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Essentially, all models are wrong, but some are useful.
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ABSTRACT

TITLE:Evolutionary Algorithms for Multiobjective Optimization
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SUPERVISOR: Mgr. Roman Neruda, CSc., Institute of Computer Sci-
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Multi-objective evolutionary algorithms have gained a lot of atten-
tion in the recent years. They have proven to be among the best multi-
objective optimizers and have been used in many industrial applica-
tions. However, their usability is hindered by the large number of
evaluations of the objective functions they require. These can be ex-
pensive when solving practical tasks. In order to reduce the num-
ber of objective function evaluations, surrogate models can be used.
These are a simple and fast approximations of the real objectives.

In this work we present the results of research made between the
years 2009 and 2013. We present a multi-objective evolutionary algo-
rithm with aggregate surrogate model, its newer version, which also
uses a surrogate model for the pre-selection of individuals. In the
next part we discuss the problem of selection of a particular type of
model. We show which characteristics of the various models are im-
portant and desirable and provide a framework which combines sur-
rogate modeling with meta-learning. Finally, in the last part, we ap-
ply multi-objective optimization to the problem of hyper-parameters
tuning. We show that additional objectives can make finding of good
parameters for classifiers faster.
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ABSTRAKT

NAzEV: Evolu¢ni algoritmy pro vicekriteridlni optimalizaci
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Vicekriteridlni evolu¢ni algoritmy se v poslednich letech tési velké
pozornosti. Dokazaly, Ze patfi mezi nejlepsi vicekriterdlni optimali-
zatory a byly pouzity v mnoha primyslovych aplikacich. Jejich po-
uzitelnost je ale omezovéna tim, Ze vyZaduji velké mnozstvi vyhod-
noceni jednolivych tcelovych funkci. Tyto mohou byt v piipadé re-
alnych problémt sloZité a jejich vyhodnoceni mtize byt drahé. Pro
sniZzeni po¢tu vyhodnoceni jednotlivych tcelovych funkci se pouZi-
vaji tzv. ndhradni modely. Ty jsou jednoduchou a rychlou aproximaci
skutec¢nych tcelovych funkci.

V této praci predstavujeme vysledky vyzkumu provadéného mezi
lety 2009 a 2013. Pfedstavujeme vicekriteridlni evolué¢ni algoritmus s
agregovanym nahradnim modelem a jeho verze, které pouzivaji dalsi
nahradni model pro pifedvybér jedincii. V dalsi ¢asti se zabyvame pro-
blémem vybéru vhodného typu ndhradniho modelu. Diskutujeme o
tom, které charakteristiky modelu jsou dilezité a Zddané, a navrhu-
jeme propojeni nahradniho modelovani s meta-u¢enim. V posledni
¢asti se potom zabyvdme vyuZitim vicekriteridlni optimalizace pro
ladéni parametr klasifikdtor a ukazujeme, Ze pfidani dalsich tcelo-
vych funkci mtiZe urychlit nalezeni vhodného nastaveni.
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Part 1

INTRODUCTION

This part contains the introduction to the problem of multi-
objective optimization. The importance of the problem is
discussed, as well as motivation for multi-objective opti-
mization. The problem is defined in a formal manner. We
also discuss the challenges one needs to face when com-
paring multi-objective optimizers and introduce some of
the most often used benchmark problems.






INTRODUCTION

Optimization, the problem of finding the best possible solution to a
given problem, is an important task. Most of the time optimization
of only one objective is considered, although most problems can be
more naturally defined in the framework of multi-objective optimiza-
tion (i.e. optimization of more objective at once). For example, if a
new product is designed by a company, one of the objectives would
usually be the price, as most people would not buy a product which
is extremely expensive just because it is slightly better according to
some important criteria (e.g. a computer which is only slightly faster
than a much cheaper one).

But multi-objective optimization (or rather multi-objective decision
making) does not apply only to companies, in fact, most of the de-
cisions we make in our lives are multi-objective. Even in the most
common situations, like choosing how to get to work in the morning,
we have several options, each of them with different properties, and
some of them better according to one criteria, and the other better
according to another one. We can, for example, go by car, which may
be the fastest but also probably one of the more expensive options.
Moreover, we have to park the car somewhere, which may be diffi-
cult. Another option may be to use public transportation, which may
be slower, by also cheaper and easier to use. Every day in the morn-
ing, we have to make this multi-criteria decision and choose which
mean of transport to take. To make things even more complicated,
our preferences may change from time to time, and we may make a
different decision every day. Therefore, it is important to have the
whole set of solutions (in this case ways how to get to work) among
which one can choose instead of having just the fastest one.

And this is precisely the goal of multi-objective optimization - to
provide a set of solutions, which are in a sense optimal in all of the
objectives at once. The notion of optimality in this case comes from
the notion of Pareto dominance i.e. one solution is better than another
one, if it is better in all objectives. Although this notion is natural, it
brings a problem, namely, there is a lot of solutions which are not
comparable to each other. Thus, after a multi-objective optimizer re-
turns a set of mutually incomparable solutions, the user has to decide
which of them to use. The problem of choosing such a solution is
called multi-objective decision making.

In this thesis, we focus on the multi-objective evolutionary algo-
rithms, as in the last years they have proven to be among the best
multi-objective optimizers. However, multi-objective evolutionary al-
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goal of
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problems of
evolutionary
algorithms
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gorithms have one important disadvantage. They use a large number
of objective function evaluations, and these evaluations can be expen-
sive in practice. The expensiveness may come from two sources —
either the function takes long to evaluate, or it is expensive in finan-
cial terms (e.g. because a real-world experiment has to be performed).
It is not uncommon for evolutionary multi-objective optimizers to re-
quire tens of thousands of function evaluations to find a good set
of solutions. And in such a case, even functions which take only a
minute to evaluate may make the evolution unusable. This problem
is even more pronounced when the function is expensive financially.

If the objective function is expensive “only” computationally, the
situation can be improved to some extent by using the parallelization
of the evaluations. However, a better approach is probably to reduce
the required number of evaluations directly. To this end, so called
surrogate models are often used. The surrogate model is an approx-
imation of the real and expensive objective function. This approx-
imation can be obtained in several ways, e.g. by using a simulation
instead of running an experiment, or by using a less precise but faster
simulation instead of a more precise one. However, one of the most
common ways is to evaluate some points from the design space of the
objectives precisely, and use these evaluated points to train a regres-
sion model. To this end, different types of models have been used,
ranging from simple polynomial regression ones, to neural networks
and Gaussian processes.

In this thesis, we study new surrogate models for multi-objective
optimization. The important feature of the model we use is that it
predicts only one value which expresses the overall quality of each
individual instead of predicting the value for each of the objectives
separately— it is a so called aggregated surrogate model. This makes
the model suitable for exploitation by a much simpler single-objective
evolutionary algorithm.

1.1 THE OUTLINE OF THE THESIS

The whole thesis is divided into four parts. The first part contains a
general introduction, and the definition of multi-objective optimiza-
tion. We also discuss the problems multiple objectives bring when
two optimizers should be compared, and mention the most often
used benchmark problems.

The second part of the thesis contains three chapters which de-
scribe the current state of the art. Chapter 3 describes the mod-
els which are most often used in the field of surrogate-based multi-
objective optimization, and which we also use in some of the exper-
iments. In Chapter 2 we describe some of the most important state-
of-the-art multi-objective evolutionary algorithms. Chapter 5 then
describes the approaches others have taken to tackle the problem of



1.1 THE OUTLINE OF THE THESIS

surrogate modeling in evolutionary multi-objective optimization. All
the chapters mention mostly the most important algorithms with re-
spect to this thesis, they are not meant to be a complete survey of the
state of the art. However, references to more complete surveys and
overviews are given where appropriate.

The third part is the most important one and contains the main
contribution of the thesis. In Chapter 6 we describe the new distance-
based aggregate surrogate model and the way it can be used to aug-
ment the existing multi-objective evolutionary algorithms. The model
is based on the distance of individuals from the current Pareto set
and is exploited by a single-objective evolutionary algorithm. We try
different types of models to predict the distance and show which
of them work better. The algorithm is later augmented by the ad-
dition of pre-selection which decides whether a given individual is
promising and should thus be evaluated using the real objective, or
whether the individual should be rather dropped. We show that the
pre-selection step should use a different model than the local search
step in order to be able to provide more than one individual in each
generation. This is important in practice as often more individuals
can be evaluated at once with lower cost than if they were evaluated
one by one. The pre-selection is described in Chapter 7. Through-
out these two chapters we present the results of several preliminary
experiments which show the performance of various versions of the
algorithms on a limited set of benchmark functions. At the end of
Chapter 7, we compare some of the versions on a much larger and
challenging set of benchmark functions to show the performance un-
der more realistic conditions.

Chapters 8 and 9 contain preliminary results which should lead
to the integration of meta-learning and surrogate modeling in the
future and especially Chapter 2 is focused more on an application of
multi-objective optimization, rather than the study of new algorithms.
Chapter 8 studies the types of model which are useful in evolutionary
optimization. It turns out that models which have low mean squared
error are not the best ones to use with an evolutionary algorithm
which uses only comparisons between individuals during their run.
Models which preserve the relations among the individuals better
tend to provide better overall results. This is an important observa-
tion as it provides guide for the selection of better models, if meta-
learning is used with surrogate modeling. In Chapter 9 we study the
integration of multi-objective optimization and meta-learning from
a different point of view. We apply multi-objective optimization to
the problem of setting the hyper-parameters of a classifier in order to
minimize its classification error. We show that additional objectives
in this case can improve the results, even though the problem is essen-
tially single-objective. The additional objectives help the algorithm to
proceed to interesting parts of the search space as they provide di-
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rection in the areas of search space with constant classification error.
These cases are quite common as the classification error is a discrete
variable. Moreover, classifiers are usually robust in the sense than a
small change of their hyper-parameters does not affect the final classi-
fication error, which makes the error function even more complicated.

Finally, the fourth part summarizes the main contributions of the
thesis and provides some ideas for a future research.



MULTI-OBJECTIVE OPTIMIZATION

As we have already mentioned, multi-objective optimization provides
framework for optimizing multiple objectives at once. Having multi-
ple objectives brings new challenges to the field of optimization and
even relatively simple concepts, like the comparison of two solutions
and the decision which of them is better, gets more complicated in
the multi-objective case. In this chapter, we define the most impor-
tant concepts in multi-objective optimization and discuss some of the
new challenges.

We shall start our review be the definition of multi-objective opti-
mization problem itself.

Definition 2.1. A multi-objective optimization problem is defined as a
tuple (D, O, F,C), where D is the design (decision) space, O C R" is
the objective space, F = (f1,..., fu) with f; : D — R is the set of n
objective functions, and C = {¢y,...,¢;} is the set of | constraints.

In the case of continuous multi-objective optimization the design
space is a subset of RY, most often a d-dimensional interval [I1, 1] x
[lo, up] X - -+ x [I3,u4], where I; and u; define the lower and upper
bounds for each of the variables respectively. In a more general case,
some of the variables may have discrete domains. Moreover, in case
of combinatorial optimization, when e.g. the traveling salesman prob-
lem is solved, D may be the set of all permutations over a given set.
Also, the objective space may in theory be more general, however,
such situation is uncommon in practice.

In this thesis, we will only consider continuous optimization of
multiple objectives f; : R" — R without constraints. We also assume
without any loss of generality only minimization of all the objectives
here.

Having multiple objectives causes several complications compared
to single-objective optimization. One of them is the absence of any
linear ordering of the solutions, as it is not obvious which of two solu-
tions x; and x; is better in a case, where f;(x1) has a better value than
f1(x2), but f2(x7) is better than f,(x1). The comparison of individuals
in the multi-objective case is defined by the so called Pareto dominance.
Unfortunately, Pareto dominance does not define complete order on
the set of all individuals.

Definition 2.2. Individual x dominates individual y (x < y) (equivalently,
individual y is dominated by individual x), if for each objective f;, fi(x) <
fi(y), and there is at least one objective f; for which f;(x) # fi(v).

If neither x < y nor y < x , we say that x and y are (mutually)
non-dominated.

multi-objective
optimization
problem

Pareto dominance
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Having the definition of Pareto dominance, we can proceed with
the definition of the goal of multi-objective optimization.

Definition 2.3. The solution of a multi-objective optimization problem
(D,O,F,C) is a Pareto set P C D, such as for each x € D and y € P,
the individual y is not dominated by the individual x. The image
of the Pareto set P under the objectives F is a subset of O called the
Pareto front.

Thus, the Pareto set is the set of minimal points of the Pareto domi-
nance relation in the decision space. In practice, this set is usually
uncountable for continuous multi-objective optimization problems
and thus no algorithm can provide the complete Pareto set. We will
call the finite sets of non-dominated points returned by the multi-
objective optimizers Pareto set approximations.

Definition 2.4. A Pareto set approximation A C D is a finite set of
points in the decision space such that for each two points x,y € A, x
and y are mutually non-dominated.

2.1 COMPARISON OF MULTI-OBJECTIVE OPTIMIZERS

The fact that the Pareto dominance relation is not a complete order-
ing of course translates to the absence of a natural complete ordering
of the Pareto approximations. This is an important problem in prac-
tice, when new algorithms are designed and should be compared to
other existing algorithms. However, there are at least two important
features which are important for a Pareto set approximation to be
considered “good”. One of them is the spread of solutions — the so-
lutions in the approximation should be evenly spread along the true
Pareto set. The other is the convergence of the solutions — the solu-
tions should be close to the true Pareto set’.

Various indicator have been proposed which express these two fea-
tures of Pareto set approximations numerically. Most of these indi-
cators are binary and compare the quality of two Pareto set approx-
imations. If these indicators are used in practice, one of the approx-
imations may be the union of the approximations obtained by the
compared algorithm, which makes the indicator in fact unary and
the direct comparison of various algorithms easier

The generational distance (Van Veldhuizen and Lamont, 1998) indica-
tor measures the average distance of the points in the approximation
to the true Pareto front. This metric should be minimized.

Definition 2.5. Let A be a Pareto set approximation and P a set of
uniformly distributed points from the Pareto set. Let §(x,y) be the

1 An attentive reader may notice we have just defined a multi-objective optimization
problem of finding a good Pareto set approximation.
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Euclidean distance of points x and y in the objective space. The gen-
erational distance metric is defined as

GD(A,P) = \A[ xgqrynemé X, Y).

The main disadvantage of this metric is that it measures only the
convergence of the Pareto set approximation and it completely ig-
nores the spread of the solutions. If there are only a few points in
the Pareto set approximation, which are additionally close to some
points in P the generational distance may be quite low, regardless of
the fact that some of the parts of the Pareto set are not covered.

This problem is partially solved by the use of inverse generational
distance (Sato et al., 2004) which basically swaps the sets A and P in
the definition.

Definition 2.6. Let A be a Pareto set approximation and P a set of
uniformly distributed points from the Pareto set. Let é(x,y) be the
Euclidean distance of points x and y in the objective space. The inverse
generational distance metric is defined as

IGD(A, P) \P\ meé X, Y).

xeP yeA

In this case, if some points of the set P are not covered by the Pareto
set approximation, the approximation is penalized. However, using
only the information provided by the IGD metric it is not obvious,
whether a Pareto set optimization is worse than another one because
of worse spread or because of poor converge. Thus, both GD and
IGD are used at the same time in order to provide information both
on spread and convergence.

One of the most often used indicators is the hypervolume indicator
(also knows as the S-metric). The hypervolume indicator expresses
the hypervolume of the space dominated by a given Pareto set ap-
proximation (the space is bounded by a reference point from above).

Definition 2.7. Let A be a Pareto set approximation and r € O be a
reference point. The hypervolume indicator

H(A,T) :/Oﬂ{xGOHaGAujxjr}(z) dz

where 1y is the characteristic function of the set X.

The hypervolume indicator has some features which make it partic-
ularly popular in the literature. It is a unary operator, which makes
the comparisons of two sets easier than when binary operators are
used. It also expresses both the convergence and the spread of the
approximation set A. It is one of the few indicators which are Pareto
compliant (Zitzler, Brockhoff, et al., 2007), i.e. if a set A dominates set

9
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B, than H(A,r) > H(B,r). Thus, finding a set which maximizes the
hypervolume implies that the set contains only Pareto optimal points
and cannot be dominated by any other set.

An interesting feature of the hypervolume indicator was discovered
while the optimal p-distributions were studied (i.e. sets of y points
which have the optimal hypervolume). It turns out that the hypervol-
ume indicator is biased towards the points on the Pareto front whose
derivation is close to -1 (Auger, Bader, Brockhoff, and Zitzler, 2009).
Thus, the density of points in these areas of the Pareto front is higher
than in different areas. This may or may not be a good feature, de-
pending on the application. Generally, such points are considered
interesting, as they provide fair trade-off among the objectives. If
such a feature is not desired, weighted hypervolume may be used
(Zitzler, Brockhoff, et al., 2007). It is derived from the above defined
formula by adding a weighting multiplicative term w(z) inside the
integral. Such weighting can change the bias of the hypervolume in-
dicator taking into account the decision maker’s preferences. More
recently, the optimal p-distributions were also studied in the three-
objective case (Auger, Bader, and Brockhoff, 2010).

However, hypervolume indicator also has a serious disadvantage —
it cannot be computed effectively. In fact, its computation is known to
be #P-hard (Bringmann and Friedrich, 2010) and thus no polynomial
algorithm exists unless P = NP. The fastest algorithms for the com-
putation of hypervolume have the worst case complexity O(n™N/?)
(Yang and Ding, 2007), O(N" 2log N) (C. Fonseca et al., 2006), or
O(Nlog N + N"/2) (Beume, 2009) (in all cases n is the number of
objectives and N is the size of the set). To overcome this difficulty,
Monte Carlo sampling may be used to approximate the value of the
indicator for problems with higher numbers of objectives (Bader and
Zitzler, 2011).

An alternative approach to the use of indicators is the use of so
called empirical attainment functions (C. M. Fonseca and Fleming, 1996).
The attainment function for a set of Pareto approximation sets (i.e.
the results of several runs of the evolutionary algorithm) expresses
the probability that a given point in the objective space is dominated
by the resulting Pareto set approximation.

Definition 2.8. Let X;,...,X, € O be p Pareto set approximations.
The empirical attainment function « : O — [0, 1] is defined as

a(x) = a(X1,..., Xp,x) = ;ZI(Xl =< x),

where I(b) for a condition b is the indicator function

1(b) = 1 ifbistrue

0 otherwise.



2.2 BENCHMARK PROBLEMS

The empirical attainment functions are used mostly for visualiza-
tion of performance in the bi-objective case, although they can also
be used for a more detailed statistical analysis of the results (C. M.
Fonseca, Guerreiro, et al., 2011). In the case of visualization, the p%-
attainment surfaces are particularly interesting. The p% attainment
surface is the boundary between the part of the objective space which
are attained in more than p% of the runs of the optimizer and the rest
of the objective space. Thus, the attainment surfaces can be seen as
generalization of different percentiles to the multi-objective case.

2.2 BENCHMARK PROBLEMS

The need to compare various optimizers naturally leads to the need to
define benchmark problems. In the last decades, there were several
benchmark suites proposed and designed. Among the most well-
known and most often used is the ZDT benchmark set (Zitzler, Deb,
et al.,, 2000) (named after its authors, as is also the case with the
other benchmarks mentioned here). The set contains six bi-objective
problems which are scalable in the number of variables. ZDTs5 is
often ignored in comparisons, as it is defined for binary strings rather
than real vectors. Although the ZDT benchmark is now considered
rather simple, it is still used as the only benchmark in most of the
publications. The simplicity of the benchmark set comes from the
fact that most of the objectives are separable — which is a feature
some of the multi-objective optimizers are able to exploit. Moreover,
the Pareto optimal sets of the problems lay on the boundary of the
search space and the first objective of most of the functions (except
ZDT6) is linear.

Another (very related) benchmark suite is called IHR (Igel et al.,
2007). This test suite contains rotated variants of the ZDT problems.
The rotation makes the problems harder, as they are no longer sepa-
rable and also the Pareto optimal set does not lay on the boundary
of the search space. It was designed to show the advantages of algo-
rithms based on covariance matrix adaptation and differential evolu-
tion, which are invariant to the rotations of the search space (among
other properties).

DTLZ benchmark set (Deb, L. Thiele, et al., 2002) is one of two
benchmark suites which are scalable both in the number of variables
and the number of objectives. This makes it extremely useful for
the comparison of many-objective optimizers (with “many” meaning
more than 4 in this case). It is also sometimes used to show the
performance of multi-objective optimizers in the three-objective case.

Newer benchmark sets, like LZog (Li and Qingfu Zhang, 2009) and
WFG (Huband et al., 2006) aim at the creation of more complicated
problems. The LZog problems have complicated Pareto sets, while
the WFG toolkit was designed to provide functions, which have wide
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variety of properties — multi-modality, non-separability, deceptive-
ness. The functions also have dissimilar domains and do not have
Pareto optimal points on the boundary of the search space.

In this thesis, we use mostly the ZDT benchmark set. The many-
objective experiments are run on the DTLZ benchmark. Some of the
results were also validated on the IHR and WFG benchmark sets.



Part II

STATE OF THE ART

In this part, we first describe the motivation for multi-
objective optimization. Later, we formally define the prob-
lem of multi-objective optimization. The description of
some of the state-of-the-art multi-objective algorithms fol-
lows. Then, we describe the motivation for the use of
surrogate models and also provide some insights to the
current state of the art in this field.






MODELS

This chapter contains the description of the modeling techniques, we
have used during the research of surrogate-based multi-objective op-
timization. We use these models mostly as black boxes, which after
being presented with a training set, create its model. Therefore, we
describe most of these models only briefly, with the emphasis on the
structure of the model and its training. We pay more attention only
to the support vector machines, which are in different versions used
by some of the competing surrogate-based evolutionary algorithms.

3.1 LINEAR REGRESSION

Linear Regression (LR) Draper et al. (1966) is one the simplest and
oldest regression models. It assumes linear dependence between the
input variables and the output variable. For training set

T ={(x;,yi),xi € R",y; € R},

the goal is to find a linear function f(x) = (w, x) + b such, that the
sum of the squared residual errors YN, (y; — f(x;))? is minimized.
The bias b is often removed by adding a 1 in front each of the input
vectors x; (thus, a vector (x;1,...,x;,) becomes (1,x;,...,xi,). We
will denote the added 1 as xjp and b will be denoted as wy. Using this
trick, the function f(x) becomes f(x) = (w,x) = Y ; w;x;.

The input vectors x; are often written in a form of matrix

1 X11 X12 ... Xin

1 X21 X222 ... Xop
X =

1 XN1 XN2 ... XNn

the parameters w; as a column vector w = (wy, wy, .. .,wn)T. And
the outputs as a column vector y = (y1,...,y,) . Thus, the problem
becomes to minimize the value of E(w) = (y — Xw) ' (y — Xw) =
):jlil (y; — Lo wixij)? . To find the minimum, one takes the derivative
of the error function and sets it equal to zero. Thus

OFE N n
=—2) (yj— ) wixji)xic =0,
i=0

awk =1

which in turn leads to the system of equations
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Figure 3.1: The maximum margin classifier, which separates the red and
green crosses. The solid line represents the separating hyper-
plane, the two dashed lines represent the margin. The crosses,
which lay on the dashed lines are the support vectors and com-
pletely define the separating hyperplane.

N
j=1

n N
Y wixjixe = ) YiXje
i=0 =1

for each k.
The system of equations can be expressed in the matrix form as

X" Xw=X"y,
which leads to the expression for the vector of weights w
w=(X"X)"'XTy.

An important observation regarding linear regression is that the
features model is linear in the weights w. However, the features x do not need
to be linear. Therefore, the vectors x can be mapped into a feature
space before the regression is made and the approach described above
can thus be generalized to non-linear regression.

3.2 SUPPORT VECTOR MACHINES

Support Vector Machines (sVM) (Cortes and Vapnik, 1995) were orig-
inally created to deal with the problem of binary classification. In
this section the maximum margin classifier is first derived in detail and
later, the kernel trick is presented which allows for the classification of
linearly non-separable data.



3.2 SUPPORT VECTOR MACHINES

Given the finite training set
T = {(xi,yi)|xi € IRn,yi € {—1,1}}

the goal of the maximum margin classifier is to find a separating
hyperplane (w, x) + b such that

(w,xi)+b>1  y; =1
(w,x)) +b< -1  y;=-1

These two constraints can be equivalently rewritten as a single con-
straint y;((w, x;) +b) —1 > 0.
Moreover, the margin (i.e. the distance to the closest point on either
sides of the separating hyperplane) should be maximized. The mar-
1

gin equals to ol Maximization of this quantity is equivalent to min-

imization of %||w|?>. Thus the problem of finding the normal vector
of the separating hyperplane can be formulated as an optimization
problem
. 1, 1
T gl

subjectto  y;((w,x;) +b) —1>0.

In order to solve its problem, its Lagrangian dual form is con-
structed. The Lagrangian of the problem is

N
Lw,byp) = gl = L el %) +) 1),
i=
where y; are the Lagrange multipliers. The objective function of the
dual problem is obtained by minimization of the Lagrangian with
respect to w and b.
To this end, we use the Karush-Kuhn-Tucker conditions (Karush,
1939; Kuhn and Tucker, 1951) which imply that for the optimal vector
of the parameters (w*,b*) and for y; > 0

N
VL=V (1) - L G (') + ) 1) =0

Thus,

oL N

_— = w- Wiyix; = 0
aw ; g1

oL N

- = —)_mnyi=90,

ob ;

which implies
N
wt =) WYX
i=1

N
Y myi = 0
i=1
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and after substituting back to the Lagrangian, we get the objective
function of the dual optimization problem

1 N N
O(u) = —5 Y minjyiyi(xi, xp) + Y pi

ij=1 i=1

It can be further simplified by defining the matrix H;; = y;y;(x; x;),
which yields the following formulation of the dual problem:

N 1 -
max Zyi—iy Hpy
¥ i=1

subjectto  u; >0
N
Z Hiyi = 0.
i=1

This is a quadratic optimization problem and can be solved by the
means of quadratic programming. A popular choice is the Sequential
Minimal Optimization algorithm (Platt, 1998), which is specifically
designed to deal with the kind of optimization problems which arises
during the training of SVMs.

It remains to set the value of b which is not set by the optimization
problem defined above as it was completely eliminated during the
dual construction. To this end, we take one of the conditions for
which the respective y; # 0 (these are the so called active conditions,
and these also define the support vectors — the vectors closest to the
separating hyperplane). For this condition, it holds that y;((w, x;) +
b) =1, and thus the b can be expressed as

b= Yi— (w,xi>.

An alternative approach is to set the b as the average of the above
expression over all the support vectors.

The main disadvantage of the maximum margin classifier is that
it only works for linearly separable data. If the data are not linearly
separable, there is no feasible solution to the problem. To overcome
this difficulty, slack variables ¢; > 0 are used to relax the conditions
and express how much the conditions are violated. Of course, the
violation is also minimized. This leads to the so called soft margin
classifier .

