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Abstract

This bachelor thesis is dealing with complete Boolean algebras
and its use in semantics of first-order predicate logic. This thesis
has two main goals, at first it is to show that every Boolean al-
gebra can be extended to a complete Boolean algebra such that
the former Boolean algebra is its dense subalgebra. This theorem
is proved using topological construction. Afterwards, in the sec-
ond part, we define semantics for first-order predicate logic with
respect to complete Boolean algebras, which includes introduc-
tion of the Boolean-valued model. Then we prove completeness
theorem with respect to all complete Boolean algebras. The the-
orem is proven using ultrafilters on Boolean algebras.

Keywords: Boolean algebras, complete Boolean algebras, clas-
sical logic.



Abstract

Tato bakalářská práce pojednává o úplných Booleových alge-
berách a o jejich užit́ı v semantice prvořádové predikátové logiky.
Práce má dva hlavńı ćıle, v prvńı řadě dokázat, že každá Booleova
algebra může být rozš́ı̌rena na úplnou Booleovu algebru tak, že
p̊uvodńı algebra je jej́ı hustá podalgebra. Toto tvrzeńı je dokázáno
pomoćı topologické kontrukce. Následně, ve druhé části, defin-
ujeme sémantiku prvořádové predikátové logiky s ohledem na
úplné Booleovy algebry, současně také zavedeme pojem
Booleovsky- ohodnoceného modelu. Poté dokážeme větu
o úplnosti s ohledem na všechny úplné Booleovy algebry. To je
dokázáno pomoćı ultrafiltr̊u na Booleových algebrách.

Kĺıčová slova: Booleovy algebry, úplné Booleovy algebry, kla-
sická logika.
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1 Introduction

In this thesis we will prove that every Boolean algebra can be extended
to a complete Boolean algebra, we will demand for this complete Boolean
algebra to satisfy some properties (see Definition 2.33). Then, in the second
part, we we will speak of satisfaction in complete Boolean algebras.

The motivation of this work can be described as follows. Standard seman-
tics for the first-order predicate logic is actually a semantics with respect
to the Boolean algebra {0, 1}, we can speak of a so called algebraic seman-
tics. Our main goal is to generalize this notion to all complete Boolean
algebras, in other words to prove that the first-order predicate logic is com-
plete with respect to the class of all complete Boolean algebras.

In Section 2, we prove that for every Boolean algebra B, there is a unique
complete Boolean algebra, we denote it cm(B), such that B is a dense sub-
algebra of cm(B). We prove this using a topological construction by Bal-
car and Štěpánek ([1]). At the beginning of this section, after defining basic
terms, we speak of regular open sets. We define the system of all regular open
sets of a topological space, RO(X), and show that with properly defined op-
erations it is a complete Boolean algebra, which we will denote as B(RO(X))
(Theorem 2.13). Then we define the notion of a separated ordering and show
that every partially ordered set can be factorized to a separative partially
ordered set (Theorem 2.21). In the next subsection, we concentrate on dense
subsets. We show that every element b in Boolean algebra B can be ex-
pressed by certain subset of a dense subset of B (Lemma 2.26), moreover
we show that two complete Boolean algebras with isomorphic dense subsets
are also isomorphic (Theorem 2.30), which is the key statement to prove
the uniqueness of the completion, cm(B). In the next subsection we speak
of the topology of lower subsets. In the proof of the completion theorem
we use this important fact: Let (Q, τ) be a topology of lower subsets based
on the separative partially ordered set Q, then for every q in Q the small-
est lower subset containing q, (←, q], is in RO(Q). And finally we prove
completion Theorems 2.34 and 2.36. In these theorems we use the fact that
(B+,≤) is a separative partial order. However, we also mention in Corol-
lary 2.35 a weaker version for orderings, which are not separated.

In Section 3, we prove completeness theorem with respect to all complete
Boolean algebras. First we define Boolean-valued models following [4]. Later
we define full Boolean-valued models and we show that every Boolean-valued
model can be extended to a full Boolean-valued model, which satisfies some
important properties, see Theorem 3.15. In the next subsection we discuss
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ultrafilters. For a full Boolean-valued model MB and ultrafilter G on B,
we show how to construct the quotient M/G, a two-valued model (Theo-
rem 3.21). In Theorem 3.24 we prove the completeness. In this theorem we
use the notion of a quotient model of a full Boolean-valued model, which en-
ables us to reduce the completeness to the completeness theorem for standard
two-valued predicate logic, which we suppose as a fact.
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2 Completion theorem for BAs (Boolean al-

gebras)

In this section we prove completion theorem for BAs. The greatest part
of this section is inspired by Balcar and Štěpánek, [1].

2.1 Introduction to BAs

Definition 2.1. A structure (B,∨,∧,−, 0, 1) with binary functions ∨,∧,
which we denote as join and meet, and unary function −, which we call
complement, and constants 0 a 1 is called Boolean algebra if following axioms
are satisfied:

(i) Associativity x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z

(ii) Commutativity x ∧ y = y ∧ x, x ∨ y = y ∨ x

(iii) Absorption x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x

(iv) Distributivity x∧(y∨z) = (x∧y)∨(x∧z), x∨(y∧z) = (x∨y)∧(x∨z)

(v) Complement x ∧ (−x) = 0, x ∨ (−x) = 1

We say that Boolean algebra B is complete if for every S ⊆ B there exist∨
S = sup1(S)2.

Definition 2.2. Let B be a boolean algebra, we define canonical ordering ≤
on B as follows: For every x, y ∈ B: x ≤ y ↔def x ∧ y = x.

Definition 2.3. Let B be a Boolean algebra. We say that the elements
x, y ∈ B are disjoint and write x⊥y if x ∧ y = 0.

For the purpose of this work, we mention only one more property of BAs,
which will be widely used. For more detailed information on BAs see [1] or [5].

Let B be a BA, then for every x, y ∈ B:

x ≤ y ↔ x ∧ −y = 0 (1)

1For the definition of the supremum see definition 2.19 on page 14.
2It can be proved that if for a given set S the supremum exists then also the infi-

mum exists (and vice versa), thus every subset of a complete BA B has both supremum
and infimum.
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2.2 Regular open sets

Definition 2.4. Let X be a nonempty set and τ a subset of P (X). Assume
(X, τ) satisfies the following conditions:

(i) ∅, X ∈ τ

(ii) A,B ∈ τ then A ∩B ∈ τ

(iii) let I be a set and {Ai ∈ X | i ∈ I} be a family of sets in τ , then
the union ∪i∈IAi is also in τ .

Then we call the pair (X, τ) a topological space and the system τ a topology
on X. We call the set A open, if A ∈ τ . If A is open, then its complement
X \ A is called closed.

Definition 2.5. Let (X, τ) be a topological space and let A ⊆ τ be given.
We define:

(i) Closure of A as the smallest closed superset of A and we denote it
cl(A), i.e. cl(A) is the intersection of all closed sets containing A.

(ii) Interior of A as the greatest open subset of A and we denote it int(A),
i.e. int(A) is the union of all open sets contained in A.

(iii) Regularization of A as r(A) = int(cl(A)).

Fact 2.6. Properties of interior and closure

(i) Int and cl are monotonous functions.

(ii) int(A) = int(int(A)), cl(A) = cl(cl(A)).

(iii) A is closed(open), if and only if A = cl(A)(A = int(A)).

(iv) A ⊆ cl(A), int(A) ⊆ A.

(v) int(A ∩B) = int(A) ∩ int(B), cl(A ∪B) = cl(A) ∪ cl(B).

Definition 2.7. We call a set A regular open set if r(A) = A. We denote
RO(X) the system of all regular open sets of a topological space (X, τ).

We can imagine regularization as a function that “removes holes” from
an open set. As an example let us have a topological space of real num-
bers (R, τR) and fix an open set A = (1, 3) ∪ (3, 5). Then cl(A) = [1, 5], thus
r(A) = (1, 5). We can view number 3 as a hole in the open set A. Regular
open sets are then open sets without such a holes.
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Observation 2.8. Operation regularization of topological space (X, τ) is
monotonous, i.e. A ⊆ B ⊆ X then r(A) ⊆ r(B)

Proof. Easy consequence of the monotonicity of operations interior and clo-
sure.

Definition 2.9. Let (X, τ) be a topological space and b ∈ X. We say a set
V ⊆ X is a neighbourhood of b if there is an open set U ∈ τ such U ⊆ V
and b ∈ U . Moreover we say V is an open neighbourhood if V is open.

Lemma 2.10. Let (X, τ) be a topological space and A ∈ τ , then for every
b ∈ X: b ∈ cl(A) if and only if for every open neighbourhood V of b:
V ∩ A 6= ∅.

Proof. ad→: Let V be such an open neighbourhood of b, so that V ∩A = ∅.
Obviously the set X \ V is closed, A ⊆ X \ V and moreover b /∈ X \ V . It
easily follows that b /∈ cl(A).

ad ←: Let us have b /∈ cl(A) and define the set B = X \ cl(A). Because
cl(A) is closed, the set B is open. Moreover it holds that B is an open
neighbourhood of b and B ∩ A = ∅.

Lemma 2.11. Set A ⊆ X of a topological space (X, τ) is regular open if
and only if A is open and for every p ∈ X: if there is an open neighbourhood
V of p such that V ⊆ cl(A), then p ∈ A.

