
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Peter Š́ıpoš

Scripting in Audacity Audio Editor

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: RNDr. Tomáš Pop

Study programme: Computer Science

Specialization: Programming

Prague 2013

Dedication. I wish to dedicate this thesis to my parents for their support and for
my supervisor for his patience.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Scripting in Audacity Audio Editor

Autor: Peter Š́ıpoš

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı bakalářské práce: RNDr. Tomáš Pop, Katedra distribuovaných a spolehlivých
systémů

Abstrakt: Ćılem této bakalářské práce byl vytvořeńı doplňku k programu Audac-
ity, což by umožněl použ́ıváńı scriptu během editaci zvukovych nahrávek.

V prvńı části práce je popsaná architektura Audacity, jaké jsou možnosti pro do-
plněńı funkčnosti a jaké alternat́ıva jsou k dispozici. Poté poṕı̌se kritické rozhod-
nut́ı, které byly učiněné před implemetaci doplňku. Tyhle rozhodnut́ı byly ve
spojeńı s výběrem scriptovaćıho jazyku, spravováńı chybových stav̊u a návrhem
grafického rozhrańı. Na konci práce pomoci př́ıklad̊u je ukázan funkčnost do-
plňku.

Na závěr, aplikace byl naimplementován, jako ukázka technik, které byly popsané
v práci.

Kĺıčová slova: Scriptováńı, Audacity, Editace zvuku

Title: Scripting in Audacity Audio Editor

Author: Peter Š́ıpoš

Department: Department of Distributed and Dependable Systems

Supervisor: RNDr. Tomáš Pop, Department of Distributed and Dependable
Systems

Abstract: Audacity is popular and widely used audio editor available for all the
main platforms including Windows, Mac as well as various Linux distributions.
Audacity functionality can be controlled via sophisticated user interface, but the
editor suffers from a lack of support for an automated execution of scripts and
therefore, using audacity e.g., to perform the same action on multiple files can be
tedious.

The thesis aims at extending Audacity editor to allow using scripts in the audio
editing workflow.

The first part of the thesis overviews Audacity’s architecture, and discuss, how
Audacity can be extended and what alternative applications are available. Then,
the thesis describes the most important decisions that were taken, including the
choice of scripting language, managing errors and designing user interface. Final-
ly, the extension functionality is shown on several examples reflecting a typical
use-cases.

Keywords: Scripting, Audacity, Audio Editing

Contents

Introduction 3

1 Background 4
1.1 The Architecture of Audacity . 4
1.2 Interprocess Communication . 4
1.3 Scripting Languages in General 5
1.4 Related Work . 5

2 Analysis 7
2.1 Overall Architecture . 7
2.2 Choosing the Implementation Programming Language 8
2.3 Choosing Scripting Language . 8
2.4 Error Handling . 8
2.5 Audacity API . 9
2.6 Script Environment . 10
2.7 Storage Settings . 10
2.8 File Access . 10
2.9 Graphical Interface . 11

2.9.1 Editor . 11
2.9.2 User Interface–Script Interaction 12

2.10 Projects And Files . 12

3 Implementation 13
3.1 The Overall Architecture . 13
3.2 Application Properties And States 13
3.3 Updating The User Interface . 14

3.3.1 Signalizing The Script Status 14
3.4 Termination of Script Execution 14

4 User Guide 16
4.1 Installation . 16
4.2 User Interface . 16
4.3 Examples . 16

4.3.1 Example 1 - Filtering . 16
4.3.2 Example 2 - Speed Up . 18

5 Conclusion 20

A API functions 21
A.1 Functions of auda object . 21

A.1.1 init function . 21
A.1.2 cleanup function . 21

A.2 Functions of filemanager object 21
A.2.1 GetFiles function . 21

A.3 Functions of console object . 21
A.3.1 Clean function . 21

1

A.3.2 PrintLine function . 21
A.3.3 PrintErrorLine function 21
A.3.4 PrintWarningLine function 21

Bibliography 22

2

Introduction

In the beginning of computer history the computers were dedicated to scientifical
calculations or office work. Later, they became capable of displaying pictures,
playing audio and video files. However, these computers were not enough powerful
to create the audio and video materials, thus for this purpose special equipment
was used.