Thus, the primal optimization problem becomes

. 1o,
—lw C .
min ol + ;C

subjectto  y;({w,x;) +b) —14 ¢ > 0.

and the corresponding dual optimization problem (derived by similar
steps as for the maximum margin classifier) is then
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- 1 TH
max Zyz SH Hp
i=1

H
subject to 0<u; <C
N
2 Hiyi = 0.
i=1

Note that the slack variables disappear in the dual form, and only
the parameter C remains as an additional constraint of the Lagrange
multipliers. The bias b is computed in the same way as for the maxi-
mum margin classifier.

Although the soft margin classifier works for linearly non-separable
data, it is still only a linear classifier, and in lots of cases linear classifi-
cation is too simple to grasp the complexity of the data. This problem
may be solved by mapping the input space to a higher dimensional
feature space through a mapping ¢(x) : R" — R™, for some m > n,
in which the original data would be linearly separable. Then, the
maximum margin classifier may be used in the feature space. The
disadvantage of this approach is the increased computational com-
plexity which comes from the increased dimension.

In order to overcome this complexity, the so called kernel trick is
used. A kernel is a positive semi-definite function k(x,y) : R" x
R" — R, such that k(x,y) = (¢(x), $(y)). Thus, the kernel computes
the inner product of the two vectors in the feature space using only
its values in the input space. In practice, the mapping ¢ does not have
to be specified explicitly, and only the kernel is needed in order to be
able to use the support vector machine. Note that the dual optimiza-
tion problem for the maximum margin classifier depends only on the
inner products of the vectors in the training set. Thus, the model may
be generalized for non-linear classification by just replacing the dot
products in the matrix H by a suitable kernel.

One of the popular choices for the kernel is the so called polyno-
mial kernel k(x,y) = ({x,y) +b)?, where d is a positive integer. For
example, for d = 2 and an n-dimensional input vector x, this kernel
computes the dot products in a (”;2)—dimensional feature space given
by the (implicitly defined) mapping

B((x1, %)) =
<x%, ..., xfl, V2x1%0, V2x1%3, -+ .V 2% 120, V20X1, . .,V 20X, c).

Another popular choice of the kernel is the so called Gaussian radial
basis function
k(x/ y) — e*’Y”x*sz‘

This kernel maps the vectors into an infinite dimensional Hilbert
space.
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Although originally developed for classification, variants of sup-
port vector machines have been developed to deal with regression
(Drucker et al.,, 1996). The ideas used in Support Vector Regres-
sion (SVR) are similar to those for classification. The goal is to find
a linear model of the data which for each instance would have er-
ror less then €. Again, slack variables are added to deal with data
which cannot be approximated with such a precision. In this case,
the variables are ¢; and & for lower and upper bound respectively.
The primal form of the optimization problem is

1 ’ N
min —llwl|®?+C - | ot
Wy 5 llwll ;(gl &

subjectto  (w,x;) +b—y;i < e+
yi—(w,x;) +b<e+g’
;.6 =0

Using again similar steps as above, we get the dual optimization prob-
lem

Z

N
max ) yi(p — ) —eY (i —p)
woH i=1 i=1
1

—5 (" =W )K(p —p
subjectto 0 <y, u; <C

)

M=

(ni =u) =0,

i=1
where the matrix Kj; = (x;, x;) is the matrix of dot products between
the pairs of input vectors.

The dual problem is again a quadratic optimization problem and
can be solved by quadratic optimization techniques. Note, that the
dual problem is again expressed only using the inner products of the
input vectors, and thus the kernel trick may be used to extend the
ideas of support vector regression to non-linear regression. It suffices
to redefine the matrix K as Kj; = k(x;x;).

3.3 MULTILAYER PERCEPTRON NETWORKS

Multilayer perceptron (MLP) networks (Haykin, 1999) are among the
most popular types of artificial neural networks (ANN). An MLP con-
sists of several layers of units — the input layer, the output layer and
one or more hidden layers.

The task of the input layer is to feed the inputs to the first hidden
layer. Thus, the units in the input layer perform an identity function
and are connected to all the units in the first hidden layer.



3.3 MULTILAYER PERCEPTRON NETWORKS

In the hidden layer, each of the units makes a weighted sum of its
inputs, and transforms the result through an activation function f with
a bias b. Thus, the function performed by the unit is f (b + (w, x)),
where 7 is the number of units in the previous (hidden or input) layer
and w are the weights of these inputs. Similarly to the approach used
in linear regression, the bias is often removed by adding and constant
input xo = 1 to all the layer in the network. This simplifies the func-
tion performed by each of the units to f ((w, x)). Most commonly, the
activation function in the hidden layer is a sigmoid function, usually,
the logistic sigmoid

1
f(x) = 1_ o

The outputs of each unit in the hidden layer are fed to the inputs
of the units in the next layer — either hidden or output.

The units in the output layer work similarly to the units in the
hidden layer. The only difference is that they often use a linear activa-
tion function instead of the sigmoid function, especially if the neural
network is used for regression.

The weights of the MLP are traditionally adapted using the back-
propagation algorithm'. Is is a gradient descend algorithm, thus it
changes the weights of the network by subtracting a quantity propor-
tional to the derivation of the error function by the particular weight.
Thus, the weight after k + 1 iterations of the algorithm is
k+1 _ ko OE

=uw —a—

@ owk’

for each weight in the MLP network, where wk denotes the value of
the weight w after k iterations of the back-propagation algorithm.

Usually, the error function E, is the mean squared error, the same
as was optimized in the case of linear regression. However, in the
case of MLP, the network can have more than one output. Thus, the
function for a single vector v from the training set becomes E, =
%2;7:1 (y; — y]’-*)z, where y; is the actual output of the network and
yj is the desired output of the network. The error for the whole
training set is then the sum over all vectors in the training set. In
some cases additional terms are added to the function, especially if
regularization of the neural network is performed.

Let us compute the partial derivation of the error function E, ac-
cording to the weights between the last hidden layer and the output
layer. Let w;; denote the weight between the i-th neuron of the last
hidden layer and the j-th neuron of the output layer, and x; the output
of the i-th neuron in the last hidden layer. Let ¢; = Y, wijx;, where
is the number of neurons in the last hidden layer, be the excitation of
the j-th neuron in the output layer. The output of the network is then

Nowadays, more advanced gradient algorithms are often used, e.g. the Levenberg-
Marquardt algorithm (Levenberg, 1944; Marquardt, 1963).
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y; = f(¢;), The partial derivation of the error E, according to weight
ZUZ']' is

OF, _ 9E,0y; 9G; _ i)
= 3y 9E dw, — WYX
dw;j  9dy; I¢; dwj; a¢;

Where the last term is the derivation of the activation function and
is equal to 1 for the identity activation function, and to Ay;(1 —y;) for
the logistic sigmoid function.

For reason which will become apparent soon, we define ¢; as the

partial derivative
JE,
0; = .
] agj

For the adaptation of the weight between hidden layers (or input
and hidden layer), the situation is a bit more complicated. We will
derive the adaptation rule for the weights between the two last hid-
den layers and show that the ideas are also valid for the adaptation of
weights between any two hidden layers. In the following, we will use
the indexk to denote the neurons in the output layer, index j to denote
the neurons in the last hidden layer and index i to denote the neurons
in the layer before the last hidden layer. The inputs of the neurons
will be denoted as x, xj, and x; respectively. The excitations of the
neurons as ¢ with the respective index and the activations functions
as f with the respective index. With this definitions, the last two layer
of the network perform the function yx = fi (¥, wixfj(L wijx;)). The
error of the network is still defined in the same way as before. Thus
Ey = Y (yx — yi*)?. The partial derivative

OE, _ | 0Ey 9k | 9fi(5)) 98 Z afj(éj)
dw; |40 oy; | o0& ow; KO I g

The same simplification of the last partial derivative for the special
case of f; being linear or logistic sigmoid still hold. We used the
definition of §; we made earlier. At this point it shall be noted, that
the above idea does not depend on the fact that k is the output layer,
the important trick is to use the previously known partial derivative
Ok. It remains to define the partial derivative also for the hidden
layers:

0
j = ?fv fé Y dw
Gj Gj
When combined together, we get the well-known adaptation rules for
the back-propagation algorithm. For all the weights in the network

k+1 _ 0k
w;; wij — adjy;.

3.4 RADIAL BASIS FUNCTION NETWORKS

Radial basis function (RBF) networks (Haykin, 1999) are another type
of artificial neural networks. They usually have one input layer, one
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hidden layer, and one output layer. The purpose of the input layer is
again to feed the inputs to the hidden layer.

The hidden layer in this case computes a so called radial basis func-
tion. The values of such a function depend only on the distance of
given input from the center of the function ¢;. The Gaussian kernel
described in the section on support vector machines (Section 3.2) is a
popular choice of the radial basis function.

The output layer then computes a linear combination of the outputs
of the hidden layer in the hidden layer in case of regression, and
moreover applies a sigmoid function in case of classification (where
the outputs of the network should be between o and 1).

Overall, the function performed by the network is

N
F(x) = ;wz‘%(ﬂcz‘ —xill),

where N is the number of units in the hidden layer, ¢; is the radial
basis function of the i-th hidden unit, ¢; is the center of the function
and w; are weights between the hidden and output units.

The training of RBF networks is performed in two steps — first the
centers of the radial basis functions are set, (either by clustering al-
gorithm, or they randomly chosen among the vectors in the training
set), and later, the weights between the hidden and output layers are
set. In the case of linear activation function in the output layer, this
corresponds to the problem of linear regression described earlier. In
other cases, the weights are often set using a gradient based algo-
rithm. Specifically, if the activation function is a logistic sigmoid, the
problem of training the weights correspond to the problem of logistic
regression.

3.5 GAUSSIAN PROCESS REGRESSION

Gaussian process regression GPR (Rasmussen and Williams, 2005) is
based on the assumption that the observed values are realizations of a
Gaussian process. A Gaussian process is a generalization of Gaussian
distribution to functions.

Definition 3.1. Gaussian process is a collection of random variables
such that each finite set of them has a multivariate Gaussian distribu-
tion.

Each Gaussian process is completely defined by its mean m(x, 6,,)
and covariance k(x, x’, 6;), where 6,,, and 6y are the hyper-parameters
of mean and covariance respectively. Let X be the training data
points and f their corresponding observed values. Let X,, and f.
be the same for testing data. Let us also define (for the sake of
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simplicity) u = m(X,0,), L = k(X,X,0), L. = k(X,X,,6), and
Ys = k(Xs, X, 6¢). Then, the prior distribution of

s 2D

We are mostly interested in the conditional distribution of the val-
ues of test data given the values of the training data. It can be ex-
pressed as

7

The fact that Gaussian process regression provides the whole prob-
abilistic distribution as the result of prediction is sometimes used to
predict the expected improvement of a given point in the search space.
The variance of the model can also be used to describe areas of the
search space where the model is not trained well and where a new
evaluated point may help to improve the quality of the model.

The training of Gaussian processes aims at the setting of the hyper-
parameters 6, and 0. To this end, the log-likelihood of the training
values is maximized. It is expressed as

1 1 _ n
log p(y|X, 6, 6) = —3 log |Z| — 5 (f = W=7 (f = p) — 5 log(270).

The hyper-parameters are hidden in the expressions y and ¥ as we
have defined them above. The maximization of the log-likelihood is
usually performed by a gradient algorithm, however different opti-
mization techniques can also be used, e.g. Qingfu Zhang, Liu, et al.
(2010) use differential evolution to tune the parameters.
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In this chapter, the most notable and state-of-the-art multi-objective
evolutionary algorithms are reviewed. The list is definitely incom-
plete, and the interested reader is referred to (Zitzler, 1999) for an
overview of the algorithms created in the 1990s, and to (Zhou et al.,
2011) for a more recent survey of the state of the art in this rapidly
evolving field. The presented algorithms were selected to provide an
overview of the state of the art in the multi-objective optimization
field, and to present the most interesting and/or promising ideas.
The algorithms are described in their basic versions and their im-
provements are described at the end of the description of each of
the algorithms. We deliberately ignore surrogate versions of the al-
gorithms in this chapter, as the whole next chapter is dedicated to
surrogate-based evolutionary multi-objective optimization.

4.1 EVOLUTIONARY ALGORITHMS

Before we explain how some of the multi-objective evolutionary al-
gorithms work, let us present what a single-objective evolutionary
algorithm is and how it works.

Evolutionary algorithms (EA) (Michalewicz, 1996) are an optimiza-
tion technique inspired by the Darwinian evolution. They operate on
a population (set) of individuals (vectors). Each individual encodes a
solution of a given optimization problem. In the beginning, the ini-
tial population is randomly generated. Then, the algorithm runs in
several iterations, called generations. In each iteration, the current pop-
ulation (parents) of individuals undergoes mating selection and genetic
operators (crossover and mutation) are applied to those individuals that
are selected. Both crossover and mutation generate new individuals
(offspring). After new individuals are generated, they are all evalu-
ated using a fitness function, which expresses their quality. Finally, at
the end of each generation, environmental selection is performed. This
selection decides which of the offspring and parents survive to the
next generation and constitute the new set of parents. The algorithm
ends, if a termination condition is met.

Let us now describe the various aspects of evolutionary algorithms
in more detail. In continuous evolutionary optimization, the individ-
ual is usually a vector of real numbers, however, it may also contain
other information (see for example Section 4.5 on multi-objective co-
variance matrix evolution strategy).
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The crossover and mutation are randomized operations on the in-
dividuals. Crossover takes two individuals and create a new indi-
vidual based on them. Among the most common crossover opera-
tors are one-point crossover and arithmetic crossover. The one-point
crossover randomly selects a position in the individual and swaps the
parts of the two parents after this position. The arithmetic crossover,
on the other hand, generates a weight (random number between o
and 1) and produces a weighted sum of the parents.

The mutation operator takes only one individual as the input and
usually adds random number to some of the positions in the individ-
ual. This number is often drawn from the Gaussian distribution with
a suitable standard deviation and zero mean. Another option is to
generate some of the positions completely randomly, without taking
into account their current values.

In evolution strategies (Beyer and Schwefel, 2002), the generation
of new individuals is slightly different. Evolution strategies adapt the
parameters of a normal distribution (mean and covariance) and new
individuals are drawn randomly from this distribution. For more
details and an example, see again the Section 4.5 on multi-objective
covariance matrix adaptation evolution strategy).

The mating selection selects the individuals which undergo the
crossover operator. The original idea was that better individuals
should have higher probability of being selected for crossover in or-
der to provide offspring with better quality. To this end various se-
lection operators were designed. Among the most popular one is
the original roulette wheel selector, which selects individuals with
probability proportional to their fitness, and the binary tournament
selector, which draws two individuals from the population randomly
and selects with high probability the one with better fitness.

The environmental selection, on the other hand decides which of
the individuals survive to the next generation. The basic idea is the
same as with the mating selection, i.e. better individuals should sur-
vive with higher probability. Both roulette wheel selection and tour-
nament selection can again be used here. One of the important con-
sideration is, whether the environmental selection selects only among
the new offspring, or also among parents. Also, it is often useful for
few of the best individuals to always survive, therefore, so called
elitism often constitutes part of the environmental selection. In this
case, often the best individuals among parents are selected first and
only the rest of the population is filled using some random selection
operator.

4.2 VECTOR EVALUATED GENETIC ALGORITHM

The Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) is
one of the first attempts to use an evolutionary algorithm to solve
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the problem of multi-objective optimization. As such, it has gained a
lot of attention and was widely used for comparison with new algo-
rithms developed in the 1990s. However, nowadays, it is mostly in-
teresting from the historical point of view, as the modern algorithms
have much better performance.

The main idea of the algorithm is to use each of the objectives to
select a proportional part of the population. If there are n objectives
and the size of the population is u, p/n best individuals according
to each of the objectives are selected for the next generation. This
selection should ensure that trade-off solutions are found, however,
very often the algorithm converges to the optima of the individual
objectives after several generations. Although there usually are some
trade-off solutions during the run of the algorithms, these are usually
not preserved in the population for very long. This is also the main
disadvantage of the algorithm — it does not provide a good spread of
solutions on the Pareto front.

4.3 NON-DOMINATED SORTING GENETIC ALGORITHM II

The second version of Non-dominated Sorting Genetic Algorithm
(NSGA-1I) (Deb, Pratap, et al., 2002) is among the most popular and
most often used algorithms. Compared to the first version (Srinivas
and Deb, 1994), the second version contains a faster non-dominated
sorting procedure and removes one niching parameter and replaces
it with the crowding distance concept, and most importantly, it adds
elitism to the evolutionary algorithm.

The basic idea of NSGA-II is to use the dominance relation in the
environmental selection. To this end, each individual in population
is assigned a non-dominated rank . The rank is computed as follows:

1. Letr = 1.

2. Select the non-dominated individuals in the current population
and assign them rank r.

3. r=r+1

4. Remove temporarily the non-dominated individuals from the
population.

5. Iterate until the whole population is ranked.

To ensure elitism (i.e. the fact that the best found solutions are not
lost during the selection), NSGA-1I first merges the parent and children
population and the ranks are assigned based on the merged popula-
tion.

After the rank assignment, the individuals with lower rank domi-
nate the individuals with higher ranks (in the sense of set dominance).
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Thus, individuals with lower rank are considered better than individ-
uals with higher rank and are selected first. The selection proceeds
by the numbers of the ranks and adds whole ranks to the population
as long as the added rank fits. When the number of individuals of a
given rank is larger than the number of free slots in the population
a secondary criterion us used to select the individuals with next best
rank.

The secondary sorting criterion is traditionally the so called crowd-
ing distance. The crowding distance CD(I) of an individual I is com-
puted using the following algorithm:

1. For each objective function f;

a) S = sort the population according to f; in the descending
order

b) CD(S[0]) = o0

c) CD(S[n]) = o0

d) Forj=1ton—1

i. CD(8]j]) = CD(S[j]) + LELAR-LED.

The crowding distances expresses how far from the neighboring so-
lutions a given individual is. Individuals with higher crowding dis-
tance are selected first to encourage the diversity of the population.
The individuals which are the best or the worst in a given objective
have the highest crowding distance and are therefore always selected
before any trade-off individuals are selected.

Another important feature of NSGA-II are the operators which are
used. The usual crossover operator is the so called simulated binary
crossover (SBX) (Deb and Agrawal, 1994). This operator performs
arithmetic crossover (i.e. it makes a weighted average of two parents),
but the weights are selected in such a way that the change in the
values of the variables is similar to the change of variables when
one-point crossover on binary encoded strings is used. Basically, it
means that the variables of the offspring have higher probability to be
closer to one of the parents than if the weights are selected uniformly.
The mutation operator — called Polynomial Mutation (Deb and Goyal,
1996) — uses a similar idea. The relative changes in the values of the
variables should be similar to those of a bit-flip mutation on binary
strings.

It shall be noted that the operators change the individual in direc-
tions parallel with the axis of the decision space. This works well for
lots of the test problems, which are in fact separable (and thus the
functions can be optimized one variable at a time), however, it is not
invariant with respect to the rotation of the search space, and may
cause problems with non-separable functions. In fact, such behavior
is easily observed e.g. on the IHR benchmark set (Igel et al., 2007).
Also the operators are not invariant with respect to the scaling of the
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decision space. Although these features may cause problems when
NSGA-II is used to solve practical tasks, the algorithm is still one of
the most often used ones in applications.

Another problem of NSGA-II comes from the use of crowding dis-
tance as the secondary selection criterion. The problem is that for
higher number of objectives most of the individuals in the popula-
tion are mutually non-dominated, and thus the secondary selection
criterion effectively becomes the only selection criterion and the al-
gorithm looses the selection pressure towards the Pareto optimal set
and only the pressure for diversity remains (Ishibuchi, Tsukamoto, et
al., 2008). Similar problem in a lesser extent can be observed even for
lower numbers of objectives in the later phases of the evolution when
the algorithm almost converges. In this case the population is also
usually full of non-dominated individuals. The problem can be re-
duced by using a different secondary criteria — e.g. the hypervolume
contribution (Emmerich, Beume, et al., 2005).

4.4 INDICATOR-BASED EVOLUTIONARY ALGORITHM

Indicator-Based Evolutionary Algorithm (IBEA) (Zitzler and Kiinzli,
2004) shows that performance indicators can be used directly in the
fitness assignment inside the multi-objective evolutionary algorithms.
The use of indicators, which in a sense generalize the dominance
relation, also leads to better performance on problems with more ob-
jectives.

In the case of IBEA, two different binary indicators are used, the
additive e indicator or the hypervolume indicator.

Definition 4.1. Let A, B be two Pareto set approximations. The binary
additive e, indicator is defined as

I+ (A,B) = mineerA +€ < B,

where the A + € is the Pareto set approximation obtained from A by
adding € to the values of all objectives for all of the individuals in the
set.

The binary hypervolume indicator is defined as

Inp(A,B) = H(A,r) — H(B,r)
for a given reference point r.

We can notice in both cases that the value of the indicator is nega-
tive when A < B, and is positive in the opposite case. In these two
cases it also holds that I(A,B) = —I(B, A). In the case the two sets
are mutually non-dominated both the values I(A, B) and I(B, A) are
greater than zero.

In IBEA the indicators are used to define the fitness values of an
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individual F(i) as

F(i) = Z e UBAD),
jeP\{i}

where i and j denote two different individuals from the current pop-
ulation P. The reason for the exponential is to enlarge the differences
between dominated and non-dominated individuals, and « is a nor-
malization coefficient. The authors recommend to scale the values of
the indicators to the interval [—1,1] and use k¥ = 1.

The environmental selection in IBEA always removes the worst indi-
vidual from the population and updates the fitness of all the remain-
ing individuals

F(i) = F(i) — e I {ibih),

where i* is the removed individual.

The original version of IBEA uses the same operators as the NSGA-II
algorithm and thus inherits its problems with non-separable func-
tions. On the other hand, the use of indicators means that IBEA does
not need any secondary sorting criterion, and the search is guided
completely by the values of indicators. Another advantage of this
approach is that the indicators can incorporate the decision maker’s
preferences to the search and and guide the algorithm towards inter-
esting parts of the Pareto front.

4.5 MULTI-OBJECTIVE CMA-ES

Another popular algorithm, Multi-objective Covariance Matrix Adap-
tation Evolution Strategy (MO-CMA-ES) (Igel et al., 2007), is based on
the idea of running multiple instances of Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001) at
once. The main advantage this brings is that the algorithm is invari-
ant to rotations of the search space, as well as to different scaling.
This significantly improves the performance of the algorithm in the
case of non-separable objectives.

To describe the MO-CMA-ES we have to start with the description of
the single-objective (1 + A)-CMA-ES. The basic idea of CMA-ES is to
learn the right coordinate system for a given problem. To this end,
the algorithm adapts a covariance matrix, which is used to generate
new individuals. Once a new individual is generated, it is checked
against its parent, and in case it is better, the covariance matrix is
updated in such a way to further encourage the generation of new
individuals in the same direction. CMA-ES also adapts the size of
the steps it performs in such a way that the step size is increased,
if the probability of improving steps increases and decreases if the
probability of good steps decreases.

More formally,(1 4+ A)-CMA-ES is defined by the covariance matrix
C, the evolution path p., and the step size ¢. Moreover, it also com-
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putes the probability of a successful step p; (i.e. probability that the
newly generated individual is better than the parent) which is used
during the step-size update. The covariance matrix is used to gener-
ate new individuals while taking care of different scales of different
variables and various rotations of the decision space. The evolution
path records the directions of last successful steps and is used to in-
crease the covariance in this direction, and the step size controls, how
far from the parent the individuals will be generated. It is also used
the control the probability of successful step.

The algorithm uses only one parent x and in each step generates A
new offspring by sampling the random distribution NV(x, c?C). After
the offspring are generated, the step size is updated, as well as the
probability of successful step ps. The update rule for the probability
ps is in fact exponential smoothing of this value over the generations
of the algorithm

ps = (1—cp)ps + Cp/\s;cc/
where Ag,ec is the number of offspring which have better objective
value than their parent and ¢, is the smoothing coefficient.

The update of the step size o is based on the well known 1 rule
(Schumer and Steiglitz, 1968). Its goal is to make the probability of
success close to a pre-defined value piarger. In each step, the step size
is adapted as

1 ps - ptarget>

d 1— Ptarget ’

where the parameter d controls the speed of the step size adaptation.
The last step of the algorithm is the update of the evolution path

pc and the covariance matrix C. The update of the evolution path is

again a smoothing of the last steps of the algorithm.

0—X
Pc = (1_Cc)Pc+\/Cc(2_Cc) o’

where o is the vector of the best offspring, and x is the vector of
the parent; c. is again a smoothing parameter and the expression

cc(2 — ¢) normalizes the variance of p.. The evolution path is fi-
nally used to update the covariance matrix C.

a:aexp<

C = (1 —ccon)C + Ceovpepl,

where (again) cqp is a smoothing parameter and p.p! is the outer
product of p. and p{.

In case the probability of successful step is large, the update of the
evolution path is stalled (the second term in the sum is missing) to
avoid too fast increase of the vector. The adaptation of the covariance
matrix C is changed accordingly to account for the stalled update of
the evolution path.

Now, we can finally explain the MO-CMA-ES. The version we de-
scribe here is more specifically Ayo X (1 + 1)-MO-CMA-ES. The name
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implies that the algorithm uses Ayjo individuals, each of which repre-
sents all the parameters of a single (1 + 1)-CMA-ES (thus, each individ-
ual i is a vector [x/, pi, pi, ¢!, Ci]). In each generation, each of the Ayo
parents generates one new individual. If the generated individual
dominates the parent, or they are mutually non-dominated and the
generated one is better according to the secondary criterion, the pa-
rameters of the individual are adapted in the same way we described
above for the CMA-ES. At the end of each generation, non-dominated
sorting, and either crowding distance, or hypervolume contribution
is used to select the individuals which survive to the next generation,
similarly to the way environmental selection is performed in NSGA-II.

More recently (Voss et al., 2009), the original MO-CMA-ES was im-
proved. In this version of (Avo + AMo)-MO-CMA-ES, each individual
does not only affect the covariance matrix of his own and his par-
ent, but also the covariance matrices of neighboring individuals (the
neighborhood is defined by closeness in the decision space). This
leads to a faster convergence, as the information obtained during the
search is shared among the individuals. Also, strategies for the selec-
tion of parents were studied (Loshchilov et al., 2011) with the goal to
improve the diversity in the population. The parents were selected
based on the multi-armed bandit scenario in order to balance the ex-
ploration and exploitation of the algorithm and prevent premature
convergence.