Proof. ad →: Let us have A ⊆ X regular open. A is obviously open. Now
consider p ∈ X with an open neighbourhood V , which satisfies the condition
V ⊆ cl(A). If p /∈ A, then A  A ∪ V ⊆ cl(A). And because the set A ∪ V
is open, we have a contradiction with the fact that A = int(cl(A)).

ad ←: We will show that A = int(cl(A)). ⊆: Obvious, because A is open
and A ⊆ cl(A). ⊇: if b ∈ int(cl(A)), then int(cl(A)) is an open neighbourhood
of b and moreover int(cl(A)) ⊆ cl(A) and hence b ∈ A.

Lemma 2.12. Let A,B be two open sets then r(A ∩B) = r(A) ∩ r(B).

Proof. First we show that for an open set A and for an arbitrary set Q
of a topological space holds:

A ∩ cl(Q) ⊆ cl(A ∩Q) (2)
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To see this let us have an element b ∈ A ∩ cl(Q), by Lemma 2.10 we want
to prove that every open neighbourhood V of b satisfies: V ∩A ∩Q 6= ∅. So
let V be an open neighbourhood of b, because b is in A and also in V , we
get A ∩ V 6= ∅ and because A is open, A ∩ V is also open and because it
contains b, it follows that A ∩ V is an open neighbourhood of b and hence
again by Lemma 2.10 V ∩ A ∩Q 6= ∅.

ad ⊆: follows immediately by monotonicity of regularization.

ad ⊇: first, by (2) we get:

A ∩ cl(B) ⊆ cl(A ∩B)

By Fact 2.6 (v) and (iv):

A ∩ r(B) ⊆ r(A ∩B) ⊆ cl(A ∩B)

Now we again apply (2) and we get: cl(A)∩ r(B) ⊆ cl(A∩ r(B)) ⊆ cl(A∩B),
where the last relation follows from the previous equation using monotonicity
of closure. We again apply Fact 2.6 (v) and we have:

r(A) ∩ r(B) ⊆ r(A ∩B)

Theorem 2.13. The system RO(X) of a not empty topological space (X, τ)
with operations:

A ∧B = A ∩B, A ∨B = r(A ∪B), −A =int(X \ A)

and constants 0 = ∅ and 1 = X makes a complete Boolean algebra. Moreover
if S ⊆ RO(X) then ∧

S = r(
⋂

S) and
∨

S = r(
⋃

S)

We denote this complete Boolean algebra B(RO(X)).

Proof. First we need to show that the system RO(X) is closed under op-
erations. The cases of join and complement are obvious by the definition
and meet follows by Lemma 2.12.

Commutativity and associativity follows by commutativity and associativity
of the operations of the set theoretical functions union and intersection.

To see that distributivity holds let us have A,B,C ∈ RO(X), we known that
for the set theoretical operations holds:
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A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Now apply regularization on both sides of the equation. And by the definition
and Lemma 2.12 we get for the left side:

r(A ∩ (B ∪ C) = r(A) ∩ r(B ∪ C) = A ∧ (B ∨ C)

and for the right side:

r((A ∩B) ∪ (A ∩ C)) = (A ∧B) ∨ (A ∧ C)

thus we can conclude:

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C)

The second case is similar.

Absorption is easy to derive using distributivity and the set theoretical equiv-
alent of absorption.

Now we show that the axiom of complement holds, let us have A ∈ RO(X)

A ∧ (−A) = A ∩ int(X \ A) = ∅ (3)

A ∨ (−A) = r(A ∪ int(X \ A)) = X (4)

ad (3) Obvious (for every set A: int(A) ⊆ A).
ad (4) It is enough to show that X = cl(A ∪ int(X \ A)). For contradiction
suppose that cl(A∪int(X \A)) 6= X. So there is a closed set C which satisfies
(A∪ int(X \A)) ⊆ C and C 6= X. Thus the complement of C is open and not
empty subset of (X \A)3 and moreover int(X \A)∩ (X \C) = ∅. So the set
int(X \A)∪ (X \C) contradicts the fact that int(X \A) is the greatest open
subset of (X \ A).

So far we have shown that the so defined system on RO(X) is a Boolean
algebra. The rest to prove is the completeness. So let us have a set S
such that S ⊆ RO(X) and put A = r(

⋂
S), A ∈ RO(X) and for every B,

B ∈ S: A ⊆ r(B) = B, thus we have shown that A is a lower bound of S,
now we show it is the greatest lower bound. To see that consider a lower
bound C ∈ RO(X), such a C satisfies C ⊆

⋂
S and by Observation 2.8

C = r(C) ⊆ r(
⋂
S) = A. The second case is similar.

Observation 2.14. The canonical ordering on B = B(RO(X)) is in fact the
set theoretical inclusion ⊆.

3Follows by fact that A ⊆ B ↔ (X \B) ⊆ (X \A).
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2.3 Separated ordering

Definition 2.15. We say a set X to by partially ordered by binary relation
≤, if for every x, y, z ∈ X holds:

(i) reflexivity x ≤ x

(ii) transitivity (x ≤ y ∧ y ≤ z)→ x ≤ z

(iii) weak antisymmetry (x ≤ y ∧ y ≤ x)→ x = y

Observation 2.16. Canonical ordering on every BA is a partial ordering.

Definition 2.17. Let ≤ be an ordering on X, we say the ordering is linear
if for every x, y ∈ X: x ≤ y or y ≤ x or x = y.

Definition 2.18. Let (X,≤) be a partial ordering. We say that the element
x ∈ X:

(i) is maximal if for every y ∈ X, y 6= x: x � y.

(ii) is minimal if for every y ∈ X, y 6= x: y � x.

(iii) is the greatest if for every y ∈ X: y ≤ x.

(iv) is the least if for every y ∈ X: x ≤ y.

Definition 2.19. Let (X,≤) be partial ordering and P ⊆ X. We say that
the element x ∈ X:

(i) is an upper bound of P if for every y ∈ P : y ≤ x.

(ii) is an lower bound of P if for every y ∈ P : x ≤ y.

(iii) is the supremum of P if x is the least upper bound of P .

(iv) is the infimum of P if x is the greatest lower bound of P .

It is easy to see that the supremum and the infimum of a set P is unique
element if it exists. We denote it sup(P ) and inf(P ).

Definition 2.20. let (X,≤) be a partial ordering.

(i) We say elements x, y ∈ X to be disjoint and write x⊥oy, if there is no
element z ∈ X such that z ≤ x and z ≤ y . Otherwise we say x, y are
compatible.
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(ii) The ordering is called separated on the set X if for every x, y ∈ X
the following property holds.

x � y → (∃z ∈ X)(z ≤ x ∧ z⊥oy) (5)

We have just introduced a second definition for disjoint elements, this time
for partial ordering. To ease the reading we use atypical notation ⊥o instead
of ⊥. Realize that if we have a partially ordered set with the least element,
then there are no disjoint elements, hence for every BA there are no disjoint
elements in sense of ⊥o and therefore no BA is ordered separately. However,
if for a given BA B we consider a set B+ = B−{0}, then for every x, y ∈ B+:

x⊥y in B ↔ x⊥oy in B+. (6)

Theorem 2.21. 4 Let (P,≤) be a partially ordered set, then there is a sep-
arative partially ordered set (Q,�) and a mapping h : P → Q such that
for every x, y ∈ P :

(i) if x ≤ y, then h(x) � h(y)

(ii) x and y are compatible in P if and only if h(x) and h(y) are compatible
in Q.

Proof. First we define following equivalence relation on P:

x ∼ y if and only if ∀z(z is compatible with x↔ z is compatible with y).

Relation ∼ is obviously an equivalence. So let Q be a quotient set of P by ∼,
i.e. Q = P/ ∼= {[x] |x ∈ P}, where [x] = {y ∈ P | y ∼ x} is an equivalence
class of x.

Definition of the ordering � on Q:

[x] � [y]↔ (∀z ≤ x)[z and y are compatible].

Easily, by mere rewriting of definitions, it can be verified that the set Q
with ordering � is a separative partially ordered set.

Definition of the mapping h : P → Q: (∀x ∈ P )(h(x) = [x]).

Ad (i): Let x ≤ y. By definition we show that every z ≤ x is compatible
with y. Because x ≤ y: z ≤ y and moreover z ≤ z, therefore z, y are
compatible.

4This theorem can be found in [2], p. 205.
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Ad (ii): →: If x, y are compatible, then there is z ∈ P such that z ≤ x,
z ≤ y, therefore by (i) above: [z] � [x] and [z] � [y]. ←: Let us have such
[x], [y], so they are compatible. There is [z] ∈ Q: [z] � [x], [z] � [y]. Fix
arbitrary k ≤ z, by definition k and x are compatible. So there is l ∈ P :
l ≤ k, l ≤ x, because l ≤ z, it follows that l is compatible with y and thus
there is m ∈ P : m ≤ l ≤ x and m ≤ y.

2.4 Dense sets

Definition 2.22. Let B be a Boolean algebra. We say a set D ⊆ B is dense
in B if 0 /∈ D and for every nonzero b ∈ B there exists x ∈ D such that
x ≤ b.

Examples:

(i) For every BA B the set B − {0} is dense in B.

(ii) 5 Boolean algebra B is atomic iff the set of all its atoms is dense in B.

The ordering on every dense subset D of a Boolean algebra B, which is
restriction of the canonical ordering on B to the set D, is separated (it is
easy to prove this, use (1) and Lemma 2.26).

Definition 2.23. Let B be a BA and b ∈ B. We say a set X ⊆ B is
an antichain if for every x, y ∈ X: x 6= y → x⊥y.

Definition 2.24. Let B be a BA and b ∈ B. We say a set P ⊆ B is
the partition of b if following holds:

(i) 0 /∈ P .

(ii) P is an antichain.

(iii) b =
∨
P .

