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Abstract: 

Mechanisms of three reactions catalyzed by microporous materials were 

investigated computationally; the reactions investigated include Friedländer and 

Knoevenagel reactions catalyzed by Cu3BTC2 metal organic framework (MOF) and an 

intramolecular cyclisation of unsaturated alcohols catalyzed by zeolite H-ZSM-5. It was 

found that the reaction mechanisms of all three reactions are controlled by a high 

concentration of active sites in materials. Reaction intermediates interact with more than 

one active site simultaneously. This novel concept of “multiple-site” interactions is 

described. The concerted effect of two catalytic sites leads to a decrease of activation 

barriers on reaction paths of Friedländer and Knoevenagel reactions. On the contrary, a 

simultaneous interaction of reactants with two active sites has a negative effect on 

reaction rate in case of alcohol cyclization catalyzed by H-ZSM-5; it was found that the 

interaction with dual sites results in the increase of activation barriers and diffusion 

limitations. In case of Knoevenagel reaction catalyzed by CuBTC, the adsorption of 

reaction precursor to the reaction site allows the creation of a dynamic defect in the 

MOF framework that subsequently catalyses the reaction. Both, the multiple sites effect 

and the dynamical defect formation effect are novel concepts that offer explanations of 

some properties of microporous materials. 

Keywords: metal-organic frameworks, DFT, Friedländer reaction, Knoevenagel 

reaction, heterocycles, multiple-site interaction 

 

Abstrakt: 

Pomocí výpočetních metod byly zkoumány mechanismy tří chemických reakcí: 

Friedländerovy a Knoevenagelovy reakce katalyzované organokovovým materiálem 

(tzv. „metal-organic framework“) Cu3BTC2 a intramolekulární cyklizace 

nesaturovaných alkoholů katalyzovaná zeolitem H-ZSM-5. Bylo zjištěno, že reakční 

mechanismus všech tří reakcí je ovlivňován vysokou koncentrací aktivních míst 

v použitých katalyzátorech. Vysoká koncentrace adsorpčních míst dovoluje interakci 

reakčních intermediátů s více aktivními místy zároveň. V případě Friedländerovy a 

Knoevenagelovy reakce dochází ke snížení aktivačních bariér v důsledku interakce 

reakčních intermediátů se dvěma katalyticky aktivními místy současně. Opačný efekt 

byl nalezen pro cyklizaci alkoholů v zeolitu, pro kterou bylo zjištěno, že současná 

interakce s dvěma aktivními místy zvedne aktivační bariéru reakce a zároveň omezí 

difúzi uvnitř zeolitu. Studie reakčního mechanismu Knoevenagelovy reakce odhalila 

(doposud nepopsanou) dynamickou tvorbu defektů v mříži organokovového materiálu. 

Tento defekt následně katalyzuje Knoevenagelovu reakci. Oba nově popsané efekty 

nabízí interpretaci dalších vlastností mikroporézních katalyzátorů s vysokou koncentrací 

aktivních míst. 

Klíčová slova: metal-organic frameworks, DFT, Friedländerova reakce, 

Knoevenagelova reakce, heterocykly, vícenásobná interakce 
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1. Introduction 

 

The theoretical investigation of reaction mechanism of Friedländer reaction, 

Knoevenagel reaction, and alcohol cyclization catalyzed by microporous materials is 

reported. Microporous materials and their use in catalysts are described in Section 1, 

together with a detail description of zeolite H-ZSM-5 and metal-organic framework 

(MOF) Cu3BTC2. An overview of possible applications of theoretical methods in 

catalysis research follows. Methods and models used to describe the catalysts 

investigated herein are presented in Section 2. Results are reported in Sections 3.1, 3.2, 

and 3.3 for Friedlander reaction, Knoevenagel reaction, and the intramolecular 

cyclization of alcohols, respectively. All results are finally summarized in Section 4. 

 

1.1 Microporous Materials 

Porous materials generally are one of the industrially most important groups of 

materials, with applications in adsorption, molecular sieving, catalysis, and other fields. 

They can be divided into three groups, depending on the diameter of pores: 1) 

macroporous materials with diameters greater than 50 nm (for example foams); 2) 

mesoporous materials with diameter between 50 and 2 nm (for example mesoporous 

silica) and 3) microporous with diameter of pores smaller than 2 nm. The applications 

of the porous materials are closely related to their pore diameter. Macroporous materials 

can be used as filters [1], supports [2] or adsorbents. The size of pores of meso- and 

microporous materials confines the possible sorbents to size of biomolecules or just 

simple chemical species, respectively. The mesoporous materials are thus used mostly 

as supports and catalysts [3–5]. The microporous materials are used in adsorption and 

catalysis [6–8]. 

Microporous materials constitute a wide group of materials, including porous 

nanocarbons, many types of porous metal oxides or some crystalline organic polymers. 

The most important group of microporous materials are zeolites. In recent years, novel 

materials called coordination polymers or metal-organic frameworks (MOF's) have also 

become vastly studied due to a large variety of structures and chemical compositions 

they offer. Both, zeolites and MOF's are studied herein and they are briefly described 

below. 

1.1.1 Zeolites 

Zeolites are crystalline aluminosilicates (based on SiO2) with a three-dimensional 

framework structure that forms uniformly sized pores. The zeolites consist of SiO4 
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tetrahedra linked to each other by shared oxygens. In some of these tetrahedra 

(generally called “T atoms”), the Si
4+

 atom can be replaced by heteroatoms, e.g., Al
3+

, 

B
3+

, Fe
3+

 that introduce the negative charge on the framework. The electroneutrality of 

zeolite is provided by extra-framework cations; most often by Na
+
, K

+
, Li

+
 or Ca

2+
 

forming Lewis metal sites or by H
+
 forming Brønsted acidic sites. The concentration of 

non-Si atoms (commonly expressed as a ratio of Si/Al atoms in the zeolite) determines 

most of the zeolite properties as adsorbents and catalysts.  

Depending on the type of the extra-framework atom the zeolites can be used as 

either acidic or basic catalysts [8]. The Brønsted acidity of zeolites depends mostly on 

the concentration of the H
+
 ions. The strongest H

+
 sites are present in the zeolites with 

higher Si/Al ration. In the case of basic zeolites the strength of Lewis basicity depends 

mainly on the nature of metal used as an extra-framework cation. Zeolites can be used 

also as redox catalyst, mainly after incorporating heteroatoms like Ti inside the 

framework [9]. 

The other factor playing major role in zeolite properties is the size and shape of the 

pores. Currently more than 200 zeolites are known, with pores as large as 18 T atoms 

(e.g. IRR or ETR zeolites; the size is determined by the number of T atoms enclosing 

the cut through the channel). Size and shape of channels limits the size of molecules, 

that are allowed to adsorb inside the zeolite and thus determines properties of zeolites as 

selective adsorbents and molecular sieves. 

The zeolite structure and composition are determined by the synthesis conditions 

[10]. The zeolites are synthetized by dissolving the source of silica and alumina in a 

strong basic aqueous solution and subsequent long treatment in the autoclave. 

Formation of the particular type of zeolite and its properties are determined by a set of 

reaction conditions: 1) the ratio of alumina and silica source, 2) the basicity of the 

solution, 3) the nature of cation of the alkaline, 4) reaction conditions in the autoclave 

and 5) the structure directing agent. The structure directing agents (SDAs) are organic 

molecules that are leading the synthesis towards a particular zeolite; SDAs are usually 

quaternary ammonium salts [6]. Synthesis with SDAs is currently the most common 

type of synthesis of zeolites. It is nevertheless possible to carry out the synthesis without 

any SDA, as it is documented by the occurrence of natural zeolites. 

Every synthetized zeolite structure type has three-letter code, assigned by the 

structure commission of the International Zeolite Association. Of about 200 synthetized 

types of the zeolitic frameworks, only 17 are commercially used. The largest amount of 

zeolites is used in the industry as additives in cement, release agents in agriculture or 

pH agents in aquaristic; these zeolites are mostly based on HEU and CHA types of 

frameworks. The LTA-type zeolites (NaA) are used as water softeners [6]. One of the 
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most valuable applications of zeolites is the catalysis, even though it is not the largest. 

The zeolites mostly used in catalysis include those based on FAU framework (zeolites 

X and Y), used in the oil refining in cracking processes [6]; other zeolites as the MFI- or 

BEA-type zeolites are used as additives for these processes. 

The zeolite studied in this work is H-ZSM-5, MFI-type zeolite with Brønsted acidic 

groups. The ZSM-5 zeolite was first described by Kokotailo et al. in 1978 [11]. The 

MFI framework exhibits 3D system of channels, both of them with 10 member rings. 

One of the channels runs straight along the b lattice vector and the second one runs in a 

zig-zag manner in the ac plane (Figure 1.1).  

