Title: Preparation and Characterization of Novel Oxide Catalysts for Fuel Cell

Applications

Author: Mgr. Ivan Khalakhan

Department/Institute: Department of Surface and Plasma Science, Faculty of

Mathematics and Physics, Charles University

Supervisor of the doctoral thesis: Prof. RNDr. Vladimír Matolín, DrSc.,

Department of Surface and Plasma Science, Faculty of Mathematics and Physics,

Charles University

Abstract:

Present doctoral thesis focuses mainly on the morphological investigation of

novel oxide catalysts prepared by magnetron sputtering deposition for fuel cell

applications. Surface characterization techniques such as scanning electron

microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron

spectroscopy (XPS), were used in this work.

In the first chapter, the influences of different preparation parameters on the

morphology of CeO₂, Au doped CeO₂ and Pt doped CeO₂ sputtered films were

investigated. It was found that morphology and stoichiometry of the catalyst film is

strongly dependent on the deposition parameters and the type of substrate. We have

also shown that catalyst films prepared by magnetron co-sputtering of platinum and

cerium oxide exhibit high catalytic activity as anode in proton exchange membrane

fuel cell (PEMFC). High surface area, low platinum loading and excellent catalytic

performance make this material a promising alternative to more expensive

commercial catalysts.

In the second chapter, the morphology of PtO_x films prepared by reactive

magnetron sputtering of platinum in oxygen atmosphere were examined. It was

shown that PtO_x, when reduced by H₂, exhibit large active surface area. Such

platinum films were found to be high active catalyst as anode in PEMFC.

Keywords: Cerium Oxide, Platinum, Platinum Oxide, Magnetron Sputtering, Fuel

Cell

V