Definition 2.25 (Principle of maximality, PM). Let (X ≤) be a partial
ordering, then for every x ∈ X there is maximal element over x if the follow-
ing condition is satisfied (chain condition): Every linearly ordered subset S
of X has an upper bound.

Lemma 2.26. If a set D is dense in Boolean algebra B, then for every
element b ∈ B following holds:

5recall that an nonzero element a ∈ B is called an atom if there is no b such that
0 < b < a. And BA B is called atomic if under every nonzero b ∈ B there is an atom.
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(i) b =
∨
{x ∈ D |x ≤ b}.

(ii) there exists a partition P of b, which only consist of elements of D.

Proof. Ad (i): Let b be given. We define X = {x ∈ D |x ≤ b}. We want
to show that b is the supremum of X. If b = 0 then X is empty and thus
sup(X) = 0. Now suppose that b 6= 0, it implies that X 6= ∅. The element b
is obviously an upper bound of X, to see it is also the lowest upper bound
let us have an upper bound c, we will show that b ≤ c. For contradiction
suppose b � c and by (1) we get a nonzero element d ∈ B such that d ≤ b,
d ≤ −c. Because D is dense in B and d ≤ b, we get a nonzero element e ∈ X
such that e ≤ d, however e � c, contradiction.

Ad (ii): We omit the case, where b = 0, so let b 6= 0 be given. We define
X = {x ∈ D |x ≤ b} and P = {Y ⊆ X |Y is antichain}, it is easy to verify
that P ordered with inclusion ⊆ satisfies the chain condition of PM and be-
cause X is not empty, P is also not empty, therefore we can choose an ar-
bitrary element a ∈ P and by PM we get maximal element in P over a, we
denote it M . We claim that M is a partition of b. It is obvious that M is
an antichain and 0 /∈M . b is obviously an upper bound of M , to see it is also
the lowest upper bound let c ∈ B be upper bound of M and suppose for con-
tradiction that b � c. We obtain a nonzero element e ∈ X the same way
as in (i). Because M is maximal in P there must be element f ∈M such that
f ∧e 6= 0, however f � c (by equation (1): f ∧−c = (f ∧b)∧−c = f ∧d 6= 0),
contradiction.

Lemma 2.27. If B is BA and ∅ 6= P ⊆ B and c =
∨
P then for every

0 6= a ≤ c, there is an element p ∈ P : p ∧ a 6= 0.

Proof. For contradiction suppose that for every p ∈ P : p ∧ a = 0. We will
show that the element c ∧ −a contradicts the fact that c is the supremum
of P . First we show c∧−a � c. Obviously c∧−a ≤ c and c∧−a 6= c because
otherwise:

0 = a ∧ (c ∧ −a) = c ∧ a = a 6= 0

For every p ∈ P : p∧a = 0 therefore by (1): p ≤ −a, moreover p ≤ c and thus
p ≤ c ∧ −a. Contradiction, c is not the least upper bound of P .

Definition 2.28. Two structures A, B are isomorphic, we write A ∼= B, if
there is a function e : A→ B satisfying following conditions:
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(i) e is bijection, i.e. : Satisfies two following properties.

(a) is injection (1-1): x 6=A y → e(x) 6=B e(y).

(b) is surjection (onto): {b ∈ B | ∃(a ∈ A)(e(a) = b)} = B.

(ii) For every constant c holds: e(cA) = cB.

(iii) For every n-ary function symbol F holds:

e(FA(a1, .., an)) = FB(e(a1), ..., e(an)).

(iv) For every n-ary predicate symbol P holds:

(a1, ..., an) ∈ PA ↔ (e(a1), ..., e(a1)) ∈ PB.

Fact 2.29. Boolean algebras (B0,∧0,∨0,−0, 00, 10) and (B1,∧1,∨1,−1, 01, 11)
are isomorphic iff they are isomorphic with regard to their canonical order-
ings, i.e. if (B0,≤0) ∼= (B1,≤1).

Proof. Proof can be found for example in [1], p. 10.

Theorem 2.30. Let us have two complete Boolean algebras B1, B2, such
that some dense subset D1 ⊆ B1 is isomorphic with some dense subset
D2 ⊆ B2 with regard to the canonical ordering, then algebras B1, B2 are
isomorphic.

Proof. Let j : D1 → D2 be an isomorphism between dense subsets of BAs
B1 and B2 with regard to their canonical orderings ≤1 and ≤2. We define
the mapping J : B1 → B2 as follows: For every x in B1:

J(x) =
∨
2

{j(y) | y ∈ D1, y ≤1 x} (7)

Because both algebras are complete it follows that J is mapping fromB1 toB2.
First we show that J extends mapping j. For every x ∈ D1 we have
J(x) =

∨
2{z ∈ D2 | z ≤2 j(x)} and by Lemma 2.26 (i): J(x) = j(x).

Now we prove that J is onto. So let us have z ∈ B2 and define
x =

∨
1{y ∈ D1 | j(y) ≤2 z}. Let us denote P1 = {x ∈ D2 |x ≤2 z}

and P2 = {j(y) | y ∈ D1, y ≤1 x}. We will show that J(x) = z, to see this
is enough to show that P1 = P2, because by Lemma 2.26 (i): z =

∨
2 P1,

and by (7): J(x) =
∨

2 P2. Ad ⊆: let p ∈ P1 then there is p0 ∈ D1:
j(p0) = p and because j(p0) ≤2 z by the definition of x: p0 ≤1 x and thus
j(p0) = p ∈ P2. Ad ⊇: Let us have p ∈ P2, then by definition of P2 there
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is p0 ∈ D1, p0 ≤1 x: j(p0) = p. j(p0) is obviously in D2, so for contradic-
tion suppose that j(p0) �2 z. Because the ordering ≤2 on D2 is separated,
we get by (5) an element b ∈ D2: b ≤2 j(p0) and b⊥oz on D2. Because
j : D1 → D2 is isomorphism, there is an element a ∈ D1, j(a) = b, and be-
cause b = j(a) ≤2 j(p0): a ≤1 p0, therefore a ≤1 x and hence by definition
of x and by Lemma 2.27 there must be y ∈ D1: y ∧ a 6= 0, so by density
of D1 we have 0 6= c ∈ D1, c ≤1 y ∧ a. Obviously 0 6= j(c) ≤2 j(a) = b
and by the definition of x it follows that j(c) ≤2 j(y) ≤2 z, contradiction
with the fact that z, b are disjoint.

J preservers the canonical ordering i.e. x ≤1 y ↔ J(x) ≤2 J(y): Ad →:
Obvious, J(y) is an upper bound of {j(y) | y ∈ D1, y ≤1 x}. Ad ←: Suppose
x �1 y. We will apply (5) considering separate ordering on B+

1 . How-
ever we first need to cover cases, where x = 0 (but it is not possible, be-
cause ∀x(0 ≤ x)) and y = 0, but if y = 0 then J(y) = 0. Now suppose
x 6= 0 and y 6= 0 and apply (5). We get a nonzero c ∈ B1, c ≤ x, c⊥oy
in B+

1 and by density of D1, we have b ∈ D1, b ≤1 c. By definition of J :
j(b) ≤2 J(x), for contradiction suppose j(b) ≤2 J(y) then by the definition
of J and by Lemma 2.27 there is p ∈ D1, p ≤1 y and j(b) ∧ j(p) 6= 0.
And by density of D1 it follows that there must be an element a ∈ D1,
a ≤1 b ≤1 c and a ≤1 p ≤1 y, but c⊥oy in B+

1 , contradiction, hence
J(x) �2 J(y).

J is 1-1: let x 6=1 y, by weak antisymmetry x �1 y or y �1 x. Without
loss of generality suppose that x �1 y then because J preserves orderings:
J(x) �2 J(y). If J(x) =2 J(y) then J(x) �2 J(x), contradiction with reflex-
ivity, hence J(x) 6=2 J(y).

2.5 Topology of lower subsets

We already know that from a given topological space we can obtain a com-
plete Boolean algebra B(RO(X)). In this section we describe topology of lower
subsets. This topology enables us to to get for a given Boolean algebra a topo-
logical space, but we will proceed more generally and define this topology for
nonempty ordered set (Q,≤).

Definition 2.31. Let (Q,≤) be a nonempty ordered set. We call a set
X ⊆ Q a lower subset of Q if for every p, q ∈ Q is satisfied:

(p ≤ q ∧ q ∈ X)→ p ∈ X

If (Q,≤) is nonempty ordered set then both ∅ and Q are lower subsets of Q,
the intersection of two lower subsets is also a lower subset of Q, and for a sys-
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tem S of lower subsets of Q, its union is a lower subset.

It implies that the system of all lower subsets of Q makes a topological space.
We call it a topology of lower subsets.

Now we introduce an important formula describing regular open sets of a topol-
ogy of lower subsets. We will show that a subset X of Q is regular open if
and only if X is open and following formula holds:

(∀p ∈ Q)[p ∈ X ↔ (∀q ≤ p)(X ∩ (←, q]6 6= ∅)] (8)

Proof. First realize that (←, p] is the least open neighbourhood of p, i.e.

if V is an open neighbourhood of p then (←, p] ⊆ V. (9)

Ad →: Let X be a regular open then X is open, we will show that (8)
holds. Direction from left to right is obvious, because if p ∈ X then for every
q ≤ p: (←, q) ⊆ X (because X is open, i.e. X is a lower subset of Q).
To show the other direction let us have p ∈ Q and (∀q ≤ p)(X ∩ (←, q] 6= ∅)
holds. By Lemma 2.10 and (9): ∀(q ≤ p)(q ∈ cl(X)) which can be written
as (←, p] ⊆ cl(X) and thus by Lemma 2.11: p ∈ X.

ad ←: As in Lemma 2.11 we show that X = int(cl(X)). ⊆: The same
as Lemma 2.11. ⊇: Let us have p ∈ int(cl(X)) then because X is open:
∀(q ≤ p)(q ∈ cl(X)) and therefore by Lemma 2.10: (∀q ≤ p)(X∩(←, q] 6= ∅).

