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Abstrakt: Po odvozeńı metody sdružených gradient̊u (CG) a krátkém přehledu
souvislost́ı s daľśımi oblastmi matematiky se práce zaměřuje na konvergenčńı
chováńı v přesné aritmetice i v aritmetice s konečnou přesnot́ı. Podrobně je
popsán principiálńı rozd́ıl mezi CG a Čebyševovou semi-iteračńı metodou a je
diskutována praktická využitelnost široce rozš́ı̌reného lineárńıho odhadu založe-
ného na vlastnostech Čebyševových polynomů. Na př́ıkladu odhad̊u rychlosti
konvergence založených na složených polynomech je ukázána nutnost zahrnut́ı
vlivu zaokrouhlovaćıch chyb do jakýchkoli úvah o rychlosti konvergence metody
CG, které maj́ı být využitelné v praktických výpočtech. Bĺızkost navzájem si
odpov́ıdaj́ıćıch CG aproximaćı vzniklých ve výpočtech v aritmetice s konečnou
přesnost́ı a v přesné aritmetice je studována porovnáńım jejich trajektoríı. Práce
je zakončena diskuźı problémů spojených s citlivost́ı Gauss-Christoffelovy kvadra-
tury, jež s metodou CG úzce souviśı. Na posledńı dvě témata může být navázáno
v daľśı práci.
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metic. Fundamental difference between the CG and the Chebyshev semi-iterative
method is described in detail. Then we investigate the use of the widespread lin-
ear convergence bound based on Chebyshev polynomials. Through the example
of the composite polynomial convergence bounds it is showed that the effects of
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Introduction

Krylov subspace methods for iteratively solving large and sparse linear algebraic
systems and eigenvalue problems are widely used in the matrix computations and
they are counted among the “Top 10 Algotihms” of the 20th century [5, 6]. They
can be considered as the projection methods [28] where the approximate solution
is found in the sequence of nested subspaces. These subspaces are build up using
increasing power of the operator (matrix) with respect to the initial vector and
thus the Krylov subspace methods are by their nature highly nonlinear. One of
their main advantages is that the matrix does not need to be explicitly stored.
Instead, only a function which performs matrix-vector multiplication is required.
Their analysis and the understanding of their convergence behaviour is the subject
of research of numerous mathematicians.

In this master thesis we restrict ourselves to Hermitian positive definite matri-
ces and we study convergence behaviour of the conjugate gradient method (CG)
introduced by Hestenes and Stiefel in 1952; see [13]. We believe that its deep un-
derstanding can help in the study of the other Krylov subspace methods (though
in the non-normal case the matter is far more complicated).

Substantial part of this master thesis has recently been published in the jour-
nal Numerical Algorithms as the original paper

• Gergelits T., Strakoš Z., Composite convergence bounds based on Chebyshev
polynomials and finite precision conjugate gradient computations, Numeri-
cal Algorithms (2013), available online at
http://dx.doi.org/10.1007/s11075-013-9713-z.

The exposition in the master thesis is subordinate also to other topics not cov-
ered in the paper. We enclose the paper as an attachment in Appendix which
represents the inherent part of the master thesis. The topics covered in the paper
are briefly outlined in Section 1.4 and in Chapter 4; for the full exposition we
refer to the enclosed paper. The integration of the paper to this master thesis
and the use of its content for the academical purposes is in agreement with the
policy of the Springer, the copyright holder. The final publication is available at
link.springer.com.

The master thesis is organized as follows. Chapter 1 briefly reviews, after
derivation of the CG method through the minimization of the quadratic func-
tional, the known relationships of the CG method with the Lanczos algorithm,
Vorobyev’s moment problem, (simplified) Stieltjes moment problem, the Gauss-
Christoffel quadrature and the orthogonal polynomials. The chapter continues
with the review of the convergence properties of the CG method in exact arith-
metic. It furthermore discuss the practical relevance of the widespread linear
convergence bound based on the Chebyshev polynomials and describe the fun-
damental difference between the CG method and the Chebyshev semi-iterative
(CSI) method. In Chapter 2 we describe theoretical results of Paige [23, 24, 25, 26]
and Greenbaum [10] which allow to understand and mathematically describe the
finite precision behaviour of the CG method. Loss of orthogonality caused by
rounding errors in finite precision CG computations results in a delay of conver-
gence and the convergence rate may be substantially different in finite precision
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and exact computations. As we have found and demonstrated in this master
thesis, the trajectories of the exact and the computed approximations are close
to each other. This correspondence is studied in Chapter 3. Chapter 4 summa-
rizes the investigation of the composite polynomial convergence bounds in finite
precision CG computations (details are given in Appendix). In Chapter 5 we
investigate the behaviour of the closely related Gauss-Christoffel quadrature for
the distribution functions with clustered points of increase.

We are well aware of the fact that the Krylov subspace methods are seldom
used without preconditioning. We can consider the studied linear systems as
the preconditioned system and the presented results are thus applicable to the
preconditioned CG method. An interested reader is referred to [28, Chapters
9–14] or the survey [2].
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1. The CG method

Method of Conjugate Gradients (CG) is an iterative method for solving systems
of linear equations

Ax = b (1.1)

with Hermitian and positive definite (HPD) matrix A ∈ C
N×N and the right-

hand side b ∈ R
N . The CG method is optimal in a sense that it minimizes the

energy norm of the error over the given Krylov subspace.
We would like to emphasize here the importance of normality of the matrix

A. It ensures that the spectral decomposition represent the superposition of A
onto one-dimensional subspace which are orthogonal to each other, and it insures
that the convergence behaviour of the CG method is fully determined by the
eigenvalues of A and the right-hand side b.

1.1 Derivation of the CG method

The CG method can be derived using many different approaches. The approach
we use in this thesis is based on the well known equivalence between solving the
linear system

Ax = b (1.2)

where A ∈ C
N×N is Hermitian positive definite (HPD) matrix and b ∈ C

N is a
right-hand side vector, and the minimization of the quadratic functional

F (z) =
1

2
z∗Az − z∗b. (1.3)

Our exposition follows [19, Section 2.5.3 ].
Considering an approximation xk to the solution x of (1.2) (i.e., the minimum

of the functional (1.3)) gives the equality

F (xk) =
1

2
(x− xk)

∗A(x− xk)−
1

2
x∗Ax =

1

2
‖x− xk‖2A − 1

2
‖x‖2A (1.4)

where ‖z‖A := (z∗Az)1/2 is the energy norm (also called A-norm) and we see that
the minimalization of the functional F (z) over some subspace of CN is the same
as the minimalization of ‖x− z‖A over the same subspace C

N . Thus the energy
norm is the natural measure of distance of the approximation xk to the solution
x.

Let x0 be an initial approximation and let the sequence of approximations xk

be constructed by the simple recurrence

xk = xk−1 + αk−1pk−1, k = 1, 2, . . . (1.5)

where pk is carefully chosen direction vector and the coefficient αk−1 is settled to
minimize the functional F (z) (i.e., ‖x− z‖A) along the line xk−1+αpk−1. Simple
algebraic manipulation gives

‖x− xk‖2A = ‖x− xk−1‖2A − 2α(x− xk−1)
∗Apk−1 + α2p∗k−1Apk−1
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and thus the minimum is attained for

αk−1 =
p∗k−1rk−1

p∗k−1Apk−1

, (1.6)

where rk = A(x− xk) is the residual vector which, using (1.5), can be computed
iteratively

rk = rk−1 − αk−1Apk−1 k = 1, 2, . . . . (1.7)

An immediate consequence of the choice of the parameter αk−1 is the orthogo-
nality between the residual and the direction vector, i.e.,

p∗k−1rk = p∗k−1(rk−1 − αk−1Apk−1) = 0. (1.8)

It remains to choose the direction vectors pk. The simplest choice for the
initial vector p0 is p0 ≡ r0. For the choice pk ≡ rk we get the method of the
steepest descent (rk = −∇F (xk)), its convergence is guaranteed but can be very
poor. The main reason for the poor convergence is that in every step we use
the information only from the last iteration and the choice of αk−1 gives only
one-dimensional minimization in each step. In order to minimize over subspaces
of larger dimension, the direction vector pk must combine information from sev-
eral iteration steps. The simplest possibility is to add an information about the
previous direction vector pk−1 and to compute

pk = rk + βkpk−1. (1.9)

The iteration process can stop only if pk = 0 or αk = 0. Independently on the
choice of the parameter βk, the orthogonality between pk−1 and rk (see (1.8))
gives

p∗krk = r∗krk = ‖rk‖2 (1.10)

and in both cases of possible breakdown we get rk = 0 and Axk = b.
In order to motivate the choice of βk below, we first notice that the use of

(1.5) and (1.6) gives

x− xk = x− xk−1 −
p∗k−1A(x− xk−1)

p∗k−1Apk−1

pk−1. (1.11)

and thus the error x − xk can be viewed as the A-orthogonalization of x − xk−1

against the direction vector pk−1. In other words,

x− xk−1 = x− xk + αk−1pk−1 (1.12)

can be viewed as the A-orthogonal decomposition of x− xk−1. The Pythagorean
theorem then gives

‖x− xk−1‖2A = ‖x− xk‖2A + α2
k−1 ‖pk−1‖2A . (1.13)

The repetitive use of (1.12) and (1.13) gives

x− x0 =
k∑

j=1

αj−1pj−1 + (x− xk) (1.14)
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and

‖x− x0‖2A = ‖x− xk‖2A +
k−1∑

j=0

α2
j ‖pj‖2A . (1.15)

The expansion (1.14) and the identity (1.15) holds for arbitrary choice of the
direction vectors pj, j = 0, . . . , k − 1.

Now assume that the direction vectors pj, j = 0, . . . , k − 1 are A-orthogonal.
Then

x− xk = x− x0 −
k∑

j=1

αj−1pj−1 (1.16)

represents the A-orthogonal decomposition of the initial error x − x0. Conse-
quently, ‖x− xk‖A is minimal over all possible approximations xk in the k-th
dimensional subspace generated by the direction vectors p0, . . . , pk−1, i.e.,

‖x− xk‖A = min
y∈x0+span{p0,...,pk−1}

‖x− y‖A . (1.17)

Moreover, the A-orthogonality of the direction vectors implies that pN = 0 and
thus the iteration process finds the exact solution in at most N steps.

We have only one undetermined coefficient βk and thus we can prescribe only
the local A-orthogonality between the subsequent direction vectors

p∗k−1Apk = 0 (1.18)

which gives

βk = − p∗k−1Ark

p∗k−1Apk−1

. (1.19)

and the algorithm is fully determined. It can be shown by induction (see, e.g.,
[13, Theorem 5:1]) that

p∗iApj = 0 and r∗i rj = 0 for j 6= i. (1.20)

Thus we see, that the described choice of the coefficients βk motivated by the
local A-orthogonality guarantees the global A-orthogonality of the direction vec-
tors, the global orthogonality of the residual vectors and thus the minimalization
property (1.17) is guaranteed. Finally, using p∗k−1rk−1 = r∗k−1rk−1 and

−Apk−1 = α−1
k−1(rk − rk−1) =

p∗k−1Apk−1

p∗k−1rk−1

(rk − rk−1),

we get

αk−1 =
r∗krk

p∗k−1Apk−1

and βk =
r∗krk

r∗k−1rk−1

(1.21)

Combining the equations (1.5), (1.9) and (1.21) gives the standard implementa-
tion of the CG method; see Algorithm I.
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1.2 The CG method in context

In this section we give a description of the relationship of the CG method with
the Lanczos algorithm and with the Vorobyev’s moment problem. Furthermore,
we briefly review interconnections of the CG method with the simplified Stieltjes
moment problem, the Gauss-Christoffel quadrature and the orthogonal polynomi-
als. We believe these relationships of great importance for proper understanding
of the behaviour of the CG method. The exposition loosely follows [30] and [19,
Section 3.7]. We refer to the recent monograph [19] for a detail exposition of
these topics which also contains many historical comments and an extensive list
of references.

From the definition of rj and pj and from their orthogonality properties, it eas-
ily follows that the residual vectors and the direction vectors form the orthogonal
(resp. A-orthogonal) basis of the Krylov subspace

Kk(A, r0) ≡ span(r0, Ar0, . . . , A
k−1r0) (1.22)

associated with the matrix A and the vector r0, i.e.,

Kk(A, r0) = span(r0, . . . , rk−1)

= span(p0, . . . , pk−1).
(1.23)

Consequently, the CG approximations are uniquely determined by the relations

xk ∈ x0 +Kk(A, r0), rk ⊥ Kk(A, r0), k = 1, 2, . . . . (1.24)

and we see that the CG method is the projection method where both search and
constraints space are the k-th Krylov subspace. Throughout this section we as-
sume that the dimension of Kk(A, r0) is equal to k, i.e., that the CG algorithm has
not stopped before and (for the simplicity of the exposition) that the eigenvalues
of A are distinct.

The Lanczos algorithm (see Algorithm II) introduced in [17] constructs in the
exact arithmetic an orthonormal basis {v1, . . . , vk} of the k-th Krylov subspace
associated with the HPD matrix A and the initial vector r0. In matrix notation,
the Lanczos algorithm can be expressed as

AVk = VkTk + δk+1vk+1e
T
k (1.25)

Algorithm I The CG method

input A, b, x0

r0 := b− Ax0

p0 := r0
for k = 1, 2, . . .

αk−1 :=
r∗
k−1rk−1

p∗
k−1Apk−1

xk := xk−1 + αk−1pk−1

rk := rk−1 − αk−1Apk−1

βk :=
r∗
k
rk

r∗
k−1rk−1

pk := rk + βkpk−1

end
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Algorithm II The Lanczos algorithm

input A, r0
v0 := 0
v1 := r0/‖r0‖
δ1 := 0
for k = 1, 2, . . .
w := Avk − δkvk−1

γk := v∗kw
w := w − γkvk
δk+1 := ‖w‖
vk+1 := w/δk+1

end

where Vk is the column matrix of the Lanczos vectors vj, j = 1, . . . , k, and where

Tk ≡




γ1 δ2
δ2 γ2 δ3

. . . . . . . . .

δk−1 γk−1 δk
δk γk




(1.26)

is the Jacobi matrix (i.e., the symmetric tridiagonal matrix with positive subdi-
agonal entries) which contains the coefficients of the Lanczos recurrence. With
the use of the orthogonality condition

0 = V ∗
k rk = V ∗

k (r0 − AVkyk) = ‖r0‖e1 − V ∗
k AVkyk = ‖r0‖e1 − Tkyk

we see that the CG approximation xk can be in exact arithmetic equivalently
computed as

xk = x0 + Vkyk, Tkyk = ‖r0‖e1. (1.27)

The eigenvalues of Tk are called Ritz values and they are computed from Tk by
the Lanczos method to approximate a few dominant eigenvalues of A. We enclose
the correspondence between the CG method and the Lanczos algorithm by the
identities among the computed vectors and the recurrence coefficients:

vk+1 = (−1)k
rk
‖rk‖

,

γk =
1

αk−1

+
βk−1

αk−2

, β0 ≡ 0, α−1 ≡ 1,

δk+1 =

√
βk

αk−1

, k = 1, 2, . . . .

(1.28)

Consider the N×N Hermitian matrix A as an operator on C
N . The mapping

VkV
∗
k : CN → Kk(A, r0) (1.29)

then represents an orthogonal projector onto Krylov subspace Kk(A, r0) and the
operator

Ak ≡ VkV
∗
k AVkV

∗
k (1.30)
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is the restriction and orthogonal projection of the operator A onto Kk(A, r0).
The matrix representation of this operator Ak with respect to the basis Vk is then
given by the tridiagonal matrix Tk. Using the Vorobyev’s operator formulation of
the problem of moments, we will interpret the tridiagonal matrix Tk as a result
of the moment matching model reduction.