As the computating power of home computers was increasing, creating mul-
timedia materials became easier in home environment. In their time the most
advanced home computers, that were capable of audio editing were Amiga com-
puters from Commodore. These computers could be extended with digitization
boards, that made them capable of recording audio signals. Moreover, audio
editing software was available for them, so they were fully equipped to become
a home cut studio. Because of their reasonable pricing these computers became
very popular.

The IBM-compatible personal computers were also becoming more powerful,
so playing and recording audio using them became real, too. Several audio editor
softwares were created. Amongst them, maybe the best-known applications were
Cool Edit and Soundforge. These applications are also being developed nowadays.
During the years the Cool Edit was taken over by Adobe, that releases it under
name Audition and the Sound Forge is property of Sony Corporation now.

Beside the proprietary software several open-source alternatives appeared. I
would like to mention two of them: the Audacity and the SoX. While the SoX is a
command-line application, that focuses on playing and recording audio files, but
it supports some basic editing task, such as mixing, the Audacity is a complete
audio editing software.

The Audacity is a fairly well-known audio editing software, which is used by
a lot of users. It’s a multiplatform application, that can run on Windows, Linux
and MacOS operating systems. It’s functionality is pretty extensive. It supports
e.g. multitrack editing, filters, plugins Through its graphical interface the
commands can be easily accessed. However, its mightiness,focusing on graphical
user experience,is its biggest deficiency: repeatedly performing the same opera-
tions on several audio files is inconvenient.

This thesis aims to tackle this deficiency, which means, that the execution of
”batch commands” become more convenient. This can be reached by creating a
scripting interface, that,through a selected scripting language,makes the Audac-
ity’s inner functionality available for scripting purposes.Thanks to this interface
the user will be able to control Audacity with a script, that performs the task by
calling the Audacity’s functions.

Choosing Audacity as a target of this thesis is beneficial, because of its large
user base. These users won’t need to get used to a new audio editor and meanwhile
they can use scripts to make their tasks easier.

Moreover, to make the workflow more convenient the scripting interface cre-
ated as a part of this thesis will contain a script editor. This editor will provide
the basic editing functionality including syntax-highlighting.

3

1. Background

In this chapter I would like to describe some techniques, that are used in my
application and in Audacity itself.

1.1 The Architecture of Audacity

I use Audacity because it is a well-known, continuously developed and mature
audio editor. However, it is designed as an application with graphical user in-
terface, currently with restricted capabilities at scripting. Fortunately, Audacity
supports plugins. The main purpose of these plugins is to add some sound-aware
capabilities, such as generating DTMF tones. These plugins uses documented
function calls and have access to all components building up the editor.

Fortunately, the developers of Audacity project are aware of this weakness.
The experimental plugin mod-script-pipe can be used to access the Audacity’s
functions from an external application. Its operation is more detailly described
in Section 2.1.

Audacity uses wxWidgets library to create its user interface by implementeng-
ing all necessary functions to draw the components and to handle events. This
style of design comes to be useful for mod-script-pipe. This plugin uses a tech-
nique called window-hijacking to take control over the GUI components. This
means that the plugin creates its own instances of these components, so it has
access to their functions.

1.2 Interprocess Communication

This thesis does not aim at comprehensive overview of interprocess communica-
tion, but since IPC is a very crucial part of my application I would like to describe
this technique.

There are nine options for IPC in Windows operating systems, which are the
following [1] : clipboard, component opject model1, data copy, dynamic data
exchange2, file mapping, mailslots, pipes, remote procedure call3 and Windows
sockets.

Each process in the system can communicate with other processes through
one of the IPC methods. The simplest example from user perspective is copying
an image from webpage to the clipboard and after pasting it to a text document.
However, in the backgrund several requirements must be fulfilled. First af all,
both processes must be prepared for the clipboard feature (this is not problematic
nowadays) and the receiver must support the format of the data in the clipboard.
For example, copying a video clip from video editing software to the Notepad will
not work. Another problem with the clipboard is that every single process can
access it. This is acceptable when the user perform the above mentioned tasks,

1Also known under acronym COM
2Also known under acronym DDE.
3Also known under acronym RPC.

4

but it can be really problem when some automated mechanism use it, because
the user interaction can interfere with them.

As I will describe in Section 2.1 the implemented application in this thesis
will use named pipes to communicate with Audacity. Named pipes,beside the
anonymous pipes, are a specific type of pipes. While the anonymous pipes are
best suitable for redirecting standard input and output between the child and
parent process [1], the named pipes can be used between fully distinct processes,
even if they are running on separate computers [2].