2.6 Completion theorem

Definition 2.32. Let B be a Boolean algebra. We say that A ⊆ B is
a subalgebra of B if A is closed under operations in B.

Definition 2.33. We say that a complete Boolean algebra B is completion
of a Boolean algebra A and we write B = cm(A) if A is a dense subalgebra
of B.

Theorem 2.34. Let Q be a nonempty separative partially ordered set then
there exists a complete Boolean algebra B and function j : Q → B which
satisfies:

(i) j[Q] = {b ∈ B | ∃q ∈ Q(j(q) = b)} is dense in B.

(ii) j preserves ordering, i.e. if p ≤ q in Q if and only if j(p) ≤ j(q) in B.

6(←, q] = {p ∈ Q|p ≤ q}
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(iii) j preserves disjunction, i.e. if p⊥oq in Q if and only if j(p)⊥j(q) in B.

(iv) j is 1-1 function (which means that j is in fact an isomorphism from Q
onto j[Q]).

(v) algebra B is defined uniquely (up to isomorphism).

Proof. Let us consider a Boolean algebra B = B(RO(Q)), where Q stands
for a topology of lower subsets based on Q, and define j(q) = (←, q]. We
show that j is our desired function and B our desired BA.

First we show that for every q ∈ Q, j(q) is a regular open set and thus
j(q) ∈ B (i.e. the function j is properly defined). j(q) is obviously open thus
it is enough to show that (8) for j(q) holds. Direction → is easy. Direction
←: Suppose p /∈ j(p) thus p � q and because ordering on Q is separative,
there is z ≤ p such that z⊥oq and therefore j(q) = (←, q] ∩ (←, z] = ∅.

Ad (i): For all q ∈ Q: j(q) 6= 0. Let us have X ∈ B 6= 0 then there is some
p ∈ X. The result follows by (9), which says that for every p ∈ X: j(p) ⊆ X.

Ad (ii): Obvious.

Ad (iii): p⊥oq means by definition that there is no element z in Q such that
z ≤ p and z ≤ q ↔ (←, p]∩ (←, q] = ∅ ↔ j(p)∧ j(q) = 0 which by definition
means j(p)⊥j(q).

Ad (iv): Easy consequence of (ii).

Ad (v): Let C be an arbitrary Boolean algebra and mapping k : Q → C
satisfies conditions (i)-(iii). We show that (j[Q],≤B) ∼= (k[Q],≤C). We define
mapping m : j[Q] → k[Q] as follows: for all p ∈ j[Q]: m(p) = k(j−1(p)). It
is easy to verify that m is an isomorphism between dense subset of BA B
and dense subset of BA C and therefore by Theorem 2.30 BAs B and C are
isomorphic.

Corollary 2.35. 7 For every partially ordered set (P,≤) there is a complete
Boolean algebra B and mapping j : P → B such that:

(i) j[P] is dense in B.

(ii) if p ≤ q in P then j(p) ≤ j(q) in B.

(iii) p⊥oq in P if and only if j(p)⊥j(q) in B.

7This corollary can be found in [2],p. 206.
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(iv) B is unique up to isomorphism.

Proof. Consequence of Theorems 2.21 and 2.34.

Theorem 2.36. For every BA A there is a BA B such that B = cm(A).
This algebra B is defined uniquely (up to isomorphism).

Proof. Apply Theorem 2.34 on A+. We have obtained BA B such that
A+ is dense in B. We only need to verify that A is a subalgebra of B,
i.e. that A is closed under operations: Because for BA holds that (z ≤ x
and z ≤ y) ↔ z ≤ x ∧ y and (z ≤ x or z ≤ y) ↔ z ≤ x ∨ y we get
j(p) ∧ j(q) = j(p ∧ q), j(p) ∨ j(q) = j(p ∨ q).

To see that −j(p) = j(−p), we need to show that int(A+−(←, p]) = (←,−p].
⊇: Follows by fact that (←,−p] is an open subset of (A+ − (←, p]). ⊆: Let
us have q ∈ int(A+−(←, p]) then it follows that q � p. By (5) we get k ∈ A+

such that k ≤ q and k⊥op and therefore by (6) k⊥p and by (1) k ≤ −p.
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3 Completeness theorem for Boolean valued

predicate logic

Most of the statements in this section are from Handbook of Boolean al-
gebras, Volume 3, [4]. The general idea of the proofs in this section can
be found in [4], however we have decided to be more detailed with proofs,
which sometimes causes difficulties due to the complexity of the proofs.

3.1 Infinite operations on BAs

To go further we need some more information on Boolean algebras. We state
without proof some important properties concerning infinite subsets of BAs.
Fore more information and for proofs in this subsection see [1], chapter IV § 1.
Notation: If 〈ai|ı ∈ I〉 is a set of elements of BA B then:∨

i∈I

ai stands for
∨
{ai | i ∈ I} and∧

i∈I

ai stands for
∧
{ai | i ∈ I}

Fact 3.1 (Infinite distributive laws). If
∨

i∈I ai,
∧

i∈I ai and
∨

i∈J bi,∧
i∈J bi exists, then for every c ∈ B:

(i) c ∧
∨
ai =

∨
{c ∧ a1 | i ∈ I}

(ii) c ∨
∧
ai =

∧
{c ∨ a1 | i ∈ I}

(iii)
∨
i∈I
ai ∧

∨
j∈J

bj =
∨
{ai ∧ bj | i ∈ I, j ∈ J}

(iv)
∧
i∈I
ai ∨

∧
j∈J

bj =
∧
{ai ∨ bj | i ∈ I, j ∈ J}

Fact 3.2 (De Morgan laws). For a subset S of a Boolean algebra B:

−
∨

S =
∧
{−a | a ∈ S}

−
∧

S =
∨
{−a | a ∈ S}

3.2 Partition refinement

Moreover we again without proof introduce some properties of partitions
on BAs. Proofs can be found in [1], chapter IV § 2.
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Definition 3.3. Let P and P ′ be two partitions of some element b in Boolean
algebra B. We say P ′ is a refinement of P (or P ′ refines P ) if for every p′ ∈ P ′
there is p ∈ P such that p′ ≤ p.

Realize that if P ′ is a refinement of P then for every p′ ∈ P ′, there is a unique
element p ∈ P , which satisfies p′ ≤ p, and moreover for every p ∈ P :∨

{p′ ∈ P ′ | p′ ≤ p} = p. (10)

We speak of a common refinement if P refines the same time more than
one refinement. For every finite system of refinements there always exsists
a common refinement (This statement doesn’t hold for every infinite system).

3.3 Boolean valued models

In this section we introduce the notion of Boolean-valued models (from now
on we write only BV-model). To ease the reading we will use notation + to de-
note ∨ and · to denote ∧ in BAs, so we could easier distinguish between
operations on BAs and operations of predicate calculus.

So let L be first-order language, B be a complete Boolean algebra and M be
a set (universe of the model). We consider a function from M ×M into B,
we denote this function ‖x = y‖.

Now we describe several condition we want to be satisfied in BV-model.

Definition 3.4. The function ‖x = y‖ has to satisfy for every a, b, c ∈ M
following:

‖a = a‖ = 1

‖a = b‖ = ‖b = a‖ (A)

‖a = b‖ · ‖b = c‖ ≤ ‖a = c‖

For every n-ary predicate symbolR(x1, ..., xn) of language L let ‖R(x1, ..., xn)‖
be an n-ary function from Mn into B satisfying for each ai ∈ M , where
i = 1, ..., n, and every b ∈M :

‖ai = b‖ · ‖R(..., ai, ...)‖ ≤ ‖R(..., ai−1, b, ai+1, ...)‖ (B)

For every n-ary function symbol F (x1, ..., xn) of L we have a function
F :Mn →M such that for each ai ∈M , where i = 1, ..., n, and every b ∈M :

‖ai = b‖ ≤ ‖F (..., ai, ...) = F (..., ai−1, b, ai+1, ...)‖ (C)
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From (A)-(C) it follows that the binary relation ‖x = y‖ = 1 is a congruence
on M with respect to functions ‖R‖ and F . Thus we postulate:

if ‖a = b‖ = 1, then a = b (D)

Definition 3.5. A Boolean-valued model for L is

MB = 〈M, ‖x = y‖, ‖R(x1, ...xn)‖, ..., F, ..., c, ....〉

satisfying (A)-(D).

3.4 Boolean-valued semantics

Definition 3.6. Let MB be a BV-model and e : V AR → M an evaluation
function. We define the value of a term in model MB, tM [e] ∈M , as follows:

(i) if t = x, where x ∈ V AR8, then tM [e] = e(x).

(ii) if t1, ..., tn ∈ TERM9 and t = F (t1, ..., tn), then
tM [e] = F (t1, ..., tn)M [e] = F (tM1 [e], ..., tMn [e]).