46 MOEA BASED ON DECOMPOSITION

A different approach is used in the Multi-objective Evolutionary Al-
gorithm Based on Decomposition (MOEA/D) (Qingfu Zhang and Li,
2007). The algorithm decomposes the multi-objective problem into
a series of single-objective problems. The type of decomposition is
not important from the point of view of the algorithm, in fact, three
different decomposition strategies are studied in the original paper
on MOEA/D - weighted objectives, Tchebychev approach, and nor-
mal boundary approach (all known in the classical multi-objective
optimization field (Miettinen, 1999)). All of the decomposition strate-
gies lead to a weighted sum of the objectives, and each setting of
weights corresponds to a decomposed problem. Each of the decom-
posed problems are represented by a single individual in the algo-
rithms.

All the decomposed problems are solved in one run, a neighbor-
hood for each problem is defined based on the Euclidean distance
of the weights — the closest weights define the neighborhood. The
genetic operations are performed only on individuals from the same
neighborhood. The motivation for this is that the decomposition is
continuous in the weights, and thus solutions of one decomposition
can benefit from the information obtained for similar decompositions.
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In each generation, two individuals from each neighborhood are se-
lected and the genetic operators are applied to them to create a new
individual. This individual is then improved by a problem-specific
heuristic. Finally, the individual is evaluated, and compared to the
individuals in its neighborhood. All individuals in the neighborhood
which are worse than the new individual are replaced by the new
one.

The algorithm uses the simulated binary crossover and polynomial
mutation we have already discussed in the part on NSGA-1I. This again
means that the algorithm is not invariant with respect to most trans-
formations of the decision space. Moreover, the decomposition ap-
proach affects the spread of the solutions on the Pareto front — the
problem is that even spread of weights does not imply even spread
of solutions in case the range of one of the functions is significantly
different. The authors partially solve this problem by the scaling of
the objectives into the same range.

Additionally, the authors claim that the computational complexity
of MOEA /D is lower than the one of NSGA-II and that the obtained so-
lutions have similar or better quality than those found by the NSGA-IL.

Later (Sindhya et al., 2011), the algorithm was improved by the
change of the operators to ones which use the ideas from differen-
tial evolution, thus providing some invariance with respect to trans-
formations of the search space. MOEA/D was also used in a many-
objective setting (Ishibuchi, Sakane, et al., 2009), and better decompo-
sition strategies were proposed (Qingfu Zhang, Li, et al., 2010).
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SURROGATE-BASED EVOLUTIONARY
MULTI-OBJECTIVE OPTIMIZATION

The idea of surrogate modeling is quite new in the area of multi-
objective evolutionary algorithms. In this chapter, we first describe
the possibilities, how surrogate models can be used to enhance the
performance of multi-objective optimizers, and than we describe some
of the approaches that can be found in the literature. We pay more
attention to those, which affect our work.

Generally, there are at least two ways how to augment an evolu-
tionary algorithm with surrogate models: one is a local-search op-
erator based on the surrogate model, the other is surrogate-based
pre-selection. The two approaches differ in the way the information
provided by the model is exploited.

In the pre-selection scenario, the model is used to pre-screen indi-
viduals in the population. The individuals which seem to be promis-
ing according to the model are evaluated by the real objective func-
tion. Being promising may mean a few different things: an individ-
ual may be promising, because it is predicted to have a good value
of the real objective. However, an individual may also be promising,
because knowing his value would improve the quality of the model.
The latter case is sometimes used in cases, where the model not only
predicts the value, but it is additionally able to predict its own error
for a given input. This is for example the case of Gaussian process
regression, which can predict the variance of the model in each point,
and points with high variance indicate areas with poor quality of the
model (or not yet visited areas, which may be interesting to explore).

In the local search case, the model is used to create new individuals
directly — the model is trained and then a local search algorithm is
executed to find the optima of the model. This optima is later added
to the population as a new individual. Under the assumption that
the model is at least partially correct, the new individual should be
better than the individuals in the population, or at least interesting.
Of course, the quality of the model is what affects the outcome the
most. A special case of local search may the generational approach
to surrogate modeling. In this case the model is trained and is then
used instead of the real objective function for a number of generations.
These generations can also be (equivalently) described as the run of a
local search algorithm which seeks the optima of the surrogate model.
In this case, the local search algorithm is the same as the external
algorithm.

The performance of the surrogate assisted evolutionary algorithm
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is largely affected by the quality of the model, and by the amount of
exploitation. Loshchilov et al. (2012) argue that the exploitation of
the model should be inversely proportional to the error of the model,
i.e. model with small error may be exploited longer than model with
larger error. One can of course re-train the model in each generation,
however, this requires the evaluation of new individuals, which may
be expensive, and also the training of the model may be rather slow.

The overhead caused by the modeling may be quite large in some
cases, however, it is mostly assumed negligible. The assumption in
this case is that the evaluation of the objective function is expensive
(say, in the order of minutes, or even hours), and thus the time re-
quired to evaluate the objective constitutes major part of the run time
of the algorithm. In this sense, almost any overhead can be justified,
as long as it leads to the reduction in the number of evaluations of
the real objective function. Obviously, algorithms with higher over-
head are not suited for solving problems with faster objectives. Of-
ten, there is a trade-off between the overhead (i.e. the time required
to build and exploit the model), and the reduction in the number of
function evaluations.

5.1 NSGA-II WITH SURROGATE MODELS

Voutchkov and Keane (2006) described one of the first uses of surro-
gate modeling in multi-objective optimization. They use NSGA-II and
create a surrogate for each of the objectives separately. First, some
points are generated in the search space and evaluated by the real ob-
jective function. These form an archive of evaluated individuals and
are used for the training of surrogate models. After the surrogates
are trained, NSGA-II is started and optimizes the surrogate models in-
stead of the real objectives. After this evolution finishes, some evenly
spaced points are selected from their final population and these are
evaluated using the real objective function. These are added to the
archive. If the size of the archive is larger than a pre-defined thresh-
old, it is truncated using a procedure which selects the points closest
to the Pareto front. The new archive is then used to train new surro-
gate models, and the steps are repeated until a termination condition
is met.

The authors use several different types of surrogate models and
show their performance. They also argue that deceptive and multi-
modal functions are difficult to optimize using surrogates, as the
models exploit the information already known about the search space
and it is thus easier to find a local optima instead of the global one.
All the experiments are performed on a rather easy set of benchmark
function with only two variables.

Nain and Deb (2005) propose a version of NSGA-II augmented by
artificial neural networks (multilayer perceptrons). In this variant,
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the NSGA-II first optimizes the real objectives directly for n generations
and than models of the objectives are created based on the individuals
evaluated in the last n generations. The models are optimized for
another m generations. Here, n and m are two parameters set in
advance. The steps with the optimization of the real problem and
the approximation are repeated until a termination condition is met.
The authors show approximately 25%-50% reduction in the number
of real objective evaluations compared to NSGA-1I while the quality of
the solutions is retained.

5.2 MOEA/D WITH GAUSSIAN PROCESS MODEL

Qingfu Zhang, Liu, et al. (2010) created a Gaussian process based ver-
sion of MOEA/D, called MOEA /D-EGO. This algorithm is specifically
designed to work with extremely low numbers of function evalua-
tions (the authors use it for only 200 evaluations).

Similarly to MOEA/D, the multi-objective problem is decomposed
into several single-objective problems and these problems are solved
at once. The algorithm starts by generating some random individuals
and evaluating them by the real objective functions to create the ini-
tial archive which is used during the training of the models. Then, a
Gaussian processes based model for each of the objectives is trained.
All the models are optimized using MOEA/D. The goal of the opti-
mization is to find the point with maximum expected improvement.
The advantage of using MOEA/D is that all the single-objective prob-
lems are solved at once, and that problems with similar decomposi-
tion share the information (in the same way as in original MOEA/D).
After the optima are found, several of these individuals are selected
for evaluation by the real objective function. These are then added to
the archive of evaluated individuals and used for the model building
in the next iteration. The algorithm runs until a termination criterion
is met.

The hyper-parameters of the Gaussian processes are estimated us-
ing a differential evolution based algorithm. To reduce the modeling
overhead, the population is first clustered into several clusters using a
fuzzy clustering technique (Bezdek, 1981), and a local model is build
for each of the clusters. The overhead is further reduced by using the
properties of the Gaussian processes models — in each of the clusters,
one model is build for each of the objectives, and the models for the
different decompositions are derived from these models directly.

5.3 AGGREGATED SURROGATE MODELS

Loshchilov et al. (2010a) came with the idea to use a single aggre-
gated surrogate model instead of individual models for each of the
objectives. The aggregated surrogate model is trained to discrimi-
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nate between the dominated and non-dominated points in the de-
cision space. The main idea is to map the current Pareto set to a
small interval [p — €,p + €] and the dominated points into the inter-
val [—oo, p — €]. The new non-dominated points should then be in the
interval [p + €, ). To this end ideas from Support Vector Regression,
and OneClass SVM are used, and these conditions are formulated as
an SVM training problem in the following way.

) 1 I B m
min EHwHZ—i-CZ(Cf—l—Ci )+ C Z é’;r—f-p
w,G,0 i=1 i=14+1

(w,x) <p+e+& 1<i<lI

(w,x;) >p—€—¢; 1<i<l]
subject to (w,xj) <p+e+¢ 1+1<i<m
& >0 1<i<lI

¢ =0 1<i<m

In this formulation x; to x; are the individuals in the current Pareto
set, and x;,1 to x,, are the dominated individuals, ¢* and &~ denote
the vectors of slack variables.

The first two conditions correspond to the SVR conditions we have
seen earlier (i.e. the mapping of current Pareto set to the interval
[0 —€,p+ €]) and the third condition corresponds to the OneClass
SVM condition (i.e. to the mapping of dominated individuals into the
interval [—oo, p — €]). This primal problem is transformed into a dual
problem and solved, which leads to a training procedure similar to
the one used in SVM.

The authors use the model to augment NSGA-II and MO-CMA-ES. In
both cases, if the algorithm generates one offspring, Apre offspring are
generated in the new algorithm and the best according to the surro-
gate model is selected and later evaluated using the real objective.

Later, Loshchilov et al. (2010c) proposed a new aggregated surro-
gate model, this time based on rank-based svM (Joachims, 2005). The
rank-based SVM uses constraints which ensure that better ranked indi-
viduals have larger values predicted by the model. Let P is the set of
pairs (i,j), such that (i, j) € P if x; is preferred to x;. The formulation
of the primal problem is as follows:

|P|
min 1|w|?* +C ;
in Yol +C )
N NS & (i
subject to (w,xi) = (w,x;) 21 =8 (i,]) G P )

Ci >0 Vi
where ¢ are again slack variables. As always with SVvM-based models,

the dual problem is constructed and solved to train the model. To
make the optimization more effective, the constraints from the set
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are added iteratively, one constraint at a time. Each time, the most
violated constraint is added.

The question which remains to answer is how the set P is chosen.
Loshchilov et al. added the pair (7, ) to the set P, if x; is the closest
individual to x; such that, x; is dominated by x; — these form what
they call primary constraints. There is also a set of secondary constraints,
which are defined as (7,j) € P, if x; is in the current Pareto set and x;
is not. The training of the model starts with the set of primary con-
straints only, and after a while, the secondary constraints are added
one by one (the most violated first), until a pre-defined fraction of
them (the authors used 10%) are added.

This model is then used to augment the NSGA-II and MO-CMA-ES in
the same way as the first aggregated surrogate model. One of the
advantages of the latter approach is that it can in theory contain any
preference information, and can thus be used to guide the search in
directions interesting for the decision maker.

The authors show that this kind of models reduces the number of
function evaluations needed to attain a specific quality of solutions
(defined by the hypervolume of the dominated space) by more than
50% compared to the non-surrogate versions of the algorithms.

5.4 GENERALIZED SURROGATE MOMA

The approach presented in (Lim et al., 2010) is interesting for a differ-
ent reason. The author describe one of the few algorithms which deal
with more than one surrogate model. They use two types of models
— one of them is a low degree polynomial, the other is an ensemble
of models. The intuition is that the ensemble model would be more
precise, however it can overfit the training data and thus miss-lead
the algorithm. On the other hand, the low order polynomial should
be able to generalize better and it should also smooth multi-modal
functions and make them easier to optimize.

The authors use the same approach both for single-objective and
multi-objective optimization, however, we will only describe the multi-
objective case here. In the multi-objective case, in each generation
for each individual x a set of weights is generated randomly and an
aggregate objective is created as the weighted sum of the real objec-
tives. Then, the two surrogate models are trained on a training set
created from the archive of previously evaluated individuals to pre-
dict the value of the aggregate objective. After that a local search is
performed on both the models to yield individual x; and x; as the
optima of the models, these are then evaluated. Finally, individuals
x, X1, and xp are compared and the non-dominated ones of them are
added to the population so that they are considered for selection to
the next generation.
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Part III

CONTRIBUTION

This part contains the main contribution of the thesis. First,
we describe the steps in the creation of a multi-objective
evolutionary algorithm with local search based on an ag-
gregate surrogate model and with pre-selection. Later, we
deal with the problem of model selection in the field of
multi-objective optimization, and, finally, we show how
multi-objective optimization may be used to solve some
single-objective problems more effectively.






DISTANCE-BASED AGGREGATE SURROGATE
MODEL

In this chapter we describe one of the most important contributions
of this thesis — the distance-based aggregate surrogate model. The
model was inspired by the SVR and OneClass svM based model by
Loshchilov et al. (2010a) (see also Section 5.3 of this thesis). From
a historical point of view, it was created independently from the
model based on ranking SVM based presented by the same authors
in (Loshchilov et al., 2010c), although the two models share some
similarities.

The main motivation for us was to augment the multi-objective op-
timizers with a local search, as it should improve the results. The in-
tuition we had was that the local search would in a sense take some of
the points in the search space and move them closer to the real Pareto
set. To this end, the use of aggregates surrogate models seems inter-
esting, as they provide only a single value, which can be more easily
optimized compared to the multiple objective values of the original
problem. Having a single value means one can use a single-objective
evolutionary algorithm to exploit the model, and single-objective evo-
lution is both faster and more simple to perform.

However, the model presented by (Loshchilov et al., 2010a) did
not seem to be a good candidate for local search, as it only discrimi-
nates between the Pareto set and the rest of individuals. But the pre-
dicted values for dominated individuals are not constrained in any
way and thus each of these individuals may have a different value,
which may not correspond to the quality of the individual at all. This
could miss-lead the local search, as was also discussed by the au-
thors of the model. Therefore, we came with the idea to describe the
search space using distance of the individuals to the current Pareto
set. The distances are computed in the decision space, which makes
the model invariant to any rank-preserving transformations of the
objective functions.

Historically, the algorithm described in this chapter was presented
in two steps. We first created the multi-objective memetic algorithm
with aggregate surrogate model (ASM-MOMA), and created the more
local models used in LAMMA (multi-objective memetic algorithm with
local aggregate meta-model) later. However, we do not make the
distinction in this thesis and describe both of the algorithms at once.
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Algorithm 6.1 The main loop of the algorithm

Require: G;,;;: the number of generations to build the archive
t<0
Initialize randomly new population Py
Initialize empty archive A
while Termination criterion not met do
Use crossover and mutation to create new population P’
if ¢ > Ginit then
for Each individual I in the population P’ do
if Random number from [0,1] < pyen then
Use the individuals in the archive A to train new model M;
Run memetic operator on individual I and replace it in P’
Compute the objective values for each new individual in P’/
Add all new individuals to the archive and truncate it
P;, 1 < selected individuals from P; U P’
t<—t+1
return The non-dominated individuals from the population

6.1 MULTI-OBJECTIVE MEMETIC ALGORITHM WITH AGGREGATE
SURROGATE MODEL

Multi-objective memetic algorithm with aggregate surrogate model
(ASM-MOMA) describes a general framework to augment existing multi-
objective evolutionary algorithms and add a surrogate-based local
search to them. The word “memetic” in its name refers to the new
additional genetic operator which is added into an existing multi-
objective algorithm. The new genetic operator essentially works as
a mutation, in the sense that it only changes one individual, but it
is not completely random. It uses the information provided by the
surrogate model to guide the search. In fact, the operator runs its
own internal evolutionary algorithm to find the optima of the model.
The right place to add this operator into an evolutionary algorithm is
right before the newly generated individuals are evaluated.

The surrogate model used by the operator is constructed based
on an archive of previously evaluated points from the decision space.
The archive stores the values of the objective functions for these points.
The surrogate model is trained to predict the distance to the cur-
rently known non-dominated solutions. Moreover, as an addition
to ASM-MOMA, in LAMMA the points do not not have the same weight,
as those that are closer to the locally optimized one are considered
more important during the model building phase (see next section
for details).

The main idea is that points closer to the current Pareto front are
more interesting during the run of the algorithm and the memetic op-
erator moves the individuals closer to the Pareto front and hopefully
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even finds new non-dominated solutions. The purpose of the surro-
gate model is not to precisely predict the value but rather provide a
general direction in which the memetic search should proceed.

To obtain a training set for the meta-models we also added an exter-
nal archive of individuals with known objective values. This archive
is updated after each generation when new individuals are added
and at the same time the archive is truncated to ensure it does not
grow indefinitely.

The following sections detail the important parts of the algorithm.
The main loop (see Algorithm 6.1) is essentially a generic Multiobjec-
tive Evolutionary Algorithm (MOEA) with an added memetic opera-
tor.

6.1.1 Meta-model construction

We train a dedicated model for each individual I which shall be lo-
cally optimized by the memetic operator. For such an individual I we
create a weighted training set

1

T = {((xiy0) i)y =~ P), i = T,

where d(x,y) is the Euclidean distance of individuals x and y in
the decision space, P is the set of non-dominated individuals in the
archive and d(x, P) is the distance of individual x to the closest point
in the set P. A is a parameter which controls the locality of the model,
larger values of A lead to more local model, whereas lower values
lead to more global one.

The points which are closer to the individual I are more important
during the training of the model. This distance weighting adds some
locality to the models trained for each individual. The training set
is constructed in such a way, that for the individuals closer to the
currently known Pareto front the meta-model should return larger
values. This fact is used during the local search phase (which uses
the meta-model as a fitness function).

The training set described above corresponds to the training set of
LAMMA as it was originally described. In order to obtain the training
set for ASM-MOMA4, it is enough to set the locality parameter A = 0.
This also ensures that the model does not depend on the optimized
individual I and, thus, it is enough to train the model only once per
generation, instead of re-training it for each optimization.

The target value of the model depends only on the distance of the
individual from the Pareto front. The non-dominated points have
the value of 0.0 and any dominated points have negative values. Ide-
ally, after the local search phase, there would be new non-dominated
points in the population which should have positive values predicted
by the model.
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Algorithm 6.2 Meta model training

Require: The archive of evaluated individuals A
Require: The optimized individual I
Require: The locality parameter A
Initialize empty training set 17 and meta model M;
N < non-dominated individuals in the archive
for each individual x; in the archive A do
Let d(x;, N) < distance of x; to the closest individual in N
Let d(x;, I) + distance of individual x; to the optimized individ-
ual [
Add ((i,—d(x;,N)),1/(1 4+ Ad(x;,I))) into T;
Train the model M; on data T;
return The trained meta model M;

The model does not respect the dominance relation: a point dom-
inated by a lot of others may have higher target value than another
point further from the Pareto front. We also experimented with mod-
els based on the number of non-dominated front in which the partic-
ular individual is, but such models did not work well. The distance
based models described here provide better information about the
search space and guide the local search algorithm towards the Pareto
front.

6.1.2 Local search

In the local search phase during the run of the memetic operator (see
Algorithm 6.3) we use another evolutionary algorithm (this time it is
only a single objective one) to find better points in the surroundings
of each individual. The algorithm runs only for a few generations and
it uses only meta-model evaluations. The newly found individuals
are placed back to the population. During the initialization of the
local search the individual which should be optimized is inserted into
the initial population and its variables are perturbed to create the rest
of the initial population. The perturbation adds random number with
Gaussian distribution and the standard deviation of 75 of the range
of the variable.

Note, that any other optimization method could in theory be used
for finding of the optima of the surrogate model, however, we chose
the evolutionary algorithm for two reasons: it does not need any as-
sumptions about the meta-model used, and due to its randomized
nature, it provides multiple different points which lead to better di-
versity in the population of the external algorithm. Although the
complexity of the evolutionary algorithm is larger than the complex-
ity of other methods, the local search is still limited mainly by the
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Algorithm 6.3 Memetic operator

Require: The trained meta model M
Require: The individual I to be improved
Perturb I to create initial population P
Add I to the population P
Use evolutionary algorithm with M as fitness to improve I
return The best individual found

time needed for the training of the model as we shall see in Section
6.2.

6.1.3 Archive truncation

The algorithm uses an archive of previously evaluated individuals.
This archive is used in the model building phase.

Before the algorithm can build the surrogate model, it needs a few
initial generations (Gy;t) to fill the archive with enough individuals
for training. This number of generations depends on the number of
variables, the number of individuals in population and the complex-
ity of the chosen model.

Moreover, the size of the archive should be kept under a certain
limit to prevent large memory usage, therefore archive is truncated
after each generation. The truncation process is very simple: random
individuals are selected for removal from the archive. In preliminary
tests we tried different archive truncation techniques (e.g. the dom-
inance based truncation like in NSGA-II), but the random approach
appears to give the best results. In the random approach more recent
individuals are more likely to stay in the archive, thus being used to
training the meta-model.

Regarding the age of the individuals in the archive more specifi-
cally, let u be the population size and A is the archive size. Each
individual has the probability: p = HLA of being removed from the
archive during truncation. Therefore, the archive contains on average
It = u(1 — p)! individuals of age ¢ (i.e. individuals which survived ¢
archive truncations in the past). The average age of an individual in
the archive is

Yitapili—p) _pl-p_A(A+p)

A A p >

The probability, that an individual survives exactly t archive trunca-
tions is: py = (1 — p)!~!p and it has a geometric distribution. This
implies that on average an individual survives % = % generations
in the archive.

In the experiments, we use the population size of 50 individuals
and archive size of 400 individuals. For this configuration each indi-

vidual survives on average 9 generations in the archive and half of
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Table 6.1: The notation used in the equations

Symbol | Meaning

To The time of an objective function evaluation

T; The time of meta-model training

T The time of meta-model evaluation

Ge Number of evaluated generations (external EA)
G; Number of evaluated generations (internal EA)
P, External EA population size

P; Internal EA population size

Pmem Memetic operator probability

R Reduction of the number of evaluations

the individuals in the archive was added during the last six genera-
tions. The observations above show the time locality of the archive —
it contains mostly individuals from the last generations with higher
amount of individuals from the more recent ones.

6.2 MODELING OVERHEAD

Generally, when talking about surrogate modeling, the assumption is
that the fitness evaluations take a long time and therefore the com-
plexity of other parts of the algorithm is negligible. In this section we
would like to discuss, how long it takes for the algorithm to create the
model and make all the evaluations, and therefore how long must the
evaluation of the real fitness function take in order to hide this over-
head. The analysis provided bellow assumes the local models used
in LAMMA which must be retrained for each optimized individual.
Equations for ASM-MOMA would be similar, only the time needed to
train the model would be accounted only once for each generation.

The proposed algorithm uses quite a large number of meta-model
evaluations and even meta-model trainings. In this section we would
like to discuss the usability of this approach. In the equations bellow
we use the notation defined in Table 6.1. We ignore the time needed
to run the selection of the multi-objective algorithm after the values
of the objective functions are known, as well as the time consumed
by the genetic operators. Adding this would make the difference
between the memetic and original variants even larger as the time
for these is constant in each generation and the memetic algorithm
should need less generations. On the other hand we also ignore the
time needed by the selection and operators of the internal evolution-
ary algorithm.

Note that both the initial and final populations need to be evalu-
ated, therefore the factor G, is one higher than the number of gener-
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Table 6.2: Times needed for training and evaluation of selected meta-models,

in seconds
Model ‘ Training (T;) Evaluation (T},)
Linear regression 0.142 8.46 x 107
Support vector reg. 0.328 7.14 x 1077
Multilayer perceptron 3.75 1.80 x 107

ations of the external evolutionary algorithm (the same holds for G;
and internal evolutionary algorithm). The original external algorithm
takes the time

Torig = G P T,

to finish.

The use of the meta-model reduces the number of generations
needed, but on the other hand adds time to train and evaluate the
local models. It takes

Tmeta = RGePeTe + RGePepmem(Tt + PiGiTm)

to find the solution of the same quality. The first part is identical to
the original algorithm with the reduced number of generations. The
second part corresponds to the training and local search. We con-
sider the local meta-models here, otherwise there is only one model
training per generation which makes the algorithm more effective.

Now, we would like to know, how much faster the meta-model
training and evaluations need to be (compared to the original objec-
tive evaluation) for this method to speed up the optimization, i.e. un-
der which conditions the inequality Tyeta < Torig holds. After substi-
tuting the above expressions and solving for T, we get

R
To > ﬁpmem[Tt + GiPiTm]-

This inequality holds for R between o and 1. R is always positive
and if R is larger than 1, no reduction is made and therefore the
memetic algorithm cannot work faster than the original one.

Although the factor G;P; may be quite large the training of the
meta-model is what usually dominates the time in this case. Table
6.2 shows results of measurements we made in order to find out how
fast some of the models we used are. All the test were done on a
computer with Intel Core i7 920 (2.87Ghz) processor and 6GB RAM.
The size of the training set was set to 400 and the training set was
obtained during the run of the described algorithm.

Based on these measurements and equations above we can com-
pute the limit time of the objective function evaluation for which the
use of our algorithm reduces the time needed to find a solution. Some
of these are computed in Table 6.3. (The remaining parameters were
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Table 6.3: Theoretical limit evaluation threshold T, for which the real time
reduction is achieved considering various values of R, in millisec-

onds
R 01 02 05 0.8 0.9
Linear regression 4 8 30 144 324
Support vector reg. 9 21 82 330 742
Multilayer perceptron | 105 237 949 3,800 8,540

Table 6.4: Parameters of the multi-objective algorithm

Parameter | MOEA value Local search value
Stopping criterion | 50,000 evaluations | 30 generations
Population size | 50 50
Crossover operator | SBX SBX
Crossover probability | 0.8 0.8
Mutation operator | Polynomial Polynomial

Mutation probability | o.1 0.2
Archive size | 400 -
Memetic operator prob. | 0.25 -
Locality parameter A | — 1

Pmem = 0.25, G; = 50, P; = 50.) We can see that especially with the
faster models (linear regression and support vector regression) the
algorithm is theoretically able to reduce the run time even for rela-
tively cheap objective functions given rather small reduction in the
number of evaluations (e.g. for R = 0.9, which translated to only 10%
reduction in the number of evaluations, speed up is achieved even
for objectives which evaluate in under a second). We can also see the
effect of the relative slowness of multilayer perceptrons which indi-
cate that they might not be very advantageous unless they are able to
provide much better reductions than the other models.

Later in this chapter, we show that the values of R = 0.2 and even
lower are possible to obtain. This means, that LAMMA is usable even
for problems with relatively fast objective functions which take only
milliseconds to evaluate.