1.3 Scripting Languages in General

It tends to be hard to define, what scripting languages are. Usually scripting
languages are such computer languages that are interpreted rather than com-
piled [3]. Another way to describe the scripting languages is definition of scripts
itself. While the source code of an application written e.g. in C++ calls functions
implemented in the same language, the source code of a program (or more likely
the script) written in a scripting languages usually calls functions implemented
in another language [3].

Another option to define the scripting languages is specify them as domain
specific languages. Usually they are prepared for a specific environment, while the
general purpose programming languages, as their name predicts, can be used for a
wide spectrum tasks. For instance the bash is considered as a scripting program-
ming language. It is designed to control the Unix operating system by executing
commands, which are usually implemented in a different programming language.
The Microsoft’s Powershell is very similar to the bash and not surprisingly it is
also considered as a scripting language.

The third option to distinguish the scripting languages from the rest of lan-
guage’s world is making difference between compiled and interpreted languages.
Scripting languages are usually interpreted languages, which means that the
source code is not translated to a machine code or an intermediate code, but the
interpreter directly interprets it. For instance the bash is interpreted language.
However in some cases this is not so straightforward. The above mentioned Pow-
erShell can e.g. access .NET libraries, which are precompiled to an intermediate
language. Moreover, the new JavaScript implementations in web browser before
the execution compile the script, because of performance issues.

In the previous paragraph I mentioned the JavaScript. Despite the slightly
unusual behaviour of its new interpreters it is considered as being a scripting
language. The code written in JavaScript more likely calls functions that are im-
plemented in a different language. For instance an HTML5 game uses JavaScript
code to perform painting, but these functions are basically implemented in a dif-
ferent language. What is more, the JavaScript’s initial purpose was enriching
websites, which declares it to be a domain specific language.

1.4 Related Work

In the previous Section 1.3 I described the scripting languages by mentioning
some of them. The bash and PowerShell are mainly used for interacting with

5

the operating system and its components (e.g. file copying, application installa-
tion, . . .). Another widespread scripting languages are Perl and Python. One
implementation of Python is related to this thesis. That is the GIMP-python [4],
which enables creating plugins for GIMP using the Python language.

However, for GIMP there is another scripting interface. It is called the Script-
Fu [5].

6

2. Analysis

In the following chapter I would like to discuss my decisions concerning the Au-
dacity and the scripting interface in the early stages of development.

2.1 Overall Architecture

Audacity is designed to be controlled primarily using mouse through user inter-
face or with a keyboard using shortcuts. However, we need to control it with
commands sent from a script. In order to achieve this we need to utilize some
kind of programming interface which can be called from our script.

Principaly there are two possible options to tackle this problem.First option is
to implement new interface to Audacity, by modifyng its source code and adding
necessary functions to existing parts of the application. The main benefit of this
approach is having full control of capabilities accessible from script.

On the other hand, there is a major disadvantage, because it is hard to push
patches directly to main Audacity source chain. This means that after new version
release of Audacity the whole editor or some components may not work.

Second option is to create a standalone application, which communicates with
Audacity using an existing interface. Implementing such an interface implies,
that we can access to the Audacity using standardized functions. This enables us
maintain our code independent from the Audacity’s source, which can be handy
in the future as the applications are being developed.

I decided to use the second approach and within this to use an interface which
is an experimental module written by Audacity team. The module is called mod-
script-pipe and is a plugin for the Audacity.

The module enables us to control the main application by commands sent via
a system pipe and it is primarily designed to be called from scripts.

The advantages of the second approach are the following:

� We communicate with the application via a standard channel

� The plugin is going to be developed in future

� We need not modify existing Audacity source

The main disadvantages of mod-script-pipe are the following:

� The plugin is still only available in beta status

� It is not included in standard Audacity executables, it should be compiled
from source code

� Already existing functions can change

� Its documentation is in early stages

Considering all advantages and disadvantages of these three approaches - full
application implemented, using external plugin or implement a new one with a
standalone application - I decided to implement an interface connecting to the
plugin not touching the Audacity’s source code.