Definition 3.7. Let MB be a BV-model and e : V AR → M an evaluation
function. We define Boolean-value of a formula ϕ(x1, ...xn) in model MB

under evaluation e, we write ‖ϕ(x1, ..., xn)‖[e], as follows:

(i) If ϕ is an atomic formula and t1, ..., tn ∈ TERM :

‖t1 = t2‖[e] = ‖tM1 [e] = tM2 [e]‖
‖R(t1, ..., tn)‖[e] = ‖R(tM1 [e], ..., tMn [e])‖

(ii) Boolean value of the logical connectives we define by:

‖¬ϕ‖[e] = −‖ϕ‖[e]
‖ϕ ∧ ψ‖[e] = ‖ϕ‖[e] · ‖ψ‖[e]
‖ϕ ∨ ψ‖[e] = ‖ϕ‖[e] + ‖ψ‖[e]

(iii) And for quantifiers:

‖∃xϕ‖[e] =
∨
a∈M

‖ϕ(x)‖[ex/a]

‖∀xϕ‖[e] =
∧
a∈M

‖ϕ(x)‖[ex/a]

8set of all variables.
9set of all terms.

25



We say a formula ϕ is satisfied in MB under evaluation e and we write
MB, e |= ϕ if ‖ϕ‖[e] = 1 in MB (if necessary we write ‖ϕ‖M [e] = 1). More-
over we say MB satisfies ϕ and write MB |= ϕ if ∀e(MB, e |= ϕ).

Lemma 3.8. If e is an evaluation on BV-model MB then for every formula
ϕ and a, b ∈M :

‖a = b‖ · ‖ϕ‖[ex/a] ≤ ‖ϕ‖[ex/b]

Proof. First by induction on a term t we show that for every t ∈ TERM :

‖a = b‖ ≤ ‖t[ex/a] = t[ex/b]‖

(i) If t = x then clearly:

‖a = b‖ ≤ ‖t[ex/a] = t[ex/b]‖

If t = z then:

‖a = b‖ ≤ ‖t[ex/a] = t[ex/b]‖ = ‖e(z) = e(z)‖ = 1

(ii) if t = F (t1, ..., tn) then:

‖a = b‖ ≤ ‖t1[ex/a] = t1[ex/b]‖ induction assumption

‖t1[ex/a] = t1[ex/b]‖ ≤
‖F (.., ti[e

x/a], ..) = F (t1[ex/b], .., ti[e
x/a], ..)‖ by (C) in Definition 3.4

After applying this procedure n-times we have:

‖a = b‖ ≤ ‖F (t1[ex/a], ..., tn[ex/a]) = F (t1[ex/b], ..., tn[ex/b])‖ =

‖t[ex/a] = t[ex/b]‖

Now we use induction on the complexity of the formula ϕ

(i) if ϕ = R(t1, ..., tn)
We have shown:

‖a = b‖ ≤ ‖t1[ex/a] = t1[ex/b]‖

and thus by (B):

‖a = b‖ · ‖R(.., ti[e
x/a], ..)‖ ≤ ‖R(t1[ex/b], .., ti[e

x/a], ..)‖

After applying this procedure n-times we get the result.
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(ii) for the connectives:

¬: By induction assumption, we have:

‖a = b‖ · ‖ϕ‖[ex/b] ≤ ‖ϕ‖[ex/a]↔
‖a = b‖ · ‖ϕ‖[ex/b] · ‖ϕ‖[ex/a] = ‖a = b‖ · ‖ϕ‖[ex/b]

And thus we can easily argue that:

‖a = b‖ · −‖ϕ‖[ex/a] · ‖ϕ‖[ex/b] = 0

Which is by (1), what we wanted.

∧: By induction assumption we have:

‖a = b‖ · ‖ϕ‖[ex/a] ≤ ‖ϕ‖[ex/b]
‖a = b‖ · ‖ψ‖[ex/a] ≤ ‖ψ‖[ex/b]

The result is then obtained using monotonicity10 of ∧ in BAs.

∨: Similar, only uses monotonicity of ∨.

(iii) for the quantifiers:

ϕ = ∃zψ(z) and z 6= x by induction assumption for all c ∈M :

‖a = b‖ · ‖ψ(z)‖[ez/c,x /a] ≤ ‖ψ(z)‖[ez/c,x /b]

The result follows easily by Fact 3.1.

3.5 Full Boolean-valued models

Definition 3.9. We say the BV-model MB is full if for every partition P of 1
in B and every function f :P →M there is an element a ∈M such that for all
p ∈ P : p ≤ ‖a = f(p)‖.

This element is unique. Suppose there are two such elements a and a′, then
for all p ∈ P : p ≤ ‖a = f(p)‖·‖a′ = f(p)‖ ≤ ‖a = a′‖ and therefore ‖a = a′‖
is an upper bound of P and hence ‖a = a′‖ = 1.

We shall use formal notation:

a =
∨
p∈P

f(p) · p (11)

10See [1], p. 329.
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Proposition 3.10. If MB is full then for every formula ϕ(x, x1, ...xn) and ev-
ery evaluation e there exists a ∈M such that:

‖ϕ(x, x1, ...xn)‖[ex/a] = ‖∃zϕ(z, x1, ...xn)‖[e] (12)

Proof. Obviously ‖ϕ(x, x1, ...xn)‖[ex/a] ≤ ‖∃zϕ(z, x1, ...xn)‖[e], we now show
the other inequality.

We define function f :B+ →M such that ∀p ∈ B+:

f(p) = some b ∈M such that p ≤ ‖ϕ(x, x1, ...xn)‖[ex/b] if such a b exists.

f(p) is undefined. otherwise.

Now we consider arbitrary maximal antichain P on Dom(f), Dom(f) is
empty only if ‖∃zϕ(z, x1, ...xn)‖[e] = 0 and in this case every a ∈ M will
work. In the other case by maximality principle such an antichain always
exists.

We show that P is partition of ‖∃zϕ(z, x1, ...xn)‖[e]. By definition P is an an-
tichain and 0 /∈ P . We only need to verify that

∨
P = ‖∃zϕ(z, x1, ...xn)‖[e].

For every p ∈ P : p ≤ ‖ϕ(x, x1, ...xn)‖[ex/f(p)] ≤ ‖∃zϕ(z, x1, ...xn)‖[e]
and thus ‖∃zϕ(z, x1, ...xn)‖[e] is an upper bound of P . To see it is also
the least upper bound let us have A ∈ B, which is an upper bound of P .
For contradiction suppose ‖∃zϕ(z, x1, ...xn)‖[e] � A then by (1) there is
q ∈ B:

‖∃zϕ(z, x1, ...xn)‖[e] · −A = q and q 6= 0 (13)

By Lemma 2.27 , by definition of Boolean value and because
0 6= q ≤ ‖∃zϕ(z, x1, ...xn)‖[e], there is b ∈M and r ∈ Dom(f):

‖ϕ(x, x1, ...xn)‖[ex/b] · q = r and r 6= 0 (14)

Now we argue that r ≤
∨
P a thus we show that r ≤ A, which causes contra-

diction because by (13) and (14) r ≤ q ≤ −A, however r 6= 0. So let us sup-
pose that r �

∨
P , by (5) considering B+ we get s ∈ B: s ≤ r and s⊥o

∨
P .

It follows that for every p ∈ P : s · p = 0 and because s ∈ Dom(f) we have
contradiction with maximality of P .

Because MB is full we can fix a =
∨

p∈P f(p) · p and show that (12) holds.
Direction ≤ is obvious. Ad ≥: For all p ∈ P :

p ≤ ‖ϕ(x, x1, ...xn)‖[ex/f(p)]

p ≤ ‖f(p) = a‖

28



and thus

p ≤ ‖ϕ(x, x1, ...xn)‖[ex/f(p)] · ‖f(p) = a‖

and therefore by Lemma 3.8

p ≤ ‖ϕ(x, x1, ...xn)‖[ex/a]

‖ϕ(x, x1, ...xn)‖[ex/a] is therefore an upper bound of P and hence
‖∃zϕ(z, x1, ...xn)‖[e] ≤ ‖ϕ(x, x1, ...xn)‖[ex/a]. However we didn’t use the prop-
erty of a full model correctly, but realize that with every partition P ′ such
that P ⊆ P ′ and

∨
P ′ = 1 (for example P ′ = P ∪ {1 −

∨
P}) and with ar-

bitrary expansion of function f , the proof proceeds the same way.

Let MB be a BV-model, we will now describe a construction of BV-model
NB based on MB. NB will be full and will satisfy other important proper-
ties, of which we will speak later.

Definition 3.11. Definition of the structure NB:

(N) We define N as a set of all formal expressions:

a =
∨
p∈P

p · f(p),

where P is a partition of 1 in B and f : P →M is a function.

(R) For every n-ary predicate symbol R(x1, ..., xn), and every a1, ..., an ∈ N
we define:

‖R(a1, ..., an)‖N =∨
{‖R(f1(p1), ..., fn(pn))‖M · p1 · ... · pn | p1 ∈ P1, ..., pn ∈ Pn},

where every ai is of a formal form
∨

pi∈Pi
pi · fi(pi). This definition also

covers the definition of ‖x = y‖N .

(F) For every n-ary function symbol F (x1, ..., xn), and every a1, ..., an ∈ N
we define:
Let P be a common refinement of all partition on which are a1, ...an
based. We extend each fi so that P = dom(fi) as follows: for all p ∈ P :
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fi(p) = fi(b) for the unique b ∈ Pi, such that p ≤ b. Then we define
f : P →M : f(p) = F (f1(p), ..., fn(p))M and finally:

F (a1, ..., an)N = a =
∨
p∈P

p · f(p).

For a constant c we define cN =
∨

p∈P p · f(p), where P = {1}
and f(1) = c.

We will write pi ∈ Pi as a shortcut for p1 ∈ P1, ..., pn ∈ Pn; āi as a shortcut
for a1, ..., an; fi(pi) as a shortcut for f1(p1), ..., fn(pn) and

∧
pi as a shortcut

for p1 · p2 · ... · pn.