We see that the action of the operator Ak defined on Kk(A, r0) is identical to
the action of the operator A restricted to Kk(A, r0) and thus Ak is the solution
of the Vorobyev’s moment problem:

Given A and r0, determine Ak such that

Akr0 = Ar0

A2
kr0 = A2r0
...

Ak−1
k r0 = Ak−1r0

Ak
kr0 = (VkV

∗
k )A

kr0.

(1.31)

Now we will see that the operator Ak matches the first 2k moments, i.e., it
holds

r∗0A
s
kr0 = r∗0A

sr0, s = 0, 1, . . . , 2k − 1, (1.32)

equivalently,
e∗1T

s
k e1 = v∗1A

sv1, s = 0, 1, . . . , 2k − 1. (1.33)

For s = 1, . . . , n− 1, the statement follows from (1.31) and it is trivial for s = 0.
Since VkV

∗
k is a projector, multiplication of the last row of (1.31) by VkV

∗
k implies

VkV
∗
k (A

k
kr0 − Akr0) = 0 (1.34)

and thus the vector (Ak
kr0−Akr0) is orthogonal to all basis vectors r0, . . . , A

k−1r0.
The symmetry of A and Ak and the use of (1.31) then gives

rT0 A
j(Akr0 − Ak

kr0) = 0, j = 0, . . . , k − 1 (1.35)

which gives the result.
The relationship with the simplified Stieltjes moment problem and the Gauss-

Christoffel quadrature now easily follows from the use of the spectral decompo-
sitions

Tk = ZkΘkZ
∗
k , A = QΛQ∗, where (1.36)

Zk = [z
(k)
1 , . . . , z

(k)
k ] and Q = [q1, . . . , qN ] are the orthogonal matrices of eigen-

vectors of Tk and A and where Θk = diag(θ
(k)
1 , . . . , θ

(k)
k ) and Λ = diag(λ1, . . . , λN)

are the diagonal matrices with the eigenvalues 0 < ξ < θ
(k)
1 < . . . < θ

(k)
k < ζ and

0 < ξ < λ1 < . . . < λN < ζ. Substitution of the spectral decompositions (1.36)
to the identity (1.33) gives

k∑

j=1

ω
(k)
j

{
θ
(k)
j

}s

=
N∑

j=1

ωjλ
s
j , s = 0, 1, . . . , 2k − 1 (1.37)
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where ω
(k)
j = (z

(k)
j , e1)

2 and ωj = (qj, v1)
2. These sums can be considered as the

Riemann-Stieltjes integrals with respect to the piecewise constant non-decreasing
distribution functions

ω(k)(λ) =





0 for ξ ≤ λ < θ
(k)
1∑i

j=1 ω
(k)
j for θ

(k)
i ≤ λ < θ

(k)
i+1, i = 1, . . . , k − 1∑k

j=1 ω
(k)
j = 1 for θ

(k)
k ≤ λ < ζ

(1.38)

and

ω(λ) =





0 for ξ ≤ λ < λ1∑i
j=1 ωj for λi ≤ λ < λi+1, i = 1, . . . , N − 1∑N

j=1 ωj = 1 for λN ≤ λ < ζ
(1.39)

and (1.37) then takes the form

∫ ζ

ξ

λs dω(k)(λ) =

∫ ζ

ξ

λs dω(λ), s = 0, 1, . . . , 2k − 1. (1.40)

We see that the left sides of the identities (1.40) and (1.37) represent the solution
of the simplified Stieltjes moment problem, i.e.,

∫ ζ

ξ

f(λ) dω(k)(λ) =
k∑

j=1

ω
(k)
j f(θ

(k)
j ) = e∗1f(Tk)e1 (1.41)

represents the k-th Gauss-Chistoffel quadrature of the Riemann-Stieltjes integral

∫ ζ

ξ

f(λ) dω(λ) =
N∑

j=1

ωjf(λj) = v∗1f(A)v1. (1.42)

Thus the CGmethod determines the sequence of distribution functions ω(j)(λ), j =
1, 2, . . . which approximate in the optimal way the original distribution function
ω(λ). Their weights and nodes are equal to the squared first components of the
associated normalized eigenvectors and to the eigenvalues of the Jacobi matrix
Tk generated in the first k steps of the Lanczos process applied to the matrix A
and the initial vector r0.

The relation (1.24) implies that the error of the k-th CG approximation can
be written in terms of the polynomial with constant term equal to one, i.e.,

x− xk = ϕCG
k (A)(x− x0), ϕk(0) = 1. (1.43)

We point out that the CG polynomials ϕCG
j (λ), j = 0, 1, . . . , k−1 form a sequence

of orthogonal polynomials with respect to both scalar products induced by the
distribution functions ω(λ) and ω(k)(λ). The CG polynomial ϕCG

k (λ) represents
the (k + 1)-st orthogonal polynomial with respect to ω(λ) and its zeros are the

nodes θ
(k)
j , j = 1, . . . , k of ω(k)(λ), i.e.,

ϕCG
k (λ) = (−1)k

(λ− θ
(k)
1 ) . . . (λ− θ

(k)
k )

θ
(k)
1 . . . θ

(k)
k

. (1.44)
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We have found interesting identity (see also [19, Theorem 3.4.11], it holds that

∫ ζ

ξ

(ϕCG
k (λ))2

λ
dω(λ) =

∫ ζ

ξ

ϕCG
k (λ)

λ
dω(λ), i.e., (1.45)

N∑

i=1

(ϕCG
k (λi)

2

λi

ωi =
N∑

i=1

ϕCG
k (λi)

λi

ωi. (1.46)

Proof.

∫ ζ

ξ

(ϕCG
k (λ))2 − ϕCG

k (λ)

λ
dω(λ) =

∫ ζ

ξ

ϕCG
k (λ)(ϕCG

k (λ)− 1)

λ
dω(λ) (1.47)

=

∫ ζ

ξ

ϕCG
k (λ)

(ϕCG
k (λ)− 1)

λ
dω(λ). (1.48)

Since ϕCG
k (0) = 1, we know that ν(λ) =

(ϕCG

k
(λ)−1)

λ
is the polynomial of degree

k − 1. Since the k-th CG polynomial is orthogonal with respect to distribution
function ω(λ) to any polynomial of lower degree, we get

∫ ζ

ξ

ϕCG
k (λ)ν(λ) dω(λ) = 0. (1.49)

Similarly, it holds that

∫ ζ

ξ

(ϕCG
j (λ))2

λ
dω(k)(λ) =

∫ ζ

ξ

ϕCG
j (λ)

λ
dω(k)(λ), j = 0, . . . , k − 1. (1.50)

1.3 Energy norm, its bounds and estimates

In this section we present several equivalent formulations of the energy norm of
the CG error, in order to illustrate its nonlinear behaviour and its correspondence
to convergence of Ritz values. We enclose this section by the identity which is
one of the conner stones of reliable a-posteriori error estimates.

From the (1.17), (1.23) and (1.43) it follows that

‖x− xk‖2A = min
y∈x0+K(A,r0)

‖x− y‖2A = min
ϕ(0)=1

deg(ϕ)≤k

‖ϕ(A)(x− x0)‖2A

= min
ϕ(0)=1

deg(ϕ)≤k

‖r0‖2
N∑

j=1

ϕ2(λj)

λj

ωj = ‖r0‖2
N∑

j=1

(ϕCG
k (λj)

2

λj

ωj,

(1.51)

i.e., we see that the CG convergence depends on eigenvalues of A and on the size
of projections of initial residual to the eigenvectors. From (1.51) we also get

‖x− xk‖A
‖x− x0‖A

≤ min
ϕ(0)=1

deg(ϕ)≤k

max
i=1,...,n

|ϕ(λi)|. (1.52)
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In [9, pp. 253-254] it has been proved that

Ek(λ−1) =
‖x− xk‖2A

‖r0‖2
, (1.53)

where

Ek(λ−1) =

∫ ζ

ξ

λ−1 dω(λ)−
∫ ζ

ξ

λ−1 dω(k)(λ) (1.54)

is the k-th error of the Gauss-Christoffel quadrature. From (1.54) and (1.51) it
follows that

‖x− xk‖2A
‖r0‖2

=
N∑

j=1

k∏

l=1

(
1

λ
1/2
j

−
λ
1/2
j

θ
(k)
l

)2

ωj. (1.55)

1.4 Comparison of CG with the Chebyshev semi-

iterative (CSI) method

In Section B.2 of the enclosed paper Appendix B we carefully reveal the fun-
damental difference between the convergence properties of the Chebyshev semi-
iterative (CSI) method and the CG method. Here we summarize the obtained
results and refer the reader to Section B.2 for details.

• The Chebyshev polynomials are orthogonal with respect to certain contin-
uous and discrete inner products which contain, apart from the extremal
eigenvalues λ1 and λN , no further information about the data A, b and r0.
In comparison, the CG polynomials are orthogonal with respect to discrete
inner product which is fully determined by the data A and r0.

• The CG norm of the error is determined by the discrete minimization prob-
lem, i.e.,

‖x− xCG
k ‖2A = ‖r0‖2

N∑

j=1

(ϕCG
k (λj)

2

λj

ωj.

The CSI norm of the error is tightly bounded by the minimization problem
over the whole interval [λ1, λN ], i.e.,

‖x− xCSI
k ‖2A ≤ max

λ∈[λ1,λN ]

∣∣φCSI
k (λ)

∣∣

• The linear bound

2

(√
κ(A)− 1√
κ(A) + 1

)k

is relevant to the CSI method and only as a consequence is valid also for
the CG method.
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2. The CG method in finite
precision arithmetic

A detail analysis of the finite precision convergence behaviour of the CG method
and of the closely related Lanczos algorithm is present in [20], where numerous
numerical experiments are performed and where also the technically complicated
issues are considered. In this chapter we want to review the most important re-
sults which allow to understand and even mathematically describe the behaviour
of finite precision CG computations. Our exposition is based on [19, Section 5.9]
and on the nicely written survey paper [21].

In finite precision computations, both Lanczos vectors from the Lanczos algo-
rithm and the residual vectors from the CG method loose (usually very quickly)
their orthogonality. As a consequence of the loss of orthogonality in the Lanczos
algorithm, the elements of the computed Jacobi matrix Tk may differ by several
orders of their exact arithmetic counterparts. Moreover, the multiple Ritz approx-
imations to single original eigenvalues appear and, consequently, the convergence
of Ritz values to other eigenvalues is delayed. The consequence of the loss of
orthogonality in the CG algorithm is illustrated in Figure 2.1, which depicts the
relative energy norm of the error of the CG algorithm applied to a matrix A given
by Spectrum 1-Q (see Appendix A) with the parameters

N = 25, λ1 = 0.1, λN = 1000, ρ = 0.6,

right-hand side b of ones and the zero initial approximation. The dash-dotted
line corresponds to exact CG computation1 and the solid line to finite precision
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Figure 2.1: Delay of convergence in CG computations due to rounding errors.
The convergence curve of finite precision CG computations (solid line) differs
both qualitatively (see the characteristic staircase behaviour) and quantitatively
from the curve of exact CG computations (dash-dotted line).

1The exact arithmetic is simulated by full double reorthogonalization of the computed resid-
uals; see [26, p. 252], [11].
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CG computation. As expected, the error of the exact CG vanishes at iteration 25.
However, in finite precision computations, 25 iterations are not sufficient to reach
even the modest decrease of the error and far more iterations are needed to obtain
a small error. We see that finite precision computations require more iterations
than its exact arithmetic counterpart to reach the same level of accuracy, i.e., the
convergence of the CG approximate solution is delayed.

In exact arithmetic, the CG convergence behaviour depends on the conver-
gence of the Ritz values to the eigenvalues of A; see (1.55). Intuitively, we may
expect the same in finite precision computations. Indeed, the work of Anne
Greenbaum [10], reviewed below in Section 2.1, reveals that the appearance of
the multiple Ritz approximations cause a delay of convergence in finite precision
CG computations.

The analysis of Greenbaum is heavily based on the results of Paige [23, 24,
25, 26]. He presented rigorous mathematical analysis of rounding errors in the
Lanczos algorithm which allows to understand the numerical behaviour of the
Lanczos method. Despite the common wisdom of that time, he clarified that the
Lanczos method can be used as a reliable and efficient numerical tool for comput-
ing accurate approximations of dominant eigenvalues of the matrix A. Moreover,
he revealed that the algorithm behaves numerically like the Lanczos algorithm
with full reorthogonalization until a very close eigenvalue approximation is found.
The most celebrated result of him is, that the loss of orthogonality follows a rig-
orous pattern. He has proved that the loss of orthogonality can occur only in the
direction corresponding to converged Ritz value.

2.1 Backward-like analysis by Greenbaum

Exposition in this section follows a part of Section B.4 of the paper enclosed in
Appendix B. Shortly speaking, Greenbaum has proved that

the finite precision Lanczos computation for a matrix A and a given
starting vector v produces in steps 1 through k the same Jacobi matrix
Tk as the exact Lanczos computation for some particular larger matrix
Â(k) and some particular starting vector v̂(k) while the eigenvalues

of Â(k) all lie within tiny intervals around the eigenvalues of A. The

size as well as (all) individual entries of Â(k) and v̂(k) depend on the
rounding errors in the steps 1 through k.

Moreover, it has been shown, that the relationship between the CG method and
the Lanczos algorithm holds, with small inaccuracy, also in finite precision. Thus
an analogous statement is valid, with a small inaccuracy specified in [10], also for
the behaviour of finite precision CG computations. We would like to emphasize
that Â(k) is not given by a slight perturbation of the matrix A. The matrix Â(k)
is typically much larger than A; see the illustration in Figure 2.2.

As stated above, the matrix Â(k) and the vector v̂(k) depend on the iteration
step k. The numerical experiments performed in [11] and the reasoning about the

delay in finite precision CG computations suggests that the particular matrix Â(k)
constructed for the k steps of the given finite precision CG computation can be
replaced (with an acceptable inaccuracy) by a matrix Â having sufficiently many
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Figure 2.2: For any k = 1, 2, . . ., the first k steps of the finite precision Lanczos
computation for A ∈ C

N×N can be analyzed as the first k steps of the exact
Lanczos for the (possibly much larger) matrix Â(k) ∈ C

N̂(k)×N̂(k) which generates

the same k × k Jacobi matrix Tk. The matrix Â(k) depends on k.

eigenvalues in tight clusters around each eigenvalue of A; see also the detailed
argumentation in [21] and [19, Section 5.9]. The appropriate starting vector

associated with Â can be constructed from A and b independently of k. We
illustrate this on the example from the beginning of this chapter and in Figure 2.3
we show the results of exact CG computations applied to the matrix where each
eigenvalue of A was replaced by five eigenvalues clustered uniformly in the interval
of width ∆ = 2·10−13 and where associated right hand side b̂ is obtained from b by
decomposition of each individual entry into 5 equal parts such that ‖b‖2 = ‖b̂‖2;
see [11].

2.2 Maximal attainable accuracy

The approximate solutions in iterative computation can not, in general, reach ar-
bitrary accuracy and it has no sense to continue computations after the maximal
attainable accuracy has been reached. The value of the maximal attainable accu-
racy can strongly depend on the algorithmic realization and the mathematically
equivalent algorithms can behave differently in finite precision computations. An
example is given in [3], where four different algorithms for solving the system of
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Figure 2.3: The convergence behaviour of finite precision CG computations (solid
line) applied to the matrix with single eigenvalues corresponds with the behaviour
of exact CG computations (dashed line) applied to the matrix with clusters of
eigenvalues.

the normal equations ATAx = AT b are compared and in [12], where the accu-
racy of three-term recurrences and two-term recurrences associated with Krylov
subspace solvers is examined. In particular, considering the CG method, two
two-term recurrences should be preferred to the three-term recurrence.