63 EXPERIMENTS — BI-OBJECTIVE PROBLEMS

To evaluate the performance of ASM-MOMA and LAMMA in the bi-
objective case, we tested our approach on the widely used ZDT Zit-
zler, Deb, et al. (2000) benchmark problems. These problems are all
two dimensional, and we used 30 variables for ZDT1 and 15 vari-
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ables for the other problems. In the local search phase we used var-
ious types of models: namely multilayer perceptron, support vector
regression, and linear regression. All the models use default param-
eters from the Weka framework Hall et al. (2009) (which we used to
run the experiments), i.e. polynomial kernels and normalization for
the support vector regression and learning rate of 0.2 and momen-
tum of 0.3 for multilayer perceptron, together with 4 neurons in the
hidden layer, the instances are again normalized.

See Table 6.4 for the parameters of the main multi-objective algo-
rithm and the internal single-objective algorithm.

We used the NSGA-II and e-IBEA with Simulated Binary Crossover
Deb and Agrawal (1994) and Polynomial Mutation Deb and Goyal
(1996) as the external multi-objective evolutionary algorithm. In the
local search phase we used a simple single objective evolutionary al-
gorithm with the same operators and the surrogate model served as
its fitness function.

6.3.1 Performance measure

To compare the results we use a measure we call H,,, it is defined

as the
Hreal

H, .., =
ratio Hoptimal

where H,,,; is the hypervolume of the dominated space attained by
the algorithm and Hopyima is the hypervolume of the real Pareto set of
the solutions. As the Pareto set is known for all the ZDT problems, we
can compute this number directly. We use the vector 2 = (2,2) as the
reference point in the hypervolume computation. All points that do
not dominate the reference point are excluded from the hypervolume
computation.

We compare the median number of function evaluations needed
to attain the H,u, of 0.5, 0.75, 0.9, 0.95, and 0.99 respectively. This
methodology allows for easy comparison of the speed up obtained
by the algorithm.

6.3.2 Results

Tables 6.5 and 6.6 show the results of ASM-MOMA and LAMMA com-
pared to original NSGA-II and e-IBEA. In all the tables NSGA is the
original NSGA-1I, IBEA denotes the original e-IBEA. LR, SVM, and
MLP stands for the model used: linear regression, support vector
regression and multilayer perceptron respectively. G denotes the sin-
gle global model of ASM-MOMA and L stands for the local models of
LAMMA.

The numbers in the table represent the median number of objec-
tive function evaluations needed to reach the specified H,,s;, value.
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Table 6.5: Median number of function evaluations needed to reach the spec-
ified H,utj, on ZDT1 and ZDT2 test problems

ZDT1
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA 5600 18600 19850 20750 21850
NSGA-LR-G 1500 2000 2400 2800 12750
NSGA-SVM-G 1450 2050 2350 2850 13550
NSGA-MLP-G 2100 2800 3850 4500 15200
NSGA-LR-L 1300 1750 2250 2600 13100
NSGA-SVM-L 1350 1650 2150 2450 14150
NSGA-MLP-L 1600 2100 2700 3250 15700
IBEA 7400 13750 18200 20000 25550
IBEA-LR-G 1450 2500 2800 2950 7450
IBEA-SVM-G 1400 2050 2700 3100 6850
IBEA-MLP-G 1800 2550 4000 4600 10100
IBEA-LR-L 1300 1900 2400 2750 7500
IBEA-SVM-L 1350 1900 2350 2600 7100
IBEA-MLP-L 1400 1850 2450 3250 9650
ZDT2
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA 650 1650 3550 5050 7900
NSGA-LR-G 350 550 750 950 1250
NSGA-SVM-G 350 450 700 1050 1750
NSGA-MLP-G 400 550 800 1000 1500
NSGA-LR-L 350 450 600 850 1100
NSGA-SVM-L 350 550 750 900 1250
NSGA-MLP-L 350 500 750 850 1250
IBEA 750 2050 5150 7800 13000
IBEA-LR-G 350 550 750 900 1650
IBEA-SVM-G 350 550 850 1050 1550
IBEA-MLP-G 450 650 950 1200 2700
IBEA-LR-L 300 500 700 850 1350
IBEA-SVM-L 350 550 8oo 1000 1450
IBEA-MLP-L 350 550 750 900 1400




Table 6.6: Median number of function evaluations needed to reach the spec-
ified H,uj, on ZDT3 and ZDT6 test problems

63 EXPERIMENTS — BI-OBJECTIVE PROBLEMS

ZDT3
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA 600 1250 4150 7250 -
NSGA-LR-G 300 500 700 800 1150
NSGA-SVM-G 350 500 700 750 1100
NSGA-MLP-G 450 700 1000 1150 1750
NSGA-LR-L 300 450 650 800 1050
NSGA-SVM-L 350 550 700 850 1000
NSGA-MLP-L 350 550 850 950 1300
IBEA 650 1550 5400 8150 33350
IBEA-LR-G 350 550 850 950 1300
IBEA-SVM-G 350 550 850 1000 1300
IBEA-MLP-G 450 800 1100 1250 1800
IBEA-LR-L 350 450 750 900 1300
IBEA-SVM-L 400 650 850 1050 1450
IBEA-MLP-L 400 650 950 1150 1600
ZDTe
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA 7950 10200 13950 17700 28650
NSGA-LR-G 2750 5950 11100 15750 30500
NSGA-SVM-G 2500 4950 8650 12500 23500
NSGA-MLP-G 3300 5850 10350 14650 26800
NSGA-LR-L 2850 5850 10550 15350 29200
NSGA-SVM-L 2600 4950 9100 12900 25300
NSGA-MLP-L 3350 6050 10300 13950 27150
IBEA 10300 13650 18400 23150 34050
IBEA-LR-G 3050 6500 13400 17600 32100
IBEA-SVM-G 3000 7250 14100 19250 34150
IBEA-MLP-G 3500 7250 13250 18900 32450
IBEA-LR-L 3050 6850 13050 18750 31400
IBEA-SVM-L 3000 6500 12650 17850 32550
IBEA-MLP-L 3400 7050 13300 18200 32950
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Table 6.7: The effect of different number of neurons in the hidden layer on
the performance of LAMMA on the ZDT1 test problem.

Number of neurons | 0.5 0.75 0.9 0.95 0.99

1 1300 2900 3150 3300 8750
1400 2100 2800 3250 9600

1450 1800 2200 2950 8500

10 1500 1900 2550 3250 9350

Twenty runs for each configuration were made. A “-” symbol means
that the particular configuration was not able to attain the specified
H,4ti, within the limit of 50,000 evaluations of the objective functions.

From the results, we can see that the global models significantly
decrease the number of required function evaluations, and the local
models are even better than the global ones. Moreover, we can see
that linear regression gives better results than support vector regres-
sion and multilayer perceptrons. It probably creates simpler models
which indicate the right general direction in which the local search
should proceed. Moreover, the distances based models are quite easy
to train and linear regression can provide better extrapolation of the
values. Furthermore, we can see that the results of local models are
almost always better than those of a single global model (see the fol-
lowing paragraphs for more detailed discussion). Comparing the dif-
ferences between the chosen models (linear regression, support vector
regression and multilayer perceptron) we can note that within local
models these differences are smaller. This implies that the choice of
the type of the model is less important when the local models are
used. Following from the discussion in section 6.2, we could recom-
mend using the faster models, i.e. linear regression or support vector
regression instead of multilayer perceptrons.

To rule out the possibility of improperly set parameters of the mul-
tilayer perceptrons, we tried changing the number of neurons in the
hidden layer, which is the most important parameter for this model.
The results of this experiment on ZDT1 are in Table 6.7. We can see
that the results of this model can indeed be improved when more
attention is paid to its settings, however LAMMA with multilayer per-
ceptrons still does not outperform the results of LAMMA with other
meta-models.

On ZDT1 the global model decreased the number of function eval-
uations by the factor of 7.4 for the H,zi, = 0.95 (NSGA-II and linear
regression), the local model decreased this number by another almost
8%, yielding a combined factor of 8. The numbers for H,,;, = 0.99 are
not that good, although the number of function evaluations dropped
to approximately a half with the global model and remains practically
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Table 6.8: Parameters of the multi-objective algorithm

Parameter | MOEA value Local search value
Stopping criterion | 10,000 evaluations | 30 generations
Population size | 50 50
Crossover operator | SBX SBX
Crossover probability | 0.8 0.8
Mutation operator | Polynomial Polynomial
Mutation probability | o.1 0.2
Archive size | 400 -
Memetic operator prob. | 0.25 -
Locality parameter | — 1.0 and 4.0

unchanged with the use of local models. The results for other combi-
nations of MOEA and types of meta-models are similar on ZDT1.

On ZDT2 (again NSGA-II and linear regression), the global model
reduced the required number of evaluations (to reach the H,;;, =
0.99) by the factor of 6.3 with the local model lowering the number
by another 12%, yielding the overall reduction factor of 7.2. Again,
the results are similar for other combinations of MOEA and type of
the meta-model, the only exception being the behavior of multilayer
perceptron in the combination with e-IBEA, where the local model
decreased the number of evaluations to 1,400 compared to the 2,700
of the global model and 13,000 of plain e-IBEA yielding a reduction
by the factor of 9.3.

On ZDT3, both ASM-MOMA and LAMMA were able to reach the
Hyatip = 0.99 while the original NSGA-1I was not. Moreover, LAMMA
needed only 1000 evaluations (with support vector regression as the
meta-model), ASM-MOMA needed 100 more evaluations. The original
€-IBEA needed over 30,000 function evaluations to attain the H,, =
0.99, the ASM-MOMA and LAMMA both needed only 1,300 evaluations,
thus reducing the number of evaluations almost 26 times. This reduc-
tion ratio is rally large, however it is mainly caused by the fact that
the external algorithm itself is not able to find such a good solution
effectively.

ZDT6 is the most difficult problem among those we used for com-
parison. Although the number of evaluations needed to reach the
H,atip = 0.5 dropped approximately to a third of the original, this dif-
ference gets lower as the H,,, grows, and the results for H, s, = 0.99
are almost identical. In this case, the local models helped to reduce
the number of evaluations slightly, and for most configurations of
LAMMA they were lower than those needed by the original algorithms.
We believe the poor results are partially caused by premature conver-
gence (as some preliminary tests showed that the results for higher
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percentage of individuals which are locally improved are even worse,
and ZDT6 is multi-modal), together with the difficulty of modeling
this particular function. On ZDT6 the Pareto front is biased for solu-
tions with one of the functions close to 1, which yields training set
with low diversity and that could be the reason for poorly trained
models.

64 EXPERIMENTS — MANY-OBJECTIVE PROBLEMS

As we have shown both ASM-MOMA and LAMMA greatly reduce the
number of objective function evaluations needed to find a good solu-
tion to a multi-objective problem with two objectives. However the
question remains how these two algorithms would scale with respect
to the number of objectives and how they will perform on many-
objective problem.

The idea is that both algorithms use some kind of scalarization
during the creation of the meta-model, which is similar to some of
the many-objective optimization algorithms. This could provide non-
dominated individuals and have similar performance without any
additional objective function evaluation. The aggregate meta-models
thus provide a natural hybridization of scalarization techniques with
other many-objective optimization techniques (in our case with the
indicator based algorithms, as we used the IBEA as the main many-
objective optimizer).

In this scenario we tested only e-IBEA based ASM-MOMA and LAMMA
as NSGA-II is known to have poor performance in the many-objective
case (Ishibuchi, Tsukamoto, et al., 2008). We also did not test the per-
formance of multilayer perceptrons as the meta-model as the results
in bi-objective case indicated they do not work well and are much
slower than linear regression and support vector regression.

To assess the performance of aggregate meta-models in the many-
objective case we tested ASM-MOMA and LAMMA (with locality param-
eter A = 1 and A = 4) on the well-known DTLZ1 to DTLZ4 test
problems with 5, 10, and 15 objectives, we used 20 variables in all
cases. See Table 6.8 for the parameters of the algorithms used.

We chose the hypervolume as the performance measure and report
its values after 1,000, 2,000, 5,000 and 10,000 evaluations of the objec-
tive functions. The hypervolume is normalized in such a way that
the point 0 has the hypervolume of 1.0. As the exact hypervolume
cannot be computed effectively for this large number of objectives,
we used Monte Carlo sampling to find its approximation, 100,000
samples were used. Again, 20 runs for each configuration were per-
formed and the average values are reported. We do not use the H,4,
in this case, as we do not know the real hypervolume for all of the
test problems. Moreover the hypervolumes differ largely for different
numbers of objectives.
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Although we believe that the comparison methodology used in the
multi-objective case is better, as it allows direct comparison of the
number of needed objective function evaluations, the complexity of
the hypervolume computation for these large number of objectives
makes it impractical, as it requires the evaluation of the hypervol-
ume after each generation. Also due to the slight deviations in the
computed hypervolume caused by the Monte-Carlo sampling the re-
ported number of evaluations might have been incorrect in the case
that the estimated hypervolume would be larger than the real hyper-
volume.

Tables 6.9 to 6.12 show the results of aggregate meta-models on
many-objective optimization problems. Best results for each configu-
ration are in italics, if the result is significantly better (one sided t-test,
p-value < 0.05) than other results it is in bold and the worse result is
in the parentheses (N for no model, S for support vector regression,
and L for linear regression).

Generally, we can see that the aggregate meta-models improve the
results compared to the plain e-IBEA. The following sections discuss
the results in more detail.

6.4.1 ASM-MOMA

With ASM-MOMA, we can see that the results were improved in almost
all cases (the only exception being DTLZ1 with 5 objective functions
after 1000 and 2000 function evaluations). Moreover, the results for
linear regression are generally better than those where support vector
regression was used as the underlying surrogate model.

On the DTLZ1 problem, ASM-MOMA with linear regression as the
meta-model reached the best hypervolume for 5, 10 and 15 objective
function after 5,000 and 10,000 objective function evaluations. How-
ever, for the configuration with only 5 objective functions it was
beaten by e-IBEA after 1,000 and 2,000 function evaluations. This
might mean that the aggregate meta-models are able to provide new
non-dominated solutions even in the later phases of the evolution. On
the other hand, in the earlier phases the models are not well trained
and may slow the evolution down, as they may provide wrong direc-
tion for the search.

On DTLZ2 with 5 and 10 objective function ASM-MOMA with sup-
port vector regression performed better than ASM-MOMA with linear
regression as meta-model. Both performed better than e-IBEA, how-
ever only support vector regression ASM-MOMA was significantly bet-
ter. When the number of objectives is increased to 15, the situation
changes. ASM-MOMA with linear regression works the best of the
compared algorithms and is significantly better than both e-IBEA and
ASM-MOMA with support vector regression model. We can also note
that ASM-MOMA reduces the number of evaluations: the same result
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Table 6.9: Results of ASM-MOMA and LAMMA (A = 1 and A = 4) with lin-
ear regression (LR) and support vector regression (SVR) on the
test problems. Average hypervolume attained during 20 runs.
Best values are in italics, significantly better values are in bold
with the appended letters denoting the variants which are sig-
nificantly worse (N for no model of IBEA, S for support vector
regression, and L for linear regression), only the different models
for the same variant of the algorithm are compared.

DTLZ1

Objective function evaluations

Dim. Algorithm
1,000 2,000 5,000 10,000

IBEA 0.294 0.413 0.569 0.711
LR-ASM-MOMA 0.265 0.386 0.580 0.753
SVR-ASM-MOMA | o.270 0.384 0.573 0.737

5 LR-LAMMA-1 0.283 0.400 0.596 0.747
SVR-LAMMA-1 0.260 0.383 0.595 0.749
LR-LAMMA-4 0.246 0.374 0.549 0.702
SVR-LAMMA-4 0.262 0.375 0.566 0.731
IBEA 0.244 0.271 0.304 0.325

LR-ASM-MOMA 0.257 0.305NS 0.318 0.339
SVR-ASM-MOMA | 0.245 0.270 0.308 0.336

10 LR-LAMMA-1 0.260 0.291 0.316 0.346
SVR-LAMMA-1 0.249 0.27 0.325 0.352
LR-LAMMA-4 0.250 0.277 0.303 0.322
SVR-LAMMA-4 0.244 0.268 0.311 0.311
IBEA 0.193 0.210 0.224 0.235

LR-ASM-MOMA | 0.198S 0.221  0.248S 0.263N
SVR-ASM-MOMA | 0.178 0.209 0.223 0.239

15 LR-LAMMA-1 0.199 0.217 0.240 0.256N
SVR-LAMMA-1 0.193 0.212 0.226 0.240
LR-LAMMA-4 0.196 0.214 0.238 0.254

SVR-LAMMA-4 0.191 0.222  0.256N  0.259N
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Table 6.10: Results of ASM-MOMA and LAMMA (A = 1 and A = 4) with lin-

ear regression (LR) and support vector regression (SVR) on the
test problems. Average hypervolume attained during 20 runs.
Best values are in italics, significantly better values are in bold
with the appended letters denoting the variants which are sig-
nificantly worse (N for no model of IBEA, S for support vector
regression, and L for linear regression), only the different models
for the same variant of the algorithm are compared.

DTLZ2

Dim. Algorithm Objective function evaluations
1,000 2,000 5,000 10,000
IBEA 0.650 0.685 0.732 0.742
LR-ASM-MOMA 0.654 0.699 0.745 0.783
SVR-ASM-MOMA 0.660 0.720  0.779N  0.821NL
5 LR-LAMMA-1 0.640 0.700  0.768N  0.817N
SVR-LAMMA-1 0.639 0.688  0.772N  0.822N
LR-LAMMA-4 0.653 o.710  0.773N  0.815N
SVR-LAMMA-4 0.652 0.708  o0.771N  0.812N
IBEA 0.726 0.730 0.738 0.744
LR-ASM-MOMA 0.732 0.739 0.748 0.756
SVR-ASM-MOMA 0.739 0.743 0.754 0.761
10 LR-LAMMA-1 0.747 0.755 0.760 0.771S
SVR-LAMMA-1 0.727 0.735 0.740 0.745
LR-LAMMA-4 0.726 0.737 0.745 0.748
SVR-LAMMA-4 0.717 0.725 0.737 0.741
IBEA 0.83 0.832 0.836 0.836
LR-ASM-MOMA | 0.849NS 0.856NS 0.864NS 0.868NS
SVR-ASM-MOMA 0.836 0.837 0.837 0.839
15 LR-LAMMA-1 0.845 0.846 0.854N  0.859N
SVR-LAMMA-1 0.853N  0.853N  0.860N  0.862N
LR-LAMMA-4 0.851N  0.851N  0.857N  0.863N
SVR-LAMMA-4 0.840 0.844 0.846 0.852
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Table 6.11: Results of ASM-MOMA and LAMMA (A = 1 and A = 4) with lin-
ear regression (LR) and support vector regression (SVR) on the
test problems. Average hypervolume attained during 20 runs.
Best values are in italics, significantly better values are in bold
with the appended letters denoting the variants which are sig-
nificantly worse (N for no model of IBEA, S for support vector
regression, and L for linear regression), only the different models
for the same variant of the algorithm are compared.

DTLZ3

Objective function evaluations

Dim. Algorithm

1,000 2,000 5,000 10,000

IBEA 0.732 0.79 0.839 0.872
LR-ASM-MOMA 0.752 0.799 0.860 0.888
SVR-ASM-MOMA 0.738 0.788 0.84 0.867

5 LR-LAMMA-1 0.734 0.78 0.834 0.865
SVR-LAMMA-1 0.752 0.798 0.854 0.883
LR-LAMMA-4 0.734 0.784 0.828 0.866
SVR-LAMMA-4 0.756 0.804 0.845 0.872

IBEA 0.519 0.519 0.527 0.531

LR-ASM-MOMA | 0.570N 0.572N  0.581NS 0.585N
SVR-ASM-MOMA 0.545 0.549 0.548 0.555

10 LR-LAMMA-1 0.542 0.551N  0.560N 0.565N
SVR-LAMMA-1 0.546 0.55 0.56 0.566N
LR-LAMMA-4 0.540 0.549 0.556 0.562
SVR-LAMMA-4 0.525 0.537 0.547 0.55
IBEA 0.447 0.452 0.457 0.458

LR-ASM-MOMA 0.458 0.463 0.466 0.469
SVR-ASM-MOMA 0.458 0.462 0.468 0.474

15 LR-LAMMA-1 0.464 0.472N  0.477N 0.477
SVR-LAMMA-1 0.467 0.472 0.473 0.47
LR-LAMMA-4 0.479N  0.484N  0.489N 0.491N

SVR-LAMMA-4 0.477N  0.480N  0.490N 0.491N
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Table 6.12: Results of ASM-MOMA and LAMMA (A = 1 and A = 4) with lin-
ear regression (LR) and support vector regression (SVR) on the
test problems. Average hypervolume attained during 20 runs.
Best values are in italics, significantly better values are in bold
with the appended letters denoting the variants which are sig-
nificantly worse (N for no model of IBEA, S for support vector
regression, and L for linear regression), only the different models
for the same variant of the algorithm are compared.

DTLZ4

Dim. Algorithm

Objective function evaluations

1,000 2,000 5,000 10,000

IBEA
LR-ASM-MOMA
SVR-ASM-MOMA

0.092 0.147 0.184 0.208
0.172N  0.290N  0.386N  0.421N
0.202N  0.347N  0.449N  0.484N

5 LR-LAMMA-1 0.217N  0.328N  0.428N  0.470N
SVR-LAMMA-1 0.230N  0.336N  0.431N  0.460N
LR-LAMMA-4 0.169N  0.289N  0.380N  o0.407N
SVR-LAMMA-4 0.166N  0.272N  0.388N  0.434N
IBEA 0.557 0.558 0.559 0.559
LR-ASM-MOMA 0.626N  0.637N  0.637N  0.636N
SVR-ASM-MOMA | o0.610N  0.625N  0.627N  0.626N

10 LR-LAMMA-1 0.627NS  0.640NS 0.641NS 0.642NS
SVR-LAMMA-1 0597N  0.605N  0.605N  0.604N
LR-LAMMA-4 0.613N  0.618N  0.621N  0.621N
SVR-LAMMA-4 0599N  0.617N  0.642N 0.674
IBEA 0.96 0.961 0.962 0.962
LR-ASM-MOMA 0973N  0.973N  0.973N  0.973N
SVR-ASM-MOMA | 0.973N  0.973N  0.973N  0.973N

15 LR-LAMMA-1 0974N  0.974N  0.974N  0.974N
SVR-LAMMA-1 0.972N  0.972N  0.972N  0.972N
LR-LAMMA-4 0.976N  0.976N  0.975N  0.974N

SVR-LAMMA-4

0974N  0.976N  0.976N  0.976N
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e-IBEA reached after 10,000 evaluations, was reached by ASM-MOMA
after 5,000 evaluations in the 5 objective case, 2,000 evaluations in the
10 objective case, and only 1,000 evaluations in the 15 objective case.

Linear regression seems to be the best model for DTLZ3 also, for
almost all of the configurations (except 15 objectives after 5,000 and
10,000 generations, where support vector regression wins). For the
configuration with 10 objectives, the linear regression ASM-MOMA pro-
vides significantly better results than e-IBEA. Moreover, we can notice
that even after 1,000 evaluation the ASM-MOMA already has better re-
sult than e-IBEA after 10,000 evaluations, thus reducing the required
number of evaluations more than 10 times.

On DTLZ4, ASM-MOMA with either model is significantly better
than e-IBEA in all cases. Similarly to DTLZ2, support vector regression
works better in the 5 objective case and linear regression is slightly
better for higher number of objectives. Moreover, in this case the per-
formance of e-IBEA after 10,000 evaluations is reached by ASM-MOMA
after only 1,000 evaluations in all cases. The number of objective func-
tion evaluations is again decreased more than 10 times.

6.42 LAMMA

The results for LAMMA on the selected benchmark functions are simi-
lar to those of ASM-MOMA.

On DTLZ1 with 5 objectives the convergence is even slower than
for ASM-MOMA, but the results after 10,000 evaluations are almost the
same. The convergence slows down even more, when more local
(A = 4) are used. In this case locality of the models does not help and
a single global meta-model is better. When the number of objectives
increases the differences tend to get smaller. LAMMA provides less
significant improvements than ASM-MOMA on this test problems.

On DTLZ2 we see more significant results with LAMMA, compared
to ASM-MOMA. Also the differences between the two types of meta-
models are lower both for A =1 and A = 4. LAMMA provides similar
speed-ups (in the terms of the function evaluations) as ASM-MOMA (5
to 10 times in this case).

On DTLZ3 LAMMA again provides better results than e-IBEA. In the
case of 15 objectives, the results are even significantly better regard-
less of the meta-model used (for A = 4).

On DTLZ4 we again see the significant improvements we observed
with ASM-MOMA in all situations and cases. In this case LAMMA with
A = 1 provides the best results. The speed ups are again more than 10
times, as LAMMA after 1,000 evaluations reaches better hypervolumes
than those obtained by e-IBEA after 10,000 evaluations.
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6.5 CONCLUSION

In this chapter we presented a memetic evolutionary algorithm for
multi-objective optimization with local distance-based aggregate sur-
rogate model. We showed that the local models give better results
than a single global model, usually reducing the number of needed
function evaluations by 10%, with occasional reductions over 40%. Al-
though this difference may seem rather small, it may greatly reduce
the associated costs in practical tasks.

We also showed that the algorithm is usable even for problems with
quite simple objective functions, which take only milliseconds to eval-
uate, thus making it more widely usable. In fact, ASM-MOMA could be
used even in the case of some of the ZDT benchmarks (namely ZDT3),
as the reduction was so large, that the H,,;;, = 0.99 was reached faster
(in terms of time) by ASM-MOMA that NSGA-IL.

However, we saw that some problems are still difficult to solve with
LAMMA, and these provide the motivation for further research. The
question is, how well the benchmark problems correspond to the real-
life ones, and also how to decide, whether a given problem belongs
to a class of problems which can be easily solved by the presented
evolutionary algorithm.

We have also shown that aggregate meta-models can be used to
speed up the search of evolutionary algorithms for many-objective
optimization problems. These meta-models are able to provide new
non-dominated individuals and thus speed up the search.

The use of aggregate meta-models in many-objective optimization
can also be seen as a combination of two approaches: indicator based
algorithm and scalarization. In this case the scalarization is incorpo-
rated as a memetic operator and does not use new objective function
evaluations, however it still provides new non-dominated individuals
which can be used by the main many-objective algorithm.

The results indicate that using aggregate meta-models might be a
promising direction in the field of many-objective optimization, how-
ever some questions remain. One of them is, how would these ap-
proaches scale with the number of variables, as this is what directly
affects the dimension of the space in which the model is built.
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PRE-SELECTION IN ASM-MOMA

In this chapter, we continue to investigate ASM-MOMA further. One
of the areas, where the algorithm can be further improved is the se-
lection of individuals for evaluation by the real objective function. If
the individuals which are not prospective are not evaluated at all, the
performance of the algorithm can be further increased. However, we
will see that one must proceed very carefully when selecting such
individuals in order to avoid the pre-mature convergence of the algo-
rithm. The new selection scheme is derived in two steps — first, we
show that selecting one best individual improves the performance of
the optimizer, and than we provide a (different) way to select more
than one individual in each generation.