 

 
Figure 1.1 Scheme of the channel system inside the MFI structure: zig-zag channels running 

along a direction and straight channels running along b direction. The figure taken from Ref. 

[12] 

 

ZSM-5 is one of the most important industrial catalysts, mainly in the form of 

Brønsted acid H-ZSM-5. It is used as the catalyst in the cracking processes during the 

oil refining. This process is used to produce ethylene and propylene from the higher 

hydrocarbons in oil; the ratio between ethylene and propylene is the state-of-art reaction 

and can be governed by the modification of the catalyst [13]. Both acidic and basic 

ZSM-5 zeolites have been also proven as the promising catalyst in the biomass refining 

into the chemicals [14] and biofuel [15,16]. ZSM-5 can be used to catalyse a variety of 

other reaction, for example the Cu and Fe doped forms of ZSM-5 can be used in the 

NOx reduction [17,18].  

 

1.1.2 Metal-Organic Frameworks 

 

Metal-organic frameworks are microporous materials that have been often 

investigated studied in last years. They can be described as coordination polymers in 

which various metal ions or clusters are interconnected by organic ligands (linkers) into 

the well-defined 3D frameworks (Figure 1.2). MOF's show large variability of 

structures; they can differ in structure type, organic linkers and the metal used [19]. The 
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resulting crystal structures often exhibit large porosity and internal surface that can even 

surpass that of zeolites; it can reach even the value of 6000 m
2
 g

-1
 [20]. Even though the 

MOF's have been studied for variety of applications, they are not used in industry yet; 

mainly because of issues with long term and temperature stability. 

 

 

Figure 1.2 Examples of the MOF crystal structures, a – MOF-5 [ZnO(BDC)3], (BDC stands for 

the benzene-1,4-dicarboxylic acid); b – Mn3[(Mn4Cl)3(BTT)3]2 (BTT stands for the 

benzene-1,3,5-tris(1H-tetrazol)) 

 

There can be several types of metal sites in MOF's: i) metal oxide clusters that are 

connected to linkers via oxygen atoms, e.g. MOF-53 [21], ii) fully coordinated metal 

sites, e.g. ZIF-8 [22] and iii) partly coordinated metal sites, e.g. CuBTC [23]. The latter 

MOF's are of a large interest because they contain stable coordinatively unsaturated 

metal sites (cus). Cus sites in MOF's have interesting adsorption properties because they 

are preferential adsorption sites for the electrostatic interactions with, e.g., polar groups 

or double bonds and can be thus used for the separation of different types of molecules 

[24]. 

The applications of MOF's in catalysis is also of interest [25]. They can be used for 

reactions of bigger molecules than zeolites. There are different types of catalytic sites in 

MOF's (either on organic or on inorganic parts), including cus sites, that exhibit Lewis 

acid or even redox character [26]. Other types of catalytic sites are functional groups on 

linkers (like NH2 groups [27] or functional groups immobilized on the framework [28]. 

The linkers can be also used to tune the electronic structure of the MOF to modify the 

Lewis acidity of cus sites [29]. Even MOF's having neither free metal sites nor 

functional groups have been reported to catalyse some organic reactions [30]. This is 
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commonly explained by the presence of defects in framework structure, mostly broken 

metal-oxygen bonds, and presence of Brønsted OH group catalysing the reaction [26]. 

A novel application of MOF's as bifunctional catalysts has been reported recently 

[31]. Two different types of multifunctional MOF's can be considered; i) structures with 

two types of metal sites and ii) structures containing both cus sites and functionalized 

linkers. Catalysts with various metal site types can be created, e.g., by doping of Pd or 

Pt inside the framework; such frameworks were found active in catalysis of arylamines 

or quinolines [32], heteroannulation reactions [33] or carbonyl condensation [34]. The 

MOF's containing both cus and functionalized linker have a large variety of possible 

active groups; however, mostly amino- functionalized MOF's are used, for example in 

aldol condensation [31] or Knoevenagel condensation [35,36]. 

The HKUST-1 MOF [23] (often denoted as CuBTC) is studied in this work. The 

basic structure units of this MOF are Cu
II
 atoms linked by the BTC linker (benzene-

1,3,5-tricarboxylic acid) into the network with the chemical formula [Cu3BTC2] (Figure 

1.3). The structure of CuBTC exhibits two types of interconnected cages with diameters 

of 9 Å and 6 Å. All Cu
2+

 ions form cus sites with the free coordination site accessible 

from the 9Å cage (they are inaccessible from the 6Å cage); there are twelve cus sites 

accessible from each suppercage. The internal surface of CuBTC can reach the value of 

2000 m
2
 g

-1
 and density of 0.35 g cm

-3
; however, the actual surface depends on the 

method of sample preparation [37]. The real values of the internal surface vary between 

900 and 2200 m
2
 g

-1
. The CuBTC is one of a few commercially available MOF's 

denoted Basolite C300 (the internal surface of 1600 m
2
 g

-1
). 
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Figure 1.3 a – The crystal structure of CuBTC, with waters coordinated on cus sites, hydrogens 

are omitted for simplicity, b – the surrounding of cus sites. The blue, red, grey and white colours 

are used for the Cu, O, C and H atoms, respectively 

 

The CuBTC can be synthetized by the direct reaction of the Cu
2+

 source (mostly 

Cu(NO3)2) with BTC acid under high temperature. In the as-synthetized state all cus 

sites in MOF are occupied by water molecules. The water can be completely removed 

by thermal treatment at 350 – 400 K [38] (the thermal stability of CuBTC is about 550 

K). It was shown that CuBTC has a properties of a hard Lewis acid, thus confirming 

that cus sites play a major role in catalysis [39]. CuBTC has potential applications in 

adsorption, for example in separation of tetrahydrothiophene (odorant of natural gas) 

[40], and in catalysis, where it was proven to be efficient catalyst of reactions like 

oxidation of polyphenols, cyclization of citronellal, and cyanosilylation or isomerization 

of -pinen oxide [41]. 

 

1.2 Theoretical investigation of microporous materials 

The computer development in last decades has allowed using models and methods 

that can reasonably well describe even complex systems. Computational methods can 

be divided into two main types; classical and quantum calculations. Classical methods 

can be used to describe the motion and properties of particles based on the classical 

physics formalism, but they neglect the details of electronic structure. All the 

calculations reported herein are based on the quantum mechanical description of the 

system that is used for the description of the microporous materials and in the 

investigation of reaction mechanisms. 
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 Computational chemistry is a useful tool for the investigation of processes inside 

microporous materials. The microporous materials investigated herein are crystalline 

materials with well-defined structures and, thus, they can be described with a rather 

good accuracy. The quantum chemical methods are computationally too expensive for 

the description of entire crystals of the material. However, the simplified models can be 

introduced, describing only the important part of the system. Generally, two types of 

models can be used; i) periodic models, simulating crystal unit cell and assuming the 

infinite number of repetitions in all three directions and ii) cluster models of the 

particular active sites.  

Both types of models have their pros and cons. The periodic models simulate all 

atoms inside the ideal crystal of the material. Due to the large size of unit cells of many 

zeolites and MOF's, the most precise ab initio methods cannot be used. The currently 

most common compromise between the cost and the accuracy is the use of DFT 

methods; mainly semi-local generalized gradient approximation (GGA) functionals [42] 

are used. These functionals underestimate the interaction of molecules with the 

framework, mainly due to the inability to describe dispersion interactions between 

adsorbates and adsorbents. This is a significant problem for microporous materials since 

an important part of the interaction energy with is due to the dispersion interactions. 

Currently there are two methods how to overcome this problem, either using semi-

empirical correction [43] or using the non-local vdW density functionals [44].  

More accurate methods, including ab initio post Hartree-Fock (HF) methods as 

Coupled Clusters, can be used for cluster models. The disadvantage of cluster models is 

the incomplete description of the material. However, cluster models can be used for 

accurate analysis of interactions and for benchmarking of DFT-based methods. This has 

a great importance in MOF's, in structures with cus sites particularly, because DFT 

methods are often inaccurate when describing the electronic structure of transition metal 

sites. 

Theoretical methods have been widely used for the description of the zeolites and 

MOF's properties. They helped in the determination of structures of some more 

complicated MOF structures, e.g., UiO-66 [45]. The main role of calculations is in the 

description of the active site though. The probing of the nature and strength of both 

Brønsted and Lewis sites in zeolites has been a common task of computational methods; 

for example by modelling of CO adsorption and interpreting the experimental FTIR 

[46,47], or by the investigation of the adsorption and reactivity of bigger molecules like 

isobutene [48]. The significance of synergy between experiment and theory is even 

bigger in MOF's. Theoretical calculations can probe every type of adsorption or active 

sites on the molecular level, thus, they can be used for description of either one 
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particular site or the description of all effects from the framework. The example can be 

CuBTC, in which the adsorption of small molecules was theoretically studied by Chen 

et al; the authors characterized all adsorption sites of CH4 in CuBTC and showed the 

complete description of its adsorption mechanism in this material [49].  