Studying the difference of true and iterative residual, some bounds of the
maximal attainable accuracy can be obtained; see [20, Chapter 6], the survey [14]
and [21, Section 5.4]. However, in most practical applications, the computations
are stopped before the maximal attainable accuracy is reached. In the numerical
experiments in this thesis we assume that the iteration is stopped before the
maximal attainable accuracy is reached.
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3. Tracking the trajectory of
finite precision CG computations

The CG method determines in exact arithmetic an orthogonal basis of the Krylov
subspace Kk(A, r0) given by the residuals rj, j = 0, 1, . . . , k−1. However, in finite
precision CG computations the orthogonality among the computed residual vec-
tors is (usually quickly) lost and they often become even (numerically) linearly
dependent. Consequently, the computed residual vectors may, at the step k, span
a subspace of a dimension smaller than k. This rank-deficiency of the computed
Krylov subspace bases then causes a delay of convergence of finite precision com-
putations, which can be defined as the difference between the number of iterations
required to attain a prescribed accuracy in finite precision computations and the
number of iterations required to attain the same accuracy in exact arithmetic.

To illustrate this behaviour, we reproduce and extend the experiment from [19,
Figure 5.17] and compare the convergence curves of the energy norm of the errors
of exact1 and finite precision (FP) CG computations applied to a matrix A given
by Spectrum 1-Q (see Appendix A) with the parameters

N = 25, λ1 = 0.1, λN = 100, ρ = 0.65

and a right-hand side b of ones. In Figure 3.1 we observe the characteristic
staircase-like behaviour of FP CG computations (dash-dotted line with circles)
and, in comparison with exact CG computations (solid line with circles), a sub-
stantial delay of convergence which is caused by the loss of orthogonality among
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exact arithmetic
finite precision arithmetic
loss of orthogonality

Figure 3.1: Convergence curve of finite precision CG computation (dash-dotted
line with circles) is delayed in comparison with the convergence curve for exact
CG computation (solid line with circles). The orthogonality among the computed
residual vectors (dotted line), measured by ‖I−V ∗

k Vk‖F where columns of Vk are
Lanczos vectors vj = rj/‖rj‖, is lost after a few iterations.

1The exact arithmetic is hereinafter simulated by full double reorthogonalization of the
computed residuals; see [26, p. 252], [11].
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Figure 3.2: Left: Convergence curve of FP CG computation is shifted horizontally
correspondingly to the rank-deficiency of the computed Krylov subspace (dash-
dotted line with circles) and compared with the convergence curve of exact CG
computations (solid line). Visually, the curves coincide to each other. Right:
The delay of convergence is equal to the rank-deficiency of the computed Krylov
subspace, i.e., to the quantity k − rank(Kk(A, r0)), which can be seen as the
vertical difference between the solid and dash-dotted lines.

the computed residual vectors (dotted line) and subsequent rank-deficiency of the
computed Krylov subspace.

The correspondence between the delay of convergence and the rank-deficiency
of the computed Krylov subspace is illustrated in the left part of Figure 3.2 where
the exact CG convergence curve is compared with the curve for finite precision CG
computation which is shifted by the (numerical) rank-deficiency of the computed
Krylov subspace (dash-dotted line with circles). More specifically, the curve is
composed of the points

(
rank(Kk(A, r0));

‖x− xk‖A
‖x− x0‖A

)
, k = 1, 2, . . . (3.1)

(where xk denotes the k-th approximation from finite precision CG computation)
such that for every value k̄ = 1, 2, . . . it plots the point corresponding to the latest
iteration k where

k̄ = rank(Kk(A, r0)) (3.2)

and thus it reflects the merit of the CG method, i.e., the minimalization of A norm
of the error over the given subspace. Throughout this chapter, rank(Kk(A, r0))
is given by the number of singular values of the matrix [v1, v2, . . . , vk] (computed
Lanczos vectors) which are greater or equal to 10−1, i.e., we apply the Matlab

command rank with the threshold 10−1 to the matrix [v1, v2, . . . , vk]. Setting
a different threshold value would not change the main point, but the observed
correspondence would not be so perfect. The computed rank of the Krylov sub-
space Kk(A, r0) is plotted in the right part of Figure 3.2 by the dash-dotted line
and the rank-deficiency k−rank(Kk(A, r0)), which gives the delay of convergence,
can be seen as the vertical difference between the dash-dotted and solid lines.
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Figure 3.3: The line with large dots plots the ratio of energy norms of the error
of shifted FP CG (dash-dotted line with circles) and exact CG (solid line). Its
variance from the ideal value one is plotted by dashed line and determines the
quality of the correspondence of both curves. The correspondingly shifted curve
of loss of orthogonality in finite precision CG computations is plotted as dotted
line.

The quality of the tight correspondence between the two curves from the left
part of Figure 3.2 is illustrated in Figure 3.3. The line with dots plots the ratio
of both curves, i.e., it is generated by points

(
k̄ = rank(Kk(A, r0));

‖x− xk‖A
‖x− x̄k̄‖A

)
, k̄ = 1, 2, . . . (3.3)

where x̄k̄ is the k̄-th exact CG approximation. Ideally, their ratio would be one
and thus both curves would be identical. This would mean that, in terms of the
energy norm, finite precision CG computations follow exactly the trajectory of
exact CG computations and the movement along the trajectory is delayed by the
rank-deficiency of the computed Krylov subspace. We see that, till the very end
of computation, the line with dots is indeed very close to the ideal value one. The
level of perturbation from this value, i.e., the curve

(
k̄ = rank(Kk(A, r0));

∣∣∣∣1−
‖x− xk‖A
‖x− x̄k̄‖A

∣∣∣∣
)
, k̄ = 1, 2, . . . . (3.4)

(dashed line) gives us a detail insight into the quality of correspondence between
the curves for exact CG (denoted as exCG) and shifted FP CG computations
(shCG). We see that the perturbations are of lower order, in other words,

∣∣∣∣
‖x− x̄k̄‖A − ‖x− xk‖A

‖x− x̄k̄‖A

∣∣∣∣≪ 1 (3.5)

holds throughout the computation, i.e., the difference between both curves is of
lower order in comparison with the actual size of error. Thus we can consider
the trajectory of energy norm of finite precision CG computations being enclosed
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(a) Spectrum 2-Q

N = 100, λ1 = 0.1, λN = 106,
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(b) Spectrum 1-Q

N = 50, λ1 = 0.1, λN = 104, ρ = 0.8
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(c) Bcsstk04 (default setting)

Figure 3.4: The observed phenomenon is illustrated for various input data. Dot-
ted line plots the ratio of energy norms of shifted FP CG (dash-dotted line with
circles) and exact CG (solid line). The variance from the ideal value one is plotted
by dashed line.

in a narrow “tunnel” around the trajectory of energy norm of exact CG compu-
tations. The narrowness of the tunnel comes from (3.5), i.e., if (3.5) holds, the
width of the tunnel is small even in comparison with the corresponding size of
the error and thus the energy norm of finite precision CG computations follows
indeed very closely the trajectory of energy norm of exact CG computations. At
the early stage, the dashed line in Figure 3.3 (i.e., the curve (3.4)) remains on the
level of machine precision. This corresponds to the first stage of computations
where the rounding errors cause no substantial loss of orthogonality and the com-
puted Krylov subspace has full rank. The correspondingly shifted curve for loss
of orthogonality in finite precision CG computations, i.e., the curve generated by
points

(rank(Kk(A, r0)); ‖I − V ∗
k Vk‖F ) , k = 1, 2, . . . . (3.6)

is plotted in Figure 3.3 as a dotted line.
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In order to demonstrate the phenomenon observed above on more examples,
we show in Figure 3.4 analogous plots for various input data. The first matrix
is given by the problem Bcsstk04 from the database MatrixMarket and the
spectra of the other two were adopted from the paper enclosed in Appendix; see
Figure 3.4 for particular settings. The right-hand side b is always a vector of
ones. The message from all these examples is still the same:

The trajectory of energy norm of the error from finite precision CG
computations follows tightly the one from exact CG computations but
the process is delayed by the rank-deficiency of the computed Krylov
subspace.

We would like to point out that the comparison presented in this section is
somewhat different from the concept in Section 2.1 where finite precision CG com-
putations are associated with exact CG computations for different matrix Â of
specific structure and substantially larger size than the size of A. That concept
enables us to associate the k-th error ‖x − xk‖A of finite precision CG com-

putations with the k-th error ‖x̂ − x̂k‖Â of exact CG computations for Â but
the approximation vectors xk and x̂k live in completely different spaces; see the
illustration in Figure 2.2. Conversely, the comparison made in this section as-
sociates the k-th error ‖x − xk‖A of finite precision CG computations with the
k̄-th error ‖x− x̄k̄‖A of exact CG computations for the same linear system where
k̄ = rank(Kk(A, r0)) and the rank-deficiency k− rank(Kk(A, r0)) of the computed
Krylov subspace is the delay of convergence. We would like to emphasize that
since the vectors xk and x̄k̄ belong to the same space of dimension N , we can
compare the approximation vectors themselves.

3.1 Correspondence of approximation vectors

The observation about the close correspondence of the trajectories of FP and
exact CG computations from the previous section was formulated in terms of the
energy norm. However, since the approximation vectors xk and x̄k̄ belong to the
same vector space, we can study the correspondence of the trajectories of FP and
exact CG computations in terms of closeness of the approximation vectors xk

and x̄k̄ themselves.
In Figure 3.5, using the input data from the beginning of the previous section,

we study the difference xk − x̄k̄ (dash-dotted line) in comparison with the error
vectors x − xk (dash-dotted line with circles) and x − x̄k̄ (solid line) using L∞

(maximum) norm on the left and L1 norm on the right. Similarly as in the left
part of Figure 3.2, the curve of the error or finite precision CG computations
shifted back by the level of rank-deficiency is visually indistinguishable from the
curve of the error of exact CG computations and thus their ratio (line with large
dots) remains throughout the computation process very close to the value one. On
the other hand, we can see that the norm ‖xk − x̄k̄‖∞ (resp. ‖xk − x̄k̄‖1) remains
throughout the computation process below the norm of the errors ‖x− x̄k̄‖∞ and
‖x−xk‖∞ (resp. ‖x−x̄k̄‖1 and ‖x−xk‖1), i.e., we observe that the approximations
xk and x̄k̄ are closer to each other than to the solution x. This is in more detail
illustrated by the dashed line which plots the ratio of the norm of the difference
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Spectrum 1-Q (N = 25, λ1 = 0.1, λN = 100, ρ = 0.65)

Figure 3.5: Comparison in L∞ (maximum) norm on the left, resp. in L1 norm
on the right. The difference of the approximations xk − x̄k̄ (dash-dotted line)
remains throughout computation smaller than the corresponding errors x − xk

and x − x̄k̄ of FP CG (dash-dotted line with circles) and exact CG (solid line).
The closeness of xk and x̄k̄ in comparison with the actual size of the error x− x̄k̄

is illustrated by the ratio of their norms (dashed line). The ratio of norms of the
errors (line with large dots) is throughout computation very close to the value
one.

x̄k

xk
x

x0

C
NAx = b

exact computation
finite precision computation

delay at the k-th step

Figure 3.6: Finite precision CG computation tightly follows the trajectory of
exact CG computations with the delay which is given by the rank-deficiency of
the computed Krylov subspace.

between approximations and the norm of the corresponding error of exact CG
computations. We see that

‖xk − x̄k̄‖∞
‖x− x̄k̄‖∞

≪ 1 resp.
‖xk − x̄k̄‖1
‖x− x̄k̄‖1

≪ 1 (3.7)

holds throughout the computation process, i.e., the distance between approxima-
tions is of lower order in comparison with the actual level of error.

Thus, based on the results of our numerical experiments (see also Figure 3.8
below), we can formulate a similar observation as in the previous section, but in
terms of approximation vectors themselves:

22



xk

x̄k̄

x

C
N

exact computation
finite precision computation

Figure 3.7: The trajectory of finite precision CG computation is enclosed in the
narrow tunnel around the trajectory of exact CG computation. The tunnel is
tight in the sense that its width is throughout the computation very small in
comparison with the actual level of error.

The trajectory of approximation vectors generated by the CG method
in finite precision arithmetic applied to linear system Ax = b is en-
closed in a narrow “tunnel” around the trajectory of approximation
vectors from the CG method in exact arithmetic applied to the same
system. The progress of finite precision CG computations through
this tunnel is delayed by the rank-deficiency of the computed Krylov
subspace; for illustration see Figure 3.6. The tunnel is narrow in the
sense that its width (i.e., the distance between approximations xk and
x̄k̄) is very small in comparison with its “length” (i.e., with the actual
level of error x − x̄k̄) throughout the whole process of computation;
for illustration see Figure 3.7.

As in the previous section, in order to illustrate the ideas presented above on
more examples, we show in Figure 3.8 analogous plots using the same set of input
data as above (see Figure 3.8(a)–(c) for particular settings). The results are very
similar to those in Figure 3.5 and thus support the observation formulated above.

3.2 Correspondence of Krylov subspaces

In experiments above we have observed that finite precision CG computations
follow closely the trajectory of exact CG computations, we have seen that the
approximation vector xk generated in the k-th iteration of the CG method in fi-
nite precision corresponds to the k̄-th approximation x̄k̄ of the exact CG method
where k̄ = rank(Kk(A, r0)). The CG approximations are formed within the se-
quence of nested Krylov subspaces and thus the close relation between xk and
x̄k̄ suggests that also the whole subspaces Kk(A, r0) and Kk̄(A, r0) = [v̄1, . . . , v̄k̄],
where the latter is the k̄-th Krylov subspace generated by the CG algorithm in
exact arithmetic and v̄j̄, 1, . . . , k̄ are the corresponding exact Lanczos vectors,
should be in some sense close to each other. We study the closeness of those sub-
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(a) Spectrum 2-Q (N = 100, λ1 = 0.1, λN = 106, ρout = 0.2,m = 8, ρin = 0.8)
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(b) Spectrum 1-Q (N = 50, λ1 = 0.1, λN = 104, ρ = 0.8)
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(c) Bcsstk04 (default setting)

Figure 3.8: The phenomenon observed above is illustrated on our set of different
input data. Line with large dots plots the ratio of norms of the errors of shifted
FP CG (dash-dotted line with circles) and exact CG (solid line). The norm of
difference of approximation vectors xk, x̄k̄ is plotted as dash-dotted line and its
ratio with the norm of the error of exact CG computations is plotted as dashed
line.

spaces by comparing their (numerical) rank with the (numerical) rank of subspace
of their union Kk(A, r0) ∪ Kk̄(A, r0). The equality

rank(Kk(A, r0)) = rank(Kk(A, r0) ∪ Kk̄(A, r0)) (3.8)
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Table 3.1: The Krylov subspace generated in finite precision CG computations,
the Krylov subspace of corresponding dimension associated with exact CG com-
putations and the subspace spanned by their union are compared through their
ranks. The fact that the union has the same rank as the individual subspaces
implies that subspace Kk(A, r0) and its counterpart from exact CG span the same
space. The comparison is given for four different input data used in the previous
sections; see the captions (a)–(d) and Appendix A for particular settings.

k 5 23 41 59 77 95 113 131 149

k̄ = rank(Kk(A, r0)) 5 13 17 20 24 26 28 30 32

rank(Kk̄(A, r0)) 5 13 17 20 24 26 28 30 32

rank(Kk(A, r0)∪Kk̄(A, r0)) 5 13 17 20 24 26 28 30 32

(a) Spectrum 2-Q (N = 100, λ1 = 0.1, λN = 106, ρout = 0.2,m = 8, ρin = 0.8)

k 15 51 87 123 159 195 231 267 293

k̄ = rank(Kk(A, r0)) 15 32 39 43 46 48 49 50 50

rank(Kk̄(A, r0)) 15 32 39 43 46 48 49 50 50

rank(Kk(A, r0)∪Kk̄(A, r0)) 15 32 39 43 46 48 49 50 50

(b) Spectrum 1-Q (N = 50, λ1 = 0.1, λN = 104, ρ = 0.8)

k 30 113 196 279 362 445 528 611 664

k̄ = rank(Kk(A, r0)) 30 82 93 104 112 119 126 131 132

rank(Kk̄(A, r0)) 30 82 93 104 112 119 126 131 132

rank(Kk(A, r0)∪Kk̄(A, r0)) 30 82 93 104 113 120 127 131 132

(c) Bcsstk04 (default setting)

k 9 14 19 24 29 34 39 44 50

k̄ = rank(Kk(A, r0)) 9 14 16 19 20 22 23 23 24

rank(Kk̄(A, r0)) 9 14 16 19 20 22 23 23 24

rank(Kk(A, r0)∪Kk̄(A, r0)) 9 14 16 19 20 22 23 23 24

(d) Spectrum 1-Q (N = 25, λ1 = 0.1, λN = 100, ρ = 0.65)

would mean that finite precision CG computation generates in its k-th iteration
(numerically) the same subspace as which is spanned by the k̄-th Krylov subspace
from exact CG computations.