Lemma 3.12. NB is BV-model.

Proof. we need to verify conditions (A)-(C) from the definition 3.4. So let
us have a, a1, ..., an ∈ N .

(A) (a) ‖a1 = a1‖N =∨
{‖f1(p1) = f1(p′1)‖M · p1 · p′1 | p1 ∈ P1, p

′
1 ∈ P1} =∗∨

{‖f1(p) = f1(p)‖M · p | p ∈ P1} =
∨
{p | p ∈ P1} = 1

ad (*) if p1 6= p′1 then p1 ∧ p′1 = 0

(b) ‖a1 = a2‖N · ‖a2 = a3‖N =∗∨
{‖f1(p1) = f2(p2)‖M · ‖f2(p2) = f3(p3)‖M · p1 · p2 · p3 | p1 ∈

P1...} ≤∗1
∨
{‖f1(p1) = f3(p3)‖M · p1 · p3 | p1 ∈ P1, p3 ∈ P3 }

ad (*) by Fact 3.1 (iii) and the reason why we didn’t use p′2 is
the same as in (a).
ad (*1) it is obvious that the later expression is an upper bound
of the previous one.

(c) ‖a1 = a2‖N = ‖a2 = a1‖N similar.

(B) ‖a = a1‖N · ‖R(āi)‖N =∗∨
{‖f(p) = f(p′1)‖M · ‖R(fi(pi))‖M · p · p′1 ·

∧
pi | p ∈ P, p′1 ∈ P1, pi ∈

Pi} ≤∗1∨
{‖R(f(p), fi(pi)‖M · p ·

∧
2≤i≤n

pi | p ∈ P, pi ∈ Pi for 2 ≤ i ≤ n} =

‖R(a, a2, . . . , an)‖N

ad (*) by Fact 3.1 (iii)
ad (*1) The later expression is an upper bound of the previous.
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(C) We want to show that ‖a = a1‖N ≤ ‖F (a, a2, . . . , an) = F (āi)‖N , thus
by definition 3.11 (F):

F (a, a2, . . . , an)N =
∨

p′∈P ′
p′ · f ′(p′) and

F (āi)N =
∨

p′′∈P ′′
p′′ · f ′′(p′′),

where f ′(p′) = F (f(p′), f2(p′), ..., fn(p′)) and f ′′(p′′) = F (f1(p′′), ..., fn(p′′))
and P ′ and P ′′ are partitions by definition.
By definition of ‖x = y‖N :

‖a = a1‖N =
∨
{‖f(p) = f1(p1)‖M · p · p1 | p ∈ P, p1 ∈ P1} and

‖F (a, a2, . . . , an) = F (āi)‖N =∨
{‖f ′(p′) = f ′′(p′′)‖M · p′ · p′′ | p′ ∈ P ′, p′′ ∈ P ′′}.

We show that for every p ∈ P and p1 ∈ P1:
‖f(p) = f1(p1)‖M · p · p1 ≤ ‖F (a, a2, . . . , an) = F (āi)‖N .

By definition for every p′ ≤ p: f(p′) = f(p) and for every p′′ ≤ p1:
f1(p′′) = f1(p1) and thus by definition 3.4 (C):

F (f(p′), f2(p′), ..., fn(p′)) = F (f(p), f2(p′), ..., fn(p′))

F (f1(p′′), ..., fn(p′′)) = F (f1(p1), ..., fn(p′′))

for every p′ ≤ p and p′′ ≤ p1 such that p′⊥p′′ 6= 0:

‖f(p) = f1(p1)‖M ≤
‖F (f(p), f2(p′), ..., fn(p′)) = F (f1(p1), ..., fn(p′′)))‖M =

‖f ′(p′) = f ′′(p′′)‖M

Realize that the condition p′⊥p′′ 6= 0 causes that every fi(p
′) = fi(p

′′).

Moreover by (10) because P ′ is a refinement of P and P ′′ of P1:∨
{p′ ∈ P ′|p′ ≤ p} = p and the same for P1. And therefore by Fact 3.1

we can conclude:

‖f(p) = f(p1)‖M · p · p1 ≤∨
{‖f ′(p′) = f ′′(p′′)‖M · p′ · p′′ | p′ ∈ P ′, p′′ ∈ P ′′, p′ ≤ p, p′′ ≤ p1} ≤
‖F (a, a2, . . . , an) = F (āi)‖N
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Lemma 3.13. NB is full.

Proof. Let us consider an arbitrary partition P of 1 in B and an arbitrary
function f :P → N . We will find a ∈ N =

∨
p′∈P ′ p′ · f ′(p′) such that for each

p ∈ P : p ≤ ‖a = f(p)‖N .

We denote the partition of every formal expression f(p) as Pf(p) and define
P ′ = {p · q 6= 0 | p ∈ P, q ∈ Pf(p)}.

Obviously 0 /∈ P ′ and for every p1, p2 ∈ P ′ such that p1 6= p2 holds p1 ·p2 = 0.
Moreover for all p ∈ P holds:∨

{p · q | q ∈ Pf(p)} = p, (15)

because by Fact 3.1 and by (10):
∨
{p · q | q ∈ Pf(p)} = p ·

∨
{q | q ∈ Pf(p)} =

p · 1 = p. This means that
∨
P ′ is an upper bound of P and thus

∨
P ′ = 1.

We have shown that P ′ is a partition of 1 in B.

We define f ′:P ′ → M , but first we introduce notation: for every p ∈ P
the value of f(p) we will denote as

∨
q∈Pf(p)

q · ff(p)(q). It is easy to verify

that for each p′ ∈ P ′ there is a unique p ∈ P such that p′ ≤ p and a unique
q ∈ Pf(p) such that p′ ≤ q, thus we define f ′(p′) = ff(p)(q).

To see that a =
∨

p′∈P ′ p′ · f ′(p′) is our desired element let us have p ∈ P .
From the definition we have:

‖a = f(p)‖N =
∨
{‖f ′(p′) = ff(p)(q)‖M · p′ · q | p′ ∈ P ′, q ∈ Pf(p))}

If we consider p′ such that p′ ≤ p and q ∈ Pf(p) such that p′ ≤ q then
f ′(p′) = ff(p)(q) and p′ · q = p′, therefore ‖f ′(p′) = ff(p)(q)‖M · p′ · q = p′.
The set of all such a p′s is equal with the set in (15), thus we can conclude
that p ≤ ‖a = f(p)‖N .

(R) in definition 3.11 can extended to all formulas in following way:

Lemma 3.14. For every formula ϕ with free variables among x1, ..., xn
and for every a1, ..., an ∈ N holds:

‖ϕ‖N [e x̄i/āi ] =
∨
{‖ϕ‖M [e x̄i/fi(pi)] ·

∧
pi | pi ∈ Pi}, (16)

where ai =
∨

pi∈Pi
pi · fi(pi).

Proof. To ease the reading, without loss of generality, we consider only 2-ary
predicate a function symbols.
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First we show that for every term t with free variables among x1, ..., xn
and for every elements a1, ..., an ∈ N holds:

If tN [e x̄i/āi ] =
∨
p∈P

p · f(p), then for all p ∈ P :

f(p) = tM [e x̄i/fi(pi)], (17)

where for all i such that xi is free in t: pi is the unique element in Pi such
that p ≤ pi (such a pi always exists, because P is a refinement of each Pi,
by definition 3.11 (F)), the others pi’s are arbitrary. We will verify this using
induction on the complexity of term t.

(i) Let t = x1 then tN [e x̄i/āi ] = a1 =
∨

p1∈P1

p1 · f1(p1) and trivially

f(p1) = tM [e x̄i/fi(pi)].

The case t = c, where c is a constant, is obvious by definition 3.11 (F).

(ii) If t = F (t1, t2) and tN [e x̄i/āi ] =
∨

p∈P p · f(p)
Let us have p ∈ P then (each pi ∈ Pi is the unique element such that
p ≤ pi )

f(p) =∗ F (ft1(p), ft2(p)) =∗1

F (ft1(pt1), ft2(pt2)) =∗2

F (tM1 [e x̄i/fi(pi)], t
M
2 [e x̄i/fi(pi)]) =

tM [e x̄i/fi(pi)]

ad (*) tNi [e x̄i/āi ] =
∨

pti∈Pti

pti · fti(pti), thus the result follows by defini-

tion 3.11 (F).
ad (*1)By definition 3.11 (C), there are elements pt1 ∈ Pt1 and pt2 ∈ Pt2

such that p ≤ pt2 and p ≤ pt2 , for these elements holds: ft1(p) = ft1(pt1)
and ft2(p) = ft2(pt2).
ad (*2) By induction assumption.

Now we verify (16) using induction on the complexity of formula ϕ.

(i) ϕ = R(t, s)
Let us denote the value of the term t, tN [e x̄i/āi ], as

∨
pt∈Pt

pt · ft(pt)
and the value of the term s, sN [e x̄i/āi ], as

∨
ps∈Ps

ps · fs(ps), then
by definition 3.11 (R):

‖R(t, s)‖N [e x̄i/āi ] =
∨
{‖R(ft(pt), fs(ps))‖M · pt · ps | pt ∈ Pt, ps ∈ Ps}
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We want to show that:∨
{‖R(ft(pt), fs(ps))‖M · pt · ps | pt ∈ Pt, ps ∈ Ps} =∨
{‖R(t, s)‖M [e x̄i/fi(pi)] ·

∧
pi | pi ∈ Pi}.

≤: by (17) for every pt and ps:

ft(pt) = tM [e x̄i/fi(pi)] (18)

fs(ps) = sM [e x̄i/fi(pi)], (19)

where for every i such that xi is in t: pi is the unique element in Pi

(partition of ai) such that pt ≤ pi (other pi’s are arbitrary) and the same
holds for term s.