7

2.2 Choosing the Implementation Programming

Language

Audacity is written in C++ language using wxWidgets library to make it avail-
able for Windows and Unix-like systems, too. However, my decision to create
a standalone application gave me freedom to choose a different programming
language.

I decided to build the application based on .NET environment using C#
languange. The main reasons for my decision were the following:

� My application won’t execute calculation demanding tasks, so built-in op-
timalization for .NET code will be enough sufficient

� More convenient use, because the .NET environment controls some areas
itself, e.g. disposing unused objects using garbage collector

� The chosen JavaScript interpreter is also written in managed code

2.3 Choosing Scripting Language

Choosing the language user uses to interact with my application is very important.
In future, the application should be able to use its own plugins for different
scripting languages, but in the context of this thesis I decided to use JavaScript.
JavaScript is pretty well-known scripting languages among the users who use
scripting in their everyday life, so they can get used to it very fast in this case,
too. Moreover, the JavaScript supports features, that are necessary to interact
with Audacity’s scripting API, e.g. classes, functions.

Upon my decision to use C# language I had to focus on interpreters, that can
be accessed from the .NET environment. I considered two JavaScript interpreters,
which could be used for my application: the Node.js [6] and JavaScript.NET [7]
. Both solutions have their advantages and disadvantages. Node.js is based on
Google Chrome’s JavaScript engine called V8, which is fast, supports a lot of
functions (e.g. disk I/O, networking, encryption, . . .). The JavaScript.NET is
way more simple implementation of the language interpreter. It focuses purely
on the language itself and we have to implement the classes we need to interact
with. On the other hand, I found, that the main advantage of this interpreter is,
that it can be attached to the main project as a DLL library, so no additional
user interaction is needed, while the Node.js should be installed on the target
computer.

According to the above mentioned causes I decided to implement my applica-
tion using the JavaScript.NET interpreter.

2.4 Error Handling

User-created scripts can contain errors or errors can occur while the script is
being executed and thus, error handling is crucial part of script interpreters.

Runtime errors can be handled in different ways. One option is implementing
functions which always return a value, even when an error occured.In this case

8

the returned value contains information about the failure. Another method is
let the function execution interrupt on when an error happened. In this case an
exception is thrown to describe the errorstate.

The above mentioned approaches have their advantages and disadvantages.
Managing exceptions consumes more resources than an usual execution flow.
However, exceptions shouldn’t be very frequent.

Idea of functions always returning some values may sound good, but it has
several drawbacks. The .NET Runtime signalizes errors by exceptions. This
means, that in this particular case all exceptions should be handled inside our
API, which brings several problems:

� There will be redundant code parts within the source code, caused by similar
errors happening at different actions (errors at pipe communication can be
such an example)

� Signaling error statuses needs our own system, which would basically be
the same or very similar to the system implemented in .NET itself

Based on previously mentioned causes I decided to use the exceptions for error
handling rather than creating some special return values for my API functions.

2.5 Audacity API

The mentioned Audacity extension uses its own commands to control the main
program’s interface. These commands can be supposed to be the Application
Programming Interface (API) for the main program.

The commands form two groups:

General commands They control general functionality e.g. creating a new
track or playing the audio file

Menu commands They control functions which are accessible from the menus
e.g. using some filters

Menu commands control functions thar are usually invoked from the menu
structure of Audacity’s graphical interface. Such a function is applying a filter to
our audio file. General commands can be described as everything else, including
the menu commands. In fact, menu commands form subset of all commands, but
they are special, because majority off executed commands is menu commands.

These commands are sent through one of the pipes created by the plugin.
Their results are returned through the second pipe. However, these commands
have to be specially formed their interpreter can withstand some malformation.
On the other hand, these malformations are allowed mostly for whitespaces (see:
example file for the plugin), so our custom interpreter really should respect the
conventions.

9

2.6 Script Environment

It’s important for users to have ability to customize the environment for their
needs. This feature is needed because of their different needs based on differ-
ent properties of their scripts. For example, some users have mainly simple,
short scripts for that the default settings are sufficient. Other users creates more
complex scripts, so they may need to adjust the environment. An example of
this situation could be a script which is not necesseraly connects to Audacity
depending on some function results. In this case there is no need to automati-
cally connect to the Audacity, therefore automatic connection and cleanup is not
necessary.