In Table 3.1, we summarize the results of this comparison for the four different
input data from the previous sections; see Table 3.1(a)–3.1(d) and Appendix A
for particular settings. The (numerical) rank of Kk(A, r0) ∪ Kk̄(A, r0) is given
as in the previous sections, i.e., we apply the Matlab command rank with
the threshold 10−1 to the matrix of Lanczos vectors [v1, . . . , vk, v̄1, . . . , v̄k̄]. We
observe that the agreement between the computed Krylov subspace Kk(A, r0)
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and its exact arithmetic counterpart Kk̄(A, r0) is indeed nearly perfect. The
computed ranks coincide exactly throughout the computations (with the small
inaccuracy in the problem Bsstk04 from the MatrixMarket; see Table 3.1(c)),
In other words, we observe that the sequence of subspaces being built-up in finite
precision CG computations is numerically basically the same as the one which is
built in exact CG computations. However, due to rounding errors, the process
may be substantially delayed. In this sense, the Krylov subspace seems to be
stable to the effect of rounding errors produced by the CG (Lanczos) algorithm
in finite precision arithmetic.

To our best knowledge, the relation between the k-th Krylov subspace comput-
ed by the CG (Lanczos) algorithm in finite precision arithmetic and the Krylov
subspace of the corresponding dimension k̄ generated by exact CG and asso-
ciated with the same data A and r0 has not been addressed in literature and
its rigorous theoretical analysis may represent the topic of our further research.
The related problem of sensitivity of Krylov subspace to small perturbations was
studied in several papers; see, e.g., [4, 16] or [27]. Using different approaches2

and techniques, both papers [4, 27] study and measure the distance between
subspaces Kj(A, v) and Kj(A+∆A, v), where ∆A goes through the class of per-
turbations small enough to ensure that Kj(A+∆A, v) has full column rank. The
sensitivity of the Krylov subspace to this class of perturbations can be measured
by the condition number of Krylov subspace (see [4, Definition 3]), both papers
contain expressions for this condition number and study the possibilities of its
computation or estimation.

In general, the difference between the Krylov subspaces Kj(A + ∆A, v) and
Kj(A + ∆A, v) can grow exponentially in dependence on the perturbation ma-
trix ∆A and thus the condition number of Krylov subspace may be large.
Having the computed Krylov subspace Kk(A, r0) with the numerical rank k̄ =
rank(Kk(A, r0)), consider its subspace Kk(A, r0) of the mathematical rank k̄

cleansed from the influence of the smallest k− k̄ singular values and suppose there
exists a perturbation matrix ∆CGA such that Kk(A, r0) = Kk̄(A+∆CGA, r0). The
stability of the Krylov subspace to the rounding errors produced by finite preci-
sion CG computations observed above implies that such Kk̄(A+∆CGA, r0) would
be very close to the Krylov subspace Kk̄(A, r0) from exact CG computations and
their distance would be, substantially smaller than suggested by the classical re-
sults for sensitivity of Krylov subspaces to class of small perturbations of the
coefficient matrix. The existence and the structure of such perturbation matrix
may be subject of our further research.

2Sensitivity results of [4] could be suitable for the methods based on the Arnoldi algorithm
and the results of [27] could be convenient for the methods based on short recurrences. In the
symmetric case, the results of both approaches coincide.
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4. Composite polynomial
convergence bounds in finite
precision CG computations

The content of this chapter can be understood as a kind of extended abstract
of the paper enclosed in Appendix B. We outline the main ideas and refer the
reader to Appendix B.

4.1 Outline of the enclosed paper

In Section 1.4 we have revealed that the linear convergence bounds based on
the Chebyshev polynomials have, apart from very special situations, a little in
common with the practical rate of the CG method. The CG method is nonlinear
(see, e.g., (1.33) and (1.55)) and its convergence tends to accelerate during the
iteration process. In other words, it exhibits the so called superlinear convergence.
Thus the linear Chebyshev bounds are typically highly pessimistic. In order to
describe the superlinear convergence, Axelsson [1] and Jennings [15] considered
in presence of m large outlying eigenvalues the composite polynomial

qm(λ)χk−m(λ)/χk−m(0), (4.1)

where χk−m(λ) denotes the Chebyshev polynomial of degree k−m shifted to the
interval [λ1, λN−m] and where the polynomial qm(λ) has the roots at the outlying
eigenvalues λN−m+1, . . . , λN . This results in the bound
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Figure 4.1: Rounding errors can cause a substantial delay of convergence in finite
precision CG computations (solid line) in comparison to their exact precision
counterpart (dash-dotted line). A composite polynomial bound (dashed line)
fails to describe the finite precision CG behaviour quantitatively (the slope given
by the bound is not descriptive) and qualitatively (the staircase-like shape of the
convergence curve).
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‖x− xk‖A
‖x− x0‖A

≤ 2

(√
κm(A)− 1√
κm(A) + 1

)k−m

, k = m,m+ 1, . . . , (4.2)

where κm(A) ≡ λN−m/λ1 is the so-called effective condition number. This quan-
tity is typically substantially smaller than the condition number κ(A) ≡ λN/λ1

which indicates a possibly faster convergence after m initial iterations.
However, as we have seen in the previous chapters, finite precision CG com-

putations can be substantially delayed. Moreover, such delays are pronounced,
in particular, in the presence of large outlying eigenvalues. Since the polynomi-
al convergence bounds (4.2) were derived assuming exact arithmetic, it is by no
means clear whether the composite polynomial bounds and the conclusions based
on them are valid in finite precision CG computations. Figure 4.1 indeed shows
that the composite polynomial convergence bound can fail to describe the finite
precision CG.

Although the difficulty has been repeatedly noticed (see [15, 31, 10, 19]),
persisting misunderstandings reappear in literature. The paper enclosed in Ap-
pendix B explains in detail that the composite polynomial bounds (4.2) must
inevitably fail and that the composite polynomial (4.1) is not relevant for finite
precision CG computations.
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5. On some points of
Gauss-Christoffel quadrature

In this chapter we will discuss several specific questions connected with the sensi-
tivity of the Gauss-Christoffel quadrature approximation of the Riemann-Stieltjes
integral with respect to small changes of the distribution function. Due to the
correspondence between the CG method and the Gauss-Christoffel quadrature
(see Section 1.2), this issue is closely related to the main focus of the thesis.

...

0

1

ω1

ω2

ω3

ω4

ωN

ξ λ1 λ2 λ3
. . . . . . λN ζ

Figure 5.1: Illustration of the distribution function ω(λ).

Consider a piecewise constant nondecreasing distribution function ω(λ) with
N points of increase 0 < ξ < λ1 < . . . < λN < ζ and ω1, . . . , ωN the corresponding
weights, i.e.,

ω(λ) =





0 for ξ ≤ λ < λ1∑i
j=1 ωj for λi ≤ λ < λi+1, i = 1, . . . , N − 1∑N

j=1 ωj = 1 for λN ≤ λ < ζ
(5.1)

(see the illustration in Figure 5.1). Given a sufficiently small parameter δ, we
will consider modified distribution function ωδ(λ) where each single point of in-
crease λi is replaced by a cluster of s points of increase λi,1, . . . , λi,s which are
uniformly distributed in the interval [λi − δ, λi + δ] and where the corresponding
weight ωi is decomposed into s equal parts ωi,l, l = 1, . . . , s; see the illustration
in Figure 5.2. The modification parameter δ is set small enough to ensure that
from the “bird’s eye view” the distribution function ωδ(λ) matches with ω(λ).
In other words, we demand preservation of interval which contains all points of
increase and a clear separation of individual clusters, i.e.,

δ ≪ λ1 and δ ≪ λj+1 − λj

2
, j = 1, . . . , N − 1. (5.2)

Please note that for δ = 0 the distribution functions coincide, i.e., ω(λ) = ω0(λ).
As we will see, the important thing is that this modification changes the size of
the support (i.e., the size of the set of all points of increase; see [8, p. 3]) of the
original distribution function.
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Figure 5.2: Illustration of the modified distribution function ωδ(λ).

In this chapter we are not concerned about the numerical aspects such as the
effect of rounding errors or the existence of maximal attainable accuracy. We
want to illustrate some mathematical phenomenons connected with the Gauss-
Christoffel quadrature. Thus the numerical experiments below were performed
using Matlab Symbolic Toolbox and using multiple precision arithmetic with
400 digits. Due to this, it is meaningful to run the experiments even with very
small values of the parameter δ (such as 10−30, 10−60, . . . ). The value of the

Riemann-Stieltjes integral
∫ ζ

ξ
f(λ) dωδ(λ) for f(λ) = λ−1 is computed as the

squared energy norm of the solution xδ = A−1
δ b, obtained via the Matlab back-

slash operator, where

Aδ = diag(λ1,1, . . . , λ1,s, λ2,1, . . . , λN,s)

b = (
√
ω1,1, . . . ,

√
ω1,s,

√
ω2,1, . . . ,

√
ωN,s).

(5.3)

The error of the k-point Gauss-Christoffel quadrature approximation of the in-
tegral is computed as the squared energy norm of the error in the k-th iteration
of the exact1 CG method (see (1.53) in Section 1.3) applied to the linear sys-
tem (5.3) with the initial guess x0 ≡ 0. The k-point Gauss-Christoffel approxi-
mation is (when needed) computed as the difference between the integral and the
k-th error.

In the numerical experiments below we use for different values of the param-
eter δ the two following test problems with the distribution functions ωδ(λ):

Test 1; the distribution function ω
(1)
δ (λ):

The original function ω(1)(λ): Weights ωi = 1/N ; points of increase λi

given by Spectrum 1(N = 25, λ1 = 0.1, λN = 100, ρ = 0.5); see Appendix A.

The modified distribution function: s = 2, i.e., ω
(1)
δ (λ) has two points of

increase λi,1 = λi − δ and λi,2 = λi + δ instead of each point λi of ω
(1)(λ).

1As before, the exact arithmetic is simulated by double full reorthogonalization of the resid-
ual vectors; see [26, p. 252], [11].
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Test 2; the distribution function ω
(2)
δ (λ):

The original function ω(2)(λ): Weights ωi = 1/N ; points of increase λi giv-
en by Spectrum 1(N = 20, λ1 = 0.1, λN = 1000, ρ = 0.7); see Appendix A.

The modified distribution function: s = 5.

5.1 Sensitivity of Gauss-Christoffel quadrature

The problem of computing the Gauss-Christoffel quadrature has been studied
by many researchers, the current state-of-the-art is well described in the mono-
graph [8] by Gautschi and in the surveys [7, 18]. However, the question of sensi-
tivity of the Gauss-Christoffel quadrature with respect to a small change of the
associated distribution function has been, to our knowledge, firstly raised in the
recent paper [22].

Given sufficiently smooth function f(λ) and two distribution functions ω(λ),
ω̂(λ) which are nondecreasing on a finite interval [ξ, ζ] and which are, in some
sense, close to each other, the paper [22] investigates the k-point Gauss-Christoffel
quadrature approximations

Ikω =
k∑

j=1

ϑjf(tj) and Ikω̂ =
k∑

j=1

ϑ̂jf(t̂j) (5.4)

of the integrals

Iω ≡
∫ ζ

ξ

f(λ) dω(λ) and Iω̂ ≡
∫ ζ

ξ

f(λ) dω̂(λ). (5.5)

where t1, . . . , tk (resp. t̂1, . . . , t̂k) and ϑ1, . . . , ϑk (resp. ϑ̂1, . . . , ϑ̂k) are the cor-
responding quadrature nodes and weights. Although it seems natural that the
Gauss-Christoffel quadrature approximations (5.4) of the same degree should be
close to each other, the paper reveals that it is not true in the case when the
change of the distribution function affects the size of its support. It may happen
that the difference between the Gauss-Christoffel quadrature approximations Ikω
and Ikω̂ of the same degree become, for several values k, much larger than the
difference between the integrals Iω and Iω̂. There are several different algorithms
computing the Gauss-Christoffel quadrature and the paper [22] emphasizes that
this sensitivity phenomenon is independent of the particular choice of the algo-
rithm and that it is not caused by the effect of rounding errors. The paper also
concludes that the sensitivity is observable for discrete (i.e., piecewise constant),
continuous or even analytic distribution functions and for analytic integrands.

We illustrate this sensitivity in Figure 5.3 by reproducing the experiment
from [22, Section 2]. We use the distribution function ω(1)(λ) and the modified

distribution function ω
(1)
δ (λ) with δ = 10−8 and omit further in this section the

superscript (1). We study the Gauss-Christoffel approximations Ikω and Ikωδ
of the

integrals Iω and Iωδ
for the smooth integrand f(λ) = λ−1. In the top of Figure 5.3

we plot the errors |Ek
ω| = |Iω − Ikω| (dashed line) and |Ek

ωδ
| = |Iωδ

− Ikωδ
| (solid

line) and in the bottom we plot the difference between the integrals |Iω − Iωδ
|
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Figure 5.3: Illustration of the sensitivity of the Gauss-Christoffel quadrature
to the small change of the distribution function. The top graph shows the er-
rors of the k-th Gauss-Christoffel quadrature approximations for f(λ) = λ−1

corresponding to the piecewise constant distribution function ω(λ) (solid line)
and its modification ωδ(λ) with doubled points of increase (dashed line). The
bottom graph shows the size of the difference between these k-point approxima-
tions (dash-dotted line) and the difference between the approximated integrals∫ ζ

ξ
λ−1 dω(λ) and

∫ ζ

ξ
λ−1 dωδ(λ) (dots).

(dots) and the difference between the k-point Gauss-Christoffel approximations
|Ikω − Ikωδ

| (dash-dotted line). Whereas the difference between the integrals Iω
and Iωδ

is of order 10−12, the Gauss-Christoffel approximations start to differ and
the size of their difference reaches order 1 for k = 9. After that, the difference is
dominated by the quadrature error Ek

ωδ
as it follows from the identity

Ikω − Ikωδ
= (Iω − Iωδ

)− Ek
ω + Ek

ωδ
, (5.6)

where the first and the second term is of lower order for k ≥ 9.
This dramatic change in the approximations of the integral can be linked to

a sensitivity of the corresponding orthogonal polynomials. Although the distri-
bution functions ω(λ) and ωδ(λ) may seem to be very close, the corresponding
systems of orthogonal polynomials are quite different. Some of the zeros of the
orthogonal polynomials (i.e., the quadrature nodes) corresponding to ωδ(λ) start
to accumulate near the largest points of increase and thus, in comparison with
the orthogonal polynomials corresponding to ω(λ), fewer zeros are located near
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the other points of increase; see [22] for details. This phenomenon is closely
related to the fact that the presence of clustered eigenvalues affects the rate of
convergence of the CG method; see the explanation given in [31, 32] and the
discussion in [19, Section 5.6.5]. Consequently, the results of Greenbaum [10]
reviewed in Section 2.1 indicate a close correspondence between the sensitivity of
the Gauss-Christoffel quadrature and the convergence properties of the CG and
Lanczos methods in finite precision arithmetic.