The motivation for pre-selection comes from the fact that offspring
are generated randomly, and as such there is a certain probability
that the new offspring will be worse than its parents. If we were
able to detect these offspring before they are evaluated by the real
expensive objective function, we might be able to reduce the number
of evaluations further.

Another motivation comes from the fact that steady state algo-
rithms (i.e. algorithms which produce only one individual per gen-
eration) are often used for optimization of expensive objectives — the
faster feedback from the fitness function leads to a more effective
search.

Inspired by the steady-state algorithms we first propose a steady-
state variant of ASM-MOMA. This variant is a simple augmentation
of the original ASM-MOMA. The only change is the addition of a
new pre-selection operator right after the local search operator. The
pre-selection operator evaluates all the individuals using a surrogate
model and selects only the best one (according to the model). For the
first experiments, we use the same model we used during the local
search phase. Originally (Pilat and Neruda, 2012), we called this algo-
rithm with this kind of pre-selection “surrogate based multi-objective
evolution strategy” (SBMO-ES). The term “evolution strategy” is used
in a more general manner in this case, as the only thing that the algo-
rithm has in common with evolution strategies is the (A 4 1) selection
scheme.

The main problem of SBMO-ES is the large overhead all the modeling
and local searches have. The worst part is that most of the work done
during one generation of the evolutionary algorithm is dropped as
only one of the generated individuals is selected and evaluated. We
may do a similar discussion of the modeling overhead we did in the
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previous chapter and as long as there is a reduction in the number
of evaluations SBMO-ES may still be more effective than ASM-MOMA
for sufficiently expensive objectives. But the large overhead makes
SBMO-ES less useful in situations where the objectives are not so ex-
pensive and it does not provide the speed up for relatively cheap
problems like ASM-MOMA does.

7.1 PRE-SELECTION IN ASM-MOMA

The surrogate-based multi-objective evolution strategy (SBMO-ES) is
a quite simple modification of LAMMA. The main difference is the
additional pre-selection step, which trains a global surrogate model
(model with the locality parameter A = 0) and uses it to select the
best offspring from those newly generated. Only this offspring is
then evaluated and added to the population. This pre-selection step
is executed after the new individuals are generated using the local
search step in LAMMA and before the environmental selection of the
external algorithm is performed.

The pre-selection step ensures that poor individuals are never eval-
uated and as such should improve the convergence speed. The main
disadvantage is that only one individual is selected in each generation
which makes the parallelization of this algorithm more complicated.
Also, the overhead of the new algorithm is much larger, as after each
generation only one individual is created instead of multiple individ-
uals created by ASM-MOMA and LAMMA.

7.2 EXPERIMENTS — ONE PRE-SELECTED INDIVIDUAL

To assess the performance of SBMO-ES we compare it to two algo-
rithms, which we presented earlier, namely LAMMA and ASM-MOMA
and to plain versions of NSGA-II (Deb, Pratap, et al., 2002) and e-IBEA
(Zitzler and Kiinzli, 2004). Different configurations are tested — we
used NSGA-II and e-IBEA as the external evolutionary algorithms, both
of them use the Simulated Binary Crossover (SBX) (Deb and Agrawal,
1994) and Polynomial Mutation (PM) (Deb and Goyal, 1996) as their
genetic operators. We tested linear regression and support vector re-
gression as the surrogate models used during the local search phase
and the selection procedure. The local and global models were based
on the same model in all cases (i.e. they both used linear regression,
or they both used support vector regression). The support vector
regression uses polynomial kernels with the degree 1, i.e. the dot
product of the two vectors. The parameters of the methods are the
same as those we used in the previous chapter, but for the sake of
self-containedness of this chapter we repeat them here (Table 7.1).
We again use the H,,;, metric we defined in the previous chapter to
make the comparison.
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Table 7.1: The parameters of the method

Parameter | External EA Internal EA

Termination criterion | 50,000 evaluations 30 generations

Population size | 50 50

Crossover probability | 0.8 0.8
Crossover operator | SBX SBX

Mutation probability | o.1 0.2
Mutation operator | PM PM

Memetic operator prob. | 0.25 -

Maximum archive size | 400 -

Model locality parameter A 1.0

The algorithm was tested on selected functions from the ZDT (Zit-
zler, Deb, et al., 2000) benchmark set, namely ZDT1 with 30 variables,
and ZDT2, ZDT3, and ZDT6 with 15 variables. The median num-
ber of function evaluations needed to attain the specified H,u, is
reported, 20 independent runs were made for each of the configura-
tions. The results for ASM-MOMA and LAMMA are also repeated
here to provide comparison for the newly developed method.

7.2.1  General observations

The results indicate that SBMO-ES is generally able to outperform both
ASM-MOMA and LAMMA. In most cases even the worst variant of
SBMO-ES is better, or comparable with, the best variant of ASM-MOMA
and LAMMA. When the same variants (i.e. the same external algo-
rithm and type of model) are compared, the evolutionary strategy
based one is better in all cases except on ZDT3 with NSGA-II as exter-
nal algorithm and SVR as the surrogate model. However, even in this
case, the results are not significantly worse.

Generally, the version which uses NSGA-II as the external algorithm
tends to show smaller improvements. There is almost none improve-
ment on ZDT2 and ZDT3 test problems, where SVR is used as the
surrogate model. This may be caused by the inability of the NSGA-II
selection procedure to provide good spread of solutions and there-
fore it is stuck in some local optima. e-IBEA seems not to have such
problems and the improvements tend to be quite large.

The best improvement can be found on ZDT1 with NSGA-II as ex-
ternal algorithm and SVR as the surrogate model, here, the number of
evaluations dropped to less than a half of those needed by ASM-MOMA,
the second best configuration. Another reduction to approximately a
half of the original can be observed for e-IBEA on the ZDT2 (both
types of surrogate models) and ZDT3 (SVR) problems. On ZDTS6,
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Table 7.2: Median number (20 runs) of function evaluations needed to reach
the specified H,,;j, on ZDT1 and ZDT2 test problems. The best
values are in bold. The name of the method is encoded as follows:
NSGA and IBEA indicate the type of the external evolutionary
algorithm (NSGA-II and e-IBEA respectively), LR and SVM stand
for the type of the surrogate model used (linear regression and
support vector regression), G, L, and ES indicate the algorithm
(ASM-MOMA, LAMMA and SBMO-ES).

ZDT1
Hyatio 0.5 0.75 0.9 0.95 0.99
NSGA-LR-G 1500 2000 2400 2800 12750
NSGA-SVM-G 1450 2050 2350 2850 13550
NSGA-LR-L 1300 1750 2250 2600 13100
NSGA-SVM-L 1350 1650 2150 2450 14150
NSGA-LR-ES 949 1293 1692 1985 5097
NSGA-SVM-ES 1019 1442 1479 1751 4551
IBEA-LR-G 1450 2500 2800 2950 7450
IBEA-SVM-G 1400 2050 2700 3100 6850
IBEA-LR-L 1300 1900 2400 2750 7500
IBEA-SVM-L 1350 1900 2350 2600 7100
IBEA-LR-ES 798 1197 1456 1759 5639
IBEA-SVM-ES 1115 1474 1723 1813 5072
ZDT2
Hyatio 0.5 0.75 0.9 0.95 0.99
NSGA-LR-G 350 550 750 950 1250
NSGA-SVM-G 350 450 700 1050 1750
NSGA-LR-L 350 450 600 850 1100
NSGA-SVM-L 350 550 750 900 1250
NSGA-LR-ES 156 257 367 719 916
NSGA-SVM-ES 206 294 733 809 1178
IBEA-LR-G 350 550 750 900 1650
IBEA-SVM-G 350 550 850 1050 1550
IBEA-LR-L 300 500 700 850 1350
IBEA-SVM-L 350 550 800 1000 1450
IBEA-LR-ES 150 246 380 486 788
IBEA-SVM-ES 153 251 314 394 678
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Table 7.3: Median number (20 runs) of function evaluations needed to reach
the specified H,,;j, on ZDT3 and ZDT6 test problems. The best
values are in bold. The name of the method is encoded as follows:
NSGA and IBEA indicate the type of the external evolutionary
algorithm (NSGA-II and e-IBEA respectively), LR and SVM stand
for the type of the surrogate model used (linear regression and
support vector regression), G, L, and ES indicate the algorithm
(ASM-MOMA, LAMMA and SBMO-ES respectively).

ZDT3
Hyatio 0.5 0.75 0.9 0.95 0.99
NSGA-LR-G 300 500 700 800 1150
NSGA-SVM-G 350 500 700 750 1100
NSGA-LR-L 300 450 650 800 1050
NSGA-SVM-L 350 550 700 850 1000
NSGA-LR-ES 166 295 631 831 831
NSGA-SVM-ES 165 293 744 857 1064
IBEA-LR-G 350 550 850 950 1300
IBEA-SVM-G 350 550 850 1000 1300
IBEA-LR-L 350 450 750 900 1300
IBEA-SVM-L 400 650 850 1050 1450
IBEA-LR-ES 187 272 450 553 901
IBEA-SVM-ES 172 259 422 536 722
ZDTe6
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA-LR-G 2750 5950 11100 15750 30500
NSGA-SVM-G 2500 4950 8650 12500 23500
NSGA-LR-L 2850 5850 10550 15350 209200
NSGA-SVM-L 2600 4950 9100 12900 25300
NSGA-LR-ES 1348 3096 6558 9623 19581
NSGA-SVM-ES 1327 3021 5652 8026 17284
IBEA-LR-G 3050 6500 13400 17600 32100
IBEA-SVM-G 3000 7250 14100 19250 34150
IBEA-LR-L 3050 6850 13050 18750 31400
IBEA-SVM-L 3000 6500 12650 17850 32550
IBEA-LR-ES 1629 4059 8468 12170 21816
IBEA-SVM-ES 1651 4477 8824 12498 23515
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which was the hardest problem for ASM-MOMA and LAMMA, the num-
ber of evaluations dropped by 20% for NSGA-II based external algo-
rithm and by a third for e-IBEA based one.

In almost all cases support vector regression provides better mod-
els than linear regression. As the training and evaluation time for
both these models is similar, SVR seems to be better and can be rec-
ommended as the first choice for unknown problems, especially in
combination with e-IBEA.

7.2.2 Detailed analysis

On ZDT1, LAMMA and ASM-MOMA show differences between NSGA-II
and e-IBEA based algorithms. However, this difference is much smaller
when SBMO-ES is used. Both variants need about 5,000 function eval-
uations to attain the H,,;, of 0.99. For comparison: this value is 4-5
times lower than what plain NSGA-II or e-IBEA needs.

ZDT2 shows two different results: for NSGA-II based SBMO-ES there
is almost none reduction and the new evolutionary algorithm is com-
parable to LAMMA. For e-IBEA based SBMO-ES, we observe the reduc-
tion to approximately a half. In this case, the crowding distance used
in the NSGA-II selection procedure was probably not able to pro-
vide sufficient diversity in the population and thus slowed down the
search. Compared to plain NSGA-II and €-IBEA, SBMO-ES uses approx-
imately 8 and 20 times lower number of function evaluations respec-
tively.

ZDT3 is similar to ZDT2 regarding the results: almost no improve-
ment for NSGA-II based algorithm and significant improvement for
€-IBEA based one. However, we can see quite a large difference be-
tween SVR based and linear regression based SBMO-ES with NSGA-II
selection procedure. This is another clue, that NSGA-II selection proce-
dure might suffer from convergence to local minima or poor spread
of the individuals — the SVR model should have lower error than the
linear regression and thus should guide the search more aggressively
towards a local Pareto front. NSGA-II selection can deal with the pres-
sure of linear regression, however, it has problems with the support
vector regression. Compared to plain e-IBEA, SBMO-ES uses 46 times
lower number of objective function evaluations.

ZDT6 has been the most difficult problem both for ASM-MOMA and
LAMMA. Regarding the number of function evaluation it is still the
most difficult even for SBMO-ES, however SBMO-ES is able to reduce the
number of evaluations significantly compared to both ASM-MOMA and
LAMMA. The two latter algorithms had problems to even decrease the
number of evaluations compared to plain NSGA-II and e-IBEA. SBMO-ES
can decrease the number of evaluations by almost 25% with NSGA-II
and almost a third with e-IBEA (compared to best configurations of
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Table 7.4: Comparison of SBMO-ES and its version with 5 individuals se-
lected in each generation (SMBO-ES-5). Median number (20 runs)
of function evaluations needed to reach the specified H,u;, on
ZDT1, ZDT2, ZDT3 and ZDT6 test problems. NSGA-II was used
as the external algorithm and linear regression as the meta-model.

ZDT1
Hatio 0.5 0.75 0.9 0.95 0-99
SBMO-ES 949 1293 1692 1985 5097
SBMO-ES (5) 2210 2590 2850 2990 4095
ZDT2
Hatio 0.5 0.75 0.9 0.95 0-99
SBMO-ES 156 257 367 719 916
SBMO-ES (5) 110 1050 1250 1955 2745
ZDT3
Hyatio 0.5 0.75 0.9 0.95 0-99
SBMO-ES 166 295 631 831 831
SBMO-ES (5) 125 765 1420 2165 7475
ZDT6
Hyatio 0.5 0.75 0.9 0.95 0-99
SBMO-ES 1348 3096 6558 9623 19581
SBMO-ES (5) 2780 8735 - - -

LAMMA and ASM-MOMA). Compared to plain NSGA-II and ASM-MOMA,
the reduction is approximately by one third in both cases.

7.3 PRE-SELECTION OF MORE INDIVIDUALS

We have seen that the pre-selection of a single individual improves
the performance of LAMMA. However, the overhead of such an algo-
rithm is large. Moreover, such an algorithm is hard to parallelize as
the evaluations of the real objectives need to be done by one. Ad-
ditionally, in practice, it is sometimes possible to evaluate more in-
dividuals at once for a cost which is lower than evaluating each of
the individuals by one. Therefore, our next goal is to provide a pre-
selection scheme, which would ensure similar performance to the one
described above, but would also provide more individuals in each
generation. This would also reduce the overhead of the evolution
(more precisely, it would spread the overhead over more individuals)
and thus make the algorithm usable in cases with less expensive ob-
jectives. Therefore, our goal for this section is to find a pre-selection
scheme which would provide more individuals in each generation
and have at the same time at least the same performance as SBMO-ES.
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Table 7.5: Comparison of SBMO-ES and its version with K-Means to di-
vide the non-dominated individuals (SBMO-ES-K). Median num-
ber (20 runs) of function evaluations needed to reach the specified
H,utio on ZDT1, ZDT2, ZDT3 and ZDT6 test problems. e-IBEA
was used as the external algorithm and linear regression as the
meta-model.

ZDT1
Hatio 0.5 0.75 0.9 0.95 0.99
SBMO-ES 798 1197 1456 1759 5639
SBMO-ES-K 868 5561 7390 9871 -
ZDT2
Hyatio 0.5 0.75 0.9 0.95 0.99
SBMO-ES 150 246 380 486 788
SBMO-ES-K 271 352 459 557 1214
ZDT3
Hyatio 0.5 0.75 0.9 0.95 0.99
SBMO-ES 187 272 450 553 901
SBMO-ES-K 289 469 739 1180 2311
ZDT6
Hyatio 0.5 0.75 0.9 0.95 0.99
SBMO-ES 1629 4059 8468 12170 21816
SBMO-ES-K 66823 - - - -

The easiest way how to change SBMO-ES to provide more than one
individual per generation would be to simply select more individu-
als in the pre-selection phase. Although this provides more individ-
uals per generation, the experiments show that it also requires larger
number of objective function evaluations. The results of preliminary
experiments with such algorithm are presented in Table 7.4. In these
experiments, the memetic phase is the same as described above, and
the pre-selection phase selects five best individuals as evaluated by
the same model, which was used during the local search.

The results show that in most situations the algorithm required
more evaluations, the only exception being the ZDT1 task (Zitzler,
Deb, et al., 2000), where the increased number of selected individ-
uals in fact led to a slight decrease in the number of evaluations.
By studying the algorithm more carefully we noticed that most of
the selected individuals are close together, which decreases the di-
versity in the population and in the archive, which in turn leads to
poorly trained surrogate models. Moreover, as the training set does
not change much between the two consecutive generations, the model
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is also likely very similar and this may generate a lot of similar indi-
viduals as the algorithm proceeds.

With this information in mind, we tried to make the algorithm to
create a more diverse set of offspring after the local search phase.
To this end we decided to use the k-means algorithm to cluster the
non-dominated front of the archive, and to optimize the individuals
towards each of the clusters separately (we computed the distance to
the cluster instead of the whole non-dominated set during the cre-
ation of the training set). We set the algorithm to create 5 clusters,
and trained the model. According to this model we selected 1/5 of
the best offspring created by the operators of the external algorithm
and we run the local search phase.

The preliminary results of this version are presented in Table 7.5.
We can see that the results are again not better than those of SBMO-ES
with the same configuration, especially in the case of the ZDT6 prob-
lem the algorithm suffered from premature convergence and was not
able to converge to the global Pareto set at all.

We also tried other approaches which used clustering in different
ways, with the goal to increase the diversity of the population and
the training set for the meta-models. As an example, we tried to
cluster the set of generated individuals and select only one from each
cluster. We also used different clustering techniques, tried different
population sizes etc. but neither of these approaches led to better
convergence than the one presented above as the new algorithm. In
all cases the results of the other attempts were significantly worse at
least on some of the test problems. We do not present these results
here due to space reasons.

The important message here is that the mutual effects of the lo-
cal search phase and the pre-selection phase are more complicated
than what was originally expected, and changing the pre-selection
can have dramatic effects on the performance of the algorithm as a
whole.

7.3.1 Different meta-model for pre-selection

The problem described above indicates that a different model should
be used in the local search and pre-selection phases. To this end,
we propose a pre-selection based on surrogate models trained for
each of the objectives individually. The resulting algorithm is called
multi-objective evolutionary algorithm with local search and pre-selection
(LSPS-MOEA).

The new pre-selection operator (see Algorithm 7.1) thus creates a
surrogate model for each of the objectives and selects only the off-
spring which are not dominated by any of the parents. There is also
a condition which further reduces the strength of the pre-selection: if
only a small number of individuals is selected, some of the offspring
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Algorithm 7.1 The pre-selection algorithm

Require: The meta-model type
Require: The population of parents P
Require: The population of pre-offspring O
Require: The archive of evaluated individuals A
T; := the training set for objective i
M; := the meta-model trained on set T;
S := initialize empty set of pre-selected individuals
for all pre-offspring PO € O do
if PO is not dominated by any parent in P according to models
M; then
S:=SUPO
if size of S is less than m then
Add a randomly selected pre-offspring from O to S
return The set of pre-selected individuals S

are added randomly (in our test we added 10% of the population ran-
domly if less than 20% of the population was selected, these numbers
were chosen after a series of preliminary tests). There may be at least
two reasons why only a few individuals are selected: either the model
is trained poorly (e.g. because it is biased to a part of the search space
as there are a lot of individuals in the archive in this region), or the al-
gorithm has found a local minimum. In both of these cases increasing
the diversity of the population (and also of the archive and training
set) should improve the performance. These are also the reasons for
such a rule in the pre-selection step.

The pre-selection described here is similar to the one used by Em-
merich and Naujoks (2004), however, in our algorithm we only select
the non-dominated individuals while they always selected a given
number of individuals according to non-dominated sorting.

The surrogate model is again based on existing regression models
(e.g. support vector regression or linear regression). The training set
for these models directly maps the variables of the individuals on
the values of the objective function. Thus, the training set T; for the
i-th objective contains pair (x, f;(x)) for each individual x from the
archive.

7.4 EXPERIMENTS — MORE PRE-SELECTED INDIVIDUALS

The performance of the new pre-selection scheme was again com-
pared to SBMO-ES on the ZDT (Zitzler, Deb, et al., 2000) test suite.
We compared different types of models in both local search and pre-
selection and also different combinations of these types of models.
The settings of the algorithm and the models match those we used
for SBMO-ES.
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Table 7.6: Median number (20 runs) of function evaluations needed to reach
the specified H,,;, on ZDT1 test problem. The best values are
in bold. The name of the method is encoded as follows: NSGA
and IBEA indicate the type of the external evolutionary algorithm
(NSGA-II and e-IBEA respectively), LR, SVM, and MLP stand
for the type of the surrogate model used (linear regression, sup-
port vector regression, and multilayer perceptron), ES indicate
the SBMO-ES, and two surrogate models indicate the two mod-
els used in the proposed algorithm.

ZDT1
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA 5600 18600 19850 20750 21850
NSGA-LR-ES 949 1293 1692 1985 5097
NSGA-SVM-ES 1019 1442 1479 1751 4551
NSGA-LR-LR 603 3897 3972 4143 8465
NSGA-LR-SVM 500 1420 1904 2053 5285
NSGA-LR-MLP 867 1896 2380 3101 5512
NSGA-SVM-LR 809 1794 2173 2591 5300

NSGA-SVM-SVM 617 1565 2152 2355 5639
NSGA-SVM-MLP 861 2266 3284 3494 5821

IBEA 7400 13750 18200 20000 25550
IBEA-LR-ES 798 1197 1456 1759 5639
IBEA-SVM-ES 1115 1474 1723 1813 5072
IBEA-LR-LR 606 2234 2343 2414 3588
IBEA-LR-SVM 453 3815 4367 4625 5694
IBEA-LR-MLP 613 1340 1607 2025 3884
IBEA-SVM-LR 587 2180 2695 2886 5230
IBEA-SVM-5VM 470 2206 2484 2601 3798

IBEA-SVM-MLP 8o1 1542 2748 3371 4125
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Table 7.7: Median number (20 runs) of function evaluations needed to reach
the specified H,,, on the ZDT2 test problem. The best values
are in bold. The name of the method is encoded as follows:
NSGA and IBEA indicate the type of the external evolutionary al-
gorithm (NSGA-II and e-IBEA respectively), LR, SVM, and MLP
stand for the type of the surrogate model used (linear regression,
support vector regression, and multilayer perceptron), ES indicate
the SBMO-ES, and two surrogate models indicate the two models
used in the proposed algorithm.

ZDT2
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA 650 1650 3550 5050 7900
NSGA-LR-ES 156 257 367 719 916
NSGA-SVM-ES 206 294 733 809 1178
NSGA-LR-LR 145 196 293 388 630
NSGA-LR-SVM 162 217 274 320 517
NSGA-LR-MLP 177 234 348 718 1610
NSGA-SVM-LR 150 201 299 342 617
NSGA-SVM-SVM 156 207 259 424 719
NSGA-SVM-MLP 177 246 359 377 573
IBEA 750 2050 5150 7800 13000
IBEA-LR-ES 150 246 380 486 788
IBEA-SVM-ES 153 251 314 394 678
IBEA-LR-LR 151 204 275 332 620
IBEA-LR-SVM 153 211 267 312 522
IBEA-LR-MLP 177 246 359 377 573
IBEA-SVM-LR 151 214 262 295 603
IBEA-SVM-SVM 153 212 275 324 543
IBEA-SVM-MLP 151 216 261 319 470
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Table 7.8: Median number (20 runs) of function evaluations needed to reach
the specified H,,, on the ZDT3 test problem. The best values
are in bold. The name of the method is encoded as follows:
NSGA and IBEA indicate the type of the external evolutionary al-
gorithm (NSGA-II and e-IBEA respectively), LR, SVM, and MLP
stand for the type of the surrogate model used (linear regression,
support vector regression, and multilayer perceptron), ES indicate
the SBMO-ES, and two surrogate models indicate the two models
used in the proposed algorithm.

ZDT3
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA 600 1250 4150 7250 -
NSGA-LR-ES 166 295 631 831 831
NSGA-SVM-ES 165 293 744 857 1064
NSGA-LR-LR 159 259 340 428 727
NSGA-LR-SVM 151 223 317 379 699
NSGA-LR-MLP 183 259 439 585 681
NSGA-SVM-LR 167 251 344 430 561
NSGA-SVM-SVM 165 250 340 382 552
NSGA-SVM-MLP 201 270 434 681 869
IBEA 650 1550 5400 8150 33350
IBEA-LR-ES 187 272 450 553 901
IBEA-SVM-ES 172 259 422 536 722
IBEA-LR-LR 159 223 292 367 478
IBEA-LR-SVM 156 209 318 367 488
IBEA-LR-MLP 193 295 375 416 562
IBEA-SVM-LR 155 211 288 328 531
IBEA-SVM-SVM 162 223 283 358 452
IBEA-SVM-MLP 178 262 371 424 592
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Table 7.9: Median number (20 runs) of function evaluations needed to reach
the specified H,,, on the ZDT6 test problem. The best values
are in bold. The name of the method is encoded as follows:
NSGA and IBEA indicate the type of the external evolutionary al-
gorithm (NSGA-II and e-IBEA respectively), LR, SVM, and MLP
stand for the type of the surrogate model used (linear regression,
support vector regression, and multilayer perceptron), ES indicate
the SBMO-ES, and two surrogate models indicate the two models
used in the proposed algorithm.

ZDTeé
H,atio 0.5 0.75 0.9 0.95 0.99
NSGA 7950 10200 13950 17700 28650
NSGA-LR-ES 1348 3096 6558 9623 19581
NSGA-SVM-ES 1327 3021 5652 8026 17284
NSGA-LR-LR 1883 5897 10774 14714 28126
NSGA-LR-SVM 2946 5610 9747 13856 24635
NSGA-LR-MLP 1526 3646 6913 9750 19865
NSGA-SVM-LR 2076 6907 11936 14428 36085

NSGA-SVM-SVM 2122 7136 10688 13331 24859
NSGA-SVM-MLP 1429 3164 6399 9632 19046

IBEA 10300 13650 18400 23150 34050
IBEA-LR-ES 1629 4059 8468 12170 21816
IBEA-SVM-ES 1651 4477 8824 12498 23515
IBEA-LR-LR 2247 5119 10904 15140 20474
IBEA-LR-SVM 2298 4606 8961 11745 21844
IBEA-LR-MLP 1444 3509 7446 10543 18297
IBEA-SVM-LR 1999 5769 11471 15269 27479
IBEA-SVM-SVM 2012 6073 10778 14619 23034

IBEA-SVM-MLP 1634 3717 7233 10823 18894




7.4 EXPERIMENTS — MORE PRE-SELECTED INDIVIDUALS

Table 7.6 shows the results of our algorithm compared to original
NSGA-II (Deb, Pratap, et al., 2002), and e-IBEA (Zitzler and Kiinzli,
2004), and to SBMO-ES.