The investigation of reaction mechanisms is the second task investigated herein. 

The principle of determination of the reaction mechanism is the localization of the 

reaction coordinate on the potential energy surface (PES). The minima on the resulting 

reaction path represent the reaction intermediates and the saddle points of the first order 

are the transition structures (the activated complexes). Only less precise methods can be 

used for the investigation of more complex reactions because lots of geometry 

optimizations have to be used for the search of transition states. The more precise post-

HF methods are thus used scarcely in this field, or only to correct the energy values 

obtained with cheaper methods; the hybrid DFT methods (like B3LYP [50,51]) are 

applied in this field most often [52,53]. 

The selection of the right model is the main issue in the investigation of reaction 

mechanism in microporous materials. Due to the computational expenses the use of 

periodic models in transition state structure search is limited. The optimal scheme for 

the localization of transition states is thus the use of periodic model calculations for the 

localization of intermediates and subsequent localization of transition states with the 

cluster models.  

A variety of reactions catalyzed by microporous materials has been studied by 

computational methods. Reactions running on zeolites have been studied already in 

1990’s for the reactions like methanol condensation [54] or isomerisation of alkenes 

[55], but all of them used very small cluster models of zeolites (clusters consisting of 1 

or 3 tetrahedra, co called 1-T or 3-T cluster models). However, in recent years, more 

precise calculations with bigger models of catalyst allowed investigation of many 

mechanisms for even more complex reactions; like simultaneous reduction of aldehydes 

and oxidation of alcohols [56] or ethylation of benzene [57]. On the other side, only few 

mechanisms of reactions catalyzed by MOF's have been computationally investigated 

yet; for example cyclization of citronellal in UiO-66 [29], Knoevenagel reaction in 

IRMOF-3 [58] or trans-esterification reaction on ZIF-8 [59]. 
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2. Methods and Models 

2.1 Periodic models 

Two different microporous catalysts are studied in this work: the CuBTC metal-

organic framework and the H-ZSM-5 acidic zeolite. To enable modelling of reactions in 

these systems, two types of simplified models has been used; i) periodic models, 

simulating crystal unit cell and assuming the infinite number of repetitions in all three 

directions, and ii) cluster models of the particular active sites. 

The CuBTC is described first (Figure 2.1); it is represented by a rhombohedral 

primitive cell, with cell parameters optimized previously (a = b = c = 181.774 Å and 

, volume 4678.71 Å
3
) [60].

 
The primitive cell contains 156 framework 

atoms, of which 12, 48, 72 and 24 are Cu
2+

 ions, O, C and H atoms, respectively. 

 

 
Figure 2.1 Structure of CuBTC metal organic framework. Colouring scheme: H, C, O and Ge 

atoms depicted in white, grey, red and pink colours, respectively 

 

The MFI unit cell optimized previously for purely siliceous system containing 96 

and 192 Si and O atoms, respectively, was used (parameters a = 20.241 Å, b = 20.001 

Å and c = 13.514 Å,  90°, volume 5471.0 Å
3
) [61]. To model a Brønsted 

acid site, Si in T12 position (at the intersection of main and zig-zag channels) was 

substituted by Al atom and the negative charge was compensated by H
+ 

(Figure 2.2). 

The second Al atom was substituted into T1 position, just across the channel 

intersection from the first Brønsted site. 
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Figure 2.2 The Brønsted acidic site pointing in the straight channel of MFI structure, the 

framework Si, Al, and O atoms are depicted in grey, black and red colour, the Brønsted H atom 

is shown in white. 

 

DFT methods were used in all calculations with periodic models, either with PBE 

exchange-correlation functional [62] or with the second version of the non-local van den 

Waals density functional vdW-DF2 [63] which accounts for dispersion interactions. The 

projector augmented wave (PAW) [64] and plane-wave basis set with the kinetic energy 

cutoff of either 400 or 600 eV were used, together with the Γ-point sampling of the first 

Brillouin zone. All periodic DFT calculations were performed with the VASP program 

package, version 5.2.12 [65,66]. The methods used are specified in Models and 

Methods subsections for particular reactions. 

2.2 Cluster models 

For the investigation of reaction mechanisms, various cluster models were used. 

Only the active site and its close surrounding were explicitly considered in the cluster 

models. For simulation of Brønsted acid sites in H-ZSM-5, so called 3-T cluster model 

with empirical formula Si2AlO4H9 was used (Figure 2.3); T stands for one tetrahedral 

atom of zeolite (Si or Al). The cluster is OH‒terminated on Al atom while it is just H-

terminated on Si atoms to avoid an artificial interaction of reactants with the cluster-

terminating silanol groups. 
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Figure 2.3  3-T cluster model of the Brønsted acid site inside a zeolite 

 

The cus sites in CuBTC are formed by the Cu
2+

 ions surrounded by four oxygens in 

the slightly pyramidal geometry (O–Cu–O angle of 173.9°) with Cu pointing towards 

the cage (Figure 2.1). The simplest representation of the cus site is a cluster formed by 

two Cu
2+

 ions connected via four carboxylic groups (Figure 2.4a). The Cu2(HCOO)4 

cluster model is used and it is denoted as “paddlewheel”. For the sake of computational 

feasibility a small Cu(HCOO)2 cluster model was also employed (Figure 2.4b). Cluster 

model calculations considering the interaction with just one active site (represented by a 

Cu(HCOO)2 model) are referred to as single-site cluster model calculations. For the 

investigation of simultaneous interaction of reaction intermediate with two active sites a 

two-site cluster model was introduced; it consists of a pair of Cu(HCOO)2 cluster 

models at geometry corresponding to the CuBTC MOF (Figure 2.5a). The distance 

between two Cu
2+

 sites is thus 8.15 Å. 

 
Figure 2.4 Small cluster model of the CuBTC; a – paddlewheel cluster, b – Cu(HCOO)2 cluster 

 

The two-site cluster model consisting of two paddlewheel clusters linked by one 

benzene (Figure 2.5b) was also used in the Knoevenagel reaction study 

(Cu2(HCOO)3(OOC–C6H4–COO)(HCOO)3Cu2 and it is denoted two-pdw model). Only 

the geometry of some atoms in the cluster was constrained in the geometry optimization 

(depicted as thinner tubes in Figure 2.5b); however, the closest surroundings of active 

sites was fully relaxed.  
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Figure 2.5 a – two-site model of CuBTC consisting of two Cu(HCOO)2 clusters; b – two-pdw 

model consisting of two paddlewheels connected by one benzene ring, thinner tubes denote 

frozen parts of the cluster, oxygen depicted by the sphere is the oxygen on which the defect is 

formed. 

 

Calculations with all cluster models were performed with the Gaussian 09 program 

suite [67]. The reaction mechanisms of all reactions were investigated with Becke’s 

three parameter exchange–correlation functional B3LYP [50,51]. To compare the 

cluster and periodic model calculations the PBE exchange-correlation functional was 

also used [62]. In cases where more accurate calculations were required, Møller–Plesset 

perturbation theory through the second order (MP2) was used. Basis sets used with DFT 

functionals were either Pople type basis sets 6-311G(2d,p) and 6-311G(d,p) [68] or 

correlation-consistent basis set cc-pVTZ [69]. The character of all stationary points 

located along the reaction paths was checked by the frequency calculations performed 

within the harmonic approximation. The system-specific details are specified in Models 

and Methods subsections for particular reactions. 

 

 

  



19 

 

3. Theoretical investigation of selected reactions 

3.1 Friedländer reaction 

In this section, explanation of catalytic activity of CuBTC in the Friedländer 

reaction is reported. Friedländer reaction is a double condensation of o-aminoaryl 

carbonyl molecules with other carbonyl compounds with enolizable hydrogens. It is 

considered to be economic way to produce substituted quinoline compounds [70]. These 

N containing heterocyclic compound are frequently used in medicine as antimalaric 

drugs [71] or it can be used as anti-inflammatory [72] or anti-asthmatical [73] drugs. 

Other uses of quinolines include dyes, novel materials or electronics [74]. 

For the catalysis of Friedländer reaction, both bases and acids can be used [75]. The 

reaction can be even run without catalyst for some reactants using temperatures between 

150 – 220 °C. The most common is the catalysis by strong inorganic or organic base at 

high temperature in water or alcoholic solution; e. g., ytterbium triflate Y(OTf)3 [76]. 

Other salts such as BCl3 [67] or SnCl2 [77] can be also used. 