5.2 Discontinuity in Gauss-Christoffel quadra-

ture

In this section we will study the behaviour of the Gauss-Christoffel quadrature
and its error Ek

ωδ
for different choices of the parameter δ. We are motivated by

the following observation: For any δ 6= 0, the distribution function ωδ(λ) has
N · s distinct points of increase and thus the integral Iωδ

is exactly computed just
by the Ns-point Gauss-Christoffel quadrature and not before, i.e., EN ·s

ωδ
= 0 and

Ek
ωδ

6= 0 for any k < N · s. Similarly, the distribution function ω(λ) ≡ ω0(λ)
has N finite points of increase and thus EN

ω0
= 0. Thus, if we define K(δ) as the

number of nodes of the Gauss-Christoffel quadrature needed to compute exact
value of the integral Iωδ

, we get the following kind of discontinuity: It holds that

N · s = lim
δ→0

K(δ) 6= K(0) = N. (5.7)

We illustrate this phenomenon in Figure 5.4 where on the left (resp. on the right)
we plot the curves of the error Eωδ

corresponding to the distribution function

ω
(1)
δ (λ) with N = 25, s = 2 (resp. ω

(2)
δ (λ) with N = 20, s = 5) for several different

values of the parameter δ. In agreement with the theoretical observation (5.7),
we see the necessity of 50 (resp. 100) quadrature points for exact computation of
the integral for distribution functions ωδ(λ) with δ 6= 0 compared to 25 (resp. 20)
points for δ = 0.

On the other hand, the quadrature error Ek
ωδ

is for any k ≤ Ns a continuous
function of parameter δ. More precisely, it holds that

lim
δ→0

Ek
ωδ

= Ek
ω0
, k = 0, 1, . . . , N (5.8)

and, since EN
ω0

= 0 and the error Ek
ωδ

is strictly decreasing in k,

lim
δ→0

Ek
ωδ

= 0, k = N,N + 1, . . . , N · s. (5.9)

In other words, the curve of the error Ek
ω, k = 1, . . . , N can be approximated

to arbitrary precision by choosing sufficiently small parameter δ. More formally,
for any ǫ > 0, we can find δ such that |Ek

ω − Ek
ωδ
| < ǫ, k = 1, . . . , N . The

validity of (5.8) can be proved using the relation between the Gauss-Christoffel
quadrature and the CG method. We know that

Ek
ωδ

= ‖xδ − xk(δ)‖2Aδ
(5.10)

where xδ = A−1
δ b, Aδ and b is from (5.3), and where xk(δ) is the corresponding

k-th CG approximation. The CG algorithm (see Algorithm I in page 7) gives
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Figure 5.4: Using two test problems, the convergence behaviour of the error Ek
ωδ

of the k-point Gauss-Christoffel quadrature approximation is compared for the
nonzero and zero parameter δ. The integral Iωδ

is computed exactly by the Gauss-
Christoffel quadrature iff its nodes are equal to the points of increase of ωδ(λ).
Thus EN

ω0
= 0 while for any δ 6= 0 the error remains nonzero till the Ns-point

quadrature INs
ωδ

.

that the formula for the approximation xk(δ) is a composition of a finite number
of continuous functions (denominators are strictly positive for k ≤ N) and thus
xk(δ) → xk(0) which, together with the continuity with respect to δ of the scalar
product y∗Aδz, gives (5.8).

This continuity is illustrated in Figure 5.5 on the two test problems with
distribution functions ω

(1)
δ (λ) in Figure 5.5(a) and ω

(2)
δ (λ) in Figure 5.5(b). In

the left part we see that for any given number of quadrature nodes k the error Ek
ωδ

approach for decreasing values of δ to the value of the error Ek
ω (or to the value 0

for k > N). In the right figure we plot the error Ek
ωδ

for several values of k as
a function of δ and we observe that for sufficiently small values of δ the error Ek

ωδ

drops to the level of the error Ek
ω.

An immediate consequence of the continuity of the k-th error is the following
observation: Let us define Kη(δ) as the number of quadrature nodes needed to
decrease the quadrature error below the given level η > 0, i.e.,

Kη(δ) = k iff Ek
ωδ

< η ≤ Ek−1
ωδ

. (5.11)

Then it holds
lim
δ→0

Kη(δ) = Kη(0), η > 0, (5.12)

cf., (5.7). In other words, for any level of accuracy η > 0 we can find sufficiently
small parameter δ such that the integral Iωδ

associated with the modified distribu-
tion function ωδ(λ) with clustered points of increase is approximated up to level of
accuracy η by the same number of quadrature nodes as the integral Iω associated
with the distribution function ω(λ) with single points of increase. Please note
that it is not in contradiction with the sensitivity phenomenon described in the
previous section where the modification parameter δ was fixed. The sufficiently
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δ (λ) — N = 20, s = 5.

Figure 5.5: The illustration of the continuity of the Gauss-Christoffel quadrature
error with respect to the parameter δ. Left: The error Ek

ωδ
of the k-point Gauss-

Christoffel quadrature approximations of the integral Iωδ
converge for k ≤ N

with decreasing δ to the error Ek
ω and, for k > N , to the value 0. Right: For

several values of k, we plot the process of convergence of the quadrature error to
the error Ek

ω as a function of the parameter δ.

small δ here may be extremely (asymptotically) small and with no relevance to
practical computations.

The validity of (5.12) is illustrated in Figure 5.6(a) for the test problem with

the distribution function ω
(1)
δ (λ) and in Figure 5.6(b) for ω

(2)
δ (λ). In the left

part of Figure 5.6, we plot the curves of the quadrature error for several different
parameters δ and, on each of these curves, we emphasize the number of quadrature
nodes sufficient to decrease the error below given levels of accuracy η = 10−80

(crosses), η = 10−40 (triangles) and η = ε (stars) where ε = 2−52 is the machine
precision unit in double precision arithmetic. We can see that the number of
quadrature nodes needed to suppress the error below the given level of accuracy
η > 0, i.e., the value Kη(δ), decreases with the parameter δ. This dependence is
illustrated in the right part of Figure 5.6 where we plot Kη(δ) as a function of δ
for several different levels of accuracy η > 0. In correspondence with (5.12) we
see that Kη(δ) → Kη(0) for any considered level η > 0 and that for sufficiently
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Figure 5.6: On the left, we plot the quadrature errors associated with the distri-
bution function ωδ(λ) for several different values δ and we emphasize (by stars,
triangles or crosses) the moment of reaching the given level of accuracy η > 0.
We see that the number of needed nodes is decreasing with the parameter δ. This
is illustrated in the right part where we plot the function Kη(δ) as a function of
δ for several different values of the level of accuracy η > 0 and we see that, for
sufficiently small δ, it reaches the value Kη(0).

small δ the number of nodes sufficient to decrease the quadrature error Ek
ωδ

below
the level η is the same as for the quadrature error Ek

ω0
.

The convergence behaviour of the error Eωδ
of the Gauss-Christoffel quadra-

ture approximations is conform with both statements (5.7) and (5.12), i.e., it
holds

lim
δ→0

Kη(δ) = Kη(0), η > 0, where Kη(δ) = k iff Ek
ωδ

< η ≤ Ek−1
ωδ

,

N · s = lim
δ→0

K(δ) 6= K(0) = N where K(δ) = k iff Ek
ωδ

= 0.

This observation illustrates the trickiness and the possible weakness of the anal-
ysis of the convergence behaviour based on the asymptotic arguments. Given
a particular parameter δ and a level of accuracy η > 0, it may be problematic
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Figure 5.7: The illustration of the asymptotic convergence behaviour of the
quadrature error. In dependence on the modification parameter δ and the given
level of accuracy η > 0 (horizontal dotted lines), the number of quadrature nodes
needed to decrease the quadrature error Ek

ωδ
below the level η can be close to N

as well as to N · s.

to determine whether the number of nodes k needed to decrease the quadrature
error Ek

ωδ
below the level η is close to N or N ·s; see the illustration in Figure 5.7.

In order to get more detail information about the asymptotic behaviour of the
quadrature error for δ → 0, we study in Figure 5.8, on the example of our two
test distribution functions ω

(1)
δ (λ) and ω

(2)
δ (λ), the rate of decrease of the error.

We measure this rate by the ratio of the quadrature errors associated with two
consecutive values of the parameter δ, i.e., in the right part of Figure 5.8(a) we
plot four curves obtained by the points


k;

Ek

ω
(1)

10−85

Ek

ω
(1)

10−84

,

Ek

ω
(1)

10−90

Ek

ω
(1)

10−89

,

Ek

ω
(1)

10−95

Ek

ω
(1)

10−94

,

Ek

ω
(1)

10−100

Ek

ω
(1)

10−99


 , k = 1, 2 . . . , N · s.

and in the right part of Figure 5.8(b) we plot four curves obtained by the points

k;

Ek

ω
(2)

10−40

Ek

ω
(2)

10−39

,

Ek

ω
(2)

10−45

Ek

ω
(2)

10−44

,

Ek

ω
(2)

10−50

Ek

ω
(2)

10−49

,

Ek

ω
(2)

10−55

Ek

ω
(2)

10−54


 , k = 1, 2 . . . , N · s.
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Figure 5.8: The shapes of the curves of the quadrature error (lines on the left) for
sufficiently small parameters δ correspond to each other such that the ratios (lines
on the right) of two quadrature errors for two consecutive values of δ significantly
coincide. Moreover, we observe a strict separation of the individual stages where
the number of these stages is equal to the parameter s (2 stages in (a) and 5 stages
in (b)).

In the left part of Figure 5.8, we observe that for sufficiently small parameters δ,
the shape of the curves of the quadrature error is very similar; see in particular
the left part of Figure 5.8(b). The correspondence among the curves is so tight
that the ratios plotted in the right part of Figure 5.8 significantly overlaps each
other, i.e., the results of our numerical experiments indicate that asymptotically
(i.e., for sufficiently small parameters δ) the error decreases with the same rate
for different values of δ. Moreover, we observe a significant separation of the rate
of decrease into several stages. The formulated observations seems valid only in
the asymptotic sense (i.e., for sufficiently small parameters δ) while these phe-
nomenons were not so visible in the numerical experiments with larger parameters
δ ≈ 10−10, 10−20.

We consider this topic worth of further study. In particular, we would like
to study the phenomenon of several stages of the rate of decrease, we strongly

38



believe that the correspondence between the number of stages and the number of
clustered points of increase is not accidental. Furthermore, it may be interesting
to perform these experiments also with other integrands f(λ).
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Conclusion

This thesis is focused on the convergence behaviour of the CG method both in
exact and finite precision arithmetic. We have briefly reviewed the close link of
the CG method with the Lanczos method, orthogonal polynomials, the problem
of moments and the Gauss-Christoffel quadrature. These relationships can help
to understand that the CG method represents a highly nonlinear finite process
and that its analysis requires mathematical tools different from those used for
the linear stationary or semi-iterative methods. We have described in detail
the fundamental difference between the CG method and the Chebyshev semi-
iterative method and we have explained that the widespread linear convergence
bound based on the extremal properties of the Chebyshev polynomials is relevant
for the CSI method but, in general, has a little in common with the practical rate
of convergence of the CG method.

We would like to emphasize that the CG method is computationally based on
short recurrences and thus the analysis relevant to practical computations must
take into account the delay of convergence caused by the loss of orthogonality
among the computed direction vectors. We have briefly reviewed the theoretical
results which enable to understand the mechanism of this delay of convergence.
We have demonstrated that the rate of convergence of the CG method in finite
precision can be substantially different from the rate of convergence of CG in
exact arithmetic and we have shown that the composite polynomial convergence
bounds based on explicit annihilation of the large outlying eigenvalues (which
hold assuming exact arithmetic) must inevitably fail in finite precision CG com-
putations.

Whereas the CG convergence rate may substantially differ in finite precision
and exact computations, we have observed that the trajectory of the approxima-
tions or the energy norm of the error is very similar. We have shifted back the
results of finite precision computations by the numerical rank-deficiency of the
computed Krylov subspaces and we have observed close correspondence to the
results of exact computations. Moreover, we have observed that the computed
rank-deficient Krylov subspace span numerically nearly the same subspace as the
Krylov subspace of the corresponding rank generated by the CG method in exact
arithmetic.

This correspondence is worth of further study. This should include the deriva-
tion of a technique which would quantitatively measure the distance between the
generated subspaces. We also intend to study the trajectories of finite precision
and exact computations in other Krylov subspace methods. Together with the
phenomenon of the sensitivity of the Gauss-Christoffel quadrature outlined in the
last chapter, these questions may motivate our further research.
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A. List of experimental data

Here we describe the matrices (or points of increase of piecewise constant distri-
bution function) used in this thesis.

Spectrum 1(N, λ1, λN , ρ)

A diagonal matrix with the following spectrum. Given N, λ1 > 0, λN > 0 and
ρ ∈ (0, 1] the inner eigenvalues are given by the formula

λi = λ1 +
i− 1

N − 1
(λN − λ1)ρ

N−i i = 2, . . . , N − 1.

The parameter ρ determines the non-uniformity of the spectrum. For ρ ≪ 1 the
eigenvalues tend to cumulate near λ1 and for ρ = 1 the spectrum is distributed
uniformly. This type of spectrum was introduced in [29].

Spectrum 1-Q(N, λ1, λN , ρ)

Given a diagonal matrix Λ of type Spectrum 1 and random unitary matrix Q,
we define A = QΛQT .

Spectrum 2(N, λ1, λN , ρout,m, ρin)

Diagonal matrix generated in two steps:

1. Run Spectrum 1(N, λ1, λN , ρout)

2. Run Spectrum 1(N −m,λ1, λN−m, ρin) and thus rewrite λ2, . . . , λN−m−1.

This type of spectrum is used in the enclosed paper; see Appendix B.

Spectrum 2-Q(N, λ1, λN , ρout,m, ρin)

Given a diagonal matrix Λ of type Spectrum 2 and random unitary matrix Q,
we define A = QΛQT .

Bcsstk04

Matrix from the MatrixMarket database; see http://math.nist.gov/MatrixMarket/
Basic properties: symmetric positive definite; N = 132; κ ≈ 5.6e+ 06.
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B.1 Introduction

In this paper we consider the method of conjugate gradients (CG) {33} for solving
linear algebraic systems Ax = b, where A ∈ C

N×N is Hermitian and positive
definite (HPD) matrix which is typically large and sparse. Given an initial guess
x0 and r0 = b−Ax0, the CG approximations xk are uniquely determined by the
relations

xk ∈ x0 +Kk(A, r0), rk ⊥ Kk(A, r0), k = 1, 2, . . . ,

where rk = b− Axk is the k-th residual and

Kk(A, r0) ≡ span{r0, Ar0, . . . , Ak−1r0}

is the k-th Krylov subspace associated with the matrix A and the vector r0.
Apart from simple examples, CG can not be applied without preconditioning.