On the other hand, having only global settings may not be ideal, because
users can obtain scripts from external sources, which may naturally be written
for different environment settings. I considered the option of adding swiches to
scripts’ source code, which override the system defaults. The idea came from
compiled programming languages, such as Pascal and C, where these switches
adjust the compiler [9]. However I found, that implementing switches, that are
available from the scripts, can be confusing, because of mixing several approaches
of scripting languages and macros.

Finally, I decided to add a graphical option to control the automatic initili-
azation and cleanup process.

2.7 Storage Settings

We want to keep our settings for script environment. To store these data the
simplest way is to use a plain text file. In my opinion the amount of data is quite
small, so I decided to use the plain text format. I also considered using XML
format to save data, but serialized data may be too complicated for editing by
hand, which can be useful in some cases.

The main problem was to decide, where to save the file. In this work I
create the program and I provide testing on Windows operating system. This
implies,that I have to count with the Windows multi user environment.

Since Windows Vista the Program Files directory is not accessible for writing
without special permissions. Moreover, we would have to manage users within the
AudaEditor. These factors mean, that using the application directory or simply
one file in an user specified directory is inconvenient.

As a solution I found to use the user’s appdata folder to store the settings file.
To access this folder the Application [10] class is used from the .NET framework,
in which the UserAppDataPath property stores the path.

As result, we use the Windows’ user management and don’t have to care about
the problem of permissions, because the file is also accessible in user mode.

2.8 File Access

The scripting interface communicates with Audacity using pipes and Audacity
loads input files on its own. However, in some cases we need to access files from
the script. These file operations involve accessing to file system to retrieve the

10

directory content. After the list of files in the specific directory is ready we can
go through it and pass each needed filename to Audacity.

However, passing file names to Audacity can be problematic. As I mentioned
in Section 2.1, my scripting interface uses named pipes to communicate with
Audacity. However, in the current version of mod-script-pipe there is a restriction,
that filenames passed through the pipe must not contain spaces, because space
is used as deliminiter.

As a solution I considered a workaround, that would involve copying the input
file with invalid pathname to a temporary storage and after that the temporary
pathname would be passed to Audacity. However, I found this solution problem-
atic, because when script is being executed for multiple times for every run files
should be copied and after execution deleted. This solution would be unusual
and time consuming in most of the cases.

As a secondary solution I implemented an exception that is thrown, when an
audio file with illegal file name is accessed. Thanks to this option user can know
about the problem and act accordingly.

I would like to mention, that hhere is no support for file access in the current
JavaScript.NET interpreter, but we can implement a wrapper for I/O functions.
The wrapper can be internal part of the AudaEditor. Using this approach, wrap-
per is always accessible from script file. Another option is to create a standalone
.NET library implementing the needed functions and a javascript wrapper to at-
tach it to the actual project. This second approach is simply making a wrapper
around a wrapper and because of file Input-Output operations tend to be frequent
I decided to use the first option.

2.9 Graphical Interface

The Audacity is implemented in C++ using wxWidgets library for graphical user
interface. Thanks to this library Audacity is a cross–platform application.There
is an existing wrapper for wxWidgets, that makes possible to use the library in
.NET environment, called WX.Net [12]. However, it seems, that development can
be stoppedin the future, so I decided to abandon this solution and implement the
scripting interface based purely on graphical elements available in .NET libraries.
Fortunately, this does not necessarily means focusing on one platform, because
thanks to Mono project, the application can also run on other operating systems.

2.9.1 Editor

The main area of the scripting interface is dedicated to the editor. Beside the
script editing the editor also should provide at least a basic level of safety for our
source code. To fulfil this need the editor should warn the user if the source code
is unsaved and in this context dangerous situation happens, like creating a new
file or simply closing the window of the application.

I decided to implement a basic syntax highlighting mechanism for the editor,
which distinguish two types of keywords. One group of keywords consists of
reserved words for JavaScript (e.g. if, else, for, var, function, function,. . .), and
the other group consist of the keywords, that are used to describe the objects
implemented as part of this thesis (auda, filemanager, console).

11

2.9.2 User Interface–Script Interaction

When we are running are script we want to get some feedback if there was a prob-
lem or everything was good. For signalizing problems during the editing I have
chosen the messageboxes, but for script execution they can be disturbing if some
errors appear more frequently and the flashng messageboxes became disturbing,
thus I decided to use textboxes to show status messages or error information.
Controlling the script execution is also connected with UI–Script interaction,
which is in a more detailed way described in Section 3.4.