Some microporous materials have been already tested as catalysts for the 

Friedländer reaction, with reactants shown in Figure 3.1. Acidic zeolites as H-FAU, H-

MOR or H-BEA have proved to be quite efficient catalysts [78] with conversions higher 

than 50 % over 6 h. However neither of these zeolites was selective exclusively for the 

Friedländer reaction products. The CuBTC MOF has been also tested as catalyst and it 

turned out to be more efficient than zeolites with quantitative conversion in 3 h at 100 

°C with the 100% selectivity for Friedländer products [79]. The CuBTC was further 

investigated to explain such high activity [80]. The catalytic activity of CuBTC was 

attributed to Cu ions; even the Cu containing zeolite BEA (proven before to be the best 

among zeolites) had lower activity than of CuBTC. This indicates that the activity of 

CuBTC comes from some specifict feateure of its structure. 
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Figure 3.1 Friedländer reaction used in the catalytic testing of zeolites and CuBTC [78–80] 

 

The Friedländer reaction has been already investigated in my Bachelor thesis [81]; 

in particular the reaction mechanism for uncatalyzed reaction, reaction catalyzed by H
+
 

(as a Brønsted acid) and reaction catalyzed by CuBTC (as a Lewis acid) represented by 

a single-site cluster was studied. The results reported in Bachelor thesis are briefly 

summarized below, followed by a detail description of new results obtained during the 

course of my Master thesis. 

Two possible pathways were found for the reaction of 2-aminobenzaldehyde F1 

and acetaldehyde F2, differing in the order of elementary reaction steps (Figure 3.2): i) 

reaction starting with aldolization (F1+F2e → F3a) following by subsequent C–N 

formation (F3a → F4a) and two dehydrations; ii) reaction starting with imination 

(F1+F2 → F3i → F4i) followed by the aldolization (F4i → F5) and dehydration. The 

preference for particular reaction path was found to depend on the type of catalyst used 

in the reaction. The aldolization path is preferred in uncatalyzed reaction. On the 

contrary, the imination reaction path is preferred in the reaction catalyzed by the 

Brønsted acid. 

 

 
Figure 3.2 The reaction mechanism of the Friedländer reaction; the upper and lower parts of the 

scheme show reaction starting with imination FR(i) and aldolization FR(a), respectively. 

 

The catalytic activity of CuBTC (Lewis acid) was investigated using a single-site 

model represented by a Cu(HCOO)2 cluster (see section 2.2). It was found that there are 

two different reaction paths depending on the reactant-catalyst interaction mode; either 
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via oxygen (O-down) or nitrogen (N-down) of aminobenzaldehyde F1. Reaction 

precursors for both paths are energetically almost identical; however the stationary point 

geometries are rather different. It was found that the copper catalyst leads to the 

reduction of the overall barrier of the aldolization reaction path only; the C–C and C–N 

formation steps in particular, while dehydration steps remains unchanged. 

The mechanism of Friedländer reaction catalyzed by CuBTC has been re-

investigated using a better model of catalyst and the results are reported below. The 

motivation for the model improvement is based on the hypothesis that intermediates can 

interact with more than one catalytic site inside CuBTC simultaneously (Figure 3.3) and 

that could lead to a change of the reaction mechanism. Part of these results was already 

published in Dalton Transactions [82]. 

 

 
Figure 3.3 Intermediate F4a interacting with the CuBTC, dashed line shows strong interaction 

with cus site, arrow shows weaker interaction with secondary active site 

 

3.1.1 Methods and Models 

2-aminobenzaldehyde F1 and acetaldehyde F2 were chosen as the model reactants. 

Reaction path is depicted in Figure 3.2; the FR(a) mechanism with the O-down reaction 

precursor is considered. The reaction was investigated using two-site model (see 

Chapter 2.2) with B3LYP functional and 6-311G(2d,p) basis set. To verify the model, 

minima on reaction paths were also investigated using periodic model of CuBTC and 

PBE functional and energy cut-off of 600 eV (see Chapter 2.1). To allow comparison of 

cluster and periodic calculations, energies of minima on reaction path were recalculated 

with PBE functional and 6-311G(2d,p) basis set. 
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3.1.2 Results 

 

The relative energies (with respect to reactants F1 and F2 interacting with the 

model catalyst) of all minima along the FR(a) reaction path in O-down interaction 

mode obtained with single- and two-site cluster models and the periodic model of 

catalyst are summarized in Table 3.1. The discrepancy between the single-site cluster 

model and the periodic CuBTC model increases along the reaction path. The two-site 

model introduced herein gives the results in a very good agreement with the periodic 

CuBTC model. 

 

Table 3.1 Relative energies of minima in FR(a) mechanism 

calculated with various models of catalyst (in kJ mol
-1

) 

Structure 
Model 

single-site two-site CuBTC 

F1+F2 0 0 0 

F1+F2e 42 46 51 

F3a 45 73 72 

F4a -30 4 6 

F5 15 11 1 

F6 -35 -63 -73 
a
 PBE functional used; relative energies reported with respect to the 

energy of interacting reactants and the model catalyst (F1+F2) 

 

The reaction profile of FR(a) path obtained with the two-site cluster model is 

shown in Figure 3.4 and corresponding barriers are summarized in Table 3.2. Neither 

aldolization nor C−N formation steps are affected by the secondary catalytic site, except 

for the stabilization of reactants due to the interaction of F2 with the secondary Cu
2+

 

site. However, the rate determining step (dehydration F4a→F5) is significantly–

influenced by the presence of the secondary catalytic site; relative energy of 

corresponding TS decreases by 42 kJ mol
-1

. Apparent activation barriers of both 

dehydration steps are almost 100 kJ mol
-1

 lower than for uncatalyzed process (Table 

3.2). 
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Figure 3.4 Energy profiles of FR(a) reaction path for uncatalyzed reaction and reaction 

catalyzed with one or two active sites; both O-down and N-down intermediates are considered. 

The x-axis represents a reaction coordinate; the notation introduced in Figure 3.2 is adopted. All 

energies were calculated using B3LYP functional. (X) Uncatalyzed, (∆) single-site/N-down, (○) 

single-site/O-down, (♦) two-site/O-down, structures 5 and 6 are reported for N-down for which 

the activation barrier is lower 

 

Table 3.2 Reaction profiles of FR(a) mechanism obtained with various models [82].
a
 

Structure 
Uncatalyzed single-site/N-Down single-site/O-Down Two-site 

Erel
 

E
≠ 

Erel
 

E
≠ 

Erel
 

E
≠ 

Erel
 

E
≠ 

F1+F2 -16.8 
 

-52.2 
 

-53.1 
 

-88.5  

F1+F2e 18.3 
 

-12.2 
 

-8.4 
 

-34.4  

TS F1+F2e 

→F3a 
125.3 107.0 96.0 108.2 81.0 89.5 75.5 109.9 

F3a 36.7 
 

-18.7 
 

12.2 
 

4.9  

TS F3a→F4a 203.0 166.3 103.2 121.9 114.4 102.3 109.1 104.2 

F4a 4.2 
 

-42.6 
 

-40.5 
 

-42.3  

TS F4a→F5 203.8 199.6 156.3 198.9 161.8 202.2 115.7 158.0 

F5 28.5 
 

-25.0 
 

-21.6 
 

-62.9  

TS F5→F6 212.0 183.6 151.7 176.7 150.8 172.4 114.5 177.4 

F6 -44.7 
 

-105.6 
 

-91.7 
 

-148.4  

a
 Relative energies Erel with respect to the energy of non-interacting reactants and catalyst and 

activation energies for elementary steps E
≠
 are reported in kJ mol

-1
; results obtained with 

B3LYP functional reported. 

 

The effect of the secondary catalytic site on the dehydration steps is shown in 

Figure 3.5. On the single-site model of catalyst, water leaves F4a intermediate without 

any stabilization (Figure 3.5a). Similar TS can be found with the two-site cluster model, 

in which water leaves F4a without interaction with the secondary active site (Figure 

3.5b). Nevertheless, the interaction of F4a with two Cu
2+

 sites results in the lowering of 

TS energy by 18 kJ mol
-1

. In addition, the dehydration can follow the path through the 

F1+F2 F1+F2e F3a F4a F5 F6 -125
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transition state depicted in Figure 3.5c; F4a interacts only with the primary active site 

and dehydrated water interacts with the secondary active site. The barrier for this 

elementary step is 42 kJ mol
-1

 lower than for the corresponding reaction step catalyzed 

by the single catalytic site.  

The barrier of the second dehydration step does not change significantly because 

the distance between nitrogen and OH group is too small to allow simultaneous 

adsorption on two cus sites. The leaving OH group thus interacts only with the water 

formed in the previous reaction step. 

 

 
Figure 3.5 Structures of transition states for the first dehydration step (F4a→F5) in FR(a) 

mechanism obtained with the single-site (a) and the two-site (b, c) cluster models. Concerted 

effect without and with stabilizing interaction of dehydrated water with the secondary Cu
2+

 site 

is depicted in parts b and c, respectively. Solid arrows represent a dominant component of 

reaction coordinate; distances in Å. 