Throughout this paper we assume that Ax = b represents the preconditioned
system. CG can be introduced in more general infinite dimensional Hilbert space
settings; see, e.g. {Chapter III, Sections 2 and 4, 61}, {19, 62}, and also the recent
descriptions using the Riesz map in, e.g., {38, 30}. Throughout this paper, the
finite dimensional linear algebraic formulation will be sufficient. If A and b results
from preconditioning of discretized operator equation (as in numerical solution of
partial differential equations), then the preconditioning is often motivated by the
operator context; see, e.g. {59, 22, 5, 34, 7, 52, 38}. In practical computations,
preconditioning is incorporated into the algorithm and the preconditioned system
Ax = b is not formed. For an analytic investigation of the rate of convergence
assuming exact arithmetic this difference is not important. In finite precision
arithmetic, convergence is delayed due to the loss of orthogonality among the
computed direction (residual) vectors. This can be conveniently demonstrated
using the preconditioned system Ax = b without going into further details on the
particular preconditioning technique. An example of a detailed rounding error
analysis can be found, e.g., in {56}.

B.1.1 CG, Gauss-Christoffel quadrature and the Stieltjes
moment problem

Throughout the paper we assume that A ∈ C
N×N is HPD with the spectral

decomposition

A = U diag(λ1, . . . , λN)U
∗, U∗U = UU∗ = I (B.1)

where for simplicity of notation 0 < λ1 < . . . < λN and U = [u1, . . . , uN ]. Using
this spectral decomposition, v1 ≡ r0/‖r0‖ and ωj ≡ |(v1, uj)|2, j = 1, . . . , N , the
moments of the distribution function ω(λ) determined by the nodes λ1, . . . , λN

and the weights ω1, . . . , ωN are given by

N∑

j=1

ωjλ
k
j = v∗1A

kv1, k = 0, 1, 2, . . . . (B.2)

The n-node Gauss-Christoffel quadrature of the monomials then determines the
n nodes θ

(n)
l and weights ω

(n)
l , l = 1, . . . , n, of the distribution function ω(n)(λ)
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such that the first 2n moments of the distribution function ω(λ) are matched,
i.e.,

n∑

l=1

ω
(n)
l {θ(n)j }k = v∗1A

kv1, k = 0, 1, 2, . . . , 2n. (B.3)

Here the sums on the left hand sides of (B.2) and (B.3) can be expressed via the
Riemann-Stieltjes integrals for the monomials with respect to the distribution
functions ω(λ) and ω(n)(λ) respectively.

As explained in {Section 3.5, 37} with references to many earlier publica-
tions, CG applied to Ax = b with the initial residual r0 can be understood
as a process generating the sequence of the distribution functions ω(n)(λ), n =
1, . . . , N approximating the original distribution function ω(λ) in the sense of the
Gauss-Christoffel quadrature. Equivalently, CG (implicitly) solves the (simpli-
fied) Stieltjes moment problem (B.2)–(B.3). The energy norm of the CG error is
then given by

‖x− xn‖2A =‖r0‖2
(

N∑

j=1

ωjλ
−1
j −

n∑

l=1

ω
(n)
l {θ(n)l }−1

)
(B.4)

=‖r0‖2
N∑

j=1

n∏

l=1

(
1

λ
1/2
j

−
λ
1/2
j

θ
(n)
l

)2

ωj ; (B.5)

see {Section 5.6.1, Corollary 5.6.2 and Theorem 5.6.3, 37}. The nodes θ
(n)
l and

the weights ω
(n)
l are the eigenvalues and the squared first components of the

associated normalized eigenvectors of the Jacobi matrix Tn generated in the first
n steps of the Lanczos process applied to the matrix A with the initial vector v1.
The matrix Tn represents the operator A : CN → C

N restricted and orthogonally
projected onto the n-th Krylov subspace Kn(A, r0), which reveals the degree of
nonlinearity with respect to A; see, e.g., {61, 12, 37}1.

Recalling the previous facts prior to starting a discussion of a-priori bounds or
estimates for the CG rate of convergence (based on some simplified information
extracted from A and b) makes a good sense for the following reason. Any such
bound or estimate has to deal with the tremendous nonlinear complexity of the
expressions (B.4) and (B.5). Further details can be found, e.g., in {37, 24, 41}.

B.1.2 Comments on the a-priori analysis of the CG rate
of convergence

A-priori analysis of the rate of convergence of CG (as well as of other Krylov sub-
space methods) focuses on certain relatively simple characteristics of the problem
which can conveniently be linked (if applicable) with the underlying system of
infinite dimensional operator equations, its preconditioning and discretisation.
A condition number of the preconditioned discretized operator in combination
with some information on large or small eigenvalues may serve as the most typical
example of such characteristics. Following the functional analysis-based investi-
gation in {45} as well as experimental observations, it is assumed that the rate

1The nonlinearity with respect to b has recently been studied in {26}.
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of convergence follows the following three consecutive phases (see {Section 1.3,
45}):

“in the early sweeps the convergence is very rapid but then slows down,
this is the sublinear behavior. The convergence then settles down to a
roughly constant linear rate. . . . Towards the end new speed may be
picked up again, corresponding to the superlinear behavior.”

Heuristic arguments on CG based on the spectrum of A are used to support this
assumption (see also {Section 1, 6}). It should be taken into account, however,
that this assumption and the supporting heuristics are based on experience with
some spectral distributions. It can not be generalized to all practical problems.
This is made clear in {45} by the sentence almost immediately following the
quoted one given above:

“In practice all phases need not be identifiable, nor they appear only
once and in this order.”

The sublinear, linear and superlinear phases are analysed in literature using var-
ious tools; see, e.g., {45, 62, 6} or the survey in {Sections 2–4, 7}. Section 3.2 of
{6} gives a nice example on how the reasoning about an initial sublinear phase
can be applied in practice; see also {4}.

Applications of the results associated with particular phases to practical com-
putations or to analysis of a particular problem requires verification whether the
assumptions used in derivations are met in the given problems. Here the asymp-
totic reasoning requires a special attention. As stated in {p. 113, 22}:

“Methods with similar asymptotic work estimates may behave quite
differently in practice”.

Krylov subspace methods are mathematically finite. Therefore, strictly speaking,
in Krylov subspace methods there is no asymptotic present at all.

In relation to the last point it is sometimes argued in literature that due to
rounding errors Krylov subspace methods do not terminate in a finite number
of steps and therefore they are considered iterative methods which also justifies
use of asymptotic bounds. In our opinion this point is not valid. First, effects of
rounding errors depend on whether methods are implemented via short or long
recurrences; see {Sections 5.9 and 5.10, 37}. Second, the standard CG imple-
mentation is based (for a good reason; see, e.g., the surveys in {41} and {31}) on
coupled two-term recurrences. In finite precision arithmetic the orthogonality of
the computed residuals (or direction vectors) can not be, in general, preserved,
which results in a delay of convergence. The mechanism of this delay is well un-
derstood, and its consequences should not be interpreted as making the iteration
process infinite.

This is immediately clear from the other effect of rounding errors, called maxi-
mal attainable accuracy. The accuracy of the computed approximate solution can
not be improved below some level of the error determined by the implementation,
computer arithmetic and the input data; see, e.g., {Section 7.3, 28}, {Section 5.4,
41}, {Section 5.9.3, 37} and the references given there. CG as well as other Krylov
subspace methods are considered iterative because the iteration can be stopped
whenever the user-specified accuracy is reached; see, e.g. {Section 2.4.2, 32} and
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{p. 450, 3}. The stopping criteria must be based on a-posteriori error analysis;
see, e.g. {in particular Section 4.1, 1} for a recent survey of the context in adap-
tive numerical solution of elliptic partial differential equations, as well as {20}
and {Appendix A, 3} for some early examples.

Throughout this paper we assume that the iteration is stopped before the
maximal attainable accuracy is reached. Such assumption can not be taken in
practical computations for granted. It must be justified by a proper numerical
stability analysis (a simple a-posteriori check can be based on comparison of the
iteratively and directly computed residuals). A detailed exposition of the related
issues is out of the scope of this paper and we refer the interested reader to the
literature given above.

In summary, a-priori analysis of the CG rate of convergence must take into
account a possible delay of convergence due to rounding errors. Since in CG
computations keeping short recurrences is essential, which inevitably results in a
loss of orthogonality, developing bounds or estimates which are to be applied to
practical computations can not assume exact arithmetic.

B.1.3 Analysis based on Chebyshev polynomials

In this paper we focus on the most common a-priori analysis of the CG con-
vergence rate based on Chebyshev polynomials. The rate of convergence of CG
is associated with linear convergence bounds derived using scaled and shifted
Chebyshev polynomials in hundreds of papers and essentially in every textbook
covering the CG method. As argued in Section B.1.1 above, the CG method
and therefore also its convergence rate are, however, nonlinear and its conver-
gence often tends to accelerate, with more or less pronounced variations, during
the iteration process. Axelsson {2} and Jennings {35} suggested in this con-
text composite polynomial bounds based on explicit annihilation of the outlying
eigenvalues. Such bounds seemed to offer an illustrative explanation especially in
case when large outlying eigenvalues were present in the spectrum.2 These com-
posite polynomial bounds assumed exact arithmetic. As rounding errors may
substantially delay convergence of the CG method, it is not clear whether the
composite polynomial bounds and the conclusions based on them apply to finite
precision CG computations. A motivating example is presented in Figure B.1. It
indeed shows that a composite polynomial bound can fail to describe CG con-
vergence quantitatively and even qualitatively. The difficulty has been to some
extent noticed already by Jennings in the paper {35}, and also by van der Sluis
and van der Vorst {58} who therefore restrict themselves to the case of small
outlying eigenvalues, where the difficulty caused by finite precision arithmetic is
not strongly pronounced. In the rest of the paper we deal with the composite
polynomial bounds with large outlying eigenvalues. They are used for quantita-
tive evaluation of CG convergence and conclusions based on them are published
in recent literature.

The paper is organized as follows. In Section B.2 we briefly clarify the re-
lationship between the CG method, the CSI method and the well known linear

2It should be understood, however, that the spectral upper bounds do not necessarily de-
scribe the actual CG convergence behaviour for particular right hand sides (initial residuals);
see, e.g., {Sections 5.6.1–5.6.3, 37} and {9, 10, 11, 43, 44}.
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Figure B.1: Rounding errors can cause a substantial delay of convergence in finite
precision CG computations (solid line) in comparison to their exact precision
counterpart (dash-dotted line). A composite polynomial bound (dashed line)
fails to describe the finite precision CG behaviour quantitatively (the slope given
by the bound is not descriptive) and qualitatively (the staircase-like shape of the
convergence curve).

convergence bound derived using Chebyshev polynomials. Section B.3 describes
the construction of the composite polynomial bounds and comments on their
properties. In Section B.4 we use results of the backward-like analysis by Green-
baum and compare exact CG computations where matrices have well separated
individual eigenvalues, with exact CG computations where matrices have corre-
sponding well separated clusters of eigenvalues. We conclude that a “bird’s eye
view” of the spectrum can be misleading in Krylov subspace methods. Based
on that we examine validity of the composite polynomial bounds for finite pre-
cision CG computations. We conclude and numerically demonstrate that in the
presence of large outlying eigenvalues such bounds have, apart from simple ex-
ceptions, little in common with the finite precision behaviour of the CG method.
Section B.5 presents numerical experiments which illustrate in detail shortcom-
ings of the composite polynomial bounds. Concluding remarks summarize the
presented clarifications and formulate recommendations for evaluation of the CG
rate of convergence.

Writing this paper is motivated by persisting misunderstandings reappearing
in literature. This is not meant as a criticism or a negative statement. Our point
is that the whole matter is very complex and this should be taken into account
whenever any simplification is made. The presented formulas are not new, but,
except for the Chapter 5 of the monograph {37}, they have not been, to our
knowledge, presented in a comprehensive way in a single publication. Most of
the points are presented in {37}, but their placement is subordinate to the orga-
nization of the whole monograph, which addresses many related as well as many
distant topics. Therefore we consider useful to publish this focused presentation,
which in some parts (in particular Section B.4 and Section B.5) complements the
presentation in {37} by some new observations. In comparison to a monograph
covering much larger area, presentation in the paper allows to focus on interpre-
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tation of the formulas. We believe that here the interpretation is more important
than the formulas themselves. A need for the correct interpretation can be un-
derlined by the following quote presented (in a somewhat related context) in the
instructive paper by Faber, Manteuffel and Parter {p. 113, 22}:

“There is no flaw in the analysis, only a flaw in the conclusions drawn
from the analysis.”

B.2 Chebyshev semi-iterative method, conjugate

gradient method and their convergence

bounds

The idea of the Chebyshev semi-iterative (CSI) method can be linked, with the
works of Flanders and Shortley {23}, Lanczos {36} and Young {63}. The CSI
method requires a knowledge or estimation of the extreme eigenvalues λ1 < λN

of A and it can be implemented using the three-term recurrence relation for the
Chebyshev polynomials; see, e.g., {Chapter 5, 60}.

The CSI method can be viewed as a polynomial acceleration of the stationary
Richardson iterations {50} where the k-th error can be written as

x− xk = φR
k (A)(x− x0), (B.6)

and the iteration polynomial

φR
k (λ) =

(
1− 2λ

λ1 + λN

)k

belongs to the set of polynomials of degree k with the constant term equal to one
(i.e. having the value one at zero). As has been already observed by Richardson
in {50}, replacing the k-multiple root of the iteration polynomial φR

k (λ) by k
distinct roots may lead to faster convergence. The CSI method is motivated by
the following reasoning. Let

x− xk = φk(A)(x− x0),

where φk(λ), φk(0) = 1, represents the polynomial of degree at most k. Then the
A-norm of the error

‖x− xk‖A = {(x− xk)
∗A(x− xk)}

1
2

is given by
‖x− xk‖A = ‖φk(A)(x− x0)‖A (B.7)

and using the spectral decomposition (B.1) of A the relative A-norm of the error
satisfies

‖x− xk‖A
‖x− x0‖A

≤ ‖φk(A)‖ = max
j=1,...,N

|φk(λj)| . (B.8)
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The right hand side in (B.8) is independent of the right hand side b and thus
it represents the worst case upper bound. Maximizing over the whole interval
[λ1, λN ] instead of the discrete set of eigenvalues λ1, . . . , λN gives the bound

‖x− xk‖A
‖x− x0‖A

≤ max
λ∈[λ1,λN ]

|φk(λ)| . (B.9)

Setting the roots of the iteration polynomial φk(λ) as the roots of the shifted
Chebyshev polynomial

χk(λ) =





cos

(
k arccos

(
2λ− λN − λ1

λN − λ1

))
for λ ∈ [λ1, λN ],

cosh

(
k arccosh

(
2λ− λN − λ1

λN − λ1

))
for λ /∈ [λ1, λN ],

(B.10)

is motivated by the fact that

φk(λ) ≡ χk(λ)/χk(0) (B.11)

represents the unique solution of the minimization problem

min
φ(0)=1

deg(φ)≤k

max
λ∈[λ1,λN ]

|φ(λ)| (B.12)

originally solved by Markov {39}. In words, the k-th shifted and scaled Chebyshev
polynomial has the minimal maximum norm on the interval [λ1, λN ] among the
set of all polynomials of degree at most k having the value one at zero.