2.10 Projects And Files

Scripts are usually a short portion of code (source: wiki) , meaning that creat-
ing projects may not be necessary. On the other hand, grouping the requested
resources for the source can easen the development by reusing once implementing
code. In this case the projects mean a set of files, which contains the main script,
javascript libraries (javascript files containing function definitions and requested
function calls, settings), dynamic libraries with their javascript wrappers and
the project settings.

The current javascript interpreter doesn’t support execution of more than one
script, but this problem can be solved by concatenating the codes and prepro-
cessing the file.

12

3. Implementation

In this chapter I would like to describe several parts of my implementation of the
scripting interface using the tools mentioned in previous chapters.

3.1 The Overall Architecture

Figure 3.1: Architecture of the scripting interface

The mod-script-pipe plugin communicates with the outer world through pipes.
My application connects to these pipes (one for incoming and one for outgoing
messages) using a proxy component, which transforms the .NET function calls
to matching mod-script-pipe commands and sends them through the pipe.

The interpreter is a component which translates the user’s script to API calls.
In future, this component can be user defined, but for now JavaScript .NET is
used.

The editor components simply provide some tools for script editing.

3.2 Application Properties And States

Application properties are user set preferences influencing the behaviour of scripts.
Such an example is the property #autoinit, which causes automatical call of init()

13

function from editor’s Audacity API. To store these properties I decided to im-
plement a class that holds all data within it. My decision was based upon similar
implementations in Java API for system global variables.

Application properties are firstly set to default values. After the first run if
the user specific settings file is available,the values are read from that particular
file.

While application properties are connected with script interpreting, applica-
tion states are connected with the user interface. The application states contains
data about the application and about the script. These states are similar to
Windows Phone AppStates, where they contains information whether the app is
running, tombstoned, etc. However, this editor doesn’t need such feature for its
own run, but I find it ideal to monitor the scripts’ behaviour. In application states
we can indicate whether the script is running,is stopped or an error occured.

Moreover, I also find it suitable to store data about file transactions, e.g. file
loading error, project creation error. (if file open failed, by updating the gui we
can disable controls, which otherwise would access the file’s content)

3.3 Updating The User Interface

If at least one of the application states changes, the application must update its
user interface to reflect the new values. Most frequently this happens, when a
script is being executed.

3.3.1 Signalizing The Script Status

Since the script can be running for longer interval, it is useful to have an indicator
of its status. The problem is, that Audacity doesn’t send a respond until the
command is finished. Moreover, we can’t get information from the interpreter
about the number of executed functions or the total number of functions.

Firstly, I considered using an infinite progressbar to indicate, that the script
is being executed. Its advantage is simple implementation, but doesn’t carry a
lot information.

Secondly, I thought about creating an own control, which indicates the exe-
cution status with colour (red, green and grey). The advantage of this solution
is, that it carries slightly more information and the red colour can warn the user
to check the error log.

3.4 Termination of Script Execution

The JavaScript.NET interpreter is running in a separate thread, while the GUI
uses its own thread. The interpreted continuously translates the script and calls
the background functions. I decided to stop the interpret by adding a common
object that contains a boolean variable. The proxy, which connect the inter-
preter to the Audacity check before every function call whether the script is nor
interrupted by the user and then stops.

However, there is one drawback of this approach, that beacuse the Audacity
is running in a different process it continues performing its last task. However,

14

this can be interrupted by user interaction.

15

4. User Guide

In this chapter I would like to provide an overview about how my application
works and which tools are necessary to use it.

4.1 Installation

The Scripting Interface requires a functional Audacity application, with enabled
mod-script-pipe support. Moreover, it was tested for .NET framework 3.5, but
probably older versions are appropriate, too.

The program is started by clicking on AudacityScriptingInterface icon. If one
of the settings is changed it creates a text file in the

A compiled version of Audacity is located on the attached DVD disc, which
was used for testing. For a clean compilation tutorials are located on the following
sites: Compiling Audacity for Beginners [13], Developing on Windows [13] and
Audacity Scripting [8]

4.2 User Interface

As it can be seen on Figure 4.1 the majority of the user interface is dedicated to
the editor. On the right side the control panel and the consoles accompany the
editor. The consoles are dedicated to severeal printing functions, which are called
from the script. Moreover, that tabs contain information about the number of
unseen messages. These counters are reset, when the user checks the messages.
The error console is usually used by the script interpreter to announce the errors,
but it is also available for users. The script interaction states are also displayed
on the script control panel, that is in the upper right corner.