 

3.1.3 Discussion 

 

Results reported previously for the single-site model [81] indicated that out of the 

four-step reaction mechanism (FR(a) in the Figure 3.2) only the first two steps are 

effectively catalyzed; contrary to experimental results [79,80] that had showed high 

activity of CuBTC in the reaction. It was proposed that the catalytic activity of CuBTC 

could be explained by the adsorption simultaneously on the two neighbouring active 

sites that are only about 8.1 Å apart in CuBTC (Figure 3.3). The role of the secondary 

catalytic site has been investigated in detail herein. 

The results show the activity of the catalyst is significantly increased due to the 

concerted effect of two adjacent active sites. While the structures of reaction 

intermediates remain similar as in the reaction catalyzed by one active site, the relative 

energies are changed significantly. C−N formation and aldolization steps are not 

influenced by the secondary catalytic site; however, the activation barriers of other 
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reactions steps, in particular dehydration reactions are reduced due to the simultaneous 

interaction of reaction intermediates with a pair of adjacent catalytic sites (Table 3.2).  

The activation barrier of the rate determining step (dehydration) of the FR(a) 

reaction path is significantly reduced due to the concerted effect of two nearby Cu
2+

 

sites. The activation barrier of this reaction is reduced to 116 kJ mol
-1

 that is about half 

of the barrier found for uncatalyzed reaction (212 kJ mol
-1

). It is reasonable to anticipate 

that the barrier will be even lower when larger reactant (than a model acetaldehyde F2 

investigated here for computational reasons) is considered. Thus the results confirm that 

the FR(a) is the actual reaction path of the Friedländer reaction on CuBTC. 

Note that the activation barrier for the second dehydration step F5 → F6 is lower 

for the N-down geometry (contrary to other reaction steps). It is reasonable to assume 

that all reaction intermediates can desorb and re-adsorb during the course reaction 

because adsorption energies of all intermediates are about half of the values calculated 

for activation barriers.  

The simultaneous interaction of molecules with multiple active sites is not a 

commonly considered phenomenon in MOF's; however, it has already been reported for 

adsorption and catalysis in zeolites [83,84]. In general, a simultaneous interaction of 

reactants (or reaction intermediates) with two or more adsorption sites can either lead 

either to an increase of the catalytic activity or to the decrease of catalytic activity 

(when a strong interaction of reactant with multiple active sites makes the adsorption 

complexes too stable, see Section 3.3 for an example). The positive effect reported 

above Friedländer reaction. The concerted effect of two adjacent Cu
2+

 sites proposed 

above for Friedländer reaction catalyzed by CuBTC is novel phenomenon for MOF's. 

The principle is very similar to another possible usage of MOF's in catalysis – as 

bifunctional catalysts (see chapter 1.1.2), i.e. as catalysts with synergic effect of metal 

site and functional group on linker. However, to the best of our knowledge, no other 

synergic catalytic effect of two adjacent metal sites in MOF has been proposed yet. 
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3.2 Knoevenagel reaction 

The mechanism of Knoevenagel reaction catalyzed by CuBTC is reported in this 

section; this investigation is focused on the interpretation of the recent experimental 

work [85]. Knoevenagel reaction is a standard procedure for the creation of new carbon-

carbon bonds. It is a reaction of carbonyls with active-methylene compounds. It is very 

versatile reaction, used for example in the synthesis of fine chemicals or biologically 

active molecules [86,87]. The reaction mechanism of Knoevenagel reaction catalyzed 

by stronger bases is shown in Figure 3.6 (the mechanism is shown for reaction of 

malononitrile with benzaldehyde used in this study). Reaction starts with the methylene 

deprotonation [88], followed by the C‒C bond is creation. Thus formed intermediate is 

then protonated again and subsequently dehydrated. However, other mechanisms can 

take place on different catalysts. When catalyzed by amino groups, the active methylene 

compound is first transformed to imine intermediate [89]. The Lewis acids, on the other 

side, activate the aldehyde, which then reacts directly with active methylene [90]. 

 

 
Figure 3.6 Reaction scheme of Knoevenagel condensation of malononitrile with benzaldehyde 

 

The most common catalysts for the Knoevenagel reaction are inorganic bases or 

amines; the Knoevenagel reaction can be also used for the determination basicity of 

catalysts [88,91]. A variety of heterogeneous catalysts can be used for the Knoevenagel 

reaction, including hydrotalcites [92], clays [93] or functionalized silica [94]. However 

the best results were obtained with functionalized mesoporous silica and microporous 

materials. MCM-41 grafted with amines [95] or Schiff base [96] and basic zeolites 

[88,97] were found to be efficient catalysts for this reaction. Recently, variety of MOF's 

has been tested as catalysts for condensation reactions and particularly Knoevenagel 

reaction, with results summarized in recent review by Dhakshinamoorthy et al. [98]. 

Among others notable results, very high activity has been reported for some amino-

substituted MOF's that could be possibly attributed to the concerted effect of NH2 

substituents and metal active sites inside MOF's; amino-groups and defects in crystal 

structure in IRMOF-3 [58] [27,99] or free metal sites in Fe-MIL-101-NH2 [100]. 
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The CuBTC was also recently reported to be efficient catalyst in the work by 

Opanasenko et al. [85]. The Knoevenagel reaction of benzaldehyde or cyclohexane 

carbaldehyde with ethyl acetoacetate, methyl cyanoacetate and malononitrile was tested. 

An excellent catalytic activity of CuBTC was demonstrated, often surpassing activity of 

acidic zeolites tested in the same reactions. The best activity was found for the reaction 

of benzaldehyde with malononitrile giving the 100% conversion in less than 1 h even at 

temperatures where zeolites were not active at all. Such activity highly surpasses the 

expectation for Lewis acid. It was shown that the CuBTC retains its structure (no XRD 

changes) and activity during the reaction. The aim of this theoretical study is to find the 

mechanism of the Knoevenagel reaction in the CuBTC and to determine the effects 

responsible for the efficiency of this catalyst.  

 

3.2.1 Methods and Models 

 

The mechanism of Knoevenagel reaction was investigated for the condensation of 

the malononitrile K1 and benzaldehyde K2; the reaction scheme is depicted in Figure 

3.6. Interactions of reactants with the catalyst were investigated using single-site and 

two-site cluster models (see Chapter 2.2) at the B3LYP/cc-pVTZ and MP2/cc-pVTZ 

level of theory. In addition, the cluster model consisting of two paddlewheels bridged 

clusters connected by one benzene unit was used (Figure 2.5b, Chapter 2.2). These 

calculations were performed with B3LYP functional and 6-311G(2d,p) basis set and 

compared with periodic model calculations performed with vdW-DF2 functional and 

kinetic energy cutoff 600 eV. For further description see Section 2. 

 

3.2.2 Results 

 

In analogy with the previous investigation of mechanism of the Friedländer 

reaction, a possibility of the interaction of reactants with two active sites simultaneously 

was tested. The interaction energies obtained with single-site and a two-site cluster 

models are summarized in  Table 3.3. It was found that malononitrile K1 can interact 

with two active sites simultaneously (Figure 3.7a); such adsorption complex is 

characterized by interaction energy that is twice as large as the one for adsorption 

complex formed on single adsorption site  Table 3.3. On the contrary, interaction of 

benzaldehyde is not much affected by the presence of a secondary active site. 
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Table 3.3 Interaction energies (in kJ mol
-1

) of reactants in 

Knoevenagel reaction with single-site and two-site cluster models.
a 

Structure Method 
Model 

single-site two-site 

K1 B3LYP -16.7 -27.1 

 MP2 -31.2 -55.5 

K2 B3LYP -25.1 -26.0 

 MP2 -40.5 -47.6 
a
 cc-pVTZ basis used; all energies corrected for BSSE 

It is reasonable to assume that Knoevenagel reaction starts by deprotonation of 

malononitrile (K1d formation). Such process however requires a Brønsted base; neither 

the reactants nor the CuBTC catalysts can act as a Brønsted base (see beginning of 

section 3.2). Therefore, a possibility of dynamic creation of Brønsted base during the 

course of the reaction was considered. Malononitrile interacts strongly with the Cu
2+

 

cations in paddlewheel unit and the interaction of Cu
2+

 with carboxylic groups of 

organic linkers becomes weaker. Consequently, one of the four carboxylic groups 

forming paddlewheel unit can accept proton (acting as a Brønsted base). Structure of 

such intermediate is depicted in Figure 3.7b; the Cu
2+ 

cation is coordinated to three 

carboxylic groups and to CN group of deprotonated malononitrile (Cu‒N bond length of 

1.86 Å) and carboxylic acid is formed. The charge balance on paddlewheel unit is then 

provided by deprotonated malononitrile and three carboxylic groups. The mechanism of 

Knoevenagel reaction catalyzed by CuBTC is divided into two parts: (i) the transfer of 