To shorten the headers of the table the names of the various tested
algorithms and their variants are encoded as follows: the models
used in the comparison are designated as “LR”, “SVM”, and “MLP”
for linear regression, support vector regression and multilayer per-
ceptron respectively. The original versions of NSGA-II and e-IBEA are
denoted as “NSGA” and “IBEA” respectively. SMBO-ES! (SMBO-ES!)
is distinguished by the “ES” suffix, preceded by the type of surrogate
model and the type of selection. The variations of the proposed al-
gorithm are expressed as the type of selection followed by the type
of local search model and the type of pre-selection model (i.e. IBEA-
LR-SVM is the new algorithm with e-IBEA selection, linear regression
as the local search model and support vector regression as the pre-
selection model).

The numbers in the table represent the median number of objec-
tive function evaluations needed to reach the specified H,4:;, value.
Twenty runs for each configuration were made. A “-” symbol means
that the particular configuration was not able to attain the specified
Hiatio-

7.4.1  General observations

Generally, the results indicate that the proposed algorithm works at
least as well as SBMO-ES while producing more individuals per gen-
eration and thus allowing for easy parallelization of the evaluations
of the real and costly objective functions as well as reducing the over-
head of modeling.

Another observation is that e-IBEA selection seems to work better
in this context than NSGA-II selection. This may be the case that
NSGA-II selection in unable to deal with the large number of new
non-dominated individuals and the discriminative power of the non-
dominated sorting diminishes. Thus, the selection is not able to ef-
fectively select good individuals, and the only criterion which guides
the search is the crowding distance. This is similar to the problems
NSGA-II has with tasks with more objective functions, although in this
case the reason is different.

Moreover, the results indicate that more complex models (MLP) do
not necessarily provide better results than simpler ones, although the
more complex models usually have lower mean square error. For the
local search models this corresponds to our previous findings. How-
ever, for the pre-selection models the results are new. One could
intuitively expect more precise models to provide better results, how-
ever this may not be the case, as the mean square error (which is
the measure minimized during the training of such models) need not
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correspond to the suitability of the model to be used during the evo-
lution (similar conclusion was also made by others (Diaz-Manriquez
et al.,, 2011)). Overall, the best results are often achieved by the com-
bination of linear regression as the local search model and support
vector regression as the pre-selection model.

7.4.2  Specific observations

On the ZDT1 test problem, an interesting behavior can be observed.
While SBMO-ES needs a large number of evaluations to improve from
the Hyuip = 0.95 to Hyaip = 0.99, the proposed algorithm, together
with the original non-surrogate versions of the algorithm (especially
NSGA-II) require a large number of evaluations for improvement from
Hyatio = 0.5 to Hygtip = 0.75. This might indicate that both of these ap-
proaches have problems with different local optima, and provides an
opportunity for further research of an adaptive selection. Interesting
results are those of IBEA-LR-LR, IBEA-SVM-SVM and both config-
urations with the MLP pre-selection which were able to escape the
local optima quite quickly and thus reduced the required number of
evaluations considerably compared to SBMO-ES.

For ZDT2 and ZDT3, the results compared to SBMO-ES are better
for all configurations except NSGA-LR-MLP on ZDT2. The number
of evaluations is decreased significantly, in some cases by almost 50%.

ZDT6 is the most complex of the test problems — both of its ob-
jective functions are multi-modal. This is the reason, why the dif-
ferences among the different configurations of the models are most
pronounced here. In this test, the more complex models of multi-
layer perceptrons improve the results significantly compared to the
simpler models created by linear regression or support vector regres-
sion. This might be caused by the more complex objectives in ZDT6
compared to the other problems. Although the best result for this
algorithm was obtained by SBMO-ES, the results obtained by IBEA-LR-
MLP are comparable (only 6% worse) and the more parallel nature of
this algorithm can prove to be more suited for practical tasks.

7.5 COMPARISON OF ASM-MOMA AND LSPS-MOEA

Although we have provided comparisons of most of the methods
in the chapters where they were presented, these comparisons were
mostly on the ZDT benchmark set which is rather easy. It contains
mostly separable functions, with the Pareto set on the boundary of
the search space. In this section, we compare selected methods on a
wider set of benchmark functions and we also let the methods run
longer to provide a more realistic comparison. In this section, the
algorithms are compared on the ZDT (Zitzler, Deb, et al., 2000), IHR
(Igel et al., 2007), and WFG (Huband et al., 2006) benchmark sets.
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We compare NSGA-1I with the hypervolume contribution as the sec-
ondary sorting criterion (sSNSGA-II), to ASM-MOMA with support
vector regression based models (¢ = 0.01, C = 5, RBF kernel with
o = 0.5) and to LSPS-MOEA with the same type of models. As the
WEFG benchmarks have different domains for different variables, we
also added a variant of ASM-MOMA which divides the value of the
each of the variables by the range of its domain (ASM-MOMA-S).
For ZDT benchmarks this does not change anything, as all the vari-
ables are in the interval [0,1]. For IHR problems, this transforms the
variables to interval [—0.5,0.5], and for WFG all variables are again
scaled into [0,1]. LSPS-MOEA also uses this scaling in these experi-
ments. LSPS-MOEA uses only global model (locality A = 0), and both
ASM-MOMA and LSPS-MOEA use NSGA-II with Hypervolume as Sec-
ondary Sorting Criterion (sNSGA-II) as the external algorithm.

The algorithms were selected as representatives of the previous ap-
proaches. sNSGA-II is a better variant of NSGA-II and serves as the base-
line and external algorithm here, ASM-MOMA is the first algorithm we
proposed, and LSPS-MOEA is the most recent version of the algorithm.
The support vector regression based model was chosen as it provided
consistently good results in the previous experiments.

The ZDT1, ZDT2, and ZDT3 problems have 30 variables, the ZDT6
and all IHR problems have 10 variables, and the WFG problems have
24 variables (in all cases, these are the numbers suggested in the orig-
inal publications on these problems).

All algorithms have population of 100 individuals and use the
SBX crossover (with 0.9 probability) and polynomial mutation (0.03).
ASM-MOMA runs the local search with probability 0.25 and the inter-
nal evolutionary algorithm has 52 individuals and runs for 30 genera-
tions. It uses the same operators as the external algorithm (sNSGA-II is
used in all cases). The algorithm is given the limit of 100,000 objective
function evaluations.

In this case, we used the AH indicator — the difference between
the hypervolume of the optimal p-distribution (Auger, Bader, Brock-
hoff, and Zitzler, 2009) for the given problem and the hypervolume
of Pareto front found by the algorithm. This measure allows for eas-
ier visualization of the convergence when plotted on the logarithmic
scale, compared to the measures we used in the previous chapters.
Most of the algorithms are able to obtain AH = 0.001 at least on
some of the problems and in this cases the values of the H,,;;, would
be close to one, and it would be difficult to visualize the progress.

The results of the experiments are summarized in Figures 7.1 to 7.6.
The plots show the median AH obtained by the algorithms in 15 inde-
pendent runs as the function of the number of objectives evaluations.
The error-bars (plotted after each 2,000 evaluations) show the first
and third quartile of this value. Although all the runs were stopped
after 100,000 function evaluations, the algorithms usually converged
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Figure 7.1: Comparison of sNSGA-II, ASM-MOMA, and LSPS-MOEA on
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ZDT1, ZDT2, and ZDT3 benchmarks
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Figure 7.2: Comparison of sNSGA-II, ASM-MOMA, and LSPS-MOEA on
ZDT6, IHR1, and IHR2 benchmarks
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Figure 7.3: Comparison of sNSGA-II, ASM-MOMA, and LSPS-MOEA on
[HR3, IHR6, and WFG1 benchmarks
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Figure 7.4: Comparison of sNSGA-II, ASM-MOMA, and LSPS-MOEA on
WEFG2, WFG3, and WFG4 benchmarks
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Figure 7.5: Comparison of sNSGA-II, ASM-MOMA, and LSPS-MOEA on
WEFGs, WFG6, and WFG7 benchmarks
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Figure 7.6: Comparison of sNSGA-II, ASM-MOMA, and LSPS-MOEA on
WEGS8 and WFGg benchmarks
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Table 7.10: Comparison of the algorithms on the ZDT and IHR benchmarks.

The superscript indicates which of the other algorithms were
significantly worse (Mann-Whitney U-test p < 0.001; “N” for
sNSGA-II, “A” for ASM-MOMA, “S” for ASM-MOMA with scal-
ing, and “L” for LSPS-MOEA).

Prob. Algorithm Function evaluations
1000 5000 10000 25000 50000 100000
SNSGA-IT 1.70890 0.18617 0.01518 0.00035 0.0001245L 0.000134L
ZbT: | ASM-MOMA 0.88151V 0.00175N 0.00033N 0.00019N 0.00018 0.00017
ASM-MOMA-S | 0.88466N 0.00193N 0.00034N 0.00018N 0.00017 0.00016
LSPS-MOEA 0.01444N4S  0,00058N4S  0.00026N4S  0.00015N 0.00018 0.00016
SNSGA-II 225572 0.37916 0.03315 0.00040 0.0001145L  0.0001145L
ZDT, | ASM-MOMA 1.19259N 0.00292N 0.00040N 0.00019N 0.00016 0.00016
ASM-MOMA-S | 1.22651N 0.00325N 0.00040N 0.00018N 0.00016 0.00015
LSPS-MOEA 0.04609N45  0,00072N4S  0.00026N4S  0.00016N 0.00016 0.00016
SNSGA-II 1.81398 0.22630 0.02371 0.00038 0.00006 0.00005
7DT;3 ASM-MOMA 1.29742N 0.00563N 0.00050N 0.00008 0.00006 0.00005
ASM-MOMA-S | 1.09130N 0.00449N 0.00049N 0.00008 0.00006 0.00005
LSPS-MOEA 0.03684N4S  0,00109N4S  0.00022N4S 0.00006 0.00006 0.00005
SNSGA-II 3.81687 1.30253 0.31670 0.00669 0.00071 0.00057
7DT6 | ASM-MOMA 1.15168N 0.03239N 0.00342N 0.00064N 0.00061 0.00057
ASM-MOMA-S | 1.25898N 0.03811N 0.0039N 0.00067N 0.00064 0.00062
LSPS-MOEA 0.38956N45  0.02181N4S  0,00348N 0.00071N 0.00064 0.00061
SNSGA-II 0.70932 0.06992 0.05824 0.05734 0.05711 0.05649
R, | ASM-MOMA 0.11616N 0.05978N 0.05794 0.05757 0.05726 0.05695
ASM-MOMA-S | 0.10758N 0.05724N 0.05624 0.05593 0.05576 0.05517
LSPS-MOEA 0.07865N45  0.06019N 0.05865 0.05799 0.05753 0.05738
SNSGA-II 1.95942 0.50976 0.31471 0.15387 0.05985 0.00757
[HRa | ASM-MOMA 0.41365N 0.13860N 0.07623N 0.02987N 0.01435 0.00603
ASM-MOMA-S | 1.14490N 1.05561 1.04198 1.03247 0.98743 0.70423
LSPS-MOEA 0.27965N45  0.10404N 0.05339NS 0.02248NS  0.01127NS 0.00558N
SNSGA-II 1.08313 0.17258 0.12176 0.12031 0.11981 0.11957
IHR; ASM-MOMA 0.22870N 0.12536N 0.12170 0.12018 0.11989 0.11968
ASM-MOMA-S | 0.22190N 0.12548N 0.12182 0.12023 0.11988 0.11964
LSPS-MOEA 0.17366N45  0.12550N 0.12139 0.12002 0.11965 0.1195145
SNSGA-IT 6.42174 2.93054 1.92699 132843 1.08368 0.86082
IHR6 ASM-MOMA 3.74191N 1.91325N 1.37783NL 1.14771F 0.97041% 0.85406-
ASM-MOMA-S | 3.78398N 1.87897N 1.44271NL 1.07767NL  0.96284L 0.81122F
LSPS-MOEA 3.43330N4 2.08986N 1.69939 1.29656 1.11967 0.91169
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Table 7.11: Comparison of the algorithms on the WFG benchmark. The su-
perscript indicates which of the other algorithms were signifi-
cantly worse (Mann-Whitney U-test p < 0.001; “N” for sSNSGA-
II, “A” for ASM-MOMA, “S” for ASM-MOMA with scaling, and
“L” for LSPS-MOEA).

Function evaluations

Test Algorithm
1000 5000 10000 25000 50000 100000
SNSGA-II 10.70700 9.35227 8.70460 7.03192 5.17987 3.36809-
WEGr | ASM-MOMA 1051760 9.44238 8.68383 7.41937 5.81645 3.77332
ASM-MOMA-S | 10.28680N4  9.10285N4 8.53707 7.48011 5.58442 3.56751L
LSPS-MOEA 9.86843N4S 9078364 8.53448 7.57294 6.26300 426715
sNSGA-IT 3.26656 1.46850 1.12326 0.93374 0.88305 0.86558
WEGa | ASM-MOMA 3.26224 1.43741 1.10853 0.92990 0.86332 0.84710N
ASM-MOMA-S | 2.00426N4 1.03803N4 0.93445N4 0.87653N4 0.86343N 0.86110
LSPS-MOEA 1.25058N4S  0.95989N4S  (.88789NA 0.86402N4 0.85885" 0.85040
SNSGA-II 2.78777 0.68498 0.29435 0.11441 0.04831 0.03046
WFG3 ASM-MOMA 2.78861 0.59993 0.24546 0.07229 0.03272N 0.01407NSL
ASM-MOMA-S | 1.16110N4 0.28443N4 0.15653N4 0.06570N 0.04104 0.02771
LSPS-MOEA 0.54880N45  0.16679N4S  0.09173N4AS  0.04865N45  0.03270N 0.02395
SNSGA-II 2.19325 0.63526 0.32519 0.12998 0.03537 0.01288
WEG, | ASM-MOMA 2.23614 0.67815 0.29909 0.10870 0.03735 0.01778
ASM-MOMA-S | 1.82587N4 0.46778N4A 0.228304 0.067384 0.03402 0.01565
LSPS-MOEA 0.81912N4S  0.29346NAS  0.13820N45  0.04287NAS  0.02165N45  0.010294
SNSGA-II 2.81432 0.90662 0.65068 0.56572 0.55109 0.54776
WFGs ASM-MOMA 2.81188 0.93021 0.64657 0.56734 0.55322 0.54885
ASM-MOMA-S | 2.41022N4 0.70094N4A 0.613004 0.56416 0.55176 0.54857
LSPS-MOEA 1.23550N45  .68109N4 0.61480 0.56187 0.55415 0.54870
sNSGA-II 3.36046 0.95998 0.56237 0.39629 0.36284 0.33590
WEGs | ASM-MOMA 3.37579 0.94875 0.51098 0.37985 0.35655 0.30983
ASM-MOMA-S | 2.07042N4 0.51959N4 0.31521N4 0.20699N4 0.18005N4 0.17006N4
LSPS-MOEA 0.81183NV4S  0.32613N4S  (0.24228N4S  (.20148N4 0.18993N4A 0.18528N4
SNSGA-II 241298 0.52473 0.15836 0.04965 0.01754 0.00586
WFGy ASM-MOMA 2.34310 0.50924 0.20848 0.03985 0.01801 0.00667
ASM-MOMA-S | 1.15943N4 0.24937NA 0.128684 0.04809 0.01887 0.00684
LSPS-MOEA 0.49530N45 01426145 00730145 0.02512N45  0,00943NAS  0,00357N4S
SNSGA-II 3.38109 1.83913 1.45536 1.15209 1.02516 0.96183
WEGs | ASM-MOMA 3.30802 1.74878 1.36596N 1.12165 1.01803 0.95857
ASM-MOMA-S | 2.48120N4 1.51600N4 1.31268N 1.12447 1.00793 0.94049
LSPS-MOEA 1.66216N4S  125356NAS  1.14571NAS  0.98191NAS  0.91208NAS  (.87040NAS
SNSGA-II 2.79457 1.01242 0.997005 0.987015L 0.984545L 0.983805L
WFGo ASM-MOMA 2.63249 1.018755 1.00149 0.987415 0.985225 0.984505
ASM-MOMA-S | 1.29456N4 1.04947 1.02054 0.99975 0.99323 0.99006
LSPS-MOEA 1.12061N4S  1.03013 0.99693 0.99357 0.98916 0.98634
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much earlier, therefore we show only the parts of the plots until con-
vergence is achieved and the hypervolume (including the quartiles)
does not change. All the plots use logarithmic scale on the vertical
axis.

Moreover, the results are also numerically summarized in Tables
7.10 and 7.11. In this tables, we present the AH after a 1000, 5000,
10000, 25000, 50000, and 100000 objective function evaluations. Ad-
ditionally, superscripts above some of the values indicate, that the
given algorithm was significantly better than the algorithm indicated
by the superscript. The significance was tested by Mann-Whitney
U-test (also known as Wilcoxon rank-sum test) (Mann and Whitney,
1947; Wilcoxon, 1945), and results are considered significant if the
p-value of the test is less than 0.001. The superscripts encode the al-
gorithm in the following way - “N” stands for SNSGA-II, “A” stands
for ASM-MOMA, “S” denotes the ASM-MOMA with scaling before model
training, and “L” is for LSPS-MOEA.

Generally, the results confirm what we have already seen on the
ZDT benchmark set in the previous chapters. Both ASM-MOMA and
LSPS-MOEA generally outperform the plain sNSGA-II and lead to a sig-
nificant speed up, at least in the beginning of the evolution. The long
runs also allow us to see that in most cases all the algorithms find
a similar optima and the main difference is in the number of evalu-
ations it takes them. For some of the problems, sNSGA-II can slightly
outperform the surrogate based algorithms after a large number of
evaluations, although the difference is quite small. We can also see
that in most cases LSPS-MOEA is at least as good as ASM-MOMA, and it
is usually better. Also, the scaled version of ASM-MOMA gives better
results than the unscaled one for the WFG problems. They have the
same results on the ZDT benchmark, as the scaling does nothing in
this case.

The results on the ZDT benchmark set should not be surprising, as
it is the set we used in all of the comparisons before. The only new in-
formation here is that sNSGA-II can slightly outperform the surrogate
version on the ZDT1 and ZDT2 problems after approximately 40,000
function evaluations. Another interesting observation is that the per-
formance of ASM-MOMA and LSPS-MOEA is almost the same on the
ZDT6 problem. However, this is expected and it matches the results
we have seen earlier with the SVR-based model.

On the other hand, the results for the IHR benchmark are new. We
can see that in the case of IHR1 and IHR3 all the compared algo-
rithms converge to a AH value after a few thousand evaluations and
nothing changes afterward. On the other hand, for the IHR2 prob-
lem, slow convergence can be observed during the whole budget of
100,000 evaluations. Also, the behavior of ASM-MOMA with scaling be-
fore model training is interesting. The algorithm suffers much more
from pre-mature convergence than the others and is not able (in the
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median case) to converge very well, all the other algorithms perform
much better. However, sNSGA-1I shows quite large inter-quartile dif-
ference which also indicates that it has problems with convergence.
On the other hand ASM-MOMA without scaling and LSPS-MOEA both
converge relatively well, with LSPS-MOEA showing better results. On
IHR6, which is multi-modal, LSPS-MOEA has some problems to con-
verge, and although it outperforms sNSGA-IJ, it is not able to outper-
form ASM-MOMA.

The WFG set of benchmark functions is more challenging. One
can observe that for most of the functions even the AH = 0.1 is not
attained by the algorithms. This is partially due to the nature of the
external algorithm which have problem with these functions itself.
In most cases the surrogate modeling improves the speed of conver-
gence, however, the overall result is not improved much. We can also
see that the scaling improves the results significantly, and that mod-
els used without the scaling in fact do not improve the performance
compared to sNSGA-II. This effect is most pronounced in the results
for the WFG6 problem, where the scaled ASM-MOMA and LSPS-MOEA
(which also uses the scaling) significantly outperforms the sNSGA-II
and ASM-MOMA without scaling and are even able to obtain better
results in the long run. The reason for the large effect of scaling is
that the WFG problems have very dissimilar domains, the domain of
i-th variable is [0, 2i]. This makes it difficult for the model to approxi-
mate the function. Also, the distances can be quite large in this case,
which may be another complication. The scaling reduces both these
problems.

An interesting behavior can be observed on the WFG2 problem.
All the algorithms after approximately 20,000 evaluation converge to
a similar value and the results do not change until around 37,000 of
evaluations where some of the runs of LSPS-MOEA suddenly improve
the value quite dramatically as can be seen by the drop in the first
quartile, however the median run is still the same. WFG2 has discon-
nected Pareto front and LSPS-MOEA in this case finds a new part of
the front. However, it manages to do so only in a small fraction of
runs, so the median value does not change. Despite this fact it may
be interesting to study this behavior further and try to find a way
which would increase the probability of this happening. We can see
a similar behavior on WFGg. However, in this case LSPS-MOEA is the
algorithm which does not improve further, and ASM-MOMA and even
sNSGA-II are able to find better solutions at least in a few of the runs
(again, medians are still the same).

Overall, although the results on the WFG toolkit mostly confirm
that ASM-MOMA and LSPS-MOEA both outperform the baseline sNSGA-II
and that LSPS-MOEA outperforms ASM-MOMA, the WFG problems are
still challenging even for the surrogate based algorithms and provide
strong motivation for future research.

91

WFEG benchmark



92

comparison to
Loshchilov at al.

PRE-SELECTION IN ASM-MOMA

The methodology chosen in this section matches the one adopted
by Loshchilov et al. (2010c) in their paper on aggregate surrogate
models based on ranking SVMs. Thus, we can now compare these
two approaches directly. The comparison shows, that ASM-MOMA out-
performs the algorithm based in ranking SVM by approximately 20%-
40% function evaluations needed to attain a specified target AH. An
interesting observation is that the difference between the two algo-
rithms gets smaller for smaller targets of AH. This can indicate that
the approach presented by Loshchilov at al. is able to provide better
convergence at the later phases of the evolution, while ASM-MOMA
can find some solution faster. However, the number of differences
between these two algorithms is quite large (e.g. different models,
different type of exploitation of the model, different archive trunca-
tion technique), thus it is not clear, where does the difference between
the two approaches come from, and whether they can be combined
in a way which would provide even better performance. This is left
as a future work.

7.6 CONCLUSIONS

We have shown that the use of different types of meta-models in local
search phase and pre-selection phase is essential and leads to im-
proved convergence speed.

We presented a new version of SBMO-ES, LSPS-MOEA, which is capa-
ble of producing more individuals in each generation and still pro-
vides comparable performance in terms of the number of evaluations
of the real objective function. This may be important in practice as
some of the simulations or experiments may be parallelized (and in
some cases may be cheaper when run in small batches).

During preliminary testing, we have shown that configurations
with more simple meta-models (linear regression, or support vec-
tor regression) in the local search phase and more complex models
(support vector regression, or multilayered perceptrons) in the pre-
selection phase, combined with e-IBEA selection work particularly
well and can be used in most situations. We have also encountered
interesting behavior on one of the test problems (ZDT1), which pro-
vides a possibility for future research — e.g. the convergence speed
might be monitored and the type of selection (or the number of se-
lected individuals) could be tuned adaptively.

Future work should also be focused on the way surrogate models
are selected and trained. The traditional approaches which use the
mean square error might not be the most suitable for the use in con-
junction with evolutionary algorithms. There is a possibility to train
multiple models and select one of them based on another criterion.
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In the previous chapter, each time we tested an algorithm we tried
several different types of surrogate models. We have also seen that
the results of the algorithm depend on the choice of model and that
a wrongly chosen model can significantly affect the performance. In
this chapter, we look at the problem of model selection more closely,
and study which features of models are important for their good per-
formance in evolutionary algorithms. To this end, we define four
different criteria based on the performance of the model on a vali-
dation set and use them to select the best model in each run. The
goal of this chapter is mostly to compare the effect of different model
selectors rather than the performance of the algorithm.

8.1 MOTIVATION

In most cases, the authors of a surrogate evolutionary algorithm do
not discuss why they use a particular type of surrogate models. The
model is usually selected in advance and is never changed during the
evolution. Often, the same model is used for different tasks. However,
different tasks may require different types of models, as each type
of model provides good performance for different types of training
sets. Some are good if there are more variables, some generalize well,
some are more simple, with less local optima, and thus can be easily
optimized in a kind of local search.

The problem of the selection of a suitable model is quite complex.
The most precise model (in terms of mean square error, MSE) may not
perform well when used in an evolutionary algorithm which uses
only comparisons to select individuals. The reason is that although
the model has low MSE it may still predict comparisons between in-
dividuals incorrectly. If the model predicts higher value for one indi-
vidual and lower value for the other the ordering of the individuals
according to the model may be different than it is in reality. On the
other hand, if the model predicts consistently higher values for all
individuals the comparisons may be correct, even though the MSE is
large. To solve this problem, we define four different model selectors
and use them to select one of the trained models. These selectors
decide based on different criteria. One of them is the most obvious
approach which selects the model with the lowest mean square error
on a validation set. Other selectors use the bias and variance of the
error on the validation set, one of the selectors uses the so called re-
lation preservation. It is a metric, which describes how well a given
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model preserves relations (comparisons) between the individuals in
the validation set. This is a feature which may be better suited than
the others for model selection in evolutionary algorithms that only
use comparisons during their run.

There are not many references to algorithms which would deal
with more than one model. One of the exceptions is (Lim et al.,
2010), where the authors use two different local meta-models. Both
are trained to approximate a weighted sum of the objectives. One is
an ensemble model, the other is a low order polynomial. Two single-
objective algorithms are run to find optima of the respective models,
which are then precisely evaluated. A selection procedure is used to
decide which of the individuals (if any) is added to the population.

The approach used in Diaz-Manriquez et al. (2011) is in a sense
complementary to the one presented here. Authors compare differ-
ent models and monitor various features of the models during the
evolutionary search. One of the results of the work is, that mean
square error might not be the best measure of the suitability of the
model for the use with evolutionary algorithms. The authors also
argue that even model with large mean square error performs well
when it preserves the ordering of the individuals well.

Loshchilov et al. (2010b) also argue that comparison based optimiz-
ers should use comparison based surrogates and demonstrate this
fact by using ranking SVM as the surrogate model in ACM-ES.

8.2 SURROGATE MODEL SELECTION

Our ultimate goal is to integrate surrogate evolutionary algorithms
with meta-learning system (Kazik et al., 2012). The meta-learning
system would recommend a set of types of surrogate models based
on the features of the training set (i.e. the set of previously evaluated
individuals). All of the recommended models would be trained and
then a model would be selected and used during the evolution.

To this end, we define four different features of the surrogate mod-
els below. These are then used to select the best model from the set
using the four selectors defined later.

Definition 8.1. Let I be the indicator function (1 if its argument is
true and o if it is false). Let F : R” — R be a modeled function, and
let M is its model. Let V C IR" be a finite validation set. The relation
preservation (RP) measure is defined as

RP(M) = o 7 I, () < Fu)M(x) < M)

The relation preservation measure might be more important when
the use of a model as a surrogate function is considered in evolution-
ary algorithms, because most EAs compare two individuals rather
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than using the value of the function directly, thus errors in the abso-
lute value of the function are not important.