Realize that the set of pi’s in (18) and (19) can be different. So let us use
notation:(pi)t and (pi)s, however we will now show that in important
cases (pt · ps 6= 0) they can be considered the same. Suppose that
(pi)t 6= (pi)s, this can happen only in three cases. First: xi is not
free in one of terms s, t, without loss of generality, suppose it is not
free in s, then (pi)s is arbitrary and thus we can choose it to be (pi)t.
Second: xi is not free in t and also not free in s, thus we can choose
arbitrary pi ∈ Pi and say pi = (pi)s = (pi)t. Third: xi is free in both
terms, and (pi)t 6= (pi)s, however this is only possible when pt · ps = 0.
Therefore if pt ·ps 6= 0, we can get common set of pi’s as in (18) and (19).

If pt · ps 6= 0, then by (18) and (19):

‖R(ft(pt), fs(ps))‖M = ‖R(t, s)‖M [e x̄i/fi(pi)].

Moreover pt · ps ≤
∧
pi

11, however this holds only when we count those
pi’s such that xi is either in t or s, but if xi is not in either of these
terms, then xi is not free in R(t,s) and the value ‖R(t, s)‖M [e x̄i/fi(pi)]

does not depend on pi we choose thus by (10) we can conclude that:

‖R(ft(pt), fs(ps))‖M ·pt ·ps ≤
∨
{‖R(t, s)‖M [e x̄i/fi(pi)] ·

∧
pi | pi ∈ Pi}.

≥: The other inequality is very similar.

(ii) ϕ = ¬ψ

‖ϕ‖N [e x̄i/āi ] = −‖ψ‖N [e x̄i/āi ] = by definition

−
∨
{‖ψ‖M [e x̄i/fi(pi)] ·

∧
pi | pi ∈ Pi} by induction assumption

11Follows by monotonicity of ∧, see [1], p. 329.
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We want: ‖ϕ‖N [e x̄i/āi ] =
∨
{‖¬ψ‖M [e x̄i/fi(pi)] ·

∧
pi | pi ∈ Pi}

Let us denote A =
∨
{‖ψ‖M [e x̄i/fi(pi)] ·

∧
pi | pi ∈ Pi} and

B =
∨
{‖¬ψ‖M [e x̄i/fi(pi)] ·

∧
pi | pi ∈ Pi}.

Because A · B = 0 and A + B = 1, we can conclude that B is a com-
plement of A, i.e. −A = B.12

∧: follows easily by Fact 3.1.
∨: follows by infinite associativity laws.13

(iii) ϕ = ∃xψ

‖∃xψ‖N [e x̄i/āi ] =∗∨
{‖ψ‖N [e x̄i/āi ,

x /a] | a ∈ N} =∗1∨
a∈N

∨
{‖ψ‖M [e x̄i/fi(pi),

x /f(pa)] ·
∧

pi · pa | pi ∈ Pi, pa ∈ Pa} =∗2∨
{‖ψ‖M [e x̄i/fi(pi),

x /a] ·
∧

pi | pi ∈ Pi, a ∈M} =∗3∨
{(

∨
a∈M

‖ψ‖M [e x̄i/fi(pi),
x /a]) ·

∧
pi | pi ∈ Pi} =∗∨

{‖∃xψ‖M [e x̄i/fi(pi)] ·
∧

pi | pi ∈ Pi}

(*) By definition.
(*1) By induction assumption.
(*2) Obvious.
(*3) By Fact 3.1.

Theorem 3.15. Every BV-model MB can be embedded in a full BV-model
NB such that for all ϕ and all evaluation e on MB, there is an evaluation
ẽ on NB such that:

‖ϕ‖M [e] = ‖ϕ‖N [ẽ], (20)

moreover for every ϕ:

if MB |= ϕ then NB |= ϕ. (21)

12See [1], p. 328.
13See [1], p. 330.
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Proof. Let us consider model NB, described by (N), (R) and (F) in defini-
tion 3.11, by Lemmas 3.12, 3.13 we know that NB is a full BV-model.

Definition of evaluation ẽ: ẽ is an evaluation on NB corresponding to eval-
uation e, i.e. for every variable x if e(x) = a then ẽ(x) = aN , where
aN =

∨
p∈P p · f(p) and P = {1} and f(1) = a.

First we show by induction on the complexity of term t that for every term
t and evaluation e on MB:

if tM [e] = a then tN [ẽ] = aN (22)

(i) t = x then tM [e] = e(x) = a and tN [ẽ] = ẽ(x) = aN .
t = c, c is a constant, then tM [e] = c and by definition 3.11 (F)
tN [ẽ] = cN .

(ii) t = F (t1, ..., tn) then for all i: tMi [e] = bi and by induction assumption
tNi [ẽ] = biN =

∨
pi∈{1} pi · fi(pi), where fi(1) = bi. Therefore it follows

that tM [e] = F (b1, ..., bn). By definition (F) tN [ẽ] =
∨

p∈P p · f(p),
where P = {1} and f(1) = F (f1(1), ..., fn(1)) = F (b1, ..., bn), therefore
tN [ẽ] = F (b1, ..., bn)N .

(20) we prove by induction on the complexity of formula ϕ.

(i) ϕ = R(t1, ..., tn). Let us have an evaluation e on MB, then
‖R(t1, ..., tn)‖M [e] = ‖R(tM1 [e], ..., tMn [e])‖M = ‖R(a1, ..., an)‖M =∗

‖R(f1(1), ...fn(1))‖M = ‖R(t1, ..., tn)‖N [ẽ]
ad (*) consequence of (22) and that tMi [e] = ai.

(ii) For connectives:

¬: ‖¬ψ‖M [e] = −‖ψ‖M [e] =∗ −‖ψ‖N [e] = ‖¬ψ‖N [ẽ].
(*) by induction assumption.

∧: ‖ψ1 ∧ ψ2‖M [e] = ‖ψ1‖M [e] · ‖ψ2‖M [e] =∗ ‖ψ1‖N [ẽ] · ‖ψ2‖N [ẽ] =
‖ψ1 ∧ ψ2‖N [ẽ]
(*) by induction assumption.

∨: similar.

(iii) For quantifiers:
ϕ = ∃xψ, obviously by induction assumption:∨
{‖ψ‖M [e x/a] | a ∈M} = ‖ϕ‖M [e] ≤ ‖ϕ‖N [ẽ] =∨
{‖ψ‖N [ẽ x/a] | a ∈ N}
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The other inequality is an easy consequence of Lemma 3.14. Realize
that Lemma 3.14 says:

‖ψ‖N [ẽ x/a] =
∨
{‖ψ‖M [e x/f(p)] · p | p ∈ P}

(21) follows easily by (20) and by Lemma 3.14.

3.6 Ultrafilters

Definition 3.16. Let B be a Boolean algebra. We say F ⊆ B is filter on B
if it satisfies for all a, b ∈ B:

(i) 1 ∈ F .

(ii) If a ∈ F and a ≤ b, then b ∈ F .

(iii) If a, b ∈ F , then a · b ∈ F .

Moreover we say it is a proper filter if 0 /∈ X.

Definition 3.17. We say a subset X of Boolean algebra B has the finite
intersection property, FIP , if for every finite S ⊆ X:

∧
S 6= 0.

Definition 3.18. We call the proper filter F on BA B:

(i) maximal if every for filter F ′ such that F  F ′ holds that 0 ∈ F ′.

(ii) an ultrafilter if for each a ∈ B either a ∈ F , or −a ∈ F .

(iii) prime if every a, b ∈ B: a+ b ∈ F ↔ a ∈ F or b ∈ F .

Fact 3.19. For every proper filter F on Boolean algebra B the following is
equivalent:

(i) F is maximal.

(ii) F is an ultrafilter.

(iii) F is prime.

Theorem 3.20 (Boolean prime ideal theorem, BPI). For every X ⊆ B
with FIP there is an ultrafilter F such that X ⊆ F .

Proof. Omitted, see for example [5].

37



With the notion of ultrafilters we can for a given BV-model MB and for an ul-
trafilter G on B construct the quotient M/G, a two-valued model. The uni-
verse of M/G is the quotient of M by equivalence relation ‖x = y‖ ∈ G

Functions are interpreted as

F ([a1], ..., [an])M/G = [F (a1, ..., an)M ]

and for the predicates

R([a1], ..., [an]) iff ‖R(a1, ..., an)‖ ∈ G. (23)

Theorem 3.21. Let MB be a full BV-model and let G be an ultrafilter on B.
For every formula ϕ and every evaluation e on MB and its corresponding
evaluation e′ on M/G holds:

M/G |= ϕ[e′] iff ‖ϕ‖[e] ∈ G. (24)

Proof. It is easy to verify that for for every term t:

tM/G[e′] = [tM [e]] (25)

Now again by induction on the complexity of formula ϕ we show (24)

(i) ϕ = R(t1, ..., tn).

M/G |= ϕ[e′] iff R(t
M/G
1 [e′], ..., tM/G

n [e′])

iff R([tM1 [e]], ..., [tMn [e]]) by (25)

iff ‖R(tM1 [e], ..., tMn [e])‖ ∈ G by (23)

iff ‖R(t1, ..., tn)‖[e] ∈ G.