H
+
 from malononitrile to carboxylic group and (ii) a Knoevenagel condensation itself. 
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Figure 3.7 a – neutral malononitrile K1 adsorbed to the two-pdw cluster; b - Deprotonated 

malononitrile K1d adsorbed to the two-pdw cluster with the defect on one of Cu‒O groups, 

formed by H
+
 from the malononitrile 

 

The transfer of H
+
 directly from the malononitrile to carboxylic group was found to 

be connected with large activation barrier. However, this process can be mediated 

(autocalyzed) by the benzaldehyde molecule; a two-step mechanism is shown in Figure 

3.8. A protonated benzaldehyde is formed first (K5). Thus formed deprotonated 

malononitrile significantly increases its interaction with the Cu
2+

 site while the strength 

of the interaction of one carboxylic group with the paddlewheel becomes weaker. The 

proton is subsequently transferred to this carboxylic group, benzaldehyde is released 

and K1d intermediate is formed. This reaction step is about 72 kJ mol
-1

 endothermic. 
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Figure 3.8 Reaction scheme of H

+
 transfer from malononitrile to carboxylic group of the 

paddlewheel 

 

The Knoevenagel reaction itself takes place on the carboxylic acid formed in the 

vicinity of immobilized K1d intermediate. Newly formed COOH group creates suitable 

interaction site for benzaldehyde with interaction energy of 93 kJ mol
-1

. Comparing 

with the interaction energy of benzaldehyde with the cus site (25 kJ mol
-1

) it means that 

interaction of benzaldehyde with Brønsted site almost entirely compensates for the 

energy loss due to the formation of deprotonated malononitrile and Brønsted acid site. 

The Knoevenagel reaction itself then proceeds along a general reaction path shown in 

Figure 3.6 (K1d → K3 → K4). After the final reaction step, dehydration, the original 

paddlewheel structure is fully recovered. Reaction profile obtained with the two-pdw 

cluster model and B3LYP functional is shown in Figure 3.9, together with the energies 

of minima on the reaction path obtained with the periodic model of CuBTC and the 

vdW-DF2 functional. 
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Figure 3.9 Energy profile of Knoevenagel reaction path catalyzed by CuBTC, 

results obtained with the two-pdw cluster model and B3LYP functional (□) and with 

the periodic model and vdW-DF2 functional (○) are reported. The x-axis is a reaction 

coordinate starting with non-interacting reactants and ending with non-interacting 

products; for notation see Figure 3.6 and Figure 3.8 captions. 

 

The energy highest point on the reaction path is the transition state of C–C bond 

formation step (K1d+K2 → K3), that is about 130 kJ mol
-1

 above the non-interacting 

reactants. The activation barrier for proton transfer and defect formation is relatively 

small (only 13 kJ mol
-1

 above the energy of non-interacting reactants). The calculations 

with periodic model of CuBTC accounting for dispersion interaction between reaction 

intermediates and the CuBTC catalyst show that barriers are even lower; dispersion 

energy provides additional stabilization. The stabilization applies mainly to the 

intermediates of the Knoevenagel reaction itself, providing decrease of 75 and 90 kJ 

mol
-1

 in relative energies of K1d+K2 and K3 structures respectively.  

 

3.2.3 Discussion 

The goal of this study was to explain unexpected catalytic activity of CuBTC in the 

Knoevenagel reaction. While CuBTC is lacking any Brønsted base needed for catalysis, 

it exhibits a high catalytic activity. In addition, neither reactants (malononitrile and 

benzaldehyde), nor mesitylene used as solvent exhibit basicity sufficient for the 

catalysis. It was therefore proposed that the proton has to be accepted by the CuBTC 

catalyst. 

The dynamic formation of the defect on the paddlewheel (Figure 3.7) appears to be 

a key for understanding of the reaction mechanism. The adsorption of malononitrile on 

the cus sites makes the formation of defect energetically less demanding. In addition, 

thus formed carboxylic acid represents a strong adsorption site for benzaldehyde and the 
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adsorption of benzaldehyde on this Brønsted acid site almost fully compensates for the 

energy loss due to defect formation. The concerted effect of the reactant‒catalyst 

interaction should be also mentioned. Deprotonation of malononitrile is mediated by 

benzaldehyde which, in the end of the deprotonation reaction steps stays bound to the 

newly formed Brønsted site. In addition, benzaldehyde adsorbed on the Brønsted site is 

located just next to the adsorbed deprotonated malononitrile in geometry suitable for the 

rate determining C–C bond formation step. Upon the dehydration reaction step the 

defect is healed and the product is bound only to cus sites. 

Rather peculiar reaction mechanism described above corresponds with the 

experimentally found nearly 100% conversion for this reaction [85]. The reverse 

reaction requires formation of the defect by dissociation of water molecule into H
+
 

(bound to carboxylic group) and OH
–
 (interacting with the reaction product K4). Such 

process is much less likely than formation of the defect by malononitrile deprotonation 

due to both barrier heights and sterical effects. 

The C‒C formation step is the rate determining step on the reaction path. The 

structure of corresponding TS is depicted in Figure 3.10a; the partially formed K3 

intermediate is simultaneously interacting with the cus site and with the defect formed. 

The second CN group of malononitrile is no longer in interaction with the second cus 

site due to steric reasons. It should be noted that the defect plays major role in the 

catalysis of the individual steps in Knoevenagel reaction, as in both TS’s (Figure 3.10a 

and b) the H
+
 from this OH group is shifted towards benzaldehyde oxygen and 

influences the electronic structure of whole molecule.  

 
Figure 3.10 Transition states on the Knoevenagel reaction path with two-pdw model; a – C‒C 

bond formation K1d+K2 → K3, b – dehydration K3 → K4 
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The importance of defects in reactions catalyzed by MOF has been already 

proposed by Vermoortele et al. for the cyclization of citronellal on Fe containing MIL-

100 MOF [101]. They have first pre-treated MOF by the acid (CF3COOH or HClO4) to 

form Brønsted defects in the structure. Then it was tested as catalyst for the cyclization 

of citronellal to isopulegol. The experimental results show that the selectivity of 

isopulegol as product rises with the concentration of the created Brønsted sites, while 

overall activity of MOF is still the same and thus depending only on Lewis acidity of 

MIL-100. Authors proposed a “dual mechanism” in which the citronellal is adsorbed to 

Lewis site next to Brønsted defect and the defect is responsible for its conversion to 

isopulegol. 

The defect formation is likely behind the catalytic activity of many MOF's that do 

not possess cus sites, for example Zn containing MOF-5 [30]. MOF-5 has been reported 

as a catalyst for alkylation of large polyaromatic compounds; this reaction has been 

found to take place inside the pores and thus depends on the presence of defect [102]. 

Currently accepted interpretation for this phenomenon is that the Zn–OH defects are 

formed by reaction with moisture. An N-methylation of aromatic amines catalyzed by 

[Al2(BDC)3] is another example of a defect-catalyzed reaction [103]. All the 

mechanisms involving defects in catalysis by MOF's assume the existence of defects in 

the catalysts. However, the mechanism proposed herein for Knoevenagel reaction points 

out the possibility of dynamic formation of defects during the course of the reaction. As 

far as we know it is the first report of this type of catalytic activity of MOF's.  
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3.3 Intramolecular cyclization of unsaturated alcohols 

The theoretical investigation of the mechanism of cis-dec-5-en-1-ol cyclization to 

heterocycles catalyzed by acidic zeolite is reported in this section. Oxygen-containing 

heterocyclic compounds are important components of many natural products. They are 

also widely used in perfumery, as flavours [104] or as insecticides [105]. Interesting 

examples of furans, which can be prepared by herein studied reaction, e.g., Mucoxin, 

compound with potential antitumor activity for breast carcinoma [106]. 

Oxygen containing heterocycles can be potentially very easily synthetized by the 

cyclization of unsaturated alcohols or dehydration of diols; however, these reactions 

often require use of Brønsted acids or excess of reactants [107]. Ionic liquid have been 

also shown to catalyse cyclization of alcohols [108]. However, only few heterogeneous 

catalysts have been reported as catalysts, e.g. metal(IV) phosphates [109] or material 

Amberlyst-15 [110]. 

Catalytic activity of H-BEA, H-MFI and H-FAU zeolites in cyclization of dec-5-

en-1-ol was investigated experimentally by Pérez-Mayoral et al [111]. All these zeolites 

were shown to be efficient catalysts, providing even quantitative conversion at higher 

temperatures (358 K). As expected the main product of the reaction was tetrahydrofuran 

derivative 2-hexyltetrahydrofuran, a Markovnikov product of this reaction. The H-

ZSM-5 zeolite was shown to be the best catalyst among those investigated, having the 

same initial conversion as other ones but showing the highest initial reaction rate (full 

conversion in only about 20 minutes at 358 K). 