Definition 8.2. Let V, F, and M be defined as above. The bias is
defined as
BIAS(M |V| x;/ x)).

The bias on the other hand is something that should not affect the
performance of the evolutionary algorithms at all. A model, which
consistently predicts f + 10 instead of f, is from the point of view of a
comparison-based evolutionary algorithm as good as a model which
would consistently predict f. We define this criteria, and the respec-
tive model selector, mainly to validate this claim and for the sake of
completeness. In fact, we expect the performance of the algorithm
which use this selector to be rather poor.

Definition 8.3. Let V, F, and M be defined as above, and b is the bias
of M as defined above. The variance is defined as
VAR(M Y (b — F(x))~
‘V| xeVv

The variance of the model expresses how consistently the model
predicts the values. Large variance means, that the model often over-
estimates or underestimates the function F, and moreover the error
is different for each point x. This may lead to a large number of
wrongly predicted comparisons. The motivation for this criterion is
that its performance should be similar to the one of the RP criteria,
but this one is continuous and thus more easily usable for training of
models.

For the sake of completeness we also define the well known mean
square error here.

Definition 8.4. Let V, F, and M be defined as above. The mean square
error is defined as

MSE(M (x))2.
= v LG

Now, we can define four types of selectors. The role of the selector
is to select a model from a set of possible (recommended) models
based on one of the features defined above.

Definition 8.5. Let R be a set of models. Then

Sm(R) = argmin,, . MSE(m) is the mean square error selector,

BIAS(m) is the bias selector,

Sp(R) = argmin

meR

Sy(R) = argmin,,_, VAR(m) is the variance selector,

Sp(R) = argmax,,_,RP(m) is the relation preservation selector.

meR

Note that the relation preservation criteria is the only one which
should be maximized.
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8.3 EXPERIMENTS

To test the performance of different selectors we used a variant of
LSPS-MOEA. In this variant, each time a surrogate models should be
used, several models are trained and evaluated using the given model
selector. The best model (according to the selector) is than used for
the predictions in the given generation. The models are re-trained
and re-selected in each generation. All the models are trained using
their respective training algorithms which optimize the MSE. This is
an important feature which shall be taken into account while inter-
preting the results. In this case we use the fact that all the criteria
are correlated in the sense that when MSE is zero, the other criteria
also have the best possible values, and thus optimizing the MSE also
leads to good values of the other criteria (although generally not the
best possible). Moreover, models which optimize the MSE also should
generally have very low value of BIAS, as this can be removed by a
simple additive term which most of the models contain.

We tested our approach on the widely used ZDT (Zitzler, Deb, et
al., 2000) benchmark problems. These problems are all two dimen-
sional, and we used 15 variables for each of them, except the ZDT1
where 30 variables were used.

The main multi-objective algorithm (NSGA-II, or e-IBEA) used a pop-
ulation of 50 individuals and stopped after 50,000 objective function
evaluations. The SBX crossover (Deb and Agrawal, 1994) (probability
0.8) and polynomial mutation (Deb and Goyal, 1996) (probability 0.1)
were used. During the local search we used an evolutionary algo-
rithm which run with 50 individuals in the population for 30 genera-
tions, again SBX crossover and polynomial mutation were used.

To compare the results we again use the H,,, measure, it is defined
as the ratio of the hyper-volume (Zitzler and Lothar Thiele, 1998) of
the dominated space attained by the algorithm divided by the hyper-
volume of the global Pareto front.

Although our ultimate goal is to integrate the evolutionary algo-
rithm with a meta-learning system (Kazik et al., 2012), we are not
yet ready to recommend the models to be used automatically, so we
manually selected ten different types of models and used them dur-
ing the tests. These are a linear regression model estimated using the
least squares method, 3 variants of support vector regression — with
polynomial kernels of degrees one and two, and with the RBF kernel,
3 architectures of multilayer perceptrons — with 2, 5, and 10 neurons
in the single hidden layer, 2 variants of RBF networks — with 2 and 5
RBF units, and Gaussian processes regression. All the other options
were set to their default values from the Weka framework Hall et al.
(2009). The models were selected as a representative set of the vari-
ous types of models used in the literature dealing with the surrogate
evolutionary algorithms.
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8.3.1  Types of Behavior

The types of selected models change as the evolution proceeds and
converges. The different behaviors can be roughly divided into three
groups:

¢ Undecided (U) — there is no best model during the evolution. It
is characterized by the fact, that none of the models is selected
in more than 30% of the runs. This happens when more (all) of
the models are equally good given the selection criteria.

¢ Constant (C) — there is a single model which is selected most
often during the evolution. The model is usually selected in
more than 80% of the runs. This typically happens when there is
a model, which can predict the data precisely (e.g. the modeled
function is linear), but there are cases, when this occurs even
for more difficult problems.

¢ Dynamic (D) — similar to the constant behavior, but the best
model changes during the run of the evolution. This is the most
interesting type of behavior as it clearly shows the dynamic na-
ture of the evolution. We expect this behavior to occur, when
the complexity of the modeling of the functions change as the
evolution progresses towards the optima.

The 30%, and 80% limits are rather arbitrary, derived from the ob-
servations of different behaviors. The main intuition is that for the
undecided behavior, none of the models clearly wins, or is used very
often. For the Constant behavior, the opposite is true. This leads to
the choice of the 30% and 80% limits.

Often, the behavior is more complicated than the three groups out-
lined above can capture. Thus, we can imagine groups which com-
bine the features of more of them, these are denoted as A/B where A
and B are one of the groups defined. For example a group denoted as
D/U is a group, where there are e.g. three models clearly used more
often the others (around 25% each) but none of them wins.

Also the behavior sometimes changes as the evolution proceeds.
These are than denoted as A-B, where the behavior changes from A
to B, and A and B are as defined above (either the basic groups, or
the combined ones).

Figure 8.1 shows an example of the undecided and the constant be-
havior. It shows the relative frequency of each of the types of models
as a function of the generation number of the algorithm. In the left
sub-figure we can see the undecided behavior produced by the BIAS
model selector on the aggregated function used in the local search
phase on the ZDT6 problem with the e-IBEA as the external algo-
rithm. In this case the selector does not choose any of the model very
often, probably because most of the models have low bias. On the
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Figure 8.1: An example of undecided (left) and constant (right) behavior.
The undecided behavior was obtained on the aggregated model
of the ZDT6 test problem with the BIAS meta-model selector.
The constant behavior was obtained on the aggregated model of
the ZDT1 test problem with the MSE selector. Both configuration
use e-IBEA as the external algorithm.

other hand, in the right sub-figure we can see a typical example of
the constant behavior as produced by the MSE selector on the aggre-
gate function of ZDT1 with the e-IBEA as the external algorithm. In
this case the support vector regression with the RBF kernels provides
the lowest MSE consistently over the 20 runs and is selected in most
of them.

The dynamic behavior may be more interesting. We provide two
examples in Figure 8.2. Further examples are provided later. In the
left sub-figure, we can see the result of running the MSE model selec-
tor for the F1 objective function of the ZDT1 test problem. Again, the
€-IBEA is used as the external algorithm. In this case, the linear re-
gression was used in the beginning, later it was replaced by support
vector regression with polynomial kernel, and in the end they were
both replaced by the support vector regression with RBF kernels. The
right sub-figure shows the dynamics of the RP selector when used for
the aggregated model of the ZDT1 test problem with NSGA-II as the
external algorithm. In this case, the support vector regression with
RBF kernels is replaced by the SVR with polynomial kernels early dur-
ing the evolution and in the later phases none of the models clearly
dominates.

Although the distinction between the types of behavior is rather
subjective, it allows us to discuss and describe the dynamic nature
more easily. The presented figures also show the importance of hav-
ing the option to select from more models during the run of the
evolution, because the optimal models can change as the evolution
proceeds.
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Figure 8.2: Two examples of dynamic behavior. F1 objective of the ZDT1
test problem with MSE model selector and e-IBEA as the exter-
nal algorithm on the left and the aggregate meta-model of the
ZDT1 with the RP model selector and NSGA-II as the external
algorithm on the right.

8.3.2  Performance

Tables 8.1 and 8.2 show the performance of the different meta-model
selector on a series of test from the ZDT Zitzler, Deb, et al. (2000)
benchmark — ZDT1, ZDT2, ZDT3, and ZDT6. The numbers repre-
sent the median number of fitness evaluations needed to attain the
specified H,,,. For comparison, we also provide the results of plain
NSGA-II and e-IBEA for comparison, as well as the results we obtained
previously with fixed models during the whole evolution for com-
parison. Tables 8.3 and 8.4 show the behaviors we observed on that
particular test for each of the functions which were modeled — the
aggregate function used during the local search (A), and both the
objective functions (Fo, F1).

We can clearly see, that the use of surrogate models reduce the
number of objective function evaluations significantly compared to
the versions of NSGA-II and e-IBEA, this is an expected result. A more
interesting observation is that for ZDT1 and ZDT6 the dynamic se-
lection of surrogate models also improves the results significantly
compared the to the versions with statically assigned model types.
For ZDT3 the results of statically assigned and dynamically selected
models are comparable. On the other hand, the results for ZDT2 are
better with the statically selected models. This is an interesting ob-
servation and should be further studied in the future. However, note
that the best results with statically selected models were not obtained
by one fixed configuration, but with different configurations for dif-
ferent values of H,,. Also, choosing the models statically requires
much more tuning and testing before the experiment is run than the
dynamic model selection. Moreover, there are also configurations of
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Table 8.1: Median number (20 runs) of function evaluations needed to reach
the specified H,,:;, on ZDT1, and ZDT2 test problems. The name
of the method is encoded as follows: NSGA and IBEA indicate the
type of the external evolutionary algorithm (NSGA-II and e-IBEA
respectively) and MSE and RP encode the type of selector used to
select the best model from the set.

ZDT1
Hyatio 0.5 0.75 0.9 0.95 0.99
NSGA 5600 18600 19850 20750 21850
NSGA-STATIC 500 1420 1904 2053 5285
NSGA-MSE 544 816 1207 1300 6089
NSGA-BIAS 502 837 1172 1402 5789
NSGA-VAR 555 852 1054 1198 5777
NSGA-RP 485 1069 1228 1389 4843
IBEA 7400 13750 18200 20000 25550
IBEA-STATIC 453 1340 1607 2025 3588
IBEA-MSE 487 1194 1575 1660 2499
IBEA-BIAS 475 783 1095 1154 2382
IBEA-VAR 493 1214 1499 1591 2337
IBEA-RP 514 1541 1799 1842 2507
ZDT2
Hyatio 0.5 0.75 0.9 0.95 0.99
NSGA 650 1650 3550 5050 7900
NSGA-STATIC 145 196 274 320 517
NSGA-MSE 209 267 367 483 866
NSGA-BIAS 211 275 338 445 843
NSGA-VAR 196 273 335 468 965
NSGA-RP 229 268 342 417 794
IBEA 750 2050 5150 7800 13000
IBEA-STATIC 151 204 261 295 522
IBEA-MSE 196 236 332 429 990
IBEA-BIAS 203 248 351 415 685
IBEA-VAR 198 257 337 399 823
IBEA-RP 204 259 335 410 983




Table 8.2: Median number (20 runs) of function evaluations needed to reach
the specified H,,tj, on ZDT3 and ZDT6 test problems. The name
of the method is encoded as follows: NSGA and IBEA indicate
the type of the external evolutionary algorithm (NSGA-II and e-
IBEA respectively) and MSE, BIAS, VAR, and RP encode the type
of selector used to select the best model from the set.

8.3 EXPERIMENTS

ZDT3
Hyatio 0.5 0.75 0.9 0.95 0.99
NSGA 600 1250 4150 7250 -
NSGA-STATIC 151 223 317 379 552
NSGA-MSE 202 265 366 402 578
NSGA-BIAS 230 289 386 425 621
NSGA-VAR 207 281 355 434 587
NSGA-RP 221 301 413 490 612
IBEA 650 1550 5400 8150 33350
IBEA-STATIC 155 209 283 328 452
IBEA-MSE 212 284 349 402 549
IBEA-BIAS 219 308 401 493 635
IBEA-VAR 200 282 338 378 547
IBEA-RP 236 303 419 469 632
ZDTeé
Hjatio 0.5 0.75 0.9 0.95 0.99
NSGA 7950 10200 13950 17700 28650
NSGA-STATIC 1429 3164 6399 9632 19046
NSGA-MSE 1658 3079 5280 7847 14889
NSGA-BIAS 1724 3436 6636 9442 18663
NSGA-VAR 1854 2964 5384 7948 15166
NSGA-RP 1626 2602 5023 7202 12756
IBEA 10300 13650 18400 23150 34050
IBEA-STATIC 1444 3509 7233 10543 18297
IBEA-MSE 1952 3961 7053 9522 18208
IBEA-BIAS 2067 5003 10285 13882 25864
IBEA-VAR 1740 3995 6970 9937 18220
IBEA-RP 1555 3123 5599 7213 11773
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Table 8.3: The behavior of the different methods on the ZDT1 and ZDT2
problem sets. The name of the method is encoded as follows:
NSGA and IBEA indicate the type of the external evolutionary al-
gorithm (NSGA-II and e-IBEA respectively) and MSE, BIAS, VAR,
and RP encode the type of selector used to select the best model
from the set.

ZDT1
Function A Behav. Fo Behav. F1 Behaw.
NSGA-MSE D-D/U C D
NSGA-BIAS D-U C D-U
NSGA-VAR D C D
NSGA-RP D C D
IBEA-MSE C C D
IBEA-BIAS D-U C D-D/U
IBEA-VAR C C D
IBEA-RP C C D
ZDT2
Function A Behav. Fo Behav. F1 Behaw.
NSGA-MSE D-U C D/U
NSGA-BIAS U C D/U
NSGA-VAR D C D
NSGA-RP D C D
IBEA-MSE C C D/U
IBEA-BIAS D/U C C/U
IBEA-VAR C C D
IBEA-RP D C D-C




Table 8.4: The behavior of the different methods on the ZDT3 and ZDT6
problem sets. The name of the method is encoded as follows:
NSGA and IBEA indicate the type of the external evolutionary al-
gorithm (NSGA-II and e-IBEA respectively) and MSE, BIAS, VAR,
and RP encode the type of selector used to select the best model
from the set.

8.3 EXPERIMENTS

ZDT3
H, 10 A Behav. Fo Behav. F1 Behav.
NSGA-MSE D C D
NSGA-BIAS U C C/U
NSGA-VAR C C D
NSGA-RP D C C/D
IBEA-MSE D C D
IBEA-BIAS D/U C D/U
IBEA-VAR C C D-D/C
IBEA-RP D C D
ZDTe6
H, 1o A Behav. Fo Behav. F1 Behav.
NSGA-MSE D/U D D/U
NSGA-BIAS U U D/U
NSGA-VAR D/U C/U D-D/U
NSGA-RP D-U U D/U
IBEA-MSE D-U D/U D-C/D
IBEA-BIAS U U U
IBEA-VAR D-U D/U D-D/U
IBEA-RP D-U D/U D-C
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Figure 8.3: The relative frequency of the types of models selected based on
the MSE (left) and RP (right) selector. The F1 objective function
of the ZDT®6 test problem with e-IBEA fitness

statically selected models which require much more objective func-
tion evaluations than the dynamically selected ones. In this sense, we
can say that the dynamically selected models are more robust than
the statically assigned ones.

Regarding the types of behavior, there is an obvious observation: as
the Fo objective of the ZDT1, ZDT2, and ZDT3 test is a linear function,
the behavior on these is constant — the linear regression model is the
best according to all the selectors. For the other modeled functions,
the behavior is usually dynamic, often combined with undecided, as
there seems to be around three different models which work well and
compete with each other, each of them being used with similar fre-
quency. Probably each of the models wins in some of the individual
runs and it is used during most of the evolution. This also explains
the fact that the behavior changes from dynamic to undecided in a
number of runs — in the beginning, there is a single model which
is used most often (as the evolution progresses in a similar way in
the beginning of each run), but as the evolution progresses, different
models are good for each of the runs.

We can also see that the bias selector almost always creates un-
decided behavior — this selector does not discriminate between the
qualities of different models very well, as all the models are able to
provide a low bias. This should be expected, as any bias adds to the
MSE which all the models should minimize during their training.

The high number of cases, in which we observed the dynamic be-
havior, indicates the importance of the use of a meta-model selector,
as the optimal meta-model changes during the run of the evolution
it is impossible to select a single model to be used during the entire
run.

Let us now compare the median number of function evaluations
needed to attain a specified quality of the solutions expressed as the
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Table 8.5: The number of times the specified selector provided the best me-
dian value for specified H, 4o

Hyatio | 05 075 0.9 0.95 0.99
MSE | 2 4 1 1 1
BIAS | 1 1 1 1 1
VAR | 2 1 4 3 2
RP 3 2 2 3 4

H,ati0. First, we can see that the bias selector does not perform well,
it is significantly better than the other selectors only in one of the
eight configurations. This further confirms what we discussed earlier,
that this selector does not discriminate among the different types of
models, and the different models are selected mostly randomly.

The variance and MSE based selectors provide similar performance
for most of the test problems. This is again closely connected with
the fact that the models have very low bias and therefore the MSE is
given mostly by the variance of the error. We originally hoped that
the performance of the variance selector would be more similar to the
one of the relation preservation selector. In such a case the variance
selector could be used instead of the RP one. An algorithm which
would minimize the variance of a model should be easier to create as
the variance is a continuous number, whereas the RP is discrete.

The RP selector provides the best results for the H,.i, = 0.99 in
half of the cases. These results, especially for ZDT6 are much better
than those of the other selectors. ZDT6 is the most difficult of the test
problems, and the results we obtained within this work are better
than those we were able to obtain in our previous work (ASM-MOMA,
LSPS-MOEA) with a single statically selected model.

Table 8.5 shows the number of times each of the selectors provided
best results out of the eight tested configurations. We can see that
for the lowest H,;, all of the selectors are comparable. In this case
the numbers of evaluations are quite low in most of the cases (except
ZDT6) and other effects (like the random initialization) are probably
more important than the type of selection. On the ZDT6 test problem,
the best result is provided by the RP selector. For H,4i, = 0.75 the MSE
selector provides the best result most often but the differences are
still quite small. For the higher values of H,;,, the RP and variance
selectors provide the best results in six out of the eight configurations.

To provide a closer look on the dynamics of the evolution and the
types of models selected by different model selectors, we present Fig-
ure 8.3. It compares the types of models selected by the MSE and
RP selectors. We can see that both selectors select the multilayered
perceptron with two neurons in the hidden layer in the beginning of
the population, however in the later phases the RBF network with 5
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neurons has the lowest MSE in most of the runs, as is therefore se-
lected by the MSE selector, whereas the RP selector chooses a different
type of model — the support vector regression with RBF kernels. If we
compare the overall results of these two methods, we can see that the
model selected by the RP selector leads to much lower number of ob-
jective function evaluations that the one selected by the MSE selector.

Tables 8.6 and 8.7 compare the frequency with which the different
models were selected for the modeling of different functions during
the evolution, when NSGA-II is used as the external algorithm. We
compare the traditional MSE selector with the RP selector here, to show
the difference between the traditional and proposed approach. In this
table, Fy and F; denote the two objectives of the ZDT problems and
AGR denotes the aggregated distance based surrogate model used
during the local search.

There is an obvious observation: as the objective Fy is linear for
the ZDT1 to ZDT3 functions, the linear regression model is selected
every time as it can learn the function precisely.

Regarding the other function, we can see that the RP selector tends
to select simpler models — like the support vector regression or linear
regression, rather than the multilayer perceptron. These are more
often selected by the MSE selector. This indicates that although the
more complicated models can learn the functions more precisely they
are not able to predict the comparisons well — they underestimate for
some of the points and overestimate for others.

It is also interesting to note that Gaussian process regression, which
is quite often used in applications, is only rarely selected in these
cases, except for the more complicated ZDT6 problem. Moreover, it
is almost never selected to model the aggregate surrogate model.

8.4 CONCLUSIONS

We have shown that the way in which meta-models are selected for
the use with evolutionary algorithm greatly affects the performance.
Moreover, the traditional way of minimizing the MSE may not be the
best, as other criteria, like the relation preservation, may be more
important and express the suitability of a particular model for use
with evolutionary algorithm better.

We have also shown that the best model may change wildly dur-
ing the run of the evolution, and there may be a different suitable
model in each of the phases of the evolution, based not only on the
progress towards the optima, but also on the particular state of the
algorithm. The best model may be different in different independent
runs of the algorithm. Therefore a kind of automatic selection is nec-
essary to ensure good convergence speed and also the quality of the
individuals.
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Table 8.6: Relative frequencies of selected models when NSGA-II is used as
the external algorithm for the ZDT1 and ZDT2 problems.

ZDT1
Function AGR Fo F1
Model sel. MSE RP | MSE RP | MSE RP

LINEAR 0.15 0.16 | 1.00 1.00 | 0.20 0.27
SVR-Poly-1 | 0.17 0.33 | 0.00 o0.00 | 0.18 0.13

SVR-Poly-2 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00

SVR-RBF 0.20 0.23 | 0.00 0.00 | 0.01 0.00
MLP-2 0.15 0.00 | 0.00 0.00 | 0.24 0.24
MLP-5 0.15 0.03 | 0.00 0.00 | 0.20 0.17
MLP-10 0.14 0.15 | 0.00 0.00 | 0.14 0.15
RBF-2 0.00 0.00 | 0.00 0.00 | 0.00 0.00
RBF-5 0.00 0.00 | 0.00 0.00 | 0.00 0.00
GAUSS 0.00 0.06 | 0.00 0.00 | 0.00 0.00
ZDT2
Function AGR Fo F1

Modelsel. | MSE RP | MSE RP | MSE RP

LINEAR 0.15 0.16 | 1.00 1.00 | 0.22 0.21
SVR-Poly-1 | 0.11  0.35 | 0.00 0.00 | 0.14 0.13
SVR-Poly-2 | 0.o0 0.00 | 0.00 0.00 | 0.00 0.00

SVR-RBF 0.30 0.29 | 0.00 0.00 | 0.09 0.08

MLP-2 0.06 0.04 | 0.00 0.00 | 0.10 0.13
MLP-5 0.11 0.02 | 0.00 0.00 | 0.17 0.12
MLP-10 0.22 0.08 | 0.00 0.00 | 0.25 0.30
RBF-2 0.00 0.00 | 0.00 0.00 | 0.00 0.00
RBF-5 0.00 0.00 | 0.00 0.00 | 0.00 0.00

GAUSS 0.01 0.01 | 0.00 0.00 | 0.00 0.00
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Table 8.7: Relative frequencies of selected models when NSGA-II is used as
the external algorithm for the ZDT3 and ZDT6 problems.

ZDT3
Function AGR Fo F1
Model sel. MSE RP | MSE RP | MSE RP

LINEAR 0.14 0.17 | 1.00 1.00 | 0.22 0.30
SVR-Poly-1 | 0.17 0.28 | 0.00 0.00 | 0.16 0.39
SVR-Poly-2 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00

SVR-RBF 0.24 0.31 | 0.00 0.00 | 0.32 0.15

MLP-2 0.14 0.02 | 0.00 0.00 | 0.10 0.05
MLP-5 0.18 0.03 | 0.00 0.00 | 0.11 0.02
MLP-10 0.08 0.12 | 0.00 0.00 | 0.04 0.02
RBF-2 0.00 0.00 | 0.00 0.00 | 0.00 0.00
RBF-5 0.00 0.00 | 0.00 0.00 | 0.00 0.00
GAUSS 0.01 0.04 | 0.00 0.00 | 0.01 0.03
ZDT6
Function AGR Fo F1

Modelsel. | MSE RP | MSE RP | MSE RP

LINEAR 0.14 0.05 | 0.00 0.10 | 0.01 0.27
SVR-Poly-1 | 0.31 0.16 | 0.00 0.03 | 0.00 0.12
SVR-Poly-2 | 0.0o0 o0.00 | 0.00 0.00 | 0.00 0.00

SVR-RBF 0.08 0.22 | 0,00 0.05 | 0.09 0.31

MLP-2 0.15 0.06 | 035 0.15 | 0.30 0.04
MLP-5 0.12 0.13 | 0.24 0.23 | 0.06 0.02
MLP-10 0.13 0.17 | 0.17 0.24 | 0.00 0.02
RBF-2 0.00 0.03 | 0.01 0.00 | 0.05 0.02
RBF-5 0.01 0.06 | 0.02 0.01 | 0.32 0.01

GAUSS 0.01 008 | 018 o0.16 | 0.12 0.14




8.4 CONCLUSIONS

In the future, the proposed framework shall use a meta-learning
tool, which would provide a list of models that shall be considered
during the evolution. This list can be recommended either once in
the beginning of the evolution based on some information about the
objective function, numbers of variables and objective etc., or after
each generation, with the additional knowledge of the precise val-
ues of previously evaluated individuals (i.e. the training set, and its
statistical properties).

It may also be beneficial to create training algorithm which would
optimize the relation preservation or the variance of the given model
directly, instead of optimizing the models for the lowest MSE and then
selecting according to a different criteria.
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MULTI-OBJECTIVIZATION FOR
HYPER-PARAMETER TUNING

This chapter is in a sense complementary to the previous one. In
the previous chapter, we studied how meta-learning can improve the
performance of multi-objective tuners by recommending better mod-
els. In this chapter, we show how multi-objective optimization can
improve the performance of machine learning models by the tun-
ing of their parameters. We focus on the case of classifier models
in this chapter as that is what we mostly studied while developing
the Pikater system (Kazik et al., 2012), however most of the ideas can
be applied even for regression models.

9.1 MOTIVATION

Most classifiers have at least a few parameters, which more or less
affect their performance on a given data set. The values of these pa-
rameters need to be set before the classifier can be used to solve a
particular task. The problem is, that the best values of the param-
eters differ for different data sets. Although there are usually some
guidelines for the parameter settings, finding the optimal values often
requires expert knowledge, intuition, and trial-and-error approach. If
we also add the task of selecting the right type of classifier, the prob-
lem is even more complicated.

Meta-learning is the part of machine learning which deals with this
problem. It can be usually divided into two parts as already indicated
above: the selection of a good classifier type, and the tuning of the
parameters of the selected classifier to the data set at hand.

The selection of a good classifier for a particular data set is often
performed based on a prior knowledge. Usually, the performance
of a set of classifiers on different data sets is known in advance, as
well as some meta-data about the data sets (e.g. number of instances,
number of classes, types of attributes). It is assumed that classifiers
perform similarly on data sets with similar meta-data, thus a good
classifier (or a set of promising classifiers) is selected based on the
performance on similar data sets (Brazdil et al., 1994; Kazik et al.,
2012). This step can also additionally provide some initial values (or
ranges) for the parameters of the classifier.

However, having selected the right classifier is only part of the task.
The next vital step is to find the values of the parameters of the classi-
fier, which provide the best performance on the given data set. And
this is the role of the parameter tuner.
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Parameter tuning is not only important in the field of meta-learning,
but also when a new classifier is developed. In this case the classifier
should be compared to different competing classifiers. We argue that
for the comparison to be fair, both classifiers have to be compared
with the values of their parameters that ensure the best results on a
given data set.

