
white tree with vertices b0, b2, b4 black and vertices w1, w3, w5 white, see Figure 5.2
where T is denoted by T2. Both attachments bellow concern Lemma 21 and this
particular tree. Let us restate the lemma.

Lemma 25 Let T be isometric in Q5. For every b ∈ B5 \ V (T ) and every w ∈
W5 \ V (T ) there exists a Hamiltonian path between b and w in Q5 − T .

A The program verifying Lemma 21
The folder A_program on the attached CD contains: an executable program
hypercubes.exe, its C++ source code hypercubes.cpp, makefile and a README
file. The program verifies Lemma 21. That is, whether Q5 − T is laceable for T
isometric in Q5.

The program does not take any input. It generates an isometric tree T in Q5,
vertices b ∈ B5 and w ∈ W5 that do not belong to the tree T . We call T , b and w
in Q5 with such conditions a valid. Then it tries to find a Hamiltonian path
from b to w in Q5 − T by depth first search. Next step depends on whether it
succeeds.

Yes. The program finds a Hamiltonian path H between b and w in Q5 − T .
It adds b, w, T and H into a file paths.out. Then generates some new valid
configuration of b, w and T (if such configuration exists) and repeats the process.

No. The program fails to find a Hamiltonian path between b and w in Q5−T .
It outputs “A Hamiltonian path between b and w was not found for the configu-
ration: b0 w1 b2 w3 b4 w5” and terminates.
If the program runs out of new valid configurations of b, w and T it outputs
“The hypothesis was successfully verified.” and terminates.

B List of Hamiltonian paths
The folder B_paths contains a README file and a text file paths.out. The file
paths.out is a list of all Hamiltonian paths between b and w in Q5−T for every
isometric T in Q5 and every vertices b ∈ B5\V (T ), w ∈ W5\V (T ). The structure
of the file is a list of items. Each item consists of following three lines.

b w b0 w1 b2 w3 b4 w5

b v1 d2 v3 d4 … v23 d24 w
empty line

Every such item means that there exists a Hamiltonian path (b, v1, d2, v3,
d4, . . . , v23, d24, w) in Q5 − T where every di is in B5 and every vi is in W5.
This output was generated by the program hypercubes.cpp in Attachment A. It
was computed by a supercomputer at MetaCentrum Virtual Organization [19]. I
would like to thank them for allowing me to use their supercomputers.
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