Testing of zeolites with different Si/Al ratios revealed that the reaction speed is 

highly dependent on aluminium content in zeolites, but the relation between S/Al and 

activity was rather surprising (Figure 3.11). Four different H-MFI samples were 

investigated, having Si/Al ratios 15, 25, 75 and 140. The efficiency of MFI catalysts at 

337 K increased in order MFI/15 < MFI/25 < MFI/140 < MFI/75. It indicates that the 

zeolite with the highest concentration of the active sites (approximately 6 per unit cell) 

was far less active than zeolites with significantly smaller active site concentration. It 

should be noted that catalytic activity of H-zeolites is due to the presence of Brønsted 

acid sites. 
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Figure 3.11 Kinetic profiles of the cis-4-decenol 4 cyclization reaction for zeolites with different 

Si/Al ratio. A) (■) BEA/37.5, (□) BEA/67.8, (▲) BEA/25 and (∆) BEA/12.5, at 358 K. B) (■) 

MFI/75, (□) MFI/25 and (▲) MFI/15 at 358 K. C) (■) MFI/75, (∆) MFI/140, (□) MFI/25 and 

(▲) MFI/15 at 337 K. D) (■) FAU/15 and (□) FAU/40 at 358 K. Figure from [111] 

 

The goal of the computational study reported on herein is twofold: (i) investigation 

of the mechanism of catalyzed reaction and (ii) understanding of peculiar dependence of 

reaction rate on the Si/Al ratio. In order to lower computational demands, pen-4-en-1-ol 

was used as a model reactant instead of decenol. This simplification should not change 

the reaction mechanism and it avoids potential problems due to a large number of 

geometrical conformations of decenol. The results of this study together with 

experimental results were published in ChemSusChem [111]. 

 

3.3.1 Methods and Models 

 

The mechanism of cyclization reaction was investigated for pent-4-en-1-ol C1; the 

reaction mechanism is shown in Figure 3.12. The H-ZSM-5 catalyst was modelled 

using the 3-T cluster model (Chapter 2.2). All geometries were obtained with B3LYP 

functional and 6-311G(d,p) basis set; more accurate MP2/cc-pVTZ calculations were 

performed at B3LYP/6-311G(d,p) geometries. Some stationary points were also 

investigated within the periodic model of H-ZSM-5 (Chapter 2.1). In the periodic model 

aluminium was placed into the T12 position. Calculations with periodic model were 
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carried out with the vdW-DF2 functional and kinetic energy cutoff of 400 eV. More 

details can be found in Section 2. 

 

 
Figure 3.12 Pent-4-en-1-ol C1 as model reactant for intramolecular cyclization reaction into 2-

methyltetrahydrofuran C6 or tetrahydropyran C7 

 

 

3.3.2 Results 

 

Pent-4-en-1-ol C1 interacts with Brønsted acid sites in two different ways, thus, 

two different reaction precursors can be formed (Figure 3.12): the interaction between 

the Brønsted site and π-bond (complex C2) and the interaction between the Brønsted 

site and the OH group (complex C3). Both of these adsorption complexes (reaction 

precursors) lead towards two main products: either Markovnikov product (2-

methyltetrahydrofuran, C6) or anti-Markovnikov product (tetrahydropyran, C7), Figure 

3.13. However, reaction takes a different course starting from precursors C2 or C3.  

The relative energies of minima and transition states on the reaction paths are given 

in Table 3.4, relative energies were calculated with respect to the non-interacting 

reactant C1 and the model catalyst). Note that the interaction energy of the complex 

bonded by H-bond (C3) is nearly twice as large as that for the π-bond complex C2, Eint 

values are -84 kJ mol
-1

 and -45 kJ mol
-1

, respectively. 
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Figure 3.13 The reaction mechanisms for pent-4-en-1-ol (C1) conversion to 2-

methyltetrahydrofuran (C6) and tetrahydropyran (C7). Reaction may proceed either via 

adsorption complex (reaction precursor) C2 or C3. Corresponding relative energies and barrier 

heights are reported in Table 3.4. 

 

The reaction paths starting from complex C2 are described first. The π-bonded 

reaction precursor C2 can be transformed directly, in a one step, either to the adsorbed 

methyltetrahydrofuran (C4) or to the adsorbed tetrahydropyran (C5) with activation 

barriers (with respect to the energy of C2) of 205 and 160 kJ mol
-1

, respectively. Thus, 

the formation of tetrahydropyran (C7) is preferred over the formation of Markovnikov-

rule product methyltetrahydrofuran in reaction starting from the precursor C2. 
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Table 3.4 Relative energies of the stationary points for various reaction paths.  

Reaction 

Intermediate 

Interaction via C=C Interaction via OH 

Structure Erel (kJ mol
-1

)
a 

Structure Erel (kJ mol
-1

)
a 

Reactant C2 -45 C3 -84 

2-methyltetrahydrofuran (11) formation: 

Reactant → C6 TS–D1 160 TS–O1 47 

Adsorbed C6 C4 -154 C4 -154 

C6 + zeolite C6 -61 C6 -61 

Tetrahydropyran (12) formation: 

Reactant → C7 TS–D2 115 - - 

C6 → C7 - - TS–O2 103 

Adsorbed C7 C5 -148 C5 -148 

C7 + zeolite C7 -63 C7 -63 
a
 Relative energies with respect to the isolated C1 and catalyst model, energies were 

calculated with MP2/cc-pVTZ method using B3LYP/6-311G(d,p) geometries. 

 

The situation is rather different for the reaction starting from the precursor C3. The 

adsorbed methyltetrahydrofuran C4 is formed first within a single reaction step. The 

details of this reaction step are shown in Figure 3.14; a direct electrophilic attack of the 

proton from OH group on the C5 is followed by the ring formation.  

 
Figure 3.14 Reaction mechanism of conversion of pent-4-en-1-ol (C1) into 2-

methyltetrahydrofuran (C6). The reactant interacts with the Brønsted site (complex C3); the 

activated proton of the alcohol OH group electrophilically attacks the π-orbital and, following a 

Markovnikov’s rule, this proton transfers to C5 while the C-O bond is being formed between C4 

and O atoms (the transition state TS–O1); thus formed C6 stays adsorbed on the Brønsted site 

(complex C4). 

 

Adsorbed methyltetrahydrofuran C4 thus formed can subsequently desorb (as a 

final product) or it can undergo additional reaction step leading to the adsorbed 

tetrahydropyran. The direct reaction path between C3, and C5 was not found; most 

likely due to the geometry constraints in the H transfer. The hydrogen atom from the 

hydroxyl group needs to be transferred to C5 carbon (Figure 3.12) during such 

elementary step, and this is sterically strained process characterized by a very large 
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barrier. Thus, reaction precursor C3 can only undergo a change to the complex C4, a 

reaction step characterized by the activation barrier of 131 kJ mol
-1

. The conversion of 

C4 to C5 proceeds via the transition state characterized by activation barrier of 257 kJ 

mol
-1

. For comparison, desorption of methyltetrahydrofuran (C4) is only about 90 kJ 

mol
-1

 endothermic. 

 

Table 3.5 Comparison of interaction energies of the reactants using different models.  

Reactant Catalyst Method 
Eint (kJ·mol

-1
) 

ΔEint (kJ·mol
-1

) 
C2 C3 

C1 cluster MP2 -45 -84 39 

C8
a 

cluster MP2 -48
 

-90
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C1 MFI vdW-DF2 -122 -160 38 
a
 Relative energies of corresponding adsorption complexes formed by hex-4-en-1-ol C8. 

 

While calculated preferences are in agreement with experimental results, a 

suitability of the model used still needs to be tested. To prove the suitability of the 

model, two aspects of the model were tested: (i) the effect of the substituent on C5 atom 

of C1 and (ii) the effect of the catalyst model. A difference between C1 and decenol 

(used in experiments) is in the alkyl chain on C5 carbon of pent-4-en-1-ol; the results 

obtained for hex-4-en-1-ol C8 are reported in Table 3.5. The methyl substituent does 

not change significantly interaction energies of reaction precursors; therefore, their 

relative energies are not affected. 

The effect of the zeolite catalyst model was investigated using a periodic model of 

H-ZSM-5. The interaction energies for adsorption complexes C2 and C3 obtained at the 

vdW-DF2 level are also reported in Table 3.5. Due to the effect of the dispersion 

interaction between pent-4-en-1-ol and zeolite framework the interaction energies are 

lowered by 77 and 76 kJ mol
-1

 for reaction precursors C2 and C3, respectively. While 

this is a huge effect on the interaction energies, their relative values are almost 

unaffected.  