In this chapter we deal with the problem of tuning of the parame-
ters of Radial Basis Function (RBF) Networks and Multilayer Percep-
tron (MLP) (Haykin, 1999) networks with the goal to provide settings
which minimize the classification error. To this end we use the con-
cept of multi-objectivization — solving the single-objective problem
by means of multi-objective optimization. We describe our multi-
objectivization approach, and compare it to the performance of single-
objective evolutionary algorithm. Moreover, surrogate versions of
both the single-objective and multi-objective algorithms are discussed.

The rest of the chapter is organized as follows: in the next section
we discuss the largest challenges posed on evolutionary algorithms
when they are used to solve the problem of parameter tuning, then
we provide an overview of existing approaches from the literature.
Section 9.4 describes our multi-objectivization approach. and in Sec-
tion 9.5 we present the experiment setup and the data sets we used
for testing. Section 9.6 provides the results of the different methods
and, finally, Section 9.7 concludes this chapter.

9.2 THE CHALLENGES

Using evolutionary algorithms to optimize the parameters of classi-
fiers is not an easy task. In fact, this can easily be one of the most
challenging fields for the application of evolutionary algorithms. De-
spite this fact, quite a lot of researchers have tried to use evolutionary
algorithms to solve this task.

What are the most difficult challenges the evolutionary algorithm
must face to tackle this problem? First of all, most of the classifiers
provide similar (or even the same) results for lots of different settings
of their parameters, this leads to a search space, where most of the
points (i.e. different parameter settings) yield the same error rate Reif
et al. (2012). This problem is even more pronounced if the given clas-
sification problem has only a small number of instances. In this case,
there are only a few different error rate values possible. Thus, the fit-
ness function is piecewise constant, sometimes with only a small area
of a local optima — exactly the type of fitness function which is diffi-
cult to optimize using the evolutionary algorithms. The magnitude
of the problem can also be seen in Table 9.1 in Section 9.4.

These properties of the search space are not the only problem. Ma-
chine learning algorithms also require quite a long time to train (es-
pecially on larger data sets), and evolutionary algorithms often need



9.3 RELATED WORK

a large number of fitness function evaluations to find a good point
in the feature space. Moreover, parameter tuning often calls for the
use of cross-validation to improve the generalization properties of the
given machine learning techniques. And it increases the number of
trainings and evaluations even more. Thus, the whole parameter tun-
ing process may require large amount of computational resources, if
this aspect is not taken into account. To this end we can also apply
the idea of surrogate modeling from the previous chapters.

The most straightforward way to apply the surrogate modeling for
the problem of parameter tuning would be to model the classification
error of the classifier based on its parameters. However, as we have
already discussed (the first challenge above), most of the parameter
settings yield similar values. This can be problem for some of the
surrogate models.

9.3 RELATED WORK

The first attempts at parameter tuning were specifically designed for
a given type of classifier, for example there are several algorithms to
optimize the parameters of SVM (Chapelle et al., 2002; Qilong Zhang
et al., 2009; Kapp et al., 2009).

Despite the challenges described in the previous section, several re-
searchers have approached the problem of optimizing the parameters
of a given classifier using surrogate-based optimization techniques.
For example, Konen et al. (2011) proposed a framework for Tuned
Data Mining. The framework contains both feature selection and pa-
rameter tuning. Both of these tasks are performed at once. It also sup-
ports cases when there are different costs for different classification
errors. The parameter tuning is done in the SPOT (Bartz-Beielstein
et al., 2005) framework, which also uses surrogate modeling. The
framework only deals with the problem of parameter tuning, no rec-
ommending is performed.

Bergstra et al. (2011) have used parameter tuning to enhance the
performance of Deep Belief Networks (DBN). They used surrogate
assisted evolutionary algorithm and showed that it outperforms both
manual setting of parameters and random search on two data sets
from the image recognition domain. They use Gaussian processes
to model the error and compare them to their proposed Tree Struc-
tured Parzen Estimator. The main difference between the two mod-
eling techniques is that Gaussian processes predict the probability
distribution of P(y|x) (y is the target value and x are the parameters)
whereas the Tree Structured Parzen Estimator predicts the distribu-
tions of P(x|y) and P(y). Also the latter model contains information
about the structure of the DBN.

Multi-objective optimization has also been used to tune the param-
eters of optimizers for various reasons. One of them is regularization.
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Traditionally, regularization was performed by adding an additive
term with a pre-specified weight to the error function of the classi-
fier. This additional term ensures some desirable properties of the
classifier — usually good generalization, or (similarly) low complex-
ity of the model. In the framework of multi-objective optimization
such regularizing term can be considered as another objective, and
both the objectives (the error rate of the classifier and its complexity)
are optimized at once (Jin, 2006). Multi-objective optimization is also
used if there are conflicting error measures, all of which shall be op-
timized at once. One example of such conflicting measures may be
sensitivity and specificity.

Another possibility to use multi-objective optimization for param-
eter tuning is so called multi-objectivization. Brockhoff et al. (2009)
showed that adding another objective may lead to a better perfor-
mance even if only one objective is important. This is especially true
for functions with plateaus, where the additional objective may in-
crease the selection pressure. If the additional objective is correlated
with the original one, this can lead to improved convergence rate and
results. Hohm and Zitzler (2009) used a similar idea to optimize a
model of a gene regulative network.

Reif et al. (2012) used a completely different technique to enhance
the performance of evolutionary algorithms for parameter tuning. In
their case, they used the the ideas from meta-learning to create the ini-
tial population. Namely, they have used the several best performing
settings on similar datasets as the individuals in the initial popula-
tion. They claim that this helps to start the evolution in the regions of
the search space, where the more promising individuals are located
and show that the performance of the tuned classifiers is similar to
the performance of the classifiers tuned by a grid search algorithm,
which uses much more iterations of the tuning. The disadvantage is
that the method needs a database of results of the given classifier on
several datasets and thus cannot be used without any prior knowl-
edge.

9.4 MULTI-OBJECTIVIZATION

Our goal is to provide good parameter settings for a given classifier.
The quality of the settings is measured by the classification error of
the classifier. As discussed above, the classification error (the number
of incorrectly classified instances) of a classifier is a function which is
difficult to optimize using evolutionary algorithms.

In order to improve the convergence rate of the algorithm, we use
the idea of multi-objectivization. We add two more objectives whose
values are not important for our task, but which are correlated to
the error rate of the optimizer. Then, a multi-objective evolutionary
algorithm is used to solve the multi-objective optimization problem.
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The three objectives we optimize are:

1. classification error (minimization) — expresses the percentage of classification error
incorrectly classified instances, i.e. of the instances whose class
predicted by the model is different from their class as assigned
in the training set,

_A-C

==

where C is the number of correctly classified instances and A is

the number of all instances;

CE

2. kappa statistic (Di Eugenio and Glass, 2004) (maximization) —  kappa statistic
expresses the inter-classifier (or classifier and training set in our
case) agreement, it is computed as

_ P(a)— P(e)
1—Pe) ’

where P(a) is the observed agreement between the two classi-
fiers and P(e) is the calculated chance agreement (i.e. the agree-
ment two random classifiers would have if they had the same
distributions of classes as the actual classifiers);

3. root mean square error (minimization) — is traditionally used for root mean square
regression tasks. For classification, the class indices are encoded error
as binary vectors with just one 1 on the position of the class
index (e.g. if there are 5 classes in total, the vector for class 3
would be (0,0,1,0,0));

R =

Yy

- (¢t — Cij)zz

nm3a Y

where 7 is the number of instances in the training set, m is the
number of classes (numbered 1 to m), and cl’fj = 1 if individual
i belongs to the class j and 0 otherwise, and ¢;; is the output of
the classifier.

The error rate and kappa statistic are highly correlated, especially in
cases where all the classes are represented by the same number of
instances in the training set. This is also the reason to add the third
objective, which may seem unrelated to classification.

Root mean square error (RMSE) is traditionally used as the objec-
tive which is minimized in regression tasks. As it is implemented
here (i.e. the model is trained to predict the unary representation
of the class label), the number does not tell much about the quality
of the classifier itself. However, it is more sensitive to changes in
the parameter settings. It is important to note that the only impor-
tant measure is the classification error, so whenever two models have
the same classification error we may choose any of them and they are
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Table 9.1: Number of different values of the error measures compared to the
different sets of options (data obtained during the experiments
described in Section 9.5).

Number of distinct values of

CE K R | options
balance-scale | 253 3255 23953 27636
breast-w 174 671 24223 27639
car 206 9843 12655 18417
haberman 33 640 22572 27591
iris 98 98 24995 27629

equivalent for the given task, thus choosing the one with lower RMSE
does not hurt the result. Moreover, RMSE guides the optimization to
an optima of the classification error — if the RMSE is zero the classi-
fication error is also zero. This is the reason why RMSE provides a
sensible guide for the search.

The relative discriminative power of the different error measures is
summarized in Table 9.1. We can see that more than 25,000 different
sets of options produce only hundreds different values of classifica-
tion error. The other error measures provide much more different val-
ues and thus have more discriminative power, which helps to guide
the evolutionary algorithm. The numbers in the table were obtained
during some of the experiments which are described in the Section

9.5
9.5 EXPERIMENTS

To investigate the effect of multi-objectivization on the performance
of hyper-parameter tuners we compare a simple single-objective tuner
to NSGA-II (Deb, Pratap, et al., 2002) based multi-objective tuner. More-
over, we also compare surrogate versions of both the tuners. In the
single-objective case the surrogate model is trained to predict the clas-
sification error given the parameters. In the multi-objective case we
use the LSPS-MOEA we described earlier.

To run the experiments, we used the Pikater (Kazik et al., 2012) sys-
tem. It is a multi-agent system for meta-learning and parameter tun-
ing. It contains several types of agents, among them computational
agents, which encapsulate the classifiers from the Weka (Hall et al.,
2009) framework. These agents are able to train the method they en-
capsulate on a given data set and report the performance (different
error measures) on that particular data set. Moreover, Pikater also
contains a general search agent, which is able to search the options of
the computational agents.
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We implemented a specialized search agent, which runs the algo-
rithms described above. Moreover, it is able to run a simple evolu-
tionary algorithm without any surrogates, single-objective surrogate
algorithm, NSGA-II and LSPS-MOEA.

We used this search agent to tune the parameters of the methods
given bellow, together with their parameter settings.

® RBF network — an artificial neural network with (in our case) nor-
malized Gaussians as the activation function, the output is the
value of logistic function applied to the linear combination of
the outputs of individual neurons. We optimized four parame-
ters:

— the number of clusters - integer between 2 and 10,

— the minimal width of the Gaussians — real number between
0.01 - 1.0,

— the ridge parameter for the logistic regression — real num-
ber between 0.000000001 and 10,

- and the maximum number of iterations for the logistic re-
gression — integer between -1 and 50, -1 meaning “until
convergence”,

* MLP network — a feed-forward artificial neural network, consist-
ing of individual units with sigmoid function as the activation
function. We again optimized four parameters:

the learning rate — real number between 0.001 and 1.0,

the momentum - real number between 0.0 and 0.9,

the number of epochs to train through — integer between 1
and 10,000,

the percentual size of the validation set, which is used to
terminate the training — integer between o and 100.

The other parameters of the multilayer perceptron were fixed,
especially the architecture. The neural network had one hidden
layer. The number of neurons in this layer is the arithmetic
average of the number of attributes and number of classes.

The ranges for the number of clusters of the RBF network was set
in a range which corresponds to our experience with this particular
model. The number of neurons in the hidden layer of the multilayer
perceptron corresponds to the defaults of the Weka framework. Other
ranges contain all (meaningful) values for the given parameters.

The performance of the tuners was tested on the following five
datasets which are available from the UCI Machine Learning Reposi-
tory (A. Asuncion, 2007).
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* balance-scale — the goal it to predict the direction of the balance
scale tip (left, right, balanced), given four numerical attributes,
the data set was created to model a psychological experiment,

* breast-w — the goal is to predict the type of tumor (benign, ma-
lign) given ten numerical attributes, the features are computed
from digitized images,

e car — the goal is to predict the car acceptability (in four different
levels) given six nominal attributes, the data set is derived form
a simple hierarchical model

* haberman — the goal is to predict the survival status of cancer
patients, given three numerical attributes, the data set contains
cases of cancer from a hospital

¢ iris — the goal is to predict one of three types of iris plants, given
four of its attributes, this is probably the most well-known data
set.

To obtain the results, the tuners were given the computational bud-
get of 300 objective function evaluations. One evaluation is a 10-fold
cross-validation with the parameters given by the tuner on the respec-
tive training set. All evaluated individuals are saved in an archive
and if the same individual is generated again in the same run it is
not re-evaluated. The archive of evaluated individuals is also used
during the training of the surrogate model in the case of surrogate
evolutionary algorithm.

The single-objective evolutionary algorithm (both with and with-
out surrogate modeling) uses population of 10 individuals, with one
point crossover and Gaussian mutation (a random number from the
normal distribution with standard deviation equal to 30% of the range
of the particular parameter is added to the parameter). Moreover, the
evolutionary algorithm uses tournament selection and 10% elitism
(one individual). The version with surrogate model uses Gaussian
processes as the surrogate model. The local search operator is ap-
plied with the probability of 0.25 and uses another evolutionary al-
gorithm with the same population size and operators which is run
for 10 generations (only the standard deviation of the Gaussian mu-
tation is reduced to 10% of the range to promote exploitation). The
surrogate operator is not used, if there are less than 20 evaluated in-
dividuals in the archive, as low number of individuals would lead to
poorly trained models.

The non-surrogate multi-objective evolutionary algorithm uses the
same parameters, the only difference being in the selection phase,
where it uses the NSGA-1I selection based on dominance and crowding
distance.

The parameters of LSPS-MOEA match those of the surrogate evo-
lutionary algorithm, it also uses the automated model selection we
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described in the previous chapter. Models with good relation preser-
vation are used. The surrogate modeling is not used, if there are less
than 50 evaluated individuals. In this case, the surrogate modeling
seems to be more sensitive to the lack of training data and larger
training sets improve the results.

9.6 RESULTS

Generally, the results (the last generation shown numerically in Ta-
bles 9.2 and 9.3). correspond to the discussion we presented earlier. It
is difficult for the surrogate model to precisely approximate the clas-
sification error of the optimizer, thus the surrogate model does not
improve the performance of the optimizer much. In some instances
during preliminary testing, we have observed that the local search op-
erator guides the search towards the boundaries of the search space,
thus generating the same individuals in each run. This problem was
partially reduced when we lowered the number of generations for the
internal algorithm to 10 (the value used in final testing, we started
with 30). We also experimented with different types of surrogate
models for the single-objective EA, like RBF networks, and linear re-
gression, however the Gaussian processes seemed to give the best and
most robust results.

However, we can observe, that the results of the surrogate algo-
rithm are often better with respect to the worst and average run — this
indicates that the surrogate versions of the algorithms have more ro-
bust performance, thus providing better guarantee on the optimality
of the found solution. This is a feature which may be of importance
in practice, where running the experiment several times to get better
results may be unacceptable or intractable.

On the other hand, as can be seen from the table, the difference
between the single-objective and multi-objective version of the opti-
mizers is significant. The multi-objective optimizers perform better
than their single-objective version in almost all the cases.

9.6.1  Optimizing the RBF networks

For the tests with the optimization of RBF networks, we can observe,
that the multi-objective tuners work better than both versions of the
single-objective tuners. The surrogate tuners usually outperform the
non-surrogate one, however the difference between the surrogate and
non-surrogate versions is rather small in the case of the best found
setting. On the other hand, the performance in the average and worst
cases is usually better for the surrogate based tuners. On two of the
five datasets the worst performance of the surrogate version is better
than the average performance of the non-surrogate one.
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Table 9.2: Results of the four different methods after 300 evaluations. Op-
timization of the parameters of the RBF network. Numbers are
aggregated over 10 runs.

Simple EA Surrogate EA

best average worst best average worst

balance-scale o0.0512 0.0712 0.1056 0.0528 0.0739 0.1040

breast-w 0.0286 0.0308 0.0329 0.0300 0.0315 0.0329
car 0.0741 0.0779 0.0839 0.0723 0.0802 0.0938
haberman 0.2386  0.2474 0.2516 0.2320 0.2412  0.2484
iris 0.0200 0.0300 0.0333 0.0267 0.0287 0.0333
Multi-objective EA LSPS-MOEA

best average worst best average worst

balance-scale 0.0464 0.0498 0.0528 0.0464 0.0494 0.0512
breast-w 0.0286 0.0296 0.0315 0.0272 0.0285 0.0286
car 0.0712 0.0737 0.0787 0.0700 0.0719  0.0723
haberman 0.2288 0.2395 0.2516 0.2353 0.2395  0.2451

iris 0.0133 0.0200 0.0267 0.0200 0.0220 0.0267

More specifically, on the balance-scale data set we can observe the
largest difference between the single-objective and the multi-objective
optimizers. For this data set the multi-objective optimizers clearly
wins and, moreover, closer inspection of the convergence speed re-
veals, that after approximately 50 evaluations the multi-objective opti-
mizers provide results, which are not provided by the single-objective
optimizers even after 300 evaluations.

The haberman data set is the only one, where the surrogate opti-
mizers perform much better (in the best case) than the non-surrogate
optimizers and the multi-objective optimizers gets the best results
overall. However, it is outperformed by LSPS-MOEA in the average
and worst cases.

On the breast-w data set all the methods work similarly well during
the first 50 evaluations of the objective function, however, surrogate
based EA finds a local optima soon after that mark and does not im-
prove much later, the non-surrogate EA improves only slowly. The
multi-objective evolutionary algorithms can, thanks to the other ob-
jectives, avoid the local optima and are able to improve the results
further. In this case, the worst performance of LSPS-MOEA matches
the best performance of the non-surrogate multi-objective evolution-
ary algorithm.

Finally, on the iris data set, the multi-objective optimizer was able
to find a setting which was better than all settings we were able to
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Table 9.3: Results of the four different methods after 300 evaluations. Op-
timization of the parameters of the MLP network. Numbers are
aggregated over 10 runs.

Simple EA Surrogate EA

best average worst best average worst

balance-scale o0.0752 0.0776 0.0816 0.0736 0.0787  0.0848
breast-w 0.0300 0.0316 0.0329 0.0300 0.0319 0.0343
haberman 0.2288 0.2337 0.2386 0.2320 0.2343 0.2418

iris 0.0200 0.0207 0.0267 0.0200 0.0247  0.0267

Multi-objective EA LSPS-MOEA

best average worst best average worst

balance-scale 0.0688 0.0746 0.0784 0.0688 0.0747 0.0800
breast-w 0.0286 0.0313 0.0329 0.0315 0.0319 0.0329
haberman 0.2288 0.2330 0.2386 0.2255 0.2314 0.2353

iris 0.0200 0.0213  0.0267 0.0200 0.0207  0.0267

obtain previously (using different optimizers like simulated anneal-
ing, grid search and random search). In the later phases, the average
performance of the multi-objective optimizer in this case is the same
as the best performance of the single objective optimizers, and it is
even better than the performance of LSPS-MOEA.

9.6.2  Optimizing the MLP networks

MLP networks take much longer to train than RBF networks. This is
also the reason, why we omit the results on the largest data set — car
— here. Single cross-validation in this case takes several minutes, thus
we would need several days to obtain the results (as a side note, it
took approximately two hours to get all the results for all datasets
and optimizers for the RBF network).

In the case of MLP networks the differences among the methods
are much lower than in the case of RBF networks. It may be the case
that MLP networks are less sensitive to the particular settings of the
parameters we tried to optimize. Table 9.3 also indicates that all the
optimizers were able to find similar optima on some of the datasets,
which may indicate these are the true optima given the fixed param-
eters.

When comparing the convergence speed of the different optimizers
more closely, we can see that on the iris data set the multi-objective
surrogate was able to provide the best results for almost all of the
time, only in the end the single-objective non-surrogate optimizer got
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a slightly better result. However, the differences are so small we can
neglect them. Similar, but reversed, situation may be observed on the
haberman data set, where the multi-objective optimizer was able to
find the best results (on average) despite the fact it was between the
two single-objective optimizers for most of the run.

On the other hand, for the balance-scale data set we observe rela-
tively large differences among the different parameter tuners. Again,
as we have already seen in the case of RBF networks, the multi-objective
optimizers provide by far the best results, with the two single-objective
optimizers having similar performance.

9.7 CONCLUSION AND FUTURE WORK

We have shown that using multi-objectivization for the parameter tun-
ing may be more useful than using surrogate modeling. It is caused
mainly by the specific type of the fitness function to be modeled,
which leads to poorly trained models. On the other hand, adding
more objectives, which are not in fact directly important for the opti-
mization task at hand, may improve the results.

We have also shown that surrogate modeling does not improve the
results much, but it is able to provide better results in the average and
worst cases, which implies better robustness of the results — this may
also be important in practice, where running each experiment several
times to get good results is not acceptable.

Some of the ranges of the parameters we used were quite limited.
This corresponds to our future usage of parameter tuning — we would
like to use meta-learning which would provide us with the model
type, together with the region of interest of its parameters, and then
we will use the parameter tuning to find the best possible settings of
its parameters.



Part IV
CONCLUSION
In this last part of the thesis we again summarize the most

important results and provide ideas and directions for fu-
ture research.
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In this thesis, we studied surrogate based multi-objective algorithms.
The main contributions are:

1. the new distance-based surrogate model — the experiments show  distance-based
that multi-objective evolutionary algorithms based on this model ~ ™models
perform well on the large set of benchmark functions and are
able to significantly reduce the number of function evaluations
needed to attain a specified quality of solutions; or, from the
complementary point of view, produce significantly better solu-
tions within a given budget of objective function evaluations,

2. the new pre-selection scheme — the pre-selection scheme based  pre-selection

on a different types of models reduces the number of function
evaluations further, thanks to the fact that non-promising in-
dividuals are ignored and are never evaluated by the real ex-
pensive objective function; we have demonstrated that different
types of models in each of the phases are essential to ensure bet-
ter convergence and also to provide more than one individual
in each generation; this is important in practice, as it allows for
easy parallelization of the evaluations and also, in some cases,
evaluating more solutions at once may be more economical,

3. the study of different model selectors — we have shown that model selection
the traditionally important feature of good models, low mean
square error, may not be the best feature for the model selection
in evolutionary algorithms which use only comparisons among
individuals during their run; the ranking preservation criterion
provides better results and should thus be preferred, and

4. the multi-objectivization approach for hyper-parameter tuning
— we have demonstrated that the multi-objectivization approach  parameter tuning
improves the hyper-parameter tuning of two classifiers when
the goal is to find the hyper-parameters which minimize the
classification error; the additional objectives provide direction
for the evolutionary algorithm in the areas of search space where
the classification error is constant — and there are a lot of such
areas as most classifiers were designed in such a way to be ro-
bust and provide good performance without being too sensitive
to the particular values of the hyper-parameters.

There are several directions which can be researched to improve on
the results we presented here. One of them is derived from the fact  better models
that the distance based models may have problems in cases, when
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some of the directions in the search space are more important than
others. We have seen demonstration of these problems in the exper-
iments on the WFG benchmark, where the different variables have
differently scaled domains and we could see, that even the scaling
of all the variables before the use of the model can dramatically im-
prove the performance. MO-CMA-ES goes a bit further in solving this
problem, it adapts the covariance matrix used to generate new indi-
viduals. The distance-based model may profit from a similar idea. If
the Euclidean distance we used is replaced by Mahalonobis distance,
the covariance matrix (in case the distance based model is used in
conjunction with an algorithm which uses one) can be used even for
the computation of distances.

Another interesting possibility is to study the options how to re-
duce of the number of times the model is trained. This is a problem
especially for more expensive local models. These are trained mul-
tiple times in each generation. One possibility could be to cluster
the individuals before the model is constructed and to create a single
local model for all the individuals in the cluster.

Another open question is the effect of the degree of locality (repre-
sented by the A parameter) on the evolution convergence speed and
the possibility to change this parameter adaptively. Moreover, local
and global meta-models might be combined: the global meta-model
may be used to pre-evaluate the individuals, and some of them might
then be locally improved with a memetic operator based on a local
model. The question is, whether it would be more beneficial to im-
prove those individuals which already have good values, or those,
which are worse.

The models we used in the pre-selection phase were rather simple
and in the light of the experiments we did with model selection, it
may be interesting to try models which would optimize the ranking
preservation directly, like the one used by Loshchilov et al., 2010b.
Also, different criteria for the selection of individuals should be con-
sidered. We selected those individuals which are not dominated by
any of the parents. This criteria may be rather strong, and weaker
criteria, which would select more individuals would decrease the
overhead of the algorithm. On the other hand, they may reduce the
convergence speed. It may also be interesting to incorporate the Gaus-
sian processes in this case and select individuals similarly to the way
they are selected in MOEA /D-EGO - such that they maximize the
expected improvement.

Moreover, one of the largest disadvantages of the pre-selection step
is that it selects different number of individuals in each generations.
The pre-selection step only guarantees (in the way we had it imple-
mented) that at least 10% of the population size are selected in each
step. Although it is probably better than selecting only one individ-
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ual, being able to select a pre-defined number of individuals would
be more practical.

The experiments with model selectors show that preference pre-
serving is an important feature of surrogate models which are used
inside an evolutionary algorithm. Unfortunately, there are not many
models, except the ranking sVM, which would try to learn the rank-
ing among the individuals. It may be an interesting research idea
to develop more such models. It may be possible to change the
training algorithms of some of the existing models to favor the re-
lation preservation, although it may be quite difficult, as the measure
is non-differentiable and thus gradient-based techniques cannot be
used. An interesting option may be to use an approach similar to the
multi-objectivization one, with the primary objective being the rela-
tion preservation, and the mean square error would be in this case
only a secondary objective (the one most model can optimize using
their respective training algorithms).

The multi-objectivization idea also provides a prospective direction
for research. It may be interesting to come up with different types of
secondary objectives. An interesting option may be to use different
costs for different miss-classification, and using the errors provided
by these to guide the search. It would certainly be more natural in
the case of classification than the use of mean squared error. An-
other interesting direction would be to study the application of multi-
objectivization for regression tasks. In this case, the error function
provides better direction for the search, as it is continuous, but it may
still be possible to improve the convergence with some additional ob-
jectives.

The main motivation for the multi-objectivization and model selec-
tion research was the integration of surrogate modeling and meta-
learning. The meta-learning should be able to recommend types of
models with good performance to the multi-objective optimizer given
some metrics calculated on the training sets. On the other hand, the
multi-objective algorithm, with the multi-objectivization approach,
can improve the recommendation of the models by integrating the
parameter tuning into the meta-learning process. The work on the in-
tegration of surrogate multi-objective optimization and meta-learning
is currently on-going and should continue in the future.
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