Substituting (B.11) into (B.9) and using |χk(λ)| ≤ 1 for λ ∈ [λ1, λN ] results
in the bound for the relative A-norm of the error

‖x− xk‖A
‖x− x0‖A

≤ |χk(0)|−1 , k = 0, 1, 2, . . . ; (B.13)

see {Section 2, 63}. The alternative definition of the Chebyshev polynomials

χk(γ) =
1

2

((
γ + (γ2 − 1)

1
2

)k
+
(
γ + (γ2 − 1)

1
2

)−k
)

(B.14)

(see, e.g., {Section 1.1, 51}) gives with the shift γ = (2λ − λN − λ1)/(λN − λ1)
used in (B.10) after a simple manipulation

|χk(0)| =
1

2



(√

κ(A) + 1√
κ(A)− 1

)k

+

(√
κ(A)− 1√
κ(A) + 1

)k

 ≥ 1

2

(√
κ(A) + 1√
κ(A)− 1

)k

(B.15)
where κ(A) = λN/λ1 is the condition number of A. This gives the convergence
bound for the CSI method, which was published in this form by Rutishauser
{II.23, 21} in 1959,

‖x− xk‖A
‖x− x0‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

, k = 0, 1, 2, . . . . (B.16)
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The CG approximations xk minimize the A-norm of the error over the mani-
folds x0 +Kk(A, r0); cf. {Theorem 4.1, 33}. Equivalently,

‖x− xk‖A = min
ϕ(0)=1

deg(ϕ)≤k

‖ϕ(A)(x− x0)‖A (B.17)

= min
ϕ(0)=1

deg(ϕ)≤k

{
N∑

j=1

|ξj|2 λjϕ
2(λj)

}1/2

, (B.18)

where |ξj| represents the size of the component of the initial error x − x0 in the
direction of the eigenvector uj corresponding to λj, i.e.,

x− x0 =
N∑

j=1

ξjuj (B.19)

and, similarly to (B.18),

‖x− x0‖A =

{
N∑

j=1

|ξj|2 λj

}1/2

. (B.20)

The formula (B.17) leads, using the spectral decomposition (B.1) of A, to the
bound for the relative A-norm of the error

‖x− xk‖A
‖x− x0‖A

≤ min
ϕ(0)=1

deg(ϕ)≤k

max
j=1,...,N

|ϕ(λj)| ; (B.21)

cf. (B.8). This bound is independent on the right-hand side b and thus it repre-
sents the worst case upper bound for the CG method. Since

min
ϕ(0)=1

deg(ϕ)≤k

max
j=1,...,N

|ϕ(λj)| ≤ |χk(0)|−1 max
j=1,...,N

|χk(λj)| ≤ |χk(0)|−1 , (B.22)

we can apply (B.15) and conclude that the bound (B.16) must also hold for the
CG method.

Now we come to the point which is fundamental but still very rarely men-
tioned in literature. It should be acknowledged that (B.16) represents the bound
for the CSI method; see the very clear description given by Rutishauser in {21}.
This bound holds for the CG method because the optimal polynomial giving the
minimum in (B.21) can be bounded using (B.22). The behaviour of ‖x− xk‖A for
some given initial error (residual) is, however, given by (B.18), which can be sub-
stantially different than suggested by (B.21) and therefore certainly substantially
different than suggested by the CSI error bound (B.16). The different nature of
the CG and CSI methods is clear also from the comparison of the minimization
problems (B.12) and (B.18). Whereas the CSI norm of the error can be tightly
bounded by the minimization problem over the whole interval [λ1, λN ], the CG
norm of the error is determined by the discrete minimization problem.

We have presented the (known) derivation in detail in order to avoid further
misinterpretations of the relationship between the CSI and CG methods and of
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the relationship of the bound (B.16) to the CG rate of convergence. In short, as
described in Section B.1.1, CG solves the simplified Stieltjes moment problem.
Therefore the CG iteration polynomials ϕk(λ), k = 0, 1, . . . , N defined by (B.17)
are orthogonal with respect to the (discrete) inner product determined by the
Riemann-Stieltjes integral with the distribution function ω(λ). The Chebyshev
polynomials χk(λ), k = 0, 1, . . . are orthogonal with respect to the certain con-
tinuous and discrete inner products which contain apart from the extremal eigen-
values λ1 and λN no further information about the data A, b and r0 (or x− x0);
see, e.g. {Section 1.5, 51} and {Theorem 4.5.20, 16}. Polynomials orthogonal
with different inner products can indeed be very different. Therefore it is beyond
any doubt that, except for very special situations, the bound (B.16) relevant for
the CSI method has a very little in common with the rate of convergence of the
CG method. Further details and extensive historical comments can be found in
{Section 5.6.2, 37}.

The upper bound (B.16) implies that, in exact arithmetic,

kǫ =

⌈
1

2
ln

(
2

ǫ

)√
κ(A)

⌉
(B.23)

iterations ensure the decrease of the relative energy norm of the CSI (and therefore
also CG) error below the given level of accuracy ǫ > 0 (here ⌈·⌉ denotes rounding
up to the nearest integer). As justified in {27, 29}, using results of a thorough
analysis, the presented results hold, with a small correction, also for finite preci-
sion arithmetic CG computations. When κ(A) = λN/λ1 ≈ 1, the linear system
is easily solvable. Using the bound (B.16) and the iteration count (B.23) for CG
computations then does not cause any harm. But in such cases one should also
ask whether the CG method is really needed for solving such problems. Simpler
methods might be fast enough. If κ(A) ≫ 1, then, depending on the distribu-
tion of the spectrum inside the interval [λ1, λN ], the CG method and the CSI
method can naturally perform very differently. In such cases an application of
the bound (B.16) to the CG method should always be accompanied with an
appropriate justification.

B.3 Composite polynomial bounds and super-

linear convergence assuming exact

arithmetic

As mentioned above, the superlinear convergence behaviour of the CG method
in exact arithmetic was explained by Axelsson {2} and Jennings {35} using com-
posite polynomial bounds. For any given polynomial qm(λ) of degree m ≤ k
satisfying qm(0) = 1 we obtain

min
ϕ(0)=1

deg(ϕ)≤k

max
j=1,...,N

|ϕ(λj)| ≤ min
ϕ(0)=1

deg(ϕ)≤k−m

max
j=1,...,N

|qm(λj)ϕ(λj)| , (B.24)

where the minimax problem on the right hand side considers the composite poly-
nomial qm(λ)ϕ(λ). In order to describe the superlinear convergence in case of
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large outlying eigenvalues, Axelsson and Jennings propose in {2, 35} the follow-
ing natural choice

qm(λ) =
N∏

j=N−m+1

(
1− λ

λj

)
. (B.25)

Since the polynomial qm(λ) given by (B.25) has by construction its roots at the
m largest eigenvalues, the relative A-norm of the error is bounded, using (B.21)
and (B.24), as

‖x− xk‖A
‖x− x0‖A

≤ min
ϕ(0)=1

deg(ϕ)≤k−m

max
j=1,...,N

|qm(λj)ϕ(λj)| (B.26)

≤ max
j=1,...,N−m

|qm(λj)| min
ϕ(0)=1

deg(ϕ)≤k−m

max
j=1,...,N−m

|ϕ(λj)| . (B.27)

The polynomial ϕ(λ) is evaluated only at the eigenvalues λ1, . . . , λN−m. Therefore
the use of the composite polynomial

qm(λ)χk−m(λ)/χk−m(0), (B.28)

where χk−m(λ) denotes the Chebyshev polynomial of degree k−m shifted to the
interval [λ1, λN−m], results using |qm(λj)| ≤ 1 for j = 1, . . . , N −m, analogously
to Section B.2, in the bound

‖x− xk‖A
‖x− x0‖A

≤ 2

(√
κm(A)− 1√
κm(A) + 1

)k−m

, k = m,m+ 1, . . . , (B.29)

where κm(A) ≡ λN−m/λ1 is the so-called effective condition number. This quan-
tity is typically substantially smaller than the condition number κ(A) which
indicates possibly faster convergence after m initial iterations. Illustration of
the composite polynomial (B.28) is for k = 8, m = 2, and the eigenvalues
λ1 = 0.1, λN−2 = 6, λN−1 = 9 and λN = 15 given in Figure B.2. As we can
immediately observe, the composite polynomial has even for small N , k and
small κ(A) and κm(A) very large gradients close to the outlying eigenvalues λN−1

and λN . This observation will be important below.
Using an idea analogous to {58}, CG computations with the initial error x−x0

are compared in {Theorem 5.6.9, 37} to CG computations with the initial error
x− x̃0 obtained from x− x0 by neglecting the components ξj in the direction of
the m eigenvectors corresponding to the m largest eigenvalues,

‖x− x̃0‖A =

{
N−m∑

j=1

|ξj|2 λj

}1/2

. (B.30)

This comparison gives the following formula

‖x− x̃k‖A ≤ ‖x− xk‖A ≤ ‖x− x̃k−m‖A , k = m,m+ 1, . . . (B.31)

The right inequality in (B.31) shows that CG computation for Ax = b with the
initial error x−x0 (the initial residual r0 = b−Ax0) is from its m-th iteration at
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Figure B.2: Illustration of the composite polynomial (B.28) with k = 8 and
m = 2. The polynomial has roots at two large outlying eigenvalues and on the
rest of the spectrum is small due to the minimax property of the Chebyshev
polynomials. Here the underlying matrix of dimension N would have two largest
eigenvalues λN = 15, λN−1 = 9 and the remaining eigenvalues would be arbitrarily
distributed in the interval [0.1, 6].

least as fast as CG computations for Ax = b with the initial error x− x̃0 from the
start. Dividing this inequality by ‖x− x0‖A and using ‖x− x̃0‖A ≤ ‖x− x0‖A
we get the upper bound (B.29) based on the idea of composite polynomial, indeed

‖x− xk‖A
‖x− x0‖A

≤ ‖x− x̃k−m‖A
‖x− x̃0‖A

≤ 2

(√
κm(A)− 1√
κm(A) + 1

)k−m

, k = m,m+ 1, . . . .

(B.32)
This upper bound can be interpreted as if the first m CG iterations “annihilate”
the m large outlying eigenvalues with the subsequent convergence rate bounded
linearly by (B.32). It should be noted, however, that this is nothing but an
interpretation. CG computations do not work that way; see also {Section 5.6.4,
37}.

Analogously to (B.23) in Section B.2 we get from the upper bound (B.32)
that after

kǫ = m+

⌈
1

2
ln

(
2

ǫ

)√
κm(A)

⌉
(B.33)

iterations, the relative A-norm of the error drops below the given tolerance ǫ; see
{p. 132, 2}, {relation (5.9), 35} as well as the recent application of this formula
in {Theorem 2.5, 53}.

It should be emphasized, however, that all this is true only in exact arithmetic.
The rest of the paper explains that, in general, this approach must fail in finite
precision arithmetic. The failure of the composite polynomial bounds in finite
precision CG computations can be explained by the fact that the closely related
Lanczos method computes in finite precision arithmetic repeated approximations
of large outlying eigenvalues. This was observed by many authors and it led
to results explaining finite precision behaviour of the Lanczos and CG methods;
see, in particular, {49, 27, 40} and the survey {41} referring to extensive further
literature. Despite the theoretical and experimental counterarguments, the com-
posite polynomial bounds and the related asymptotic convergence factor ideas
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with neglecting eigenvalues away from the rest of the spectrum as insignificant
are tempting to be used for justification of cost in CG computations; see e.g.
{Remark 2.1, 38}, {Section 20.4, 57} and {Theorem 2.5, 53}. In the rest of the
paper we restrict ourselves to investigation of the bound (B.32) and the formula
(B.33). Other approaches not based on Chebyshev polynomials should be in the
presence of large outlying eigenvalues examined analogously.

B.4 Analysis of the composite polynomial

bounds in finite precision arithmetic

The CG method determines in exact arithmetic an orthogonal basis of the Krylov
subspace Kk(A, r0) given by the residuals rj, j = 0, 1, . . . , k−1. However, in finite
precision CG computations the orthogonality of the computed residual vectors
is (usually quickly) lost and they often become even (numerically) linearly de-
pendent. Consequently, the computed residual vectors may at the step k span a
subspace of dimension smaller than k. This rank-deficiency of computed Krylov
subspace bases thus determines delay of convergence of finite precision compu-
tations, which can be defined as the difference between the number of iterations
required to attain a prescribed accuracy in finite precision computations and the
number of iterations required to attain the same accuracy assuming exact arith-
metic.
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Figure B.3: The sequence of the composite polynomial bounds (B.29) (dashed
lines) for increasing number of deflated large eigenvalues (m = 0, 3, 6, . . .) is
compared with the results of finite precision CG computations (bold solid line)
and exact CG computations (dash-dotted line).

The bound (B.29) and the number of iterations (B.33) were derived assuming
exact arithmetic and therefore they do not reflect possible delay of convergence.
In finite precision CG computations they suffer from a fundamental difficulty out-
lined in Figure B.1 and illustrated in more detail in Figure B.3. Here the dashed
lines plot the sequence of the composite polynomial bounds (B.29) with increas-
ing number of the large eigenvalues of A considered as outliers (m = 0, 3, 6, . . .).
The bold solid line represents the convergence curve of the finite precision CG
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and the dash-dotted line the CG behaviour assuming exact arithmetic3. Compu-
tations were performed using a symmetric positive definite diagonal matrix A of
the size N = 50 with the eigenvalues 0 < λ1 < λ2 < . . . < λN−1 < λN , where
λ1 = 0.1, λN = 104, the inner eigenvalues were given by the formula

λi = λ1 +
i− 1

N − 1
(λN − λ1)ρ

N−i i = 2, . . . , N − 1 (B.34)

and ρ = 0.8; see {54, 29, 40}. The parameter ρ ∈ (0, 1] determines the non-
uniformity of the spectrum. For ρ ≪ 1 the eigenvalues tend to cumulate near λ1

and for ρ = 1 the spectrum is distributed uniformly. In our experiments we
use the vector b of all ones, i.e., b = [1, . . . , 1]T . We observe that the linear
convergence bounds determine (a close) envelope for the exact arithmetic CG
convergence curve. This is in correspondence with the intuitive explanation of
the superlinear convergence behaviour of CG in exact arithmetic presented in
literature. The data in this example do not represent a purely academic case.
Spectra with large outlying eigenvalues do appear in practice; see e.g., {8} for an
early study on this related to preconditioning techniques.

The point is that none of the straight lines describes the finite precision con-
vergence behaviour, as can be seen by comparing the dashed lines with the bold
solid line. Evidently, the composite polynomial bounds (B.29) can not be used,
in general, as upper bounds.

The finite precision behaviour of the Lanczos and CG methods was analyzed,
in particular, by Paige and Greenbaum; see {27, 48, 49}. Shortly speaking,
Greenbaum has proved that

the finite precision Lanczos computation for a matrix A and a given
starting vector v produces in steps 1 through k the same eigenval-
ue approximations (the same Jacobi matrix Tk) as the exact Lanczos

computation for some particular larger matrix Â(k) and some partic-

ular starting vector v̂(k) while the eigenvalues of Â(k) all lie within
tiny intervals around the eigenvalues of A. The size as well as (all)

individual entries of Â(k) and v̂(k) depend on the rounding errors in
the steps 1 through k.

It should be emphasized that Â(k) is not given by a slight perturbation of A,

as sometimes stated in literature; Â(k) is typically much larger than A. This is
illustrated on Figure B.4. An analogous statement is valid, with a small inaccu-
racy specified in {27}, also for the behaviour of finite precision CG computations.
This explains why (B.29) and (B.33) must fail, in general, in finite precision arith-
metic, wherem CG steps are not enough to annihilate the influence of them large
outlying eigenvalues. One may suggest to resolve the matter by adding several
penalty steps which account for the effects of rounding errors. The number of
such additional steps, however, depends on current iteration k and it can not
be determined a-priori. The difficulty is illustrated in Figure B.1 above where
the “penalty” is given by the horizontal differences between the dashed line (the
bound) and the solid line (computed results).

