In 2001 Stephen Locke conjectured that for every balanced set F of 2k faulty vertices in the *n*-dimensional hypercube Q_n where $n \ge k + 2$ and $k \ge 1$ the graph $Q_n - F$ is hamiltonian. So far the conjecture remains open although partial results are known; some of them with additional conditions on the set F. We explore hamiltonicity of $Q_n - F$ if the set of faulty vertices F forms certain isometric subgraph in Q_n . For an odd (even) isometric path P in Q_n the graph $Q_n - V(P)$ is Hamiltonian laceable for every $n \ge 4$ (resp. $n \ge 5$). Although a stronger result is known, the method we use in proving the theorem allows us to obtain following results. Let C be an isometric cycle in Q_n of length divisible by four for $n \ge 6$. Then the graph $Q_n - V(C)$ is Hamiltonian laceable. Let T be an isometric tree in Q_n with odd number of edges and let S be an isometric tree in Q_m with even number of edges. For every $n \ge 4$, $m \ge 5$ the graphs $Q_n - T$ and $Q_m - S$ are Hamiltonian laceable. A part of the proof is verified by a computer.