(ii) ϕ = ¬ψ

M/G |= ϕ[e′] iff M/G 2 ψ[e′]

iff ‖ψ‖[e] /∈ G induction assumption

iff ‖ϕ‖[e] ∈ G property of an ultrafilter

ϕ = ψ1 ∧ ψ2

M/G |= ϕ[e′] iff M/G |= ψ1[e′] and M/G |= ψ2[e′]

iff ‖ψ1‖[e] ∈ G and ‖ψ2‖[e] ∈ G ind. assumption

iff ‖ψ1‖[e] · ‖ψ2‖[e] ∈ G property of a filter

iff ‖ψ1 ∧ ψ2‖[e]

ϕ = ψ1 ∨ ψ2

Similar (uses the property of a prime filter).
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(iii) ϕ = ∃xψ(x)

M/G |= ϕ[e′] iff ∃a ∈M M/G |= ψ(x)[e′x/[a]]

iff ∃a ∈M ‖ψ(x)‖[ex/a] ∈ G induction assumption

iff ‖∃xψ(x)‖[e] ∈ G because MB is full

Corollary 3.22. If MB |= ϕ then for every ultrafilter G on B:

M/G |= ϕ.

Proof. Easy consequence of Theorem 3.21.

3.7 Completeness Theorem

Definition 3.23. Let B be a complete Boolean algebra and Γ be a set
of sentences in language L and ϕ formula in L. We say ϕ is a consequence
of Γ (or Γ implies ϕ) and write Γ |=B ϕ if

∀MB(∀γ ∈ Γ(MB |= γ)→MB |= ϕ)

i.e. if every BV-model over BA B, which satisfies every formula in Γ, also
satisfies ϕ.

Theorem 3.24. Let B be a complete Boolean algebra. Let Γ be a set
of sentences in language L and ϕ formula in L, then

Γ |=B ϕ↔ Γ ` ϕ

Proof. ←: Γ ` ϕ and for contradiction suppose Γ 2B ϕ, then by definition
there is a model MB such that ∀γ ∈ Γ(MB |= γ) and there is an eval-
uation e such that MB, e 2 ϕ.

By Theorem 3.15 there is a full BV-model NB such that
∀γ ∈ Γ(NB |= γ) and NB, e 2 ϕ. Because ‖ϕ‖N [e] 6= 1, it follows
that ‖¬ϕ‖N [e] 6= 0. So let G be an ultrafilter on the complete BA B
such that ‖¬ϕ‖N [e] ∈ G (such an ultrafilter exists by BPI, Fact 3.20).

Now we consider the two-valued quotient model N/G. By Corol-
lary 3.22 it follows that: ∀γ ∈ Γ(N/G |= γ) and moreover by Theo-
rem 3.21: N/G |= ¬ϕ[e′] which is equivalent to N/G 2 ϕ[e′] and there-
fore N/G 2 ϕ.
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We have show that Γ 2 ϕ, which contradicts completeness theorem
for standard two-valued predicate logic14.

→ We will show that if Γ |=B ϕ then also Γ |= ϕ. So let M be a two-valued
model such that all formulas from Γ are satisfied in M , we show that
M |= ϕ.

We define a BV-model NB as follows: M is the universe of NB, function
symbols are interpreted as in M. For predicate symbols:

If a = b in M , then ‖a = b‖ = 1 otherwise ‖a = b‖ = 0.
R(a1, ...) in M , then ‖R(a1, ...)‖ = 1 otherwise ‖R(a1, ...)‖ = 0.

It is easy to verify by use of induction that NB is a BV-model and that
for every evaluation e on M (realize that models M and NB have
the same evaluations) and every ϕ:

M |= ϕ[e]↔ NB, e |= ϕ.

This means that NB satisfies all formulas in Γ and therefore it also
satisfies ϕ, thus we conclude M |= ϕ.

3.8 Alternative proofs of the two-valued completeness

In this subsection we will introduce an interesting application of ultrafilters
on BAs and of quotient models. We will show an alternative proof of the com-
pleteness theorem for two-valued first-order predicate calculus. However we
do not have enough space to be entirely thorough on this very interesting
topic, we only show some general ideas.

The standard way how to prove the completeness theorem for two-valued
semantics is to construct the maximally consistent theory for the Henkin ex-
tension of a consistent theory T and then to construct a model with universe
consisting of closed terms of language L. We show different approach using
similar construction as in Theorem 3.21.

We need the notion of Lindenbaum-Tarski algebras15, here we only recall its
universe. So let T be a theory in language L, then

B(T ) = {[ϕ] |ϕ is a formula in L}, (26)

14For proof see: [3] or [6].
15for the definition see for example [5], p. 17.
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where [ϕ] is an equivalence class defined by relation T ` ϕ ↔ ψ. Moreover
realize that ϕ does not need to be a sentence.

Fact 3.25. Let T be a first-order theory of language L and let ϕ(x, x0, ...)
be a formula in L. Denote

Mϕ = {[ϕ(t, x0, ...)] | t is a term in L},

where ϕ(t, x0, ...) denotes the formula created by substitution of t for x
(and renaming other variables if necessary). Then∨

Mϕ = [∃xϕ(x, x0, ...)] and
∧

Mϕ = [∀xϕ(x, x0, ...)]

Proof. See [5] p. 19.

From Rasiowa-Sikorski theorem16 and from the previous fact, it follows that
if L is at most countable then any subset F of B(T ) with FIP can be extended
to an ultrafilter U such that U preserves quantified formulas, i.e if [∃xϕ] ∈ U ,
then there is a term t such that [ϕ[x/t]] ∈ U (and equivalently for ∀).

Now we have everything we need. So let T be a consistent theory in at most
countable L. It is obvious that the set F , containing equivalence classes
of every formula ϕ in T , has FIP in B(T ), therefore we can get a Rasiowa-
Sikorski ultrafiler U , such that F ⊆ U .

Based on this ultrafilter we can define an universe of a model.

M = {[t]U | t is a term in L},

where [t]U is an equivalence class based on relation [t = s] ∈ U ,
i.e. [t]U = {s ∈ TERM | [t = s] ∈ U}. Realize we range over all terms
(not only the closed ones), this fact allows us to omit the Henkin extension.
The definition of function symbols and predicate symbols is then obvious
and it is not very difficult to verify that M is a model of T .

Remark 3.26. The obstacle with the limit for the cardinality of the language
L can be easily overcome. For example by use of ultraproducts17, compact-
ness18 can be proven. Because every finite subset of T contains only finite
amount of non-logical symbols symbols, by Rasiowa-Sikorski it has a model.
The result then follows by compactness.

16see [7], p. 35.
17See [8], p. 40.
18If every finite subset of a theory T has a model, then also T has a model.
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Observation 3.27. What we did here can actually be equivalently described
within BV-valued theory. The construction is almost identical. For a universe
of a model we can take all terms in laguage L a define BV-model MB(T )

(the definition of functions a predicates is obvious). Because of the Fact 3.25,
we do not have a problem with the fact that B(T ) does not necessarily have
to be complete. By Rasiowa-Sikorski, (if L is at most countable) we can
easily alter the Theorem 3.21 (the only difference is in (iii)) and thus get
the quotient, two-valued model of T .

We can also prove completeness without Rasiowa-Sikorski and moreover
for an arbitrary language.

Observation 3.28. Let L be a language of arbitrary cardinality. We use
Theorem 2.36 to construct a BV-modelM cm(B(T )), where cm(B(T )) is the com-
pletion of B(T ). Realize that because B(T ) is a dense subset of cm(B(T )),
we can define the BV-model the same way as in Observation 3.27 (i.e. using
only the element of B(T )). Then we can by Theorems 3.15 and 3.21 construct
a two-valued model of T .
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4 Conclusion

We had two goals. First was to prove the completion theorem for BAs (The-
orem 2.36), which we have successfully proven in Section 2. The second goal
was to prove generalized completeness theorem for the first-order predicate
logic with respect to all complete Boolean algebras (Theorem 3.24), which
we have also successfully proven in Section 3.

With the first task, proving of the completion theorem for BAs (Section 2),
we proceeded similarly as Balcar and Štěpánek,[1]. Yet there is one important
difference between the approach of Balcar and Štěpánek in [1] and the ap-
proach used in this thesis. This difference can be found in Theorem 2.21
and Corollary 2.35, which were inspired by Jech, [2]. Moreover we decided
to put more emphasis on the proofs than in [1]. Many Lemmas and other
statements can not be found in [1] and are products of the author of this
thesis.

In the second task, proving of the generalized completeness theorem (Theo-
rem 3.24), we used the definition of Boolean-valued models and the definition
of the Boolean-valued semantics from the Handbook of Boolean algebras,
vol.3, [4]. In proving of completeness theorem for Boolean algebra {0, 1},
the more difficult direction is completeness (Γ |= ϕ, then Γ ` ϕ). How-
ever in the proof of the generalized completeness, when we already suppose
the completeness for BA {0, 1} , the more difficult direction was the one
usually referred to as correctness (Γ ` ϕ, then Γ |= ϕ), as one can see
in Theorem 3.24. To prove correctness we decided to use the notion of full
BV-models, ultrafilters and quotient models (this idea is also inspired by [4]).
Nevertheless one can ask if we could use similar approach as we use in proving
of correctness for BA {0, 1}. And the answer is yes, the straightforward way
(proof by induction on the length of the proof) is here also possible, however
as we said, we decided on different, much more interesting, approach. Most
of the Proofs necessary for this theorem can be found in [4], however proofs
in [4] are usually dealing only with unary predicate symbols, for the purpose
of this work we extended these proofs to all predicate symbols and moreover
to all function symbols and constants.

At the end of this thesis have also shown one valuable application of the ul-
trafilters and of the quotient models, we have described how to use those
notions in prooving of the completeness theorem for BA {0,1}.

This work is supposed to help its author to continue in this field of set theory
and logic with aim to proceed to forcing.
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