3CG behaviour assuming exact arithmetic is simulated throughout the paper by double
reorthogonalization of the residual vectors; see {29, 48}.
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Figure B.4: For any k = 1, 2, . . . the first k steps of the finite precision Lanczos
computation for A ∈ C

N×N can be analyzed as the first k steps of the exact
Lanczos for the (possibly much larger) matrix Â(k) ∈ C

N̂(k)×N̂(k) depending on k
which generates the same k × k Jacobi matrix Tk.

As stated above, the matrix Â(k) and the vector v̂(k) depend on the iteration
step k. The reasoning about the delay in finite precision CG computations sug-
gests (it was experimentally confirmed in {29}) that the particular matrix Â(k)
constructed for the k steps of the given finite precision CG computation can be
replaced (with an acceptable inaccuracy) by a matrix Â having sufficiently many
eigenvalues in tight clusters around each eigenvalue of A; see also the detailed
argumentation in {41} and, in particular, in {Section 5.9, 37}. The appropriate

starting vector associated with Â can be constructed from A and b independently
of k. As an example, the matrix Â used in our experiments below has l eigenval-
ues λ̂j,1 < λ̂j,2 < . . . < λ̂j,l uniformly distributed in tiny intervals [λj −∆, λj +∆]
around each original eigenvalue λj of A, j = 1, 2, . . . , N , where l is sufficiently
large in correspondence to the maximal number of the performed iterations steps.
The associated right hand side b̂ is obtained from b by splitting each individual en-
try βj of b into l equal parts β̂j,1, . . . , β̂j,l such that

∑l
s=1 β̂

2
j,s = β2

j , j = 1, 2, . . . , N ;
see {29}.

As an immediate consequence of the results from {27, 29} we get that conver-
gence behaviour of exact CG applied to a matrix with the spectrum having well
separated clusters of eigenvalues is both qualitatively and quantitatively different
from the convergence behaviour of exact CG applied to a matrix with a spectrum
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where each cluster is replaced by a single eigenvalue. We can conclude that even
for the CG method, the HPD matrix and assuming exact arithmetic,

a spectrum composed of a small number of tight clusters can not be
associated, in general, with fast convergence.

Indeed, the associated Stieltjes moment problems from Section B.1.1 can be for
different distribution of eigenvalues very different. This is true, in particular,
when clusters of eigenvalues are replaced by single (representing) eigenvalues of
the same weights; see {47}. This point contradicts the common belief which
seems widespread.

We will now explain how this fact is reflected in the composite polynomial
convergence bounds (B.29). Using the relationship with the exact CG computa-

tions applied to Â, the corresponding minimization problem which bounds the
CG convergence behaviour in finite precision arithmetic is not

min
ϕ(0)=1

deg(ϕ)≤k

max
j=1,...,N

|ϕ(λj)| , (B.35)

where λ1, . . . , λN are the eigenvalues of A; see (B.21). Instead, one must use

min
ϕ(0)=1

deg(ϕ)≤k

max
λ∈σ(Â)

|ϕ(λ)| , (B.36)

where the spectrum of the matrix Â consists of the union of the individual clusters
around the original eigenvalues λj, j = 1, . . . , N , i.e., in our case

σ(Â) ≡
⋃

j=1,...,N

{
λ̂j,1, . . . , λ̂j,l

}
. (B.37)

Consequently, in order to be valid for finite precision CG computations, the upper
bound based on the composite polynomial (B.28) from Section B.3 must use
instead of

max
j=1,...,N

|qm(λj)χk−m(λj)| / |χk−m(0)| , (B.38)

which considers the values of the composite polynomial at the eigenvalues
λ1, . . . , λN of A, the modification

max
λ∈σ(Â)

|qm(λ)χk−m(λ)| / |χk−m(0)| , (B.39)

which considers the values of the composite polynomial at the eigenvalues of
the matrix Â. As a consequence of the minimality property of the Chebyshev
polynomial χk−m(λ) over the interval [λ1, λN−m], its values outside this interval
become even for small k very large. More specifically, the Chebyshev polynomial
is outside the minimality interval the fastest growing polynomial of the given
degree; see, e.g., {Section 2.7, rel. (2.37), 51} and {Section 3.2.3, 16}. The
composite polynomial has, by construction, large values of its gradient at the large
outlying eigenvalues of A; see the illustration in Figure B.2 above. The values of
the composite polynomial at the points located in the tight clusters around such
large outlying eigenvalues can therefore be huge even for small k, and the upper
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Figure B.5: Left: Whereas the exact CG convergence behaviour correspond-
ing to Â, b̂ (solid line) is both quantitatively and qualitatively different from
the exact CG convergence behaviour corresponding to A, b (dash-dotted line), it
nicely matches the finite precision CG computation (bold solid line) using A, b.
The composite polynomial bound (B.29) (bold dashed line) is irrelevant and the
bound (B.39) (dashed line) becomes after several iterations meaningless due to
huge values of the composite polynomial in the neighborhood of the outlying
eigenvalues of A. Right: Using the logarithmic vertical scale we plot a detail of
the absolute values of the composite polynomial (with restriction to the values
in the interval [10−4, 1013]) corresponding to the k-th iteration with k = 2, 3 and

4. The values of the composite polynomial at the eigenvalues λ̂N,s, s = 1, . . . , l
clustered around the largest eigenvalue λN blow up even for the smallest degrees
of the corresponding shifted Chebyshev polynomial χk−m(λ) (k −m = 1 and 2).
Here the width of the cluster around λN is 4ε ‖A‖ ≈ 10−9.

bound based on the expression (B.39) becomes after several iterations in practical
computations meaningless; see the illustration in Figure B.5. The left part shows
finite precision CG convergence behaviour (bold solid line) corresponding to the
right hand side b of ones and the matrix A of dimension N = 40 with m = 2 large
outlying eigenvalues λN−1 = 104, λN = 106 and with the eigenvalues λ1, . . . , λN−2

determined using

λi = λ1 +
i− 1

N −m− 1
(λN−m − λ1) ρ

N−m−i
in i = 2, . . . , N −m− 1 (B.40)

with ρin = 0.9, λ1 = 0.1 and λN−2 = 1. We compare it with exact CG convergence
behaviour (solid line) corresponding to the associated vector b̂ and matrix Â with
∆ = 2ε ‖A‖ and l = 15, where ε = 2−52 is machine roundoff unit; cf. {p. 126, 29}.
In agreement with {29} we observe quantitative and qualitative similarity of both
convergence curves. The composite polynomial bound (B.29) (bold dashed line)
with m = 2 (i.e. considering 2 largest eigenvalues of the matrix A as outliers) is
for the finite precision computations irrelevant and the associated bound (B.39)
(dashed line) practically immediately blows up. The latter is a consequence of the

evaluation of the composite polynomial at the eigenvalues of Â clustered around
the outlying eigenvalues of A as visualized in the right part of the figure.

The spectral upper bound applicable to finite precision CG computations
based on the minimization problem (B.36) was investigated, following {27, 29},
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by Notay in {46}. He considered the composite polynomial where the part deal-
ing with the outlying eigenvalues has possibly many roots in the neighborhood
of the large outlying eigenvalues. The paper presents an estimate of the num-
ber of iterations needed to deal with the outlying eigenvalues as the number of
iterations increases. This requires estimating the frequency of forming multiple
copies of the large outlying eigenvalues, which unavoidably uses partially em-
pirical arguments and requires knowledge of all large outlying eigenvalues. The
paper {46} instructively demonstrates that a-priori investigation of the CG rate
of convergence, which aims at realistic results including effects of rounding errors,
is inevitably rather technical. Consequently, a practical application of a realistic
a-priori analysis which is not specialized to some particular cases is limited.

B.5 Other shortcomings of composite polyno-

mial bounds

In this section we will comment and numerically demonstrate several other draw-
backs of the composite polynomial bound (B.29). Our observations can be sum-
marized in the following points.

a) The composite polynomial bound (B.29) by construction does not depend
on distribution of the eigenvalues within the interval [λ1, λN−m]. In contrast
to that, a finite precision CG behaviour can significantly depend on this
distribution.

b) Unlike the bound (B.29), finite precision CG computations depend on the
position of the large outlying eigenvalues.

c) The failure of the composite polynomial bound (B.29) in finite precision
CG computations can occur even for a small size and/or conditioning of
the problem.

In the numerical illustrations below we used diagonal matrices A and the right
hand side b of all ones.

Point a) In Figure B.6 we compare CG computations applied to two problems
with the same outlying eigenvalues, the same effective condition number κm(A) =
λN−m/λ1 but with different distribution of the eigenvalues within the interval
[λ1, λN−m]. Computations were performed using diagonal matrices of dimension
N = 80 with m = 7 large outlying eigenvalues λN−6, . . . , λN and the eigenvalue
λN−7 determined using (B.34) with λ1 = 0.1, λN = 105 and ρ ≡ ρout = 0.3. The
eigenvalues λ2, . . . , λN−8 are distributed in the interval [λ1, λN−7] either uniformly
or using (B.40) with ρin = 0.95.

The composite polynomial bound (B.29) with m = 7 (dashed line) is the
same for both computations, as it does not reflect the distribution of the eigen-
values within the interval [λ1, λN−m]. On the contrary, the convergence of the
CG method depends in exact arithmetic slightly (dash-dotted lines) and in finite
precision arithmetic very significantly (bold solid lines) on the distribution of all
eigenvalues, including those in the interval [λ1, λN−m].
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Figure B.6: Unlike the composite polynomial bound (dashed line), both exact
(dash-dotted lines) and finite precision (bold solid lines) CG convergence be-
haviour are sensitive to the change of distribution of the eigenvalues in the interval
[λ1, λN−m]. In finite precision computations the difference between the uniform
distribution with ρin = 1 and the distribution with ρin = 0.95 is significant.
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Figure B.7: Finite precision CG computations (bold solid lines) are, in contrast to
the exact CG convergence behaviour (dash-dotted lines), sensitive to the position
of the single large outlying eigenvalue λN . The frequency of forming multiple
approximations of the largest eigenvalue is seriously affected by its position. The
bounds based on the composite polynomial (B.28) (dashed line) can fail also in
the presence of only a single large outlier.

Point b) As mentioned in the previous paragraph, the convergence behaviour
of the CG method depends on distribution of all eigenvalues. Thus the position
of the outlying eigenvalues is of importance. In Figure B.7 we plot the finite
precision CG convergence curves (bold solid lines) and CG behaviour assuming
exact arithmetic (dash-dotted lines) using the diagonal matrices of dimension
N = 50 whose largest eigenvalue λN = 10 respectively λN = 108 is considered as
the only outlier and the eigenvalues λ1, . . . , λN−1 are distributed uniformly within
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the interval [λ1, λN−1], λ1 = 0.1, λN−1 = 0.3.
The exact CG convergence behaviour is in both cases nearly identical. The

delay of convergence in the finite precision CG computation with the outlying
eigenvalue λN = 108 is naturally more significant than with the outlying eigen-
value λN = 10. This happens due to more frequent occurrence of the multiple
approximations of the largest eigenvalue. Thus the information about the number
of eigenvalues lying above some given number λ̄ (as used, e.g., in {Corollary 2.2,
53} or {p. 4, 38}) is without further analysis of the problem not sufficient for
estimating the actual convergence rate of finite precision CG computations. A
single large outlying eigenvalue can affect the “asymptotic” rate of convergence.
The composite polynomial bound (B.29) can fail even in this case.

Point c) Depending on the distribution of eigenvalues, the composite conver-
gence bound can fail even for small and well-conditioned problems. We will use
diagonal matrices with spectrum determined in the following way. We consider
4 different problems with N = 30 or 100 and λN = 10 or 106. The m = 8 large
outlying eigenvalues λN−7, . . . , λN and the eigenvalue λN−8 are given by (B.34)
with λ1 = 0.1, ρout = 0.6 for N = 30, ρout = 0.2 for N = 100. The rest of the
eigenvalues is distributed in the interval [λ1, λN−8] using (B.40) with ρin = 0.8.
Each of the subplots in Figure B.8 shows that the composite polynomial bound
(bold dashed line) and the finite precision CG convergence behaviour (bold solid
line) have a little in common. We also plot the exact CG convergence behaviour

(solid line) corresponding to the matrix Â which is determined using ∆ = ε ‖A‖
and l = 15. Similarly as in Section B.4 we observe that it qualitatively match-
es the finite precision CG computations. The associated upper bound (B.39)
(dashed line) becomes after several iterations meaningless.

B.6 Concluding remarks

This paper demonstrates that the composite polynomial bound (B.29) based on
a Chebyshev polynomial and a fixed part having roots at large outlying eigen-
values of A has, in general, a little in common with actual finite precision CG
computations. Related to that, CG method applied to a problem Ax = b with
a spectrum of the matrix A consisting of t tiny clusters does not necessarily pro-
duce a good approximation to the solution x within t steps. Many more steps
may be needed, depending on the position of the individual clusters (this holds
in exact arithmetic as well as in finite precision arithmetic). Our experimental
illustration use small examples with diagonal matrices. In our opinion this makes
the message appealing also for computations with real data.

Although this paper concentrates on bounds based on Chebyshev polynomi-
als, the main point that the large outlying eigenvalues can challenge the relevance
of a-priori CG convergence rate analysis when applied to practical computations
is valid in general. Any a-priori CG convergence rate analysis is based on a sub-
stantial simplification of the very complex phenomena. We must admit this fact
and verify any conclusion drawn from such analysis by justification of the as-
sumptions incorporated in the whole development. A-priori convergence bounds
are often used in connection with evaluation of preconditioning strategies and
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Figure B.8: The failure of the composite polynomial bound (bold dashed line)
in finite precision CG computations (bold solid line) for well-conditioned (left)
resp. ill-conditioned (right) smaller (top) and larger (bottom) problems. The ex-

act CG convergence behaviour corresponding to Â (solid line) matches the finite
precision CG computations performed using A and it differs both qualitatively
and quantitatively from the exact CG convergence behaviour corresponding to
A (dash-dotted line). The upper bound (B.39) (dashed line) which evaluates the
composite polynomial in the neighborhood of outliers gives no relevant informa-
tion.

their optimality. Here the validity of the bounds in the presence of rounding
errors and the tightness of the bounds should be taken as a strict requirement,
otherwise the conclusions are not mathematically justified. There is an obvious
exception, when preconditioning ensures very fast convergence, so that the tight-
ness of the bounds does not matter. In such cases rounding errors have no chance
to spoil significantly the computation.

In order to limit the effects of rounding errors, it would be useful to avoid
pro-actively presence of large outlying eigenvalues in the spectrum of the pre-
conditioned matrix; cf. {8}. Reorthogonalization procedures known from the
Lanczos method for computing several dominating eigenvalues are in the CG
context not generally applicable for efficiency reasons. They might be worth in-
vestigating, however, together with combined arithmetic techniques, in parallel
implementations.

Finally, actual error in CG computations should be estimated and analyzed
a-posteriori. This field has been thoroughly investigated by Golub and his col-
laborators, with early works {17, 18}; see also {13, 14, 15}. As pointed out in
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{55}, important steps in this direction can be found already in the original paper
by Hestenes and Stiefel {33}. As in the a-priori analysis, the a-posteriori esti-
mates and bounds can not be reliably applied to practical computations unless
they are accompanied by a thorough rounding error analysis; see the arguments
and examples given in {25, 55, 42}. For a survey we refer, e.g., to {Sections 3.3
and 5.3, 41}, {Chapter 12, 24}. In the context of numerical solution of partial
differential equations, the a-posteriori analysis of the algebraic iterations should
be incorporated into the a-posteriori analysis of the whole solution process; see,
e.g. the recent survey {1} and some possible challenges related to applications of
CG formulated in {Chapter 5, 37}.

As in numerical solution of partial differential equations, a-priori and a-poste-
riori analysis has its place also in the iterative algebraic computations. In both
fields reliability is the key requirement.
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