The script control panel contains two buttons, which are dedicated to run
and stop the script execution. Moreover, there is a square, which is by changing
its colour signalizes the states of the application. The dark grey colour means
inactive state, when no script execution is running, the green coulour means
running script, with no errors, the yellow colour appears, when a warning message
was sent to the console. Finally, the red colour means an error and in the error
console appears the information about the error. Figure 4.2 shows the situation,
when the script execution was interrupted. It already printed out a line to the
simple output, but the error console shows the real problem. After clicking to the
tab, we can see, that the scripting interface wasn’t able to connect to Audacity.
This is shown on Figure 4.3.

4.3 Examples

4.3.1 Example 1 - Filtering

In this example we merge two noisy audio files. Denoise filter is applied after the
merger and the result is exported to a third file. We assume that the input files
are stereo tracks.

16

Figure 4.1: User interface of my application with a simple script opened in it.

Figure 4.2: An error occured while the script was running.

Figure 4.3: The cause of the error

Track A and B are opened. (Audio file C:/music/m.mp3 and C:/music/m-
2.mp3 are used in this example) Track A correspondents to audio.mp3 file and
track B to audio2.mp3

Listing 4.1: Step 1 and 2

1 auda.import(’C:/bc/sample/audio.mp3’);

auda.import(’C:/bc/sample/audio2.mp3’);

17

Unnecessary parts are cut from the tracks: Position 0:00:00-0:01:00 (the first
1 minute) is cut from track A and position 0:01:00-0:03:00 from track B.

In Audacity track A occupies the 0th and 1th mono track, which are set as
the second to last and last parameters of select command. The selection range
values are set in seconds.

Listing 4.2: Step 3 and 4

auda.select(’Range ’,0.0,60.0, 0, 1)

2 auda.cmdDelete ();

Track B is located on 2nd and 3rd mono tracks.

Listing 4.3: Step 4

auda.select(’Range ’ ,60.0 ,180.0 , 2, 3)

2 auda.cmdDelete ();

Denoise filter (in Audacity called NoiseRemoval) is applied to all tracks (all
4 mono tracks).

Listing 4.4: Step 5

auda.select(’All ’);

2 auda.effNoiseRemoval ();

There is no explicit track join function in mod-script-pipe, because tracks
are automatically merged into needed format on saving. The result is saved to
C:/music/audio3.wav.

Listing 4.5: Step 6 and 7

auda.export(’C:/bc/sample/audio3.wav ’);

4.3.2 Example 2 - Speed Up

This example script makes changes to all mp3 files in the specified directory. It
cuts out the first 4 seconds of every track and speeds up each of them by 100 per
cent.

Listing 4.6: Speed up recordings in a specified directory

1 var dir=’C:/music ’;

var files=filemanager.GetFiles(dir ,’*.mp3’);

3 auda.init ();

5 for(var i=0;i<files.length;i++)

{

7 var fullpath=files[i];

var filename=filemanager.GetFileName(fullpath);

9 var exportpath=dir+’/’+ filename +’-2.wav ’;

11 auda.import(fullpath);

auda.select(’Range ’,0.0,4.0, 0, 1);

13 auda.cmdDelete ();

18

15 auda.select ("All ");

auda.effChangeSpeed (100.0);

17

auda.export(exportpath);

19

auda.select ("All ");

21 auda.removeTracks ();

}

23 auda.cleanup ();

19

5. Conclusion

The main goal of the thesis was to extend Audacity editor with the capability of
automated scripting.

We have shown that scripting can be supported via experimental extension of
Audacity called mod-script-pipe.

In particular, we have implemented scripting console in a separate process,
executing scripts written in a well-known JavaScript language. We also created
a graphical user interface, that makes creating and editing of scripts more user-
friendly.

We have shown on several examples that even if scripting is not the most
important part of Audacity functionality, it is in several cases very useful.

On the other hand, the current implementation can be extended in several as-
pects, for example future work includes support for other scripting languages and
improvements in the interaction between the scripting interface and the Audacity.