With respect to the diameter of H-ZSM-5 channel the size of alcohol C1 is large 

enough to allow its interaction with an additional acidic site on the channel surface. The 

pair of sites across the channel intersection was chosen arbitrarily to model such 

situation. This dual site interacts with both functional groups of molecule C1, 

combining interaction via double bond and OH group (Figure 3.15). The interaction 

energy of the resulting complex is -174 kJ mol
-1

 (compare with the results from Table 

3.5).  
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Figure 3.15 Simultaneous interaction of pent-4-en-1-ol with a pair of Brønsted sites in ZSM-5. 

The OH group and the π-bond interact with protons in the vicinity of framework Al in T12 and 

T1 positions, respectively. See caption of Fig. 8 for colouring scheme. Geometry optimized at 

the vdW-DF2 level. 

 

3.3.3 Discussion 

According to experimental results, reactant pent-4-en-1-ol C1 can be transformed 

either into 2-methyltetrahydrofuran C6 or into tetrahydropyran C7, with high selectivity 

toward C6. The selectivity is ruled by two main factors: (i) interaction energies of 

reaction precursors C2 and C3 and (ii) relative energies of activation barriers along the 

reaction path. Herein reported calculation show that formation of complex C3 is 

energetically preferred (by about 40 kJ mol
-1

) over the formation of complex C2; thus, 

majority of adsorbed reactant forms C3 and the reaction paths starting from C3 are 

significantly more likely than those starting from C2. In addition, the reaction starting 

from C3 has activation barrier significantly lower than those found for reaction paths 

starting from C2 (131 vs. 170 and 205 kJ mol
-1

, respectively; Table 3.4). This indicates 

strong selectivity towards C6 product, as only possible product of reaction from C2. 

The interaction energies are critical in this reaction because the course of reaction is 

set by the relative stabilities of reaction precursors C2 and C3. Interaction energies 

reported in Table 3.4 were obtained based on cluster-model calculations; it is therefore 

important to verify the reliability of the model. For that reason the reaction precursors 

were modelled using periodic model of H-ZSM5. The obtained results (Table 3.5) give 

almost the same difference between relative energies. The cluster model is thus reliable 

enough (in this particular case) for relative energies. 

The results reported above clearly explain the reaction selectivity observed 

experimentally. Dependence of reaction rates on Si/Al ratio (Figure 3.11) is discussed 

below. A plausible explanation is based on recent observation of simultaneous 
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interaction of molecules with two active sites in zeolites. It has been shown that even 

molecules as small as CO and CO2 may simultaneously interact with two active sites in 

zeolites once the concentration of active sites reaches a certain threshold [83,84]. In the 

case of CO adsorption in MFI such simultaneous adsorption of CO on “dual cation 

sites” was observed already for samples with Si/Al = 14 [61]. This threshold obviously 

has to depend on the size of the adsorbate and for alcohol C1 having two functional 

groups (-OH and π-bond, both eligible for interaction with active sites) far apart, a 

simultaneous interaction of C1 with two active sites can be expected for samples with 

Si/Al ratio even higher than 14. Therefore, the possible participation of two active sites 

on the interaction of zeolite with reactant was studied. 

The interaction with a “dual site” was modelled by an introduction of the second 

aluminium into the T1 position, across the channel intersection from the original T12 

Brønsted site. The interaction complex formed on such dual site is shown in Figure 

3.15; the molecule stretches between the two active sites across the channel with 

adsorption energy of -174 kJ mol
-1

. This interaction is 14 kJ mol
-1

 stronger than in C3 

complex and thus it is energetically preferred when such secondary active site is 

available. Note also that Al in T12 and T1 are just randomly selected pair of Brønsted 

sites and that different pairs of Brønsted sites (or a pair of Brønsted and Lewis sites) 

will be characterized by different interaction energy than -174 kJ mol
-1

 reported above 

(it can be larger or smaller).  

Increase in interaction energy of reactant with the zeolite due to the presence of 

such secondary adsorption site will definitely affect reaction mechanism, explaining 

experimental decrease in catalytic activity for high-aluminium zeolites. There are at 

least three effects due to the presence of dual sites influencing the catalytic activity: (i) 

the molecule interacting with a dual site is bound more strongly (by 14 kJ mol
-1

 in 

situation depicted in Figure 3.15) and consequently the reaction barrier becomes higher, 

(ii) each functional group (OH and π-bond) of the molecule interacts with a different 

Brønsted site, thus, molecule is stretched between two active sites and such 

conformation is not favoured for the reaction due to sterical reasons (Figure 3.15), and 

(iii) molecules interacting with dual site will effectively block two active sites (they are 

not likely to undergo the reaction) and consequently they will limit the diffusion of 

other molecules through the zeolite channel system. Similar behaviour has been 

previously reported for other catalytic reactions (e.g. acylations) over zeolites and it has 

been proposed that the increased concentration of active sites may result in an increase 

in the diffusion limitations [112]. However, the interpretation of such phenomena based 

on simultaneous interaction of reactants/products with multiple active sites has been put 

forward herein for the first time.  
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4. Conclusions 

The investigation of three different reactions catalyzed by microporous materials 

are reported in this study; Friedländer and Knoevenagel reactions catalyzed by CuBTC 

MOF and the intramolecular cyclization of unsaturated alcohols catalyzed by the H-

ZSM-5 zeolite in particular. All three reactions were shown to be efficiently catalyzed 

by the catalyst in agreement with previous experimental results. Moreover, all these 

reactions show rather interesting catalytic mechanisms that take into consideration the 

simultaneous interaction of reactants or intermediates with more than one active site. 

The Friedländer reaction of acetaldehyde and o-aminobenzaldehyde was previously 

studied in my bachelor thesis [81]. The results of previous study left some questions in 

the explanation of the principle of the catalytic effect of the CuBTC because the 

reaction was shown to be catalyzed only partially when using simple model of a single 

cus site. The follow-up study reported herein shows that the catalytic effect of CuBTC 

is due to the high concentration of active sites in the MOF framework, which allows the 

concerted effect of multiple active sites. The concerted effect was found mainly for one 

of the dehydration elementary steps of Friedländer reaction, during which the 

intermediate is adsorbed to one active site while the leaving water thus formed is 

directly adsorbed on the adjacent cus site of the adjacent cus site (Figure 4.1a). 

The effect of two active sites was also found to be important in the Knoevenagel 

reaction of malononitrile and benzaldehyde. The malononitrile was found to match the 

distance for adsorption on the two active sites in CuBTC precisely (having the same 

Cu–N distance of 2.5 Å on both sides). The previously confirmed experimental activity 

of the CuBTC in the Knoevenagel reaction was very surprising because the 

malononitrile has to be deprotonated in the first step of reaction and CuBTC does not 

contain any basic groups. The mechanism proposed in this work suggests the formation 

of a dynamic defect in the structure of the CuBTC (Figure 4.1b). This defect is formed 

by the transfer of H
+
 from malononitrile on one of the carboxylate groups, auto-

catalytically mediated by the benzaldehyde. A carboxyl group is thus created within the 

framework and it can then catalyse the second part of the Knoevenagel reaction. The 

structure of CuBTC is healed in the end of the reaction as the hydrogen is consumed in 

the last reaction step. This interpretation corresponds very well to the experimental 

results showing that the CuBTC is not destroyed during the reaction. The dynamical 

defect formation is a very interesting phenomenon that can possibly explain activity of 

MOF's without free metal sites reported previously for some reactions.  
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Figure 4.1 a – Structure of the first dehydration reaction step F4a→F5 from the Friedländer 

reaction, the concerted effect of two active sites; b – structure of deprotonated malononitrile 

K1d adsorbed to the active site with formed defect. For further information see Chapters 3.1.2 

and 3.2.2 respectively. 

 

The mechanism of the cyclization of unsaturated alcohols was investigated as well, 

focusing on the understanding of peculiar decrease of catalytic activity observed for 

zeolites with increased concentration of Brønsted sites. The reaction of pent-5-en-1-ol 

studied herein can lead to two different products, 2-methyltetrahydrofuran and 

tetrahydropyran. It was found that the reaction preferentially provides 2-tetrahydrofuran 

(in agreement with experimental results). The structures of the reaction precursors were 

further investigated in the periodic model of H-ZSM-5. The results have shown that the 

reactants can easily adsorb to more than one Brønsted site in zeolites with high 

concentration of framework heteroatoms (Figure 3.15). The simultaneous adsorption 

then can cause the blocking of the active sites and limitations in the diffusion. Moreover 

the initial reaction barriers become higher in case of dually adsorbed reactants. 

Novel reaction mechanisms involving multiple active sites have been put forward 

for all three reactions investigated herein. Our results suggest that the simultaneous 

adsorption and catalysis on multiple active sites could be a common phenomenon in the 

microporous materials with sufficiently high concentration of active sites. The distance 

between two cus sites in CuBTC is only 8.15 Å and molecules with two polar groups at 

least 5 Å apart will preferentially interact with both sites simultaneously. The dual site 

adsorption can also possibly explain part of the diffusion problems in zeolite channels, 

like in the reported cyclization reaction. 
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