20

A. API functions

In this appendix I would like to catalogize commands needed to use the scripting
API. These commands can be accessed through pre-defined objects as shown in
4.3

A.1 Functions of auda object

A.1.1 init function

A.1.2 cleanup function

A.2 Functions of filemanager object

A.2.1 GetFiles function

A.3 Functions of console object

A.3.1 Clean function

A.3.2 PrintLine function

A.3.3 PrintErrorLine function

A.3.4 PrintWarningLine function

21

Bibliography

[1] MSDN Article, Interprocess Communications. Date: 10/27/2012
http://msdn.microsoft.com/en-us/library/windows/desktop/

aa365574%28v=vs.85%29.aspx

[2] MSDN Article, Named Pipes. Date: 10/27/2012 http://msdn.microsoft.

com/en-us/library/windows/desktop/aa365590%28v=vs.85%29.aspx

[3] Rich Morin,Vicki Brown, Scripting Languages, MacTech. http://www.

mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/

index.html

[4] GIMP Python homepage, Documentation, http://www.gimp.org/docs/

python/index.html

[5] Script-Fu Documentation, http://docs.gimp.org/en/

gimp-concepts-script-fu.html

[6] Node.js API documentation, http://nodejs.org/api/

[7] JavaScript.NET Homepage http://javascriptdotnet.codeplex.com/

[8] Audacity Scripting, Scripting, http://manual.audacityteam.org/man/

Scripting

[9] Freepascal compiler settings, http://www.freepascal.org/docs-html/

user/usersu68.html

[10] MSDN Article, Application Properties, http://msdn.microsoft.com/

en-us/library/system.windows.forms.application_properties.aspx

[11] Script-Fu Documentation, Standalone Script-Fus, http://docs.gimp.org/
en/kinds-of-script-fu.html

[12] WX.Net Documentation, WX.Net.Build Documentation, http://wxnet.

sourceforge.net/wxbuild/

[13] Compiling Audacity for Beginners, http://wiki.audacityteam.org/wiki/
CompilingAudacityForBeginners

[14] Developing on Windows http://wiki.audacityteam.org/wiki/

Developing_On_Windows

22

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365574%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365574%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365590%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365590%28v=vs.85%29.aspx
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
http://www.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
http://www.gimp.org/docs/python/index.html
http://www.gimp.org/docs/python/index.html
http://docs.gimp.org/en/gimp-concepts-script-fu.html
http://docs.gimp.org/en/gimp-concepts-script-fu.html
http://nodejs.org/api/
http://javascriptdotnet.codeplex.com/
http://manual.audacityteam.org/man/Scripting
http://manual.audacityteam.org/man/Scripting
http://www.freepascal.org/docs-html/user/usersu68.html
http://www.freepascal.org/docs-html/user/usersu68.html
http://msdn.microsoft.com/en-us/library/system.windows.forms.application_properties.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.application_properties.aspx
http://docs.gimp.org/en/kinds-of-script-fu.html
http://docs.gimp.org/en/kinds-of-script-fu.html
http://wxnet.sourceforge.net/wxbuild/
http://wxnet.sourceforge.net/wxbuild/
http://wiki.audacityteam.org/wiki/CompilingAudacityForBeginners
http://wiki.audacityteam.org/wiki/CompilingAudacityForBeginners
http://wiki.audacityteam.org/wiki/Developing_On_Windows
http://wiki.audacityteam.org/wiki/Developing_On_Windows

	Introduction
	Background
	The Architecture of Audacity
	Interprocess Communication
	Scripting Languages in General
	Related Work

	Analysis
	Overall Architecture
	Choosing the Implementation Programming Language
	Choosing Scripting Language
	Error Handling
	Audacity API
	Script Environment
	Storage Settings
	File Access
	Graphical Interface
	Editor
	User Interface–Script Interaction

	Projects And Files

	Implementation
	The Overall Architecture
	Application Properties And States
	Updating The User Interface
	Signalizing The Script Status

	Termination of Script Execution

	User Guide
	Installation
	User Interface
	Examples
	Example 1 - Filtering
	Example 2 - Speed Up

	Conclusion
	API functions
	Functions of auda object
	init function
	cleanup function

	Functions of filemanager object
	GetFiles function

	Functions of console object
	Clean function
	PrintLine function
	PrintErrorLine function
	PrintWarningLine function

	Bibliography

